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Abstract

In popular approaches to classification by aggregating decisions, there are two main trends. One
path leads to the construction of a classifier ensemble, where a group of diversified inducers
vote on a label to be assigned a sample. The second direction is to obtain a decision based
on dispersed data, through some form of information fusion. The paper proposes a new mode
of operation for a voting classifier, where one and the same inducer can reach a final decision
relaying on labels assigned through partially dispersed data, but also different forms of the
same data, resulting from discretisation. The experiments were carried out on several datasets,
classifiers, and algorithms for aggregating decisions. They resulted in observation of cases and
scenarios for improved predictions, showing the merits of the presented research methodology.
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1. Introduction
Efficient development of information systems requires making the best of available data to arrive
at the most informed decisions, crucial especially for business applications. Nowadays, the input
data are often not only distributed but also include continuous and categorical attributes. Repre-
sentation of attributes can reflect on their relevance for a task [9]. Transformations of features,
such as discretisation, can affect importance of variables and performance [8]. If supervised
discretisation is conducted, it can evaluate attributes, finding some of them as not helping dis-
tinction of classes. Such attributes can be treated as irrelevant in a discrete domain. On the other
hand, this characterising property of discretisation can be used to support a voting classifier [3].

An inducer collecting information from multiple sources can rely on suggestions from a
group of classifiers. Each base estimator gives its opinion and this ensemble votes on the final
decision [6]. The data on which individual components of a verdict operate can be dispersed
and diversified. Varied data formats enable to capture more information, as specific modes
of handling attributes and their domains can be better adapted to learning from continuous or
discrete values. A classifier capable of dealing with both numeric and categorical features can
report different performance for the same data, depending on the representation.

In the paper, a new voting classifier was proposed, based on dispersed data. The input
features are divided into two groups with the help of a supervised discretisation algorithm [13].
The variables, which after transformation receive only one bin, are separated from those for
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which multiple intervals are found. All attributes are considered in the continuous or discrete
domain. To achieve that, the support of unsupervised discretisation methods is needed. To
reach a decision, the inducer refers to both categories of features, and performs simple majority
voting in one of defined formulas. The research methodology takes into account the issues of
discretisation, but also the nature of the data itself is considered—that is why various voting
methods are proposed. Algorithms for aggregating decisions are with voting in a single level or
two levels, and preference of the information discovered in continuous or discrete domain.

The effectiveness of the new voting classifier was validated through experiments involv-
ing several datasets and three popular inducers, the Bayesian Network, J48, and the k-Nearest
Neighbours. Analysis of the results allowed to observe conditions where the proposed mode of
operation was advantageous and showed the merits of the research framework.

The paper is organised as follows. Section 2 presents the fundamental notions of classifiers
aggregating decisions and the description of the novel mode of operation of a voting inducer.
Section 3 provides an explanation of the experiments. Section 4 contains comments on the
results obtained. Section 5 concludes the paper and indicates future research paths.

2. Classifiers aggregating decisions
To classify samples in the simplest case, a learner can rely on its own mode of operation and
approach to knowledge discovery. In more complex scenarios, data could be diversified or
distributed and multiple methods can be involved in exploration, with some voting strategies
employed. The section presents popular approaches and a description of a new voting classifier.

2.1. Standard approaches

A classifier ensemble is a machine learning approach that combines predictions from multiple
models. The basic idea is to obtain the suggestions of multiple classifiers on the original data and
combine them to form the final decision, possibly using some voting schemes involving simple
majority (hard voting) or weighted votes (soft voting) [4]. The main goal of such processing is
to reduce the misclassification of weak inducers and obtain a strong predictor [1], decrease the
risk of over-fitting, and increase the stability of predictions by aggregating the results of multiple
models. Popular types of ensemble methods include boosting, bagging, and stacking [6].

In stacking, different models are trained independently and their outputs become inputs to
a “meta-model” that makes the final prediction. In Bootstrap Aggregating (known as bagging),
multiple models are trained on subsets of data, sampled with replacement [3]. Boosting im-
proves model accuracy by sequential training of base models. Each base model is trained in a
way that emphasises the examples misclassified by previous models. Therefore, more weight is
given to misclassified samples so that subsequent models focus on these difficult cases.

2.2. Proposed mode of operation for a new voting classifier

Two considerations provided motivation for the operation of a voting classifier: i) discretisation
can result in attribute reduction, and ii) depending on the properties of a particular inducer,
discretisation can have a strong impact on the observed performance. The new voting classifier
works on partially distributed data and on the same data represented in various forms, as follows.

Let a denote the available attributes. am gives variables that are assigned multiple bins in
supervised discretisation, and a1 are features with a single categorical representation found. Let
Ra denote attributes with continuous domains and Ca with discrete domains. Then Ram means
all features with multiple intervals found by supervised discretisation, but represented in the
continuous domain, while Ca1 reflects some discrete representation for single bin variables.

A classifier aggregates the final decision for a sample based on several voting scenarios. In
each, the attributes are distributed, and am and a1 groups still represented in continuous input
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domain or discretised. There are three main components with single and equal votes, so a tie is
not possible. The simple majority results in the assigned label:

• RamCamRa1—aggregation on a single level, am part taken both in continuous and dis-
crete form, a1 only in the continuous domain. The am part has two votes over the one of
a1, so the role of the latter is visible only when Ram and Cam lead to different decisions;

• RamCamCa1—aggregation on a single level, am part taken both in continuous and dis-
crete form, a1 part in a discrete domain obtained after transformation with unsupervised
discretisation algorithm, therefore there are several variants possible;

• RamCam(Ca1)—aggregation on two levels, am part taken both in continuous and dis-
crete form, a1 part in discrete domains obtained after transformation with unsupervised
discretisation algorithm. From all discrete variants possible for a1 part, through simple
majority voting a decision is obtained first and then this is provided as one of the three
main components of the decision at the second level.

Depending on the number and type of discretisation methods used, apart from indicating
multi- and single-interval attributes, the specific approach could also be indicated. Unsupervised
algorithms work based on the input parameter, typically providing the number of bins to be
constructed for the transformed variables, which needs to be given to avoid any ambiguities.

3. Experimental setup
The new approach to aggregating decisions for a voting classifier needed experimental vali-
dation. The section details the input data explored, the methods for attribute transformations
employed, and the algorithms used for data mining.

3.1. Input datasets

To provide a wider scope for observations and minimise the number of influential factors that
could bias investigations, in the research three pairs of datasets were constructed. The first two
pairs were chosen from the datasets available in the UCI Machine Learning Repository [10].
Avila1 and Avila2 are based on samples selected from the Avila dataset [5]. It is dedicated to the
task of associating specific patterns of writing with copyists of the Bible produced in the XIIth
century. Wave1 and Wave2 refer to the Waveform Database Generator (version 1) [4]. Different
waveforms can be generated as a combination of two or three base waves. The third pair of
datasets, Style1 and Style2, are dedicated to a task of authorship attribution from the stylometric
analysis of texts [12]. Authors of texts are recognised based on the linguistic characteristics of
their writing styles, visible regardless of a particular topic.

For stylometric datasets, the performance evaluation by standard cross-validation fails to
deliver reliable predictions due to stratification caused by sub-concepts [2]. Instead, averaging
accuracy for multiple test sets is used. Therefore, for all datasets the same evaluation strategy
was adopted and each contained three sets: one learning set (with 200 samples) and two test
sets (90 and 80 samples). All sets were prepared for a binary classification problem with bal-
anced classes. Classes were considered to be of the same importance, with the same costs of
misclassification. The input attributes available were continuous. There were no missing values.

3.2. Transformation of features

The input datasets were independently discretised by one supervised and one unsupervised ap-
proach [8]. The Fayyad and Irani algorithm [7] (denoted dsF) is a supervised method with the
main objective of selecting cut points for continuous attributes in such a way as to minimise en-
tropy in each interval, which ensures that the data in each bin are as homogeneous as possible.
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The algorithm starts working by assigning all attribute values to one interval and then divid-
ing this interval into smaller ones until further division does not result in a sufficient increase
in information gain. Equal frequency binning (denoted duf) is an unsupervised discretisation
method. It divides the attribute values into intervals so that each bin contains approximately the
same number of observations. The number of bins is the input parameter.

For the proposed methodology, an important consideration was the existence of variables
for which a supervised discretisation algorithm assigned a single categorical representation in
a discrete domain. These characteristics of the datasets used in the investigations are shown
in Table 1. It can be observed that the number of 1 bin features was close to 50%. Without
additional transformations, these variables would be treated as irrelevant and their informative
content in the continuous domain would be lost.

Table 1. Characteristics of attributes in datasets found by discretisation with Fayyad & Irani method.

Dataset
Avila1 Avila2 Wave1 Wave2 Style1 Style2

Number of attributes: Total/1 bin 10 / 4 10 / 5 21 / 8 21 / 9 12 / 6 12 / 7

3.3. Classifiers employed in investigations

There are many state-of-the-art inducers that can be used in data mining tasks. In the research,
three selected classifiers were employed: the Bayesian Network (BNet), J48, and the k-Nearest
Neighbours (k-NN). All are implemented on the popular WEKA platform [16].

The BNet classifier uses the Bayes’ theorem to determine the probability of predicting the
class to which a given object belongs [9]. This probabilistic model is represented as a directed
graph. The nodes correspond to the attributes, and the edges indicate the conditional dependen-
cies between the variables. The result of the classifier’s operation is the assignment of a new
observation to the class for which the highest probability has been determined.

J48 is an implementation of the C4.5 algorithm [11]. It uses a tree representation. Each
internal node corresponds to an attribute, and each terminal node (leaf) corresponds to a class
label. The selection of attributes that form the nodes is based on the information gain measure.

k-NN belongs to the group of lazy learning algorithms because, during the classification
process, the algorithm does not explicitly learn a model. The main idea is based on calculating
the distance (similarity) between the objects studied and determining the k nearest neighbours
who will participate in the process of determining the class label for the tested object.

As a measure of inducer performance, the classification accuracy was selected [15]. It re-
ports the percentage of correctly labelled samples, regardless of class. The accuracy was aver-
aged over the results obtained for the two test sets present in each dataset.

4. Obtained results
The results of the experiments were mainly analysed with respect to the specific algorithm for
aggregating decisions of a voting classifier. The preferences of the inducers shown for either
numeric or categorical attributes, reflected in the reported performance, were also studied.

4.1. Reference points

Firstly, some reference points were established. They included the performance for the input
data in the continuous domain and when it was discretised with the supervised Fayyad and Irani
algorithm. The results given in Table 2 show that for all classifiers, the change of representation
of the input data in some cases (but not all) gave better predictions. For the Avila datasets,
all inducers suffered in consequence of discretisation. The efficiency of BNet recognition was
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improved for the two Waveform datasets, while J48 and k-NN worked better for the Wave1 and
Style2 datasets. The influence of discretisation showed the impact of data irregularities, existing
in independently transformed sets and variable domains [14].

Table 2. Performance [%] of inducers operating on datasets in continuous domain (Ra), and in the
discrete domain obtained by the supervised Fayyad & Irani algorithm (Ca).

Dataset
Avila1 Avila2 Wave1 Wave2 Style1 Style2 Avila1 Avila2 Wave1 Wave2 Style1 Style2

Inducer Continuous domain (Ra) Discrete dsF domain (Ca)
BNet 87.71 78.82 87.78 83.13 91.60 77.43 80.00 63.33 90.00 84.79 50.00 67.22
J48 86.94 82.99 83.19 87.22 89.79 75.63 83.75 63.33 89.03 76.18 87.78 80.76
k-NN 82.36 70.21 85.63 86.46 86.18 77.92 80.00 66.25 85.83 72.57 62.22 83.54

The power of the classifiers operating on data discretised by equal frequency binning (duf)
was another reference point. The number of bins to be constructed ranged from 2 to 10. It
resulted in nine discrete data variants, as displayed in Fig. 1. The categories in the X axis
correspond to the inducers and the series specify the number of bins. Unsupervised discretisation
for many conditions proved to be more advantageous than supervised transformations. For both
the Avila datasets, Wave2 and Style1, all learners returned enhanced accuracy. The J48 classifier
achieved a lower ratio of correct predictions for Wave1 and Style2 in all duf domains. The k-
NN improved for Wave1 but returned degraded performance for Style2, while the BNet did
the opposite. For further comparisons with voting classifiers, only the maximal or minimal
classification accuracy detected among all discrete variants was referred to.

Fig. 1. Performance [%] of inducers operating on all datasets transformed with unsupervised equal
frequency binning of all attributes (Ca).

Another point of reference was the accuracy for a subset of attributes, obtained by rejecting
these variables for which single bins were defined in the Fayyad and Irani method, which is
shown in Table 3. The feature reduction turned out to be mostly advantageous for the J48
classifier, as only for the Style2 dataset it fared worse than when operating on the entire set of
attributes. For the k-NN for three datasets (Avila2, Wave1, Style1), the improvement was noted,
and for the other three the decreased predictions were returned. The BNet reported exactly the
same results as when working on all available features.

All of these results (four groups) were treated as reference points. Once they were estab-
lished, the next part of the experiments was dedicated to testing the proposed mode of operation
of the voting classifiers with the defined scenarios.
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Table 3. Performance [%] of inducers operating on datasets in continuous domain reduced to these
attributes that after supervised discretisation were represented by multiple intervals (Ram

).

Dataset
Inducer Avila1 Avila2 Wave1 Wave2 Style1 Style2
BNet 87.71 78.82 87.78 83.13 91.60 77.43
J48 87.01 86.74 85.35 87.78 92.22 74.38
k-NN 81.18 74.65 85.97 82.71 91.67 76.11

4.2. Classification by voting

The voting classifiers aggregated decisions based on data in various forms. Depending on a
formula, the attributes found as multi-bin by the Fayyad and Irani algorithm (am), were used in
their continuous (Ram) or categorical representation (Cam). The attributes for which supervised
discretisation constructed only single bins (a1) could be processed in the continuous domain,
but operation on their non-trivial discrete form required unsupervised discretisation.

Table 4 includes the results for voting classifiers using multi-bin variables in both numerical
and discrete form, and 1 bin variables in the continuous domain. This algorithm can be treated
as a classifier working mainly in the continuous domain, but with distributed data, and with
suggestion from the part of multi-bin features reinforced by their discrete form.

Table 4. Performance [%] of inducers voting based on dispersed data, by continuous and discrete
form for multi-interval attributes and single bin variables in continuous domain (Ram

Cam
Ra1

)

Dataset
Inducer Avila1 Avila2 Wave1 Wave2 Style1 Style2
BNet 88.82 65.14 90.76 84.24 91.60 66.11
J48 87.50 78.75 88.40 80.63 91.53 79.24
k-NN 87.85 76.94 88.75 79.79 80.90 83.40

For this voting algorithm, the BNet classifier outperformed itself with respect to all reference
points for the Avila1 and Wave2 datasets. On the other hand, for the Style2, the performance
was below those previously observed. For Style1 the predictions were at the same level as
established for working in the original continuous domain for all variables or with the reduced
set, while it was improved over the dsF domain but degraded with respect to the duf domains.

For J48 and k-NN inducers, the advantage of voting was visible compared to regular super-
vised discretisation for all datasets but Style2. It turned out to be disadvantageous for the J48
when compared to all features represented in some duf domain for the Avila and Wave datasets
pairs. Operation on all variables in the continuous domain brought better results than the vot-
ing scenario studied for J48 only for Avila2 and Wave2, and for the reduced attribute set for
Avila2, Wave2, and Style1. For the k-NN this voting was undeniably beneficial when operating
on the Wave1 dataset, and for Wave2 and Style1 the improvement was only over data in the dsF
domain. For Avila2, only duf discretisation of all features returned better classification, while
for Avila1 it happened for duf but also for am attributes in continuous form. In the case of the
Style2 dataset, this voting caused outperforming the reference points in the continuous domain
for all and reduced variables, and worse results than Ca in the dsF and duf domains.

The second voting scenario also involved one level of aggregating decisions. It differed from
the first in relying on unsupervised discretisation of a1 attributes. As before for the reference
points, equal frequency binning was employed, ranging the number of bins constructed from 2
to 10. The results are shown in Fig. 2, where it can be noted that for the Bayesian Network the
performance was independent on the number of intervals formed for variables, and it was the
same as for the first voting formula. For the other two inducers, some variations were visible.

This voting formula led to the J48 classifier returning better performance than the first sce-
nario for all six datasets for some conditions, depending on the number of constructed intervals.
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Fig. 2. Performance [%] of inducers voting based on dispersed data, by continuous and discrete
form for multi-interval attributes and single bin variables transformed by unsupervised equal
frequency binning with varying the number of constructed bins (Ram

Cam
Ca1

).

For Avila1, the predictions were higher than all reference points apart from the case when all
features were transformed with the duf method, and for Avila2 it was higher only with respect to
working on the dsF domain, but below other reference points. However, only the representation
in the dsF domain was more advantageous for the Wave1 dataset, and the only less advantageous
for Wave2. For Style1 this voting led to the best accuracy presented so far, while for Style2 only
the duf representation of all attributes measured as high.

For the k-NN classifier, the second voting algorithm was more efficient than the first for
the Wave and Style datasets. Yet for Avila1 and Avila2, the accuracy was lower than only one
reference point: of exploring data subjected to unsupervised discretisation of all features. For
Wave2, the predictions were better only when compared to working in the dsF domain, and the
same statement was valid for Style1. For Style2, the accuracy reported for this type of voting
was the best from those presented to this point.

The results of the third scenario of voting are included in Table 5. The main difference from
the first two algorithms lies in the two levels of aggregating decisions. The first, internal level,
leads to the decision agreed upon among all discrete variants of data resulting from transfor-
mations of a1 variables with unsupervised equal frequency binning. There were nine such data
variants, and their independent processing returned nine suggestions for a classification verdict,
from which a simple majority caused selection that was passed on to the second voting level.

Table 5. Performance [%] of inducers voting based on dispersed data, by continuous and discrete
form for multi-interval attributes and single bin variables transformed by unsupervised equal
frequency binning, with two levels of aggregating decisions (Ram

Cam
(Ca1

)).

Dataset
Inducer Avila1 Avila2 Wave1 Wave2 Style1 Style2
BNet 88.82 65.14 90.76 84.24 91.60 66.11
J48 87.43 79.38 85.97 81.32 90.28 76.04
kNN 82.08 72.22 89.38 79.03 80.07 79.24

For this voting algorithm, BNet reported the same level of predictions as for the two pre-
sented above. For J48 and k-NN, the results were worse than for the second scenario discussed,
for all datasets. However, the relations with reference points were very similar or the same. The
second level of aggregation of decisions by consulting all duf variants of attributes a1 did not
improve the best cases detected when these data versions were explored independently.
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4.3. Discussion of results

The best cases obtained in the experiments are included in Table 6. As a measure of quality, the
maximal classification accuracy was taken, and conditions are provided when it was detected.
If it took place for a variant of unsupervised discretisation, the number of defined bins is listed.

Table 6. The best performance [%] of inducers with conditions where it occurred.

Dataset
Inducer Avila1 Avila2 Wave1 Wave2 Style1 Style2
BNet 88.88 84.58 90.76 89.44 92.85 81.74

All voting scenarios Ca-duf5 All voting scenarios Ca-duf7 Ca-duf4 Ca-duf4
J48 89.17 86.94 89.03 89.65 93.40 80.90

RamCamCa1 -duf9 Ca-duf5 Ca-dsF Ca-duf3 RamCamCa1 -duf7 RamCamCa1 -duf10
k-NN 87.85 84.79 90.07 87.22 91.67 84.10

RamCamRa1 Ca-duf6 RamCamCa1 -duf6 Ca-duf8 Ram RamCamCa1 -duf3

For the BNet and Avila1 and Wave1, the highest accuracy was detected in the voting sce-
narios, the same for all. For the remaining datasets, the best performance was observed in the
regular operation of the classifier for a variant of data received from unsupervised discretisation.
The J48 reported the best predictions for the RamCamCa1 formula in the case of Avila1 and
both Style datasets. For the Wave datasets and Avila2, the highest accuracy occurred when the
attributes were discretised either by supervised or unsupervised approach. For the k-NN, two
voting scenarios improved performance over reference points, RamCamRa1 and RamCamCa1 ,
the former for Avila1 and the latter for Wave 1 and Style2. The most advantageous voting in this
case was not only the one referring to duf variants of a1 attributes, but also relying on their nu-
merical representation. For Style1 the reduced numerical attributes caused the highest accuracy,
whereas for Avila2 and Wave2 unsupervised discretisation turned out to be the most beneficial.

The experimental results show some conditions where the new voting scenarios caused de-
creased powers of the inducers employed, as well as the cases of improved predictions. These
observations confirmed that the proposed framework is worth a deeper study and validated the
new operation mode of a voting classifier, based on dispersed data and transformations of the
input space. It can be adapted to any inducer, but the application is limited to continuous input
data with a noticeable number of 1 bin attributes obtained from supervised discretisation.

5. Conclusions
The paper presents research works dedicated to a new mode of operation for a voting classi-
fier, focused on various forms of the input data resulting from discretisation. Changes in the
representation of attribute domains can affect patterns hidden in the data and therefore also the
knowledge that can be discovered in data exploration. The classifier operates on dispersed data,
obtained with the help of the evaluating property of a supervised discretisation algorithm.

To verify the usefulness of the proposed classifier, experiments were carried out on several
datasets, learners, and algorithms to aggregate the decisions. The final decision was reached by
combining suggestions based on groups of attributes, for which multiple or single intervals were
constructed, with reference to either the original continuous domain or discrete domains. Voting
was performed in one level or two, and preference was given to different representations.

The experimental results allowed to observe scenarios where the proposed approach brought
some improvement and showed its advantages. This work is an introduction to further data-
related research, in order to propose a voting method that will account for the specificity of data
and allow for proposing a more universal solution in the context of distributed data, which is im-
portant for development of efficient information systems that need to reach informed decisions.

In future work, the proposed voting approach will be tested for other estimators with differ-
ent mathematical foundations. In addition, a range of discretisation algorithms will be extended.



ISD2024 GDAŃSK, POLAND
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