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FOREWORD 

While our strategies may vary, the vision of precision psy-
chiatry is to optimize treatment for each and every patient. Toward this 
mission, dependable treatment selection algorithms, regardless of the indi-
cation, should not only match an individual to their best treatment option 
but also avoid an ineffective or potentially harmful one. Although this goal 
is seen by some as an impractical or, at best, naïve blue-sky goal, contempo-
rary clinical neuroscience research speaks to the ultimate achievability of 
this holy grail quest.The contributors to this book provide clear evidence that 
the goal is indeed within sight. 

The need has never seemed more urgent. Amplifying our impatience is 
the fact that current treatment selection continues to rely on experiential trial 
and error—the perennial stopgap. It is assumed that, while inefficient, this 
approach is generally effective, although the evidence is increasingly clear 
that the more treatments that are tried and failed, the less likely it is that any 
subsequent one will work, so getting the “right treatment” at the time of first 
intervention is paramount. More ominous is the hypothesis that exposure 
to the “wrong” treatment may itself contribute to the development of treat-
ment resistance over time. Further underscoring this need is that patients are 
understandably suspect when told a treatment works well “on average,” when 
what they really want to know is what treatment will work best for them. 
While frustration with this status quo serves as a useful scientific catalyst for 
many of us, despair, not frustration, is the upshot for many patients who have 
exhausted their available options. It is in this context that past ambivalence 
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about the use of biomarkers to guide treatment is lessening, and development 
of biomarkers is now seen as a critical clinical need, complementing studies 
of disease pathophysiology and ultimately development of preventions and 
cures. 

This book highlights the tremendous progress in the field toward these 
many important goals. Although the concept of “precision psychiatry” is 
not new, suitable tools to deconstruct and validate the multitude of putative 
moderators and mediators of illness risk, symptom severity, and phenotypical 
heterogeneity are relatively recent additions. Basic clinical and computa-
tional strategies are now routinely applied to address the complex interaction 
of molecular, developmental, chemical, structural, and environmental con-
tributors to specific disorders and syndromes. As the precision psychiatry 
field has grown and matured, there are now means and methods to move be-
yond hypothesis-driven experiments in small prospective cohorts. Studies 
now include large-scale genetic, behavioral, and imaging phenotyping of 
increasingly larger cohorts of well-characterized patients and their families, 
informed by basic and translational studies in strategic animal models. The 
symbiosis of these multimodal strategies is at the core of precision psychiatry, 
with key examples highlighted in the various chapters of this book. 

The tremendous progress of the field broadly provides the opportunity 
to reflect on just how far we have come since the 1980s toward actionable 
precision approaches for the treatment of major depression. My own studies, 
beginning in the mid-1980s, first examined brain metabolic patterns of 
depression in neurological patients. In those early days of functional neuro-
imaging using PET, the capacity to move beyond conducting static correla-
tional analyses of postmortem or X-ray computed tomography lesions to 
mapping the living brain in action was a paradigm shift for the study of be-
havioral disorder when there were no pathognomonic markers. Resting-state 
studies of blood flow and metabolism identified a similar pattern of limbic-
frontal abnormalities in depressed patients with stroke, Parkinson’s disease, 
and Huntington’s disease, a pattern also seen in unipolar depressed patients, 
suggesting a common depression signature, independent of etiology, and thus 
providing core elements for a putative depression circuit model (Mayberg 
1994). 

The simple-minded notion of a common depression pathway, while 
short-lived, did provide an anchor to interpret the variability revealed through 
studies of antidepressant treatment effects. In these early experiments, fron-
tal abnormalities, common across all subjects at pretreatment baseline as 
previously noted, were accompanied by differential anterior cingulate me-
tabolism that distinguished eventual medication responders from non-
responders. The concept of ongoing adaptive changes in patients prior to 
seeking care that might impact their ultimate response to treatment, although 
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representing a shift from our initial hypothesis, was an important first clue 
to the notion of depression subtypes tied to treatment rather than symptom 
variability. We noted that the “presence of this metabolic signature in indi-
vidual patients may prove useful in identifying those at risk for a difficult 
disease course” (Mayberg et al. 1997), a conclusion that unwittingly foretold 
the trajectory of our future work and defined what has become a cornerstone 
of the precision psychiatry mission—treatment selection biotyping. 

These initial observations next led to a series of studies designed to char-
acterize treatment mechanisms, starting with first-line antidepressant med-
ications (Mayberg et al. 2000). In addition to identifying a nonlinear time 
course of brain changes over the course of 6 weeks of treatment, these stud-
ies also revealed distinct differences between responders and nonrespond-
ers (Mayberg 1997, 2000). Studies of single medications and placebo led to 
the natural next step—a complementary study of cognitive-behavioral therapy 
(CBT), an alternative first-line treatment. Interestingly, it was this experiment, 
designed to define a common response pathway independent of treatment 
type, that first demonstrated that different treatment classes target a com-
mon set of brain regions in complementary but non-overlapping patterns 
(Goldapple et al. 2004). These findings further enabled explicit testing of 
simple causal models and identification of putative treatment-specific “cir-
cuit” subtypes (Seminowicz et al. 2004). These preliminary studies also 
served to guide trial design and analytic strategies to define baseline imag-
ing patterns that might differentially predict remission or failure to both 
medication and CBT (Mayberg 2003). Consecutive studies in distinct co-
horts using fluorodeoxyglucose-PET and resting-state functional MRI to 
explore functional connectivity, respectively, independently defined two dis-
tinct imaging-based biotypes, both suitable for precision treatment selection 
in prospective trials (Dunlop et al. 2017; McGrath et al. 2013). In parallel, 
these data-driven depression models were also foundational to the develop-
ment and testing of deep brain stimulation (DBS) of the subcallosal cingu-
late—a key node in our depression network—for treatment-resistant patients 
(Mayberg et al. 2005). Ongoing DBS studies continue to emphasize the im-
portance of precision imaging, with surgical implantation of DBS leads 
now optimized using individualized tractography-guided methods (Riva-
Posse et al. 2014), verified by predictable and reproducible intraoperative 
behavioral effects with therapeutic stimulation at predefined target loca-
tions (Riva-Posse et al. 2018). 

Whether one uses a hypothesis-driven study in a small patient cohort 
or a model-free, “big data” approach, we share a common goal: to develop 
biomarkers and algorithms that will discriminate patient subgroups and op-
timize treatment selection in the management of individual patients across all 
stages of illness. Treatment selection is not a negotiation, but rather the best 
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option given the current evidence. Ultimately, clinical use of such discov-
eries will require biomarkers that are not only robust but scalable. While the 
complexity of psychiatric disorders will always require a holistic approach, 
our evolving methodological toolkit now puts us in position to align our ap-
proaches with those in the fields of cardiology, oncology, and infectious dis-
ease, where treatment selection is routinely based not on preference or 
expediency but on explicit molecular, imaging, and biological markers. What 
is clear is that one size does not fit all; so the pursuit of a true precision ap-
proach, in all of its complexity, is our future. 

Helen Mayberg, M.D. 
Professor of Psychiatry, Neurology, Neuroscience, and Neurosurgery,  
Icahn School of Medicine at  Mount Sinai, New York, New York 
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PREFACE 

Precision Psychiatry: The Path Forward 

Much of the world’s health burden, measured in years lost to 
disability or premature mortality, is attributable to mental disorders. Every 
nation, every community, every family, and every person is affected, di-
rectly or indirectly, by these brain-based health conditions—conditions that 
are poorly understood, are often underrecognized, go untreated for years or 
for a lifetime, and are as yet incurable. 

Psychiatry is the field of medicine that is dedicated to understanding 
mental disorders and helping people with these conditions to live fulfilling 
lives and to adapt to the unique challenges they face. In their clinical practice, 
psychiatrists work with courageous people who experience great distress and 
despair and also exhibit great resilience and dignity. Psychiatry also advances 
knowledge of the prevention, diagnosis, and treatment of mental disorders 
and awareness of how mental health and physical health go hand in hand. 

Basic and clinical neuroscientists seek to discover the brain-based causes 
of different mental disorders and to discern patterns associated with mental 
disorders. Such discoveries will allow for better prevention, swifter treat-
ment, and improved outcomes, benefiting people and populations today and 
in the future. This work has been hard going, however. The brain comprises 
nearly a hundred billion neurons, and these neurons connect in nearly a 
hundred trillion ways.These neurons adapt and change over the course of de-
velopment, as do their many connections, and both are influenced by innu-
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xxiv Precision Psychiatry 

merable inherited and environmental factors. The phenomena that suggest 
or demonstrate the existence of an underlying mental disorder in people of 
different ages, genders, and across a continuum of cultures may be highly 
consistent or highly inconsistent. In this complexity one marvels that the 
brain works at all, rather than the fact that disorders may predictably arise. 

Precision psychiatry represents a path forward, integrating findings from 
basic and clinical neuroscience, clinical practice, and population-level data. 
Precision psychiatry focuses on differentiating characteristics and patterns 
and, in an evidence-driven manner, developing therapeutic approaches that 
may be most helpful to specific individuals with a specific constellation of 
health issues, characteristics, strengths, and symptoms. In this book, the au-
thors highlight progress in the treatment of common disorders such as de-
pression, bipolar disorder, PTSD, and schizophrenia. Though treatment is 
remarkably effective in improving quality of life and reducing the burden 
of symptoms and impairments, finding the right treatment is too often a pro-
cess of months or years. Moreover, mental disorders may complicate and 
worsen the risks associated with other health conditions. For example, de-
pression increases the risk of cardiovascular-related deaths threefold. Ad-
dressing these challenges requires the very best, most cutting-edge approaches 
to prediction, prevention, and preemption that population science can pos-
sibly provide. 

Harnessing advances in the fields of biomedical sciences, medicine, en-
gineering, education, social sciences, and ethics will increasingly be the key 
to revolutionizing the diagnosis and treatment of mental illness with greater 
precision. With this book, we begin this new approach, advancing the care of 
our patients and advancing the field, which is dedicated to serving people liv-
ing with mental disorders, and, ultimately, human health. 

Laura Weiss Roberts, M.D., M.A. 
Chairman and Katharine Dexter McCormick and Stanley McCormick Me-
morial Professor, Department of Psychiatry and Behavioral Sciences, Stanford 
University School of Medicine 



    
  

   
   

 

 
 

 

 
 

  
  

 
  

    

INTRODUCTION 

A revolution is under way in psychiatry—one that inte-
grates the scientific foundations of the discipline with recent advances in the 
neurosciences, data sciences, and technology in order to narrow the gap be-
tween discovery and clinical translation. This integration is motivated by 
the search for a model that connects a neurobiological understanding of 
mental disorder with clinical observation, in order to improve the precision 
of classification and treatment decisions. We feel the urgency to accelerate 
clinically applicable precision psychiatry and address the impact of major 
mental disorders on the very functions that enable us to live productive and 
satisfying lives. An estimated 970 million people worldwide experienced a 
mental or substance disorder in the past few years, and one in five people in 
the United States live with a mental disorder at some point in their lives. 

Progress in precision medicine in disciplines outside of psychiatry, such 
as oncology and cardiology, has inspired progress reflected in the contribu-
tions in this book. In these disciplines, biomarkers are combined with clinical 
features to stratify patients into subtypes that are more coherent than are 
overarching diagnostic categories. This approach allows for identifying sub-
types that are underserved by available therapies. It also allows for develop-
ing novel therapies aimed at targets that are based on specific mechanisms 
that affect measurable outcomes and that are closer to underlying disease 
processes than are traditional clinical endpoints. 

We are gratified to offer this book to illustrate timely advances emerging 
in precision medicine in psychiatry. Contributors to this book have a com-
mon view that we require a neuroscience- and data-informed approach to 
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advancing precision medicine in psychiatry. We believe that is it past time 
for mental health providers and educators to have ready access to the latest 
research in precise classification, treatment planning, and early identifica-
tion across a spectrum of psychiatric disorders. While the scientific break-
throughs discussed in this book are exciting in their own right, they will only 
move our field forward if they are disseminated to trainees, clinicians, and, 
ultimately, our patients. Hence, throughout the chapters, our authors have 
included case examples of the applications of their topics, and the last chapter 
discusses the critical role of neuroscience education in precision psychiatry. 

We are fortunate for the opportunity to bring together authors across a 
range of expertise who have played fundamental roles in the development of 
the discipline of precision psychiatry. They discuss biomarkers in neuro-
imaging, electrophysiology, and peripheral serum, as well as variations in 
genetic markers, neurocognition, and behavior. They examine the impor-
tance of computational approaches and machine learning. They take us on 
a journey through their topics from the history, sometimes dating back to the 
Middle Ages through the influential work of scholars like Gall and Kraepelin, 
through current knowledge, to what is needed to continue to progress the 
field. Our expert authors also review the precise application of multiple treat-
ment modalities that include pharmacotherapy, cognitive-behavioral ther-
apy, neurostimulation, and cognitive training programs on the individual 
level. Finally, throughout this book, they discuss issues of scalability and im-
plementation, including the need for the tests we disseminate to our patients 
to have analytic and clinical validity as well as clinical utility. 

We have elected to focus on mood and anxiety disorders as well as schizo-
phrenia in adults given that the most robust evidence in precision psychiatry 
currently exists for these disorders and this age group. However, evidence 
is emerging in precision medicine for obsessive-compulsive, neurodevelop-
mental, and eating disorders and across the age range. We hope that future 
editions of this book will include chapters covering those disorders, a wider 
spectrum of age ranges, and the precise application of emerging therapies 
in mental health, including virtual reality, psychedelic medications, targeted 
delivery of drugs to specific regions of the brain, and digital therapies. 
While we are delighted with the topics covered in this book, we recognize 
that we were not able to include several emerging areas in precision psychi-
atry for which the evidence base is growing, such as epigenomics, proteom-
ics, metabolomics, and induced pluripotent stem cells. 

Our hope is that psychiatry will continue to follow the path of other fields 
that have advanced further in precision medicine, in its development of bi-
ological subtyping and tailored treatments in order to create a better future 
for our patients suffering from these devastating illnesses. We envision a fu-
ture where providers will have access to mental health profiles that incor-
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porate biological, clinical, and environmental information into an easily 
digestible format. Ideally, these profiles will be utilized collaboratively with 
our patients in conjunction with clinical expertise for the purpose of case 
formulation and treatment planning.These formulations and treatment plans 
will be updated through an iterative process that incorporates both active and 
passive information from mobile devices, wearables, and applications. In this 
way, we have the opportunity to merge technological advances with decades 
of research on the neurobiological, neurophysiological, genetic, and in-
flammatory mechanisms underlying mental illness and response to treatment 
into improved outcomes. Through this new understanding we also hope to 
help dissolve the stigma of mental disorders and the consequent discrimina-
tion and barriers to care. We hope that you will find this book engaging and 
enlightening and that it will serve as a stepping stone in your continual 
journey toward better care for your patients. 

Laura M. Hack, M.D., Ph.D. 
Leanne M. Williams, Ph.D. 
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A NEURAL CIRCUIT–INFORMED 
TAXONOMY FOR PRECISION PSYCHIATRY 

Laura M. Hack, M.D., Ph.D. 
Tali M. Ball, Ph.D. 
Leanne M. Williams, Ph.D. 

In this chapter, we make the case that precision psychiatry in-
formed by neuroscience offers the opportunity to improve the precision of 
classification, treatment decisions, and prevention efforts. From this view, 
it is essential that advances in the neurobiological understanding of psychi-
atric disorders are mapped onto an understanding of clinical outcomes, and 
that clinical discoveries about treatment and disease progression can be inter-
preted relative to neural mechanisms. We focus on large-scale neural circuits 
of the human brain as assessed by functional MRI (fMRI) as a pertinent and 
proximal level of explanation for conceptualizing how a neurobiological 
understanding can offer more precise ways to classify psychiatric disorders 
and guide treatment choices. We use the term “large-scale neural circuit” or 
“network” to refer to the macroscale at which vast numbers of interconnected 
neurons constitute the anatomical and functional “connectome” of the brain. 

3 



   

   
  

   
 

 
 

  

 

  
      

    

 
  

4 Precision Psychiatry 

We discuss emerging findings and case illustrations for major depressive 
disorder (MDD) and incorporate findings regarding anxiety, given the sub-
stantial overlap between features of depressive and anxiety disorders. 

Incorporating Neural Circuit Dysfunction Into the 
Diagnostic Subtyping of Depressive and Anxiety 
Disorders: Biotyping Anchored in Neuroimaging 

Researchers have identified circuits that are present intrinsically during task-
free and at-rest states that are reproducible across studies and thought to un-
derlie fundamental processes of self-reflection, salience perception and at-
tention, and sensation (Buckner et al. 2013; Cole et al. 2014). Investigators 
have also identified circuits evoked by tasks that engage processes of emo-
tional and cognitive function (Cole and Schneider 2007; Haber and Knutson 
2010; Niendam et al. 2012). In illustrating a biotype approach to subtyping 
based on fMRI, we focus on six circuits: default mode, salience, negative af-
fect, positive affect, attention, and cognitive control (Williams 2016, 2017). 
Knowledge about how disruptions of these circuits map onto clinical features 
and treatments is still emerging. 

The default mode circuit (also known as the default mode network) has core 
connections between the anterior medial prefrontal cortex, posterior cin-
gulate cortex, and angular gyrus (Greicius et al. 2003, 2009), and is typically 
assessed in task-free conditions. Disruptions in default connectivity are con-
sidered to reflect maladaptive self-referential processes expressed in rumi-
nation and worry. Distinct subtypes of depression have been distinguished 
by both hyperconnectivity (for meta-analysis, see Kaiser et al. 2016; for re-
view, see Hamilton et al. 2015) and hypoconnectivity of the default mode 
(Price et al. 2017; Zhu et al. 2012; for meta-analysis, see Yan et al. 2019). 

The salience circuit has core nodes in the anterior insula, anterior cingu-
late, and extended amygdala and is thought to detect salient interoceptive 
and exteroceptive changes. Salience circuit hypoconnectivity has been as-
sociated with greater symptom severity (Goldstein-Piekarski et al. 2020; 
Mulders et al. 2015) and may implicate generalized anxiety and anxious 
avoidance in particular (Mulders et al. 2015; Peterson et al. 2014; Williams 
2016). Task-evoked insula hyperreactivity has been observed for sadness and 
disgust in MDD (Stuhrmann et al. 2011) and for anger, fear, and happiness 
in generalized anxiety disorder (Klumpp et al. 2013), suggesting in part a bias 
toward mood-congruent negative stimuli. 

Affective circuits are robustly activated by stimuli that signal potential 
threats, negative events, or rewards. The negative affect circuit comprises the 
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amygdala and connections with medial cortical regions, including ventral 
and dorsal medial prefrontal and anterior cingulate regions. Amygdala hy-
perreactivity occurs in depressive disorder, generalized anxiety disorder, 
social phobia/anxiety, and panic disorder elicited by threat-related stimuli 
(Fonzo et al. 2015; Jaworska et al. 2015; Killgore et al. 2014), and in depres-
sive disorder elicited by sad stimuli (Williams 2016). Alterations in activa-
tion may also reflect a reduction in connectivity between the amygdala and 
regions of the anterior cingulate and medial prefrontal cortex (Matthews et 
al. 2008; Prater et al. 2013). 

The positive affect reward circuit is defined by the nucleus accumbens (a key 
region of the ventral striatum) and ventral tegmental area, and their projec-
tions to the orbitofrontal cortex and medial prefrontal cortex. Hypoactiva-
tion of the ventral striatum characterizes at least a subgroup of individuals 
with depression, especially those with anhedonia (Greenberg et al. 2015) 
(for meta-analysis, see Hamilton et al. 2012; for reviews, see Der-Avakian 
and Markou 2012; Treadway and Zald 2011). In remitted depression, 
hyperactivation of the frontal regions of this circuit has also been observed in 
response to happy faces (Keedwell et al. 2005; Mitterschiffthaler et al. 2003), 
reward outcomes (Dichter et al. 2012), and reward anticipation (Zhang et 
al. 2013). 

Two additional circuits are relevant to the cognitive and concentration 
features of depression and anxiety, which are commonly given less emphasis 
than mood features. The frontoparietal attention circuit has been identified in 
the task-free state and is defined by core regions in the superior frontal cor-
tex and anterior inferior parietal lobe, connecting with frontal eye fields. 
Relative hypoconnectivity within this circuit, and within constituent regions, 
has been implicated in the inattention and accompanying cognitive symp-
toms common across mood and anxiety disorders (Goldstein-Piekarski et 
al. 2020; Keller et al. 2020). The executive, or cognitive control, circuit in-
volves the dorsal components of the lateral prefrontal cortex (dorsolateral 
prefrontal cortex [DLPFC]), anterior cingulate cortex (dACC), and parietal 
cortex engaged by tasks that require higher cognitive functions such as 
working memory and selective control of cognition (Niendam et al. 2012). 
In depression and social anxiety, DLPFC and dACC hypoactivation has been 
observed during cognitive tasks and in stress-induced situations (Korgaonkar 
et al. 2013; for review, see Williams 2016). 

We anticipate that these circuit dysfunctions are modulated and refined 
as a result of other biological and environmental factors such as genetic vari-
ants and exposure to stress. As data accumulate, data-driven approaches will 
help define the optimal number of biotypes that account for the heterogeneity 
of mood and anxiety disorders (Figure 1–1). The utility of such pproaches 
has been demonstrated for subtypes of depression defined specifically by 
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Transdiagnostic Sample 
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Figure 1–1. Example of how multimodal data and data-driven tech-
niques may be used to help define the optimal number of biotypes account-
ing for the heterogeneity of mood and anxiety disorders. 
To view this figure in color, see Plate 1 in Color Gallery. 
The biotypes thus identified could then be utilized to guide patients to targeted treatments. 
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task-free circuit connectivity (Clementz et al. 2016; Drysdale et al. 2017; 
Goldstein-Piekarski et al. 2020; Maron-Katz et al. 2020). 

Incorporating Neural Circuit Dysfunction 
Into Treatment Planning for Depressive and 
Anxiety Disorders 
A goal of using neuroimaging to achieve more precise diagnosis of mood 
and anxiety disorder subtypes, based on underlying neural circuit function, 
is to provide clinicians with additional data to inform treatment choices 
(e.g., identifying which patients may benefit from pharmacotherapy, select-
ing a pharmacotherapy, limiting side effects). This goal has motivated large 
biomarker discovery trials that deploy neuroimaging along with other bio-
marker measures (Dunlop et al. 2012; Grieve et al. 2013; Trivedi et al. 
2016). 

In the International Study to Predict Optimized Treatment for Depres-
sion (iSPOT-D), for example, remission on typical first-line antidepres-
sants depended on intact pretreatment connectivity of the default mode, 
whereas nonremission was predicted by hypoconnectivity (Goldstein-
Piekarski et al. 2018; Korgaonkar et al. 2019). For the negative affect cir-
cuit evoked by emotion stimuli, pretreatment amygdala hyporeactivity to 
threat was a general predictor of subsequent response to a selective serotonin 
reuptake inhibitor (SSRI), whereas hyperreactivity to sadness was a specific 
predictor of nonresponse to the serotonin-norepinephrine reuptake inhib-
itor venlafaxine-XR (Williams et al. 2015). For the cognitive control cir-
cuit, intact activation and connectivity were predictive of response to SSRIs 
(Gyurak et al. 2016; Tozzi et al. 2020), while functional connectivity evoked 
by cognitive inhibition of task responses was shown to specifically differen-
tiate responders to sertraline versus venlafaxine (Tozzi et al. 2020). In line 
with our earlier point about the modulation of these circuit dysfunctions, 
early life stress not only determines poor antidepressant responses overall 
(Williams et al. 2016a) but also, when combined with pretreatment negative 
affect circuit dysfunction, boosts the accuracy for identifying nonrespond-
ers (Goldstein-Piekarski et al. 2016). 

Imaging biomarker studies that have formally evaluated sensitivity and 
specificity for first-line antidepressants have observed a predictive accuracy 
for response or remission of 70% or greater, which suggests these biomark-
ers have clinical utility. Although these figures may be reduced following 
external validation studies (i.e., when replications are attempted in inde-
pendent samples), they still reflect great promise. Given that current treat-
ment-matching approaches are essentially trial and error and a majority of 



 
  

   

 

 
 

   
  

  
  

 
 

 
 

   
 

  

   

 

 
  

 
 

8 Precision Psychiatry 

patients do not respond to their first medication, even a small increase in 
predictive accuracy would be worthwhile. Furthermore, there is minimal 
risk in a novel strategy for selecting between FDA-approved treatments of 
comparable overall efficacy. Ultimately, the most valuable clinical predic-
tions will be those that enable patients and providers to differentially select 
between treatment options. 

The findings presented above also highlight the importance of identi-
fying biomarkers that help guide the choice of alternative treatments for 
patients likely to be non-responders or who are already treatment resistant. 
Because of an arguably direct impact on large-scale neural circuits, trans-
cranial magnetic stimulation (TMS), an FDA-cleared intervention for treat-
ment-resistant depression, is of great interest in identifying circuit-based 
biotypes that discern patients who may not respond to pharmacotherapy 
but may benefit from TMS. Notably, default mode hypoconnectivity (pre-
dictive of pharmacotherapy nonremission in iSPOT-D) has been found to 
characterize responders to TMS (Philip et al. 2018). Hypoconnectivity of 
other circuits, such as the positive affect circuit, observed in the task-free 
state and implicated in pharmacotherapy nonresponse, also shows promise in 
identifying responders to TMS (Avissar et al. 2017; Downar et al. 2014). A 
disruption in the optimal anticorrelation between connectivity of the de-
fault mode (particularly the anterior portion) and the cognitive control cir-
cuit may characterize responders to TMS (Fox et al. 2012; Weigand et al. 
2018). An accelerated form of TMS that targets this disruption may help 
regulate a more optimal anticorrelation between default mode and DLPFC 
connectivity and improve remission rates (Cole et al. 2020). See Chapter 2 
(“The Future of Precision Transcranial Magnetic Stimulation in Psychia-
try”) for a more detailed discussion of baseline neuroimaging predictors of 
response and changes in functional connectivity as a result of TMS therapy. 

Another promising avenue for neuroimaging biotypes and biomarkers 
is the rapid testing of new, alternative pharmacotherapies that have more 
targeted mechanisms of action. Reward circuit dysfunction and anhedonia 
do not appear to be modulated by typical antidepressants but offer candi-
dates for novel therapies. For example, preclinical studies have found that the 
kappa opioid receptor (KOR) antagonist JNJ-67953964 is a promising can-
didate to modulate reward circuit dysfunction and anhedonia (Krystal et al. 
2018). In a landmark study, Krystal and colleagues (2020) showed that tar-
geting KOR antagonism with this drug in a transdiagnostic sample of patients 
with high anhedonia increased ventral striatal activation and concurrently 
improved anhedonia symptoms. A natural next step would be to assess 
whether KOR antagonism therapy preferentially improves outcomes when 
deployed in a stratified design in which individuals are preselected accord-
ing to ventral striatal function (Williams and Hack 2020). 



 

    
 

 

    

 
 

 

 
 

  
  

   

 
 

  

   
  

 
   

   

 

9 A Neural Circuit–Informed Taxonomy for Precision Psychiatry 

Accelerating the Clinical Translation of 
Neuroscience-Informed Precision Psychiatry 
Precision psychiatry is not yet a clinical reality. Here, we outline three re-
lated initiatives we have launched at Stanford to accelerate progress in the 
clinical translation of precision psychiatry informed by neuroscience. 

DISCOVERY CLINIC FOR NEUROSCIENCE-INFORMED 
PRECISION PSYCHIATRY 
In 2013, LMW launched partnerships between her research lab at Stanford 
and two local area clinics: a community mental health center encompassing 
clinics for mood and anxiety issues with a combined focus on clinical train-
ing, and a technology-enabled health care company integrating mental health 
with primary care.These partnerships were centered around a project funded 
by the National Institute of Mental Health under the Research Domain 
Criteria (RDoC) initiative. This project recruited participants in 2013–2016 
who were experiencing a range of palpable symptoms related to states of neg-
ative affect, unmedicated at the time of the study, and who completed func-
tional neuroimaging as well as symptom, cognitive, daily function, and coping 
assessments (Williams et al. 2016b). 

To initiate an understanding of the clinical utility of the RDoC approach, 
which is anchored in the neuroscience dimensions that underlie psychiatric 
disorders, LMW embedded a Discovery Clinic within the project flow. The 
Discovery Clinic consisted of several voluntary and confidential compo-
nents included in the institutional review board–approved overall protocol: 
a feedback session after baseline assessments, a 12-week follow-up, quar-
terly meetings to discuss and refine the processes, and didactic sessions for 
clinic trainees. In feedback sessions involving LMW, the usual-care clinician, 
and the participating patient, LMW discussed a “beta” report that provided 
information about each patient’s profile of symptoms, as well as cognitive 
and daily function data and information about fMRI. Clinician and patient 
could ask questions regarding the possible meaning of the information 
given the current state of scientific knowledge. Clinicians chose the extent to 
which they incorporated information into their ongoing case formulation 
process, then discussed the combined information and any implications for 
treatment choice to commence at their subsequent ongoing clinical sessions 
(at which LMW was not present). As the individualized fMRI data were re-
fined as part of the ongoing parallel research project, they were also made 
available. 

At the 12-week follow-up, symptom and daily function assessments were 
repeated, providing a naturalistic means to evaluate clinical outcomes. A 
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debrief about the experience was also completed at this time via a brief sur-
vey and a video link with clinicians who provided qualitative feedback on each 
patient’s experience. Fifty-one feedback sessions were completed, which 
identified two common themes: 1) the value to the clinician of having access 
to multiple sources of information perhaps not apparent in the clinical inter-
view process (e.g., evidence of cognitive impairment, or evidence of extreme 
anhedonia even in the absence of overall severity of symptoms and knowledge 
about neural circuit dysfunction), and 2) the destigmatizing and demystifying 
experience of “seeing” individualized report information as described by par-
ticipants. Indeed, having a shared tangible model of understanding for pa-
tients potentially provides a narrative that diminishes shame and self-blame, 
especially when the underlying biology is modifiable by interventions. 

We present below two case illustrations of participants who received feed-
back from LMW and whose treatment plans were modified by the clinician 
after their sessions. 

Clinical Case Illustrations 
Mr. RT, a male engineer in his 50s with recurrent MDD, was unable to con-
tinue working due to the stress of his recent promotion. Six treatment trials 
(five SSRIs and electroconvulsive therapy) had failed. Mr. RT exhibited 
prominent anhedonia and hopelessness, while his cognitive testing revealed 
a slowed reaction to identifying happy faces. Increased time to identify 
happy emotions has been associated with symptoms of anhedonia (Vrijen 
et al. 2016). Mr. RT’s biotype profile showed the greatest dysfunction in re-
ward neurocircuitry.The ventral striatum, a key node in the reward circuitry, 
was shown to be hypoactive in neuroimaging studies of depressed patients 
who endorsed prominent anhedonia (Der-Avakian and Markou 2012; 
Greenberg et al. 2015). In developing a treatment plan in light of informa-
tion from the feedback report, Mr. RT’s mental health team considered prior 
evidence from a target engagement study that the selective D3 dopamine 
receptor agonist pramipexole increased activation in a key region of the ven-
tral striatum (Ye et al. 2011). Mr. RT tried pramipexole, and his anhedonia 
improved within 4 weeks. This improvement was maintained throughout a 
16-week follow-up period. 

Ms. B, a female college freshman, had a diagnosis of MDD at the time 
of her feedback session with LMW. Multiple SSRIs had failed to elicit a re-
sponse, and she was not interested in trying another medication. Ms. B had 
a history of psychiatric hospitalization for active suicidality, and her symptom 
questionnaires indicated that she had prominent worry, rumination, self-
blame, and poor sleep. Her imaging data revealed default mode disruptions 
implicating poor response to antidepressants (Goldstein-Piekarski et al. 
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2018). Given emerging evidence that default mode disruptions implicated in 
poor response to antidepressants may be associated with good response to 
TMS (Philip et al. 2018), and clinical information available to the patient’s 
treatment team, this treatment team opted for an accelerated form of TMS. 
This treatment led to remission of MDD within 1 week, with the MDD still 
in remission during study follow-up and at a subsequent 10-month check-in. 

INTEGRATING THE DISCOVERY CLINIC WITH RESIDENT 
TRAINING PROGRAMS 
In 2017, building from the overall positive response of the initial Discovery 
Clinic process, LMW launched what is, to our knowledge, the first “Dis-
covery Training Clinic” of its kind, a collaboration between researchers, 
educators, and clinicians in the Stanford Department of Psychiatry and Be-
havioral Sciences. The goal was to further inform the clinical translation of 
neuroscience-informed precision psychiatry by incorporating the princi-
ples of this approach directly into the clinical training of psychiatry resi-
dents. With the support of the Chief of Adult Psychiatry and Residency 
Training leadership (Director, Chris Haywood, M.D., and Assistant Direc-
tor, Belinda Bandstra, M.D. [BB]), LMW designed and piloted a pragmatic 
clinical translational program that incorporated the feedback session prin-
ciples from the initial Discovery Clinic process and the content of prior 
feedback sessions to develop structured case examples for teaching. TMB 
joined LMW to implement the program within the context of a yearlong 
third-year resident (PGY3) training rotation within the departmental Con-
tinuity Clinic. Over the year, researchers (TMB, LMW), residents, BB, and 
attendings met with two subgroups of approximately three residents each 
on alternating weeks. The program comprised three primary components: 
structured discussion of case examples based on prior cases, open discussion 
of case formulation issues (such as how to incorporate neuroscience mea-
sures into the clinical decision-making process), and discussion of new 
feedback session data from the residents’ own consenting patients. 

Participating patients (28 referred, 20 enrolled) undertook the same 
neuroimaging, cognitive, symptom, and function assessments as per the 
initial RDoC project–related Discovery Clinic. To facilitate learning about 
the impact of both residents and patients receiving neuroscience-related 
information, we randomized the feedback process so that half of the time 
residents (with attending) received the report prior to their first clinical ap-
pointment with the patient, and the other half of the time they received the 
report 12 weeks later. We evaluated the program after the first year. Resi-
dents indicated the experience was useful but expressed the need for the 
neuroscience information to be sequenced ahead of the direct clinical ap-
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plication, especially because they were new to the independent implemen-
tation of clinical decision making. Most patients agreed that the report 
information helped them understand how their brain functioned, provided 
new insights into their symptoms, and enabled them to feel more committed 
to treatment. Thus, in 2019, LMH joined the Discovery Clinic and with 
TMB further refined and expanded the program to include additional struc-
tured case studies and a didactic curriculum. 

THE STANFORD TRANSLATIONAL PRECISION 
MENTAL HEALTH CLINIC 
In 2018, LMW founded the Stanford Center for Precision Mental Health 
and Wellness, which has the translational goal of accelerating the insights of 
the Discovery Clinic into practice. 

Then, in 2021, LMH and LMW launched the Stanford Translational 
Precision Mental Health Clinic; LMH is the director, and LMW serves as 
an expert advisor to the clinic regarding the imaging and biotype information. 
The goal of this translational consultation clinic is to offer a cutting-edge, 
multimodal assessment for treatment-resistant patients with mood and/or 
anxiety disorders in order to help better match their biological subtype to 
treatment. Any patient qualifying for one of our research studies has the 
opportunity to learn more about the clinic. Similar to our Discovery Clinic, 
participating patients undergo a comprehensive battery of evaluations as-
sessing symptoms, neurocognition, pharmacogenetic variants, resting and 
task-based fMRI, and blood-based markers. All patients receive a report of 
the findings, along with a thorough explanation and their implications for 
treatment recommendations. This information is also discussed with their 
referring provider. Our hope is that, through this experimental approach, 
we may help relieve some of the tremendous suffering that is a consequence 
of our current trial-and-error approach to mental health treatment. 

Conclusion and Future Directions 

We envision a future that overcomes the gaps between research advances 
and their application in practice. New knowledge about neural circuits will 
be incorporated into models of assessment and care delivery, residency pro-
grams will prepare graduates with training in neuroscience, and clinicians 
will have access to neuroscience-based tools to inform their decision mak-
ing as part of the routine, reimbursable workflow. We can foresee having a 
clinical toolkit that is the psychiatry equivalent of cardiology: multiple im-
aging modalities that help differentially diagnose the source of the underly-
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ing pathophysiology and guide choice of treatments accordingly, including 
lifestyle changes, medications, behavioral therapies, neuromodulation, and 
their combination. With such a precision approach that translates brain in-
sights into clinically actionable tools, we have the opportunity to improve 
and save the lives of many. 

KEY POINTS 
• Precision psychiatry informed by neuroscience offers the oppor-

tunity to improve the precision of classification, treatment deci-
sions, and prevention efforts. 

• There is an urgent clinical need for this new approach because, 
although many effective treatments are available, finding the 
right treatment for the right patient remains largely a matter of 
trial and error, and we do not have a taxonomy for diagnosis and 
for guiding treatment choices that is based in an understanding 
of the underlying pathophysiology. 

• Functional imaging of large-scale neural circuits of the human 
brain is one approach to developing such a taxonomy. Depres-
sion and anxiety may be conceptualized as disruptions to the 
neural circuits involved in the human functions of self-reflection, 
emotion processing, and cognitive control. 

• Knowing about these disruptions can increase the accuracy of 
determining which patients are likely to benefit from an inter-
vention. We have a rapidly increasing set of evidence for im-
provement in outcomes with pharmacotherapy and transcranial 
magnetic stimulation interventions utilizing knowledge of these 
disruptions. 

• Multiple efforts are under way at Stanford to further neuroscience-
informed precision psychiatry, including the creation of a Dis-
covery Clinic, the Stanford Center for Precision Mental Health 
and Wellness, and the Stanford Translational Precision Mental 
Health Clinic. 
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History 

Since 2010, repetitive transcranial magnetic stimulation (TMS) has emerged 
as an evidence-based treatment in psychiatry. TMS has been clinically avail-
able since 2008, when it was cleared by the FDA for pharmacoresistant 
major depressive disorder (MDD) based on two multisite randomized con-
trolled studies (George et al. 2010; O’Reardon et al. 2007). Recently, it re-
ceived clearance for use in combination with symptom provocation to 
reduce symptoms of obsessive-compulsive disorder (Carmi et al. 2019). In 
addition to the registration studies, a number of groups have published 
studies on the efficacy of TMS for depression in naturalistic samples (Car-
penter et al. 2012), its durability of effect (Philip et al. 2016), and its efficacy 
across the life span (Conelea et al. 2017; Sabesan et al. 2015; Wall et al. 
2016). There is also emerging literature that supports the use of TMS for 
other psychiatric conditions, including PTSD (for review, see Koek et al. 
2019) and schizophrenia (Hasan et al. 2016; Paillère-Martinot et al. 2017). 
A new form of TMS, called theta-burst TMS, has been developed. The burst 
pattern enables delivery of stimulation in much shorter periods for the 
same clinical benefit (see, e.g., Blumberger et al. 2018; Philip et al. 2019). 

Current Knowledge and Approaches 

TMS is particularly well suited for consideration from a precision psychi-
atry perspective, as described further below. The use of TMS requires an 
interdisciplinary understanding of electrical engineering and clinical re-
search. Although the exact mechanisms of TMS remain unknown, it uses 
pulsed magnetic fields to induce depolarization in target brain regions, typ-
ically the dorsolateral prefrontal cortex (DLPFC) (described in more detail 
later in this section). 

TMS starts with a precision medicine approach, in which the clinician 
calibrates the stimulation device to an individual’s cortical excitability (typ-
ically described as a motor threshold, or MT). During MT determination, 
the clinician delivers single-pulse TMS over the motor cortex and records 
the amount of energy required to induce movement in the contralateral hand 
50% of the time. Following this calibration, a course of TMS is delivered 
to the prefrontal cortex at 120% of MT daily for up to 30 (or more) sessions, 
often followed by a taper phase. 

TMS parameters can vary and include the location of stimulation, its in-
tensity and frequency, and other factors. Parameters have generally shifted 
over time, favoring higher intensity and greater exposure to a cumulative 
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“dose” of stimulation. For example, initial work was done with a lower de-
livery of energy, and the intensity was increased up to 120% of MT once it 
was observed that increased stimulation intensity was required to overcome 
variability in coil-to-cortex distances that are associated with age and other 
factors (Kozel et al. 2000). Protocols have also evolved to incorporate more 
TMS sessions (i.e., increase from 10 sessions to >20); multiple sessions in 
a single day, which is termed accelerated TMS (for review, see Sonmez et al. 
2019); and combination with symptom provocation (see, e.g., Carmi et al. 
2019). 

The location of stimulation is also germane to the discussion of precision 
medicine. For example, earlier TMS studies selected the DLPFC using an 
empirical “5 cm rule,” in which the TMS device would be moved 5 cm an-
terior to the MT hotspot along the parasagittal line to be over the DLPFC. 
However, subsequent research convincingly demonstrated that this rule 
could reliably miss the DLPFC (Herbsman et al. 2009), a finding that led to 
the development of MRI-based neuronavigation or skull-based landmarks 
(Beam et al. 2009). To date, clinical evidence appears to show similar clinical 
outcomes using these modalities (Mir-Moghtadaei et al. 2015). 

Despite the availability of TMS for over a decade, researchers continue 
the search to characterize its mechanism(s) of effect. For example, TMS for 
depression is typically delivered over the left DLPFC, yet as described above, 
evidence suggests that DLPFC stimulation can lead to improvement in 
symptoms in multiple other ailments, ranging from PTSD and other anxiety 
disorders to schizophrenia. This points to the fact that TMS treatment mod-
ulates networks of interest shared across psychiatric illnesses, and provides 
empirical evidence that current approaches to treatment parameter selection 
might not be accurate. 

The selection of the left DLPFC as a TMS target was based on prelim-
inary data that implicated hypoperfusion of the left prefrontal cortex as a 
potential mechanism for depression (Baxter et al. 1989; Martinot et al. 
1990). Neuropsychiatric research since 2010 has made it clear that this 
mechanism is part of a larger element of broad-based dysfunction in de-
pression and related disorders (e.g., Grisanzio et al. 2018). The choice of 
stimulation frequency (10 Hz) was based on studies on the motor cortex 
which showed that high stimulation frequencies yielded excitatory effects, 
whereas lower stimulation frequencies (typically ~1 Hz) appeared to suppress 
motor-evoked potentials (Chen et al. 1997). The results of stimulation de-
livered to the prefrontal cortex have some similarities to those of motor 
cortex stimulation. For example, early data suggested increased perfusion oc-
curs after higher-intensity stimulation (Speer et al. 2000). However, these 
similarities become much less clear when assessing results from other neu-
roimaging methods such as functional connectivity (for review, see Philip et 
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al. 2018a). Generally speaking, TMS follows the model of other conven-
tional treatment modalities for mental illnesses; its parameters have been 
generally found through serendipity, and the initially speculated mechanisms 
of its action may not be accurate. One factor that makes TMS a complex 
treatment to study is the vast parameter space, which includes site of stim-
ulation, frequency and temporal structure of TMS stimulations (bursts vs. 
single pulses), and duration of treatment. 

TMS is thought to work through modulation of cortical connectivity and 
induction of neural plasticity (Hoogendam et al. 2010). Recent animal stud-
ies have shown that treatment with TMS leads to transient and large-scale 
remodeling of cortical connections via enhancing plasticity, which can last 
for hours posttreatment (Kozyrev et al. 2018). This means that stimulating 
over the DLPFC can lead to a cascade of changes in cortical networks, par-
ticularly in the sites to which TMS activity propagates (e.g., subgenual an-
terior cingulate cortex) (Vink et al. 2018). Indeed, such changes are apparent 
in the studies that tracked functional connectivity through a treatment course 
of TMS. 

Depression is associated with enhanced connectivity between the fron-
toparietal network and the default mode network (DMN) and diminished 
functional connectivity between the frontoparietal and dorsal attention net-
works (Kaiser et al. 2015). Treatment with TMS appears to “normalize” 
some of these changes. In patients with depression, TMS treatment has led 
to a reduction in subgenual hyperconnectivity in the DMN and a modulation 
in the connectivity between the DLPFC and medial prefrontal DMN nodes 
(Liston et al. 2014). Similarly, in patients with comorbid PTSD and MDD, 
treatment with TMS is associated with reduced connectivity between the 
subgenual anterior cingulate cortex and the DMN, left DLPFC and insula, 
and reduced connectivity between the hippocampus and the salience net-
work (Philip et al. 2018b). 

Similar to functional imaging findings, TMS treatment also produces 
both transient and long-lasting changes in the electroencephalogram (EEG) 
signal. Combined TMS and electrographic studies have documented short-
lived changes in both evoked potential and EEG power spectra after TMS 
treatment. Such changes were comparable in direction and magnitude to 
EEG changes associated with learning or fatigue. EEG changes have a short 
time course and usually last tens of minutes and up to 70 minutes (for re-
view, see Thut and Pascual-Leone 2010). This time course could be related 
to the TMS-induced remodeling and cortical plasticity reported in animal 
studies (Kozyrev et al. 2018). Repeated TMS treatments, as are typically de-
livered in clinical treatment, have been shown to produce long-term mod-
ulation of functional connectivity metrics including coherence between the 
prefrontal site of stimulation and midline parieto-occipital regions, which 
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lasts from days to weeks (Zandvakili et al. 2019), although findings in this 
domain require replication. 

The functional connectivity patterns associated with depression are ac-
companied by structural and volumetric differences, most notably a reduc-
tion in the gray matter volume of the hippocampus and subgenual cingulate 
cortex (e.g., Botteron et al. 2002; Goodkind et al. 2015; Ongür et al. 2003). 
Interestingly, treatment with TMS leads to a volume increase in both the 
left subgenual cingulate cortex and hippocampus (Hayasaka et al. 2017; 
Lan et al. 2016). Beyond changes in functional connectivity, treatment with 
TMS is associated with partial normalization of anatomical connections. 
Additionally, multiple studies using diffusion tensor imaging have demon-
strated that white matter integrity likely plays an important role in clinical 
improvement following TMS (for review, see Anderson et al. 2016). TMS 
has also been shown to induce changes in neurotransmitter levels that are 
detectable via magnetic resonance spectroscopy. These changes include el-
evation of glutamate levels in the DLPFC and anterior cingulate cortex 
(Croarkin et al. 2016; Yang et al. 2014), and GABA elevations in the medial 
prefrontal cortex. Although many of these findings still require replication, 
they present a nuanced picture of the multifactorial elements that likely com-
pose the neurobiological mechanism of clinical TMS. 

Clinical Illustration 

As a clinical illustration, we describe current and future procedures at the 
Psychiatric Neuromodulation Clinic at the Providence VA Medical Center. 
Currently, patients with treatment-resistant psychiatric disorders are referred 
through standard clinical procedures. After an initial chart review for abso-
lute contraindications to stimulation, patients receive a 1- to 2-hour clinical 
consultation visit with a TMS-credentialed attending physician in conjunc-
tion with resident trainees. This consultation includes a review of safety 
screening and a comprehensive review of the patient’s experience with their 
illness, including their first episode of depression, their experience with anti-
depressant medications, and investigation of the pattern of their illness over 
the lifetime. Based on this information, a determination is made as to whether 
the patient is appropriate for stimulation, and whether the provider feels, 
in their opinion, a patient is likely to respond to stimulation. Assuming the 
patient is eligible for TMS and wants to pursue this option, they are also 
informed that rating scales—usually a series of self-rated scales and/or those 
related to psychiatric comorbidities—are administered every five TMS ses-
sions. The patient is then offered the opportunity to participate in a series 
of research procedures that are affiliated with the clinic. These procedures 
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often include MRI scans and EEGs throughout their course of TMS that 
are roughly timed to occur once per week. TMS then begins, often with a 
standard “one size fits all” initial approach that is then modified based on 
tolerability or other clinical factors that occur over the course of stimulation. 
Once TMS is completed, the TMS attending physician provides a detailed 
report to the referring physician. 

Many aspects of this clinic lend themselves to the adoption of precision 
psychiatry. Currently, a great deal of biomarker data is obtained before stim-
ulation and throughout the course of TMS. Therefore, if there were MRI 
or EEG biomarkers that could reasonably be used to assess whether a pa-
tient will respond to TMS or those that could inform on the possible length 
of treatment required, this information would be immediately actionable 
on multiple levels. Furthermore, as a thought experiment, a biomarker might 
also indicate whether TMS retreatment would work well for a patient over 
time and therefore provide information on diagnosis and longer-term 
prognosis. This would also provide an opportunity for trainees to obtain 
neuroscience exposure, during which they could receive hands-on experi-
ence utilizing neuroscience tools in clinical practice. 

Conclusion and Future Directions 

Researchers have been investigating various neuroimaging approaches to 
individualize TMS in order to match patients with the appropriate treatments 
and optimize efficacy. These efforts have included using structural and 
functional imaging to target stimulation sites, choose stimulation parame-
ters, and more broadly predict treatment response. Although the use of 
neuroimaging to guide TMS treatment decisions has yet to be incorporated 
in clinical TMS centers, there are several practical and economic reasons to 
believe that TMS may be one of the first psychiatric treatments to translate 
neuroimaging approaches into clinical tools that guide psychiatric practice. 

Several studies have used structural MRI combined with neuronavigation 
to identify individualized sites of stimulation for targeting the DLPFC. As 
described above, these methods overcame some of the variability of stimu-
lation placement that was experienced when using the initially implemented 
“5 cm rule,” which did not account for individual anatomy. However, other 
scalp-based approaches that adjust for head size, such as the “Beam F3” ap-
proach (Beam et al. 2009), have been shown to perform similarly to MRI-
based neuronavigation with regard to locating a similar site of stimulation 
(Mir-Moghtadaei et al. 2015). MRI-based targeting has also been accom-
panied by individualized adjustments of the stimulation output to account 
for the depth of the DLPFC region (Stokes et al. 2005; Williams et al. 2018). 
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However, the use of higher intensities (i.e., 120% MT as applied in stan-
dard treatments) might overcome coil-to-cortex variability without the need 
for depth adjustments. 

Other groups have used resting-state functional MRI to identify a region 
of the DLPFC that is most negatively correlated (i.e., “anticorrelated”) with 
the subgenual anterior cingulate cortex to identify an optimized target for 
stimulation (Fox et al. 2012; Weigand et al. 2018). These approaches are 
based on the hypothesis that DLPFC stimulation indirectly modulates lim-
bic regions that have connections to the DLPFC, resulting in decreased sub-
genual cingulate hyperactivity and antidepressant response. These groups 
have shown that the negative correlation in functional connectivity between 
the site of stimulation and the subgenual cingulate predicts antidepressant 
response. This work has been based on using normative group connectivity 
data and applying the coordinates to an individual (Weigand et al. 2018). It 
is still unknown whether targeting based on this approach yields stimulation 
sites that are substantially different compared with modern scalp-based ap-
proaches when considering the resolution of the TMS-induced electrical 
field (e.g., Deng et al. 2013), and whether this targeting represents a mech-
anism unique to TMS or a nonspecific antidepressant effect (e.g., Gärtner 
et al. 2019). 

There is evidence that supports the use of alternative sites of stimulation, 
including the dorsomedial and orbitofrontal cortex, as therapeutic TMS 
targets to reduce depression (Downar and Daskalakis 2013; Downar et al. 
2014; Feffer et al. 2018). Multiple TMS sites have been shown to be capa-
ble of producing an antidepressant response. It can be hypothesized that 
some individuals would respond to stimulation at any of these sites while 
others may only respond to one site over another, and some may not respond 
at all. An early case series demonstrated that 30% of patients who did not re-
spond to dorsomedial stimulation did achieve remission with orbitofrontal 
stimulation (Feffer et al. 2018). Stimulation parameters, including frequency 
and stimulation patterns, may demonstrate a similar phenomenon requir-
ing individualized adjustments to achieve an optimum response. Currently, 
some of these adjustments are made in the clinic to increase patient tolerance 
and comfort in completing treatment (e.g., Philip et al. 2015). However, 
early reports suggest that neuroimaging measures might provide additional 
information on treatment response to a given set of parameters before stim-
ulation begins (Downar 2019). The pressing question is how to identify pa-
tients who are likely to respond to a given treatment. 

Several studies have suggested that functional neuroimaging may pro-
vide patterns of connectivity that are predictive of TMS response (Philip et 
al. 2018a). For these approaches to be incorporated clinically, they will need 
to demonstrate reliability, cost-effectiveness, and a meaningful change in the 
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likelihood of clinical response. While TMS has few side effects and is gen-
erally well tolerated, the cost and time commitment of a full treatment 
series can represent substantial factors to consider when choosing this mo-
dality. Remission rates for TMS are estimated to be 25%–35%, depending 
on treatment modality and method of defining remission (Blumberger et 
al. 2018; Carpenter et al. 2012), which implies that a majority of patients 
who complete a TMS treatment series do not achieve remission. TMS can 
also be considered a limited resource, given that only 60–80 patients can be 
treated on a single device per year. For these reasons, it is crucial that we 
develop predictive models that help guide individuals to treatments that are 
likely to succeed. 

One potential approach, which is included here as a future direction for 
this field, is the use of decision curve analysis (DCA) (Vickers and Elkin 
2006). DCA is a framework for evaluating the clinical utility of treatment 
strategies that could be used to provide information regarding what a clin-
ically useful predictive neuroimaging model of TMS response would look 
like. DCA has been used to evaluate the predictive models in many fields 
of medicine, but it has yet to be widely adopted in psychiatry. DCA incor-
porates the concept of “threshold probability” (Pt), which is the probability 
above which the expected benefits of treatment outweigh the potential costs 
and harms of unnecessary treatment for a given individual. This threshold 
probability represents a significant clinical decision point at which additional 
information would be needed to inform a decision. While a precise thresh-
old probability might be difficult for a clinician or patient to estimate, DCA 
does not require that a single threshold probability be determined. Instead, 
DCA plots the net benefit of a treatment strategy across a range of thresh-
old probabilities, and this enables clinicians and patients to consider varia-
tions in their thresholds as part of the clinical decision-making process. 
The net benefit of the model is then compared with the net benefit of two 
alternative treatment strategies: treat everyone or treat no one. Net benefit is 
defined as the proportion of true positives minus a weighted proportion of 
false positives as determined by a ratio of the threshold probability over its 
complement (1–Pt), as shown in the equation below. Strategies with the 
highest net benefit at a given range of threshold probabilities are considered 
superior. 

 
 

 
 

 

 

True Positives _ False Positives PtNet Beneft = n n ( )1 – Pt 

Using this framework, we can apply DCA to a theoretical neuroimaging 
model that predicts TMS remission with a sensitivity of 70%, a specificity 
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of 70%, and an accuracy of 70%. In this model, we assume an average base-
line remission rate of 30%. The resulting DCA curves are shown in Figure 
2–1, which demonstrates that the theoretical model with 70% accuracy 
achieves greater net benefit for all threshold probabilities above 15.5%. 
This higher net benefit means that a greater number of patients who are re-
ferred to undergo TMS treatment will achieve remission without increasing 
the number of patients who undergo treatment unsuccessfully. In 100 pa-
tients assessed, this theoretical treatment strategy would result in 42 patients 
being identified as likely to respond with a posttest probability of remission 
of 50%, and 58 patients being identified as unlikely to achieve remission 
with a posttest probability of 15.5% (compared with 30% pretest). If we as-
sume the average cost and time of a TMS treatment series to be $15,000 
and 36 clinical visits, the currently used treat-all strategy results in the cost 
and time for each remission being $50,000 and 120 clinical visits. Use of 
the theoretical predictive neuroimaging model described above would re-
duce the costs and time for each remission to $37,142 and 77 clinical visits, 
even after accounting for the addition of a clinical visit and a $1,500 MRI 
scan for each patient. 

This example holds for more expensive neuroimaging and interventions; 
more inexpensive technologies, as well as improved and/or more reliable 
biological characterization of psychiatric illnesses, would reduce the thresh-
old probability. Enthusiasm must also be tempered by the realities of acquir-
ing single-participant functional MRI scans, although another approach 
would be the integration of clinical MRI scans into validated predictive mod-
els generated from representative research studies (e.g., Drysdale et al. 
2017; Philip et al. 2018b). 

In conclusion, there is a tremendous potential to develop precision psy-
chiatry approaches by leveraging emerging knowledge about TMS mech-
anisms of action and incorporating novel tools and analytic approaches. Of 
the many fields in psychiatry, TMS already includes an element of precision 
(i.e., individualized MT determination), and as such provides an important 
venue for teaching and understanding the potential of precision psychiatry 
more broadly in the field. 

KEY POINTS 
• Repetitive transcranial magnetic stimulation (TMS), an FDA-

cleared treatment for pharmacoresistant major depressive disor-
der (MDD), uses pulsed magnetic fields to induce depolarization 
in target brain regions. 
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Figure 2–1. Decision curves for a theoretical neuroimaging model pre-
dictive of responsiveness to transcranial magnetic stimulation (TMS). 
Threshold probability represents the point at which positive treatment response to TMS is 
valued equally to avoiding unnecessary treatment. Net benefit is defined as the percentage of 
individuals who receive TMS and achieve remission minus a weighted percentage of treated 
individuals who do not achieve remission. The solid line demonstrates the potential increase 
in net benefit that could be achieved with a predictive neuroimaging model with modest sen-
sitivity (70%) and specificity (70%). When compared with the alternative strategies of “treat 
all” (dashed line) or “treat none” (dotted line) over a range of threshold probabilities above 
15%, this theoretical model would be associated with greater net benefit and a higher propor-
tion of successful TMS treatments. 

• This treatment is well suited to a precision psychiatry approach 
in that the clinician calibrates the stimulation device to an indi-
vidual’s cortical excitability and multiple parameters can be 
modified, although standard parameters are typically used. 

• Stimulating the dorsolateral prefrontal cortex, which is generally 
targeted in MDD because of evidence of dysfunction in this re-
gion in depression, appears to normalize aberrant functional 
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connectivity and produce both transient and long-lasting changes 
in the electroencephalogram (EEG) signal. 

• TMS at the Psychiatric Neuromodulation Clinic at the Providence 
VA Medical Center begins with a “one size fits all” approach that 
is then modified based on tolerability or other clinical factors 
that occur over the course of stimulation. 

• The clinic lends itself well to the precision psychiatry approach with 
the possibility of using neuroimaging-based targeting, customized 
stimulation parameters, and MRI or EEG biomarkers for predic-
tion of treatment response and informing length of treatment. 
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NEURAL MECHANISMS OF 
BIPOLAR DISORDER 

Toward Personalized Markers of Future Illness Risk 

Mary L. Phillips, M.D. 

Bipolar disorder is the world’s fourth leading cause of psychi-
atric and neurological disability. It remains a challenge to diagnose, espe-
cially in pediatric samples, because of the similarities of its symptoms to 
those of other disorders. A major problem that has impeded progress in 
diagnosis—and, as a result, in risk detection—is the absence of objective ill-
ness markers that reflect underlying pathophysiological mechanisms of the 
disorder. Furthermore, there are no established methods of quantifying indi-
vidual-level risk for the development of bipolar disorder using pathophysi-
ologically relevant measures. It is therefore critical to elucidate the under-
lying pathophysiological mechanisms of bipolar disorder in order to yield 
measures that reflect these mechanisms that can be used to help character-
ize individual-level risk for future development of the disorder. In addition, 
such mechanisms would ultimately serve as targets for novel interventions 
(e.g., neuromodulation) to delay or even prevent the development of bipo-
lar disorder. 
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In this chapter, I describe findings from the increasing literature in bi-
polar disorder that demonstrate that specific abnormalities in the neural 
circuitries of emotional regulation and reward processing are evident in in-
dividuals who have the disorder. I show how these studies provide a foun-
dation for more recent research that examines the extent to which measures 
of function and structure in these neural circuitries in at-risk youth can pre-
dict the future worsening of symptoms that are associated with bipolar dis-
order, and the future onset of the disorder. I end by highlighting how the 
combination of machine learning techniques and neuroimaging methodol-
ogies has potential to identify neural measures that predict individual-level 
risk of the disorder in order to provide a way forward to the ultimate goal of 
a precision psychiatry platform for the assessment and treatment of all in-
dividuals with, or at risk for, bipolar disorder. 

History 

Bipolar disorder is characterized by mood swings, affective lability, episodes 
of expansive or elevated mood—namely, hypo/mania—and episodes of low 
mood—namely, depression (First et al. 2016). The disorder is one of the 
most common and debilitating of all noncommunicable medical illnesses. 
In the United States, bipolar disorder has a 12-month prevalence of >2.6% 
(Kessler et al. 2005) and a lifetime prevalence of >4.5% (Angst 1998; Angst 
et al. 2003; Merikangas et al. 2007, 2011). Bipolar disorder is, in fact, the 
fourth leading cause of psychiatric and neurological disability in the world 
(Collins et al. 2011). In the United States, it is associated with 180 million 
lost workdays and a $25.9 billion salary-equivalent loss in productivity per 
year (Hirschfeld and Vornik 2005). Worldwide, it is associated with a 9.2-
year reduction in expected life span and a suicide risk 20–30 times greater 
than that found in the general population (Pompili et al. 2013). 

A major problem with bipolar disorder is how challenging it is to diagnose, 
especially in pediatric samples, because of similarities in its symptoms with 
those of other disorders. While risk for the development of the disorder is 
best predicted by familial history, with heritability rates ranging from 59% to 
87% (Smoller and Finn 2003), the absence of objective illness markers that 
reflect underlying pathophysiological mechanisms of the disorder has impeded 
risk detection and the development of new, pathophysiologically based inter-
ventions. To date, there are no established methods of quantifying individual-
level risk for the development of bipolar disorder using these pathophysiolog-
ically relevant measures. Elucidating the underlying pathophysiological mech-
anisms of bipolar disorder is thus a critical step toward identifying measures 
that reflect these mechanisms; measures that can help to characterize the in-



  

   
 

 

  

 

 
  

  
 

 
 

    
   

 
       

       
   

   

  
  

35 Neural Mechanisms of Bipolar Disorder 

dividual-level risk for future development of the disorder. The mechanisms 
could also ultimately serve as targets for novel interventions (e.g., neuromod-
ulation) to delay or even prevent the development of the disorder. 

Current Knowledge and Approaches 

NEURAL MODELS OF BIPOLAR DISORDER 
An increasingly large neuroimaging literature points to a conceptualization 
of bipolar disorder as dysfunction in the neural circuitries that underlie key 
information processing abnormalities that characterize the disorder, par-
ticularly emotional regulation and reward processing (Figure 3–1). Briefly, 
emotional regulation circuitry can be considered to be focused on the 
amygdala, which is important for the perception of emotionally salient cues 
(Davis and Whalen 2001; Swanson 2003), as well as several prefrontal cor-
tical regions that are implicated in different effortful and automatic (implicit) 
subprocesses that are important for the regulation of emotional responses 
to such cues (Phillips et al. 2008). A predominantly lateral prefrontal cor-
tical system (including regions in the dorsolateral and ventrolateral pre-
frontal cortices) supports effortful subprocesses, including suppression of 
emotional behaviors, redirection of attention away from emotional cues, 
and reappraisal of emotional contexts. In parallel, a medial prefrontal cor-
tical system (including the anterior cingulate cortex, mediodorsal prefron-
tal cortex, and hippocampus) is thought to support automatic subprocesses, 
including extinction and automatic redirection of attention away from, and 
automatic reappraisal of, emotional cues (Phillips et al. 2008). 

Reward processing circuitry includes several regions, but key among them 
is the ventral striatum (including the nucleus accumbens), which is critically 
important for the response to reward cues and reward receipt (Knutson and 
Wimmer 2007) and, in particular, for coding prediction error and discrepancy 
between expected and actual outcomes (Kumar et al. 2008; Schultz 2002). 
Several prefrontal cortical regions are also important for reward processing, in-
cluding the ventrolateral prefrontal cortex, which links cues to specific reward 
outcomes (Boorman et al. 2016; Lee et al. 2015) and is implicated in concrete 
decision making that focuses on immediate rewards (Hill et al. 2017; Smith et 
al. 2018). The orbitofrontal cortex encodes reward value (Grabenhorst and 
Rolls 2011), while the mediodorsal prefrontal cortex regulates reward-seeking 
behaviors in potentially rewarding contexts (Knutson et al. 2003; Schultz 
2002), and the rostral-dorsal anterior cingulate cortex guides behavior to in-
centive stimuli in order to facilitate reward receipt (Grabenhorst and Rolls 
2011; Rogers et al. 2004; Rushworth et al. 2011). 
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Figure 3–1. Representation of neural circuitries implicated in (A) emotional regulation and (B) reward processing. 
To view this figure in color, see Plate 2 in Color Gallery. 
Arrows represent key connectivity among these regions. ACC=anterior cingulate cortex; dlPFC=dorsolateral prefrontal cortex; mdPFC=mediodorsal prefrontal 
cortex; OFC=orbitofrontal cortex; vlPFC=ventrolateral prefrontal cortex. 



 
 

 
  

  
   

   
   

    
 

 

 
  

  
 

 
  

 

 
 

   

  

 
   

 

37 Neural Mechanisms of Bipolar Disorder 

Studies have reported functional and structural abnormalities in these 
core neural circuitries in youth and adults with bipolar disorder. The most 
commonly reported abnormalities include 1) elevated amygdala and re-
duced bilateral prefrontal cortical activity, alongside altered functional 
connectivity among these regions, during emotional regulation (Almeida et 
al. 2009; Altshuler et al. 2008; Blumberg et al. 2005; Caseras et al. 2015; 
Delvecchio et al. 2012; Dima et al. 2013; Foland et al. 2008; Foland-Ross 
et al. 2012; Horacek et al. 2015; Kanske et al. 2015; Keener et al. 2012; 
Lawrence et al. 2004; Phillips et al. 2003, 2008; Rey et al. 2014; Rosenfeld 
et al. 2014; Strakowski et al. 2011, 2012; Surguladze et al. 2010; Townsend 
et al. 2012, 2013; Versace et al. 2010; Wang et al. 2009) and 2) abnormally 
elevated activity in predominantly left ventral striatal–ventrolateral and or-
bitofrontal cortical regions during different stages of reward processing 
(Abler et al. 2008; Bermpohl et al. 2010; Caseras et al. 2013; Chase et al. 
2013; Linke et al. 2012; Mason et al. 2014; Nusslock et al. 2012; O’Sullivan 
et al. 2011; Satterthwaite et al. 2015). However, the elevated ventral striatal 
response during reward processing is largely absent during depressed epi-
sodes (Chase et al. 2013; Satterthwaite et al. 2015). It is thought that these 
patterns of functional abnormalities may predispose to emotional lability, 
emotional dysregulation, and heightened reward sensitivity, which are hall-
marks of bipolar disorder (Phillips and Swartz 2014). Accompanying these 
abnormalities are reductions in gray matter in the prefrontal and temporal 
cortices, amygdala, and hippocampus, and structural abnormalities in white 
matter tracts that connect prefrontal and subcortical regions in these cir-
cuitries (Phillips and Swartz 2014). 

CAN NEURAL MEASURES BE USED TO PREDICT 
FUTURE CLINICAL COURSE IN YOUTH AND 
YOUNG ADULTS WITH BIPOLAR DISORDER AND 
THOSE AT RISK OF THE DISORDER? 
We need a way to identify neural mechanisms of bipolar disorder and to 
identify measures that reflect these mechanisms, which are potential pre-
dictors of future bipolar disorder development in youth and young adults. 
One promising way is to identify which specific measures of emotional reg-
ulation and reward processing neural circuitry structure and function pre-
dict, and which specific changes in these measures over time are associated 
with worsening mood symptoms in youth at risk for bipolar disorder and 
individuals who have the disorder. 

Few neuroimaging studies have examined whether neural measures can 
be used to predict future course of illness in individuals with bipolar disor-
der. Those that have done so suggest that lower gray matter volume in pre-
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frontal cortical and subcortical regions (important for emotional 
regulation), and white matter lesions in subcortical regions, predict worse 
outcomes (e.g., greater number of recurrences) in individuals with bipolar 
disorder (Dusi et al. 2019). The majority of studies have focused on identi-
fying neural measure predictors of response to specific treatments. In one 
study, lower fractional anisotropy (measuring the longitudinal alignment of 
fibers in white matter tracts) in the cingulum bundle (hippocampal subsec-
tion) predicted poorer clinical response to lithium (Kafantaris et al. 2017). 
Other studies reported that lower fractional anisotropy in prefrontal corti-
cal regions, together with greater global radial diffusivity, the latter reflect-
ing lower white matter fiber collinearity and/or myelin damage, predicted 
poorer antidepressant response (Bollettini et al. 2015; Lan et al. 2017). One 
study reported that lower functional connectivity at rest between the amyg-
dala and anterior insula, and greater functional connectivity at rest between 
the right ventrolateral prefrontal cortex and anterior insula, were associ-
ated with more emotional dysregulation after cognitive-behavioral therapy 
(Ellard et al. 2018). 

Our research team has examined youth across a range of genetic risk for 
bipolar disorder (Birmaher et al. 2009, 2010; Goldstein et al. 2010), as well 
as youth who have behavioral and emotional dysregulation and affective la-
bility, who are at symptomatic risk of developing bipolar disorder (Findling 
et al. 2010; Horwitz et al. 2010). In our neuroimaging studies of these 
youth, we examined whether neural measures in neural circuitries that un-
derlie emotional regulation and reward processing predicted, or whether 
changes in these neural measures were associated with, future worsening of 
bipolar disorder symptoms. We showed the following key relationships 
across different studies using multimodal neuroimaging techniques. First, in 
youth at genetic risk of bipolar disorder, hypo/mania severity in the future 
(29 months postscan) was predicted by greater cortical thickness in the left 
ventrolateral prefrontal cortex and lower cortical thickness in several regions, 
including prefrontal cortical regions that are important for emotional regu-
lation (Bertocci et al. 2019). These findings were largely replicated in an in-
dependent group of youth who had high levels of emotional dysregulation 
and were at symptomatic risk of developing bipolar disorder (Bertocci et al. 
2019). Second, we reported that in these emotionally dysregulated youth, 
lower cingulum bundle length, a key white matter tract that connects mul-
tiple cortical regions that are important for emotional regulation, was asso-
ciated with greater positive mood and energy dysregulation at 14.2 months 
postscan (Bertocci et al. 2016). Third, in youth at risk of bipolar disorder, 
we showed that increasing amygdala activity, and increasing amygdala– 
medial prefrontal cortical functional connectivity, during emotional regula-
tion over 2 and 3 years, respectively, were associated with increasing hypo/ 
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mania, depression, and affective lability severity (i.e., increasing severity of 
mood symptoms in general) (Acuff et al. 2018; Bertocci et al. 2017). 
Fourth, we showed that in emotionally dysregulated youth, greater func-
tional connectivity among regions in reward circuitry during reward pro-
cessing was associated with greater positive mood and energy dysregulation 
at 14.2 months postscan (Figure 3–2) (Bertocci et al. 2016). 

INTERIM SUMMARY 
Only a small number of studies have examined the extent to which neural 
measures can predict future clinical course in individuals with bipolar dis-
order. Their findings show that worse clinical outcomes are predicted by 
patterns of predominantly lower gray matter volume in prefrontal cortical 
and subcortical regions, alongside white matter lesions in subcortical re-
gions and altered amygdala and prefrontal cortical resting-state functional 
connectivity. In parallel, our findings indicate that multimodal neuroimag-
ing measures of cortical thickness, white matter structure and activity, and 
functional connectivity in emotional regulation and reward processing cir-
cuitries predict future clinical course in youth at risk of developing bipolar 
disorder in the future. Specifically, increases in amygdala activity and amyg-
dala–medial prefrontal cortical functional connectivity over time during emo-
tional regulation predict greater future affective lability and mood severity in 
general. In contrast, greater thickness in cortical regions that are important 
for reward processing, lower thickness in cortical regions that are important 
for emotional regulation, lower length of the cingulum white matter bundle, 
and greater reward circuitry functional connectivity specifically predict 
greater future hypo/mania and positive mood and energy dysregulation 
symptom severity. 

These findings thus suggest that specific measures of function and struc-
ture in neural circuitries that are relevant to understanding pathophysio-
logical mechanisms of bipolar disorder can help to predict not only future 
clinical course in individuals who have bipolar disorder but also future wors-
ening, and the polarity, of symptoms in youth at risk of developing bipolar 
disorder (Table 3–1). 

MACHINE LEARNING: MOVING TOWARD 
PERSONALIZED MARKERS OF RISK FOR 
BIPOLAR DISORDER 
One goal of clinical neuroscience is to identify individual-level measures of 
neural function and structure, which can provide a measure of personalized 
risk for the future development of disorders such as bipolar disorder, for the 



    

  

40 
Precision

 Psych
iatry 

Figure 3–2. Representation of key abnormalities (yellow bursts) in (A) emotional regulation and (B) reward processing circuitries 
that predict future worsening of bipolar disorder–related psychopathology in youth. 
To view this figure in color, see Plate 3 in Color Gallery. 
Arrows represent key connectivity among these regions. ACC=anterior cingulate cortex; dlPFC=dorsolateral prefrontal cortex; mdPFC=mediodorsal prefrontal 
cortex; OFC=orbitofrontal cortex; vlPFC=ventrolateral prefrontal cortex. 
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TABLE 3–1. Neural measures that have been identified as predictors of 
future clinical course in individuals with bipolar disorder and 
in youth and young adults at risk for the disorder 

Neural marker 
Predicted future  mood symptom  
worsening 

Individuals with bipolar disorder 

Lower gray matter volume in subcorti-
cal and prefrontal cortical regions 

Worse clinical outcomes (e.g., a greater 
number of recurrences) 

White matter lesions in subcortical 
regions 

Worse clinical outcomes (e.g., a greater 
number of recurrences) 

Lower fractional anisotropy in the cin-
gulum bundle and prefrontal cortical 
regions 

Poorer response to lithium and/or anti-
depressant medications 

Lower functional connectivity at rest 
between the amygdala and anterior 
insula, greater functional connectivity 
at rest between right ventrolateral 
prefrontal cortex and anterior insula 

Less improvement in emotional regu-
lation after cognitive-behavioral 
therapy 

Youth at risk of developing bipolar 
disorder 

Greater cortical thickness in left 
ventrolateral prefrontal cortex 

Greater hypo/mania severity 

Lower thickness in cortical regions 
important for emotional regulation 

Greater hypo/mania severity 

Lower cingulum bundle length Greater positive mood and energy 
dysregulation 

Increasing amygdala activity during 
emotional regulation over time 

Increasing severity of mood symptoms 
in general 

Increasing amygdala–medial prefrontal 
cortical functional connectivity 
during emotional regulation over time 

Increasing severity of mood symptoms 
in general 

Greater functional connectivity among 
regions in reward circuitry during 
reward processing 

Greater positive mood and energy 
dysregulation 

ultimate goal of guiding precision medicine approaches to interventions and 
treatments. Identifying patterns of neural activity and functional connec-
tivity that predict the future worsening of symptoms associated with bipo-
lar disorder is a critical step toward this goal but falls short of identifying 
individual-level markers of illness risk. 
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Pattern recognition approaches can identify multivariate patterns of neu-
ral activity that are predictive of diagnosis or future outcomes (Fernandes 
et al. 2017; Portugal et al. 2016; Stonnington et al. 2010). These ap-
proaches consist of two phases: training and testing. During the training 
phase, the model learns a relationship between a set of patterns (e.g., patterns 
of neural activity) and labels (e.g., symptom severity score). In the testing 
phase, given new individual patterns (e.g., patterns of neural activity from 
new individuals), the model is used to predict the label of each of these new 
individuals. The model performance is then evaluated by comparing the 
observed and predicted labels for the new “test” individuals. 

Our research team has used machine learning in combination with neuro-
imaging to identify patterns of neural activity that can identify—at the indi-
vidual level—the likelihood of a bipolar disorder diagnosis (Almeida et al. 
2013; Mourão-Miranda et al. 2012). More recently, we have used such an ap-
proach to identify individual-level patterns of neural activity in young adults 
that can characterize the magnitude of behaviors associated with risk for fu-
ture bipolar disorder (de Oliveira et al. 2019). We showed that in a first sam-
ple of young adults, whole-brain activity during a reward processing task was 
able to classify each individual regarding risk for future bipolar disorder, as de-
termined by scores on a specific manic symptom relevant to bipolar disorder. 
The region with the highest contribution to the model was the left ventrolat-
eral prefrontal cortex, a key region that is implicated in reward processing 
(Boorman et al. 2016; Lee et al. 2015) and was shown to be functionally ab-
normal in our previous studies of individuals who have bipolar disorder 
(Bebko et al. 2014; Caseras et al. 2013; Manelis et al. 2019; Nusslock et al. 
2012). We replicated these findings in a second independent sample of young 
adults in which the severity of this symptom was predicted using a bilateral 
ventrolateral prefrontal cortical mask (de Oliveira et al. 2019). Findings from 
this study that the severity of a specific bipolar disorder symptom can be pre-
dicted from patterns of whole-brain activity in two independent samples. 
Also, this study provides neural measures that reflect underlying pathophysi-
ological mechanisms of bipolar disorder to aid in the early identification of in-
dividual-level risk of this disorder in young adults. 

Conclusion and Future Directions 

Bipolar disorder is both common and debilitating. Although risk for the de-
velopment of this disorder can be predicted by genetics, the absence of ob-
jective illness markers has impeded progress toward the precision medicine 
goals of individual-level risk detection and the development of new patho-
physiologically based interventions. Neuroimaging studies have identified 
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specific patterns of abnormality in key neural circuitries that are implicated 
in processes relevant to understanding the pathophysiological basis of the 
disorder. These studies have provided a foundation for more recent studies 
examining the extent to which measures of neural circuitry function and 
structure in at-risk youth can predict the future worsening of symptoms as-
sociated with bipolar disorder. Findings from these studies have together 
provided an array of neural measures that could be used to help predict the 
future onset of bipolar disorder in at-risk populations. Furthermore, the use 
of machine learning techniques alongside neuroimaging methodologies 
holds much promise for identifying neural measures that can predict indi-
vidual-level risk for the future development of bipolar disorder. 

Although we have replicated some of the above findings, further repli-
cation in independent samples is clearly needed to establish which specific 
neural measures are the strongest predictors of future course of illness in 
at-risk youth and young adults. The inclusion of machine learning method-
ologies in such studies can help us identify those neural measures that best 
predict individual-level risk of bipolar disorder. Employing these neural 
measures in clinical instruments that are currently being developed to help 
improve bipolar disorder risk detection in individual patients will then be a 
critical next step toward providing pathophysiologically relevant markers 
in risk detection algorithms that can be used in clinical contexts. It is our 
hope that this structured approach to identifying risk markers of bipolar 
disorder can guide intervention and novel treatment developments for youth 
and young adults who are at risk of this disorder, and will move the field 
closer to the ultimate goal of a precision psychiatry platform for the assess-
ment and treatment of individuals with bipolar disorder. 

KEY POINTS 
• Specific abnormalities in structure and function in emotional 

regulation and reward circuitry characterize individuals with bi-
polar disorder. 

• Several neural measures that reflect these pathophysiological 
mechanisms can predict future clinical course in individuals with 
bipolar disorder. 

• These measures can also predict future worsening of symptoms 
associated with bipolar disorder, and risk of developing the dis-
order, in youth and young adults. 

• Machine learning and neuroimaging have been used in combi-
nation to classify individuals into diagnostic groups, and also to 
predict severity of lifetime risk of bipolar disorder. 
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• The combination of machine learning and neuroimaging using 
neural measures can be used to predict both individual-level risk 
of future worsening of symptoms that are associated with bipo-
lar disorder and individual-level risk of developing the disorder. 
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History 

Psychiatric disorders have historically been described and defined by sub-
jective symptom reports and abnormalities in observed interpersonal be-
haviors. Etiological theories in the nineteenth and twentieth centuries 
focused first on neurological origins and then on psychodynamic and psy-
chological determinants. By the mid–twentieth century, “biological psychi-
atry” models derived from psychopharmacological treatments emphasized 
brain neurotransmitter systems as etiopathogenic factors and intervention 
targets. 

Regardless of theoretical orientation, only a handful of twentieth-century 
scholars explicitly defined the information processing aspects of psychiatric 
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disorders: measurable maladaptive changes in how the brain processes dif-
ferent kinds of information under different circumstances. The exception 
was schizophrenia, which was labeled “démence” by 1801 and “dementia 
praecox” by 1893. Despite this early recognition of cognitive failure in 
schizophrenia, most clinical research into the early 1990s emphasized un-
derstanding and treating overt psychotic symptoms rather than identifying 
the cognitive impairments. Today, schizophrenia is once again understood to 
be a (heterogeneous) neurocognitive disorder—a disorder of how distributed 
neural circuits in the brain represent and process information in order to 
support adaptive behavior. 

Schizophrenia serves as a conceptual model that cuts across all psy-
chiatric syndromes, which we now know all arise from neural circuit dys-
function and maladaptive system-level information processing in the brain 
(Disner et al. 2011; Gilpin and Weiner 2017; Helm et al. 2018; Kaiser et 
al. 2015; Kupfer et al. 2012; Malykhin et al. 2012; Pizzagalli 2011; Strakow-
ski et al. 1999). Moreover, like schizophrenia, all psychiatric syndromes 
have neurodevelopmental origins, with genetic/epigenetic contributors as 
well as risk factors during gestation, childhood, and adolescence that have 
a deleterious effect on brain information processing systems and their plas-
tic responses to environmental insults and contingencies (Lima-Ojeda et al. 
2018). A range of clinical symptoms may result from information process-
ing impairments but do not have a one-to-one mapping with them. 

As described throughout this book, thanks to sophisticated tools from 
cognitive neuroscience and computational analysis, we can now assess neural 
circuit changes across different psychiatric disorders and stages of illness. 
Changes in neural circuits drive alterations in how the brain processes and 
responds to cognitive and social-emotional information. Yet, as the brain 
responds to its environment and processes salient information, this in turn 
drives neural circuit changes. 

Current Knowledge and Approaches 

WHAT KINDS OF INFORMATION PROCESSING 
IMPAIRMENTS ARE SEEN IN PSYCHIATRIC DISORDERS? 
Multiple impairments in cognitive and social-emotional information pro-
cessing are observed across psychiatric disorders; they are related to under-
lying neural circuit dysfunction and correlate with aspects of clinical 
presentation and illness course. In some disorders, such as schizophrenia and 
depression, a deep body of knowledge has been established. In others, such 
as PTSD or eating disorders, the work is still emerging. In many instances, re-
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searchers have developed behavioral tasks that capture these impairments. 
For example, when people with major depression are asked to respond quickly 
to sad pictures, they show an abnormal allocation of attention to these neg-
ative emotional stimuli. This attentional bias is reflected in a slower reac-
tion time to the stimuli, and also in a hyperresponsive late positive potential 
(LPP), a neural response to attentionally salient stimuli that is observed during 
electroencephalographic recordings (Auerbach et al. 2015; Benau et al. 
2019; Burkhouse et al. 2017; Shestyuk and Deldin 2010; Xie et al. 2018; 
Zhang et al. 2016) (Figure 4–1). Both the attentional bias and the hyperre-
sponsive LPP normalize during successful treatment, sometimes even before 
clinical improvement is apparent (Burkhouse et al. 2016). 

Although some information processing deficits are more prominent in 
certain groups of disorders, none are diagnostically specific or pathogno-
monic (Table 4–1). This is not surprising, as it merely reflects the complex 
choreography across time, space, and neuro-oscillatory activity among dis-
tributed neural circuits that support higher-order functions in the human 
brain. This lack of diagnostic specificity also reflects the fact that each indi-
vidual can manifest variants in circuit structure and function across many 
circuits, as well as develop compensatory activity within and across circuits. 

Nonetheless, there do appear to be certain neurocognitive and neuro-
affective operations that are critical, if not for fully explaining the develop-
ment and manifestation of specific psychiatric symptoms and disorders, 
then at least for indicating an individual’s potential for treatment response, 
recovery, and long-term outcome (Table 4–1). Various combinations of im-
pairments in these core operations are generally present within and across 
disorders, and the more severe they are, the worse the prognosis and over-
all treatment responsiveness, regardless of diagnosis. 

Although we do not fully understand how these various operations in-
fluence one another to determine specific symptom presentations and real-
world behaviors at the individual level, it is certain that they interact and 
influence functioning. For example, in a population-based sample of over 
7,000 individuals, Rutter et al. showed that impaired facial emotion recogni-
tion was associated with higher self-reported anxiety (Rutter et al. 2019). In 
healthy individuals, Schad et al. (2014) demonstrated that individual differ-
ences in processing speed were related to the use of goal-directed reinforce-
ment learning over habit-based learning. In people with schizophrenia, a 
rich literature demonstrates an association between early auditory informa-
tion processing dysfunction, auditory emotional prosody deficits, poorer 
social functioning, and impaired verbal learning (Javitt and Sweet 2015). 

As these examples illustrate, strengths and weaknesses across a range of 
cognitive and social-emotional operations in the brain interact in complex 
ways, and their functional significance will be greatly influenced by environ-
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Figure 4–1. An example of a neural correlate of the negative attentional bias in depression. 
To view this figure in color, see Plate 4 in Color Gallery. 
Participants were instructed to either think about or suppress (not think about) images that were previously associated with positive or negative valence. The group 
of depressed participants recalled more negative items and had a larger late positive potential (or late positive component [LPC]) for negative “think” items com-
pared with the nondepressed group. These findings reflect abnormal allocation of attentional resources to negative stimuli in the environment, which is believed 
to arise from increased neural responsivity in prefrontal-parietal attentional circuitry. EEG=electroencephalogram; T/NT=Think/No-Think. 
Source. Adapted from Zhang  et al. 2016. 
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TABLE 4–1. Example of the kinds of information processing abnormalities seen in four major groups of psychiatric 
disorders 

Disorder 
Processing 
speed 

Attentional 
control/
Working 
memory 

Inhibitory 
control 

Reinforcement 
learning 

Reward 
responsivity 

Social- emotional 
cognition 

Internal 
distractions 
(mind
wandering and 
rumination) 

Psycho  tic 
disorders 

+++ 
(Blanchard et al. 

2010; Lahera 
et al. 2017; 
Mesholam-
Gately et al. 
2009; Rodrí-
guez-Sánch  ez 
et al. 2007) 

+++ 
(Erickson et 

al. 2015; 
Gold et al. 
2018; Kara-
tekin and 
Asarnow 
1998) 

+/– 
Neural but not 

behavioral  
deficit 
(Mayer   et al. 
2016; 
Sharma et al. 
2017) 

+++ 
(Barch et al. 

2016; Maia  and 
Frank 2011; 
Strauss et al. 
2014; Whitton 
et al. 2015) 

+++ 
(Juckel 2016; 

Maia an  d 
Frank 2017; 
Rademacher et 
al. 2017) 

+++ 
(Bora et al. 2017; Fu-

jiwara et al. 2015; 
Gromann et al. 
2013; Lahera et al. 
2017; Mier and 
Kirsch 2017) 

+/– 
(Chen et al. 

2015; Phillips 
et al. 2015; 
Shin et al. 
2015) 

ADHD +++ 
(Adalio et al. 

2018; Cook et 
al. 2018; Kibby 
et al. 2019) 

+++ 
(Alderson et  

al. 2013; 
Barkley 
1997; Kara-
tekin and 
Asarnow 
1998; Lenar-
towicz et al. 
2014) 

+++ 
(Bari and Rob-

bins 2  013; 
Barkley 
1997; Dalley 
and Robbins  
2017) 

+++ 
(Kollins and Ad-

cock 2014; Maia 
and Frank 2011; 
Tripp and 
Wickens 2009; 
Ziegler et al. 
2016) 

+++ 
(Luman et al. 

2010; Tripp 
and Wicken  s 
2009; von 
Rhei  n et al. 
2017) 

+/– 
(Bora and Pantelis  

2016; Ibáñez et al. 
2014; Miranda et al. 
2017) 

+++ 
(Bozhilova et al. 

2018; Christoff 
et al. 2  016; 
Jonkman et al. 
2017; Lanier et 
al. 2  019; 
Mowlem et al. 
2019; Seli   et al. 
2015) 
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56 TABLE 4–1. Example of the kinds of information processing abnormalities seen in four major groups of psychiatric 
disorders (continued) 

Disorder 
Processing
speed 

Attentional 
control/
Working
memory 

Inhibitory
control 

Reinforcement
learning 

Reward
responsivity 

Social- emotional
cognition 

Internal 
distractions 
(mind
wandering and 
rumination) 

Anxiety 
disorders 

—  
(Berggren and 

Derakshan 
2013; Moran 
2016) 

++  +++ 
(Grillon et al. 

2017; Nuñez 
et al. 2  017; 
Ran et al. 
2018) 

— 
(Bishop and 

Gagne 2018) 

+++ 
(Burkhouse et al. 

2016) 

++ 
(Plana et al. 2014; 

van Niekerk et al. 
2017) 

+ 
(Makovac   et al. 

2019) 

Depressive  
disorders 

++ 
(Tsourtos et al. 

2002; Vallesi et 
al. 2015) 

+/– 
(+ adults 

[McIntyre et  
al. 2013  ]; 
– kid  s [Vilgi  s 
et al. 2015]) 

++ 
(Li et al. 2  015; 

Richard-
Devantoy et  
al. 2  016; 
Roca et al. 
2015) 

+++ 
(Barch et al. 

2016; Ch  en et 
al. 2015; Whit-
ton et al. 2015) 

+++ 
(Burkhouse et al. 

2016; Peciña et 
al. 2017) 

+++ 
(Bora and Berk 2016; 

Ladegaar  d et al. 
2014; Turchi et al. 
2017; Zwick and 
Wolkenstein 2017) 

+++ 
(Christoff et al.

2016; Deng et 
al. 2  014; 
Hoffmann et 
al. 2016; 
Marchetti et al. 
2016; Ottavi-
ani et al. 2015) 

Note. +++=strong evidence; ++=moderate evidence; +=emerging evidence;+/–=context dependent; –=insufficient evidence. 
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mental demands. For example, an adolescent who is easily distracted by novel 
visual stimuli might have functioned very well as a hunter on the alert for 
game in Paleolithic times, but not as a student in a math classroom in the 
twenty-first century. An adolescent who develops attentional bias for threat-
ening emotional stimuli after a sexual assault and who experiences disturb-
ing recurrent intrusive imagery along with impaired working memory will 
likely have maladaptive goal-directed reinforcement learning along with 
depression, anxiety, and increasingly self-defeating behaviors. 

From this emerging evidence, we posit that a forward-thinking precision 
psychiatry evaluation of patients should routinely include a profile of cog-
nitive and social-emotional processing strengths and weaknesses, with a fo-
cus on the major domains listed above (Cuthbert and Insel 2013). Such a 
profile may well become the basic lab panel for psychiatry (Vinogradov 
2017), because it is now possible to carry out such assessments using reliable 
and scalable digital tools applied remotely, and to develop large normative 
and comparative data sets (Passell et al. 2019). Like a lab panel, an informa-
tion processing profile can be derived at multiple time points to track changes 
in cognitive and clinical status and assess response to treatment. Efforts are 
also under way to map the underlying neural dynamics that represent these 
diverse cognitive patterns in large samples (Korgaonkar et al. 2013). Ulti-
mately, both neural and behavioral norms in combination have the poten-
tial for providing a high degree of predictive precision. 

HOW DO WE TREAT INFORMATION PROCESSING 
IMPAIRMENTS? 
A person’s information processing profile is clinically useful for precision psy-
chiatry only if it provides actionable results. Since 2005, various research 
groups have developed treatments that target impaired cognitive and social-
emotional information processing at the neural systems level with the goal 
of improving behavior. These treatments make explicit use of intact neuro-
plasticity mechanisms that enable learning and focus on driving changes in 
the way brain circuits process the relevant information (Merzenich et al. 
2014; Nahum et al. 2013). 

Before we delve into these advances, we contrast mechanisms employed 
in cognitive-behavioral therapy (CBT) and mindfulness-based therapies. 
These treatments help individuals to explicitly learn and apply meta-cognitive 
techniques to manage their behavior, regardless of any lower-level informa-
tion processing impairments. In CBT, patients learn to identify and reframe 
unhelpful interpretations (cognitive distortions) of internal and external 
events and are taught how such distortions lead to maladaptive feelings and 
behaviors. For instance, a patient may have difficulties with rapid and accu-



 

   

   
   

   

  
  
 

 
 

   
 

 
  

 

   

 

  

 
   

   
 

 

  
 

58 Precision Psychiatry 

rate social cognition, associated with increased anxiety and a tendency to in-
terpret neutral social interactions as highly critical and humiliating. The 
patient learns to develop explicit strategies to address such cognitive distor-
tions; that is, they might learn to ask, “Is there another way to interpret the 
social interaction I just had in which I felt criticized?” Mindfulness-based 
strategies (Kabat-Zinn 2003) are used to teach active momentary awareness 
of one’s thoughts, feelings, and bodily sensations without judgment (“I am 
aware of feeling criticized and now I feel butterflies in my stomach”). This 
nonjudgmental awareness teaches the patient to detach from maladaptive 
thoughts and feelings, providing subjective relief. Both CBT and mindful-
ness approaches (and their many derivatives) drive higher-level changes in 
how the brain handles information (Baioui et al. 2013; Fu et al. 2008; Tang 
and Posner 2013). Likewise, some baseline aspects of brain information pro-
cessing capacity are predictive of how well a patient will respond to CBT 
(Bryant et al. 2008; Siegle et al. 2006). 

Complementary to the “top-down’’ approach of CBT and mindfulness, 
cognitive training is based on a “bottom-up” view and harnesses implicit 
learning mechanisms to focus on direct targeted training of lower-level information 
processing impairments (Merzenich et al. 2014; Nahum et al. 2013). Here, we 
include traditional cognitive training programs as well as attention bias mod-
ification training (ABMT) and social cognitive training. In such an approach, 
the patient with social anxiety who has poor facial emotion recognition 
abilities and an attentional bias toward threatening faces might undergo 
computerized training to improve these two abilities. Cognitive training 
changes neural circuit function in restorative and compensatory directions, 
though there is still much to be understood and a full review is beyond our 
scope. Table 4–2 presents a few examples of successful computerized cog-
nitive training approaches for psychiatric disorders. 

Successful cognitive interventions can have lasting “sleeper effects” that 
improve the longer-term trajectory of the illness in a way that medication 
treatments do not. A 16-session meta-cognitive intervention targeting de-
lusional ideation in schizophrenia showed only modest impact immediately 
following treatment but drove a significant and sustained improvement in 
delusional symptoms 6 months and 3 years later (Moritz et al. 2014). In a 
trial of cognitive training for executive function for schizophrenia, improve-
ments in cognition, functioning, and electrophysiological indices were only 
observed 3 months after the conclusion of treatment (Best et al. 2019). 
Sleeper effects are likely the result of improved cognitive capacities that lead 
individuals to better function in their communities, enabling adaptive be-
havioral and neuroplastic changes. 

Cognitive interventions may also have prophylactic effects on psychiat-
ric illness in a way that medications do not (Bar-Haim 2010; Browning et 
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TABLE 4–2. Examples of successful cognitive training approaches for psychiatric disorders 

Disorder Form of training 

Information 
processing 
impairments 
targeted by 
training Brief description 

Length of 
intervention Control group Outcomes 

Psycho  tic 
disorders 

Combination of 
computerized 
targeted cogni-
tive training
(TCT) plus
social cognitive 
training (SCT)
(Fisher et al. 
2017) 

Lower-level audi-
tory and visual 
processing and 
working mem-
ory deficits; 
lower-level 
social and 
emotional pro-
cessing deficits 

TCT: Adaptive online exer-
cises focused on auditory 
and visual speeded 
discriminations. 

SCT: Adaptive online exer-
cises focused on emotion 
perception, theory of 
mind (ToM), social cue 
perception, and empathy 
(Nahum et al. 2014) 

TCT: 50 hours TCT only  : 
70 hours SCT: 20 hours 

(70 hours total) 

Both groups showed 
significant improve-
ments in multiple 
cognitive domains 
and functional 
capacity. 

Only the TCT+SCT 
group showed sig-
nificant improve-
ments in emotional 
prosody identifica-
tion and reward 
processing. 
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60 TABLE 4–2. Examples of successful cognitive training approaches for psychiatric disorders (continued) 

Disorder Form of training 

Information
processing 
impairments
targeted by
training Brief description 

Length of 
intervention Control group Outcomes 

Anxiety 
disorders 
(social anxi-
ety disorder  ; 
for review: 

 Linetzky et 
al. 2015) 

Attention bia  s 
modification  
training 
(ABMT) (Naim 
et al. 2018) 

Abnormal alloca-
tion of atten-
tional resource  s 
to socially  
threatening 
stimuli 

Dot probe task: a  pair of faces 
is presented on every trial; a 
probe replaces the location  
of the  neutral face (rather 
than the threatening face  ), 
to implicitl  y train attention 
away fro  m social threat 
(MacLeod et al. 1986). 

8 45-minute 
sessions ov  er 
4 weeks 

Cognitive bias  
modification 
of interpreta-
tion (group 
cognitive-
behavioral 
therapy)  
(Murphy et al. 
2007) 

ABMT yielded 
greater symptom
reduction com-
pared with control 
intervention.

Depressive  
disorders 
(for meta-
analysis, se  e 
Motter et al. 
2016) 

Cognitive control 
training for de-
pression (Ia-
coviello et al. 
2014, 2018) 

Abnormal cogni-
tive control 
during process-
ing of negatively  
valenced infor-
mation 

Emotional Faces Memory 
Task (EFMT), designed to 
enhance cognitive control 
of emotional information 
processing  . A sequence of 
emotional faces is pre-
sented, and participants 
must decide whether the 
emotion of  the current 
face is the same as the 
emotio  n N face  s prior. 

18 sessions 
over 6 weeks 

Computerized  
working mem-
ory traini  ng 
(CT) 

EFMT group  
showed a signifi-
cantly greater 
reduction in de-
pression symptom 
severity compared  
with the CT group. 
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al. 2012). For example, ABMT trains one’s attention either toward or away 
from threatening stimuli, and has been shown to mitigate anxiety responses 
by targeting the threat monitoring system (Bar-Haim 2010; MacLeod and 
Clarke 2015). In a large-scale randomized controlled trial, four sessions of 
ABMT prior to combat exposure reduced the subsequent incidence of PTSD 
in deployed soldiers (Wald et al. 2016). ABMT has also been shown to limit 
the recurrence of depression symptoms in individuals who had previously 
experienced major depression, suggesting that this intervention may serve 
as a “cognitive vaccine” against future episodes (Browning et al. 2012). 

CLINICAL CASE ILLUSTRATION1 

Anne W. is a 22-year-old woman who had an acute psychotic episode 4 months 
ago that required hospitalization. She is now being treated with a second-
generation antipsychotic medication plus weekly CBT for psychosis. She 
feels she is doing much better overall, but at a recent visit, she told her psy-
chiatrist that she has trouble with memory and concentration, and is finding 
it hard to read, manage her calendar, and remember daily activities and tasks. 
Though she wants to resume part-time work at a coffee shop and start tak-
ing classes at the community college, she worries about keeping up with 
work and academic demands. 

Ms. W. has a high school education and is of average intelligence (Full 
Scale IQ=99). Her psychiatrist recommends cognitive and neurological 
evaluation. An MRI scan reveals no overt pathology. Ms. W.’s global neuro-
cognition score, as measured by the MATRICS (Measurement and Treat-
ment Research to Improve Cognition in Schizophrenia) Consensus 
Cognitive Battery (Nuechterlein et al. 2008), is nearly 1 SD below the av-
erage (T=41), driven by large deficits in verbal learning and memory (T=25) 
and modestly impaired problem-solving (T=43). Her processing speed is 
only slightly below average (T=47). 

Given this cognitive profile, her psychiatrist recommends a course of 
cognitive training that targets auditory processing with the goal of improv-
ing verbal learning and memory. The computerized exercises are designed 
to improve the speed and accuracy of auditory information processing, 
maintaining a dense reward schedule (80%–85% accuracy rate on an indi-
vidually adaptive basis) while remaining challenging enough to drive suc-
cessful learning. Exercises include speeded frequency modulation sweeps, 
phoneme distinction, and auditory list learning (Fisher et al. 2009). 

Three months later, after completing 20 hours of cognitive training, 
Ms. W. repeats the tests of cognitive and neurological functioning (Figure 
4–2). Her global neurocognitive performance is markedly improved (T=46), 
driven by strong gains in verbal learning and memory (T=38) as well as 
strong gains in problem solving (T=53). Volumetric analyses of her follow-

1This vignette was adapted from data collected on a participant who enrolled in a 
randomized controlled trial of targeted cognitive training (Fisher et al. 2015). 
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up MRI scan show small increases in left thalamic volume as well as increases 
in bilateral middle and superior temporal gyrus volume and thickness, 
which typically show a reduction in volume when first-episode patients are 
followed over 2 years (Gutiérrez-Galve et al. 2015; Lee et al. 2016; Ramsay 
et al. 2018). This is consistent with basic science and clinical literature 
which suggests that successful cognitive training can be both neuro-restor-
ative and neuro-protective (Eack et al. 2010; Mishra et al. 2014; Ramsay 
and MacDonald 2015; Ramsay et al. 2017). Ms. W. also shows less depres-
sion, anxiety, and irritability, and she feels ready to return to work. 

Ms. W. is reassessed 6 months later. She is now working part-time and 
taking two community college classes and is pleased with her ability to man-
age her workload. Testing shows sustained gains in global neurocognition, 
as well as verbal learning and memory, with notable improvement in pro-
cessing speed. However, her problem-solving score has returned to base-
line. Her psychiatrist discusses possible additional cognitive training to 
focus on problem solving and other executive functioning skills. Ms. W. de-
cides to wait until summer break before trying another course of training. 

Conclusion and Future Directions 

HOW DO CLINICIANS ASSESS PATIENTS FOR 
INFORMATION PROCESSING IMPAIRMENTS? 
Even as the field of psychiatric neuroscience rapidly moves toward an “in-
formation processing” approach for understanding psychopathology, the 
frontline clinician has almost no tools that enable the reliable and valid as-
sessment of information processing impairments in patients. An ideal in-
formation processing panel would be digitized, require low participant 
burden, be easy for clinicians and patients to interpret, could be applied re-
motely with high fidelity, and would contain actionable information that is 
meaningful in the real world. As Germine et al. (2019) note, it is likely that 
commercialization will be necessary for these platforms to support the con-
tinuous updates and norm gathering necessary to validly represent and pre-
dict the diversity in individual mental health outcomes. 

At present, several digitized cognitive testing platforms are available or 
are in development for use by clinicians. Examples include TestMyBrain 
(www.testmybrain.org) (Germine et al. 2019; Passell et al. 2019); Cambridge 
Neuropsychological Test Automated Battery (CANTAB; www.cambridge-
cognition.com); BAC App, a tablet-based version of the Brief Assessment 
of Cognition in Schizophrenia (Atkins et al. 2017); BrainHQ by Posit Sci-
ence (Biagianti et al. 2019); the Adaptive Cognitive Evaluation (ACE) bat-
tery (www.neuroscape.ucsf.edu/technology/#ace); Mindstrong (Dagum 
2018); and the Brain Engagement (BrainE) platform (developed by one of 
the authors, and also incorporating electroencephalography-based neural 

http://www.testmybrain.org
http://www.cambridge-cognition.com
http://www.cambridge-cognition.com
http://www.neuroscape.ucsf.edu/technology/#ace
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Information Processing Impairments as Treatment Targets 

Figure 4–2. Anne W.’s cognitive profile in response to targeted cognitive 
training. 
Anne W. underwent 20 hours of targeted cognitive training of auditory processing to focus on 
her significant baseline impairments in verbal learning and memory (T=50 reflects the age 
and gender-normed average). Gains seen after training in verbal learning and memory, and in 
global neurocognition, were sustained at the 6-month follow-up period. Processing speed 
showed sleeper effects, with improvement only apparent at the 6-month time point. Gains 
seen after training in problem solving were not sustained at 6 months, potentially indicating 
the need for additional targeted training of executive functions. 

measures of cognitive function; Balasubramani et al. 2020; Grennan et al. 
2021; Misra et al. 2018). The situation is similar to that in the late nine-
teenth century, when the presence of sugar in the urine was known to indi-
cate diabetes, and multiple chemistry laboratories were being developed to 
accurately measure it and create standardized measures that would be mean-
ingful to physicians. Recall that in Hippocratic times, doctors made the di-
agnosis by tasting a patient’s urine and perceiving whether it was sweet! 
This is analogous to our current clinical mental status exam, in which the 
clinician observes the patient and concludes that “attention is impaired.” 



  
 

   

  
 

     
 

 

   

    
 

 

 
  

      

  
  

 
 

 
 

  

 

 

64 Precision Psychiatry 

Hopefully, the day is not too far off when clinicians become adept at order-
ing standardized digital cognitive tests, enabling them to make more precise 
conclusions such as “Sustained attention on a vigilance task was impaired 
by 1.5 standard deviations.” 

HOW DO WE TRAIN CLINICIANS TO INTERPRET AND 
ACT ON THE DATA? 
Apart from neuropsychologists, no mental health professional receives any 
formal training in how to assess or interpret impaired information process-
ing in the brain, particularly with regard to how impaired information pro-
cessing might impact a patient’s functioning, guide treatment decision 
making, and predict outcome. A first step is to educate all psychiatrists and 
clinical psychologists on why cognitive health matters (Medalia and Erlich 
2017). The next step is to expose clinicians to newly emerging digitized 
measures of cognitive functioning and how such measures can help to inform 
clinical decision making at the most straightforward level. For example, if a 
clinician uses TestMyBrain and uncovers a major working memory impair-
ment in a patient who is not responding to supported employment, this en-
ables the whole team to rethink the treatment strategy. If a patient with major 
depression shows deficits in executive function, then perhaps he will not be 
a good candidate for CBT or may require executive function training in ad-
dition to standard treatment. Such steps are under way in a few academic 
centers. 

However, the full promise of this field will not occur until clinical scien-
tists and clinicians collaborate with neuroscientists, neural engineers, and 
software design teams to translate the rapidly evolving scientific knowledge 
into practical tools for the clinical setting. To use the diabetes analogy 
again, it is not enough to know how to test urine for the presence of glu-
cose. One must understand how a given test result compares in people with 
and without diabetes and across various stages of diabetes; one must know 
all of the factors that can influence a test result for a given patient; one must 
know when to perform further evaluation; and one must know how to use 
test results for treatment planning and monitoring. None of this can happen 
until reliable and highly informative behavioral and neural measures that can 
easily be acquired in a longitudinal manner in the clinic are normed to com-
parison groups with and without psychiatric symptoms. In addition, these 
longitudinal measures must be tethered to treatment options and to longi-
tudinal outcome measures of interest to patients and providers (Gourraud 
et al. 2014). 

With these data sets and tools in place, researchers will be able to identify 
the interactions among the multiple dimensions of behavioral and neural 



 

  
  

 
 

   
  

 
 

 
   

   
 

  

   
 

 

  

 

 

 

65 Information Processing Impairments as Treatment Targets 

measures, interventions, and outcomes that occur for patients in real-world 
treatment settings, and how they relate to measures seen in people without 
psychiatric illness. The goal is to provide the clinician with interpretable data 
about which information processing features are the most important to tar-
get for any given patient, in terms of choosing interventions that will sup-
port an optimal trajectory of clinical improvement and well-being. 

Interventional psychiatry may be the best current example of a subdisci-
pline in which clinicians are continuously acquiring and interpreting com-
plex data in order to guide decision making (Williams et al. 2014). In deep 
brain stimulation for treatment-refractory obsessive-compulsive disorder, 
the ideal care team includes neurosurgeons, psychiatrists, and neuropsy-
chologists, who review multiple sources of quantitative assessment data 
that are relevant to each individual patient before treatment recommenda-
tions are made, and who continually monitor patient data for months post-
surgery to adjust stimulation parameters as needed (Rappel et al. 2018). At 
present, outcome measures focus on patient and clinician ratings of obsessive-
compulsive symptom severity. However, we are not too far away from being 
able to add in objective measures of information processing that we know 
are reflective of adaptive neural system target engagement that leads to bet-
ter functioning. Ideally, this will be the model for all of psychiatry in the 
coming years, and for a range of treatment options—all of which, when 
successful, change the information processing characteristics of the brain. 

KEY POINTS 
• Psychiatric illnesses have been historically characterized by sub-

jective symptom reports and maladaptive behaviors. However, 
an abundance of research indicates that these disorders arise 
from complex patterns of neural circuit dysfunction with changes 
in cognitive and social-emotional information processing that lead 
to subjective and behavioral problems. 

• We suggest that patients should be evaluated on well-defined in-
formation processing measures before, during, and after treatment; 
such measures could serve as a basic lab panel for psychiatry. 

• Several digitized cognitive testing platforms are available or in 
development for use by clinicians, including TestMyBrain and 
the Cambridge Neuropsychological Test Automated Battery 
(CANTAB). However, work still needs to be done to translate these 
platforms into tools that provide meaningful and actionable 
data for psychiatric clinicians. 
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• Interventions that address maladaptive information processing 
from a “bottom-up” perspective include cognitive training pro-
grams, attention bias modification training, and social cognitive 
training. Psychotherapies and other psychosocial treatments can 
provide “top-down” influences on brain information processing 
abilities. 

• Translation of rapidly emerging scientific knowledge into clinical 
tools will require active collaboration among neuroscientists, 
software design teams, neural engineers, clinicians, and clinical 
scientists. 
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STATE-SENSITIVE BIOMARKERS OF 
SPECIFIC COMPUTATIONAL PROCESSES 
FOR MONITORING SYMPTOMS AND 
PREDICTING OUTCOMES IN PEOPLE 
WITH SCHIZOPHRENIA 

Steven M. Silverstein, Ph.D. 
Docia L. Demmin, M.S. 
Samantha I. Fradkin, M.S. 

History 

Although precision psychiatry is a relatively new term, the concept was per-
haps best articulated over 50 years ago by Gordon Paul with the following 
question: “Which treatment, prescribed by whom, and in which circum-
stances, is the most effective for this particular individual with this specific 
problem?” (Paul 1967, p. 111). Despite many years of research on psycho-
logical and biological aspects of mental illnesses and their treatment, how-
ever, it has been argued that psychiatry lags behind many other fields of 
medicine when it comes to our understanding of the causes of these condi-
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tions, their prevention, and the development of effective treatments (Insel 
2010). For example, although there have been modest gains made on some 
issues, we currently have no clinical tests for diagnoses, there has been no 
change in prevalence and premature mortality rates (Cuthbert and Insel 
2013), and levels of self-reported psychiatric disability, suicide, and drug 
overdose have increased dramatically in recent years (Centers for Disease 
Control and Prevention 2011; Hedegaard et al. 2018; Mojtabai 2011). 

It is often noted that the lack of progress in understanding, preventing, 
and treating psychiatric disorders is rooted in psychiatry’s overreliance on 
traditional and questionably valid diagnostic categories at the expense of 
focusing on the assessment and targeted treatment of relevant psychologi-
cal and pathophysiological mechanisms (Cuthbert and Insel 2013). Of 
course, this is not entirely true, because much work has been based—to vary-
ing degrees—on theoretical mechanistic constructs and on biological data 
as applied to individual symptoms and behaviors. Examples would be work 
done in psychoanalysis, behavior therapy, the development of families of 
dopamine receptor–blocking medications, the prefrontal lobotomy, and 
other areas. Nevertheless, as Wang and Krystal (2014) noted: “There is not 
a single symptom of a single psychiatric disorder for which we fully under-
stand its physiologic basis at a molecular, cellular, and microcircuit level” 
(p. 639). The same can be stated for the psychological basis of symptoms 
and disorders. As a result, “we have only a somewhat vague idea of how the 
brain generates the cognitive, emotional, and behavioral problems that lead 
people to seek treatment by psychiatrists and other mental health clinicians” 
(Wang and Krystal 2014, p. 639). 

It has recently been argued that one solution to this problem would be to 
focus on computational mechanisms, since this could bridge the gap between 
psychological and biological levels of understanding and provide formal, 
rigorous, and precise quantitative metrics for mechanistic constructs (Ad-
ams et al. 2016; Silverstein et al. 2017; Teufel and Fletcher 2016). While 
attempts to mathematically model behavior in terms of relationships be-
tween relevant core parameters are not new (e.g., Hull 1943; Payne 1958; 
Wiener 1948), the current hope is that our understanding of how the brain 
works, along with the processing capacity of computers, has advanced to the 
point where real progress can now be made using this approach. We believe 
this approach can succeed in clarifying important aspects of mental illness, 
but with a few important caveats. 

Formally defining variables in terms of parameters that represent aspects 
of neural function—and for which the relationships can be expressed math-
ematically—is superior to simply mapping biological findings onto test 
scores without an understanding of intermediate-level mechanisms. How-
ever, there is already a well-developed but underutilized tradition within ex-
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perimental psychopathology research that approaches experimentation in a 
theory-driven fashion. In this tradition, precisely specified patterns of scores 
across conditions are used to test strong hypotheses about core mechanisms 
in mental functioning (see, e.g., Knight 1984, 1992; Knight and Silverstein 
1998, 2001; Silverstein 2008). Stated differently, the critical aspects are that 
1) clear hypotheses regarding different mechanisms are tested against each 
other, and against the performance pattern that would be expected to result 
from a generalized performance deficit; and 2) tests are designed to allow for 
the emergence of different patterns of performance that can be understood 
in terms of these different mechanisms (Bennett et al. 2019). There is noth-
ing magical about mathematical equations. In the absence of strong exper-
imental designs and adequate controls for confounding factors (e.g., poor 
attention and motivation, anxiety, sedation), computational model parame-
ters can be just as useless as behavioral findings and functional MRI (fMRI) 
data that are obtained from poorly designed studies. 

Current Knowledge and Approaches 

In this chapter, we provide examples of experimental data and computational 
methods that have been, or can be, used to develop biomarkers of CNS 
processes that we believe represent the basis of each of the three primary 
symptom clusters in schizophrenia (disorganized, positive, negative). The ex-
amples we discuss are from vision science—the most studied and understood 
area of neuroscience—because many visual tasks are particularly good at 
isolating specific processes independent of generalized deficit confounds 
(Knight 1984; Silverstein 2016; Silverstein and Keane 2011a, 2011b; Sil-
verstein and Thompson 2015). One point we wish to emphasize throughout 
the discussion is that, at least in the study of schizophrenia, the develop-
ment of biomarkers for outcomes such as conversion to psychosis, early 
treatment response, impending relapse, and so forth requires measures that 
tap into the processes whose changes are the basis of symptom emergence 
and remission. That is, these biomarkers must be state sensitive. 

While much work, especially in the 1980s and 1990s, focused on identify-
ing vulnerability markers for schizophrenia (i.e., those that could be observed 
in patients regardless of illness phase or clinical state, and in unaffected 
family members) (Nuechterlein and Dawson 1984b; Nuechterlein et al. 
1986, 1994), these markers are unlikely to be sensitive to outcomes that in-
volve changes in clinical presentation. This is not to say that vulnerability 
markers cannot be useful for precision psychiatry efforts. They are likely to 
be useful for characterizing heterogeneity and specifying genetic contribu-
tions. But there has been far less work done in identifying state-sensitive 
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measures or episode markers (Nuechterlein and Dawson 1984a). Therefore, 
we believe that the time is right to increase efforts to develop them. 

One reason for the relative lack of focus on state-sensitive measures is 
misconceptions about using measures that, because of state sensitivity, have 
lower test-retest reliability. However, a state-sensitive measure that can iso-
late specific mechanisms can have excellent validity (construct, concurrent, 
and predictive) even when reliability is low, when the reason for low reli-
ability is valid measurement of the current state of a process that is naturally 
characterized by instability (Knight and Silverstein 2001; Silverstein 2008). 
While this issue has traditionally been discussed within the context of gen-
eralized deficit confounds, it is clearly critical for precision psychiatry, 
which emphasizes defining relevant mechanisms and developing measures of 
these mechanisms (with minimal confounds from other mechanisms) that 
can be used in real-world clinical settings. 

Clinical Illustrations 

DISORGANIZED SYMPTOMS 
For over 20 years, studies in our lab and in other labs around the world, using 
psychophysics, event-related potentials, and fMRI, have indicated that peo-
ple diagnosed with schizophrenia have a reduced ability to organize visual 
features into perceptual wholes (Butler et al. 2008, 2013; Uhlhaas and Sil-
verstein 2005b) (Figure 5–1). Moreover, this impairment in perceptual or-
ganization is related to reduced conceptual organization (reviewed in 
Phillips and Silverstein 2003, 2013; Silverstein 2016; Silverstein and Uhl-
haas 2004; Uhlhaas and Mishara 2007; Uhlhaas and Silverstein 2005a; Uhl-
haas et al. 2006). The latter findings have been interpreted as having two 
implications. The first is the presence of a canonical cortical processing algo-
rithm in which context disambiguates and highlights the behavioral rele-
vance or meaning of a target stimulus. For example, the presence of closely 
spaced edge features with similar orientations leads to lateral excitation 
among neurons that signal those features, which increases the likelihood of 
the perception of an edge, surface, or object that is distinguished from other 
features; words preceding the current spoken word generate expectations 
about the likely meaning of the current and following words, thereby facili-
tating the generation and maintenance of coherent linguistic representations 
(Phillips 2017; Phillips and Silverstein 2013; Phillips and Singer 1997; 
Phillips et al. 2015, 2016). The second implication is the presence of a wide-
spread failure of this contextual modulation process in schizophrenia that 
accounts for multiple manifestations of “processing stimuli out of context,” 
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Figure 5–1. Examples of stimuli used in multiple studies of perceptual 
organization in schizophrenia. 
A) Stimuli from the Jittered Orientation Visual Integration (JOVI) task. The left panel is an 
example of a leftward-pointing oval with a smooth contour (i.e., no orientational jitter applied 
to the Gabor elements that make up the oval contour) embedded within a field of randomly 
oriented noise Gabors. The right panel is an example of a rightward-pointing oval with ori-
entational jitter of ±13° applied to each contour element. This disrupts collinearity and the 
smoothness of the contour and makes perception of the shape more difficult. The participant’s 
task on each trial is to determine whether the oval is pointing to the left or to the right. Mul-
tiple conditions of orientational jitter are typically used within a single task. Accuracy levels 
and their slope across conditions indicate sensitivity to the grouping manipulation. B) Stimuli 
from the Mooney Faces task, in which all features are rendered as pure black or white. The 
left panel is an example of a face that is easy to perceive. The right panel is a face that is diffi-
cult to perceive due to the light-dark rendering seriously disrupting the ability to achieve per-
ceptual closure. In this task, participants are typically asked to report whether or not they see 
a face, or sometimes to make a determination about the face they see (e.g., child/adult, male/ 
female). 

including reduced perceptual organization and sometimes a better-than-
controls ability to identify single features that are strongly grouped with 
others (see, e.g., Place and Gilmore 1980; Silverstein et al. 1996), and 
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thought disorder characterized by fragmented thinking and associative loose-
ness (for review, see Phillips and Silverstein 2003, 2013; Phillips et al. 2015). 

Recent work has emphasized the ability to account for these findings 
within an information theoretic framework in which failures of contextual 
modulation can be understood in terms of concepts such as mutual (shared) 
information (i.e., coherent infomax), entropy (uncertainty), coding with syn-
ergy (i.e., output activity that is dependent on receiving a specific pattern 
of input across multiple axons), and noise (Kay and Phillips 2011; Kay et al. 
2019; Phillips et al. 2015; Silverstein et al. 2017; Wibral et al. 2017). Recent 
work has also emphasized the implementation of these functions via the in-
teraction of the independent contributions of input from apical dendritic 
tufts (which receive “top-down” and lateral input from distant cortical and 
subcortical regions that can be conceptualized as representing context), and 
input to the cell soma’s dendrites that can be conceptualized as feedforward 
processing that corresponds to that cell’s receptive field (Phillips et al. 2015, 
2016). The ability of information theoretic metrics to accurately model both 
biological data on contextual modulation in vision (Phillips and Singer 
1997; Phillips et al. 1998) and the modifying influence of apical dendritic 
activity on neuronal firing rates (Kay et al. 2019) demonstrates the utility 
of this approach for bridging psychological and biological levels of under-
standing, and for using computational metrics to account for specific im-
pairments in schizophrenia. 

A second demonstration of a visual manifestation of disorganization comes 
from the Ebbinghaus illusion task. In this task, the perceived size of a circle 
is smaller if it is surrounded by larger circles, and larger if it is surrounded 
by smaller circles (Figure 5–2). Although the factors that contribute to this 
effect are not agreed on, it clearly involves a contribution of perceptual or-
ganization, since moving context circles further from the center circle 
(thereby reducing grouping strength within the overall stimulus) reduces 
the effects of the illusion (Roberts et al. 2005). Using a computerized ver-
sion of this task, we have shown that reduced illusion effects (i.e., more accu-
rate perception of the size of the center circles) are found to a striking degree 
among schizophrenia patients upon short-term hospital admission, whereas 
illusion effects return to normal levels by hospital discharge, and the degree 
of veridical perception on admission is positively related to the level of dis-
organized symptoms (Silverstein et al. 2013). The primary metric on this 
task, which involves the difference in accuracy between the condition in 
which context is helpful (i.e., enhances size discrimination) and the condi-
tion in which context is misleading, can be generated in under 4 minutes. 
Therefore, this task would be convenient to use with a laptop computer in 
nearly any clinical or residential setting. 
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Figure 5–2. Sample stimuli from two conditions of the Ebbinghaus illu-
sion task. 
The participant’s task is to indicate, on each trial (in which stimuli from only one of the three 
conditions is presented), which target circle is larger. In this illusion, the perceived size of a 
target circle is magnified when surrounded by smaller circles and reduced when surrounded 
by larger circles. In the examples in this figure, the target/inner circle on the left is 2% larger 
than the one on the right. Therefore, surrounding it with smaller circles amplifies the real dif-
ference (i.e., Helpful context), whereas surrounding it with larger circles reduces the chance 
of an accurate size judgment (Misleading context). 
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POSITIVE SYMPTOMS 
A currently influential model of positive symptoms is that they reflect ab-
normalities in predictive coding, or are the consequences of mismatches 
between incoming sensory information and prior beliefs (Clark 2013; Cor-
lett et al. 2007, 2009, 2016; Sterzer et al. 2018). For example, hallucinations 
can be conceptualized as being due to the excessive influence of prior sensory 
experiences and beliefs about what kinds of sensations are likely to be expe-
rienced. Delusions may involve a similar mechanism for conceptual informa-
tion. This view is not without controversies, as data indicate both stronger 
and weaker influences of prior beliefs in people with psychotic disorders 
(Sterzer et al. 2018). Therefore, current work is focusing on issues such as 
potential differences in the manifestations of predictive coding alterations 
as a function of different sensory/cognitive domains, the level of processing 
at which mismatches may occur, and the distinction between symptom 
genesis and symptom maintenance (Sterzer et al. 2018). 

In our work, we have shown what we believe to be clear examples of the 
reduced effects of priors, and the relationship between this phenomenon and 
psychotic symptoms. For example, depth inversion illusions (DIIs) provide 
conceptually clear and visually compelling examples of the effects of priors. 
In this class of illusion, a concave version of an object that is found only in 
convex form in nature (e.g., a face) is presented to the participants, and the 
typical response is to perceive the object as convex. That is, in determining 
what is perceived, the expectation of what a face should look like overrides 
the actual sensory information that is presented to the participant. 

Studies from several laboratories since the 1980s have demonstrated that 
schizophrenia patients are less likely to perceive a concave face stimulus as 
convex (i.e., they are less susceptible to the illusion, and are perceiving the 
stimulus more accurately than control subjects) (Dima et al. 2009, 2010, 
2011; Keane et al. 2013; Koethe et al. 2006; Schneider et al. 2002). It has 
also been demonstrated, using dynamic causal modeling of both fMRI and 
electroencephalography (EEG) data, that 1) the normal illusion effect with 
concave face stimuli is due to a suppressive effect on the output of visual 
regions (e.g., the lateral occipital complex, which is involved in generating 
full object representations) by a frontoparietal network which is presumably 
carrying high-level information related to expectations about what faces, in 
this case, should look like; and 2) in people with schizophrenia, there is a 
reduced suppressive effect from frontal and parietal activity and a relatively 
greater level of output from the lateral occipital complex (Dima et al. 2009, 
2010). The reduced DII effect was not observed in people with bipolar dis-
order (Keane et al. 2016). Among people with schizophrenia, reduced illu-
sion effects (i.e., more veridical perception of concave face stimuli) are related 
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to a higher level of positive symptoms, less time since the last hospitaliza-
tion (r=0.41; P=0.02), and a greater likelihood of being in a more structured 
(e.g., partial hospital) versus less structured (e.g., outpatient) treatment 
program (r=0.51; P=0.004) (Keane et al. 2013). 

These cross-sectional data support the hypothesis that our DII task is 
tapping into a general (i.e., not just perceptual) predictive coding process 
in which dysregulation is related to both perception and the genesis of psy-
chotic symptoms. This is consistent with the view that perception, like 
belief formation, is a dynamic process that involves the generation of predic-
tions that are most likely to fit incoming sensory data (Clark 2013; Gregory 
1997). 

We are currently carrying out a longitudinal study—across the time frame 
of short-term inpatient unit admission to discharge—to determine the extent 
to which changes in DII task performance covary with and precede, co-oc-
cur, or follow changes in hallucinations and delusions. Importantly, while 
prior studies have used three-dimensional stimuli or computer-generated 
pseudoscopic images, we are currently piloting a completely portable setup 
in which participants view the stimuli via a virtual reality headset and the 
experiment is run on a smartphone, with data being saved via WiFi either 
on a second smartphone or a computer server (Figure 5–3). If our hypoth-
esized results are obtained, this would establish the feasibility of DII assess-
ment in many real-world settings. 

NEGATIVE SYMPTOMS 
A defining characteristic of negative symptoms of schizophrenia is a re-
duced level of reactivity. This is observed in facial affect, expressive ges-
tures, anticipation of pleasure, volition, and rates of speech and movement 
(Marder and Galderisi 2017). Reduced reactivity can also be observed in 
electrophysiological recordings, in which attenuated amplitudes and lon-
ger latencies in waveforms are commonly reported (Erickson et al. 2016; 
Onitsuka et al. 2013). This has also been demonstrated in the form of 
smaller and delayed waveform activity in retinal responses, using electro-
retinography (ERG) (Balogh et al. 2008; Demmin et al. 2018; Hébert et al. 
2015, 2020). 

We recently demonstrated that in schizophrenia patients, reduced pho-
toreceptor, bipolar cell, and ganglion cell activation to weak light stimuli 
was related to higher levels of negative symptoms (Demmin et al. 2018). 
This raises the possibility that these ERG findings reflect a reduced ability 
to represent change in the environment or to signal that a new relevant event 
has occurred, which is consistent with prior data on a relationship between 
reduced salience attribution and negative symptoms (Katthagen et al. 2016). 
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Figure 5–3. Aspects of the portable depth inversion illusion task. 
Stimuli are perceived via a virtual reality headset into which the smartphone that generates the images is inserted. Stimulus presentation is controlled by the ex-
perimenter via a second smartphone. Data can be stored on that phone or sent via WiFi to a remote server in the experimenter’s lab. 
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We then extended these findings by demonstrating that 1) while ERG 
amplitudes varied as a function of the salience of a food reward in healthy 
control subjects, this pattern of activation was significantly attenuated in 
people with schizophrenia; and 2) degree of changes in amplitudes as a 
function of reward salience was related to negative symptoms in patients, 
and to self-reports of hedonic capacity, in both groups (Demmin et al. 
2020). These data suggest that ERG responses could serve as a proxy for re-
ward sensitivity, which has consistently been found to be reduced in the dis-
order (Gold et al. 2012, 2013; Waltz et al. 2018) and the reduction of which 
is considered to be a prototypical negative symptom. 

In both of our studies that demonstrated links between attenuated ERG 
response and negative symptoms, ERG was recorded using a portable hand-
held device, stimuli presentation was brief (typically under 1 minute), and sig-
nals were detected using skin electrodes (i.e., with no direct eye contact) 
(Figure 5–4). This suggests that ERG testing could be used in clinic settings to 
detect levels of neural responsivity, which would be less time consuming and 
expensive compared with assessment using measures such as fMRI or EEG. 

Consideration of Individual Differences and 
Trajectories 
Nearly all studies of schizophrenia (and other conditions) explore patient-
control differences by comparing group means, with little regard to how 
participants differ in their intra-individual variability during task perfor-
mance. As a result, a great deal of information about trial-to-trial behavior 
is discarded. However, parameters related to such variation can provide 
unique information about brain and computational function (Li and Sik-
ström 2002; Li et al. 2006; MacDonald et al. 2009; Nguyen et al. 2016; 
Northoff et al. 2018; Russell et al. 2006; Torres et al. 2016; Weinger et al. 
2014), and excessive (trial-to-trial) intra-individual variability has been 
demonstrated in behavior and electrophysiological recordings in both 
schizophrenia patients and individuals considered to be at risk (Rentrop et 
al. 2010; Shin et al. 2015). We recently demonstrated that trial-to-trial vari-
ability/randomness (e.g., increased Fano factor) in target-directed move-
ments relative to non-target-directed movements can reliably differentiate 
schizophrenia patients from control subjects (Nguyen et al. 2016). This 
same approach has characterized other conditions such as autism and Par-
kinson’s disease (Torres et al. 2016). These data suggest that schizophrenia 
involves increased noise and randomness across processing domains, and 
that it is best conceptualized as more than a primarily cognitive (Kahn and 
Keefe 2013) disorder. 
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Figure 5–4. A portable electroretinography device, RETeval (LKC Technologies, Gaithersburg, Maryland), in use. 
Right panel shows a portion of the skin electrode, which is placed 2 mm under the lower eyelid (and is visible in the device window). 
Source. Images courtesy of LKC  Technologies. 
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A final important issue is that just as the identification of state markers 
will help to advance precision psychiatry, so will tasks that are sensitive to 
long-term illness trajectory. An excellent example of this is visual contrast 
sensitivity, in which unmedicated first-episode schizophrenia patients have 
been shown to have greater-than-normal sensitivity, whereas chronically ill 
patients—whether medicated or unmedicated—have consistently demon-
strated reduced sensitivity (for review, see Silverstein 2016). Perceptual or-
ganization may also be enhanced in the high-risk state (Parnas et al. 2001), 
but is for the most part normal after a first episode of psychosis (Silverstein 
et al. 2006b) and then is often severely impaired after multiple episodes 
(Butler et al. 2008, 2012, 2013; Silverstein 2016; Silverstein and Keane 
2011a; Silverstein et al. 2000, 2005, 2006a, 2009, 2012, 2015; Uhlhaas and 
Silverstein 2005a, 2005b). The latter finding may reflect both retinal and 
visual cortical atrophy or other forms of progressive structural pathology— 
features of poor outcome and chronic schizophrenia (Dorph-Petersen et al. 
2007; Lee et al. 2013; Mitelman and Buchsbaum 2007; Onitsuka et al. 
2006, 2007; Schultz et al. 2013; Selemon et al. 1995; Silverstein and Rosen 
2015; Silverstein et al. 2018)—which could contribute to excessive noise, 
reduced contextual modulation, and broadened orientation tuning. 

Conclusion and Future Directions 

Methods from vision science have advanced our understanding of basic pro-
cessing mechanisms that occur throughout the CNS, are altered in schizo-
phrenia, and can be sensitively, rapidly and non-invasively quantified using 
psychophysical and psychophysiological tasks. Ongoing studies are extend-
ing past data on illness state sensitivity and stage sensitivity, and this will re-
fine the predictive validity of these visual biomarkers. The modeling of 
both latent task parameters and indices of intra-individual variability can 
complement traditional mean-based data analysis techniques for characteriz-
ing and comparing patients, and for predicting important clinical outcomes. 
Ultimately, we expect that multivariate prediction, using brief measures 
that can be implemented in clinical and residential settings, will be neces-
sary to fully achieve the vision of precision psychiatry. 

KEY POINTS 
• Despite many years of research investigating the psychological 

and biological underpinnings of mental illness, we still heavily 
rely on questionably valid diagnostic categories, and we have 
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made little progress in improving the understanding, preven-
tion, and treatment of psychiatric disorders. 

• A proposed solution includes focusing on computational mech-
anisms that provide formal, rigorous, and precise quantitative 
metrics for mechanistic constructs. 

• Experimental data and computational methods, such as those de-
rived from vision science research as outlined in this chapter, can 
be utilized to create state-sensitive biomarkers for each of the 
three symptom clusters in schizophrenia (positive, negative, and 
disorganized). 

• Methods from vision science have enhanced our understanding 
of basic cortical processing mechanisms that are maladaptive in 
schizophrenia. The modeling of latent task parameters and indi-
ces of intra-individual variability, in combination with traditional 
mean-based data analysis approaches, has the potential to im-
prove prediction of clinical outcomes. 
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USING INFLAMMATORY BIOMARKERS TO 
IDENTIFY AND TREAT TRANSDIAGNOSTIC 
SUBTYPES IN PSYCHIATRIC DISORDERS 
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History 

A large and developing literature has identified a link between chronic activa-
tion of the inflammatory response and a variety of psychiatric disorders 
(Miller and Raison 2016). The best-studied disorder in this regard is depres-
sion, in which reliable increases in markers of inflammation, including inflam-
matory cytokines, acute-phase reactants, chemokines, and cellular adhesion 
molecules, have been described (Miller and Raison 2016). In meta-analyses 
of these studies, the inflammatory cytokines tumor necrosis factor (TNF), in-
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98 Precision Psychiatry 

terleukin (IL)-1β and IL-6, and the acute-phase reactant C-reactive protein 
(CRP) in the peripheral blood appear to be the most reproducibly elevated 
(Dowlati et al. 2010; Goldsmith et al. 2016; Howren et al. 2009; Osimo et 
al. 2019). Postmortem samples from depressed individuals who died from sui-
cide also demonstrate evidence of increased inflammation in the brain, in-
cluding activation of inflammatory signaling molecules in brain parenchyma 
(Pandey 2017), increased microglial density and priming (Steiner et al. 2008; 
Torres-Platas et al. 2014), trafficking of immune cells to the brain as re-
flected by perivascular macrophages (Torres-Platas et al. 2014), and de-
creased molecules associated with blood-brain barrier integrity in key brain 
regions related to reward processing (Menard et al. 2017). Interestingly, im-
mune activation has also been described in multiple other psychiatric dis-
orders, including bipolar disorder, anxiety disorders, PTSD, and psychotic 
disorders such as schizophrenia (Goldsmith et al. 2016; Michopoulos et al. 
2017). It should be noted, however, that none of these disorders are consid-
ered inflammatory disorders, because in each case only a subgroup of individ-
uals exhibit markers of increased inflammation. For example, in depression 
approximately 25%–30% of individuals exhibit increased inflammation, de-
pending on the sample and relevant risk factors (Osimo et al. 2019). 

Many factors have been associated with the risk for increased inflamma-
tion in psychiatric disease. These include obesity (and the metabolic syn-
drome) (Shelton et al. 2015), childhood maltreatment (Danese et al. 2007), 
treatment resistance (Haroon et al. 2018b; Strawbridge et al. 2015), dys-
biosis (e.g., “leaky gut” and alterations in the gut microbiome) (Dinan and 
Cryan 2017), and medical disorders, including cardiovascular disease, diabe-
tes, cancer, and autoimmune and inflammatory disorders, and their treat-
ments (Xiao et al. 2017). 

Taken together, these data suggest that increased inflammation represents 
a transdiagnostic pathology that may contribute to specific symptom clusters 
in subgroups of patients with psychiatric and other disorders. With this in 
mind, the possibility exists that these subgroups of individuals can be identified 
by relevant inflammatory markers and may ultimately warrant targeted treat-
ments that address inflammation itself or its downstream effects on the brain. 

Current Knowledge and Approaches 

A great deal of information has been amassed on how inflammation can target 
the brain to influence behavior. In vitro and in vivo studies have elucidated the 
effects of inflammation on neurotransmitter systems as well as neural plas-
ticity, including effects on growth factors and neurogenesis (Miller and Rai-
son 2016). In addition, data on the neurocircuits affected by inflammation 
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have been derived from studies that involve examination of the brain using 
neuroimaging strategies after the administration of inflammatory stimuli 
(Miller and Raison 2016). Neuroimaging studies have relied on individuals 
chronically exposed to an inflammatory stimulus (almost exclusively patients 
administered interferon [IFN]–α for infectious diseases or cancer) or healthy 
volunteers exposed acutely to either typhoid vaccination or endotoxin. Few 
studies have examined the relationship between endogenous inflammation and 
functional neuroimaging parameters in patients with psychiatric disorders. 

INFLAMMATION TARGETS NEUROTRANSMITTER 
SYSTEMS 
Cell culture and laboratory animal and human studies demonstrate that in-
flammation has effects on the synthesis, release, and reuptake of neu-
rotransmitters, including monoamines and glutamate (Miller and Raison 
2016). For example, inflammatory cytokines have been shown to decrease 
tetrahydrobiopterin (BH4), an enzyme cofactor that supports the activity 
of all the major enzymes that are responsible for the synthesis of serotonin 
(5-HT), norepinephrine (NE), and dopamine (DA) (Haroon et al. 2012). 
In addition to effects on synthesis, chronic administration of the inflamma-
tory cytokine IFN-α reduces DA release in the basal ganglia (especially 
striatum) as measured by in vivo microdialysis in nonhuman primates and 
as reflected by reduced DA turnover in humans using PET neuroimaging 
(Capuron et al. 2012; Felger et al. 2013). Interestingly, administration of 
levodopa, the immediate precursor of DA, via reverse microdialysis restores 
DA release in the striatum of IFN-α-treated nonhuman primates, support-
ing the notion that effects of inflammation on DA synthesis may be in-
volved (Felger et al. 2015). Data also indicate that the inflammatory cytokines 
TNF and IL-1β increase the expression and activity of 5-HT and NE re-
uptake pumps through activation of p38 mitogen activated protein kinase 
(MAPK) (Zhu et al. 2005). Indeed, lipopolysaccharide-induced depressive-
like behavior is associated with increased expression of 5-HT transporters as 
well as 5-HT clearance, which is reversible by a p38 MAPK antagonist (Zhu 
et al. 2010). Similar effects on DA reuptake by activation of MAPK path-
ways have been described (Morón et al. 2003). 

Inflammation and inflammatory mediators, including reactive nitrogen 
and oxygen species, also affect astrocytes, leading to increased release and de-
creased reuptake of glutamate through effects on glutamate transporters as 
well as exchange pumps involved in the synthesis of the antioxidant glutathi-
one (Haroon et al. 2017). Excessive glutamate in turn can spill over into the 
extrasynaptic space, binding to extrasynaptic glutamate (N-methyl-D-aspar-
tate [NMDA]) receptors that, unlike intrasynaptic NMDA receptors, lead to 
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decreased production of growth factors such as brain-derived neurotrophic 
factor (BDNF) and ultimately neurotoxicity (Haroon et al. 2017). In addition, 
inflammatory cytokines can lead to the activation of the enzyme indoleamine 
2,3-dioxygenase (IDO), which converts tryptophan to kynurenine, which is 
then transported to the brain and converted to quinolinic acid and kynurenic 
acid (Savitz 2020). Quinolinic acid stimulates glutamate release and blocks 
reuptake while activating extrasynaptic NMDA receptors. Kynurenic acid 
leads to reduced extracellular DA through allosteric effects on the NMDA re-
ceptor and ultimately decreased glutamate-stimulated DA release (Savitz 
2020; Wu et al. 2007). Finally, inflammatory cytokines such as IL-1β can 
have direct effects on growth factor production and neurogenesis, which in 
turn has been associated with depressive-like behavior in laboratory animals 
(Barrientos et al. 2003; Koo and Duman 2008). 

INFLAMMATION TARGETS SPECIFIC NEUROCIRCUITS 
Evolutionary theories regarding the relationship between inflammation 
and behavior posit that the increased immunometabolic demands of in-
fection and wounding lead to a reallocation of energy resources away from 
exploratory behavior to the immune system, while promoting a posture of 
hypervigilance and arousal to protect against future attack (Miller et al. 2013; 
Treadway et al. 2019). Consistent with these notions, effects of inflamma-
tion on neurocircuits in the brain have focused on circuits involved in mo-
tivation and motor activity as well as anxiety, arousal, and alarm. 

Reward Networks 
One of the most reproducible findings of the impact of inflammation on 
neurocircuits in the brain is the inhibitory effects of inflammatory stimuli 
on the activation of the DA-rich ventral striatum (Felger and Treadway 
2017; Treadway et al. 2019).These results are consistent with the reliable ef-
fects of inflammation on DA in the striatum as described above. At least three 
different immune stimuli, including chronic administration of IFN-α and 
acute administration of endotoxin and typhoid vaccination, reduce ventral 
striatal activation in response to reward in association with behavioral 
changes including anhedonia, a core symptom of depression (Capuron et 
al. 2012; Eisenberger et al. 2010; Harrison et al. 2016). These effects are 
consistent with studies in depressed patients demonstrating that increased 
CRP as an index of inflammation (see “Clinical Illustrations”) is related to 
decreased connectivity within reward circuitry, including decreased con-
nectivity between ventral striatum and ventromedial prefrontal cortex in 
association with symptoms of anhedonia (Felger et al. 2016). In addition, 
decreased connectivity between dorsal striatum and cortical regions is asso-
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ciated with decreased psychomotor speed (Felger et al. 2016). Increased 
CRP in depressed patients has also been associated with increased basal 
ganglia glutamate in association with decreased local and regional homo-
geneity (a measure of coherence of neuronal activity) in brain networks as-
sociated with motivation and motor activity (Haroon et al. 2018a). 

These effects of inflammation on reward circuitry following adminis-
tration of inflammatory stimuli in association with decreases in motivated 
behavior have also been observed in laboratory animal models, in which it 
is clear that while the capacity for pleasure remains intact, the amount of 
effort expenditure for reward is reduced (Felger et al. 2013; Treadway et al. 
2019; Vichaya et al. 2014; Yohn et al. 2016a).These findings, in conjunction 
with findings from human studies, indicate that inflammation has relatively 
specific effects on positive valence systems related to reward processing as 
outlined in the Research Domain Criteria (RDoC) developed by the Na-
tional Institute of Mental Health. Inflammation effects on the dorsal striatum 
and substantia nigra affecting motor speed relate to negative valence systems 
involving psychomotor slowing/retardation. Finally, recent work suggests 
there may be sex differences in the ventral striatal response to inflamma-
tory stimuli, with females being more sensitive to these effects than males 
(Moieni et al. 2019). 

Networks Involved in Anxiety, Arousal, and Alarm 
Several studies have identified inflammation-induced activation of neural 
networks involving the dorsal anterior cingulate cortex, insula, hippocam-
pus, and amygdala in association with increased sensitivity to environmen-
tal stimuli, including social rejection; task-related errors; and emotional 
facial expressions (Capuron et al. 2005; Inagaki et al. 2012; Slavich et al. 
2010). These findings have been complemented by one depression study in 
which increased inflammation as indexed by CRP was related to decreased 
functional connectivity between the ventromedial prefrontal cortex and 
amygdala in association with symptoms of anxiety, especially in depressed 
patients with comorbid anxiety disorders and PTSD (Mehta et al. 2018). 

Clinical Illustrations 

INFLAMMATORY MARKERS AS PREDICTORS OF 
TREATMENT RESPONSE TO ANTIDEPRESSANT AND 
ANTI-INFLAMMATORY MEDICATIONS 
A rich literature has examined the relationship between inflammatory bio-
markers and the response to antidepressant treatment in patients with de-
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pression (Table 6–1). However, few studies have examined this relationship 
in other psychiatric disorders. In a meta-analysis of the literature in depres-
sion, data were extracted from 35 studies that examined inflammatory bio-
markers before and after treatment in depressed patients (Strawbridge et al. 
2015). Sufficient data were available to evaluate CRP, TNF and IL-6, and 
the treatments were almost exclusively pharmacological in nature, primar-
ily conventional antidepressant medications. Although none of the inflam-
matory biomarkers alone predicted treatment outcome, when a composite 
measure of inflammation was used (including CRP, TNF, IL-6 plus IL-1α/ 
β and IFN-α/β), increased inflammation was found to be a significant pre-
dictor of treatment nonresponse in ambulatory depressed patients and in 
studies with a higher quality rating. In addition, persistent elevations in TNF 
were associated with prospectively determined treatment nonresponse. 
This latter finding is consistent with recent reports that patients with treat-
ment-resistant depression exhibit increased markers of inflammation, in-
cluding CRP, TNF, soluble TNF receptor 2, and IL-6 (Chamberlain et al. 
2019; Haroon et al. 2018b). 

In contrast to inflammation predicting a poor response to conventional 
antidepressants, there is some evidence that inflammatory biomarkers may 
predict a positive response to ketamine and electroconvulsive therapy (ECT). 
Indeed, higher baseline concentrations of IL-6 were found to be associated 
with lower end-of-treatment depressive symptom severity scores for patients 
treated with ECT (Kruse et al. 2018). In patients receiving ketamine, higher 
IL-6 was significantly associated with treatment response (50% reduction 
in depressive symptoms) (Yang et al. 2015). These latter data are consistent 
with findings indicating that increased body mass index and lower plasma ad-
iponectin (both associated with an inflammatory metabolic state) predict 
response to ketamine (Machado-Vieira et al. 2017). In addition, these find-
ings are supported by laboratory animal studies demonstrating that CRP 
and TNF predict an antidepressant response to ketamine in an animal model 
of treatment-resistant depression (Walker et al. 2015). 

Based on the data described above, the evidence suggests that depressed 
patients with increased inflammatory biomarkers may be less likely to respond 
to conventional antidepressant medications, and preliminary evidence sug-
gests that these patients may respond better to ECT or ketamine. Neverthe-
less, emerging data suggest that inflammatory biomarkers, especially CRP, 
may be able to identify subpopulations of depressed patients that differentially 
respond to specific classes of conventional antidepressant medications. At 
least three clinical trials have addressed this possibility (Jha et al. 2017; Uher 
et al. 2014; Zhang et al. 2019) (see Table 6–1). In all three, post hoc analyses 
indicated that depressed patients with a CRP ≥1 mg/L demonstrated a signif-
icantly worse response to selective serotonin reuptake inhibitors (SSRIs) or 
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TABLE 6–1. Representative examples of inflammatory biomarkers predicting treatment responsea 

Biomarker Treatment Finding Reference 

CRP S  SRI, 
SSRI+nortriptyline 

Baseline CRP ≥1 mg/L predicted poor response to SSRI. Uher et al. 2014 

CRP S  SRI, 
SNRI+bupropion 

Baseline  CRP ≥1 mg/L predicted poor response to SSRI. Jha et al. 2017 

CRP SSRI, SNRI CRP ≥1 mg/L predicted poor response to SSRI and SNRI. Zhang et al. 2019 

CRP Infliximab CRP >5 mg/L predicted lower depression severity at study endpoint. Raison et al. 2013 

CRP Sirukumab Higher baseline CRP was  associated with lower anhedonia scores at  
study endpoint. 

Salvadore et al. 2018 

IL-6 Minocycline Higher baseline IL-6 was associated with greater response  at study 
endpoint. 

Savitz et al. 2018 

IL-6 ECT Higher baseline IL-6 was associated with lower  depression severity a  t 
study endpoint. 

Kruse et al. 2018 

IL-6 Ketamine Baseline IL-6 was high  er in treatment responders. Y  ang et al. 2015 

MIF and IL-1β  
mRNA

SSRI  , nortriptyline Increased baseline MIF and IL-1β predicted treatment nonresponse. Cattaneo et al. 2016 

Note. CRP=C-reactive protein; ECT=electroconvulsive therapy; IL=interleukin; MIF=macrophage inhibitory factor; SSRI=selective serotonin reuptake in-
hibitor; SNRI=serotonin-norepinephrine reuptake inhibitor. 
aSee also Strawbridge et al. 2015 and Liu et al. 2020 for meta-analyses of this literature. 
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serotonin-norepinephrine reuptake inhibitors (SNRIs) compared with indi-
viduals with a CRP <1 mg/L. Interestingly, in one of these trials, bupropion 
(plus escitalopram) (Jha et al. 2017), and in another trial, nortriptyline (Uher 
et al. 2014), showed a superior response compared with the SSRI escitalo-
pram alone in patients with a CRP ≥1 mg/L. For example, in the trial with 
bupropion, depressed patients with a CRP≥1 mg/L who received escitalo-
pram alone had a 29.7% remission rate, compared with a remission rate of 
57.1% in escitalopram-treated patients with a CRP <1 mg/L (Jha et al. 2017). 
In contrast, in patients with a CRP ≥1 mg/L who received escitalopram plus 
bupropion, the remission rate was 51.4%, similar to the remission rate in 
those with low inflammation who received escitalopram alone. A follow-up 
analysis of these data further indicated that the effect of inflammation on 
treatment response to escitalopram and escitalopram plus bupropion may be 
most apparent in females versus males (Jha et al. 2019). Taken together, these 
data suggest that inflammatory biomarkers such as CRP may help guide treat-
ment selection, indicating that patients with higher inflammation may re-
spond less well to SSRIs and SNRIs, and may preferentially respond to drugs 
such as bupropion or nortriptyline. 

Bupropion (and potentially nortriptyline) might have increased efficacy 
in depressed patients who have increased inflammation, in part related to 
its impact on DA as described earlier. In human studies using displacement 
of radiolabeled DA transporter (DAT) ligands, bupropion (300 mg/day) 
was shown to occupy the DAT by as much as 25% (Argyelán et al. 2005; 
Learned-Coughlin et al. 2003). Of note, a study of nonhuman primates ad-
ministered an acute intravenous bolus of 5 mg/kg of bupropion found ~85% 
DAT occupancy in the striatum (Eriksson et al. 2011). In addition, several 
studies in rodents have demonstrated that bupropion increases extracellular 
DA in the striatum and nucleus accumbens in a dose- and time-dependent 
manner (Nomikos et al. 1992). Moreover, intraperitoneal administration of 
bupropion has been shown to increase effort-based motivation for food re-
wards in association with pre- and postsynaptic markers of increased DA 
transmission (Randall et al. 2014). Finally, bupropion (but not fluoxetine or 
desipramine) was shown to reverse the inhibitory effects on effort-based mo-
tivation by tetrabenazine, a drug that depletes accumbens DA (Yohn et al. 
2016b). It should be noted that although nortriptyline has also exhibited ef-
ficacy in depressed patients with high inflammation, this may be related to 
reported effects of nortriptyline-mediated NE transporter inhibition on 
increasing DA release in frontal cortex (Valentini et al. 2004). Moreover, in 
a systematic review of conventional antidepressants for smoking cessation, 
only bupropion and nortriptyline exhibited significant efficacy (Hughes et 
al. 2014), suggesting some overlap of their effects on reward-related path-
ways (likely involving DA). 
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CRP AS A VIABLE BIOMARKER OF INFLAMMATION AND 
SUBGROUPING PSYCHIATRIC PATIENTS 
A number of biomarkers for inflammation have been proposed for evaluat-
ing the role of chronic inflammation in a myriad of disorders, including 
cardiovascular disease, metabolic disorders, and cancer. Consensus recom-
mendations from a 2017 National Institutes of Health workshop on chronic 
inflammation biomarkers in disease development and prevention suggested 
that several inflammatory factors, including CRP, TNF, and IL-6, may be 
part of a screening panel for chronic inflammation (Liu et al. 2017). As 
noted previously, all of these inflammatory markers have been found to be 
reliably elevated in depression and other psychiatric disorders. 

These recommendations occurred in the context of another set of guide-
lines proposed in a foundational report by the Institute of Medicine (IOM) 
in 2010 that set forth parameters for the determination of a viable bio-
marker (Wagner and Ball 2015). In the IOM report, it was suggested that 
the evaluation process of a biomarker includes three critical considerations: 
analytic validity, clinical validity, and clinical utility (Table 6–2). These con-
siderations can be found, in one way or another, in the rich and varied lit-
erature on what is a useful biomarker (Biomarkers Definitions Working 
Group 2001). Indeed, before a biomarker can become a standard of care, it 
is essential to establish that the biomarker can be accurately and reliably 
measured (analytic validity), that it has a well-established connection to the 
disease of interest and/or its outcome (clinical validity), and that it demon-
strates that it can result in improved patient care (clinical utility). As sug-
gested above, a number of inflammatory biomarkers have been associated 
with antidepressant treatment response (see Table 6–1). However, of the 
inflammatory markers recommended for the panel of markers of chronic 
inflammation, CRP appears to be in the best position for further scrutiny 
at this time. 

CRP is already measured under standardized, high-quality conditions in 
clinical laboratories throughout the United States as regulated by the Centers 
for Medicare & Medicaid Services through the Clinical Laboratory Im-
provement Amendments of 1988 regulations, which include federal stan-
dards applicable to all U.S. facilities or sites that test human specimens for 
the diagnosis, prevention, or treatment of disease. Thus, CRP fits the cri-
terion of a biomarker that has analytic validity. It should be noted that CRP 
(through finger-stick blood sampling) is also beginning to be used in point-
of-care testing (Bukve et al. 2016), indicating its promise for use in the pri-
mary care settings for rapid CRP assessment and clinical decision-making. 
TNF is not routinely measured in clinical laboratories, and IL-6, which highly 
correlates with CRP, has important measurement stipulations that include the 
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TABLE 6–2. Suggested criteria for a biomarker of disease 

Criteria Definition 

Analytic validity The biomarker should be assayed under standardized condi-
tions that give accurate, reliable, and reproducible results 
with good sensitivity and specificity across multiple labora-
tories and clinical settings. 

Clinical validity The biomarker should be reliably associated with the disease 
state, including data on interventions on both the bio-
marker and clinical outcome. 

Clinical utility Use of the biomarker should impact disease outcome as either  
a surrogate endpoint or a positive or negative predictor. 

Source. Wagner and Ball 2015. 

timing of blood draw based on the marked circadian variation of this cyto-
kine as well as its sensitivity to stress, factors that are not relevant to the more 
stable CRP, which has a half-life of ~19 hours (Pepys and Hirschfield 2003) 
compared with the ~1-hour half-life of IL-6 (Castell et al. 1988). 

Relative to clinical validity, there is evidence to support that CRP is 
linked to the development of depression, its pathophysiology, and its re-
sponse to treatment. Longitudinal studies in large cohorts of patients have 
demonstrated an increased odds ratio for the development of depression in 
patients with increased CRP. For example, in the English Longitudinal Study 
of Ageing, patients with a CRP >3 mg/L had an odds ratio of 1.49 for de-
veloping depression during a follow-up period of ~3–4 years (Au et al. 
2015). Similar results have been found in participants with cardiovascular 
disease (Sforzini et al. 2019). Moreover, as noted above, increased CRP has 
been linked to decreased functional connectivity within reward-related neu-
rocircuits as well as increased glutamate neurotransmission in association 
with anhedonia and psychomotor slowing in patients with major depres-
sion (Felger et al. 2016; Haroon et al. 2015, 2018a). In addition, increased 
CRP has been shown to predict treatment response to SSRIs as well as re-
sponse to the anti-TNF antibody infliximab, in which patients with increased 
CRP (CRP >5 mg/L) exhibited the most prominent decreases in symptoms 
of anhedonia, psychomotor retardation, and psychic anxiety (consistent 
with the impact of inflammation on the neural networks described above) 
(Jha et al. 2017; Raison et al. 2013). Similar results on anhedonia were found 
regarding the effects of the anti-IL-6 antibody sirukumab in depressed pa-
tients with a CRP >3 mg/L (Salvadore et al. 2018), although a recent trial 
using infliximab in patients with bipolar depression found effects only in 
participants with childhood maltreatment, not directly related to CRP 
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(McIntyre et al. 2019). Finally, recent data indicate that increased plasma 
CRP is associated with higher concentrations of multiple inflammatory 
markers and their composite scores in both the peripheral blood and cere-
brospinal fluid (Felger et al. 2020). 

Other inflammatory biomarkers have also been examined relative to an-
tidepressant treatment response (see Table 6–1). However, the clinical utility 
of these biomarkers as well as CRP has yet to be established. Indeed, most 
studies to date have been post hoc in nature. Thus, the relevance of inflam-
matory markers to improving patient outcome by a priori (prospectively) 
identifying a subgroup of patients who might benefit from drugs targeting 
inflammation or its downstream effects on the brain remains to be deter-
mined. This is a critical area for future studies. 

Conclusion and Future Directions 

GUIDELINES FOR FUTURE CLINICAL TRIALS 

Targeting Inflammation 
Despite the availability of inflammatory markers, including CRP, no clinical 
trial to date has a priori stratified patients on the basis of any inflammatory 
biomarker. There have been studies that have focused solely on patients 
with high inflammation (McIntyre et al. 2019; Salvadore et al. 2018). Nev-
ertheless, without a low inflammation comparator group, it is impossible to 
know whether the treatment would have been equally as effective in indi-
viduals without inflammation. Optimal clinical trial designs that warrant 
consideration in this regard include the match/mismatch design, in which 
individuals with low and high inflammation are assigned to a treatment that 
targets inflammation with the hypothesis that those with high inflammation 
will respond and those with low inflammation will not (Miller et al. 2017). 

Although the obvious target for addressing the impact of inflammation 
on the brain is inflammation itself, what is least known at this point are the 
immunological and other mechanisms that drive inflammatory responses 
in psychiatric disorders. Indeed, current data support both myeloid (e.g., 
monocyte) and lymphoid (T cell) processes in inflammation in depression, 
including a host of associated mediators, such as TNF and IL-6 as well as 
IL-17, respectively (Beurel and Lowell 2018; Miller 2010; Miller and Rai-
son 2016). In addition, the roles of immune cell trafficking, microglial ac-
tivation, and alterations in blood-brain barrier integrity in key brain 
regions, including the striatum, have yet to be resolved (Menard et al. 2017; 
Miller and Raison 2016). Moreover, given the role of stress in psychiatric ill-
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nesses, autonomic and neuroendocrine processes involving the sympathetic 
and parasympathetic nervous systems and hypothalamic-pituitary axis, both 
potent regulators of the inflammatory response, are also likely involved 
(Miller et al. 2009). In addition, metabolic dysregulation, including alter-
ations in immunometabolism as well as the gut microbiome, is an import-
ant source of inflammation (Dinan and Cryan 2017; Miller and Raison 
2016; Treadway et al. 2019). Taken together, the myriad possibilities for in-
tervening at the level of the inflammatory response suggest that inhibiting 
inflammation itself, whatever the cause(s), may be somewhat premature 
until more research has revealed the most high-value immune and immuno-
regulatory targets (Figure 6–1). 

Targeting Downstream Effects of 
Inflammation on the Brain 
Few studies have taken advantage of what is known about how inflammation 
affects the brain in terms of the neurotransmitter systems involved as well 
as the neurocircuits that are affected. Given the above-noted effects of in-
flammation on DA and glutamate as well as reward circuitry, studies exam-
ining drugs that target these neurotransmitter systems may represent “low-
hanging fruit” in clinical trials using inflammatory biomarkers for stratifica-
tion coupled with match/mismatch trial designs (Figure 6–1). In addition, 
given neuroimaging correlates of the impact of inflammation on these neu-
rotransmitter systems (e.g., functional connectivity within reward circuitry 
and regional homogeneity in striatal brain regions), there exist “targets in the 
brain” that can serve to reflect target engagement as well as proximal mea-
sures potentially predictive of long-term outcome. Moreover, there is an 
opportunity to combine inflammatory biomarkers and the neuroimaging 
of other downstream consequences of inflammation (e.g., kynurenine me-
tabolites) as well as behavior (e.g., anhedonia) to identify subgroups within 
subgroups of psychiatric patients with increased inflammation, further en-
hancing precision medicine strategies (Haroon et al. 2018a). 

IMPLICATIONS FOR CLINICAL PRACTICE 
Given the state of the science, it is clear that increased inflammation is re-
liably associated with several psychiatric disorders, and in some disorders— 
notably depression—it is associated with a poor response to treatment. 
Thus, in depressed patients who are responding poorly to conventional an-
tidepressants, there may be value in measuring inflammation as reflected by 
CRP. In individuals with high inflammation (CRP >1 mg/L or higher), 
there is a rationale for ensuring that sources of inflammation are mitigated 
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Figure 6–1. Use of inflammatory biomarkers to inform intervention 
strategies to mitigate the impact of inflammation on the brain. 
Multiple factors contribute to the development of chronic inflammation that in turn can in-
fluence neurotransmitter systems and neurocircuits that mediate the effects of inflammation 
on behavior. Biomarkers of inflammation can help identify patients for relevant interventions 
that target inflammation itself or its downstream effects on the brain. 

by lifestyle measures including diet and exercise, which have both been shown 
to reduce the inflammatory response (Dai et al. 2008; Paolucci et al. 2018). 
Another important consideration is the evaluation and aggressive treatment 
of comorbid medical conditions. Although anti-inflammatory treatments 
have shown some efficacy in meta-analyses of the literature (Kappelmann 
et al. 2018; Köhler-Forsberg et al. 2019), the data are most clear in patients 
with autoimmune and inflammatory disorders. However, as noted above, 
because of limitations in study designs, the utility of anti-inflammatory drugs 
in depression or other psychiatric disorders has yet to be established. Using 
drugs that target DA in patients with increased CRP may represent a rea-
sonable first step in the application of principles of precision medicine to 
the treatment of patients. Inflammation has reliable effects on DA (Felger 
and Treadway 2017; Treadway et al. 2019), and post hoc evidence indicates 
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that drugs targeting DA may be more efficacious in depressed patients with 
increased inflammation as reflected by CRP (Jha et al. 2017). Moreover, 
there is some suggestion that increased inflammation may predict a better 
response to ECT or ketamine (Kruse et al. 2018; Yang et al. 2015). Never-
theless, much more data are needed to fully translate the emerging literature 
on the immune system and inflammation in psychiatric disease. However, 
from the knowledge that has been gained, there is considerable hope that 
biomarkers of inflammation can identify patients with specific pathologies, 
which will help guide treatment development and selection, and ultimately 
support precision medicine. 

KEY POINTS 
• A large body of research has demonstrated that subgroups of pa-

tients with depression, bipolar disorder, anxiety disorders, PTSD,
and schizophrenia show chronic activation of the immune system. 

• The most compelling evidence exists for a relationship between
depression and reproducible elevations in markers of inflam-
mation, particularly the inflammatory cytokines tumor necrosis
factor, interleukin (IL)-1β and IL-6, and the acute-phase reactant
C-reactive protein (CRP).

• Preclinical and human studies suggest that inflammation alters
the synthesis, release, and reuptake of monoamines and gluta-
mate as well as modulates activity in neurocircuits, including those 
that underlie reward and anxiety.

• Post hoc analysis of three clinical trials showed that depressed
patients with higher inflammation (CRP≥1 mg/L) responded sig-
nificantly worse to selective serotonin reuptake inhibitors or
serotonin-norepinephrine reuptake inhibitors compared with
individuals with a CRP<1 mg/L.

• Inflammation has reliable effects on dopamine signaling, and med-
ications that target dopamine, including bupropion, have shown 
efficacy in depressed patients with high inflammation.
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PHARMACOGENETIC TESTING 

A Tool for Precision Prescribing in Psychiatry 

Chad A. Bousman, Ph.D. 
Malcolm P. Forbes, M.B.B.S. 
Boadie W. Dunlop, M.D. 

Aligned with the aims of precision psychiatry, pharmacoge-
netic testing provides an approach for addressing the variability in drug re-
sponse (e.g., efficacy, optimal dose and adverse drug reactions) via 
identification and tailoring of treatment for an individual based on their ge-
netic information. This approach is based on the premise that medications 
do not always work and in some instances could be harmful to individuals, 
despite the high evidentiary standards and rigorous regulations placed on 
drugs used in clinical practice. Indeed, although marketed drugs are gener-
ally both tolerable and efficacious when assessed at the population level, for 
any given individual in a population the tolerability and efficacy of these same 
drugs can substantially vary. Thus, it is not surprising that since 2000 phar-
macogenetic testing options have grown exponentially (Bousman and Hop-
wood 2016; Haga and Kantor 2018) and that attitudes toward testing are 
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favorable among the general public (Haga et al. 2012), patients (McKillip 
et al. 2017), and health care providers (Stanek et al. 2012; Walden et al. 
2015). Notably, much of the early implementation of pharmacogenetic 
testing in the clinic has occurred in psychiatry (Müller et al. 2013; Ramsey 
et al. 2019; Volpi et al. 2018) and continues to evolve alongside the pharma-
cogenetic evidence base. In this chapter, we begin with a brief summary of 
the current knowledge underpinning the provision of pharmacogenetic test-
ing in psychiatry and then address common questions related to the imple-
mentation of testing before concluding with clinical cases that illustrate the 
utility of pharmacogenetic testing in practice. 

Current Knowledge 

Pharmacogenetics evidence can be divided into pharmacokinetic (i.e., ab-
sorption, distribution, metabolism, and elimination of drugs), pharmaco-
dynamic (i.e., biochemical, cellular, and physiological effects of drugs and 
their mechanism of action), and immune-related (i.e., human leukocyte an-
tigen [HLA]) processes. These processes require an array of enzymes, trans-
porters, receptors, and immune modulators that are encoded by hundreds 
of genes expressed in a range of tissues (e.g., liver, brain). For some individ-
uals these genes contain genetic variants that can alter the function of these 
processes, ultimately leading to variation in drug response. 

From a pharmacokinetic perspective, genetic variation in the cytochrome 
P450 (CYP) metabolizing enzymes have received the most attention in 
psychiatry, with the evidence pointing to the CYP2C19, CYP2C9, and 
CYP2D6 as the most clinically relevant to commonly used psychiatric 
medications. In fact, 21 psychiatric drugs have prescribing guidelines associ-
ated with one or more of these three genes (Table 7–1) (Caudle et al. 2014; 
Hicks et al. 2015, 2017). 

For each of the guidelines associated with CYP2C19, CYP2C9, and 
CYP2D6, recommendations are made according to an individual’s geno-
type-predicted metabolizer phenotype. Metabolizer phenotypes are deter-
mined by genotyping sets (haplotypes) of genetic variants, known as star 
(“*”) alleles. Each individual has two star alleles that are collectively referred 
to as a diplotype or genotype (e.g., *1/*17). Each star allele is then assigned a 
function (i.e., no, decreased, normal, or increased) or activity score (in the 
case of CYP2D6) based on the current evidence, such as that curated by the 
Pharmacogene Variation Consortium (PharmVar) (Gaedigk et al. 2018) or 
established activity score procedures (Gaedigk et al. 2008) (Figure 7–1A). 
An individual’s allele functions or activity scores are then combined to de-
rive a metabolizer phenotype (i.e., poor, intermediate, normal, rapid, ultra-
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TABLE 7–1. Gene-drug pairs with clinical prescribing guidelinesa relevant 
to psychiatry 

Gene Drugs 

CYP2C19 Amitriptyline, citalopram, clomipramine, doxepin, escitalo-
pram, imipramine, sertraline, trimipramine 

CYP2C9 Phenytoin 

CYP2D6 Amitriptyline, aripiprazole, atomoxetine, clomipramine, 
desipramine, doxepin, fluvoxamine, haloperidol, imipramine, 
nortriptyline, paroxetine, pimozide, trimipramine, venlafax-
ine, zuclopenthixol 

HLA-A Carbamazepine 

HLA-B Carbamazepine, oxcarbazepine, phenytoin 
aGuidelines published as of September 10, 2019, from the Clinical Pharmacogenetics Im-
plementation Consortium, Dutch Pharmacogenetics Working Group, or Canadian Phar-
macogenomics Network for Drug Safety. 

rapid) (Figures 7–1B  and 7–1C). For example, an individual with a CYP2C19 
*1/*17 genotype carries one normal (*1) and one increased (*17) allele, 
translating to a rapid metabolizer phenotype. An individual with a CYP2D6 
*4/*5 genotype would be classified as a poor metabolizer because both the 
*4 and *5 alleles have an activity score of zero (i.e., no function). 

Relative to pharmacokinetics, the evidence base for pharmacodynamic 
genes is less robust. Historically, research in this area has focused on variation 
in genes that encode receptors and transporters implicated in the actions of 
psychiatric medications, such as those involved in dopaminergic (e.g., do-
pamine D2 receptor; DRD2), serotonergic (e.g., serotonin transporter; 
SLC6A4), or glutamatergic (e.g., glutamate ionotropic receptor kainate type 
subunit 4 [GRIK4]) signaling. However, genes involved in hypothalamic-
pituitary-adrenal axis function (e.g., FK506 binding protein 5; FKBP5) and 
the leptin-melanocortin pathway (e.g., melanocortin 4 receptor; MC4R), to 
name only two, have emerged as potential harbors of informative genetic 
markers for psychiatric drug response (Fabbri et al. 2018; Zhang et al. 
2016). That said, no pharmacodynamic gene has been implicated in a pre-
scribing guideline relevant to psychiatry because evidence supporting their 
use in clinical settings is limited. 

The final class of pharmacogenetic evidence involves genes involved in 
immune system function, particularly the HLA system. HLA genes have 
been implicated in hypersensitivity reactions to a number of drugs relevant 
to psychiatry (Crettol et al. 2014). The most well-known and robust associ-
ations involve the HLA-A*31:01 and HLA-B*15:02 alleles, which substan-
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Activity Score CYP2D6 CYP2C19Allele Activity

(AS) >100 star alleles > 45 star alleles 

2.00+ *1xN, *2xN, *35xN, *45xN, *9xN, *10xN, *17xN, *17 
*29xN, *41xN 

*1, *2, *27, *33, *34, *35, *39, *45, *46, *48, *1, *11, *13, *15, *18, *28 
*53 

*9, *10, *14B, *17, *29, *41, *49, *50, *54, *55, 
*59, *72 *9, *10, *16, *19, *25, *26 

*3, *3xN, *4, *4xN, *5, *6, *6xN, *7, *8, *11, *12, 0.00 *13, *14A, *15, *18, *19, *20, *21, *31, *36, *2, *3, *4, *5, *6, *7, *8, *22, *24 
*36xN, *38, *40, *42, *44, *47, *51, *56, *57, *62, 

*68, *69, *92, *100, *101 

B CYP2D6 Metabolizer Phenotypes C CYP2C19 Metabolizer Phenotypes 

Ultrarapid Normal Intermediate Poor Ultrarapid Normal IntermediateRapid 
(AS > 2.0) (2.0 > AS > 1.25) (1.25 > AS > 0.25) (AS < 0.25) 
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Figure 7–1. Overview of CYP2D6 and CYP2C19 star (“*”) allele function (A) and their translation into metabolizer phenotypes (B, C). 
Only a select number of star alleles are shown for CYP2D6 and CYP2C19. A comprehensive list of alleles and their function can be found on the Pharmacogene
Variation Consortium website (pharmvar.org). xN=number of copies of an increased allele. 
*Individuals carrying more than two copies of an increased activity allele will be defined as ultrarapid metabolizers regardless of other alleles present. 

https://pharmvar.org


  

  
 

 
 

 
 

 
   

 
 

 
 

  

 
 

  

 

 
 

121 Pharmacogenetic Testing 

tially increase the risk of severe cutaneous adverse reactions (SCARs) 
following exposure to carbamazepine (Tangamornsuksan et al. 2013; Yip 
and Pirmohamed 2017). In addition, carriers of the HLA-B*15:02 allele are 
at higher risk of SCARs following exposure to oxcarbazepine or phenytoin 
(Dean 2012). Based on this evidence, prescribing guidelines have been de-
veloped for these gene-drug pairs (Amstutz et al. 2014; Caudle et al. 2014; 
Phillips et al. 2018; Swen et al. 2011) and routine screening has been im-
plemented in Taiwan (Chen et al. 2011) and Thailand (Sukasem and Chan-
tratita 2016), where the frequency of these alleles are most prevalent. 

Collectively, current pharmacogenetics knowledge supports the use of 
CYP2C19, CYP2C9, CYP2D6, HLA-A, and HLA-B genetic information to 
guide drug selection and dosing in psychiatry. Guidelines to assist with the 
translation of this information into clinical recommendations are freely avail-
able (Caudle et al. 2014; Hicks et al. 2015, 2017; Phillips et al. 2018), and 
their implementation into practice is encouraged by the International Soci-
ety of Psychiatric Genetics (Bousman et al. 2021), Association for Molecu-
lar Pathology (2019), Royal College of Pathologists of Australasia (2018), 
and American Society of Health-System Pharmacists (2015). Notably, the 
evidence base is quite dynamic and will continue to evolve rapidly. As such, 
to remain updated on the current pharmacogenetic evidence we encourage 
readers to regularly consult the pharmacogenomics knowledge base 
PharmGKB (www.pharmgkb.org), a comprehensive resource encompass-
ing guidelines, drug labels, and genotype-phenotype relationships (Whirl-
Carrillo et al. 2012). 

Current Approach 

As highlighted in the previous section, the current evidence suggests that 
several gene-drug associations are sufficiently robust to warrant clinical im-
plementation. However, for many psychiatrist and other health care provid-
ers, the implementation of pharmacogenetic testing can be overwhelming 
and often raises practical questions related to the where, what, when, and 
whom to test. In this section, we briefly address these questions and provide 
an overview of the clinical implementation of pharmacogenetic testing in 
psychiatry. 

WHERE IS TESTING PERFORMED? 
The provision of pharmacogenetic testing varies by geography but, for most 
regions of the world, commercial laboratories are the predominant testing 
provider. This is particularly the case in the United States, where recent es-
timates suggest 76 commercial laboratories offer pharmacogenetic testing 

http://www.pharmgkb.org
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(Haga and Kantor 2018). In addition, there are at least 45 health care orga-
nizations around the world providing pharmacogenetic testing, according to 
the Clinical Pharmacogenetics Implementation Consortium (CPIC) web-
site (cpicpgx.org) (Clinical Pharmacogenetics Implementation Consor-
tium 2019). The main differences between these two types of test providers 
relate to testing access and interpretation of test results. Commercial labo-
ratories provide testing via a gatekeeper or via a direct-to-consumer pro-
cess, whereas testing provided by health care organizations employs only a 
gatekeeper model. The gatekeeper model requires the involvement of a 
health care provider to order and interpret test results. In contrast, the direct-
to-consumer model does not require involvement of a health care provider, 
though in some cases commercial labs will offer consultations delivered by 
in-house health professionals. Although the optimal model for offering 
pharmacogenetic testing has not been established, there is general consensus 
that the involvement of a health care provider—preferably a provider known 
to the individual being tested—is essential for proper interpretation and im-
plementation of pharmacogenetic testing results; the risks are not negligible 
if results are provided in the absence of a health care provider. 

WHAT SHOULD BE TESTED? 

There is no gold standard by which to evaluate the quality of content in-
cluded on a particular pharmacogenetic test. However, the current evidence 
base would suggest that a pharmacogenetic test for psychiatry would ideally 
include CYP2C19, CYP2C9, CYP2D6, HLA-A, and HLA-B (Bousman et al. 
2019a). That said, CYP2C19 and CYP2D6 enable implementation of 82% 
(23 gene-drug pairs) of the prescribing guidelines relevant to psychiatry 
(Fan and Bousman 2020), including all guidelines related to antidepressants, 
antipsychotics, and the ADHD medication atomoxetine (see Table 7–1). 
Inclusion of CYP2C9, HLA-A, and HLA-B facilitates implementation of 
prescribing guidelines for drugs less commonly prescribed (carbamazepine, 
oxcarbazepine, and phenytoin). 

Beyond the individual genes included on a pharmacogenetic testing 
panel, the specific alleles being tested within these genes are also impor-
tant. Comparative studies have shown that multiple tests may include the 
same gene, but the alleles tested vary substantially (Bousman et al. 2017), 
which can lead to differences in phenotype predictions and prescribing rec-
ommendations (Bousman and Dunlop 2018). Recommended allele sets 
have been developed to assist with the complex task of evaluating the allele 
content of a test panel (Bousman et al. 2019a; Pratt et al. 2018, 2019). To 
allow utilization of these recommendations, test manufacturers are encour-
aged to be transparent about the alleles they include on their panels or pro-

http://cpicpgx.org
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vide such information upon request. Additional information on what to 
consider when selecting a pharmacogenetic test, including a decision tree, 
has been published elsewhere (Bousman et al. 2019b). 

TO WHOM AND WHEN SHOULD TESTING 
BE OFFERED? 
Pharmacogenetic testing presumably would have the greatest impact if offered 
to everyone in early life, before drug therapy is required. This approach is 
referred to as preemptive testing and is one of three main approaches for 
determining to whom and when testing should be offered (Figure 7–2). 
Although there are not yet longitudinal data to unequivocally support wide-
spread adoption of preemptive testing, epidemiological findings estimate 
that 80% of the population carries at least one actionable (functional) ge-
netic variant relevant to at least one of the 100 most prescribed medications 
(Schärfe et al. 2017), and that about two-thirds (67%) of physician office 
visits and 80% of emergency department visits involve a prescription med-
ication (Centers for Disease Control and Prevention 2016). Consequently, 
most people will be exposed to multiple drug therapies during their life-
time, and there is a high probability that one or more of these drugs will 
have pharmacogenetic implications. However, preemptive testing is a long-
game approach that can be difficult for third-party payers to adopt without 
solid supporting evidence (Keeling et al. 2019). As a result, point-of-care 
and reactive approaches to pharmacogenetic testing are currently favored. 

The point-of-care approach targets individuals commencing drug ther-
apy for which pharmacogenetic testing could be informative (e.g., initiation 
of antidepressant therapy). The strength of this approach is that it allows for 
adjustments to selected drug therapies and can guide future treatment plan-
ning. Unfortunately, it can take up to 21 days to receive pharmacogenetic 
testing results (Bousman and Hopwood 2016). Thus, the point-of-care ap-
proach is limited in its ability to guide initial drug selection and dosing, 
particularly in acute psychiatric settings, and has restricted utility to iden-
tify risk for adverse drug reactions that occur within the first weeks of treat-
ment. In contrast, the reactive approach is reserved for individuals with a 
history of inadequate response or adverse drug reactions to drug therapy— 
the premise for this approach being that these individuals are more likely 
to carry actionable pharmacogenetic variants and as such, testing is more 
likely to be informative for future treatment planning. However, the cost 
savings of this approach are questionable because it requires potentially 
costly and avoidable outcomes to occur before the benefits of pharmaco-
genetics can be realized. Nevertheless, reactive testing, as illustrated in the 
next section, is currently the most utilized approach in psychiatry. 
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Figure 7–2. The three most common pharmacogenetic (PGx) testing approaches. 
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Clinical Case Illustrations 

CASE 1: GENERALIZED ANXIETY DISORDER 
A 72-year-old woman presented for a second opinion regarding her phar-
macological regimen for anxiety and insomnia. She had suffered from gen-
eralized anxiety disorder for about 20 years and had initially been treated 
unsuccessfully with nefazodone, mirtazapine, and amitriptyline. The ami-
triptyline had caused intolerable dissociative side effects of derealization 
and depersonalization. She reported that a 2004 consultation concluded that 
she was a “slow metabolizer” (enzyme unspecified) based on clinical history, 
without the aid of genetic testing. She was subsequently prescribed parox-
etine 10 mg daily, which was helpful for her anxiety, along with quetiapine 
150 mg nightly for insomnia, a combination she continued for 14 years. Ap-
proximately 8 months prior to the consultation, she initiated a slow taper 
off the paroxetine due to side effects of emotional blunting and low libido. 
Around this time, she was also diagnosed with sciatica and prescribed gaba-
pentin 900 mg/day. Two months after the paroxetine was discontinued (and 
2 months prior to the consultation), she experienced the return of intense 
anxiety and insomnia. The paroxetine was restarted, but, fearful of her “slow 
metabolizer” status, her psychiatrist began titrating her dose in 1-mg incre-
ments every 2 weeks using liquid paroxetine; she had reached 6 mg/day at 
the time of the consultation. To simplify her regimen, she had simultaneously 
been lowering her gabapentin dose down to 300 mg daily. She described her 
anxiety as daily worry, insomnia, and “feeling gripped in the chest, feeling 
quivery inside, and my scalp being tightened.” The consultant ordered phar-
macogenetic testing to inform the treatment approach. While they awaited 
the results, the consultant advised the patient to immediately increase her 
gabapentin dose to 900 mg daily, based on the clinical timeline and because 
the genetic results would not inform gabapentin dosing because of it being 
excreted unchanged by the renal system. 

Pharmacogenetic testing determined the patient to be a CYP2D6 and 
CYP2C19 intermediate metabolizer, and a normal metabolizer for other 
tested genes (Table 7–2). The increase in gabapentin resolved the patient’s 
somatic anxiety symptoms within 3 days, though worry and insomnia con-
tinued. Because she was not a poor metabolizer at CYP2D6, the primary 
enzyme responsible for paroxetine’s metabolism, and was a normal metab-
olizer at CYP3A4 and CYP1A2, paroxetine’s minor metabolic pathways, she 
was advised to increase the dose to 10 mg daily. The consultant advised her 
that the increased somatic anxiety symptoms she had been experiencing most 
likely stemmed from the lowering of gabapentin, not the slow up-titration 
of paroxetine. However, she remained fearful that a higher dose of paroxe-
tine would cause worsening anxiety and chose instead to increase it by 2-mg 
increments. In 4 weeks, the patient had reached a dose of 10 mg daily and 
remitted soon thereafter. The patient’s history of dissociative symptoms 
with amitriptyline may be explained by the patient’s reduced function at 
both CYP2C19 (the primary pathway for amitriptyline metabolism) and 
CYP2D6 (the secondary pathway). In fact, CPIC guidelines for amitripty-
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line suggest a 25% reduction of the starting dose among individuals who 
are both CYP2C19 and CYP2D6 intermediate metabolizers (Hicks et al. 
2017). 

CASE 2: MAJOR DEPRESSIVE DISORDER 
A 67-year-old man on a disability pension for osteoarthritis who lived with 
his son was admitted with major depressive disorder with anxious distress. 
He had been diagnosed with major depression 6 months prior to his admis-
sion by his primary care physician. His liver function and renal function 
were normal for his age. Trials of citalopram and escitalopram at maximum 
doses had been tried for approximately 3 weeks, with inadequate resolution 
of his symptoms, before a referral was made to a psychiatrist. He was ad-
mitted to the hospital with suicidal ideation and catatonic symptoms and re-
ceived a course of electroconvulsive therapy. His mental state improved, 
and he was changed from escitalopram to sertraline prior to discharge from 
hospital. Shortly after discharge his depressive symptoms recurred and he 
was readmitted to the hospital. At this point a pharmacogenetic test was 
performed. 

Pharmacogenetic testing showed he was a CYP2C19 rapid metabolizer 
and CYP2D6 normal metabolizer (Table 7–3). CYP2C19 is the primary en-
zyme involved in the metabolism of citalopram, escitalopram, and sertraline, 
all of which are implicated in CYP2C19 prescribing guidelines developed by 
CPIC (Hicks et al. 2015). For CYP2C19 rapid metabolizers, CPIC guide-
lines recommend using an alternative drug that is not predominantly me-
tabolized by CYP2C19 (e.g., paroxetine, fluvoxamine, venlafaxine). As a 
result, the patient was changed to paroxetine, which is predominantly me-
tabolized by CYP2D6, and the dose increased quickly to 50 mg daily. He was 
discharged from hospital 3 weeks later and remains well in the community 
with no further relapses. 

CLINICAL CONSIDERATIONS 
These cases illustrate the impact pharmacogenetic information can have on 
treatment planning and patient outcomes. Case 1 highlights how pharma-
cogenetic testing can help explain drug tolerability issues and facilitate 
shared decision-making, education, and support. This is particularly valuable 
for patients with anxiety about drug or dose changes because such anticipa-
tory effects can lead to symptom exacerbation and complicate treatment 
decisions. Case 1 also demonstrates how simultaneous drug changes can 
complicate the application of pharmacogenetics and, as such, changes in 
medications should be made sequentially rather than simultaneously, when-
ever possible. Case 2, on the other hand, highlights how pharmacogenetic 
testing can be used to elucidate potential reasons for drug therapy failure, 
while also reducing the provision of unnecessary (e.g., electroconvulsive 
therapy) and costly interventions (e.g., multiple admissions). In both cases, 
pharmacogenetic testing was performed in a reactive fashion, but it is not 
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TABLE 7–2. Pharmacogenetic test results for clinical case 1 

Gene Genotype Phenotype 

CYP2D6 

CYP2C19 

CYP2C9 

CYP1A2 

CYP3A4 

*1/*4 

*1/*2 

*1/*1 

*1B/*1C 

*1/*1 

Intermediate metabolizer 

Intermediate metabolizer 

Normal metabolizer 

Normal metabolizer 

Normal metabolizer 

difficult to imagine how both scenarios could have been mitigated or com-
pletely avoided if pharmacogenetic information was available at the com-
mencement of therapy. 

The Future of Pharmacogenetic Testing 

Pharmacogenetic testing is likely to become standard practice in psychiatry, 
assuming barriers related to the cost/reimbursement and clinical integra-
tion of testing can be resolved. Pharmacogenetic testing will continue to 
evolve and will be integrated with important clinical (e.g., renal and hepatic 
functioning), personal (e.g., age, sex), and lifestyle (e.g., smoking, diet) in-
formation as well as emerging “omic” (e.g., microbiomic, polygenic risk 
scores) factors to further enhance precision psychiatry. In the meantime, 
the clinical use of current evidence-based pharmacogenetic testing tools is 
warranted and, as shown herein, can have significant impact on the provi-
sion of psychiatric drug treatment and most importantly on the well-being 
of the individuals receiving these therapies. 

TABLE 7–3. Pharmacogenetic test results for clinical case 2 

Gene Genotype Phenotype 

CYP2D6 *2/*17 Normal metabolizer 

CYP2C19 *1/*17 Rapid metabolizer 

KEY POINTS 
• Pharmacogenetic testing aligns well with the goals of precision 

psychiatry, because it provides an approach for addressing indi-
vidual variability in drug efficacy and tolerability. 
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• The pharmacogenetic evidence base can be divided into drugs 
that affect pharmacokinetic, pharmacodynamic, and immune-
related processes, with the first category having the most evi-
dence of clinical relevance for psychiatric medications. 

• Collectively, current pharmacogenetics knowledge supports the 
use of CYP2C19, CYP2C9, CYP2D6, HLA-A, and HLA-B genetic infor-
mation to guide drug selection and dosing in psychiatry. 

• Although pharmacogenetic testing may use a gatekeeper or di-
rect-to-consumer model, the general consensus is that the in-
volvement of a health care provider is essential for proper 
interpretation and implementation of pharmacogenetic testing 
results. 

• Preemptive pharmacogenetic testing would likely have the 
greatest impact, but given that this approach has not been tested, 
point-of-care and reactive approaches are currently favored, 
with the latter being the most utilized approach in psychiatry. 
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illnesses, with over 16 million Americans experiencing a depressive episode 
each year (Substance Abuse and Mental Health Services Administration 
2013). MDD is highly recurrent, with approximately three out of four de-
pressed individuals experiencing more than one depressive episode (Boland 
and Keller 2010; Kessler and Wang 2010; Wittchen et al. 2000). It is also 
difficult to treat, with only one out of three patients having their depression 
remit after initial treatment (Trivedi et al. 2006; Westen and Morrison 
2001), and those in primary care having an even lower remission rate (one 
out of four) (Vuorilehto et al. 2009). 

Understanding the biological mechanisms that underlie depressive patho-
physiology and comprehending how treatments may influence these mech-
anisms are key topics for MDD research because they show promise for 
guiding the development and selection of interventions for improved clin-
ical outcomes. Toward this goal, there has been a growing interest in 
understanding neural features that predict treatment outcome. The over-
arching goals of this chapter are to 1) highlight one of the most promising 
biological predictors of treatment outcome for MDD (pretreatment activ-
ity of the rostral anterior cingulate cortex [rACC]); 2) emphasize lim-
itations in the current MDD treatment biomarker literature, including 
difficulties in predicting treatment-specific outcomes, the practicality of us-
ing neural biomarkers in clinical practice, and methodological concerns 
(e.g., small sample size) that have prevented clinical adoption; and 3) pro-
vide an overview of what we believe are promising future directions for 
brain-based prediction of treatment outcomes for MDD. 

Current Knowledge and Approaches 

ROSTRAL ANTERIOR CINGULATE CORTEX AND THE 
PREDICTION OF MDD TREATMENT RESPONSE 
Individual studies have identified a number of clinical and demographic vari-
ables that predict relatively worse outcomes from pharmacological and behav-
ioral treatments. These predictors include comorbid psychiatric illness 
(Carter et al. 2012), general medical conditions (Trivedi et al. 2006), higher 
levels of depressive symptoms (Trivedi et al. 2006), chronicity of depressive 
episodes (Souery et al. 2007), anxious depression (Fava et al. 2008), female 
gender (Trivedi et al. 2006), older age (Fournier et al. 2009), lower socioeco-
nomic status (Jakubovski and Bloch 2014), non-Caucasian race (Trivedi et 
al. 2006), and less education (Trivedi et al. 2006). Major limitations of these 
predictors include the failure to replicate in subsequent studies and the limited 
information these predictors provide regarding the mechanisms of treatment 



      

 
  

  

  
  

 
 

  
  

 

  

  
 

  

 

  

 

 
  

 

 
 

  

   
   

Treatment Prediction Biomarkers for Major Depressive Disorder 135 

response (Pizzagalli et al. 2018). Given these limitations, considerable re-
search has focused on biological markers of treatment response. 

A particularly promising marker of treatment outcome for MDD is base-
line (pretreatment) activity levels within the rostral (i.e., pregenual) ACC (in-
cluding Brodmann areas 24 and 32). Results from the first study of this 
marker were published in 1997 and showed that greater baseline (i.e., be-
fore pharmacological treatment) activity (as assessed using resting glucose 
metabolism via PET) within the rACC predicted better MDD treatment 
outcome (Mayberg et al. 1997). This finding has subsequently been repli-
cated across assessment methods, including additional studies that used 
PET and studies that used single-photon emission computed tomography, 
source-localized electroencephalography (EEG), or functional MRI (fMRI). 
Moreover, this marker was found to predict treatment outcome across a 
range of treatment modalities for MDD, including antidepressant medica-
tion/pharmacology (e.g., selective serotonin reuptake inhibitors [SSRIs], 
atypical antidepressants, and ketamine), placebo, sleep deprivation, and brain 
stimulation, including transcranial magnetic stimulation (TMS) (Korb et 
al. 2011; Pizzagalli 2011; Sikora et al. 2016). While there have been failures 
to replicate this finding (e.g., Arns et al. 2015; Brody et al. 1999; Little et 
al. 2005; Teneback et al. 1999) and even reversed findings (predicting re-
sponse from electroconvulsive therapy [McCormick et al. 2007] and cogni-
tive-behavioral therapy [Konarski et al. 2009; Siegle et al. 2006]), further 
evidence for the robustness of using pretreatment rACC activity for treat-
ment prediction stems from a quantitative meta-analysis of 23 studies which 
found that this effect was replicated 19 times, with a weighted effect size 
(Cohen’s d) of 0.918 (Pizzagalli 2011). Moreover, a recent multisite study 
provided an additional replication of a link between increased pretreatment 
rACC activity and better treatment response, while addressing several lim-
itations of prior studies, including small sample size. Specifically, by assess-
ing 248 depressed outpatients from the Establishing Moderators and 
Biosignatures of Antidepressant Response for Clinical Care (EMBARC) 
study, we showed that rACC activity predicted response to an 8-week ad-
ministration of sertraline or placebo even when controlling for clinical and 
demographic variables previously linked to treatment outcome. This pro-
vides evidence of the incremental predictive validity of rACC activity in a 
well-characterized large sample (Pizzagalli et al. 2018). 

Despite robust evidence that rACC activity predicts outcome to antide-
pressant therapies, the mechanisms that underlie this predictive relationship 
are currently unknown. On the basis of a substantial literature that impli-
cates 1) frontocingulate dysfunction in MDD and 2) the rACC as a core 
hub within the default mode brain system (Buckner et al. 2008), we have pre-
viously theorized that the predictive relationship between rACC activity 
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and improved clinical response may be related to adaptive self-referential 
processing and improved cognitive control capacities that are related to the 
modulation of the default mode brain system (Pizzagalli 2011; Pizzagalli et 
al. 2018). Although speculative, based on evidence that the rACC is in-
volved in inhibiting negative information (Eugène et al. 2010), emotion-
related amygdalar activity (Etkin et al. 2006), and emotional biases (Blair et 
al. 2013), reduced resting rACC activity may index disrupted interplay be-
tween the default mode network and frontally mediated cognitive control 
networks; such disruption might underlie depression-related cognitive 
processes, including chronic repetitive negative self-referential thought 
(i.e., depressive rumination) and impaired ability to modulate negative emo-
tions and attentional control (Pizzagalli 2011). 

Taken together, there is considerable evidence indicating that pretreat-
ment rACC activity, measured in a variety of ways, predicts outcomes across 
a range of treatment modalities. Although not treatment specific, rACC activ-
ity may still prove useful in clinical contexts. For example, one study found that 
pretreatment rACC activity can be enhanced via cognitive training, which in 
turn improves antidepressant response to TMS (Li et al. 2014). While prom-
ising, further research is necessary to definitively understand the mechanistic 
role of rACC activity in MDD and in predicting treatment response. 

LIMITATIONS OF BRAIN-BASED TREATMENT 
PREDICTION FOR MDD 
Pretreatment predictors of outcome can be classified as either “prognostic” 
or “prescriptive” predictors (the latter are also known as moderators) (Cohen 
and DeRubeis 2018). Prognostic predictors refer to a main effect of a pre-
dictor variable on treatment outcome. For example, in the EMBARC study 
described earlier, higher levels of resting rACC theta current density pre-
dicted greater depressive symptom improvement across treatment condi-
tions (Pizzagalli et al. 2018). That is, there was a main effect of rACC theta 
power on outcome, but no treatment group–by–rACC theta interaction. In 
addition, studies have found that higher levels of rACC theta activity pre-
dict better treatment outcome with a variety of interventions (e.g., SSRI, 
sleep deprivation, and TMS). This further suggests that rACC activity is a 
general (treatment nonspecific) marker of depression prognosis. 

In contrast, a pretreatment variable is considered to be a prescriptive pre-
dictor if levels of that variable moderate treatment group differences in a 
clinical outcome (i.e., a significant treatment group–by–pretreatment vari-
able interaction). Thus, prescriptive variables are more informative for 
treatment selection than are prognostic variables (but see Lorenzo-Luaces et 
al. 2017). To date, several studies (albeit often using small samples) have 
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provided initial evidence for prescriptive predictors, including behavioral 
(word fluency; Bruder et al. 2014), electrophysiological (loudness-
dependent auditory-evoked potential; Juckel et al. 2007), and neuroimag-
ing (glucose metabolism in the insula; McGrath et al. 2013) variables. 
While promising, it will be necessary to replicate and extend these findings 
before we integrate any of these behavioral, EEG, or neuroimaging markers 
into clinical care for the purpose of informing treatment selection for de-
pressed patients. 

Given their associated costs and assessment burden, it will be important 
to carefully consider the benefit of neuroimaging and/or electrophysiological 
approaches in real-world clinics. Moreover, additional studies are needed 
to demonstrate that a given neuroimaging or electrophysiological variable 
predicts treatment response over the contribution of much less expensive 
and more easily administered self-report and clinician-administered mea-
sures (e.g., clinical and demographic characteristics) (Kessler et al. 2017). It 
is also important to highlight that any single predictor variable may only 
account for a small amount of outcome variance (Pizzagalli et al. 2018). In 
this context, multivariable machine learning approaches can be used to in-
corporate large numbers of baseline variables to model predictive rela-
tionships to clinical outcomes. Indeed, several studies have used machine 
learning to model complex relationships among multivariate sets of pre-
scriptive predictors for the purpose of informing optimal treatment selec-
tion (see, e.g., Cohen et al. 2020; DeRubeis et al. 2014; Huibers et al. 2015; 
Webb et al. 2019). 

Sample size is another important consideration in treatment prediction. 
For example, a recent simulation study provided evidence that the sample 
size required for adequately powered tests of prescriptive predictors of de-
pression treatment response is substantially larger than those of most pub-
lished studies (i.e., >300 per treatment group) (Luedtke et al. 2019). It may 
be possible to increase sample size by pooling data across studies if there is 
sufficient overlap in predictor and outcome variables. An alternative study 
design is to leverage naturalistic (i.e., observational) treatment data sets, 
which may provide substantially larger sample sizes than those in random-
ized controlled trials (RCTs). In this context, naturalistic data sets must in-
clude sufficient baseline assessments of predictors in addition to relevant 
outcome measures. A major challenge associated with observational data 
sets is that patients are not randomly assigned to treatment conditions, as 
they are in RCTs. As a result, treatment groups may differ in baseline patient 
characteristics. Statistical approaches can be used to address this limitation 
by balancing treatment groups; for example, by using propensity score 
matching or weighting approaches (Hirshberg and Zubizarreta 2017; see 
Kessler et al. 2019). 
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Conclusion and Future Directions 

MDD is associated with substantial personal and societal burden (Greenberg 
et al. 2015), and while there are a variety of treatment options, including 
pharmacological, psychological, and neurostimulation interventions, there 
are currently no empirically validated approaches for selecting the optimal 
treatment for individual depressed patients. Instead, treatment selection con-
tinues to be largely based on a trial-and-error approach, which typically in-
troduces significant delays in the identification of effective treatments, is 
often associated with inadequately addressed symptoms (including increased 
suicidal behaviors), and may contribute to treatment dropout. In this context, 
the goals of the current chapter were to highlight the promise of neuroimag-
ing-based treatment prediction for MDD and to note several limitations in 
the current literature, including the limited applicability of biomarkers for 
predicting which specific treatment is best suited for a given individual, the 
practicality of brain-based clinical approaches, and methodological consider-
ations (e.g., small sample sizes leading to underpowered tests). 

Before we can effectively integrate the neuroscience of MDD into clinical 
practice, it will be necessary to develop new approaches that enable the fur-
ther incorporation of patient-specific information, which can ultimately be 
used for patient-specific clinical inference. Toward this objective, several ap-
proaches have been gaining momentum in the literature and promise to in-
form patient-specific psychiatry. For example, as mentioned above, machine 
learning methods may provide computational leverage by utilizing multiple 
complex sets of variables to make clinical inferences about specific patients. A 
growing literature shows that neuroimaging data can be used to differentiate 
depressed from healthy individuals (e.g., Fu et al. 2008; Mwangi et al. 2012; 
Sacchet et al. 2015a, 2015b; for review, see Kambeitz et al. 2017), and a sim-
ilarly promising albeit smaller set of studies provide evidence that machine 
learning approaches may be useful for treatment prediction (Lee et al. 2018). 
Recent developments in human brain mapping that provide unprecedented 
person-specific information may also be useful for the clinical prediction of 
treatment outcomes in MDD. For example, several methods have been devel-
oped that enable the characterization of fMRI-based large-scale functional 
brain systems at the person-specific level (e.g., Gordon et al. 2017; Wang et 
al. 2015). Normative approaches are another new set of methodologies that 
promise to inform the advancement of empirical treatment prediction. In this 
context, Dr. Andre Marquand and colleagues have recently pioneered a nor-
mative method for the statistically meaningful brain mapping of person-
specific features related to psychopathology (Marquand et al. 2016; Wolfers 
et al. 2018). Such approaches promise to unite patient-specific brain mapping 
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and behavior with treatment selection. Finally, recent developments in “deep 
phenotyping” (including highly repeated assessments of single individuals) 
may prove useful for the development of person-specific treatment prediction 
in psychopathology (Fisher and Boswell 2016; Poldrack et al. 2015). 

In conclusion, while brain-based treatment prediction for MDD requires 
further research, the continued development of increasingly advanced and 
nuanced brain-based treatment selection shows promise for improving clin-
ical outcomes for the treatment of this burdensome condition. 

KEY POINTS 
• Major depressive disorder (MDD), among the most common of all 

mental disorders, is particularly difficult to treat, with only one-
third of patients remitting after initial treatment. Thus, elucidating 
the neural mechanisms underlying depression is essential in order 
to guide improved development and selection of interventions. 

• One of the most promising biological predictors of treatment 
outcome for MDD is pretreatment activity of the rostral anterior 
cingulate cortex, measured in numerous ways (e.g., functional 
MRI, source-localized electroencephalography) across various 
treatment modalities (e.g., selective serotonin reuptake inhibi-
tors, transcranial magnetic stimulation, ketamine). However, the 
precise mechanisms that underlie this relationship are unknown. 

• Limitations of MDD treatment biomarker literature includes nu-
merous challenges related to the ability to predict which specific 
treatment is best suited for each individual, the feasibility of us-
ing neural biomarkers in clinical practice, the need for evidence 
to show that neural biomarkers better predict treatment re-
sponse compared with less expensive measures, and method-
ological concerns (e.g., sample size). 

• Future directions include developing novel approaches, includ-
ing machine learning methods that may better help incorporate 
patient-specific information, in addition to the use of “deep phe-
notyping” for the development of person-specific treatment pre-
diction in psychiatric illness. 
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History 

Trauma and stress-related disorders remain a major public health burden 
that contributes to severe emotional, social, and financial burdens for vic-
tims and their families. In particular, PTSD affects approximately 8% of 
the U.S. population (Kessler et al. 2005) and is accompanied by function-
ally debilitating symptoms that include intrusions (e.g., nightmares), avoid-
ance of trauma-related stimuli, negative alterations in cognition and mood 
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(e.g., guilt, shame), and hyperarousal (e.g., exaggerated startle) (American 
Psychiatric Association 2013). The symptoms observed in PTSD are 
thought to be associated with dysregulated fear- and threat-related neural 
circuitry. Along with great advances in the neuroscience of fear and threat 
processing, the past several decades have seen a proliferation of research on 
the neurobiological underpinnings of PTSD. 

Neurobiological investigations of PTSD have predominantly focused 
on neural circuitry that underlies threat learning and memory processes, 
and have fostered an important translational bridge between the basic un-
derstanding of threat-related circuitry and the clinical phenomenology of 
the disorder. Together, the prior work has implicated specific neural targets 
that may be prime candidates for precise translational therapeutics for mod-
ulating the dysfunctional threat circuitry in PTSD. Here, we discuss the ba-
sics of fear/threat learning processes that are important for modeling PTSD 
symptoms in both human and animal research. Further, we provide an 
overview of advances in our understanding of the neurobiological circuitry 
at the systems and molecular levels that are relevant to fear and PTSD. We 
then discuss current candidates for translational therapeutic approaches 
that bridge genetic, epigenetic, and intermediate biological phenotype ap-
proaches for PTSD and other trauma-related disorders. 

Current Knowledge and Approaches 

ADAPTIVE THREAT PROCESSING AND 
DYSFUNCTION IN PTSD 

Pavlovian Threat Conditioning 
PTSD symptoms are conceptualized as disruptions in natural learning pro-
cesses that underlie fear and threat-related behaviors. Thus, to study individ-
uals who have the disorder, PTSD researchers have often utilized Pavlovian 
threat conditioning, a behavioral paradigm in which individuals form a 
learned threat association. We note here a distinction between the tradi-
tional use of “fear” (i.e., the subjective sense of danger or harm) and the 
current use of “threat” (i.e., biobehavioral responses and circuitry activated 
in response to a stimulus) in the context of conditioning (LeDoux and Pine 
2016). In this chapter, we refer to “threat” to describe the methodological 
processes and operationalized measures across humans and animals related 
to conditioned responses, and we use “fear” to describe the underlying cog-
nitive-affective processes thought to be involved in PTSD. Threat acquisition 
is the successful development of an associative memory between a previously 
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neutral cue and an external threat (i.e., learning of the cue-threat associa-
tion). During threat acquisition, a previously innocuous stimulus (condi-
tioned stimulus; CS) is paired with a biologically salient and aversive stimulus 
(unconditioned stimulus; UCS) that elicits an innate, reflexive response (un-
conditioned response; UCR). The associative memory is evidenced by ex-
pression of an anticipatory threat response to the CS (conditioned response; 
CR). Threat expression refers to the physical manifestations of the CR. 

In humans, threat expression is indexed and quantified most typically 
by sympathetic activation of the autonomic nervous system. This includes 
skin conductance responses (i.e., change in sweat excretion in the palms), 
startle responses as seen in electromyography, and changes in heart rate in 
response to the CS (Lipp et al. 1994; Öhman and Soares 1993; Peri et al. 
2000). Threat expression in response to the CS (i.e., the CR) is thought to 
reflect a preparatory, defensive mechanism that serves to diminish the magni-
tude of the subsequent UCR (Baxter 1966; Goodman et al. 2018; Wood et 
al. 2012). Although threat processing is used as a probe to understand PTSD 
circuitry, it should be stressed that the formation and expression of associa-
tive threat memories are normal and adaptive aspects of healthy function. 

Once the CS and UCS are no longer paired, a threat response is no lon-
ger adaptive and in healthy physiology, one begins to suppress the CR to 
the CS (i.e., threat extinction). Following repeated presentations of the CS 
without the UCS, a separate, inhibitory extinction memory is formed which 
suppresses the previously learned threat memory (Bouton 1993; Craske et 
al. 2014). Thus, the prior cue no longer elicits the defensive response as no 
threat is likely to occur. However, the initial threat memory is not unlearned 
or forgotten, per se, but rather it is suppressed by the new context-depen-
dent extinction or “safety” memory. The original threat memory can be 
subsequently re-expressed by re-exposure to the UCS following extinction 
within the extinction context (i.e., threat reinstatement) or if the CS is pre-
sented in the original acquisition context (i.e., threat renewal). Thus, threat 
memories can be suppressed in safe contexts (i.e., during extinction) but are 
available when the danger may be more likely to reoccur. 

Threat Learning Deficits in PTSD 
Prior PTSD research has identified alterations in Pavlovian threat learning 
processes. While there can be important individual differences, in general, 
those with PTSD are able to acquire threat memories to danger cues and 
form extinction memories as do non-PTSD control participants (Diener et 
al. 2016; Garfinkel et al. 2014; Milad et al. 2009; Peri et al. 2000; Rabinak 
et al. 2017). However, individuals with PTSD display disruptions in these 
processes, in which threat expression during acquisition and extinction is 
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greater than that seen in control subjects (Fani et al. 2012; Norrholm et al. 
2011; Peri et al. 2000). Thus, individuals with PTSD appear to form stron-
ger fear memories compared with control subjects. 

Additionally, individuals with PTSD show a diminished ability to differ-
entiate a CS that predicts a subsequent UCS presentation (i.e., a danger cue) 
from a non-UCS-related stimulus (i.e., a safety cue), such that the threat 
memory is expressed in response to non-threat-related stimuli (Jovanovic 
et al. 2009, 2010; Rabinak et al. 2017). These individuals show evidence of 
threat generalization, in which the learned threat association is inappropri-
ately expressed in response to neutral or safe stimuli. Thus, individuals with 
PTSD have difficulty in differentiating danger-related stimuli from safety-
related stimuli. In addition, although those with PTSD can sometimes suc-
cessfully form an initial extinction memory, they often show difficulty in re-
calling the extinction memory in the nonthreatening context (i.e., reduced 
extinction recall) (Milad et al. 2008, 2009; Rougemont-Bücking et al. 
2011). Further, these individuals show greater levels of threat renewal than 
do those without PTSD (Garfinkel et al. 2014). Therefore, although the 
extinction memory is formed in those with PTSD, it does not sufficiently 
inhibit the originally acquired fear memory. 

TRANSLATIONAL INSIGHTS INTO THE NEURAL 
CIRCUITRY OF FEAR AND THREAT 

Neurobiology of Threat Learning 
Pavlovian threat conditioning is a highly translational model that allows for 
investigation of fear and PTSD-related phenomena at multiple transla-
tional levels (Figure 9–1). Pavlovian threat conditioning processes are sup-
ported by a core network of brain regions centered on the prefrontal cortex 
(PFC), hippocampus, and amygdala that are integral to threat learning and 
expression. Research in both animals and humans demonstrates that the 
amygdala is the central site of CS-UCS convergence and is critical for the 
formation of threat memories (Hitchcock and Davis 1986; Knight et al. 
1999; LaBar et al. 1998; LeDoux et al. 1988, 1990). Specifically, sensory in-
formation about the CS and UCS is sent through the sensory cortices and 
thalamus to the basolateral nucleus of the amygdala (BLA), which encodes 
the CS-UCS association. The association is then sent to the central nucleus 
of the amygdala (CeA) to elicit threat memory expression via downstream 
projections to the autonomic nervous system (LeDoux et al. 1988, 1990; 
Romanski and LeDoux 1992, 1993). Further work in animals and humans 
suggests that the hippocampus augments the threat memory by supporting 
context-related processing such as information about the environment and 
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Figure 9–1. Schematic overview of translational levels for understanding fear and threat. 
To view this figure in color, see Plate 5 in Color Gallery. 
(A) Behavioral correlates of the conditioned response (CR) and unconditioned response (UCR) can be probed through physiological recording. (B) Neural sub-
strates that support fear and threat conditioning may be probed through both functional (to index neural activity) and structural (to index gray and white matter 
morphology) brain imaging. (C) Cell and molecular approaches allow for investigation of specific microcircuits, such as those within the amygdala, that support 
threat conditioning processes. (D) Insights from both genomic and epigenomic approaches can identify individual risk factors and potential physiological pathways 
that can modulate fear and threat processing. BLA=basolateral nucleus of the amygdala; CeL=lateral central amygdala; CeM=centromedial amygdala; 
CS=conditioned stimulus; fMRI=functional MRI; HPA=hypothalamic-pituitary-adrenal; ITCs=intercalated cells; SNP=single nucleotide polymorphism; 
UCS=unconditioned stimulus. 
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the timing of the CS and UCS (Czerniawski et al. 2012; Harnett et al. 2016; 
Selden et al. 1991). In addition, human cognitive neuroscience research 
suggests that components of the PFC, particularly the medial PFC (mPFC), 
play a key role in learning and memory processes. The dorsomedial PFC 
supports threat detection and monitoring processes, and upregulates CeA 
activation to enhance the fear response (Carter and van Veen 2007; Li and 
McNally 2014; Milad et al. 2007a; Wood et al. 2012). 

Conversely, human neuroscience research demonstrates that the ventro-
medial PFC is critical for suppression of the threat response via inhibitory pro-
jections to the amygdala (Motzkin et al. 2015; Urry et al. 2006). 
Ventromedial PFC and hippocampal activation appear to be necessary to form 
the inhibitory extinction memory specific to the present context (Milad et al. 
2007b). Specifically, the magnitude of ventromedial PFC and hippocampal ac-
tivation, and the functional synchrony between these regions, are tied to the 
strength of the threat extinction memory (Kalisch et al. 2006; Milad et al. 
2007b). Importantly, the brain regions that mediate threat acquisition also ap-
pear to underlie the generalization of the threat memory to different stimuli 
(Dunsmoor et al. 2011; Lissek et al. 2014). Further, prior work demonstrates 
that stress exposure potentiates threat generalization processes, and that dis-
rupted neural activity may play a role in threat generalization in PTSD (Dun-
smoor et al. 2017; Harnett et al. 2018; Kaczkurkin et al. 2017). Together, 
the extant literature suggests that Pavlovian threat conditioning processes are 
primarily supported by a PFC-hippocampus-amygdala network. 

Human Neuroscience and PTSD 
Prior work suggests that the neural circuitry that supports Pavlovian threat 
conditioning processes is altered in individuals with PTSD. Meta-analyses 
have consistently demonstrated heightened activation of the amygdala and 
dorsomedial PFC, and reduced activation of the ventromedial PFC, in 
those with PTSD compared with non-PTSD control subjects (Etkin and 
Wager 2007; Hayes et al. 2012; Patel et al. 2012). Several neuroimaging 
studies that utilized Pavlovian threat conditioning procedures in PTSD 
have demonstrated that these alterations in activity are related to disrupted 
threat learning processes. For example, individuals with PTSD show greater 
amygdala activation during threat acquisition compared with non-PTSD 
control subjects (Bremner et al. 2005). Additionally, individuals with 
PTSD show altered ventromedial PFC, hippocampal, and amygdala acti-
vation during threat memory extinction and extinction recall (Milad et al. 
2009; Rougemont-Bücking et al. 2011). 

The structural morphology of this neural circuit is also altered in 
PTSD. Early MRI studies of hippocampal morphology in PTSD noted re-
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duced hippocampal volume in PTSD patients (Bremner et al. 1995, 1997). 
These findings have since been replicated in a recent, large-scale meta-
analysis of structural MRI data (Logue et al. 2018). In addition, the cortical 
morphology of the PFC is different in PTSD, such that those with PTSD 
show reduced volume of the dorsomedial PFC and reduced thickness of the 
ventromedial PFC compared with non-PTSD control subjects (Bing et al. 
2013; Bryant et al. 2008; Herringa et al. 2012; Li et al. 2014; Wrocklage et 
al. 2017). Several studies have also noted reductions in amygdala volume in 
individuals with and without PTSD who are exposed to trauma (Ganzel et 
al. 2008; Morey et al. 2012). Interestingly, reductions of amygdala volume 
in trauma-exposed individuals co-occur with heightened amygdala activa-
tions (Ganzel et al. 2008). 

Further, differences in the white matter pathways that interconnect the 
PFC, hippocampus, and amygdala have also been observed such that the mi-
crostructure of the cingulum bundle, uncinate fasciculus, and fornix/stria 
terminalis have all been found to vary with PTSD symptom expression 
(Fani et al. 2016; Harnett et al. 2020; Olson et al. 2017; Sanjuan et al. 2013). 
Together, this research demonstrates that the PFC, hippocampus, and amyg-
dala have clear roles in the pathology of PTSD. 

CELLULAR, MOLECULAR, AND GENETIC MECHANISMS 
OF FEAR AND PTSD 

Specific Cell Populations Within the Amygdala 
Pavlovian threat conditioning research in animals has contributed to a rap-
idly growing understanding of cellular and molecular processes that under-
lie threat memories and hold relevance for PTSD. In particular, given its 
prominent role in the threat learning processes and dysfunction observed 
in PTSD, cellular characterization of the amygdala has received a great deal 
of attention and has led to the identification of cell-specific mechanisms of 
threat processes. Although the amygdala is composed of several nuclei, its 
principal subdivisions are the BLA and the CeA. The acquisition of threat 
memories is supported by local microcircuits within the BLA. Prior work 
has demonstrated that parvalbumin (PV) and somatostatin (SOM) GABA-
ergic interneurons within the BLA bidirectionally gate threat learning, such 
that PV neuron activation during CS presentations and SOM activation 
during UCS presentations facilitate the formation of threat memories (Wolff 
et al. 2014). 

In addition to its role in threat acquisition, the BLA is also important 
for the formation of extinction memories. Specifically, activation of Thy1-
expressing pyramidal neurons in the BLA during extinction training con-
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tributes to greater threat memory extinction (Ciocchi et al. 2010; Herry et 
al. 2008; McCullough et al. 2018; Wolff et al. 2014). Neurons within the 
CeA regulate the expression of threat memories through downstream pro-
jections to subcortical and brain stem pathways, which in turn mediate the 
behavioral and physiological effectors of threat responses. The CeA appears 
to be gated by protein kinase C, delta-type neurons that inhibit output neu-
rons of the CeA, which are themselves inhibited by SOM-expressing neurons 
(for review, see Fenster et al. 2018; Gafford and Ressler 2016). Corticotro-
pin-releasing hormone (CRH)–expressing neurons within the medial CeA 
appear to support the expression of acquired threat memories, while CRH 
neurons within the lateral CeA appear to support threat memory extinction 
(Gafford and Ressler 2016; Gafford et al. 2012). Intercalated cells (ITCs) 
outside of the BLA and CeA have been found to inhibit CeA output neurons, 
and these ITCs receive input from sensory cortices and the BLA, which sug-
gests another mechanism for extinction memory expression (Amano et al. 
2010; Paré and Smith 1993). 

Together, these cells within the amygdala form specific microcircuits that 
regulate the acquisition, expression, and extinction of threat memories. In 
particular, these specific microcircuits appear to support “fear on” and “fear 
off” aspects of amygdala function (Ciocchi et al. 2010; Haubensak et al. 
2010; Herry et al. 2008). Critically, knowledge of these cell circuits can 
contribute to the targeting of specific cells for the modulation of threat-re-
lated behaviors. Given that prior work has demonstrated that behavior is 
changed by selective activation or inhibition of specific cells within the 
amygdala (Herry et al. 2008; Wolff et al. 2014), these microcircuits may be 
ideal pharmacological targets for the translational treatment of dysfunctional 
fear processes in humans. 

Large-Scale Genetic Approaches to PTSD 
In addition to the identification of cell-specific circuitry, recent studies have 
uncovered potential genetic and epigenetic mechanisms that are related to 
threat learning and PTSD. New technology has led to the development of 
genome-wide association studies (GWASs) that leverage large databases of 
genetic information from individuals to identify genetic loci that are asso-
ciated with psychiatric disease. Several, likely underpowered, studies that 
examined GWAS approaches to PTSD have implicated several genes in the 
early development of large-scale PTSD genetics studies (Almli et al. 2015; 
Duncan et al. 2018; Kilaru et al. 2016; Logue et al. 2013; Stein et al. 2016; 
Wolf et al. 2014; Xie et al. 2013). A more recent gene-based GWAS found 
that neuroligin-1, a protein involved in the formation of neuron synapses, 
is involved in PTSD symptomatology (Almli et al. 2015; Kilaru et al. 2016). 
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PTSD-risk single nucleotide polymorphisms for these and other identified 
polymorphisms have been associated with altered neural activity in key 
threat learning regions such as the amygdala and dorsomedial PFC. 

Findings from the largest GWAS of PTSD completed to date, incorpo-
rating data from 20,730 individuals, have been reported (Duncan et al. 
2018). Although the GWAS did not replicate prior studies of risk alleles, it 
did find PTSD to be moderately heritable and to share significant genetic 
overlap with other psychiatric disorders (particularly schizophrenia). Inter-
estingly, the heritability of PTSD appears to be much greater in females 
compared with males, which suggests important sex differences that should 
be considered when researching the neurobiological underpinnings of the 
disorder. Of note, recent GWASs of PTSD have not yet identified specific 
genetic loci across large, diverse populations. The lack of single genetic tar-
gets in PTSD from GWAS results may be partially due to the sheer number 
of genetic targets being tested, or to potential compound effects from some 
loci across different ancestries. However, based on findings of other very 
large-scale GWASs (e.g., schizophrenia, depression), it is expected that the 
expanded multisite consortia will deliver GWAS findings that are robust to 
ancestry and trauma type. 

The Epigenome and PTSD 
Gene expression, which is directly regulated by epigenetic processes, is im-
portant for threat learning and PTSD. Epigenetic regulation refers to molec-
ular mechanisms that modify DNA properties without changing the 
underlying DNA sequence. Prior work has demonstrated that threat learn-
ing processes are dependent upon histone modification and DNA methyl-
ation of multiple genes related to learning, memory, and the function of 
cells in the amygdala, hippocampus and PFC. For example, the consolida-
tion of threat memories is partially dependent on the epigenetic regulation 
of gene expression for proteins involved in neural plasticity such as brain-
derived neurotrophic factor (Bredy et al. 2007; Lubin et al. 2008). A wealth 
of research has recently come to light on the epigenetic regulation of an-
other protein that appears to be important for PTSD. Specifically, FK506 
binding protein 51 (FKBP5) modulates glucocorticoid receptor sensitivity. 
As glucocorticoids are released as part of the stress response, FKBP5 is up-
regulated, and within the cell, FKBP5 suppresses glucocorticoid receptor 
translocation to the nucleus, thus diminishing the glucocorticoid receptor 
feedback (for review, see Binder 2009). Prior human studies have noted that 
adults with varying histories of childhood trauma show marked differences 
in expression of the FKBP5 gene (FKBP5) as adults (Klengel et al. 2013). 
Single-nucleotide polymorphisms that regulate FKBP5 expression and 
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DNA methylation have been associated with functional and structural 
brain differences in those with PTSD (Fani et al. 2013, 2016). Further, it 
has recently been suggested that epigenetic modulation of FKBP5 is altered 
in parent-to-child transmission of risk, possibly related to the intergenera-
tional epigenetic transmission of heritability for PTSD risk (Yehuda et al. 
2016). Together, these findings suggest that there may be specific molecu-
lar targets that underscore susceptibility to PTSD and that these may be 
different across individuals, which necessitates a precision medicine approach 
to treatment stratification. 

STRENGTHS AND LIMITATIONS OF 
PAVLOVIAN MODELING 

Strengths 
Pavlovian threat conditioning has served as a quantitative, robust, and repro-
ducible approach to understanding individual differences in the physiology 
of PTSD because of the replicable findings of altered threat processing 
among those with PTSD compared with control subjects (e.g., extinction 
deficits). Another major strength of Pavlovian conditioning in PTSD is its 
immediate translational applicability. Associative learning is an important 
aspect of survival and is preserved across much of the animal kingdom. Pav-
lovian threat conditioning can thus be performed in multiple species and 
enables the investigation of PTSD-related phenomena that are not possible 
in humans (e.g., optogenetics) in order to understand the molecular under-
pinnings of threat-related processes. The translational nature of Pavlovian 
threat conditioning thus suggests that it may be an important tool for facil-
itating PTSD treatment and precision medicine approaches. It should also 
be noted that Pavlovian threat conditioning procedures are inherently of 
only minor discomfort to humans, are well tolerated, and can be completed 
with minimally aversive stimuli such as mild shocks, white-noise bursts, or 
short air-blasts. Thus, Pavlovian threat conditioning has several important 
strengths for modeling dysfunctional fear processes in PTSD. 

Limitations 
Despite the advantages of Pavlovian conditioning models of PTSD, there 
are several limitations that should be understood (Grupe and Heller 2016). 
Although threat learning is well preserved across species, there is signifi-
cant individual variability in the acquisition, expression, and extinction of 
threat memories. For example, although the amygdala is known to be crit-
ical for threat learning, some healthy individuals may not show significant 
amygdala activation despite learning a threat association. A recent meta-
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analysis of threat learning studies in humans did not find significant amyg-
dala activation, partially because of such variability (Fullana et al. 2016). In 
fact, recent research suggests that reduced amygdala activation is not nec-
essarily a sign of an unacquired threat association, but may only reflect the 
lack of conditioned or unconditioned skin conductance responses (Marin 
et al. 2020). Thus, although multiple levels of investigation are available in 
threat conditioning (e.g., physiology, neural), the individual variability in 
these measures make it difficult to determine the most efficient level to fo-
cus on for precision medicine. Therefore, the lack of robust brain region 
activations or psychophysiological responses during threat learning may be 
a hindrance for developing generalizable neurophysiological biomarkers of 
PTSD. Other tasks, such as passive viewing of fearful faces, robustly acti-
vate the amygdala in both healthy individuals and those with PTSD (Hariri 
et al. 2003; Stevens et al. 2013). However, the individual variability in fear 
processing may also be associated with meaningful differences in individual 
pathophysiology. Understanding individual differences in fear processing 
will likely be crucial for the development of the next level of precision med-
icine in trauma- and stress-related disorders. 

Another important consideration is that trauma-related disorders, such 
as PTSD, involve much more than disrupted fear processes. Individuals 
with PTSD also show reductions in positive affect, greater negative affect, 
disrupted social cognition, guilt and shame, and self-referential processing. 
Although traditional Pavlovian threat conditioning excels at testing certain 
aspects of PTSD pathology, other paradigms and procedures may better 
capture the neurobiology that mediates disruption in these other processes. 
Therefore, future research should more carefully explore these other ap-
proaches, as well as consider methods to expand on typical fear research 
methods to capture other aspects of PTSD phenomenology. 

Future Directions 
Currently, standard treatment approaches in PTSD include pharmacother-
apy and trauma-focused cognitive-behavioral therapies that have achieved 
moderate success in diminishing PTSD symptoms for some individuals 
(Hoskins et al. 2015; Steenkamp et al. 2015). However, these treatments 
are not effective for all individuals, in part because of individual variability 
in fear- and threat-related processing. The development of personalized, 
precision medicine techniques will be necessary to effectively treat patients 
and reduce the public health burden of PTSD. Given the burgeoning re-
search on the neurobiology of dysfunctional fear processing in PTSD, there 
are several potential avenues that may provide for effective prediction and 
treatment tools. 
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EARLY IDENTIFICATION AND PREDICTION 
Individual variability in fear processing and treatment response suggests 
that PTSD may be composed of biological subtypes that are more or less 
responsive to different approaches. Recent work suggests that individual 
variability in PTSD risk can be identified early after trauma exposure. Sev-
eral studies have identified psychophysiological (Hinrichs et al. 2017, 
2019), brain function (Harnett et al. 2018; Stevens et al. 2017; van Rooij et 
al. 2018), and brain structure (Harnett et al. 2020) markers of PTSD risk 
in the early aftermath of trauma exposure. In addition to the prior research, 
ongoing GWASs are identifying more robust polygenic risk scores for 
PTSD. Rare-variant, epigenetic, and transcriptomic analyses provide addi-
tional insight into the molecular mechanisms of PTSD. Thus, current re-
search demonstrates that there are systems-level and molecular markers that 
represent biological subtypes of posttraumatic susceptibility (e.g., at-risk 
versus resilient). Integrating information at these levels may therefore lead 
to improved identification of biological subtypes of PTSD, which would be 
valuable for precision medicine approaches to treatment. 

TREATMENT TARGETING 
A better understanding of the neurobiological basis of dysfunctional fear 
processing can provide important neural targets for personalized medicine 
for individuals with PTSD. Epigenetic mechanisms regulate the impact of 
stress on the formation of fear memories that are supported by identifiable 
and targetable microcircuitry in the brain. Modulation of these gene- and/or 
cell-specific pathways of fear processing may help to augment specific pro-
cesses in individuals with PTSD. For example, the development of non-
invasive methods for modifying extinction memory circuits may be used to 
improve extinction learning in those with PTSD, leading to greater responses 
to ongoing therapies. Targeting these molecular pathways may help to im-
prove PTSD symptoms in previously unresponsive patients. 

Conclusion 

Significant progress has been made toward understanding differential risk 
factors as well as physiological, neural, and genetic mechanisms that are re-
lated to risk for PTSD in the aftermath of trauma. Of note, there is consid-
erable individual variation, and precision medicine approaches will be critical 
for identifying and treating PTSD based on these underlying individual 
differences. Targeting specific aspects of fear, trauma, and stress dysregu-
lation will depend upon knowledge of biomarkers and underlying neural 
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circuits. Advances in quantifying (in a reproducible and reliable way) indi-
vidual differences in physiology and behavior, combined with (epi)genetic 
markers of risk, will improve our ability to address specific aspects of PTSD 
across individuals. We hope that such approaches will lead to improved 
guidelines and methods for future clinical trials and clinical practice. 

KEY POINTS 
• PTSD, a major public health burden affecting approximately 8% 

of the U.S. population, is characterized by symptoms thought to 
be associated with dysregulated fear- and threat-related neural 
circuitry. 

• Pavlovian threat conditioning, a behavioral paradigm in which 
individuals form a learned threat association, has served as a 
quantitative, robust, and reproducible approach to understand-
ing individual differences in the physiology of PTSD because of 
the replicable findings of altered threat processing among those 
with PTSD compared with control subjects. 

• Meta-analyses have consistently demonstrated heightened ac-
tivation of the amygdala and dorsomedial prefrontal cortex 
(PFC), and reduced activation of the ventromedial PFC, in those 
with PTSD compared with non-PTSD control subjects. Both pre-
clinical and human research demonstrates that the amygdala 
and its connections to the PFC and hippocampus are critical for 
threat detection, the formation of threat memories, and the fear 
response. 

• Cells within the amygdala form specific microcircuits that regulate 
the acquisition, expression, and extinction of threat memories. 
Knowledge of these cell circuits can contribute to the targeting 
of specific cells for the modulation of threat-related behaviors. 

• Recent genome-wide association studies (GWASs) of PTSD have 
not yet identified specific genetic loci across large, diverse pop-
ulations; however, it is anticipated that the expanded multisite 
consortia will deliver GWAS findings that are robust to ancestry 
and trauma type. 

• Threat learning processes are dependent on histone modification 
and DNA methylation of multiple genes related to learning, 
memory, and the function of cells in the amygdala, hippocampus, 
and PFC. 
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LATENT VARIABLE–BASED PREDICTIVE 
AND EXPLANATORY DISEASE MODELS 

Martin P. Paulus, M.D. 

History 

Obtaining quantitative, reliable, and robust objective markers of disease is 
tantamount to the development of personalized interventions for individu-
als with mental health disorders. Yet, despite an ongoing search, objective 
markers in psychiatry have been elusive. In this chapter, we propose a path-
way based on latent variable approaches to discover and develop objective 
markers in psychiatry. 

Among the fundamental barriers is our limited understanding of the 
emergence of psychiatric disorders as a consequence of brain dysfunctions. 
The basic question that needs to be addressed is: of the measures that are not 
derived from patient self-assessment or assessment by a trained professional, 
which can be used to make more precise predictions about the individual’s 
current state, future disease trajectory, or probability of response to a partic-
ular intervention? Finding the answer to this question will point programs of 
research in important directions that will greatly aid the patient, the mental 
health provider, the payer, and/or policy makers. Computational psychiatry 
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(Huys et al. 2016; Montague et al. 2012; Stephan and Mathys 2014) uses 
mathematical algorithmic approaches to advance a quantitative mechanistic 
understanding of the processes that underlie mental health and disease and 
aims to develop practical applications based on model-based analyses.Among 
these approaches is the use of unsupervised learning algorithms to discover 
the latent variable structure. We have previously proposed that there needs 
to be a fundamental shift in research focus, from seeking to find statistically 
significant differences between groups to seeking to develop predictive mod-
els that address real clinical needs (Paulus et al. 2016). Here, we examine the 
utility of one of the approaches for precision psychiatry. 

An important first step toward a potential solution is to determine how 
computational psychiatry might improve our ability to make clinically mean-
ingful predictions to delineate the current base rate of relationships among 
variables of interest or responses to intervention. A recent investigation of 
relationships focused on individual differences research based on 87 meta-
analyses across six journals, yielding 708 meta-analytically derived correla-
tions. The authors (Gignac and Szodorai 2016) reported a median correla-
tion coefficient of 0.19. This means that, on average, having knowledge 
about an individual difference variable helps to explain about 3.6% of the 
variance in a dependent measure that we care to make predictions about. In 
comparison, a large study (Bosco et al. 2015) that examined 147,328 correla-
tional effect sizes in applied psychology reported a median effect size of 
0.16 (i.e., one measure explaining about 2.5% of the variance of the other 
measure). When it comes to interventions, a meta-synthesis of 62 meta-
analyses of behavioral interventions that focused on health behavior change 
(Johnson et al. 2010) yielded Cohen’s d effect sizes of 0.08 to 0.45. In other 
words, for these interventions, 53%–67% of the treatment group would be 
above the mean of the control group, between 82% and 97% of the two 
groups would overlap, and there would be a 52%–62% chance that a person 
picked at random from the treatment group would have a higher score than 
a person picked at random from the control group. These examples serve 
to remind us how modest our ability is to use variables from one level of 
analysis to explain another level, and how imprecisely we can forecast who 
will respond to a particular treatment. 

What’s more, there is not going to be a single or a small set of quantitative 
markers for a disease entity. Several investigators have emphasized that psy-
chiatric disorders are “pluralistic,” involve “multiple levels,” and are “multi-
causal” (Kendler 2008)—in other words, it is likely that there are not going 
to be simple explanatory models in psychiatry. Moreover, psychiatric disor-
ders must be explained across biological, psychological, and social-environ-
mental domains with inherent “many to many” relationships (Kendler 
2017a), a stipulation that challenges simplistic nosological frameworks. 
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There has been a split in the scientific community when it comes to ex-
planatory models. On the one hand, some investigators have proposed to ex-
plain psychiatric disorders based on highly reduced basic neuroscience 
models, which are thought to provide novel targets for intervention. Others 
have suggested that explanations may not be possible because experiential 
signs and symptoms are emerging properties and cannot be reduced to un-
derlying mechanistic dysfunctions. Fundamentally, explanatory models in-
volve mechanisms, which in turn are tightly linked to causation. A mechanism 
is, roughly speaking, a set of entities and activities that are spatially, tempo-
rally, and causally organized in such a way that they exhibit the phenomenon 
to be explained (Menzies 2012). Causation can be defined as an antecedent 
event, condition, or characteristic that was necessary for the occurrence of the 
disease at the moment it occurred, given that other conditions are fixed (Roth-
man and Greenland 2005). Although it would be an important advance to 
have quantitative markers that also inform our understanding of mechanistic 
psychiatric disease models, it may be more reasonable to initially take a prag-
matic stance—namely, to develop robust predictive objective markers. 

One approach for a potential solution to reduce the complexity of mul-
tilevel mental health assessments is to determine whether there is a set of 
common latent variables that not only link levels of analyses but also help 
to reduce the number of variables. Latent variable approaches have a long 
history in psychology (Bollen 2002) and psychiatry (van Loo et al. 2012), 
although with some mixed success. In general, latent variables of symptoms 
have helped to develop reliable questionnaires (Watson et al. 2015) but have 
not provided strong evidence of subgroups among individuals with mood 
and anxiety disorders (van Loo et al. 2012). Recent developments in statis-
tical learning (Hastie et al. 2001) have introduced sparsity constraints that 
aim to reduce the effect of noisy correlations on the underlying latent vari-
able structure. Within the Bayesian framework, this approach has been 
termed automated relevance detection (Bunte et al. 2016). 

Still, explanatory models are important for patients, providers and fam-
ilies who want to understand how psychiatric disorders emerge, how these 
disorders wax and wane, and how interventions improve these disorders or 
provide permanent cures. Psychiatric disorders are grounded in mental first-
person experiences, are etiologically complex (Kendler 2005), and can be 
conceptualized as having a distinct course and characteristic symptoms 
(Kendler and Engstrom 2017). Thus, researchers must be able to provide 
empirically based explanatory models of psychiatric diseases that address 
these features and the stakeholders’ concerns. However, it is also important 
not to substitute specific experiences and symptoms for the disorder but to 
merely take these elements as possible instantiation of an underlying latent 
process (Kendler 2017b). Yet, others have questioned whether the latent 



 
 

  

 
 

 

     
 
      

 

    

    

 
   

  
  

 
    

 

  

 
 

  
 

170 Precision Psychiatry 

variable models are an appropriate conceptualization of psychiatric disor-
ders (Zachar and Kendler 2017). A pragmatic view (Brendel 2003) is that 
explanatory models in psychiatry reflect what clinicians deem valuable in ren-
dering people’s behavior intelligible and thus help to guide treatment choices 
for mental illnesses. Taken together, there is a pragmatic need for develop-
ing evidence-based explanatory models in psychiatry that enable stakehold-
ers to better understand these illnesses and adapt their lives accordingly. 

Current Knowledge and Approaches 

LATENT VARIABLES IN PSYCHIATRY 
Latent variable models have been used extensively in psychology (Bollen 
2002) and have been considered more recently in psychiatry as interest has 
grown in developing quantitative dimensions of psychopathology across dif-
ferent levels of analyses as proposed by the Research Domain Criteria ap-
proach (Cuthbert and Insel 2013; Insel et al. 2010). Latent variable theory 
considers a mental disorder as a latent variable that causes a constellation of 
symptoms (Cramer et al. 2010). This is in contrast to a discrete theory of 
psychiatric diagnoses. However, the distinction is more complex than is often 
presupposed, and some have suggested that the hypotheses of discrete versus 
continuum formulations are not mutually exclusive or exhaustive (Borsboom 
et al. 2016). These approaches have been used within the natural classifica-
tion tradition iteratively as a way to offer different views about the criteria of 
validity (Zachar and Kendler 2017). One approach for integrating the dis-
crete versus continuum distinction has been to use factor mixture modeling, 
which is a newer approach that represents a fusion of latent class analysis and 
factor analysis (Miettunen et al. 2016).There are a number of considerations 
when applying these types of models to psychiatry. For example, it is impor-
tant to carefully select the times that form the basis of the data used to define 
latent variables in a health domain. Specifically, biases may be present and 
can affect the definition of the latent variable and the effects the latent vari-
able has on other variables of interest (Palmer et al. 2002). 

There have been various modifications of a simple latent variable model 
of mood and anxiety disorders. First, some researchers extended the latent 
variable model to include particular occasions and formed the latent vari-
able trait-state-occasion model, finding that this approach provided the 
best fit for mood and anxiety disorders (Prenoveau et al. 2011). Second, 
others developed a multiple indicator multiple cause latent variable model that 
combines item reduction and validation (Halberstadt et al. 2012). Third, 
there has been an effort to simultaneously decompose depression heteroge-
neity on the person, symptom, and time levels, which yielded two symptom-
level components (“cognitive,” “somatic-affective”), two time-level com-
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ponents (“improving,” “persisting”), and three person-level components 
characterized by different interaction patterns between the symptom and 
time components (“severe non-persisting,” “somatic depression,” and 
“cognitive depression”) (Monden et al. 2015). There are conflicting views 
regarding whether these models adequately describe depression. For exam-
ple, latent class techniques have not consistently identified specific symptom 
clusters in depression. Instead, identified latent variables consisted mostly 
of variables that quantify the symptoms of depressed mood and loss of in-
terest (van Loo et al. 2012). Others have found that depression could best 
be described in terms of both qualitative differences between symptom cat-
egories and quantitative differences in severity (Ten Have et al. 2016). 

As an alternative to latent variable models, network approaches have devi-
ated from the common cause perspective and the associated latent variable 
model in which symptoms are seen only as effects of a common cause. How-
ever, some (Bringmann and Eronen 2018) have suggested that rather than fo-
cusing on this contrast, a more essential contrast to focus on would be that 
between the approaches of dynamic and static modeling, which can render a 
more useful framework for conceptualizing mental disorders. In general, there 
is a need to carefully evaluate the reliability and validity of traditional taxono-
mies with respect to boundaries between psychopathology and normality. 

The Hierarchical Taxonomy of Psychopathology (HiTOP) model has 
emerged as a research effort to address these problems. It constructs psy-
chopathological syndromes and their components/subtypes based on the 
observed covariation of symptoms, grouping related symptoms together 
and providing an effective way to summarize and convey information on 
risk factors, etiology, pathophysiology, phenomenology, illness course, and 
treatment response (Kotov et al. 2017).This approach has been based on the 
empirical observation that psychopathology is generally more dimensional 
than categorical (Conway et al. 2019). The goal of HiTOP is to empirically 
organize psychopathology, provide a connection between personality and 
psychopathology, develop a pragmatic set of latent variables for both re-
search and the clinic, and develop novel models and assessment instruments 
for psychopathology constructs that are derived from an empirical approach 
(Krueger et al. 2018). HiTOP currently includes, at the highest level, a 
general factor of psychopathology. Further down are the five domains of 
detachment, antagonistic externalizing, disinhibited externalizing, thought 
disorder, and internalizing (along with a provisional sixth somatoform di-
mension) that align with maladaptive personality traits (Widiger et al. 
2019). Others have highlighted the need to evaluate competing theories re-
garding their etiology of mood and anxiety disorders by integrating informa-
tion from various domains, including latent variable models, neurobiology, 
and quasi-experimental data (Vaidyanathan et al. 2015). 
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Taken together, the development of latent variable models for psychia-
try in general, and mood and anxiety disorders in particular, is a dynamic 
field that should provide important measures that may aid a clinician to 
quantitatively assess an individual and utilize these assessments for preci-
sion psychiatry. 

MACHINE LEARNING AND PRECISION APPROACHES 
TO PSYCHIATRY 
There is optimism regarding the use of machine learning tools with clinical 
data to generate individual-level predictions. However, at this stage, none 
of these approaches have been sufficiently well developed to be clinically 
actionable. At least three steps need to be taken to move this field forward. 
First, all future prediction studies should be preregistered with explicitly 
defined machine learning approaches, prespecified independent and depen-
dent variables, and clearly specified populations. Second, all models gener-
ated by these tools need to be validated in a completely independent sample 
that has not been used to generate similar predictions. Third, the utility of 
the prediction model will need to be tested in a preregistered randomized 
controlled trial in which some of the individuals are used to generate predic-
tions and some are not. Moreover, this information needs to be tied to clin-
ical actions and outcome variables. Ultimately, a machine learning tool is 
only useful if it can be shown to save lives, improve patients faster and more 
completely, and save money. 

Studies have been accumulating evidence of process dysfunctions that 
affect different aspects of behavior acquired via positive or negative rein-
forcement as well as Pavlovian conditioning. However, several shortcom-
ings need to be considered. First, these studies often involve case-control 
designs, which have limited explanatory depth and often cannot resolve the 
specificity of the finding. Second, studies rarely compare models to deter-
mine whether alternative explanations can provide a better description of 
the data. Thus, there is some uncertainty as to whether the process dys-
function as proposed by the underlying model is the best possible explana-
tion. Third, as pointed out earlier, it is very likely that psychiatric disorders 
are highly heterogeneous and that there is no uniform dysfunction. How-
ever, most studies use diagnostic labels or domain dysfunctions (e.g., anhe-
donia) as a monolithic label. Much larger studies will be needed to address 
these issues, and this has prompted some to propose a phased approach not 
unlike what has been used to develop new pharmacological agents (Paulus 
et al. 2016). Such a pipeline could be used to refine machine learning mod-
els and computational models, and to help move the field toward precision 
psychiatry. 
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Clinical Illustrations 

Group factor analysis (GFA) is one latent variable approach that has been 
useful to link variables across units of analyses (e.g., to relate symptom 
changes to structural or functional neuroimaging characteristics) (Klami et 
al. 2015). This approach has several advantages. First, the Bayesian approach 
allows for a robust estimation of the latent variable structure even if the ra-
tio of the number of variables to the number of cases is relatively small (i.e., 
of the order of one-tenth to one-half). Second, the GFA provides an esti-
mation of the posterior distribution of factor scores, which enables one to 
quickly determine the statistical significance of the variables contributing 
to a factors. Third, sparse prior distributions across blocks of variables pro-
vide an efficient way of separating variables that contribute to the latent 
structure from those that do not. 

Briefly, GFA uses a Bayesian approach and can be used to identify latent 
variables related to psychopathology, cognitive function, and neural circuit 
activation patterns. The goal of GFA is to find factors that separate rela-
tionships within groups of variables from those between groups. Thus, given 
a collection X1,..., XM of M blocks (groups) of variables of dimension 
D1,..., DM, the task is to find K<D1+...+Dm factors that describe within-
block associations as well as the dependencies between the blocks Xm. This 
is accomplished in a Bayesian inferential framework by placing an auto-
matic relevance determination (ARD) prior on the structure of the factor 
solution, which assumes a low-rank representation (rank<<min(K,M)) of 
the factor loadings. The GFA solution thus differs from canonical correla-
tion analysis or standard factor analysis by modeling the sparsity structure 
across multiple blocks based on the ARD prior (Tipping 2001). The main 
advantages of the model are that 1) it is conceptually very simple, essentially 
a regular Bayesian factor analysis model that appropriately differentiates 
within-block and between-block associations, and 2) it hence enables the 
tackling of factor analysis in scenarios with more than two blocks of data. 
The solution comprises a set of K factors that each contain a projection vec-
tor for each of the data sets that have a non-zero weight for that factor. Thus, 
this computational framework provides a useful approach in extracting ob-
jective markers across levels of analyses that can be used subsequently to 
make individual-level predictions. 

Conclusions and Future Directions 

In general, results from both machine learning and computational models in 
psychiatry point toward several recommendations for future investigations 
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such that results from studies can be used to improve individual predictions or 
help to develop empirically guided, improved clinical decision making. First, 
there is a need for large, multisite studies that provide sufficient data to de-
velop robust machine learning approaches or computational models that can 
be validated on sufficiently large samples that have not been used to train or 
test the models. Computational psychiatry is currently fragmented, and the 
clinical samples tend to be small. A consortium of investigators may help to 
advance the field (Paulus et al. 2016). Second, machine learning predictions 
are frequently evaluated based on their ability to correctly predict outcomes. 
However, they are rarely examined regarding whether they contribute to bet-
ter decision making in a clinical context. For example, if a machine learning 
algorithm can predict improvement or non-improvement in a particular pa-
tient population, would this algorithm help to improve the number needed to 
treat if applied before the individuals undergo treatment? Currently, there are 
few studies that have taken this prospective approach (Kingslake et al. 2017). 
Third, computational models provide evidence-based explanations of behav-
ior in disease populations, but most investigations do not actively compare 
alternative accounts of these explanations. Specifically, behavioral task perfor-
mance could be explained by a reinforcement learning model or a belief-based 
updating model. These approaches provide complementary explanations of 
how the individual arrives at a decision. Nevertheless, these differences may 
be important for the development of process-specific behavioral interven-
tions. Fourth, although many of the initial computational models were de-
veloped in animal models, there has been a surprising dearth of studies that 
use translational paradigms to examine computational dysfunctions in both 
humans and animals (for a possible exception, see Joyner et al. 2018). This 
would be particularly helpful in the development of novel pharmacological 
agents aimed at correcting some of these dysfunctions. 

Taken together, computational psychiatry holds promise for both prag-
matic and explanatory domains in psychiatry. However, the field is at an early 
stage, and discretion is the better part of valor when it comes to what im-
pact the results will have on improving mental health assessment, progno-
sis, and treatment. 

KEY POINTS 
• To develop personalized interventions for psychiatric illnesses, 

we must acquire quantitative, reliable, and robust predictive ob-
jective markers. 

• Although much of the prior psychiatric research has aimed to 
find statistically significant differences between groups, we pro-
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pose instead to focus on developing predictive models using 
mathematical algorithmic approaches and unsupervised learn-
ing algorithms that address real clinical needs. 

• There is a substantial demand for developing latent variable 
models to conceptualize psychiatric illness. Latent variable mod-
els, wherein the mental disorder is a latent variable that causes a 
collection of symptoms on a continuum, contrast with the cur-
rent discrete classification of psychiatric disorders, and may bet-
ter aid clinicians in quantitatively assessing and treating each 
individual patient. 

• Machine learning methods can potentially generate individual-
level predictions for psychiatry, but none of these approaches 
have been adequately developed to be clinically actionable. 

• To advance psychiatric health assessment, prognosis, and treat-
ment, there is a need for large multisite projects that provide 
enough data to develop robust machine learning approaches or 
computational models, and more investigations of computa-
tional models comparing evidenced-based explanations of be-
havior in psychiatric illness in addition to alternative accounts, as 
well as further use of translational paradigms to examine com-
putational dysfunctions in humans and animals. 
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COMPUTATIONAL COGNITIVE METHODS 
FOR PRECISION PSYCHIATRY 

Quentin J.M. Huys, M.D., Ph.D. 

History 

The burden of mental illnesses is large (World Health Organization 2017), 
and the treatment gap remains wide. While many different treatment ap-
proaches exist, it is often hard to predict who will respond to which treat-
ment. Furthermore, a substantial fraction of those affected experience a 
relapsing or chronic course of illness (e.g., Angst et al. 2003). In this setting, 
it would clearly be useful if clinicians had the ability to target treatments 
more precisely. 

Treatment precision has two facets. On the one hand, precise treatments 
remove the cause of the illness with minimal other effects. On the other 
hand, individuals differ and may react differently to the same treatment 
even if they suffer from the putatively same causative agent. Hence, an aim 
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Computational Psychiatry and Ageing Research. 
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of precision treatment is for it to be personalized and to take constitutional 
or illness factors of individuals and their individual disease processes into 
account when refining the choice of treatment (Collins and Varmus 2015). 
Although this is a standard feature of many aspects of medicine, advances 
in molecular techniques have dramatically increased the scope of personal-
ization and precision. A precision approach has arguably been most suc-
cessful in the field of oncology, in which genomic signatures of individual 
cancers are used to guide treatment. 

In psychiatry, parallel efforts have led to the use of genetic information 
regarding the effect of liver metabolic enzymes on the pharmacokinetic 
properties of medications, because ideal dosing will depend on the metab-
olism of the medication, and these tests are starting to enter standard clin-
ical practice (Peterson et al. 2017). On a different level, personalization has 
long been woven tightly into the treatments of mental illnesses. For instance, 
cognitive-behavioral therapy aims to identify and then modify the individ-
ual’s underlying core beliefs. The core beliefs that are the focus of the ther-
apy are highly specific to the individual. A similar focus on the details of an 
individual’s illness is a prominent feature of many psychotherapies. The un-
derstanding that mental illnesses are usually worsened by stress is reflected 
in the broad acceptance of the importance of holistic care—for example, in 
Engel’s (1980) biopsychosocial model—and this in turn has facilitated spe-
cific social, financial, housing, and other support interventions, which cer-
tainly are “personalized.” Precision psychiatry, as understood in this book, 
aims to leverage our recent advances in the understanding of the brain and 
the explosion in technological capacities to further improve how treat-
ments are developed and targeted (Fernandes et al. 2017; Perna et al. 2018). 

In this chapter I briefly outline the motivation for a computational ap-
proach to mental illness before focusing on the use of tasks to probe specific 
computational processes. A major hindrance to the translation of tasks into 
clinical practice is their apparent low reliability. Therefore, I examine pos-
sible causes of this in some detail. 

Computational Psychiatry 

When one is considering illnesses that arise from a particular organ, it is crit-
ically important to keep the main function of that organ in mind. For in-
stance, many features of heart failure are only understandable when one is 
cognizant of the fact that the heart has a pumping function and is key to 
maintaining appropriate pressure gradients across the cardiovascular system. 
The same is true for the brain, the key function of which is to compute: stor-
ing information, deriving succinct summaries of it, and using that informa-
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tion to make predictions about the future. What sets the brain apart from all 
other organs is the fact that its ability to process information changes as a 
function of the information it has already processed and stored; in other 
words, it learns. Although other organs adapt, as do muscles, the changes in 
the brain’s ability at a higher level are not just quantitative (such as more 
strength) but qualitative. Through learning, the brain can come to perform 
novel computations, and through its ability to compute, it can change how 
and what it learns. Just as the inability to meet pumping demands is the de-
fining feature of heart disease, the inability to meet computing and storage 
demands shapes the signs and symptoms of brain disease (see “Computa-
tional Components of Depressive Symptoms” below for an example). While 
some computational demands have obvious consequences in terms of move-
ment or sensory deficits, others are more subtle, affecting a brain’s ability 
to solve abstract or complex social problems (i.e., to perform higher cogni-
tive functions). An understanding of these dysfunctions is likely to require an 
understanding of the functions affected, and if these functions are primarily 
computational, then a computational approach might well be necessary. 

COMPUTATIONAL COMPONENTS OF 
DEPRESSIVE SYMPTOMS 

Computational processes are likely involved in both the etiology and 
the treatment of major depressive disorder, a syndrome with low 
mood, anhedonia. and low energy at its core (American Psychiatric 
Association 2013; Mitchell et al. 2009; World Health Organization 
1990). The odds of having a first episode increase by a factor of nearly 
10 after experiencing a major life event (Kendler et al. 2000). The 
causal link from experiences such as life events, which are external to 
the brain, to symptoms such as mood and energy must flow via some 
form of interpretation of the events and hence must involve a com-
putational process and learning. Indeed, biases in information pro-
cessing have long been established as risk factors for depression 
(Alloy et al. 1999). A similar argument can be made for psychothera-
peutic treatments such as behavioral activation (Dimidjian et al. 
2006; Jacobson et al. 1996). Although specific implementations of 
this therapy vary, they broadly involve teaching individuals to act 
from “outside in”—that is, to act according to their goals rather than 
their current emotional state, and supporting them in formulating 
specific, measurable, achievable, realistic, and temporally defined 
(SMART) goals. The aim is to increase the rate at which activities with 
positive consequences are performed, leading to an overall increased 
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rate of experienced rewards and thereby a reduction in negative 
mood. While behavioral activation is a particularly clear example, the 
causal link of any psychotherapeutic intervention must at some 
point involve computational and learning processes because there 
are no direct influences on the brain systems that determine the symp-
toms. Interestingly, the original behavioral activation study found 
that response to the behavioral component appeared to relate to a 
change in cognitive features (attributional style) engendered by the 
intervention (Jacobson et al. 1996). 

Computational psychiatry is a young field that is at the intersection of 
psychiatry, psychology, neuroscience, mathematics, statistics, and machine 
learning. It attempts to harness advances in theoretical and computational 
insights to address clinical issues in the realm of psychiatric illnesses (Huys 
et al. 2011, 2016b; Montague et al. 2012; Rutledge et al. 2019; Stephan and 
Mathys 2014; Stephan et al. 2016, 2017; Wang and Krystal 2014). The mo-
tivation for using mathematical and computational methods to approach 
subjective phenomena such as mood, paranoia, and trauma is, broadly speak-
ing, twofold, reflecting the theoretical considerations about the nature of 
mental illnesses discussed above as well as data-analytic considerations (Ben-
nett et al. 2019; Huys 2018; Huys et al. 2016b). 

The data-analytic side itself has multiple aspects (Bzdok and Meyer-
Lindenberg 2018; Stephan et al. 2017; Woo et al. 2017). First, testing com-
putational theories about brain functions and their involvement in mental 
illness requires the use of advanced analytic methods. For instance, theories 
of learning are most thoroughly tested by building generative computa-
tional models and examining how well they explain data (Piray et al. 2019; 
Wetzels et al. 2010). Second, data of increasing richness, complexity, and 
volume are now being gathered routinely thanks to advances in neuroim-
aging, mobile devices, data storage, and online and computer technology 
(see, e.g., Gillan and Daw 2016). Researchers and clinicians are therefore in-
creasingly faced with large data sets. Deriving insights from such data sets 
and correctly interpreting them requires familiarity with computational 
methods that range from programming to complex machine-learning. Large 
data sets also raise fundamental issues regarding the stability and validity of 
inference. Some inference problems—such as regression—become ill-posed 
when the dimensionality of the data (e.g., the number of data points per 
subject) is too high, and these problems require sophisticated methods such 
as regularization, dimensionality reduction, Bayesian model evidence esti-
mation, cross-validation, or the training of deep neural networks. 

An important contribution of data-analytic approaches is a renewed em-
phasis on cross-validation (Stone 1974). The term prediction has often been 
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used to describe associations in correlational analyses (e.g., regressions), but 
such associations often do not generalize to novel data sets, and hence they 
represent instances of overfitting (Huys et al. 2016b). These instances can 
be addressed by validating them on a separate data set, and techniques such 
as cross-validation provide estimates of the likely generalizability of any find-
ings. More generally, machine learning approaches enable the pragmatic 
discovery of potential signatures of illness or treatment response. This is be-
coming more attractive as the cost of acquiring vast data sets is reduced (Rut-
ledge et al. 2019). 

These arguments suggest why computational methods are likely to play 
an important role in the development of novel targets and treatments for 
mental illnesses (Maia et al. 2017; Wang and Krystal 2014). They also sug-
gest that researchers in the area of mental health are likely to be faced with 
computational challenges, and thus it may be useful to ensure researcher 
literacy with computational methods through teaching programs. 

Tasks to Measure Computational Functions 
There are many ways in which computational tools can come to support pre-
cision psychiatry in everyday clinical practice. We have previously described 
a broad procedure for bringing computational tools into the clinic that is 
modeled on the drug developmental pipeline, with a large number of tools 
being examined preclinically, and the most promising ones being optimized 
for robustness prior to being put through randomized clinical trials (Paulus 
et al. 2016). Clearly, this is not a project to be fulfilled by a single lab; there 
is an urgent need for large-scale collaborations (Browning et al. 2020). 

In this chapter, I focus on one important role that computational tools 
will likely assume in daily clinical practice: that of measurement using tasks. 
Measurements of relevant computational processes could have many dif-
ferent applications, such as diagnosis, treatment allocation, treatment mon-
itoring, and risk assessment. Tasks are likely to play a key role in measure-
ment because they represent the most direct approach to measuring specific 
learning and computational functions. There is now a large and rapidly 
growing wealth of tasks that activate, and thereby measure, increasingly 
complex and well-defined computational functions (Aylward et al. 2019; Ber-
wian et al. 2020; Browning et al. 2015; Daw et al. 2011; Frank et al. 2004; 
Huys and Renz 2017; Huys et al. 2012, 2013; Mathews and MacLeod 2005; 
Mkrtchian et al. 2017; Pizzagalli et al. 2005; Rutledge et al. 2017). The re-
cent increase in mobile devices and computers, coupled with the develop-
ment of toolboxes for efficient task deployment in browsers or apps, has 
profoundly reduced barriers to the deployment of tasks as probes in clinical 
settings (Gillan and Daw 2016; Rutledge et al. 2019). 
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Figure 11–1. (Opposite page) Two-step task. 
To view this figure in color, see Plate 6 in Color Gallery. 
(A) Participants must first choose among two of the green stimuli. Each of the stimuli prob-
abilistically leads to one of the second-stage stimulus sets with high probability, and to the 
other set with low probability. Participants then choose one of the two resulting second-stage 
stimuli and obtain a reward or not. (B) A model-free strategy here corresponds to repeating 
the first-stage (green) choice if the second-stage choice was rewarded, irrespective of the fre-
quency of the transition observed. A model-based strategy takes the transition probability into 
account: after a rare transition, a reward leads to a switch at the first stage. Consider choosing 
the left green choice, but transitioning to the blue second stage and then obtaining a reward. 
In order to gain another reward from the same blue stimulus, the best strategy takes the transi-
tion probability into account and leads to a switch of the unchosen first-stage stimulus. Indi-
viduals typically use a mixture of these two strategies, which can be measured by the parameter w. 
(C) Patients who have binge-eating disorder (BED), obsessive-compulsive disorder (OCD), 
or methamphetamine dependence (Meth), but not obesity or alcohol dependence, show a re-
duction in the parameter w that trades off between these strategies (i.e., they show a shift to-
ward mode-free decision making). 
Source. Panels A and B adapted and redrawn from Daw et al. 2011. Panel C adapted and re-
drawn from Voon et al. 2015. 

For instance, the widely used two-step task (Figure 11–1) attempts to 
capture an individual’s tendency to learn and make decisions via one of two 
strategies: model-free or model-based (Daw et al. 2011). Model-free learn-
ing has been related to habitual decisions, and model-based learning to goal-
directed behavior (Friedel et al. 2015). In model-free learning, individuals 
learn by summing up prediction errors over multiple repetitions. Model-free 
decisions that rely on these values hence change slowly over time. In con-
trast, model-based decisions require on-the-fly inference. While this ap-
proach to decision-making is computationally demanding, it is also able to 
more rapidly adjust to any new information. In large samples across multiple 
settings, patients with a variety of compulsive disorders—including obses-
sive-compulsive disorder, binge eating, and methamphetamine depen-
dence—show a characteristic pattern on this and related tasks, with a bias 
toward model-free and away from model-based reasoning (Gillan et al. 
2016, 2020; Patzelt et al. 2019; Voon et al. 2015). Patients with alcohol ad-
diction do not show this pattern (Huys et al. 2016a; Nebe et al. 2018). 

Another example task is the affective Go-NoGo task (Guitart-Masip et 
al. 2012) (Figure 11–2). Tasks that measure Pavlovian influences on in-
strumental choice have shown robust sensitivity to alcohol dependence 
(Garbusow et al. 2019), anxiety (Mkrtchian et al. 2017), trauma (Ousdal et 
al. 2018), and suicidality (Millner et al. 2019). The last-mentioned finding 
in particular is noteworthy. The authors modified the task so that individ-
uals could learn to avoid or escape unpleasant sounds either through active 
(Go) or passive (NoGo) behavior. Patients with lifetime nonfatal suicidal 
thoughts and behaviors showed a selective increase in the tendency to ac-
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tively escape from the aversive noise. Tasks such as these have great poten-
tial as structured probes for directly measuring—with high precision and at 
low cost—high-level processes that are not accessible to techniques such as 
self-report, observation, or biochemical or neuroimaging assays (Barch et 
al. 2008). 

For the ideal clinical scenario, such tasks would result in task-derived 
measures (TDMs) of specific computational or learning processes that a) are 
mechanistically involved in causing illness and b) are amenable to interven-
tions. The impact of a particular intervention might then be mediated by its 
impact on the TDMs (Figure 11–3A). In this situation, measuring the TDMs 
would have substantial value for precision psychiatry. The presence of a 
raised or reduced TDM would indicate the presence of the particular etio-
logical process. This in turn would enable differential treatment allocation 
to those interventions known to impact this particular TDM. In the absence 
of any abnormalities in any TDMs, futile exposure to likely unhelpful treat-
ment could be avoided. 

The key steps toward these goals hinge on the notion of discovering 
and engaging mechanisms relevant to mental illnesses. First, tasks need to 
be designed that yield reliable, robust, and clinically deployable individual 
differences in a computational or learning process (Figure 11–3B). This 
area is currently in great need of development, and we will focus on it in 
the next section. Once such robust TDMs have been established, their rele-
vance to particular symptoms or illnesses must be established, for instance, 
via traditional case-control or correlational dimensional studies. Here, the 
advent of online methods promises to greatly accelerate the examination of 
new probes (e.g., Gillan and Daw 2016; Gillan et al. 2016; Rouault et al. 
2018). However, it is also worth pointing out the value of longitudinal stud-
ies. Although still correlational, the examination of how symptoms covary 
with a TDM within individuals over time avoids at least some of the more 
fundamental problems inherent in cross-sectional designs (Borsboom et al. 
2009; Molenaar and Campbell 2009). We must then examine whether the 
TDMs can be engaged by interventions, and whether a change in the TDMs 
must mediate the improvement in symptoms due to targeted interventions. 
Clearly, this is a very high bar. Indeed, few tasks have been examined in all of 
these scenarios. One exception is the two-step task, which has not shown 
changes with clinical state after psychotherapy (Wheaton et al. 2019). Al-
though negative, this finding may relate to the low reliability of the task (see 
next section), and such research is critical for the development of precision 
tools. 
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Figure 11–2. Affective Go-NoGo task. 
To view this figure in color, see Plate 7 in Color Gallery. 
(A) Individuals were taught to choose whether to Go or NoGo (respond on a button) for different stimuli. With some stimuli (fractals), an unpleasant tone could 
be escaped or entirely avoided by a Go response (top row). With other stimuli, the unpleasant tone could be escaped or avoided by a NoGo response (bottom row). 
(B) A computational model fitted to the data extracts a key parameter on which groups differed. Participants with a lifetime history of suicidal ideation showed a 
selective bias toward actively escaping, but did not show a bias in the avoid condition. The bias here was the starting point of a drift-diffusion model (Ratcliff and 
Smith 2004). 
Source. Adapted from Millner et al. 2019. 



   
   

 

 
 

   
 

   
  

 
  

 
  

  

188 Precision Psychiatry 

Figure 11–3. Measuring mechanisms for the clinic. 
To view this figure in color, see Plate 8 in Color Gallery. 
(A) For precision targeting, the measures derived from computational probes should mediate 
the effect of interventions. The measure mk can be used to decide whether to apply interven-
tion k if intervention k reduces measure mk, and this measure mk relates in a mechanistic or 
causal way to the illness. For instance, if antibiotics reduce certain bacterial cell counts, and 
these bacterial cell counts cause symptoms such as fever, then applying this antibiotic is likely 
to lead to an improvement in symptoms via its impact on the bacteria. (B) To be useful for 
precision targeting, computational probes, which might involve the results of a task being an-
alyzed with some computational model and producing a measure mk or mg, must be reliable 
at the individual level. The probes must also be deployable in clinical settings and be robust 
to typical clinical situations. (C) Measurements derived from computational probes must be 
valid (i.e., changes in these measurements should covary with changes in other measures of 
illness within individuals over time and between individuals). (D) Treatments, be they novel 
or established, should impact the measurement. 

Limitations of Current Task-Based Measurements 

Computational probes that involve tasks must deliver reliable measure-
ments if they are to be used clinically (Barch et al. 2008; Savitz et al. 2013). 
It has recently become clear that the reliability of many TDMs is still below 
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the level of reliability deemed necessary for potential clinical utility (Barch 
et al. 2008; Savitz et al. 2013). Strikingly, this is even true for classical tasks 
that have stood the test of time. For instance, Hedge et al. (2018) examined 
tasks such as the Stroop, Eriksen flanker, and stop-signal tasks and found 
that although the effects at the group level were reliable, the effects at the 
individual level were not. Even the Stroop reaction time cost (i.e., the dif-
ference in reaction times to congruent and incongruent stimuli) only 
showed a test-retest intraclass correlation coefficient of 0.6. A meta-analy-
sis of published test-retest reliability measurements and a large-scale online 
study suggest a reliability somewhere between 0.3 and 0.6 across a wide va-
riety of tasks (Enkavi et al. 2019). Importantly, this value was substantially 
lower than the reliability of self-report surveys, which is around 0.6–0.7. 

The causes for low reliability fall into four categories: time, strategy, noise, 
and research setting. First, if the underlying cognitive mechanism changes 
with time, the measure will appear less reliable. A variety of TDMs do show 
excellent split-half reliabilities or reliability when the task is repeated immedi-
ately, but this reliability drops when repetition occurs after a period of weeks 
to months (Ahn et al. 2020; Garbusow et al. 2014; Pooseh et al. 2018; Sha-
har et al. 2019). For instance, Ahn et al. (2020) reported reliabilities above 0.9 
for immediate test-retest, but these fell to 0.8 within a month. A number of 
reports on the low test-retest reliability of tasks are based on the examination 
of reliability over delays of months or even years (Enkavi et al. 2019; Hedge 
et al. 2018). Although this may be the right timescale to examine cognitive 
processes that relate to stable personality factors, cognitive processes of rele-
vance to the treatment of mental illnesses are expected to change on the same 
timescale as psychopathological states change and should be amenable to ther-
apeutic interventions. As such, the aim should be the establishment of TDMs 
that are highly reliable over short periods, but sensitive to relevant psycho-
pathological changes (Duff 2012) over a period of weeks. 

Second, tasks may appear unreliable because the strategy an individual 
employs to solve the task changes. This will also reduce internal consistency 
(Hajcak et al. 2017). For example, through practice, individuals might dis-
cover shortcuts to solving a task, or engage less with demanding processes 
due to fatigue. The presence of such inconsistencies can be examined using 
measures such as split-half reliability. Their nature can be identified through 
computational modeling, enabling particular strategies to be formulated as 
generative models. These can then be run on the task and provide quanti-
tative measures as to how well a particular strategy explains the behavior on 
a task (Berwian et al. 2020; Guitart-Masip et al. 2012; Huys et al. 2012, 
2015; Schlagenhauf et al. 2014). Indeed, a change in strategy is likely to ac-
count for some of the changes seen with time, which have traditionally been 
ascribed to a change in the underlying cognitive mechanism. 
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Third, noise in a TDM will reduce the estimated reliability; this noise 
can sometimes be reduced by making tasks longer (Rouder and Haaf 2019), 
though this does not improve all TDMs equally (Enkavi et al. 2019). For in-
stance, in learning tasks, early trials are informative about the learning pro-
cess, but once a strategy has been selected and reached stability, additional 
trials no longer provide information about the learning process. Therefore, 
the best strategy to reduce noise in the estimation of a particular process de-
pends on the specific process. Techniques such as active learning or adaptive 
design optimization provide principled ways of maximizing the amount of 
information acquired per trial (Chaloner and Verdinelli 1995; MacKay 
1992; Myung et al. 2013; Paninski 2005). As an example, consider delay dis-
counting (Ahn et al. 2020; Pooseh et al. 2018). In this, individuals must re-
peatedly choose between receiving a small monetary amount sooner (e.g., $7 
now) or a larger amount later (e.g., $14 in 2 months). Traditional approaches 
ask a fixed set of questions. However, if the subject has already accepted waiting 
2 months for $14, then they are very likely to also be willing to wait 2 months 
for $42, and hence this item will not add much information. An alternative is 
to choose an option in which the evidence gathered so far suggests equal 
probabilities for choosing the early and late option—an example of un-
certainty sampling (Pooseh et al. 2018; Schulz et al. 2018; Settles 2012). 
Indeed, these ideas underlie adaptive testing in item response theory ap-
proaches (Embretson and Reise 2000) but have only rarely been exploited in 
the setting of tasks for mental health assessment (Aranovich et al. 2017). 

Strong guarantees exist regarding the usefulness of information-guided 
adaptive optimization if the underlying process is static and does not inter-
act with the process (Paninski 2005). However, human task strategies may 
change; in particular, a subject may respond to the presence of changes in 
the task with shifts in strategy. More global optimization problems are com-
putationally challenging (Krause et al. 2008). But promising approaches in-
clude a combination of dynamic programming with adaptive design (Kim 
et al. 2017), and there is a dearth of optimization work that has explicitly at-
tempted to avoid inducing changes in the underlying cognitive process, or 
indeed measured this. 

Another important aspect of noise in TDMs is the reduction of estimated 
correlation with other processes of interest (Spearman 1987). This may 
lead to processes being deemed irrelevant when this is not the case (Rouder 
and Haaf 2019). One approach is to take uncertainty into account, either 
via computational models (Huys et al. 2012, 2013; Price et al. 2019; Shahar 
et al. 2019; Yang et al. 2020) or via hierarchical estimation procedures (Gel-
man et al. 2013; Huys et al. 2012, 2013; Piray et al. 2019; Rouder and Haaf 
2019; Wetzels et al. 2010). Accounting for noise in the context of temporal 
reliability enables the estimation of a theoretical upper limit on reliability. 
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Tasks with higher theoretical reliability can in principle be lengthened or op-
timized to achieve this reliability, and hence may have clinical value. Taking 
uncertainty into account when examining covariation with other variables 
prevents the disregarding of potentially important processes. 

Fourth, what exactly is viewed as “the same result” varies in different re-
search settings (Borsboom et al. 2009; Cronbach 1957). In a traditional ex-
perimental psychology setting, a task is viewed as reliable if it produces an 
effect at the group level when repeated in a different sample. Variation be-
tween individuals hurts this notion of reliability. If individuals vary substan-
tially, then the effect at the group level—usually measured by dividing the 
mean by the standard deviation—will necessarily be lower. On the other hand, 
in the context of the individual differences literature, a reliable measure is one 
that ranks individuals in the same order on repeated administrations. Here, 
variation between individuals—measured by correlation coefficients—gen-
erally increases reliability as the between-individual variability appears in 
the numerator (Hedge et al. 2018). Unlike questionnaires, tasks have gen-
erally been designed in the experimental psychology tradition, and hence are 
typically geared at maximizing group-level reliability. As such, the compo-
nent of variability attributable to differences between individuals is gener-
ally lower (Enkavi et al. 2019; Hedge et al. 2018). This is one major reason 
for the comparatively low reliability of tasks compared with questionnaires 
and is a major hurdle for the translation of tasks into a clinical setting. 

Conclusion and Future Directions 

Computational approaches to mental health are motivated by the compu-
tational and learning functions of the brain, and by the complexity and 
quantity of data being acquired. Tasks are likely to be important for precision 
psychiatry because they enable the probing of specific learning and compu-
tational functions. However, tasks must be further developed to achieve the 
reliability and robustness necessary for clinical deployment. As described 
here, computational models are likely to play an important role in this be-
cause they can account for noise and strategy changes, and also facilitate 
adaptive sampling techniques. Once tasks have been designed that are both 
valid and reliable, researchers will need to shift their attention toward studies 
that ask whether the processes can be engaged by therapies, and whether 
they mediate therapeutic improvement. It might even be advantageous to 
consider such longitudinal studies early on (particularly in the setting of 
treatments). 

Although the focus here has mainly been on tasks, similar arguments can 
be made for other techniques including, in particular, neuroimaging. Here, 
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too, very reliable methods have not reached the reliabilities necessary for 
clinical deployment (Braun et al. 2012; Plichta et al. 2012; Savitz et al. 
2013), and at least as far as they are to be used as measurements, similar ar-
guments as for tasks can be made. 

KEY POINTS 
• When an organ is unable to meet the demands placed on it, illness 

can arise. The main functions of the brain are to compute and 
learn. Therefore, our understanding of mental illnesses will ben-
efit from understanding the computational and learning func-
tions the brain performs, and how these are affected in states of 
ill health. 

• Measurement through a patient’s performance of tasks enables us 
to probe highly specific computational and learning processes. 

• For precision applications, measurement should be reliable, re-
late to the pathological process, and be engaged by therapeutic 
interventions. 

• Identification of disease mechanisms via tasks can facilitate the 
development of targeted interventions and the targeted admin-
istration of therapies. 

• The clinical use of tasks currently faces issues with regard to reli-
ability and robustness, involving time, strategy, noise, and 
research setting, which are at least partially amenable to compu-
tational techniques. 
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Learning as a Basis for Mental Health Treatment 

Cognitive-behavioral therapy (CBT) (Beck 1976, 2005), a leading method of 
psychotherapy, is a widely used treatment for many psychiatric conditions, 
including anxiety disorders, mood disorders, PTSD, obsessive-compulsive 
disorder (OCD), and substance abuse. The goal of CBT, in particular the 
second wave of CBT on which we will focus (Beck 2011), is to effect change 
in cognition, emotion, and behavior, understanding that changing any one 
of these affects change in the other two due to their interdependence. This 
is done by teaching patients new thought (“cognitive”) and response (“be-
havioral”) patterns with the aim of eventually, through repeated practice 

199 



  
 

 
 

 

   
  

 
   

   

  
 

  
   

 

    
 

    
  

200 Precision Psychiatry 

and generalization, displacing maladaptive automatic tendencies. A key CBT 
principle is that emotional responses (e.g., feeling scared, anxious, or sad) 
are not a direct consequence of external events, but rather are mediated by 
thoughts and internal schemas that filter external information and de-
termine emotional and behavioral responses (see Appendix 2.1). By learning 
and practicing alternative interpretations and responses, we can gain con-
trol over our emotional wellbeing. CBT has been widely tested in random-
ized controlled trials and has a strong empirical evidence base (Butler et al. 
2006; Hofmann et al. 2012). 

Over the same time frame, research in cognitive neuroscience and psy-
chology has converged on a theoretical framework called reinforcement 
learning (RL) (Sutton and Barto 2018) to explain trial-and-error learning, 
behavioral decision making, and their neural implementation. The key idea 
is that choices are based on learned values of available options. These values 
reflect the subjective reward value of expected outcomes (which could be 
negative for aversive outcomes) and are learned through trial and error, by 
comparing actual outcomes to expectations. The principle is that when we 
experience a “prediction error”—a discrepancy between what we expected 
and what actually happened—learning occurs and expectations (values) are 
updated. 

RL theory has been widely tested in humans and animals, accumulating 
much support. Recent advances have extended the theory to explain multi-
ple learning algorithms and their respective decision processes, which 
occur in parallel in the brain (in particular, habitual vs. goal-directed delib-
erative behavior; Daw et al. 2005), and to thinking about how learning is 
generalized or specialized to different scenarios (Gershman et al. 2015). 
This enhanced RL framework can be mapped relatively directly onto key con-
cepts from CBT. 

The goal of this chapter is to flesh out the links between second-wave 
CBT and RL.1 Because RL theory is defined in computational terms (see 
next section), viewing CBT through the lens of RL can suggest ways to quan-
tify the changes that a patient undergoes throughout treatment, and to po-
tentially help determine which CBT intervention to employ at each stage 
of treatment.This highlights how developments in the growing field of com-
putational psychiatry (Huys et al. 2016; Montague et al. 2012) could impact 
clinical practice. 

1Because of space limitations, we forgo discussion of the links between CBT and 
Bayesian inference processes (which are strongly linked to RL), and refer the reader 
instead to an article by Moutoussis et al. (2018). 



  

 

  
    

 

  
 

   

 
 

 
   

  
    

 
    

  
 

 
 

 
 

  

 
 

 
  

  

201 Toward Precision CBT via Reinforcement Learning Theory 

REINFORCEMENT LEARNING IN A NUTSHELL 
RL arose as a theory of animal learning, specifically Pavlovian and instru-
mental conditioning (Sutton and Barto 1990). In Pavlovian (“classical”) con-
ditioning, a contingency between two events, one motivationally neutral 
and one motivationally relevant (e.g., the sound of a bell—a “conditional 
stimulus,” or CS—followed by receipt of food, an “unconditional stimulus,” 
or US) is experienced repeatedly. As a result, through learning, the CS comes 
to predict the occurrence of the US. This prediction is evidenced (and can 
be measured) by behavioral responses (e.g., salivation, quickening heart 
rate—a host of “conditioned responses”) that automatically accompany said 
prediction. This type of learning is ubiquitous and can occur when a CS pre-
dicts the occurrence of a US (excitatory conditioning) or the absence of an 
otherwise available US (inhibitory conditioning). Importantly, learning may 
not enter awareness, and the automatic conditioned responses (which in-
clude emotions, increased heart rate, and sweating) are very hard to override. 

This type of prediction learning is at the heart of RL theory. (For a  
more detailed overview of RL in the brain, see Niv 2009.) In RL, each stim-
ulus (S) acquires a value V(S) that reflects the subjective scalar value of the 
USs it predicts. For example, the first time the bell is heard, its value may 
be zero. If the tone is followed by a US, the US’s reward value, R (positive 
values for appetitive USs like food, and negative values for aversive USs like 
pain), is compared with the prior expectation Vold(S) to compute a predic-
tion error, PE = R – Vold(S). The new value of the stimulus is then updated 
based on the prediction error: Vnew(S) = Vold(S) + α ·PE, where α is a “learn-
ing rate” parameter between 0 and 1. This learning rule will update the value 
every time a prediction error is experienced, until the prediction error is 
zero (the prediction is correct). This model of trial-and-error prediction 
learning has one parameter, α, that can differ between individual learners or 
for different situations (see Appendix A1.1). 

When the environment changes considerably (e.g., a tone CS that once 
reliably predicted a shock US is no longer followed by shock), instead of up-
dating V(S), the learner may infer that the current tone is not the same as the 
old one and thus initialize a completely new value, V(S2). The idea is that the 
learner makes inferences about the hidden (latent) causes of observed events 
and learns different values for different inferred latent causes. Rather than 
thinking of S as a stimulus, it denotes an inferred state of the world, corre-
sponding to a latent cause (Gershman et al. 2010). 

In instrumental conditioning, actions that the learner chooses can affect 
whether they will or will not receive reinforcement. For example, pressing 
a lever may be reinforced with food or with removal of an aversive sound. 
The learner must experiment with different actions and learn, through trial 
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and error, which actions are effective in any given scenario. In RL termi-
nology, the model for learning is similar to the prediction learning model; 
however, values are learned for each possible action a in each state (these 
values are called Q-values and denoted Q(aS), in contrast to the V-values 
for states, above). Again, learning proceeds based on prediction errors: after 
performing a chosen action in the current state, the outcome is used to com-
pute a prediction error and update Q(aS). 

This learning mechanism is only one way to compute values. Rather than 
storing and updating values after each experience, one can instead learn a 
model of the environment: how states follow one another given each action 
(the state “transition structure”), and what states are rewarding or punish-
ing. Armed with this model, the learner can mentally simulate the conse-
quences of different actions (or, in Pavlovian scenarios where actions are 
irrelevant, the unfolding of events over time) to calculate their value. This 
alternative algorithm has been termed model-based learning, in contrast to 
the “model-free” trial-and-error learning algorithm described above (Daw 
et al. 2005). 

It appears that the brain uses both model-free and model-based meth-
ods for computing values and making decisions (Daw et al. 2005). The 
model-free system depends on dopaminergic prediction errors and a cor-
tico–basal ganglia–thalamocortical loop involving the ventral and dorsolat-
eral striatum and portions of the amygdala (see Appendix A1.2). It has been 
associated with habitual behavior—well-learned response patterns that re-
quire considerable experience with conflicting outcomes to learn new val-
ues and new actions. In contrast, the model-based system seems dopamine 
independent and relies on the hippocampus, frontal cortex, and a cortico– 
basal ganglia–thalamocortical loop involving the dorsomedial striatum. 
This system has been associated with deliberative, so-called goal-directed 
behavior, and is more flexible in its action selection because it can incor-
porate new information into the task model without extensive experience. 
However, simulating future outcomes requires mental effort, and there may 
be limits to how deeply one can search a tree of future options. Neural and 
behavioral evidence show that both systems operate in the brain in parallel; 
however, one or the other may be controlling behavior at any point in time. 
For example, you may use model-based RL to explicitly plan to go shopping 
on the way home from work. However, listening to the radio as you drive, 
your model-free system may take over and lead you to turn toward home ha-
bitually despite your plan otherwise. 

In sum, RL theory suggests that to change behavioral responses, one can 
change the internal model of the task, which will affect deliberative plan-
ning (see also Moutoussis et al. 2018). However, since much of our behav-
ior is habitual and relies on a lifetime of learning from trial and error, more 
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permanent change may require experiencing prediction errors that will 
slowly change the values that our model-free system assigns to states and 
actions. Pharmacological treatments that affect dopamine (commonly used 
for a variety of mental health conditions) can affect this latter process be-
cause it depends on dopaminergic prediction errors. Moreover, if a situation 
changes too much, the learner may infer a new state rather than update an 
old state value. In psychotherapy, such new inferences may be helpful as 
long as future experience is ascribed to the newly inferred latent cause. Yet, 
because the mental representation of the old latent cause remains, quiescent 
but unchanged, an associated maladaptive judgment or behavior can reap-
pear if the individual infers that this cause has returned. In the examples be-
low, we will flesh out the implications of these ideas for psychotherapy. 

COGNITIVE-BEHAVIORAL THERAPY IN A NUTSHELL 

CBT is a problem-focused collaborative form of psychotherapy that aims to 
change maladaptive behavior and thought processes and improve emotional 
regulation (Beck 2011). A core premise of CBT is that external events do 
not cause us to feel and do things, but rather our cognitions offer a subjective 
interpretation of events that, in turn, causes feelings and actions. This inter-
pretation is often automatic and implicit, building on a lifetime of previous 
experiences, and not a voluntary or conscious process. The profound im-
plication is that we have some control over our emotional, cognitive, and 
behavioral responses. By changing our interpretations, we can avoid respond-
ing maladaptively (for an example, see Appendix A2.1). 

How can interpretations be challenged and changed? Since emotions, 
thoughts, and actions are inextricably linked, the therapist can choose which 
avenue may be most amenable to change for each individual. For example, 
actions and emotional responses can result from thoughts. In the method 
of cognitive restructuring, these thoughts are challenged, their exaggerated or 
distorted nature is exposed, and alternatives are listed and practiced. This 
can help reduce the emotional response and enable alternative behavioral re-
sponses. Alternatively, being exposed to seemingly dangerous (but actually 
safe) situations and experiencing their neutral outcomes can help reduce 
maladaptive automatic emotional responses (such as the autonomic fear re-
sponse) that arise as “false alarms.” Once the emotional and bodily response 
is identified as a false alarm, one can additionally learn to turn off the alarm 
through relaxation and mindfulness techniques, or to wait it out knowing 
that there is no actual danger involved (for more detail, see Appendix A2.2). 
Moreover, reduction of the physiological stress itself enables increased flexi-
bility of thought and action. 
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COGNITIVE-BEHAVIORAL THEORY IN REINFORCEMENT 
LEARNING TERMINOLOGY 
The CBT framework for understanding and treating dysfunction can be 
mapped quite directly to core concepts from RL (for mapping to the re-
lated framework of Bayesian inference, see Moutoussis et al. 2018). In RL 
terms, idiosyncratic response patterns emanate from state and action values 
learned from direct experience (or from modeling by others, e.g., our par-
ents) through model-free trial and error, or computed on the fly from a 
learned world model. 

At a first pass, the cognitive aspects of CBT (e.g., cognitive restructur-
ing) can be seen as targeting the model-based system. Cognitive distortions 
may manifest in or result from distortions in the learned (or assumed) 
model of the environment. For example, if one’s estimated probability of 
transitioning from any state to a state accompanied by punishment is ex-
aggerated, then every plan of action in this model may seem dangerous, 
leading to avoidance behavior. This mapping of model-based RL to the cog-
nitive aspects of CBT suggests several avenues for change, each exploited 
in CBT: one can attempt to change the model of the environment, target-
ing the distorted transition estimates by challenging the validity of current 
assumptions, or by forcing oneself to execute a response plan that is esti-
mated to produce negative outcomes and experiencing that these do not 
occur. This latter planned exposure will lead to changes both in the model 
of the environment and in learned action values used by the model-free sys-
tem. In this way, both systems will promote healthier response patterns in the 
future. 

Indeed, the behavioral component of CBT is strongly related to the model-
free learning system: by orchestrating experiences and exposures that will 
lead to prediction errors, predictive values of states and actions can be re-
trained. Importantly, the model-free system may be (at least partly) inac-
cessible to cognitive methods—we cannot talk our amygdala and striatum 
into changing stored values without having experienced prediction errors. 
Indeed, a hallmark of model-free learning is that avoidance of relevant train-
ing experiences serves to maintain old values. Thus, after experiencing a 
traumatic event (e.g., a car accident), the more one avoids similar scenarios 
(e.g., by not driving), the longer the negative expected values will be main-
tained. They may even become ingrained over time, and potentially gener-
alized to other (no longer experienced) scenarios (although RL theory does 
not currently model this phenomenon). This may explain why exposure-
based methods are critical for CBT, and cognitive restructuring cannot 
usually stand alone. For an RL account of why exposure methods work, see 
Appendix A2.3. 
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Of note, RL theory and experimental findings suggest that model-based 
and model-free RL can occur even without direct experience, for example, 
by watching others behave and through mental simulation of internal 
models or replay of memories of previous experiences (Burke et al. 2010; 
Shohamy and Daw 2015). This may be a mechanism for runaway exagger-
ated values. Counterfactual learning from imaginary “what if” scenarios 
based on extreme and erroneous beliefs could lead to vastly distorted val-
ues, whereas real-world experience would better ground values in reality. 

In this sense, the model at the heart of model-based learning (and re-
lated training of model-free values using internal simulations) may be the 
main source of value distortions—this system relies more directly on sam-
pling from episodic memory, where outlier (e.g., traumatic) events are 
strongly encoded and preferentially retrieved (Brown and Kulik 1977; 
Madan et al. 2014; Rouhani and Niv 2019). This could lead to a distorted 
model that must be corrected through direct experience tied to the actual 
statistics of events in the environment, rather than their distorted represen-
tation in memory. 

From Theory to Practice 

CBT practice provides different protocols for different diagnoses and under-
lying pathologies. Here we briefly discuss two examples to illustrate the link 
to RL theory and point out how theoretical work in RL can further our un-
derstanding of the mechanisms of CBT treatment and development of bet-
ter protocols (see Craske et al. 2014 for a similar approach using animal 
learning theory). We then discuss the implications of these links to precision 
psychiatry, and how quantification of an individual’s learning and decision-
making parameters can help tailor the therapeutic approach to each specific 
patient. 

EXAMPLE: PROLONGED EXPOSURE 
FOR TREATMENT OF PTSD 
One of the best-tested and most effective CBT methods for treating PTSD 
is prolonged exposure (Foa 2011). In prolonged exposure, during imaginal 
exposures, the patient retells the story of the traumatic event in the first per-
son and in present tense, and in as much detail as possible (mentioning all 
senses—vision, smell, etc.) in the safety of the clinic. The story is recorded, 
and the patient listens to it daily. In each of six to eight therapy sessions, the 
patient retells the story (sometimes uncovering previously forgotten de-
tails) and receives the recording to listen to at home. Over time, putatively 
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through a combination of desensitization/habituation and reorganization 
of the memory through retelling, the traumatic memory becomes less po-
tent and the patient recovers function: trauma-related thoughts become 
less intrusive, the patient no longer feels under constant threat, and, aided 
by in vivo exposures, behaviors that had been avoided after the trauma are 
resumed. 

The theory behind prolonged exposure suggests that for the protocol to 
be successful, two important conditions must be met: the retelling of the 
trauma has to gain access to the original fear construct (i.e., the original fear 
memory) and disconfirming evidence then has to be introduced (Foa and 
Kozak 1986). Although developed separately (with prolonged exposure far 
predating the relevant RL theory; Gershman et al. 2017), this method is ex-
tremely well aligned with the RL playbook: disconfirming experiences of 
safety generate prediction errors, and access to the original fear construct en-
sures that new learning is applied to the original state and not to a new state. 
Indeed, the protocol can cause much distress in the beginning—the patient 
is requested to revisit in detail memories that they have (unsuccessfully) 
tried to suppress for months and years, and to do so in an immersive way. If 
they are willing to do this, however, the method is very effective (Powers et 
al. 2010). 

The precise and quantitative nature of formal RL theory may help us im-
prove exposure therapy, especially where current recommendations are in 
conflict with experimental and theoretical work in RL. For example, building 
on inhibitory learning theory, Craske et al. (2014) recommend maximizing 
“expectancy violation” (the discrepancy between a patient’s predicted and 
actual experience, i.e., the prediction error) during exposure to maximize 
learning of new safety associations that will compete with old trauma-
related associations. However, the existence of multiple learning systems 
(model-based and model-free) suggests a more nuanced interpretation of 
some of their empirical results, and alternative methods for treatments. For 
example, one can modify the old association, that is, update previously 
learned values. Here, recent research suggests that large prediction errors 
can cause a learner to impute a new experience to a wholly different state, 
instead of revaluing an old state, thus leaving the original state value intact 
(Gershman et al. 2014, 2015). Indeed, experiments in rodents have shown 
that in the long-term, gradual extinction of a fear memory is more effective 
in modifying conditioned fear responding than abrupt extinction (Gersh-
man et al. 2013), which suggests that moderate prediction errors are more 
effective than large ones. The use of RL theory to understand the principles 
that underlie when prediction errors maximally overwrite existing learning 
versus are relegated to new states, along with the measurement of individ-
ual differences in such thresholds using behavioral tasks (see “Conclusion” 
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section), may eventually help us predict what type of exposure will be most 
effective for each patient. 

An important caveat is that Pavlovian fear conditioning—the dominant 
animal model for PTSD and the experimental paradigm discussed above— 
assumes that learning is of a simple association between stimuli and an un-
avoidable aversive outcome.A traumatic memory is clearly more complex than 
a simple CS-US association, and more research is needed regarding how 
emotional events influence the organization of episodic memories (Cohen 
and Kahana 2019; Talmi et al. 2019). Similarly, our understanding of PTSD 
could be increased through measuring individual differences in learning 
from positive versus negative prediction errors (Arkadir et al. 2016) and work 
on generalization, and specifically why negative memories tend to be stron-
ger and generalize more widely than positive memories. More generally, un-
derstanding how boundaries between different situations (states) are drawn 
by the brain, and how these change over time (with and without experience 
of similar states), would be especially informative for treating PTSD. 

EXAMPLE: EXPOSURE AND RESPONSE PREVENTION 
IN OBSESSIVE-COMPULSIVE DISORDER 

OCD is characterized by obsessions (thoughts, e.g., “there are deadly germs 
on my hands that may make me very ill”) that increase subjective distress 
and anxiety, and compulsive actions that are performed to reduce this dis-
tress (e.g., washing hands, sometimes repeatedly). A prominent CBT treat-
ment of OCD is exposure and response prevention (EXRP) (Abramowitz 1996; 
Meyer 1966), wherein the patient is guided through a series of exposures to 
sources of distress while avoiding the action that would reduce the distress. 
The goal is for the patient to learn that 1) the distress subsides over time 
even without performing the compulsion (so they can forgo the compulsion), 
and 2) the terrible outcome that they thought would happen if the compul-
sion is not performed does not occur (they don’t die of a deadly disease). 

From an RL perspective, one can conceptualize OCD in terms of Q-
values—the values of different actions in different states. In OCD, the val-
ues of many states become negative unless a specific action is executed. So 
while the Q-value for a=“washing hands” is zero for many states, the Q-value 
of doing nothing in these states is presumably very negative. Performance 
of the obsession confirms the zero Q-value of the obsessive action (as noth-
ing bad happens), yet prevents experiencing the outcome of not perform-
ing the obsession, so the value of other alternatives can remain erroneously 
negative. EXRP provides these learning experiences, which, through pre-
diction errors, can retrain the negative values to zero. Moreover, because 
the value of a=“doing nothing” may generalize more widely to the value of 
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the state in general, this training may generalize and prevent other obsessive 
actions (research on generalization in RL is, however, still in its infancy). 

The EXRP protocol also includes imaginal exposures, in which the pa-
tient is asked to imagine and write down the worst-case scenario outcome of 
not performing the obsession. This challenges traditional extinction-based 
theories of OCD treatment, because there is no expectancy violation in this 
method. Rather, the patient is asked to imagine exactly what they fear will 
happen. RL theory may help explain why this is helpful: being forced to ex-
plicitly state the contingencies leading to the worst-case outcome may elab-
orate an otherwise sparsely represented world model such that the exact 
series of events will be clearly represented, together with their low transition 
probabilities. This explicitly thought-through representation may thereby 
decrease the estimated probability of feared outcomes. 

Conclusion: Precision Psychotherapy—How Can 
Reinforcement Learning Theory Help? 

CBT has its roots in behaviorism and decades of experiments on animal learn-
ing. Harnessing ideas from the contemporary version of this rich body of 
knowledge—reinforcement learning theory—can help develop even more 
effective treatment protocols. For example, RL experiments have shown that 
people have a higher learning rate for actions they choose freely compared 
with those they are forced to execute (Cockburn et al. 2014). This suggests 
that offering several options for actions in each situation may speed skill 
learning in CBT and may explain why it is beneficial to involve patients in 
the planning of exposures. 

The quantitative nature of RL may also benefit precision psychiatry. RL 
theory defines the dynamics of learning as a set of equations and therefore 
allows quantification of individual parameters of the learning process using 
simple computerized decision-making tasks (Daw 2011). Indeed, fitting RL 
models to trial-by-trial choices in simple laboratory tasks is a means of mea-
suring parameters such as an individual’s learning rate (Niv et al. 2012), 
how this learning rate adapts to change in the environment (Behrens et al. 
2007), differences in the rate of learning from positive versus negative pre-
diction errors (Arkadir et al. 2016), the initial value ascribed to new choice 
options (Wittmann et al. 2008), and the tendency to use model-free versus 
model-based values in decision making (Gillan et al. 2016). Much current 
research in the field of computational psychiatry attempts to relate these 
parameters to psychopathologies and to discover individual differences that 
may be transdiagnostically linked to mental illness (Bennett et al. 2019; 
Huys et al. 2016; Montague et al. 2012). The hope is that measuring quan-
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tities that relate to the mechanisms underlying psychiatric illnesses in an 
objective way that does not rely on self-report will allow more precise treat-
ment predictions. 

Applied to CBT, this approach can also assist in measuring individual pa-
rameters of learning that can help a therapist better target the treatment meth-
ods, and track progress over time. For example, knowing that a patient’s 
model-free learning is slower than their model-based learning can help set the 
pace for exposures relative to cognitive restructuring methods, or assist in de-
termining which method would be more effective. Moreover, overall impaired 
trial-and-error learning can suggest that CBT will not be an effective method 
for this patient, and perhaps pharmacological treatment should be the first 
line of action. In this way, we may make progress on the long-sought-after goal 
of assigning patients to the most effective treatment (Cohen 2018). 

Finally, parameters from RL models may be useful for measuring the ef-
fects of psychotherapy.As examples, a decrease in the tendency to assign neg-
ative values to novel stimuli (Wittmann et al. 2008) may reflect reduction 
in overgeneralizing negative prior knowledge, and increased flexibility in 
making choices (i.e., how willing a person is to explore options that do not 
have the highest value; Wilson et al. 2014) may track improvement due to 
treatment. Arguably, the goal of CBT is to provide patients with more flex-
ible response options. By tracking flexibility using a simple computerized 
task administered repeatedly throughout the course of treatment, one can 
potentially determine when improvements have reached asymptote. In this 
way, RL theory—together with the set of tasks used to measure parameters 
of the learning process—can help develop precision psychotherapy, a therapeu-
tic approach that uses objectively measurable indices of learning to most ef-
fectively help an individual. 

Appendix 1: Reinforcement Learning 

A1.1—UNDERSTANDING LEARNING RATES IN 
REINFORCEMENT LEARNING 
Another way to write the RL update equation Vnew(S) = Vold(S) + α · (R – 
Vold(S)) is Vnew(S) = Vold(S) · (1 – α) + α · R. The latter highlights that learn-
ing is a weighted average between old knowledge Vold(S) and new experi-
ence R, with the learning rate α determining the weighting of old and new 
information: high learning rates prioritize new experiences and cause the 
effects of old events to be “forgotten,” whereas low learning rates allow val-
ues to reflect the effect of more past events. We emphasize that there is no 
single “correct” learning rate: in a stable but noisy environment it is advan-
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tageous to average over many events, whereas following an abrupt change 
it makes sense to learn quickly from new events (Yu and Dayan 2005). In-
deed, experiments show that humans adjust their learning rate across tasks, 
and even within a task, in response to volatility as well as other factors (Mc-
Guire et al. 2014; Nassar et al. 2012). Therefore, even this extremely sim-
plified one-parameter model can be used to describe interesting behavior 
that (normatively) adapts to task demands, and may potentially be disrupted 
due to mental illness. 

A1.2—A CIRCUIT FOR MODEL-FREE REINFORCEMENT 
LEARNING 
Neurally, dopamine signaling is widely believed to correspond to RL predic-
tion errors (Barto 1995; Montague et al. 1996; Schultz et al. 1997). Numer-
ous studies have shown that phasic dopamine bursts or pauses appear at times 
in a task where, in theory, the animal should be experiencing a prediction 
error. In humans, functional neuroimaging studies have identified a similar 
signal in the blood oxygenation activity recorded in the ventral striatum 
(Hare et al. 2008)—an area that receives dense dopaminergic projections. 
Indeed, the striatum, which receives widespread projections from sensory, 
motor and associative cortical areas, is thought to be the area representing 
the values of states and actions. Learning in corticostriatal synapses is mod-
ulated by dopamine, with dopamine concentration determining whether 
long-term changes in synapses will strengthen the synapse (long-term po-
tentiation; when there is a surge of dopamine above baseline) or weaken it 
(long-term depression; when there is a dip in dopamine concentration be-
low baseline) (Reynolds et al. 2001). This mechanism can easily implement 
the trial-and-error learning algorithm described in the section “Reinforce-
ment Learning in a Nutshell” earlier in this chapter, because positive pre-
diction errors signaled by phasic increases in dopamine concentration 
would lead to more firing of striatal neurons in the presence of the state or 
the state and action in the future (signaling the now-higher expected value) 
and vice-versa for negative prediction errors (dips in dopamine firing). 

Appendix 2: Cognitive-Behavioral Therapy 

A2.1—EXAMPLE APPLICATION OF CBT PRINCIPLES 
TO AN EVENT 
Imagine someone interrupts you in a discussion. This event can raise differ-
ent thoughts and interpretations, ranging from “How annoying, X is always 



  

     

  
 

  
 

 

   

 
  

 
     

   
 

    
  

    

  

 
 

  

 

 
 

211 Toward Precision CBT via Reinforcement Learning Theory 

so inconsiderate” to “What I was saying was probably not interesting...I 
bet everyone was relieved when he changed the topic.” Each will lead to a 
different emotional response (e.g., feeling anger, insult, self-doubt) and dif-
ferent behavioral responses (e.g., try to speak over the interrupter; fall si-
lent and speak less in this group in the future). According to CBT theory, 
individuals have internal schemas—ingrained beliefs that “filter” incoming 
information, biasing its subjective interpretation. For example, the schema 
“I am not good at anything” will favor the interpretation that one’s contri-
bution was boring or incorrect, whereas the schema “the world is against me” 
may favor the interpretation that an aggressive work environment has fos-
tered a culture of interruption that must be fought. 

A2.2—EXPOSURE-BASED METHODS 
Recognizing that maladaptive thought, emotion, and behavior patterns that 
reach clinical significance are usually long entrained, the focus of CBT is 
to have repeated new learning experiences in which the patient can practice 
skills acquired in therapy until they have been perfected. For example, a so-
cially anxious patient may first practice skills during planned exposures with 
a warm and encouraging fellow therapist from their therapist’s practice. In 
this low-stakes interaction, the patient can practice tolerating distress, inhib-
iting the urge to escape or to deploy safety behaviors, and redirecting at-
tention outward when it turns to negative self-judgments. The patient can 
then generalize these skills by performing them in more difficult situations, 
such as with a fellow-therapist confederate who now acts impassively or hos-
tilely, and in less controlled settings, such as with a boss or with strangers. 
Through repeated exposure and practice (ideally, every day), fears will typ-
ically decrease and skills will become habitual. These skills then serve as a re-
source the patient can draw upon if fear later returns or if a life situation 
elicits heightened concern about negative judgment. 

In practice, to plan the exposures, first the patient and therapist will create 
a scale, usually from 0 to 10, where 0 is no distress and 10 is the most distress 
possible.This scale will be populated with events at different levels: perhaps for 
a patient who suffers from social anxiety, watching TV at home is a 0, talking 
to the cashier at the supermarket is a 3, asking a stranger for directions on the 
street is a 5, making small-talk with a taxi driver is a 7, and going to a party 
where they don’t know anyone is a 10. Exposures are then planned from level 
3 or so and are gradually increased: first, the patient will practice going to the 
supermarket and saying “hello” to the cashier each time.When this has ceased 
to be threatening, perhaps they will purchase a small item at a kiosk where they 
have to ask the attendant for the item, climbing to level 4. After each set of ex-
posures, the scale can be reevaluated for all events (some might now be less 



  
     

   
    

   

 
  

   
  

 

  
   

 

 
 
  

 
 

  

212 Precision Psychiatry 

threatening than they were in the past) and the patient, with the therapist’s 
guidance, chooses the next level/action that they find feasible to expose them-
selves to, and plans a new set of exposures. Depending on the diagnosis and 
the individual’s learning propensities (e.g., whether they learn best model 
based or model free, and what their individual learning rate is), each exposure 
may need to be repeated a few or more times. 

A2.3—EXPOSURES AND REINFORCEMENT LEARNING 
PREDICTION ERRORS 
One reason for the gradual nature of exposures is obvious: the patient will 
not agree to do something too distressing, and even if they do it, they may 
decide to terminate the therapy due to the high level of distress. However, 
RL theory suggests at least two more reasons that gradual exposure is more 
effective. First, rewards and punishments are not merely external: if a so-
cially anxious patient goes to a party on their own for their first exposure, 
their high subjective level of distress will function as an outcome for the ac-
tion. If their initial estimate of the value of the action of “going to a party” 
was very low, this severe distress outcome will only confirm this prediction. 
As a result, there will be no prediction error, and no new learning. The ex-
posure will have failed. Instead, a well-planned exposure at a low level of pre-
dicted distress (level 3) can lead to learning to the extent that the exposure 
is planned so well that the patient experiences less distress than expected. 
This can be achieved by discussing all possible outcomes and their cogni-
tive appraisal, and planning for how to mitigate any distress that arises. The 
goal is for the patient to experience that the event that they predicted would 
lead to level 3 distress is not as bad as they thought, and distress may even 
dissipate to level 0 over time without escaping the situation. This will cause 
a prediction error that will result in learning. 

A second advantage of gradual exposure is that prediction errors are not 
too large. Research suggests that large prediction errors prompt the creation 
of a new state (Gershman et al. 2010). This new state will then be updated 
with the new information, but the old value will remain unchanged. Accord-
ing to RL theory, to unlearn old maladaptive state and action values, one 
should experience prediction errors that are not too small (otherwise there 
will be no learning) and not too large (because they will cause state-splitting). 
CBT exposures seem tailored to deliver exactly such prediction errors. 



  

  

 

 
 

  

 

 

 

  
 

   
  

    
   

 

213 Toward Precision CBT via Reinforcement Learning Theory 

KEY POINTS 
• The goal of cognitive-behavioral therapy (CBT), a widely used 

method for many psychiatric conditions with a strong empirical 
evidence base, is to effect change in cognition, emotion, and 
behavior. 

• Concomitant with the development of CBT, cognitive neurosci-
entists and psychologists converged on a theoretical framework 
called reinforcement learning (RL) to explain trial-and-error learn-
ing, behavioral decision making, and their neural implementa-
tion. RL suggests that learning occurs and expectations (values) 
are updated when we experience a “prediction error”—a discrep-
ancy between what we expected and what actually happened. 

• Humans employ both model-free and model-based decision-
making mechanisms. The former depends on dopaminergic pre-
diction error–based learning; involves the ventral and dorsolateral 
striatum and portions of the amygdala; and reflects ingrained, 
less flexible, habitual behavior. The latter seems dopamine inde-
pendent; relies on the hippocampus, frontal cortex, and the dorso-
medial striatum; and reflects flexible, prospective goal-directed 
planning. 

• The CBT framework can be mapped directly to core concepts from 
RL. The cognitive aspects of CBT may be seen as targeting the 
model-based system, while the behavioral component of CBT is 
strongly related to the model-free learning system. 

• RL may aid in improving CBT through the development of more 
effective treatment protocols, quantification of individual param-
eters of the learning process to help better tailor CBT, and mea-
surement of the effects of psychotherapy. 
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MOVING FROM PRECISION TO 
PERSONALIZED PSYCHIATRY 

Clinical Perspectives on the New Era 

Giampaolo Perna, M.D., Ph.D. 
Charles B. Nemeroff, M.D., Ph.D. 

History 

THE UNMET NEEDS OF PSYCHIATRY 
The percentage of the population experiencing mental health disorders has 
risen significantly since 2010, yet many adults with severe mental illness re-
main undiagnosed and untreated, which heavily affects their quality of life 
and relationships (Balon and Morreale 2019; McAllister-Williams et al. 
2016; Wang et al. 2007). Even when these individuals are recognized and 
treated, and despite having therapeutic options, clinical outcomes are often 
unsatisfactory (Caldirola and Perna 2019; McAllister-Williams et al. 2020; 
Patterson and Van Ameringen 2016; Perna et al. 2020). The rising global 
economic burden of mental health–related disability and therapeutic treat-
ments currently contributes to 32.4% of the years lived with disability and an 
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220 Precision Psychiatry 

annual global expenditure of $2.5 trillion, and the mental health care bud-
get does not match actual costs (Kohn et al. 2018; Rehm and Shield 2019; 
Trautmann et al. 2016; Vigo et al. 2016, 2019). Further, the standard psy-
chiatric “assessment and treatment” approach—grounded in clinicians’ per-
sonal experience and evidence-based national/international guidelines— 
has highlighted controversy and inadequacies (McAllister-Williams et al. 
2016; Perna and Nemeroff 2018). Reliable methods for determining the 
most effective treatment for each individual patient remain elusive. 

A NEW AND REVOLUTIONARY APPROACH 
TO PSYCHIATRY 
Precision medicine is an innovative approach for identifying distinctive char-
acteristics of an individual related to health and disease in order to select 
appropriate and effective therapy to maximize the likelihood of favorable re-
sponse and minimize adverse effects (National Research Council 2011; Per-
sonalized Medicine Coalition 2017; Sugeir and Naylor 2018). These 
characteristics encompass clinical, neurobiological, and lifestyle factors (Di 
Sanzo et al. 2017; Goetz and Schork 2018; König et al. 2017). Medical fields 
that use precision medicine—notably oncology and infectious disease—are 
seeing positive effects on the longitudinal course and outcomes of several ill-
nesses (Johnson 2017; Le Tourneau et al. 2018; Ozomaro et al. 2013). 

Precision medicine has a central role in worldwide initiatives in psychiatry 
and the neurosciences, including the Precision Medicine Initiative (White 
House, Office of the Press Secretary 2015a, 2015b), the Research Domain 
Criteria project (Insel 2014; Insel et al. 2010; Stein and Reed 2019), and the 
Brain Research through Advancing Innovative Neurotechnologies initia-
tive (Insel et al. 2013; National Institutes of Health 2019). 

Within the umbrella concept of precision approaches to psychiatry, we 
define personalized medicine in psychiatry (PMP) more narrowly as tailoring 
treatment to the individual characteristics of each patient. PMP’s potential 
usefulness is evident (Fernandes et al. 2017; Perna and Nemeroff 2018). 
Tailoring mental health care to each patient’s unique characteristics will 
likely improve diagnostic certainty and psychiatric disorder outcomes and 
thereby address the staggering disease burden of these disorders (World 
Federation for Mental Health 2012). However, PMP is far from being ap-
plied in everyday clinical practice (Perna et al. 2018a). 

In this chapter, we review the opportunities and challenges associated 
with PMP, paying particular attention to its application in tailoring treatment 
for mood and anxiety disorders. We hope that the advances we discuss re-
garding “precision” medicine will result in improved patient outcomes via 
the application of “personalized” medicine. 
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Current Knowledge and Approaches 

THE FUTURE OF PRECISION MEDICINE IN PSYCHIATRY 

Developing a precision approach in psychiatry is a slow and challenging 
process because psychiatric disorders are highly complex and multifactorial 
conditions. Each psychiatric diagnosis is heterogeneous in many aspects, 
including clinical symptoms and neurobiological features (Fanous and 
Kendler 2005; Hodgson et al. 2017; Stephan et al. 2016). Therefore, large 
amounts of collectable information will be needed to support the develop-
ment of innovative precision diagnostic and therapeutic strategies. Further 
steps will be needed to gather clinical, neurobiological, genetic, and indi-
vidual information and translate it into reliable workable tools that can help 
clinicians in the diagnostic and therapeutic process (Ozomaro et al. 2013; 
Perna and Nemeroff 2018; Perna et al. 2018b). The multidimensional com-
plexity of big data “requires a change of perspective, infrastructure, and 
methods for data collection, sharing and analyses” (Baro et al. 2015) in med-
icine that takes into account an innovative yet ethical vision of this evolution 
(Abbott et al. 2020; Ball et al. 2020; Evers 2009; Hays 2017; Perna and Ne-
meroff 2018). 

Early theoretical papers and proof-of-concept studies have shown prom-
ise, but their applicability to current clinical practice has been overestimated 
(Cearns et al. 2019; Lydiard and Nemeroff 2019). For example, several 
combinatorial pharmacogenetic tests to support drug selection in psychiatric 
patients have recently become available (e.g.,the FDA-approved Ampli-
Chip CYP450 Test from Roche; GeneSight from Assurex Health; Neuro-
pharmagen, AB-Biotics), but they have different testing approaches and 
levels of evidence supporting their clinical utility. Recent meta-analytic re-
sults suggest that the clinical outcomes of patients with major depressive 
disorder (MDD) were significantly improved when care was guided by some 
of these tests compared with unguided care (Brown et al. 2020; Vilches et 
al. 2019). However, in the view of this chapter’s authors, the real clinical 
utility and cost-effectiveness of this PMP strategy is still in doubt. Indeed, 
the largest randomized clinical trial of pharmacogenomics to predict anti-
depressant efficacy, the Genomics Used to Improve DEpression Decisions 
(GUIDED) study, failed to meet its primary efficacy outcome measure and 
failed to predict side effect liability (Greden et al. 2019). Obviously, the 
clinical effects of antidepressants or antipsychotics are not due solely to their 
rate of metabolism by cytochrome P450 enzymes (Bousman and Eyre 2020; 
Bousman and Hopwood 2016; Ozomaro et al. 2013; Rosenblat et al. 2017; 
Zeier et al. 2018). 
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Companies that market these tests often do not declare which specific 
genetic variants are included or the precise pharmacogenetic algorithms that 
lead to their reports (Zeier et al. 2018). Also, the limited sample sizes and 
low methodological rigor of many studies—which were funded by the com-
panies that market the tests—may have undermined the reliability of avail-
able results (Cearns et al. 2019; Lydiard and Nemeroff 2019). As such, 
while pharmacogenetics-based tools may presently be helpful in some clin-
ical situations, there are insufficient data to support their widespread use in 
clinical practice, and rigorous large-scale studies are warranted (Cearns et 
al. 2019; Goldberg and Nemeroff, in press; Hoehe and Morris-Rosendahl 
2018; Krebs and Milani 2019; Lydiard and Nemeroff 2019; Majchrzak-
Celinska and Baer-Dubowska 2017; Sullivan et al. 2018; Zeier et al. 2018). 

BIG DATA 

Very large-scale data collection (i.e., “big data”) is crucial to enabling reli-
able individualized predictions in PMP. Big data collection has been aided 
by recent technological advances, such as the increased use of electronic 
medical records (EMRs) in hospitals and office-based health care (Castro 
et al. 2015; Hsiao and Hing 2014), which generates huge amounts of data 
that are easily collected and inexpensive to store and analyze. Clearly, EMR-
collected information has limitations, especially when records are being 
pulled from different clinical centers. For example, data sets may be non-
homogeneous with several missing values, clinical information may be dis-
organized and unstandardized, different methods may be used for data 
collection, and some information may be coded in formats not immediately 
suitable for analysis. 

However, there are promising examples of how appropriate analyses can 
successfully obtain clinical insights from EMRs, albeit not yet in relation to 
tailoring of treatment. A highly predictive model of suicidal behavior was 
built through the application of a probability-based machine learning algo-
rithm on a large-scale health care database (longitudinal EMRs of approx-
imately 1.7 million patients, spanning 15 years) (Barak-Corren et al. 2017). 
Also, the application of a natural language processing technique to EMR 
data from a U.S healthcare system (more than 4.2 million patients, span-
ning more than 20 years) provided a highly accurate diagnostic algorithm 
for bipolar disorder (Castro et al. 2015). Similarly, the application of bio-
informatics tools to EMRs of multiple large hospitals enabled the correct 
classification of current mood state and definition of longitudinal outcomes 
in patients with MDD (Perlis et al. 2012). 

Clearly, improvements are needed (e.g., the standardization and align-
ment of information collected in different centers and the use of common 
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or mergeable platforms), and great attention must be payed to ethical and le-
gal issues and patient privacy. However, the extensive use of EMRs, along 
with the application of new computational resources such as machine learn-
ing techniques, is expected to contribute to personalized diagnoses and 
treatment decisions in the near future (Adkins 2017). 

REAL-TIME DATA COLLECTION THROUGH SMART 
WEARABLE DEVICES 
Another promising contributor to PMP is the widespread development of 
digital technology tools, especially “wearables,” which are particularly suitable 
for collecting highly personalized data using flexible approaches. Wearable 
technology refers to accessories and clothing that incorporate computer tech-
nologies—including smartphones, smart watches, fitness trackers, smart cloth-
ing, and ear-worn devices—which are increasingly used because they are 
minimally intrusive and can be worn continuously without affecting daily ac-
tivities (Perna et al. 2018b). Personal digital technologies can regularly re-
cord patients’ subjective and objective data, and can be linked to smart health 
information systems, thus enabling extensive data collection in large groups 
of interest for both enhanced clinical care and longer-term research. Such 
technology-based approaches enable researchers/clinicians to track multiple 
dimensions concurrently, in real time, in great detail and at scale (Bauer et al. 
2020; Faurholt-Jepsen et al. 2019; Harvey et al. 2020; Perna et al. 2018b; 
Qian and Long 2017; Seppälä et al. 2019; Xu et al. 2014). 

While such devices have been adopted in other medical fields, such as 
cardiology (Fung et al. 2015; Lobodzinski 2013), oncology (Gresham et al. 
2018), and endocrinology (Ontario Health [Quality] 2019; Umpierrez and 
Klonoff 2018), their use in psychiatry is still relatively limited (Roberts et 
al. 2018). However, with the widespread use of internet-connected devices 
(Ashton 2009), researchers and clinicians will soon be able to evaluate and 
analyze, in real time, data received from each device (Bauer et al. 2020; Ben-
Zeev et al. 2015; Glenn and Monteith 2014; Magee et al. 2018). Such anal-
ysis will improve diagnostic accuracy, increase the capability of monitoring 
each patient from subjective and objective points of view, and enable prompt 
and direct communication with patients in case of emergency or to encour-
age their greater involvement with their own treatment and prevention 
process (Bauer et al. 2020; Cheung et al. 2018; de la Torre Díez et al. 2018; 
Hernandez et al. 2015; Magee et al. 2018; Van Ameringen et al. 2017). 
Nonadherence is one of the main causes of treatment failure in psychiatry, 
but these new devices can improve the doctor-patient relationship and 
build trust in psychiatric therapies (Ben-Zeev et al. 2015; Lopez et al. 2019; 
Paik and Kim 2019; Perna et al. 2018b; Torous and Roberts 2017). 



 
  

  

 
 

   

   

  

  

   

  

 

 
     

 
 

  

 
 

  
 

 

    

224 Precision Psychiatry 

When combined with other powerful design strategies (e.g., genetic, 
neuroimaging, neurobiological, and clinical intervention studies) and applied 
to multiple groups of interest (e.g., clinical, “at high risk,” and epidemiolog-
ical populations), digital technology tools may help to increase our under-
standing of psychiatric disorders and improve personalized interventions. 
Research is being conducted in the remote monitoring of patients and the 
gathering of specific parameters and biomarkers to identify depression or 
anxiety disorders and improve therapeutic outcomes (Bauer et al. 2020; 
Faurholt-Jepsen et al. 2019; Seppälä et al. 2019). Although no definitive con-
clusions can yet be drawn concerning the clinical utility and cost-effectiveness 
of these new strategies, the ongoing research provides encouraging results, 
and we present some examples in the following section. However, planning 
for and using these devices in clinical practice requires a concrete evalua-
tion of each patient’s needs and the establishment of a privacy “code of con-
duct” to ensure that patients accept and easily integrate these tools into their 
everyday life (Ball et al. 2020; Bauer et al. 2020; Chan et al. 2012; Haghi et 
al. 2017; Kappeler-Setz et al. 2013; Perna et al. 2018b). 

MACHINE LEARNING 

Collecting large amounts of data over long periods of time is relatively easy 
to do. However, accurate prediction will require complex models that trans-
late the information and link it to the clinical outcome. Machine learning, a 
subset of artificial intelligence, can successfully help automate the data 
analysis process and make predictions using statistical techniques to in-
crease our understanding of relationships among the collected variables 
(Bzdok and Meyer-Lindenberg 2018; Cearns et al. 2019; Dwyer et al. 2018; 
Rutledge et al. 2019; Tai et al. 2019; Vu et al. 2018). The application of ma-
chine learning techniques has recently expanded in e-commerce, search 
engine results, financial services, automatic transport, social media, virtual 
assistants, and health care (Bzdok and Meyer-Lindenberg 2018; Cearns et 
al. 2019; Dwyer et al. 2018; Rutledge et al. 2019). 

Machine learning is expected to revolutionize how we diagnose, treat, and 
monitor psychiatric disorders. The current aim is to build well-structured 
predictive models of diagnosis and outcomes (Bzdok and Meyer-Linden-
berg 2018; Cearns et al. 2019; Dwyer et al. 2018; Perna et al. 2018b; Rut-
ledge et al. 2019). For example, using machine learning in psychiatry could 
help predict patient response to pharmacological and nonpharmacological 
treatments and aid early identification of patients at high risk of adverse 
events. However, before these tools can be integrated, further research 
must identify relevant predictors. Though the research moves forward, the 
overall pace of development in detecting, defining, and treating psychiatric 
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disorders is disappointing (Bzdok and Meyer-Lindenberg 2018; Cearns et 
al. 2019; Dwyer et al. 2018; Perna et al. 2018b; Rutledge et al. 2019). 

Clinical Illustrations 

PMP APPLICATION IN MOOD DISORDERS 

Crucial aspects of PMP include more precise prediction of disease suscep-
tibility, early diagnosis of disease, and personalized therapies, all of which 
are aimed at decreasing the morbidity and mortality associated with mental 
illnesses (Prendes-Alvarez and Nemeroff 2018). In this context, progress 
has been made in mood disorders (MDD and bipolar disorder). 

In terms of therapeutic outcomes of mood disorders, a crucial aim is to in-
crease the rate of favorable treatment responses. Of patients with MDD, 
40%–60% obtain suboptimal responses to first-line treatment, of whom 
only about 35% obtain remission after switching to a second-line treatment, 
and 34%–48% of patients have treatment-resistant depression (Perna et al. 
2020). Similarly, treatment-resistant bipolar depression is considered the 
major contributor to the large burden of bipolar disorder–associated dis-
ease. The prediction of which mood stabilizer is best for each individual pa-
tient with bipolar disorder is a major challenge in clinical practice (e.g., 
only one-third of lithium-treated patients obtain a complete clinical re-
sponse) (McAllister-Williams et al. 2020). 

In recent years, promising attempts have been made to develop outcome-
predictive models. Two main strategies have been followed, namely, the ap-
plication of innovative computational methods (e.g., machine learning) to 
“pure” clinical data to increase the predictive power of variables that are 
easily collected in clinical practice, and the enrichment of predictive mod-
els through the inclusion of multimodal individual variables such as ge-
netic, biological, and neuroimaging information, and/or biomarkers. For 
example, the recent application of machine learning techniques to clinical 
data previously collected in the Sequenced Treatment Alternatives to Relieve 
Depression (STAR*D) (Phase 1) and Combining Medications to Enhance 
Depression Outcomes (CO-MED) studies provided a model capable of 
significantly predicting clinical remission to citalopram, escitalopram, and 
escitalopram-bupropion treatment, but not to venlafaxine-mirtazapine treat-
ment, which suggests the model’s specificity to identifying patients with 
MDD who are likely to respond to a specific antidepressant (Chekroud et 
al. 2016, 2017). Similarly, a combination of demographic and clinical vari-
ables, obtained using an machine learning approach on previous data from 
the Genome-Based Therapeutic Drugs for Depression study, significantly 



 
 
 

 

     
 

 
 

  
 

    
    

 
 

   

 
  

 
 

  
 

 

 

226 Precision Psychiatry 

contributed to predicting MDD response and remission treatment with es-
citalopram, but not with nortriptyline, which suggests a potential for indi-
vidualized prescription of escitalopram (Iniesta et al. 2016). However, a 
significant improvement to the model’s performance, yielding significant 
drug-specific predictions of remission for both escitalopram and nortripty-
line, was obtained through a subsequent reanalysis of the same sample’s 
data using statistical learning on a larger number of factors, including com-
mon genetic variants and clinical variables (Iniesta et al. 2018). One recent 
report proposed using preliminary, potentially clinically relevant machine 
learning models for predicting lithium response in patients with bipolar 
disorder using only clinical data (Kim et al. 2019), even though higher pre-
diction accuracy was found in a preliminary study that included neuroim-
aging data (Fleck et al. 2017). Because the bipolar disorder studies on this 
topic are limited and present considerable methodological heterogeneity, 
more research will be needed to draw any firm conclusion. 

The inclusion of multiple variables in predictive models of treatment re-
sponse is considered to be the most promising strategy for significantly in-
creasing the accuracy of the predictions, because patients classified as having 
the same psychiatric disorder show considerable phenomenological and bio-
logical heterogeneity. Consistent with this, an ensemble learning model, which 
integrated imaging, genetic, and clinical information for individualized base-
line prediction of early response to antidepressants in MDD, achieved a better 
performance (accuracy=0.86) than models that included only functional MRI 
(fMRI) or genetic data (Pei et al. 2020). In line with this idea, a recent meta-
analysis on bipolar or unipolar depression found that machine learning classi-
fication algorithms predicted therapeutic outcomes with an overall accuracy 
of 0.82, but pooled estimates of classification accuracy were significantly 
greater in models informed by multiple data types, including neuroimaging, 
genetic, and clinical data predictors (Lee et al. 2018). 

Recent preliminary studies suggest that other innovative variables might 
also enrich machine learning models. Pretreatment gene expression bio-
markers (i.e., peripheral messenger RNA levels of genes selected from 
genome-wide transcriptome data) reached 0.76 accuracy in predicting 
nonremission after 8 weeks of citalopram treatment in patients with MDD, 
which suggests that these biomarkers might add considerable improvement 
to predictions when integrated into larger machine learning models (Guil-
loux et al. 2015). A “learning-augmented clinical assessment” workflow 
with “multi-omics,” in which clinical assessment was enriched with a wide 
range of biological measures (e.g., metabolites, genetic data, metabolomic 
concentrations), demonstrated a significant improvement in prediction ac-
curacy for antidepressant treatment outcomes in patients with MDD from 
35% to 80% individualized by patient, compared with a model using only 
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clinical predictors (Athreya et al. 2018). A very large study—including 
patients with MDD from the Mayo Clinic Pharmacogenomics Research 
Network Antidepressant Medication Pharmacogenomic Study, the Inter-
national Selective Serotonin Reuptake Inhibitor (SSRI) Pharmacogenom-
ics Consortium trials, and the STAR*D trial—found that machine learning 
can achieve accurate and replicable prediction of SSRI therapy response 
using total baseline depression severity combined with pharmacogenomic 
biomarkers (Athreya et al. 2019). Although these results have not yet defin-
itively changed the way mood disorders are treated and how treatment out-
comes are predicted, they seem to indicate a promising perspective. 

PMP APPLICATION IN ANXIETY DISORDERS 

In the field of anxiety disorders, the body of PMP research is more limited 
and less informative than that in mood disorders. This is disappointing 
given that anxiety disorders are among the most common mental disorders 
(lifetime prevalence is approximately 33.7% and 14.5% of the U.S. and Eu-
ropean adult populations, respectively [Alonso et al. 2007; Bandelow and 
Michaelis 2015; Kessler et al. 2012]) and are associated with severe disabil-
ity, impairment in quality of life, high psychiatric/medical comorbidity, and 
significant economic burden on society (Gustavsson et al. 2011; Nager and 
Atkinson 2016). Response rates to recommended first-line anxiety disorder 
treatments—such as SSRIs, serotonin-norepinephrine reuptake inhibitors, 
and cognitive-behavioral therapy (CBT)—are often below expectation, with 
40%–60% of patients continuing to have residual and impairing symptoms 
(Bandelow 2020; Bandelow et al. 2017; Bokma et al. 2019; Koen and Stein 
2011; Patterson and Van Ameringen 2016). In the following paragraphs, 
we provide examples of precision medicine application in anxiety disorders, 
mainly focused on personalized therapy for panic disorder (PD). 

Our group recently proposed preliminary considerations toward a per-
sonalized approach for PD, with an attempt to define some homogeneous 
phenomenological profiles of PD, which may be relevant to therapeutic man-
agement (Caldirola and Perna 2019). We considered respiratory, cardiac, 
vestibular, and derealization/depersonalization profiles, based on individ-
ual clinical symptoms and biological patterns, with related implications for 
treatment (Caldirola and Perna 2019). Behavioral/respiratory hypersensi-
tivity to hypercapnia—which is present in approximately 50%−70% of pa-
tients with PD and runs in families—is a reliable biomarker of vulnerability 
to PD. Some findings showed that an early decrease in hypersensitivity to 
hypercapnia—measured through the 35% carbon dioxide (CO2)-inhalation 
laboratory test—after the first week of treatment significantly predicted 
good clinical outcome after a 1-month treatment with SSRIs, imipramine, or 
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clomipramine, which suggests that CO2 reactivity can be a useful objective 
predictor of short-term clinical outcome in patients with PD (Perna et al. 
2002). Further, patients with PD displayed several pretreatment respira-
tory abnormalities (Perna and Caldirola 2018), including higher variability 
in baseline respiratory parameters and hematic indicators of chronic hyper-
ventilation (Grassi et al. 2014). Preliminary findings showed that successful 
antipanic pharmacological treatments were associated with the normalization 
of some baseline respiratory parameters, such as blood pH and HCO3

−/ 
PO4

−, which suggests that respiratory variables are worthy of future larger 
investigations as potential outcome predictors (Caldirola and Perna 2019). 
Finally, preliminary results suggested that low pretreatment end-tidal CO2 
may predict dropout or poorer outcomes from CBT (Davies and Craske 
2014; Tolin et al. 2017), because patients with PD who had reduced pre-
treatment heart rate variability were more likely to show residual symptoms 
after completion of exposure therapy (Wendt et al. 2018). These are prom-
ising results, though confirmations are needed. 

Only a few studies of genetic/epigenetic putative predictors are available 
in PD. Although they present heterogeneous methods and results, these 
studies suggest a potential role of genetic polymorphisms involving the se-
rotonergic system and COMT (catechol O-methyltransferase), an enzyme 
involved in monoamine catabolism, in predicting responses to antipanic 
medication or CBT (Caldirola and Perna 2015; Lonsdorf et al. 2010), while 
recent preliminary findings proposed polymorphism of the orexin receptor 1 
as a predictor of post-CBT improvement (Gottschalk et al. 2019). Revers-
ibility of pretreatment monoamine oxidase A hypomethylation was sug-
gested as a potential epigenetic correlate of response to CBT in patients 
with PD (Perna et al. 2016). A recent longitudinal epigenome-wide associ-
ation study and pilot data in PD demonstrated the involvement of dynamic 
methylation of multiple genes in CBT outcomes (Ziegler et al. 2019). 

A few brain imaging studies have investigated neural substrates that are 
potentially predictive of treatment response to CBT in patients with PD. Pre-
liminary findings showed associations between pretreatment activation pat-
terns—mainly involving anterior cingulate cortex–amygdala coupling during 
fear-conditioning and extinction tasks—and favorable response (Lueken et 
al. 2013). A subsequent attempt to integrate brain imaging and genetic data 
revealed that the above-described findings were driven by CBT responders 
with the L/L genotype of the 5-HTTLPR polymorphism (Lueken et al. 
2015). More recently, a study that applied a machine learning approach to 
pre-CBT brain imaging data found that no single brain region was predic-
tive of treatment response, while good predictive performance was achieved 
by integrating regional classifiers based on data from the acquisition and 
the extinction phases of a fear-conditioning task for the whole brain (Hahn 
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et al. 2015). In contrast, support vector machine analysis of fMRI data ac-
quired during a pretreatment interoception paradigm was not able to reli-
ably predict individual response to CBT (Sundermann et al. 2017). 

Clearly, progress toward a personalized therapy for PD—and for anxiety 
disorders in general—is inadequate. Large-scale data collection is lacking, 
and there are insufficient studies that attempt to combine multiple data lev-
els to identify patterns with the highest predictive capacity and accuracy. A 
few studies displayed a preliminary potential, such as the attempt to quan-
tify anxiety disorder risk in preschool children through application of a ma-
chine learning approach to diagnostic parent-report interviews (Carpenter 
et al. 2016), or to separate generalized anxiety disorder from MDD using a 
multimodal machine learning approach that integrated clinical, hormonal, 
and structural MRI data (Hilbert et al. 2017). Support vector machine anal-
ysis using neural correlates of social signals of threat suggested that neural 
activity across large-scale systems may aid in the diagnosis of social anxiety 
disorder (Xing et al. 2020). Pretreatment cortical hyperactivity to social 
threat signals may serve as a prognostic indicator of CBT success in social 
anxiety disorder (Klumpp et al. 2013). Finally, an ongoing randomized con-
trolled study is examining multilevel prediction of response to behavioral 
activation and exposure-based therapy in generalized anxiety disorder 
(Santiago et al. 2020). However, more work will be required to draw reli-
able conclusions, and a number of methodological refinements and specific 
challenges must be addressed to improve diagnostic tools and treatment out-
come in anxiety disorders (Lueken et al. 2016). 

Conclusion and Future Directions 
A groundbreaking change in data collection and analysis will be necessary 
to acquire valid predictive models for psychiatric disorders. At this point, 
the first question that clinicians and researchers should ask themselves is, 
“What is our goal now?” (Fernandes et al. 2017; Ozomaro 2013; Perna and 
Nemeroff 2018; Perna et al. 2018b). 

The World Health Organization (2020) defines health as “a state of com-
plete physical, mental and social well-being and not merely the absence of dis-
ease or infirmity,” which means that mental health implies more than the lack 
of mental disorders. Hence, the goal of successful treatment is to achieve the 
highest possible quality of life for patients. In these terms, personalized psychi-
atry can be a turning point in the way mental illnesses are addressed and 
treated. If tech devices become part of integrated clinical systems, all types of 
data will be integrated into the global process of redefining diagnoses and 
treatment (Perna et al. 2018b). Artificial intelligence will assist experts in the 
medical decision-making process, with the aim to facilitate mental health care. 
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Now, several years after the introduction of precision medicine, progress 
in psychiatry has yet to produce tangible effects on the population. To re-
alize the dream of precision medicine in clinical psychiatry, a change of 
direction is needed. The next steps will require both a structural and a pro-
cedural change in research and practice. 

Clinicians should have an active role in the development of precision 
medicine (e.g., collecting data and guiding patients and family through the 
new systems). Indeed, artificial intelligence cannot replace one of most im-
portant assets in the healing and recovery process: the patient-clinician re-
lationship. 

Researchers should always take into account the actualization of the knowl-
edge gained through studies, namely, considering to what extent results are 
applicable to clinical practice. A stronger cooperation between academic 
research and industry is also essential to accumulate the requisite strong ev-
idence of the efficacy and cost-effectiveness of the developed tools. Govern-
ments and policy makers have the responsibility to promulgate new public 
health policies, provide strategic direction and funds, and regulate com-
mercial medical devices and new pharmacological compounds. 

Personalized psychiatry will require consideration beyond the “biological 
features” of psychiatric disorders. The data from “-omics” (e.g., genomics, 
epigenomics, proteomics, metabolomics, pharmacogenomics) and other 
techniques (i.e., neuroimaging, behavioral and neuropsychological assess-
ment, and brain electrical activity) are necessary but not sufficient. Person-
alized psychiatry offers the idea of combining biological and clinical data 
with specific environmental, spiritual, and personal aspects relevant for each 
individual patient (Saveanu and Nemeroff 2012). Using information 
gained from patients’ psychosocial situation, personal preferences, health 
beliefs, values, and goals enables clinicians to tailor a treatment intervention 
on the unique features of each patient. 

PMP has the potential to change the way we conceptualize, identify, and 
treat mental health disorders, and this change should not be delayed any 
longer. To help realize this goal, the World Psychiatric Association has re-
cently founded the Personalized Psychiatry section, whose mission is to se-
cure, spread, and adopt the precision medicine approach in psychiatry. Not 
a palpable dream or a theoretical illusion, but a realistic approach. 

KEY POINTS 
• Given unsatisfactory clinical outcomes with our current approach to 

mental health assessment and treatment, a new approach is ur-
gently needed. Personalized medicine in psychiatry (PMP) has 
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emerged as an innovative approach for identifying distinctive fea-
tures of an individual related to health and disease in order to 
select appropriate and effective therapy. More narrowly, PMP is 
focused on tailoring treatment. 

• Because psychiatric disorders are highly heterogeneous both clin-
ically and neurobiologically, it is likely that a large amount of mul-
timodal data will be needed to reliably boost the development 
of innovative precision diagnostic and therapeutic strategies. 

• Combinatoral pharmacogenetic tests, big data, and wearable tech-
nology are all sources of multimodal data that, while they each 
have limitations, show promise in improving classification and 
tailoring treatment in psychiatry. 

• Promising progress has been made in PMP in developing models 
for mood disorders in order to predict their development and re-
sponse to therapy, particularly when using variables from multiple 
sources. However, these results have yet to change the way psy-
chiatry is practiced. 

• PMP has the potential to change the way we conceptualize, identify, 
and treat mental health disorders. Realizing this goal will require 
support and cooperation from academic research, industry, gov-
ernments, and policy makers, as well as consideration of both 
biological and clinical data, including patients’ psychosocial sit-
uation, personal preferences, health beliefs, values, and goals. 
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History 

In the beginning, there was darkness. For thousands of years, psychiatric 
illness was treated as “madness.” People were tried as witches and burned at 
the stake. They were shackled and forgotten. Some religious traditions in-
culcated a moral model in which symptoms were conceptualized as a 
choice, a personal failure, or divine punishment. Treatments, when they ex-
isted, may have been worse than the illnesses: bloodletting, to bring balance 
to the four body humors; trepanation, to let out evil spirits; exorcism, to re-
move the spirits forcefully. For most of history, psychiatric illness has been 
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lumped together as a single, toxic entity, and those suffering from it were 
profoundly stigmatized, shunned from society, and exiled to the asylum. 

The 1800s saw the first serious attempts to bring order and reason to 
the understanding of historical “madness.” At the turn of the 19th century, 
Franz Joseph Gall was the first in recorded history to posit that specific re-
gions of the brain were the centers for specific faculties (Zola-Morgan 
1995). Although this work evolved into the carnival pseudoscience of phre-
nology, it marked an important shift away from Cartesian dualism. By the 
mid-century, support for the localization of higher-order behavioral func-
tions emerged from the seminal case of Phineas Gage, who experienced 
disinhibition and personality change following injury to his prefrontal cortex 
(Macmillan 2000). The second half of the nineteenth century saw Broca’s 
first precise localization of a higher cognitive function: the seat of spoken 
language on the inferior frontal gyrus (Broca 1861; Kann 1950).With efforts 
such as these, neuropsychiatric syndromes began to emerge from ancient 
concepts of “madness” and “lunacy.” Researchers were so successful that some 
syndromes—for example, epilepsy through the work of Jackson (Reynolds 
1988) and dementia through the work of Pick (Spatt 2003)—were no lon-
ger considered psychiatric disorders. 

Other conditions were more elusive. Toward the late 1800s, a group of 
physicians turned their attention to some of the disorders that remained un-
explained and dedicated themselves to the crucial task of psychiatric nosology. 
They sought to carve out categories that reflected discrete disease entities 
using meticulous observations of symptoms, phenomenology, and course of 
progression over time. Most famous is the work of Kraepelin on individuals 
with psychotic symptoms, in which he tried to differentiate those whom he 
felt to have a progressive decline from those with a more cyclical course. 
He ultimately settled on two broad entities: “dementia praecox” and “manic-
depressive insanity.” Though Kraepelin later appreciated that this was an 
oversimplification, the basic distinction still stands (Kendler and Engstrom 
2018). 

Through the early 1900s, new tools gradually emerged that enabled the 
measurement of brain activity. The advent of the lumbar puncture, electro-
encephalography, and advances in neuropathology furthered the growing 
schism between neurology and psychiatry—diseases of the nervous system 
versus diseases of the mind—with echoes of Cartesian dualism reverberat-
ing once more (Price et al. 2000). While these new developments helped to 
advance the field of neurology, psychiatry slipped backward. Leading psy-
chiatric treatments of the era (e.g., cold sheet compresses, insulin coma, 
malarial fever, frontal lobotomy, hysterectomies) remained crude and impre-
cise. The burgeoning psychodynamic movement continued to push psychi-
atry further away from a medical model. 
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In the mid-1950s, widespread change overtook the field. Lithium’s utility 
for acute mania had been rediscovered by John Cade, and the development 
of a blood test to monitor lithium levels helped to manage the safety profile 
of this markedly efficacious pharmacotherapy (Shorter 2009). At the same 
time, chlorpromazine offered a huge step forward in the treatment of chronic 
psychotic disorders (Carpenter and Davis 2012). Significant reduction in 
positive psychotic symptoms and agitation were seen, setting the stage for 
understanding the role of the brain’s dopamine systems in perceptual dis-
turbances, salience processing, and self-inferential reasoning. 

Chlorpromazine’s success prompted the development of derivative com-
pounds, which included the tricyclic antidepressants and their descendants, 
the selective serotonin reuptake inhibitors. Meanwhile, happenstance during 
the treatment of tuberculosis with isoniazid led to the monoamine oxidase 
inhibitors (Carpenter and Davis 2012). The treatments themselves were 
hardly precise, but the sequential development of these drug classes was an 
important step toward precision. Psychiatric diseases were finally being con-
ceptualized as biological entities. 

In the 1960s, at the same time as the psychiatric world was widely expand-
ing the use of these new pharmacotherapies, neurology was also about to 
change. Most of the field was focused on peripheral nerves, neuromuscular 
junctions, and movement syndromes. Moreover, psychodynamic models to 
explain higher-order functioning were just as accepted among neurologists 
as they were in psychiatric circles. But a subset of the community, led by 
Norman Geschwind, became interested in the serious study of behavior.Their 
approach derived from the neurology of the 1800s: observe patients with spe-
cific lesions (like Phineas Gage) and connect their disrupted neuroanatomy 
to circumscribed deficits of behavior or cognition. This work set the stage 
for a modern understanding of cortical networks that are involved in lan-
guage, praxis, attention, visuospatial abilities, memory, and semantics (Me-
sulam 2015). The implications for understanding emotional processing, 
disorders of thought, consciousness, and behavior—the neurobiology of psy-
chiatric illness—were not far behind. Sadly, though, the culture gap was so vast 
that this pioneering work went largely unnoticed by the field of psychiatry. 

Meanwhile, in psychiatry, the challenges of nosology continued. By the 
1970s, most fields of medicine had been able to describe their major disease 
processes, identify underlying pathophysiology, and develop correspond-
ing treatments that could be evaluated via systematic clinical trials. But psy-
chiatry was stuck. Much of the field persisted with older models of mental 
illness that conceptualized causality from a psychodynamic framework: from 
penis envy causing neuroses (Schafer 1974) to masturbatory impulses caus-
ing tics (Martin 2002). Psychiatry was decidedly lacking in both precision 
and reliability and was therefore incompatible with a modern medical ap-
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proach. In 1980, DSM was revised specifically to address this problem: in 
the absence of biological data, the goal was to create a diagnostic system 
that would be based on observable behavioral features (DSM-III; American 
Psychiatric Association 1980). Though agnostic to causality, this system 
would at least enable inter-rater reliability as well as more valid and repro-
ducible clinical trials. 

While it was a critical step forward at the time, over the ensuing years 
the unintended consequences of DSM have become increasingly problem-
atic. Since all major clinical trials are built around a DSM schema, the di-
agnostic criteria have become cemented as a foundation of clinical practice. 
Though DSM was intended as a tool for reliable categorization, over time 
clinicians have come to treat the DSM categories as if they reflect discrete 
diseases. 

Similarly, while the discoveries of effective medications were an impor-
tant step forward, they led to reductive disease models (e.g., schizophrenia as 
a hyperdopaminergic process or depression as a hyposerotonergic state) 
that have lingered beyond their utility. We have even designed animal mod-
els of psychiatric illness around these same oversimplifications. For exam-
ple, we consider an animal model of depression to be valid if it is reversed 
by antidepressant medications. 

Current Knowledge and Approaches 

The dawn of the current century saw the beginning of the neuroscience rev-
olution and the creation of a broad range of new tools that could finally bring 
light to psychiatry.As described in the previous chapters, modern approaches 
(including genetics, imaging, and interventional techniques) could enable 
us to achieve the holy grail of precision medicine: to make precise, patho-
physiologically defined diagnoses for individual patients and use them as a 
basis for implementing specific custom treatments. Myriad examples are 
emerging that, while still limited in their scope, point the way to the future. 

Yet even when these tools are ready, the field will still face a major obsta-
cle. The successful implementation of precision psychiatry will require a 
skilled and ready workforce. Unfortunately, that workforce does not yet ex-
ist in the field of psychiatry. Sadly, our field remains defined by our history 
rather than our future. 

Preparing for a future of precision psychiatry will require addressing sev-
eral core challenges. First and foremost is the fact that major advances in 
our understanding of the brain are relatively new. This means that many— 
if not most—practicing clinicians were trained in an era when an under-
standing of neuroscience had relatively little impact on their day-to-day clin-
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ical practice. In fact, despite new hypothesis-driven treatments, much of 
neuroscience research has remained within the confines of academic insti-
tutions and leading research journals. The relevance of neuroscience to the 
practice of psychiatry today may not be readily apparent to most clinicians 
in the community. 

As for those clinicians who do recognize the value of integrating a neu-
roscience perspective into clinical practice, where do they begin? The field 
is vast, and much of the scientific literature is intended to communicate 
with other researchers. The content is inherently intricate and is often in-
accessible to a clinical audience. In addition, the relevance of these data and 
their potential translation to clinical practice are often unclear. The in-
creasingly complex landscape of medicine has driven specialization, with 
clinicians and researchers each working within smaller and smaller niches. 
As a result, opportunities for dialogue between researchers and clinicians are 
limited, and this is further complicated by the fact that each group funda-
mentally speaks a different language. Thus, a major challenge is facilitating 
communication across these distinct communities (Arbuckle et al. 2017; 
Cooper et al. 2019). 

Conclusion and Future Directions: 
Medical Education for Precision Psychiatry 
Preparing the field for precision psychiatry will require major changes in 
medical education and how psychiatry residents are trained. Although most 
psychiatric residency training directors appreciate the importance of inte-
grating neuroscience into training, a lack of appropriate faculty and the un-
availability of curricula are major barriers (Benjamin et al. 2014). Few 
programs have faculty with sufficient expertise in neuroscience. For those 
that do, the same challenges described above apply (i.e., expertise in neuro-
science may be independent of the skills necessary to teach a clinical audi-
ence). These barriers underscore the importance of collaborating across 
institutions to develop resources that can be implemented by non-experts. 
In addition, resources must be adaptable to cover a broad range of topics and 
keep pace with new discoveries (Ross et al. 2015). 

To this end, the National Neuroscience Curriculum Initiative (NNCI) 
was developed in 2013 with the goal of creating a set of shared, open-access 
materials that could be used by residency training programs to help learn-
ers incorporate a robust neuroscience presence into their clinical work. 
The guiding principles were as follows: 1) all materials should maintain an 
integrative, patient-centered approach to care; rather than teaching neuro-
science in isolation, it should be brought alongside the other rich traditions 
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of our field; 2) in recognition of limitations of traditional medical education 
(including overreliance on a lecture format), all resources would be designed 
according to principles of adult learning (e.g., clear learning objectives for 
each session; embracing experiential learning methods); and 3) focusing on 
dissemination, sessions must be easy to implement regardless of the content 
expertise of the facilitator. From the beginning, it was clear that no single pro-
gram would be able to do this on its own. Rather, a core belief of the NNCI 
team was that in the same way that cutting-edge science requires teamwork and 
collaboration, so too does cutting-edge education. 

Over the first several years, the NNCI focused on creating classroom 
teaching and learning resources that embody these principles. These in-
cluded more than a dozen different modules, each reflecting a unique peda-
gogical approach, with multiple sessions designed around each approach. To 
assist with implementation, the NNCI ensured that each session was accom-
panied by a facilitator’s guide with detailed descriptions of how to run the 
session, answers to all of the exercises, and additional background materials. 
Recognizing that many instructors may not feel comfortable with the con-
tent, the NNCI also focused heavily on faculty development by providing 
training sessions at the annual meetings of many professional organizations. 

At the same time, it quickly became clear that these efforts were intrin-
sically limited. Even if programs were able to successfully implement the 
most radical of classroom curricula (perhaps 50–100 hours), it would still 
be only a small fraction of a resident’s total educational experience (approx-
imately 10,000 hours). If faculty were not reinforcing core neuroscience 
concepts in clinical settings, a hidden curriculum might emerge: that neu-
roscience is an academic topic intended for classroom discussion only and 
is not important to clinical practice. To address this challenge, the NNCI be-
gan developing a set of resources that could be easily implemented within a 
clinical setting while highlighting the relevance of neuroscience to patient 
care. For example, a team could treat a patient with borderline personality 
disorder and then watch together a brief video of an expert demonstrating 
how to speak with a patient about the neurobiology of borderline personality 
disorder, or a different video illustrating how adverse childhood experiences 
could cause lasting changes to hypothalamic-pituitary-adrenal axis regula-
tion through epigenetic mechanisms. 

Another limitation of this approach became apparent: the majority of 
these materials were aimed at residency programs. In order to effect mean-
ingful change in our field, the scope of this effort needed to expand to 
engage individuals throughout levels of training and across disciplines, in-
cluding medical students, practicing psychiatrists, other physicians, psy-
chologists, social workers, nurses, and even patients and families. To this 
end, the NNCI began investing effort into a set of resources that were de-
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signed to engage a wider audience. These resources include TED-style talks, 
a series of narrative clinical commentaries in the journal Biological Psychia-
try, and a new podcast. Each of these pieces is designed to take one core 
concept in neuroscience and make it clear, relevant, and accessible. 

Since its inception, the NNCI has compiled over 200 teaching resources. 
These include materials that are designed for classroom settings and those 
designed for clinical supervision, as well as a collection of videos and nar-
rative-style commentaries that are designed to engage a broader audience. 
Recognizing the challenges of implementation and dissemination, the 
NNCI has run more than 50 faculty development workshops at the annual 
meetings of national organizations and in other venues. As a reflection of 
the demand for such resources, as of March 2021, more than 200 training pro-
grams have implemented NNCI teaching materials within their curricula, 
and the NNCI website has registered more than 90,000 unique users from 
164 countries. Even more encouragingly, regulatory agencies have begun 
to embrace neuroscience in psychiatric training standards. The Accredita-
tion Council for Graduate Medical Education has included neuroscience in 
the Psychiatry Milestones benchmarks for resident competence, and the 
Royal College of Psychiatrists in the United Kingdom has changed both its 
curriculum and its assessment process to incorporate modern neuroscience. 

Psychiatry is on the cusp of a revolution. Modern neuroscience is already 
enabling us to move from broad syndromes to more focused diagnostic enti-
ties. Over a century ago,Kraepelin’s dementia praecox laid the groundwork for 
today’s broad categorization of psychosis. Since then, we have been able to 
carve a few actual diseases from this category. Psychosis that presents with pro-
gressive paresis, sensory ataxia, and pupils that accommodate but do not react 
to light is a disease caused by a spirochete and requires treatment with peni-
cillin. Delusions and hallucinations following a cluster of seizures require im-
proved seizure control rather than treatment with antipsychotic medications. 
The occurrence of isolated visual hallucinations in the setting of blindness re-
quires only psychoeducation to inform that this is normal. More recently, 
catatonia in first-episode psychosis should prompt testing for autoimmune 
causes (Pollak et al. 2020). Each of these more precise diagnoses (neurosyph-
ilis, postictal psychosis, Charles Bonnet syndrome, and autoimmune enceph-
alitis, respectively) enables targeted treatment planning at the disease level. 

The promise of precision medicine is that we can leverage modern tools 
to continue this work, not only for psychosis but also across all of psychiat-
ric illness. Other examples are just around the corner: from the identifi-
cation of novel autoimmune antibodies to appreciating the impact of the 
microbiome; from applying complex machine learning algorithms to func-
tional imaging–based diagnostics. However, advances in precision psychia-
try will also require precision education to ensure that clinicians have the 



 

 

  
 

  
 

 

 
 

 

 
  

 

 
 

  
 

 

  
   

248 Precision Psychiatry 

knowledge, skills, and attitudes that will enable them to embrace new ap-
proaches as they emerge. 

As Joshua Gordon, director of the National Institute of Mental Health, 
described: “It’s incredibly important that our psychiatrists training for to-
morrow understand that they too are neuroscientists. They’re studying the 
brain. They’re studying the brain in a very different way, in a very patient-
focused way....If they don’t understand that, one of two things will happen, 
and maybe both: they will be left behind, they won’t be able to do the psy-
chiatry of tomorrow; or the psychiatry of tomorrow won’t be” (Ross 2019). 

KEY POINTS 
• The field of psychiatry has progressed a long way from the concep-

tualization of psychiatric illness as “madness” to the neuroscience 
revolution in which modern approaches described in previous 
chapters are paving the way for the precision psychiatry revolution. 

• Preparing the field for precision psychiatry will require major 
changes in medical education and how psychiatry residents are 
trained. 

• The National Neuroscience Curriculum Initiative (NNCI) was de-
veloped in 2013 with the goal of creating a set of shared, open-
access materials that could be used by psychiatry residency 
training programs to help learners incorporate a robust neuro-
science presence into their clinical work. 

• Initially focused on creating classroom resources that embody 
principles of adult learning, the NNCI has adapted over the years 
to now developing resources implementable in clinical settings 
and that are designed to engage individuals throughout levels of 
training and across disciplines. 

• The vital importance of incorporating modern neuroscience into 
psychiatric training is clearly reflected in the high demand for the 
NNCI’s materials, its adoption by regulatory agencies into psychi-
atric training standards, and recognition by the past two direc-
tors of the National Institute of Mental Health that psychiatrists 
must incorporate neuroscience into their clinical practice. 
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PLATE 1. (Figure 1–1) Example of how multimodal data and data-driven 
techniques may be used to help define the optimal number of biotypes ac-
counting for the heterogeneity of mood and anxiety disorders. 
The biotypes thus identified could then be utilized to guide patients to targeted treatments. 



  
  

PLATE  2. (Figure 3–1) Representation of neural circuitries implicated in (A) emotional regulation and (B) reward processing. 
Arrows represent key connectivity among these regions. ACC = anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; mdPFC = mediodorsal 
prefrontal cortex; OFC = orbitofrontal cortex; vlPFC = ventrolateral prefrontal cortex. 



  

  

PLATE  3. (Figure 3–2) Representation of key abnormalities (yellow bursts) in (A) emotional regulation and (B) reward processing cir-
cuitries that predict future worsening of bipolar disorder–related psychopathology in youth. 
Arrows represent key connectivity among these regions. ACC = anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; mdPFC = mediodorsal 
prefrontal cortex; OFC = orbitofrontal cortex; vlPFC = ventrolateral prefrontal cortex. 



     

 
    

  

PLATE  4. (Figure 4–1) An example of a neural correlate of the negative attention bias in depression. 
Participants were instructed to either think about or suppress (not think about) images that were previously associated with positive or negative valence. 
The group of depressed participants recalled more negative items and had a larger late positive potential (or late positive component [LPC]) for negative 
“think” items compared with the nondepressed group. These findings reflect abnormal allocation of attentional resources to negative stimuli in the envi-
ronment, which is believed to arise from increased neural responsivity in prefrontal-parietal attentional circuitry. EEG = electroencephalogram; T/NT = 
Think/No-Think. 
Source. Adapted from Zhang et al. 2016. 



  
    

    
    

     
 

PLATE  5. (Figure 9–1) Schematic overview of translational levels for understanding fear and threat. 
(A) Behavioral correlates of the conditioned response (CR) and unconditioned response (UCR) can be probed through physiological recording. (B) Neural sub-
strates that support fear and threat conditioning may be probed through both functional (to index neural activity) and structural (to index gray and white matter 
morphology) brain imaging. (C) Cell and molecular approaches allow for investigation of specific microcircuits, such as those within the amygdala, that support 
threat conditioning processes. (D) Insights from both genomic and epigenomic approaches can identify individual risk factors and potential physiological pathways 
that can modulate fear and threat processing. BLA=basolateral nucleus of the amygdala; CeL=lateral central amygdala; CeM=centromedial amygdala; 
CS=conditioned stimulus; fMRI=functional MRI; HPA=hypothalamic-pituitary-adrenal; ITCs=intercalated cells; SNP=single nucleotide polymorphism; 
UCS=unconditioned stimulus. 



   
  

  
  

 
     

PLATE  6. (Figure 11–1) Two-step task. 
(A) Participants must first choose among two of the green stimuli. Each of the stimuli probabilistically leads to one of the second-stage stimulus sets with high 
probability, and to the other set with low probability. Participants then choose one of the two resulting second-stage stimuli and obtain a reward or not. (B) A 
model-free strategy here corresponds to repeating the first-stage (green) choice if the second-stage choice was rewarded, irrespective of the frequency of the tran-
sition observed. A model-based strategy takes the transition probability into account: after a rare transition, a reward leads to a switch at the first stage. Consider 
choosing the left green choice, but transitioning to the blue second stage and then obtaining a reward. In order to gain another reward from the same blue stimulus, 
the best strategy takes the transition probability into account and leads to a switch of the unchosen first-stage stimulus. Individuals typically use a mixture of these 
two strategies, which can be measured by the parameter w. (C) Patients who have binge-eating disorder (BED), obsessive-compulsive disorder (OCD), or meth-
amphetamine dependence (Meth), but not obesity or alcohol dependence, show a reduction in the parameter w that trades off between these strategies (i.e., they 
show a shift toward mode-free decision making). 
Source. Panels  A and B adapted and redrawn from Daw et   al. 2011. Panel C adapted and redrawn from Voon et al. 2015. 



 
 

    
 

  

PLATE  7. (Figure 11–2) Affective Go-NoGo task. 
(A) Individuals were taught to choose whether to Go or NoGo (respond on a button) for different stimuli. With some stimuli (fractals), an unpleasant tone could 
be escaped or entirely avoided by a Go response (top row). With other stimuli, the unpleasant tone could be escaped or avoided by a NoGo response (bottom row). 
(B) A computational model fitted to the data extracts a key parameter on which groups differed. Participants with a lifetime history of suicidal ideation showed a 
selective bias toward actively escaping, but did not show a bias in the avoid condition. The bias here was the starting point of a drift-diffusion model (Ratcliff and 
Smith 2004). 
Source. Adapted from Millner et al. 2019. 



  
   

 
   

     

 
  

   
  

   

PLATE  8. (Figure 11–3) Measuring mechanisms for the clinic. 
(A) For precision targeting, the measures derived from computational probes should mediate 
the effect of interventions. The measure mk can be used to decide whether to apply interven-
tion k if intervention k reduces measure mk, and this measure mk relates in a mechanistic or 
causal way to the illness. For instance, if antibiotics reduce certain bacterial cell counts, and 
these bacterial cell counts cause symptoms such as fever, then applying this antibiotic is likely 
to lead to an improvement in symptoms via its impact on the bacteria. (B) To be useful for 
precision targeting, computational probes, which might involve the results of a task being an-
alyzed with some computational model and producing a measure mk or mg, must be reliable 
at the individual level. The probes must also be deployable in clinical settings and be robust 
to typical clinical situations. (C) Measurements derived from computational probes must be 
valid (i.e., changes in these measurements should covary with changes in other measures of 
illness within individuals over time and between individuals). (D) Treatments, be they novel 
or established, should impact the measurement. 
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What if the principles of precision medicine already at work in 
ÿelds such as cardiology, oncology, and infectious disease— 
where biomarkers are combined with clinical features to tai-

lor treatments to speciÿc patients—were applied to psychiatry? 

It’s a bold path forward, and one that Precision Psychiatry presents 
exhaustively. More than three dozen experts in areas of expertise 
ranging from neuroimaging, neurocognition, and pharmacother-
apy to behavioral science and machine learning illustrate the push 
to develop biomarkers and algorithms that will identify subtypes 
of patients that may be underserved by conventional psychiatric 
therapies. 

Throughout the book, numerous case examples apply the principles 
of precision psychiatry to a spectrum of mood and anxiety disorders, 
as well as schizophrenia. 

Whether they are educators, trainees, or clinicians, readers will ÿnd 
the latest research in precise classiÿcation, treatment planning, and 
early identiÿcation in these pages, and a vision of a future where a 
one-size-ÿts-all approach gives way to tailored treatment based on 
integrating the scientiÿc foundations of psychiatry with recent ad-
vances in the neurosciences, data sciences, and technology. 
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