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Abstract—Snow is a significant challenge for PV plants at
northern latitudes, and snow-related power losses can exceed
30% of annual production. Accurate loss estimates are needed
for resource planning and to validate mitigation strategies, but
this requires accurate snow detection at the inverter level. In
this study, we propose and validate a framework for detecting
snow in time-series inverter data. We identify four distinct snow-
related power loss modes based on the inverter’s operating
points and electrical properties of the inverter and PV arrays.
We validate these modes and identify their associated physical
snow conditions using site images. Finally we examine relative
frequencies of the snow power loss modes and their contributions
to total power loss.

I. INTRODUCTION

As penetration of renewable energy generation increases,
seasonal mismatches between renewable production and de-
mand are becoming increasingly problematic [1]. Many studies
have demonstrated that snow significantly compromises PV
output during winter [2]–[4], often a period of high demand in
snowy regions [5], with losses as high as 90% - 100% during
winter months for some systems [2], [6], [7]. Quantitative
comparisons of designs that promote system resiliency against
snow and fast snow shedding are needed, which require
accurate estimates of snow losses [8].

Established methods for estimating snow loss can be
grouped into data-driven models and physics-based models.
The accuracy of stochastic or curve-fitting models has not
been rigorously tested, but snow-cover models have been more
thoroughly reviewed. Snow cover models can reduce error in
generation predictions to as little as 7% during winter months,
but reviews have demonstrated that these models tend to
significantly underpredict snow losses if they do not reference
current snow cover conditions [2]. Timeseries images can
be used to provide snow cover conditions for these models,
but implementation require advance planning and additional
monitoring capabilities.

Over 30% of operable utility-scale fixed-tilt capacity is lo-
cated in the U.S. at or above 40 degrees of latitude (as of 2021)
[9], and represent vast stores of high quality performance
and irradiance data collected in cold climates. An accurate
method for identifying snow in these utility scale datasets
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would make snow loss quantification vastly more accessible to
asset owners. Characterizing the electrical signature of snow
has been the subject of simulation-based studies, but there has
been little research with regard to analysis and identification
in field data.

Snow losses were simulated for a single module with
varying spatial coverage and snow transmissivity by [10], but
models were not validated through field data. IV curves of
shaded and unshaded modules connected in series were mod-
eled as a function of shading coverage and validated through
field data by [11], but the effect of transmission was not
investigated. A recent study [12] developed an algorithm for
identifying snow using inverter and onsite ambient temperature
data, but comparison with field data demonstrated that the
algorithm failed to detect a third of snow events.

In this study, we propose and validate a model for identi-
fying snow in utility-scale PV inverter data with the goal of
establishing the foundation for a utility-scale snow loss esti-
mate tool. We use performance models to determine effective
transmission and coverage from field data, and corroborate
these values with site images. We use these parameters to
introduce a framework for behaviors that are distinguishable
within utility-scale field data and identify four distinct power-
loss modes. We validate the presence of these modes across
different system scales and data resolutions. We identify the
physical snow cover situations that each mode corresponds
to, and note differences across systems. We determine the
relative frequencies of each mode and associated fraction of
total power loss for each system, and correlate the aggregated
results with panel orientation.

II. METHODS

A. Data

A fifteen-minute resolution dataset for a monofacial fixed
low-tilt utility-scale site was provided by an electric utility
in Northeastern US, including 196 days from December 2020
to February 2022. The site was chosen because of the heavy
snow losses observed by its asset owners; over the period of
observation, the site experienced over 100 inches of snowfall
and persistent snow cover on panels was observed to last for
weeks on end.

Available data included inverter-level DC and AC voltage
and combiner-level DC current as measured by a Solec-
tria Yakasawa inverter, back-of-module (BOM) temperature,
and plane-of-array (POA) irradiance measured by a heated
pyranometer. Data was filtered using procedures outlined in



[13]. Additionally, periods of time where AC power output
approached the inverter’s nameplate limits were excluded to
avoid clipped data. Site images showing a string of modules
connected to an inverter were collected at 1-hour and 15-
minute resolution (Fig. 1). Spatial coverage of snow on the
string of modules was determined through an unsupervised
pixel clustering algorithm [14] and used as a point of compar-
ison to effective coverage as calculated using electrical data.

Fig. 1. One of the series of site images used to calculate snow cover, where
a shedding event occurs between 10 am and 11 am.

B. Snow detection framework

For this work, we assume that a reduction in current or
voltage performance index (PI) is due to light-blocking matter
(here snow) on the surface of the modules. The electrical
configuration of the site was typical in that modules were
connected in series strings, which were connected in parallel at
combiners. The current is measured at the combiner level, and
is equivalent in magnitude to the module current multiplied
by the number of module strings in parallel. Combiners are
connected in parallel at the inverter, where voltage is measured
and is equivalent in magnitude to the voltage of a string
of modules. As a result, measured combiner current Imp is
representative of the average lowest nonzero current generated
by a cell among parallel-connected module strings. Therefore,
we estimate the effective transmission of light-blocking matter
on the array, Teff , as the fraction of light received by the
panels, using the Sandia Array Performance Model (SAPM)
[15] with combiner current, and onsite irradiance and BOM
temperature data:

Imp = Nstrings×Imp0(C0EeTeff + C1(EeTeff )
2)

× (1 + αImp (Tcell − T0))
(1)

where C is a vector of coeffients specific to the module
type, Ee is effective irradiance, Tcell is cell temperature, T0 is
25 °C, Imp0 is the nameplate Imp of the module, and Nstrings

is the number of strings connected in parallel.
Inverter voltage was also modeled using the SAPM,

Vmp = Nmodules× [Vmp0 + C2 Ns δ ln(EeTeff )

+ C3 Ns (δ ln(EeTeff ))
2

+ βVmp (Tcell − 25)]

(2)

using Teff and sensor data, where Ns is the number of cells
connected in series per module, Vmp0 is the nameplate Vmp

of the module, and Nmodules is the number of modules in a
string.

Given that string operating voltage increases approximately
linearly with the number of active (unbypassed) module sub-
strings connected in series, the voltage PI, Vratio, is repre-
sentative of the average effective snow-free fraction of all PV
strings connected to the inverter. The complement of Vratio

can be used a measure of effective coverage Ceff . In this
framework, Vratio < 1 corresponds to conditions where there
are inactive substrings (activated bypass diodes) in the string,
whereas Vratio ≈ 1 suggests that all substrings are active.
A phase diagram of Vratio is plotted against spatial coverage
in Figure 2. The 540 V turn-on voltage (Vturnon) of site’s
inverter ensures that the system remains off unless ≈ 73% of
modules are operating at maximum power point (MPP), so
it should be noted that Vratio < Vturnon/Vmp0 will result in
Ceff = 1. A decrease in transmission appears as a gradient
from red to blue and is correlated with spatial coverage; as
spatial coverage increases past (1 − Vturnon/Vmp0) × 100%,
a non-zero Vratio can only be measured for a system where
light transmits through the snow and Teff < 1.

Fig. 2. (a) Images of the utility-scale site from 2022-01-08 where snow
recedes from the panels over the course of the day. (b) Vratio plotted
against spatial coverage as determined through images. Points are colored
by a calculated effective transmission where red indicates Teff ≈ 1 and
blue indicates a lower Teff ; data from 2022-01-08 is highlighted to show a
decrease in coverage and a corresponding increase in voltage PI.

Four power-loss modes corresponding to the electrically
distinguishable behaviors discussed above are identified in Fig.
3. Mode 0 corresponds to a complete outage where the system
does not meet the minimum turnon voltage for the inverter.
Modes 1 and 2 describe data collected when one or more
substrings are bypassed; Mode 1 is the case where the active
substrings are limited in current due to less than 100% light
transmission of snow, while Mode 2 is for active substrings
operating as if uncovered by snow. Mode 3 corresponds to
instances where all substrings are active but there is low
effective transmission (current is limited due to snow cover).
The cutoff values to distinguish between these modes were
determined statistically from snow-free data to ensure normal
operation was not classified as snow cover.



Fig. 3. Flowchart for determining power loss modes. Values for cv and ct
were determined by identifying the 95th percentile of effective coverage and
transmission in snow-free data.

TABLE I
RESEARCH-SCALE VALIDATION SITES

System String-
inverter

Portrait-
orientation
module

Landscape-
orientation
module

Voltage resolution Inverter Module Module
Current resolution Inverter Module Module
Orientation Portrait Portrait Landscape
Date range Nov. 2021 -

Apr. 2023
Feb. - May
2023

Feb. - May
2023

Data frequency 1 minute 1 minute 1 minute

C. Validation

Three monofacial research-scale systems at the Michigan
Regional Test Center (MI-RTC) were selected for analysis
based on their similarity to or differences from the utility-
scale system (Table I). Single module systems were selected
to verify the presence of power loss modes at a module-
level, while a string-inverter system was selected for its
structural similarity to the utility-scale system. Both portrait
and landscape-orientation systems were included to isolate
the effect of orientation on modal frequency. All systems
were outfitted with at least one BOM thermocouple and
POA irradiance was collected by a heated Kipp & Zonen
pyranometer.

Phase diagrams for all three validation sites displayed a
correlation between Teff and spatial coverage similar to that
seen for the utility-scale site. The two module-scale systems
displayed markedly different patterns in voltage ratios; while
the plot for the landscape-orientation module shows the num-
ber of individual substrings that are online (Figure 4a), the
same is not apparent in the plot for the portrait-orientation

Fig. 4. Relative frequencies of modes for data collected between October and
May that includes significant power losses. Data from mode 0 is not collected
for the two module-scale systems, but an analysis of missing timestamps found
that the portrait-orientation system was offline for ≈ 13 hours longer than the
landscape-orientation system.

module (Figure 4b). This is consistent with snow typically
shedding down the length of a module, so that individual
substrings on the upper half of a landscape orientation module
can remain completely uncovered and online even while there
is partial snow cover on the bottom portion of the module.
The same is not true for a landscape-orientation module, as all
substrings remain partially covered even if the upper portion
of the panel is uncovered.

III. RESULTS

The electrical/optical characteristics and physical interpre-
tations of power loss modes are summarized in Table II.

The relative frequencies and % power loss of modes across
the utility-scale and validation sites are shown for periods
of time when a power loss mode is present in Figure 6.
For all data collected between the months of October and
May during daylight hours, the utility-scale site experienced a
snow-related power loss mode for 59% of recorded timestamps
and the string-inverter system experienced the same for 52%
of timestamps. These statistics are not intended for cross-site
comparison, but more so to demonstrate the sheer magnitude
of time that these systems experienced snow-related power
losses over the period that these datasets was collected.

For the utility-scale and string-inverter systems, Mode 0
is achieved when the inverter is unable to reach the turn-on
voltage; i.e., too many substrings are covered with effectively
opaque snow. We estimate this coverage threshold CV for each
system based on the fraction of the number of substrings oper-
ating at Teff = 1 necessary to surpass Vturnon. Comparisons
of modal frequencies and rates of missing timestamps between
the two inverter-connected systems and the two single module
systems suggest that portrait-orientation systems experience
Mode 0 at a higher frequency relative to landscape-orientation
modules 4.

Mode 1 describes data with reduced values for both Vratio

and Teff . The majority of this data was recorded after
snow fell on modules that were already partially covered.
We hypothesize that Mode 1 primarily corresponds to full
or partial coverage by snow with non-uniform transmission,



TABLE II
SNOW POWER LOSS MODES. EFFECTIVE COVERAGE IS Ceff , EFFECTIVE TRANSMISSION IS Teff

Mode 0 Mode 1 Mode 2 Mode 3 Mode 4
Ceff 1 1-Vturnon/Vmp0 ≤

Ceff < 1
1-Vturnon/Vmp0 ≤
Ceff < 1

≈ 1 0

Teff 0 < 1 ≈ 1 < 1 ≈ 1
Physical
interpretation

Partial or full
coverage by opaque
snow, minimum
inverter voltage not
met

Partial coverage by
opaque snow, partial
coverage by transmis-
sive snow

Partial coverage by
opaque snow, partial
uncovered

Partial or full cov-
erage by transmissive
snow

Zero coverage or par-
tial or full coverage
by highly transmis-
sive snow

Fig. 5. Relative frequencies of modes for data collected between October and
May that includes significant power losses. Data from mode 0 is not collected
for the two module-scale systems, but an analysis of missing timestamps found
that the portrait-orientation system was offline for ≈ 13 hours longer than the
landscape-orientation system.

where 1− Vratio is equivalent to the fraction of array surface
area covered by opaque snow and Teff is equivalent of the
transmission of non-opaque snow partially or fully covering
the remaining area. In this line of thinking, Mode 1 is the
product of incomplete shedding and the relative frequency of
Mode 1 to other modes may be an indicator of performance
by site design in facilitating shedding.

Mode 2 is representative of partial coverage by opaque
snow with the remaining portion of the array uncovered.
If the system is connected to an inverter, partial coverage
by opaque snow must be below the coverage threshold for
the inverter to turn on. Based on observations of systems
experiencing some kind of snow-related power loss, landscape-
orientation systems experience Modes 1 and 2 more frequently
than portrait-orientation systems 6. Relative to other modes,
portrait-orientation modules are more frequently found to be
in Mode 3, which describes data where a full or partial cover
of transmissive snow decreases effective transmission but all
substrings remain active. Mode 4 was observed to correspond
to snow-free production or partial or full coverage by a highly
transmissive layer of frost or snow, where in either case, little
to no power is lost.

Figure 6 compares modal frequencies with attributable
power losses at the utility-scale site. Power losses associated
with Mode 2 are minimal, which is consistent with high

transmission values and low partial coverage. Modes 1 and 3,
where Teff < 1, lead to significant power losses. Some power
losses were observed in Mode 4 - these may be attributable
to fog or dew - but they were small relative to the frequency
of Mode 4.

Fig. 6. Frequencies and attributable power losses of modes for all data
collected at the utility-scale site between October and May.

CONCLUSION

The introduction and validation of a framework by which
snow-related power loss modes can be identified in utility-
scale data has the potential to vastly simplify the estima-
tion of power losses and minimize associated requirements
for monitoring equipment. Four distinct snow-related power
loss modes corresponding to different effective coverage and
transmission ranges for snow cover were identified from
inverter data at a utility-scale PV site. The presence of snow
as detected from electrical data, as well as the physical
interpretations of snow cover corresponding to each power
loss mode have been verified in time-series images from the
site. The modes have been validated using data from inverter-
connected and single module research-scale systems, and we
observe similar patterns in the relationship between spatial
snow cover and snow transmission across systems. We observe
significant differences in modal frequencies between landscape
and portrait-orientation systems; portrait-orientation systems



tend to be completely offline more frequently, while landscape-
orientation systems tend remain online despite partial snow
coverage. These differences are consistent with the idea that
the majority of partial snow covers obscure a nonzero fraction
of each substring on a landscape-orientation module, whereas
it is typical for at least one substring to be exposed on a
landscape orientation module with partial snow cover. For
inverter-connected systems, modes with low or zero transmis-
sion values have the largest impact on power, while partial
coverage has a minimal impact. Future studies should be
performed to explore the impact of other system characteristics
on modal frequencies such as tilt angle and location.
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