Skip to content

psolymos/EDMAinR

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
August 21, 2023 09:14
August 21, 2023 11:47
November 5, 2021 00:15
man
August 21, 2023 11:47
August 21, 2023 11:47
November 4, 2021 23:12
May 31, 2019 09:29
July 15, 2021 09:53
June 27, 2020 12:01
December 27, 2019 00:30
August 21, 2023 09:15
May 31, 2019 09:29
August 21, 2023 09:15
December 27, 2019 00:30
December 27, 2019 00:30
December 27, 2019 00:46
April 26, 2021 14:56
November 20, 2022 18:47
May 31, 2019 09:29

EDMAinR - Euclidean Distance Matrix Analysis in R

CRAN version CRAN download stats License: GPL v2

Linux build Status Windows build status codecov

A coordinate‐free approach for comparing biological shapes using landmark data

Install

if (!require("remotes")) install.packages("remotes")
remotes::install_github("psolymos/EDMAinR")

See what is new in the NEWS file.

License

GPL-2

Contributing

Feedback and contributions are welcome:

  • submit feature request or report issues here,
  • fork the project and submit pull request, see CoC.

Usage

library(EDMAinR)
#> EDMAinR 0.1-3     2020-06-12

file1 <- system.file("extdata/crouzon/Crouzon_P0_Global_MUT.xyz",
    package="EDMAinR")
x1 <- read_xyz(file1)
x1
#> EDMA data: Crouzon P0 MUT
#> 3 dimensions, 47 landmarks, 28 specimens

file2 <- system.file("extdata/crouzon/Crouzon_P0_Global_NON-MUT.xyz",
    package="EDMAinR")
x2 <- read_xyz(file2)
x2
#> EDMA data: Crouzon P0 UNAFF
#> 3 dimensions, 47 landmarks, 31 specimens

B <- 9

fit <- edma_fit(x1, B=B)
fit
#> EDMA nonparametric fit: Crouzon P0 MUT
#> Call: edma_fit(x = x1, B = B)
#> 3 dimensions, 47 landmarks, 28 replicates, 9 bootstrap runs

References

Lele, S. R., 1991. Some comments on coordinate-free and scale-invariant methods in morphometrics. American Journal of Physical Anthropology 85:407–417. doi:10.1002/ajpa.1330850405

Lele, S. R., and Richtsmeier, J. T., 1991. Euclidean distance matrix analysis: A coordinate-free approach for comparing biological shapes using landmark data. American Journal of Physical Anthropology 86(3):415–27. doi:10.1002/ajpa.1330860307

Lele, S. R., and Richtsmeier, J. T., 1992. On comparing biological shapes: detection of influential landmarks. American Journal of Physical Anthropology 87:49–65. doi:10.1002/ajpa.1330870106

Lele, S. R., and Richtsmeier, J. T., 1995. Euclidean distance matrix analysis: confidence intervals for form and growth differences. American Journal of Physical Anthropology 98:73–86. doi:10.1002/ajpa.1330980107

Hu, L., 2007. Euclidean Distance Matrix Analysis of Landmarks Data: Estimation of Variance. Thesis, Master of Science in Statistics, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada. Pp. 49.