
Introduction
First thing, the description of this challenge is

You can prove you know the flag to anybody without revealing any information thanks to my To-the-moon circuit!
Do you want to look at the constraints ?

This didn't help much at first. There was a file attached with extension .r1cs , something we never saw before. After a
quick search we found out that R1CS stands for "Rank 1 Constraint System" and it is related to "Zero knowledge
proofs".

Parsing
We found the specification of .r1cs files online [1] and put together a simple script to parse it:

What is a zero knowledge proof?

A zero knowledge proof is a method that allows proving a statement without disclosing any information other than
the statement truth. In particular, there's a prover and a verifier: the prover has to prove the statement, while the
verifier has to verify it is true. The prover has some information that the verifier doesn't have, but they can use a
zero knowledge proof protocol to prove their statement without giving any additional information to the verifier. In
practice, the most common calls of protocols for using zero knowledge proof in crypto is zk-SNARK.

What is a rank 1 constraint system?

A Rank 1 Constraint System is an essential component of zk-SNARK.

It is a system of equations in R[x1, … , xn], where x1, … , xn are the unknowns and each equation is of the form
hk = l, where h, k, l ∈ R[x1, … , xn] and can have degree at most 1 (they are monomials in some unknown
x1, … , xn plus a constant).

For each equation of the type hk = l, we can rewrite h, k, l as a linear combination of these elements
{1, x1, … , xn}, we call the vector w = (1, x1, … , xn) witness. So, if we have m equations of the type hiki = li,
where i ∈ {1, … , m}, there exist one unique linear combination hi = ai1w1 + ai2w2 + ⋯ + a1(n+1)wn+1, so we
can define a m × (n + 1) matrix A with values aij. We can do the same for the values ki, getting another
m × (n + 1) matrix B with coefficients bij and again we can define a matrix C with coefficients cij for the values li.
Overall you can rewrite the whole system as following:

Aw ⋅ Bw = Cw

where w is a vertical vector and ⋅ is the elementwise multiplication.

Back to the challenge

Recall the challenge description: we have to "prove we have the flag without showing the flag"; that means "solve
this system, a solution is the flag". To solve such a system we have to find the witness vector.

from pathlib import Path
import sys

get_int = lambda x: int.from_bytes(x, "little")

field_size = None
prime = None
nWires = None
nPubOut = None
nPubIn = None
nPrvIn = None

nLabels = None
mConstraints = None
A = []
B = []
C = []
labelIDs = []

def parse_r1cs(path: str):
 with open(path, mode="br") as fs:
 byt = fs.read()

 if byt[0:4] != b"\x72\x31\x63\x73":
 print(f"File {path} is not correct r1cs format")
 else:
 print(f"Parsing file {path}")

 if byt[4:8] != b"\x01\x00\x00\x00":
 print(f"Sorry, I don't know this version")
 else:
 print(f"Version 1")

 parse_version_1(byt[8:])

def parse_version_1(or_byt: bytes):
 sections_n = get_int(or_byt[:4])
 byt = or_byt[4:]
 for _ in range(sections_n):
 section_type = get_int(byt[0:4])
 section_size = get_int(byt[4:12])
 byt = byt[12:]
 if section_type == 1:
 print("1")
 parse_header(byt[:section_size])
 break
 byt = byt[section_size:]

 byt = or_byt[4:]
 for _ in range(sections_n):
 section_type = get_int(byt[0:4])
 section_size = get_int(byt[4:12])
 byt = byt[12:]

 match section_type:
 case 2:
 parse_constraint(byt[:section_size])
 case 3:
 parse_wire2labelid_map(byt, section_size)
 case _:
 print(f"Ignoring section type {section_type}")

 byt = byt[section_size:]

 if byt != b"":
 print(
 f"Beware, there's some surplus bytes that don't belong to a section:\n{byt}"
)

def parse_header(byt: bytes):
 global field_size, prime, nWires, nPubOut, nPubIn, nPrvIn, nLabels, mConstraints

With this, we now have

 field_size = get_int(byt[:4])
 prime = get_int(byt[4 : field_size + 4])
 byt = byt[field_size + 4 :]
 nWires = get_int(byt[:4])
 nPubOut = get_int(byt[4:8])
 nPubIn = get_int(byt[8:12])
 nPrvIn = get_int(byt[12:16])
 nLabels = get_int(byt[16:24])
 mConstraints = get_int(byt[24:28])

 if byt[28:] != b"":
 print("WTF")
 exit()
 return

def parse_constraint(byt: bytes):
 global A, B, C

 for k in range(mConstraints):
 for i in range(3): # A, B and C
 tmp_M = []
 nFactors = get_int(byt[:4])
 byt = byt[4:]

 for j in range(nWires):
 w_id = get_int(byt[:4])
 if w_id != j:
 tmp_M.append(0)
 continue
 val = get_int(byt[4 : 4 + field_size])
 tmp_M.append(val)
 byt = byt[4 + field_size :]

 match i:
 case 0:
 A.append(tmp_M)
 case 1:
 B.append(tmp_M)
 case 2:
 C.append(tmp_M)

def parse_wire2labelid_map(byt: bytes, section_size: int):
 global labelIDs

 while byt != b"":
 labelIDs.append(byt[:8])
 byt = byt[8:]

if __name__ == "__main__":
 parse_r1cs(sys.argv[1])
 print(f"{A = }, {B = }, {C = }")
 print(f"{prime = }")

A = [
 [0, 21888242871839275222246405745257275088548364400416034343698204186575808495616]

Solve
A, B, C have just one row and 2 columns, which means there's just one equation and the witness vector has 2
elements (therefore there's only one unknown). There's quite a bit of zero values, so let's simplify the equations and
write them explicitly:

()() ⋅ ()() = ()() ⟺

⟺ (a11 + a12x1)(b11 + b12x1) = c11 + c12x1

We also know that a11 = 0, b11 = 0, b12 = 1, c12 = 0

⟺ a12x2
1 = c11 .

At this point the answer looks trivial, but there's a small detail that I didn't mention. With parsing we also found a prime
number. That means that all the equations that I previously described in the form of hk = l are actually in this form
hk = l mod p. The actual equation to solve is

a12x2
1 = c11 mod p

Since we are in a prime field, every element is invertible

x2
1 = a−1

12 c11 mod p

To solve a square root mod p we can use the Tonelli-Shanks algorithm that is executes in polynomial time (because p
is prime). We get one possible value of x1, let it be x′

1, then we calculate x′′
1 = −x′

1 = p − x′
1 (mod p of course), so we

have the two possible values that solve the equation

We can print them as bytes

And sure enough, one of them is the flag

]
B = [
 [0, 1]
]
C = [
 [7358504996770508486687187130827958137520805565857056985433965719766776637594, 0]
]
prime = 21888242871839275222246405745257275088548364400416034343698204186575808495617

a11a12
1

x1
b11b12

1

x1
c11c12

1

x1

from Crypto.Util.number import inverse
from sympy.ntheory import sqrt_mod

A = [[0, 21888242871839275222246405745257275088548364400416034343698204186575808495616]]
B = [[0, 1]]
C = [[7358504996770508486687187130827958137520805565857056985433965719766776637594, 0]]

p = 21888242871839275222246405745257275088548364400416034343698204186575808495617

h = (inverse(A[0][1], p) * C[0][0]) % p
x_1 = sqrt_mod(h, p)

print(long_to_bytes(x_1))
print(long_to_bytes(p - x_1))

b'INS{Nothing_to_hide_in_R1CS!!!}'
b'0\x1b\x00\x1fe\xe30\xb5O\xe6\xd7O"\x0c\xe8\xfd\xbf\xca\x83\xe3\x1aP\x021\xf1\xb0\xb2@\xce\xde
\xde\x84'

Here it is!

[1] https://github.com/iden3/r1csfile/blob/master/doc/r1cs_bin_format.md

https://github.com/iden3/r1csfile/blob/master/doc/r1cs_bin_format.md

