% bilby.js
bilby.js is a serious functional programming library. Serious, meaning it applies category theory to enable highly abstract and generalised code. Functional, meaning that it enables referentially transparent programs.
Some features include:
- Immutable multimethods for ad-hoc polymorphism
- Functional data structures
- Automated specification testing (ScalaCheck, QuickCheck)
- Fantasy Land compatible
node.js:
var bilby = require('bilby');
Browser:
<script src="bilby-min.js"></script>
Download the code with git:
git clone https://github.com/puffnfresh/bilby.js.git
Install the development dependencies with npm:
npm install
Run the tests with grunt:
npm test
Build the concatenated scripts with grunt:
$(npm bin)/grunt
Generate the documentation with emu:
$(npm bin)/emu < bilby.js
Environments are very important in bilby. The library itself is implemented as a single environment.
An environment holds methods and properties.
Methods are implemented as multimethods, which allow a form of ad-hoc polymorphism. Duck typing is another example of ad-hoc polymorphism but only allows a single implementation at a time, via prototype mutation.
A method instance is a product of a name, a predicate and an implementation:
var env = bilby.environment()
.method(
// Name
'negate',
// Predicate
function(n) {
return typeof n == 'number';
},
// Implementation
function(n) {
return -n;
}
);
env.negate(100) == -100;
We can now override the environment with some more implementations:
var env2 = env
.method(
'negate',
function(b) {
return typeof b == 'boolean';
},
function(b) {
return !b;
}
);
env2.negate(100) == -100;
env2.negate(true) == false;
The environments are immutable; references to env won't see an
implementation for boolean. The env2 environment could have
overwritten the implementation for number and code relying on env
would still work.
Properties can be accessed without dispatching on arguments. They can almost be thought of as methods with predicates that always return true:
var env = bilby.environment()
.property('name', 'Brian');
env.name == 'Brian';
This means that bilby's methods can be extended:
function MyData(data) {
this.data = data;
}
var _ = bilby.method(
'equal',
bilby.isInstanceOf(MyData),
function(a, b) {
return this.equal(a.data, b.data);
}
);
_.equal(
new MyData(1),
new MyData(1)
) == true;
_.equal(
new MyData(1),
new MyData(2)
) == false;
- method(name, predicate, f) - adds an multimethod implementation
- property(name, value) - sets a property to value
- envConcat(extraMethods, extraProperties) - adds methods + properties
- envAppend(e) - combines two environemts, biased to
e
The helpers module is a collection of functions used often inside of bilby.js or are generally useful for programs.
Returns the name of function f.
Returns the arity of function f.
Makes this inside of f equal to o:
bilby.bind(function() { return this; })(a)() == a
Also partially applies arguments:
bilby.bind(bilby.add)(null, 10)(32) == 42
Takes a normal function f and allows partial application of its
named arguments:
var add = bilby.curry(function(a, b) {
return a + b;
}),
add15 = add(15);
add15(27) == 42;
Retains ability of complete application by calling the function when enough arguments are filled:
add(15, 27) == 42;
Flips the order of arguments to f:
var concat = bilby.curry(function(a, b) {
return a + b;
}),
prepend = flip(concat);
Identity function. Returns o:
forall a. identity(a) == a
Constant function. Creates a function that always returns c, no
matter the argument:
forall a b. constant(a)(b) == a
Creates a new function that applies f to the result of g of the
input argument:
forall f g x. compose(f, g)(x) == f(g(x))
Partial polyfill for Object.create - creates a new instance of the given prototype.
Always returns an instance of constructor.
Returns self if it is an instanceof constructor, otherwise constructs an object with the correct prototype.
Creates a simple constructor for a tagged object.
var Tuple = tagged('Tuple', ['a', 'b']);
var x = Tuple(1, 2);
var y = new Tuple(3, 4);
x instanceof Tuple && y instanceof Tuple;
Creates a disjoint union of constructors, with a catamorphism.
var List = taggedSum({
Cons: ['car', 'cdr'],
Nil: []
});
function listLength(l) {
return l.cata({
Cons: function(car, cdr) {
return 1 + listLength(cdr);
},
Nil: function() {
return 0;
}
});
}
listLength(List.Cons(1, new List.Cons(2, List.Nil()))) == 2;
Turns the throw new Error(s) statement into an expression.
Takes two lists and pairs their values together into a "tuple" (2 length list):
zip([1, 2, 3], [4, 5, 6]) == [[1, 4], [2, 5], [3, 6]]
Creates a new single object using k as the key and v as the
value. Useful for creating arbitrary keyed objects without
mutation:
singleton(['Hello', 'world'].join(' '), 42) == {'Hello world': 42}
Right-biased key-value concat of objects a and b:
bilby.extend({a: 1, b: 2}, {b: true, c: false}) == {a: 1, b: true, c: false}
Returns true iff o has typeof s.
Returns true iff a is a Function.
Returns true iff a is a Boolean.
Returns true iff a is a Number.
Returns true iff a is a String.
Returns true iff a is an Array.
Returns true iff a is even.
Returns true iff a is odd.
Returns true iff o is an instance of c.
Sentinal value for when any type of primitive value is needed.
Sentinal value for when a single character string is needed.
Sentinel value for when an array of a particular type is needed:
arrayOf(Number)
Returns true iff a is an instance of arrayOf.
Sentinal value for when an object with specified properties is needed:
objectLike({
age: Number,
name: String
})
Returns true iff a is an instance of objectLike.
Curried function for ||.
Curried function for &&.
Curried function for +.
Curried function for ===.
Returns true iff a is falsy.
Curried function for filling array.
Create an array with a given range (length).
Lifts a curried, binary function f into the applicative passes
a and b as parameters.
Sequences an array, a, of values belonging to the m monad:
bilby.sequence(Array, [
[1, 2],
[3],
[4, 5]
]) == [
[1, 3, 4],
[1, 3, 5],
[2, 3, 4],
[2, 3, 5]
]
Adds operator overloading for functional syntax:
-
>=- monad flatMap/bind:bilby.Do()( bilby.some(1) >= function(x) { return x < 0 ? bilby.none : bilby.some(x + 2); } ).getOrElse(0) == 3; -
>>- kleisli:bilby.Do()( function(x) { return x < 0 ? bilby.none : bilby.some(x + 1); } >> function(x) { return x % 2 != 0 ? bilby.none : bilby.some(x + 1); } )(1).getOrElse(0) == 3; -
<- functor map:bilby.Do()( bilby.some(1) < add(2) ).getOrElse(0) == 3; -
*- applicative ap(ply):bilby.Do()( bilby.some(add) * bilby.some(1) * bilby.some(2) ).getOrElse(0) == 3; -
+- semigroup concat:bilby.Do()( bilby.some(1) + bilby.some(2) ).getOrElse(0) == 3;
Creates a new syntax scope. The a expression is allowed multiple
usages of a single operator per Do call:
>=- flatMap>>- kleisli<- map*- ap+- concat
The associated name will be called on the bilby environment with the operands. For example:
bilby.Do()(bilby.some(1) + bilby.some(2))
Desugars into:
bilby.concat(bilby.some(1), bilby.some(2))
Used to mutate the valueOf property on proto. Necessary to do
the Do block's operator overloading. Uses the object's existing
valueOf if not in a Do block.
Warning: this mutates proto. May not be safe, even though it
tries to default back to the normal behaviour when not in a Do
block.
Reifies continutations onto the heap, rather than the stack. Allows efficient tail calls.
Example usage:
function loop(n) {
function inner(i) {
if(i == n) return bilby.done(n);
return bilby.cont(function() {
return inner(i + 1);
});
}
return bilby.trampoline(inner(0));
}
Where loop is the identity function for positive numbers. Without
trampolining, this function would take n stack frames.
Result constructor for a continuation.
Continuation constructor. thunk is a nullary closure, resulting
in a done or a cont.
The beginning of the continuation to call. Will repeatedly evaluate
cont thunks until it gets to a done value.
- concat(b) - semigroup concat
- map(f) - functor map
- ap(b) - applicative ap(ply)
- chain(f) - chain value
- arb() - arbitrary value
Returns true if a is Id.
Sentinel value for when an Id of a particular type is needed:
idOf(Number)
Returns true iff a is an instance of idOf.
Option a = Some a + None
The option type encodes the presence and absence of a value. The
some constructor represents a value and none represents the
absence.
- fold(a, b) - applies
ato value ifsomeor defaults tob - getOrElse(a) - default value for
none - isSome -
trueiffthisissome - isNone -
trueiffthisisnone - toLeft(r) -
left(x)ifsome(x),right(r)if none - toRight(l) -
right(x)ifsome(x),left(l)if none - flatMap(f) - monadic flatMap/bind
- map(f) - functor map
- ap(s) - applicative ap(ply)
- concat(s, plus) - semigroup concat
Constructor of Monad creating Option with value of x.
Constructor to represent the existence of a value, x.
Represents the absence of a value.
Returns true if a is a some or none.
Either a b = Left a + Right b
Represents a tagged disjunction between two sets of values; a or
b. Methods are right-biased.
- fold(a, b) -
aapplied to value ifleft,bifright - swap() - turns
leftintorightand vice-versa - isLeft -
trueiffthisisleft - isRight -
trueiffthisisright - toOption() -
noneifleft,somevalue ofright - toArray() -
[]ifleft, singleton value ifright - flatMap(f) - monadic flatMap/bind
- map(f) - functor map
- ap(s) - applicative ap(ply)
- concat(s, plus) - semigroup concat
Constructor to represent the left case.
Constructor to represent the (biased) right case.
Returns true iff a is a left or a right.
Validation e v = Failure e + Success v
The Validation data type represents a "success" value or a semigroup of "failure" values. Validation has an applicative functor which collects failures' errors or creates a new success value.
Here's an example function which validates a String:
function nonEmpty(field, string) {
return string
? λ.success(string)
: λ.failure([field + " must be non-empty"]);
}
We might want to give back a full-name from a first-name and last-name if both given were non-empty:
function getWholeName(firstName) {
return function(lastName) {
return firstName + " " + lastName;
}
}
λ.ap(
λ.map(nonEmpty("First-name", firstName), getWholeName),
nonEmpty("Last-name", lastName)
);
When given a non-empty firstName ("Brian") and lastName
("McKenna"):
λ.success("Brian McKenna");
If given only an invalid firstname:
λ.failure(['First-name must be non-empty']);
If both values are invalid:
λ.failure([
'First-name must be non-empty',
'Last-name must be non-empty'
]);
- map(f) - functor map
- ap(b, concat) - applicative ap(ply)
Represents a successful value.
Represents a failure.
errors must be a semigroup (i.e. have an concat
implementation in the environment).
Constructor to represent the existance of a value, x.
Constructor to represent the existance of a value, x.
Returns true iff a is a success or a failure.
Lenses allow immutable updating of nested data structures.
A store is a combined getter and setter that can be composed with
other stores.
Returns true iff a is a store.
A total lens takes a function, f, which itself takes a value
and returns a store.
- run(x) - gets the lens'
storefromx - compose(l) - lens composition
Returns true iff a is a lens.
Creates a total lens over an object for the k key.
Purely functional IO wrapper.
Pure wrapper around a side-effecting f function.
- perform() - action to be called a single time per program
- flatMap(f) - monadic flatMap/bind
Returns true iff a is an io.
Tuples are another way of storing multiple values in a single value. They have a fixed number of elements (immutable), and so you can't cons to a tuple. Elements of a tuple do not need to be all of the same type
Example usage:
bilby.Tuple2(1, 2);
bilby.Tuple3(1, 2, 3);
bilby.Tuple4(1, 2, 3, 4);
bilby.Tuple5(1, 2, 3, 4, 5);
- arb() - arbitrary value
- flip() - flip values
- concat() - Semigroup (value must also be a Semigroup)
- map() - functor map
- concat() - Semigroup (value must also be a Semigroup)
- map() - functor map
- concat() - Semigroup (value must also be a Semigroup)
- map() - functor map
- concat() - Semigroup (value must also be a Semigroup)
- map() - functor map
Returns true if a is Tuple2.
Returns true if a is Tuple3.
Returns true if a is Tuple4.
Returns true if a is Tuple5.
Promise is a constructor which takes a fork function. The fork
function takes one argument:
fork(resolve)
Where resolve is a side-effecting callback.
The resolve callback gets called when a value is resolved.
Creates a Promise that contains a successful value.
Returns a new promise that evaluates f when the current promise
is successfully fulfilled. f must return a new promise.
Returns a new promise that evaluates f on a value and passes it
through to the resolve function.
Returns true if a is Promise.
- chain() - TODO
- evalState() - evaluate state
- execState() - execute on state
- map() - functor map
- ap() - applicative ap(ply)
Returns true if a is State.
List a = Cons a + Nil
The list type data type constructs objects which points to values. The cons
constructor represents a value, the left is the head (car, the first element)
and the right represents the tail (cdr, the second element). The nil
constructor is defined as an empty list.
The following example creates a list of values 1 and 2, where the nil terminates the list:
cons(1, cons(2, nil));
The following can also represent tree like structures (Binary Trees):
cons(cons(1, cons(2, nil)), cons(3, cons(4, nil)));
*
/ \
* *
/ \ / \
1 2 3 4
- concat(a) - semigroup concat
- fold(a, b) - applies
ato value ifconsor defaults tob - map(f) - functor map
- fold(f) - applies f to values
- flatMap(f) - monadic flatMap
- append(a) - append
- appendAll(a) - append values
- prepend(a) - prepend value
- prependAll(a) - prepend values
- reverse() - reverse
- exists() - test by predicate
- filter() - filter by predicate
- partition() - partition by predicate
- size() - size of the list
Constructor to represent the existence of a value in a list, a
and a reference to another b.
Represents an empty list (absence of a list).
Returns true if a is a cons or nil.
QuickCheck is a form of automated specification testing. Instead of manually writing tests cases like so:
assert(0 + 1 == 1);
assert(1 + 1 == 2);
assert(3 + 3 == 6);
We can just write the assertion algebraicly and tell QuickCheck to automaticaly generate lots of inputs:
bilby.forAll(
function(n) {
return n + n == 2 * n;
},
[Number]
).fold(
function(fail) {
return "Failed after " + fail.tries + " tries: " + fail.inputs.toString();
},
"All tests passed!"
)
- inputs - the arguments to the property that failed
- tries - number of times inputs were tested before failure
Generates values for each type in args using bilby.arb and
then passes them to property, a function returning a
Boolean. Tries goal number of times or until failure.
Returns an Option of a failureReporter:
var reporter = bilby.forAll(
function(s) {
return isPalindrome(s + s.split('').reverse().join(''));
},
[String]
);
The number of successful inputs necessary to declare the whole property a success:
var _ = bilby.property('goal', 1000);
Default is 100.



