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Preface

This book is written for a second course in computer science,
the CS 2 course at many universities. The text’s emphasis is on the
specification, design, implementation, and use of the basic data types that
normally are covered in a second-semester course. In addition, we cover a
range of important programming techniques and provide self-contained cov-
erage of abstraction techniques, object-oriented programming, big-O time
analysis of algorithms, and sorting. 

We assume that the student has already had an introductory computer sci-
ence and programming class, but we do include coverage of those topics (such
as recursion and pointers) that are not always covered completely in a first
course. The text uses C++, but our coverage of C++ classes begins from
scratch, so the text may be used by students whose introduction to program-
ming was in C rather than C++. In our experience, such students need a brief
coverage of C++ input and output techniques (such as those provided in Appen-
dix F) and some coverage of C++ parameter types (which we provide in Chap-
ter 2). When C programmers are over the input/output hurdle and the parameter
hurdle (and perhaps a small “fear” hurdle), they can step readily into classes
and other object-oriented features of C++. As this indicates, there are several
pathways through the text that can be tailored to different backgrounds, includ-
ing some optional features for the student who comes to the class with a stron-
ger than usual background.

New to This Edition

The C++ Standard Template Library (STL) plays a larger role in our curricu-
lum than past editions, and we have added selected new material to support
this. For us, it’s important that our students understand both how to use the
STL classes in an application program and the possible approaches to imple- iii
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menting these (or similar) classes. With this in mind, the primary changes that
you’ll find for this edition are:

• A new Section 2.6 that gives an early introduction to the Standard Tem-
plate Library using the pair class. We have been able to introduce students
to the STL here even before they have a full understanding of templates.

• An earlier introduction of the multiset class and STL iterators in Section
3.4. This is a good location for the material because the students have just
seen how to implement their first collection class (the bag), which is
based on the multiset.

• We continue to introduce the STL string class in Section 4.5, where it’s
appropriate for the students to implement their own string class with a
dynamic array.

• A new Section 5.6 that compares three similar STL classes: the vector, the
list, and the deque. At this point, the students have enough knowledge to
understand typical vector and list implementations.

• A first introduction to the STL algorithms appears in Section 6.3, and this
is now expanded on in Sections 11.2 (the heap algorithms) and 13.4
(expanded coverage of sorting and binary search in the STL).

• A new Section 8.4 provides typical implementation details for the STL
deque class using an interesting combination of dynamic arrays and point-
ers.

• A discussion of hash tables in the proposed TR1 expansions for the STL
is now given in Section 12.6.

Most chapters also include new programming projects, and you may also keep
an eye on our project web site, www.cs.colorado.edu/~main/dsoc.html, for new
projects as we develop them.

The Steps for Each Data Type

Overall, the fourth edition remains committed to the data types: sets, bags (or
multisets), sequential lists, ordered lists (with ordering from a “less than” opera-
tor), stacks, queues, tables, and graphs. There are also additional supplemental
data types such as a priority queue. Each of these data types is introduced fol-
lowing a consistent pattern:

Step 1: Understand the data type abstractly. At this level, a student gains an
understanding of the data type and its operations at the level of concepts and
pictures. For example, a student can visualize a stack and its operations of push-
ing and popping elements. Simple applications are understood and can be car-
ried out by hand, such as using a stack to reverse the order of letters in a word.

Step 2: Write a specification of the data type as a C++ class. In this step,
the student sees and learns how to write a specification for a C++ class that can
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implement the data type. The specification includes prototypes for the construc-
tors, public member functions, and sometimes other public features (such as an
underlying constant that determines the maximum size of a stack). The prototype
of each member function is presented along with a precondition/postcondition
contract that completely specifies the behavior of the function. At this level, it’s
important for the students to realize that the specification is not tied to any par-
ticular choice of implementation techniques. In fact, this same specification may
be used several times for several different implementations of the same data type.

Step 3: Use the data type. With the specification in place, students can write
small applications or demonstration programs to show the data type in use.
These applications are based solely on the data type’s specification, as we still
have not tied down the implementation.

Step 4: Select appropriate data structures, and proceed to design and
implement the data type. With a good abstract understanding of the data
type, we can select an appropriate data structure, such as a fixed-sized array, a
dynamic array, a linked list of nodes, or a binary tree of nodes. For many of our
data types, a first design and implementation will select a simple approach, such
as a fixed-sized array. Later, we will redesign and reimplement the same data
type with a more complicated underlying structure.

Since we are using C++ classes, an implementation of a data type will have
the selected data structures (arrays, pointers, etc.) as private member variables of
the class. With each implemented class, we stress the necessity for a clear under-
standing of the rules that relate the private member variables to an abstract notion
of the data type. We require each student to write these rules in clear English sen-
tences that we call the invariant of the abstract data type. Once the invariant is
written, students can proceed to implementing various member functions. The
invariant helps in writing correct functions because of two facts: (a) Each func-
tion (except constructors) knows that the invariant is true when the function
begins its work; and (b) each function (except the destructor) is responsible for
ensuring that the invariant is again true when the function finishes.

Step 5: Analyze the implementation. Each implementation can be analyzed
for correctness, flexibility (such as a fixed size versus dynamic size), and time
analysis of the operations (using big-O notation). Students have a particularly
strong opportunity for these analyses when the same data type has been imple-
mented in several different ways.

Where Will the Students Be at the End of the Course?

At the end of our course, students understand the data types inside out. They
know how to use the data types, they know how to implement them several
ways, and they know the practical effects of the different implementation
choices. The students can reason about efficiency with a big-O analysis and
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argue for the correctness of their implementations by referring to the invariant
of the class.

One of the important lasting effects of the course is the specification, design,
and implementation experience. The improved ability to reason about programs
is also important. But perhaps most important of all is the exposure to classes that
are easily used in many situations. The students no longer have to write every-
thing from scratch. We tell our students that someday they will be thinking about
a problem, and they will suddenly realize that a large chunk of the work can be
done with a bag, or a stack, or a queue, or some such. And this large chunk of
work is work that they won’t have to do. Instead, they will pull out the bag or
stack or queue or some such that they wrote this semester—using it with no mod-
ifications. Or, more likely, they will use the familiar data type from a library of
standard data types, such as the C++ Standard Template Library. In fact, the
behavior of the data types in this text is a cut-down version of the Standard Tem-
plate Library, so when students take the step to the real STL, they will be on
familiar ground. And at that point of realization, knowing that a certain data type
is the exact solution he or she needs, the student becomes a real programmer.

Other Foundational Topics

Throughout the course, we also lay a foundation for other aspects of “real pro-
gramming,” with coverage of the following topics beyond the basic data struc-
tures material:

Object-oriented programming. The foundations of object-oriented program-
ming (OOP) are laid by giving students a strong understanding of C++ classes.
The important aspects of classes are covered early: the notion of a member
function, the separation into private and public members, the purpose of con-
structors, and a small exposure to operator overloading. This is enough to get
students going and excited about classes. 

Further major aspects of classes are introduced when the students first use
dynamic memory (Chapter 4). At this point, the need for three additional items
is explained: the copy constructor, the overloaded assignment operator, and the
destructor. Teaching these OOP aspects with the first use of dynamic memory
has the effect of giving the students a concrete picture of dynamic memory as a
resource that can be taken and must later be returned.

Conceptually, the largest innovation of OOP is the software reuse that occurs
via inheritance. And there are certainly opportunities for introducing inheritance
right from the start of a data structures course (such as implementing a set class
as a descendant of a bag class). However, an early introduction may also result
in juggling too many new concepts at once, resulting in a weaker understanding
of the fundamental data structures. Therefore, in our own course we introduce
inheritance at the end as a vision of things to come. But the introduction to inher-
itance (Sections 14.1 and 14.2) could be covered as soon as copy constructors are
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understood. With this in mind, some instructors may wish to cover Chapter 14
earlier, just before stacks and queues.

Another alternative is to identify students who already know the basics of
classes. These students can carry out an inheritance project (such as the ecosys-
tem of Section 14.2 or the game engine in Section 14.3) while the rest of the stu-
dents first learn about classes.

Templates. Template functions and template classes are an important part of
the proposed Standard Template Library, allowing a programmer to easily
change the type of the underlying item in a container class. Template classes
also allow the use of several different instantiations of a class in a single pro-
gram. As such, we think it’s important to learn about and use templates (Chapter
6) prior to stacks (Chapter 7), since expression evaluation is an important appli-
cation that uses two kinds of stacks.

Iterators. Iterators are another important part of the proposed Standard Tem-
plate Library, allowing a programmer to easily step through the items in a con-
tainer object (such as the elements of a set or bag). Such iterators may be
internal (implemented with member functions of the container class) or external
(implemented by a separate class that is a friend of the container class). We
introduce internal iterators with one of the first container classes (a sequential
list in Section 3.2). An internal iterator is added to the bag class when it is
needed in Chapter 6. At that point, the more complex external iterators also are
discussed, and students should be aware of the advantages of an external itera-
tor. Throughout the text, iterators provide a good opportunity for programming
projects, such as implementing an external bag iterator (Chapter 6) or using a
stack to implement an internal iterator of a binary search tree (Chapter 10).

Recursion. First-semester courses sometimes introduce students to recursion.
But many of the first-semester examples are tail recursion, where the final act of
the function is the recursive call. This may have given students a misleading
impression that recursion is nothing more than a loop. Because of this, we prefer
to avoid early use of tail recursion in a second-semester course. For example,
list traversal and other operations on linked lists can be implemented with tail
recursion, but the effect may reinforce wrong impressions about recursion (and
the tail recursive list operations may need to be unlearned when the students
work with lists of thousands of items, running into potential run-time stack
overflow).

So, in our second-semester course, we emphasize recursive solutions that use
more than tail recursion. The recursion chapter provides three examples along
these lines. Two of the examples—generating random fractals and traversing a
maze—are big hits with the students. In our class, we teach recursion (Chapter
9) just before trees (Chapter 10), since it is in recursive tree algorithms that recur-
sion becomes vital. However, instructors who desire more emphasis on recursion
can move that topic forward, even before Chapter 2.
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In a course that has time for advanced tree projects (Chapter 11), we analyze
the recursive tree algorithms, explaining the importance of keeping the trees
balanced—both to improve worst-case performance, and to avoid potential run-
time stack overflow.

Searching and sorting. Chapters 12 and 13 provide fundamental coverage of
searching and sorting algorithms. The searching chapter reviews binary search
of an ordered array, which many students will have seen before. Hash tables
also are introduced in the search chapter. The sorting chapter reviews simple
quadratic sorting methods, but the majority of the chapter focuses on faster
algorithms: the recursive merge sort (with worst-case time of O(n log n)), Tony
Hoare’s recursive quicksort (with average-time O(n log n)), and the tree-based
heap sort (with worst-case time of O(n log n)). There is also a new introduction
to the C++ Standard Library sorting functions.

Advanced Projects

The text offers good opportunities for optional projects that can be undertaken
by a more advanced class or by students with a stronger background in a large
class. Particular advanced projects include the following:

• A polynomial class using dynamic memory (Section 4.6).

• An introduction to Standard Library iterators, culminating in an imple-
mentation of an iterator for the student’s bag class (Sections 6.3 through
6.5).

• An iterator for the binary search tree (Programming Projects in Chapter
10).

• A priority queue, implemented with a linked list (Chapter 8 projects), or
implemented using a heap (Section 11.1).

• A set class, implemented with B-trees (Section 11.3). We have made a
particular effort on this project to provide information that is sufficient for
students to implement the class without need of another text. In our
courses, we have successfully directed advanced students to do this
project as independent work.

• An inheritance project, such as the ecosystem of Section 14.2.
• An inheritance project using an abstract base class such as the game base

class in Section 14.3 (which allows easy implementation of two-player
games such as Othello or Connect Four).

• A graph class and associated graph algorithms from Chapter 15. This is
another case where advanced students may do work on their own.
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C++ Language Features

C++ is a complex language with many advanced features that will not be
touched in a second-semester course. But we endeavor to provide complete
coverage for those features that we do touch. In the first edition of the text, we
included coverage of two features that were new to C++ at the time: the new
bool data type (Figure 2.1 on page 37) and static member constants (see
page 104). The requirements for using static member constants were changed in
the 1998 Standard, and we have incorporated this change into the text (the
constant must now be declared both inside and outside the class definition). The
other primary new feature from the 1998 Standard is the use of namespaces,
which were incorporated in the second edition. In each of these cases, these
features might not be supported in older compilers. We provide some assistance
in dealing with this (see Appendix E, “Dealing with Older Compilers”), and
some assistance in downloading and installing the GNU g++ compiler (see
Appendix K).

Flexibility of Topic Ordering

This book was written to allow instructors latitude in reordering the material to
meet the specific background of students or to add early emphasis to selected
topics. The dependencies among the chapters are shown on page xi. A line join-
ing two boxes indicates that the upper box should be covered before the lower
box.

Here are some suggested orderings of the material:

Typical course. Start with Chapters 1–10, skipping parts of Chapter 2 if the
students have a prior background in C++ classes. Most chapters can be covered
in a week, but you may want more time for Chapter 5 (linked lists), Chapter 6
(templates), Chapter 9 (recursion), or Chapter 10 (trees). Typically, we cover the
material in 13 weeks, including time for exams and extra time for linked lists
and trees. Remaining weeks can be spent on a tree project from Chapter 11, or
on binary search (Section 12.1) and sorting (Chapter 13).

Heavy OOP emphasis. If students cover sorting and searching elsewhere,
there will be time for a heavier emphasis on object-oriented programming. The
first four chapters are covered in detail, and then derived classes (Section 14.1)
are introduced. At this point, students can do an interesting OOP project, based
on the ecosystem of Section 14.2 or the games in Section 14.3. The basic data
structures are then covered (Chapters 5–8), with the queue implemented as a
derived class (Section 14.3). Finish up with recursion (Chapter 9) and trees
(Chapter 10), placing special emphasis on recursive member functions.

Accelerated course. Assign the first three chapters as independent reading in
the first week, and start with Chapter 4 (pointers). This will leave two to three
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extra weeks at the end of the term, so that students may spend more time on
searching, sorting, and the advanced topics (shaded on page xi.)

We also have taught the course with further acceleration by spending no lec-
ture time on stacks and queues (but assigning those chapters as reading).

Early recursion / early sorting. One to three weeks may be spent at the start
of class on recursive thinking. The first reading will then be Chapters 1 and 9,
perhaps supplemented by additional recursive projects.

If recursion is covered early, you may also proceed to cover binary search
(Section 12.1) and most of the sorting algorithms (Chapter 13) before introduc-
ing C++ classes.

Supplements via the Internet

The following supplemental materials for this text are available to all readers at
www.aw-bc.com/cssupport:

• Source code.  All the C++ classes, functions, and programs that appear in 
the book are available to readers.

• Errata. We have tried not to make mistakes, but sometimes they are 
inevitable. A list of detected errors is available and updated as necessary.
You are invited to contribute any errors you find.

In addition, the following supplements are available to qualified instructors at
www.pearsonhighered.com/irc.  Please contact your Addison-Wesley sales rep-
resentative, or send email to computing@aw.com, for information on how to
access them:

• PowerPoint lecture slides
• Exam questions
• Solutions to selected programming projects
• Sample assignments and lab exercises
• Suggested syllabi
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Section 14.3
Virtual Methods

Section 11.1-2
Heaps

Sections 6.1–6.2
Templates

Chapter 7
Stacks

Chapter 8
Queues

Chapter 10
Trees

Sections 4.5–4.6
Projects:

String Class
Polynomial

Section 11.3
B-Trees

Section 11.4
Detailed Tree Analysis

Chapter 13
Sorting

(Heapsort also 
needs Sec. 11.1)

Chapter 1
Introduction

Chapters 2, 3, and 4.1–4.4
Classes

Container Classes
Pointers and Dynamic Memory

Chapter 2 may be skipped by students 
with a good background in C++ classes.

Chapter 5
Linked Lists

Chapter 9
Recursion

Section 12.1
Binary Search

Sec. 12.2–12.3
Hash Tables

(Also requires 
6.1–6.2)

At the start of the course, students should be comfortable writing functions and using 
arrays in C++ or C. Those who have used only C should read Appendix F and pay 

particular attention to the discussion of reference parameters in Section 2.4.

Chapter 15
Graphs

Chapter Dependencies

The shaded boxes provide
good opportunities for
advanced work.

Sections 14.1–14.2
Derived Classes

Sections 6.3–6.6
More Templates

and Iterators
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LEARNING OBJECTIVES

When you complete Chapter 1, you will be able to...

• write precondition/postcondition contracts for small functions, and use the C++ 
assert facility to test preconditions.

• recognize quadratic, linear, and logariindicesthmic running time behavior in 
simple algorithms, and write big�O expressions to describe this behavior.

• create and recognize test data that is appropriate for simple problems, including 
testing boundary conditions and fully exercising code.

CHAPTER CONTENTS

1.1 Specification, Design, Implementation
1.2 Running Time Analysis
1.3 Testing and Debugging

Chapter Summary
Solutions to Self�Test Exercises

Chapter the first which explains how, why, when, and
where there was ever any problem in the first place

NOEL LANGLEY
The Land of Green Ginger
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The Phases of  Sof tware Development

This chapter illustrates the phases of software development.
These phases occur in all software, including the small programs that you’ll see
in this first chapter. In subsequent chapters, you’ll go beyond these small pro-
grams, applying the phases of software development to organized collections of
data. These organized collections of data are called data structures, and the
main topics of this book revolve around proven techniques for representing and
manipulating such data structures. 

Years from now you may be a software engineer writing large systems in a
specialized area, perhaps computer graphics or artificial intelligence. Such
futuristic applications will be exciting and stimulating, and within your work
you will still see the phases of software development and fundamental data
structures that you learn and practice now.

Here is a list of the phases of software development::

Do not memorize this list: Throughout the book, your practice of these phases
will achieve far better familiarity than mere memorization. Also, memorizing an
“official list” is misleading because it suggests that there is a single sequence of
discrete steps that always occur one after another. In practice, the phases blur
into each other; for instance, the analysis of a solution’s efficiency may occur
hand in hand with the design, before any coding. Or low-level design decisions
may be postponed until the implementation phase. Also, the phases might not
occur one after another. Typically there is back-and-forth travel between the
phases.

Most of the work in software development does not depend on any particular
programming language. Specification, design, and analysis can all be carried out
with few or no ties to a particular programming language. Nevertheless, when we
get down to implementation details, we do need to decide on one particular pro-
gramming language. The language we use in this book is C++. 

The Phases of Software Development
•  Specification of the task
•  Design of a solution
•  Implementation (coding) of the solution
•  Analysis of the solution
•  Testing and debugging
•  Maintenance and evolution of the system
•  Obsolescence

the phases blur 
into each other

2 Chapter 1 / The Phases of Software Development
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What You Should Know About C++ Before Starting This Text

The C++ language was designed by Bjarne Stroustrup at AT&T Bell Lab-
oratories as an extension of the C language, with the purpose of supporting
object-oriented programming (OOP)—a technique that encourages important
strategies of information hiding and component reuse. Throughout this book,
we introduce you to important OOP principles to use in your designs and imple-
mentations.

There are many different C++ compilers that you may successfully use with
this text. Ideally, the compiler should support the latest features of the ANSI/ISO
C++ Standard, which we have incorporated into the text. However, there are sev-
eral workarounds that can be applied to older compilers that don’t fully support
the standard. (See Appendix K, “Downloading the GNU Compiler Software,”
and Appendix E, “Dealing with Older Compilers.”)

Whichever programming environment you use, you should already be com-
fortable writing, compiling, and running short C++ programs built with a top-
down design. You should know how to use the built-in types (the number types,
char, and bool), and you should be able to use arrays. 

Throughout the text, we will introduce the important roles of the C++ Stan-
dard Library, though you do not need any previous knowledge of the library.
Studying the data structures of the Standard Library can help you understand
trade-offs between different approaches, and can guide the design and imple-
mentation of your own data structures. When you are designing your own data
structures, an approach that is compliant with the Standard Library has twofold
benefits: Other programmers will understand your work more easily, and your
own work will readily benefit from other pieces of the Standard Library, such as
the standard searching and sorting algorithms. 

The rest of this chapter will prepare you to tackle the topic of data structures
in C++, using an approach that is compliant with the Standard Library. Section
1.1 focuses on a technique for specifying program behavior, and you’ll also see
some hints about design and implementation. Section 1.2 illustrates a particular
kind of analysis: the running time analysis of a program. Section 1.3 provides
some techniques for testing and debugging programs.

1.1 SPECIFICATION, DESIGN, IMPLEMENTATION

One begins with a list of difficult design decisions which
are likely to change. Each module is then designed to hide
such a decision from the others.

D. L. PARNAS
“On the Criteria to Be Used

in Decomposing Systems into Modules”

OOP supports 
information
hiding and 
component
reuse

you should 
already know 
how to write, 
compile, and 
run short C++ 
programs

C++
Standard
Library
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As an example of software development in action, let’s
examine the specification, design, and implementation
for a particular problem. The specification is a precise
description of the problem; the design phase consists of
formulating the steps to solve the problem; the imple-
mentation is the actual C++ code that carries out the
design.

The problem we have in mind is to display a table for
converting Celsius temperatures to Fahrenheit, similar
to the table shown in the margin. For a small problem,
a sample of the desired output is a sufficient
specification. Such a sample is a good specification
because it is precise, leaving no doubt about what the
program must accomplish. The next step is to design a
solution.

An algorithm is a set of instructions for solving a problem. An algorithm for
the temperature problem will print the conversion table. During the design of the
algorithm, the details of a particular programming language can be distracting,
and can obscure the simplicity of a solution. Therefore, during the design we
generally write in English. We use a rather corrupted kind of English that mixes
in C++ when it’s convenient. This mixture of English and a programming
language is called pseudocode. When the C++ code for a step is obvious, then
the pseudocode may use C++. When a step is clearer in English, then we will use
English. Keep in mind that the reason for pseudocode is to improve clarity.

We’ll use pseudocode to design a solution for the temperature problem, and
we’ll also use the important design technique of decomposing the problem.

Design Concept: Decomposing the Problem

A good technique for designing an algorithm is to break down the problem at
hand into a few subtasks, then decompose each subtask into smaller subtasks, then
replace the smaller subtasks with even smaller subtasks, and so forth. Eventually
the subtasks become so small that they are trivial to implement in C++ or what-
ever language you are using. When the algorithm is translated into C++, each
subtask is implemented as a separate C++ function. In other programming lan-
guages, functions are called “methods” or “procedures,” but it all boils down to
the same thing: The large problem is decomposed into subtasks, and subtasks
are implemented as separate pieces of your program. 

For example, the temperature problem has at least two good subtasks:
(1) converting a temperature from Celsius degrees to Fahrenheit, and (2) printing
a line of the conversion table in the specified format. Using these subproblems,
the first draft of our pseudocode might look like this:

CONVERSIONS FROM -50.0 to 50.0
Celsius Fahrenheit
-50.0C
-40.0C
-30.0C
-20.0C
-10.0C

0.0C
10.0C
20.0C
30.0C
40.0C
50.0C

The actual 
Fahrenheit
temperatures
will be 
computed
and displayed 
on this side of 
the table.

Break down a 
task into a few 
subtasks; then 
decompose each 
subtask into 
smaller subtasks.

Key Design 
Concept
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1. Do preliminary work to open and set up the output device properly.
2. Display the labels at the top of the table.
3. For each line in the table (using variables celsius and fahrenheit):

a. Set celsius equal to the next Celsius temperature of the table.
b. fahrenheit = the celsius temperature converted to Fahrenheit.
c. Print the Celsius and Fahrenheit values with labels on an output line.

what makes a 
good
decomposition?

We have identified the major subtasks. But aren’t there other ways to decom-
pose the problem into subtasks? What are the aspects of a good decomposition?
One primary guideline is that the subtasks should help you produce short
pseudocode—no more than a page of succinct description to solve the entire
problem, and ideally much less than a page. In your designs, you can also keep
in mind two considerations for selecting good subtasks: the potential for code
reuse, and the possibility of future changes to the program. Let’s see how our
subtasks embody these considerations.

code reuseStep 1 opens an output device, making it ready for output in a particular form.
This is a common operation that many programs must carry out. If we write a
function for Step 1 with sufficient flexibility, we can probably reuse the function
in other programs. This is an example of code reuse, in which a function is writ-
ten with sufficient generality that it can be reused elsewhere. In fact, program-
mers often produce collections of related C++ functions that are made available
in packages to be reused over and over with many different application programs.
Later we will use the C++ Standard Library as this sort of package, and we will
also write our own packages of this kind. For now, just keep in mind that the
function for Step 1 should be written with some reuse in mind.

easily modified 
code

Decomposing problems also produces a good final program in the sense that
the program is easy to understand, and subsequent maintenance and modifica-
tions are relatively easy. Our temperature program might be modified to convert
to Kelvin degrees instead of Fahrenheit, or even to do a completely different con-
version such as feet to meters. If the conversion task is performed by a separate
function, much of the modification will be confined to this one function. Easily
modified code is vital since real-world studies show that a large proportion of
programmers’ time is spent maintaining and modifying existing programs.

In order for a problem decomposition to produce easily modified code, the
functions that you write need to be genuinely separated from one another. An
analogy can help explain the notion of “genuinely separated.” Suppose you are
moving a bag of gold coins to a safe hiding place. If the bag is too heavy to carry,
you might divide the coins into three smaller bags and carry the bags one by one.
Unless you are a character in a comedy, you would not try to carry all three bags
at once. That would defeat the purpose of dividing the coins into three groups.
This strategy works only if you carry the bags one at a time. Something similar
happens in problem decomposition. If you divide your programming task into
three subtasks and solve these subtasks by writing three functions, then you have
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traded one hard problem for three easier problems. Your total job has become
easier—provided that you design the functions separately. When you are work-
ing on one function, you should not worry about how the other functions perform
their jobs. But the functions do interact. So when you are designing one function,
you need to know something about what the other functions do. The trick is to
know only as much as you need, but no more. This is called information hiding.
One technique for incorporating information hiding involves specifying your
functions’ behavior using preconditions and postconditions.

Preconditions and Postconditions

When you write a complete function definition, you specify how the function
performs its computation. However, when you are using a function, you only
need to think about what the function does. You need not think about how the
function does its work. For example, suppose you are writing the temperature
conversion program and you are told that a function is available for you to use,
as described here:

// Convert a Celsius temperature c to Fahrenheit degrees
double celsius_to_fahrenheit(double c);

Your program might have a double variable called celsius that contains a Cel-
sius temperature. Knowing this description, you can confidently write the fol-
lowing statement to convert the temperature to Fahrenheit degrees, storing the
result in a double variable called fahrenheit:

fahrenheit = celsius_to_fahrenheit(celsius);

When you use the celsius_to_fahrenheit function, you do not need to know
the details of how the function carries out its work. You need to know what the
function does, but you do not need to know how the task is accomplished.

procedural
abstraction

When we pretend that we do not know how a function is implemented, we are
using a form of information hiding called procedural abstraction. This tech-
nique simplifies your reasoning by abstracting away irrelevant details—that is,
by hiding the irrelevant details. When programming in C++, it might make more
sense to call it “functional abstraction,” since you are abstracting away irrelevant
details about how a function works. However, the term procedure is a more gen-
eral term than function. Computer scientists use the term procedure for any
sequence of instructions, and so they use the term procedural abstraction. Pro-
cedural abstraction can be a powerful tool. It simplifies your reasoning by allow-
ing you to consider functions one at a time rather than all together.

To make procedural abstraction work for us, we need some techniques for
documenting what a function does without indicating how the function works.
We could just write a short comment as we did for celsius_to_fahrenheit.
However, the short comment is a bit incomplete—for instance, the comment
doesn’t indicate what happens if the parameter c is smaller than the lowest
Celsius temperature (−273.15°C, which is absolute zero for Celsius temperatures). 
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precondition and 
postcondition

For better completeness and consistency, we will follow a fixed format that
always has two pieces of information called the precondition and the postcondi-
tion of the function, described here:

For example, a precondition/postcondition for the celsius_to_fahrenheit
function is shown here:

double celsius_to_fahrenheit(double c);
// c is a Celsius temperature no less than
// absolute zero (–273.15).
//  The return value is the temperature c
// converted to Fahrenheit degrees.

This format of comments might be new to you: The characters // indicate the
start of a comment that extends to the end of the current line. The other form of
C++ comments, starting with /* and continuing until */, is also permitted.

specify the 
precondition and 
postcondition
when you write 
the function’s 
prototype

Preconditions and postconditions are more than a way to summarize a function’s
actions. Stating these conditions should be the first step in designing any function.
Before you start to think about algorithms and C++ code for a function, you should
write out the function’s prototype, which consists of the function’s return type,
name, and parameter list, all followed by a semicolon. As you are writing the pro-
totype, you should also write the precondition and postcondition as comments. If
you later discover that your specification cannot be realized in a reasonable way,
you may need to back up and rethink what the function should do. 

programming
teams

Preconditions and postconditions are even more important when a group of
programmers work together. In team situations, one programmer often does not
know how a function written by another programmer works and, in fact, sharing
knowledge about how a function works can be counterproductive. Instead, the
precondition and postcondition provide all the interaction that’s needed. In
effect, the precondition/postcondition pair forms a contract between the pro-
grammer who uses a function and the programmer who writes that function. To
aid the explanation of this “contract,” we’ll give these two programmers names.

Preconditions and Postconditions
A precondition is a statement giving the condition that is
required to be true when a function is called. The function
is not guaranteed to perform as it should unless the
precondition is true.

A postcondition is a statement describing what will be true
when a function call is completed. If the function is correct
and the precondition was true when the function was called,
then the function will complete, and the postcondition will be
true when the function call is completed.

Precondition:

Postcondition:
comments
in C++
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Judy is the head of a programming
team that is writing a large piece of
software. Jervis is one of her pro-
grammers, who writes various
functions for Judy to use in large
programs. If Judy and Jervis were
lawyers, the contract might look
like the scroll shown in the margin.
As a programmer, the contract tells
them precisely what the function
does. It states that if Judy makes
sure that the precondition is met
when the function is called, then
Jervis ensures that the function
returns with the postcondition satis-
fied.

Using Functions Provided by Other Programmers
The programmers that you work with may or may not use the words “precondi-
tion” and “postcondition” to describe their functions, but they will provide and
expect information about what a function does. For example, consider this func-
tion that sets up the standard output device (cout) to print numbers:

void setup_cout_fractions(int fraction_digits);
// fraction_digits is not negative.
// All double or float numbers printed to cout will now be
// rounded to the specified number of digits on the right of the decimal point.

If you are curious about the setup_cout_fractions implementation, you can
read Appendix F, which provides some input/output ideas for C++ program-
ming. But even without the knowledge of how Jervis writes the function, we can
write a program that uses his function. For example, the temperature program,
shown in Figure 1.1, follows our pseudocode, using setup_cout_fractions
and celcius_to_fahrenheit. In Chapter 2, we will see how the actual func-
tions such as setup_cout_fractions do not need to appear in the same file as
the main program, providing an even stronger separation between the use of a
function and its implementation. Next, we discuss a few other implementation
issues that may be new to you.

Implementation Issues for the ANSI/ISO C++ Standard

This section concludes with some implementation issues for the temperature
program from Figure 1.1. Some of these issues may be new if you haven’t pre-
viously used the ANSI/ISO C++ Standard.

Jervis Pendleton has written
celsius_to_fahrenheit (henceforth known
as “the function”) and Judy Abbott is going
to use the function, we hereby agree that:

(i) Judy will never call the function 
unless she is certain that the precondition
is true, and

(ii) Whenever the function is called and
the precondition is true when the function
is called, then Jervis guarantees that:

a. the function will eventually end 
(infinite loops are forbidden!), and

b. when the function ends, the 
postcondition will be true.

J Pendleton

Judy Abbott

the
precondition/
postcondition
contract

Precondition:
Postcondition:
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THE STANDARD LIBRARY AND THE STANDARD NAMESPACE

During the late 1990s, the American National Standards Institute (ANSI) and the
International Standards Organization (ISO) developed C++ compiler requirements
called the ANSI/ISO C++ Standard. The standard aids programmers in writing por-
table code that can be compiled and run with many different compilers on different
machines. Part of the standard is the C++ Standard Library. Each facility in the
Standard Library provides a group of declared constants, data types, and functions
supporting particular activities such as input/output or mathematical functions.

In 1999, C++ compilers began to provide the full C++ Standard Library. To use
one of the library facilities, a program places an “include directive” at the top of the
file that uses the facility. For example, for a program to use the usual C++ input/out-
put facilities, the program should use the include directive:

#include <iostream>

This gives the program access to most of the C++ input/output facilities. Some
additional input/output items require a second include directive:

#include <iomanip>

A discussion of the input/output facilities from <iostream> and <iomanip> is
given in Appendix F.

A Program
// File: temperature.cxx
// This conversion program illustrates some implementation techniques.
#include <cassert> // Provides assert function
#include <cstdlib> // Provides EXIT_SUCCESS
#include <iomanip> // Provides setw function for setting output width
#include <iostream> // Provides cout
using namespace std; // Allows all Standard Library items to be used

// Precondition: c is a Celsius temperature no less than absolute zero (–273.15).
// Postcondition: The return value is the temperature c converted to Fahrenheit degrees.
{

const double MINIMUM_CELSIUS = -273.15; // Absolute zero in Celsius degrees

assert(c >= MINIMUM_CELSIUS);
return (9.0 / 5.0) * c + 32;

} (continued)

 FIGURE  1.1 The Temperature Conversion Program
See the C++ Feature, 
“The Standard Library 
and the Standard 
Namespace.”

double celsius_to_fahrenheit(double c)

C++ FEATURE ++
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 (FIGURE  1.1 continued)

// Precondition: fraction_digits is not negative.
// Postcondition: All double or float numbers printed to cout will now be rounded to the
// specified digits on the right of the decimal point.
{
    assert(fraction_digits > 0);
    cout.precision(fraction_digits);
    cout.setf(ios::fixed, ios::floatfield);

if (fraction_digits == 0)
        cout.unsetf(ios::showpoint);

else
        cout.setf(ios::showpoint); 
}

{
const char HEADING1[] = "   Celsius"; // Heading for table's 1st column
const char HEADING2[] = "Fahrenheit"; // Heading for table's 2nd column
const char LABEL1 = 'C'; // Label for numbers in 1st column
const char LABEL2 = 'F'; // Label for numbers in 2nd column
const double TABLE_BEGIN =        -50.0; // The table's first Celsius temp.
const double TABLE_END = 50.0; // The table's final Celsius temp.
const double TABLE_STEP =         10.0; // Increment between temperatures
const int WIDTH =            9; // Number chars in output numbers
const int DIGITS = 1; // Number digits right of decimal pt

double value1;  // A value from the table's first column
double value2;  // A value from the table's second column

    // Set up the output for fractions and print the table headings.
    setup_cout_fractions(DIGITS);
    cout << "CONVERSIONS from " << TABLE_BEGIN << " to " << TABLE_END << endl;
    cout << HEADING1 << "  " << HEADING2 << endl;

    // Each iteration of the loop prints one line of the table.
for (value1 = TABLE_BEGIN; value1 <= TABLE_END; value1 += TABLE_STEP) 

    {
        value2 = celsius_to_fahrenheit(value1);
        cout << setw(WIDTH) << value1 << LABEL1 << "  "; 
        cout << setw(WIDTH) << value2 << LABEL2 << endl; 
    }

return EXIT_SUCCESS;
}

void setup_cout_fractions(int fraction_digits)

int main( )

www.cs.colorado.edu/~main/chapter1/temperature.cxx WWW

See the Programming 
Tip, “Use Assert to 
Check Preconditions,” on 
page 12.

See the Programming Tip, 
“Use Declared Constants,” 
on page 11.

See the Programming 
Tip, “Use 
EXIT_SUCCESS in a 
Main Program,” on 
page 14.
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Older Names for the Header Files

The files iostream and iomanip are examples of C++ header files. Older C++
compilers used slightly different names for header files. For example, older compil-
ers used iostream.h instead of simply iostream. In most cases, the new C++
header file names are the same as the old file names with the “.h” removed, and
newer compilers will still allow the older names. 

In addition to the C++ header files, the C++ Standard includes a collection of
header files from the original C language. Two examples are the C Standard
Library <stdlib.h> and the assert facility <assert.h>. These original names can
still be used in a C++ program, or you can use the new C++ header file names,
which are constructed by removing the “.h” and putting the letter “c” at the front of
the name (such as <cstdlib> and <cassert>).

A discussion of <cstdlib> and <cassert> is given as part of Appendix G,
“Selected Library Functions.”

The Standard Namespace

There is one difference between using old header file names (such as <iostream.h>
or <stdlib.h>) and the new names (such as <iostream> or <cstdlib>). All of
the items in the new header files are part of a feature called the standard
namespace, also called std. For now, when you use one of the new header files,
your program should also have this statement after the include directives:

using namespace std;

This statement is a global namespace directive, which allows your program to use
all items from the standard namespace. Chapter 2 discusses alternatives to the
global namespace directive, and also shows how to create your own namespaces
to avoid conflicts between the names that occur in different pieces of a program.

USE DECLARED CONSTANTS

Throughout the temperature program, there are several declarations of the form:

const double TABLE_BEGIN = -50.0; 

This is a declaration of a double number called TABLE_BEGIN, which is given an
initial value of −50.0. The keyword const, appearing before the declaration, makes
TABLE_BEGIN more than just an ordinary declaration. It is a declared constant,
which means that its value will never be changed while the program is running. A
common programming style is to use all capital letters for any declared constant.
This makes it easy to identify such values within a program.

There are several advantages to defining TABLE_BEGIN as a declared constant,
rather than using the number −50.0 directly in the program. Using the name
TABLE_BEGIN makes it easy to understand the purpose of the constant. Moreover,
once a constant has been declared, it can be used throughout the program. For

PROGRAMMING TIP ��  
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example, our program uses TABLE_BEGIN twice (once when printing the heading
at the top, and once to determine a beginning value used in the for-loop). 

Using declared constants also makes it easier to alter a program. For example,
we may decide to alter the program so that the table starts at –100.0 instead of
–50.0. This change is accomplished by finding the declared constant
(TABLE_BEGIN), changing its initial value to –100.0, then recompiling the program.
By changing the initial value, all occurrences of TABLE_BEGIN will have the new
value.

To increase clarity and to ease alterations, some programmers use declared
constants for all fixed values in a program. As rules go, this is a reasonable one.
However, there is another side to the issue. Well-known formulas may be more
easily recognized in their original form (using numbers directly rather than artifi-
cially introduced names). For example, the conversion from Celsius to Fahrenheit
is recognizable as F = C + 32. Thus, Figure 1.1 uses the return statement shown
here:

return (9.0/5.0) * c + 32;

This return statement is clearer and less error-prone than a version that uses
declared constants for the values  and 32.

USE ASSERT TO CHECK A PRECONDITION

Consider the function celsius_to_fahrenheit from the temperature program.
The function has a precondition, requiring its parameter to be no less than absolute

9
5
---

9
5
---

CLARIFYING THE CONST KEYWORD
Part 1: Declared Constants

For programmers who implement data
structures, the C++ keyword const has
several uses that must be coordinated with
each other. Because of potential confusion
between the different uses, we’ll clarify
each use when we first use it in an example.

You can use the keyword const in front of
any variable declaration. This indicates
that the program is not allowed to change
the variable’s value.

Syntax:
= ;

Examples:
double TABLE_BEGIN = 50.0;
char LABEL1 = 'C';

1. DECLARED CONSTANTS
2. CONSTANT MEMBER FUNCTIONS: PAGE 38
3. CONST REFERENCE PARAMETERS: PAGE 72
4. STATIC MEMBER CONSTANTS: PAGE 104
5. CONST ITERATORS: PAGE 144
6. CONST PARAMETERS THAT ARE POINTERS OR

ARRAYS: PAGE 171
7. THE CONST KEYWORD WITH A POINTER TO A

NODE, AND THE NEED FOR TWO VERSIONS OF
SOME MEMBER FUNCTIONS: PAGE 227

const <Data type> <Variable name> <Value>

const
const

PROGRAMMING TIP��  
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zero (because lower temperatures have no physical meaning). The programmer
who uses the function is always responsible for ensuring that the precondition is
valid. But, what if a programmer uses the function and the precondition is not valid?
This is a programming error, similar to other errors, such as accidentally dividing by
zero or attempting to use an array element beyond the array’s bounds. 

In a perfect world, such programming errors would never occur: No program
would ever attempt to divide by zero, or access an array beyond its bounds, or call
a function with an invalid precondition. Of course, programmers aren’t perfect; both
novice and experienced programmers make errors. During program development,
functions should be designed to help programmers find errors as easily as possi-
ble. As part of this effort, the first action of a function should be to check that its
precondition is valid. If the precondition fails, then the function prints a message
and either halts the entire program, or performs some other error actions before
returning.

At first glance, this approach may seem harsh. Why stop the whole program?
It’s just a little invalid data! But think back to programs you have written. Did you
ever make an error such as accessing an array beyond its bounds, perhaps writing
x[42] when the last valid location was x[41]? When this happens, a program
won’t always stop immediately; instead the program can continue computing with
corrupted data, eventually producing a crash long after the actual error, or just
silently producing a wrong answer. Difficult debugging work is sometimes needed
to track down the actual location of the error. Testing and debugging is easier if a
program produces an error message at the earliest detection of invalid data.

The assert facility is a good approach to detecting invalid data at an early point.
To use assert, the program includes this directive:

#include <cassert>

(Older compilers may use <assert.h> instead.) The primary item in the cassert
facility is called assert, which is used like a function with one argument. The argu-
ment is usually a true-false expression. The expression is evaluated. If the result is
true, then no action is taken. But if the result is false, then an error message is
printed, and the program is halted. These checks are called assertions. For exam-
ple, the celsius_to_fahrenheit function uses this assertion:

assert(c >= MINIMUM_CELSIUS);

If the expression (c >= MINIMUM_CELSIUS) is true, then c is valid and the asser-
tion takes no action. On the other hand, if the expression is false, then the precon-
dition has been violated, so a message is printed and the program is halted.

After testing and debugging is complete, the programmer has the option of turn-
ing off all assertion checks to speed up the program. Assertions can be turned off
by placing this statement immediately before the program’s include directives:

#define NDEBUG
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USE EXIT_SUCCESS IN A MAIN PROGRAM

When the temperature program finishes, it executes the statement:

return EXIT_SUCCESS;

This return statement ends the main program and also sends the value of the con-
stant EXIT_SUCCESS back to your computer’s operating system. The operating
system is the software that is responsible for running all programs on your com-
puter. Although you may not realize it, the operating system is able to take further
actions based on the return value from a main program. For example, the return
value of EXIT_SUCCESS tells the operating system that the program ended nor-
mally, and the operating system can then proceed with its next task. Other return
values tell the operating system about abnormal terminations such as problems
opening files or running out of memory. The EXIT_SUCCESS constant is defined in
cstdlib (or stdlib.h). For most operating systems, this constant is defined as
zero (which is why you may have used  in other programming).

By the way, a program can also return another constant, EXIT_FAILURE, as a
simple way of indicating non-normal completion.

EXCEPTION HANDLING

The C++ language provides built-in support for handling unusual situations, known
as “exceptions,” which may occur during the execution of your program. Exception
handling is commonly used to handle run-time errors. It is a very good alternative to
traditional techniques of error handling, which are often inadequate, error-prone,
and ad hoc. Once you have a program working for the core situation where things
always go as planned, you can use the C++ exception handling facilities to add
code for unusual cases. Please refer to Appendix L for more information about
these facilities. In order to focus on data structures, formal exception handling is
not incorporated into the examples in this book. 

Self-Test Exercises for Section 1.1
Each section of this book finishes with a few self-test exercises. Answers to
these exercises are given at the end of each chapter.

1. What are two considerations for selecting good subtasks?
2. What are the elements of a C++ function prototype?
3. This exercise refers to a function that Jervis has written for you to use.

The prototype and precondition/postcondition contract are shown at the
top of the next page.

PROGRAMMING TIP��  
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C++ FEATURE++
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int date_check(int year, int month, int day);
//  The three parameters are a legal year, month, and
// day of the month.
// If the given date has been reached on or before today,
// then the function returns 0. Otherwise, the value returned is the number
// of days until the given date will occur.

Suppose you call the function date_check(2009, 7, 29). What is the
return value if today is July 22, 2009? What if today is July 30, 2009?
What about February 1, 2010?

4. Write an assert statement that checks whether the month variable in the
function date_check is a valid integer.

5. One of the libraries is the <cmath> facility, which contains a function
with this prototype:

double sqrt(double x);

The function returns the square root of x. Write a reasonable precondi-
tion and postcondition for this function, and compare your answer to the
solution at the end of the chapter.

6. Write the include directive that must appear before using the sqrt func-
tion from Self-Test Exercise 5. 

7. Write the using statement that must appear before using any of the items
from the C++ Standard Library.

8. Write a program to print a conversion table from feet to meters. Use the
temperature conversion program as the starting point (available online at
www.cs.colorado.edu/~main/chapter1/temperature.cxx).

9. Why is it a good idea to stop a program at the earliest point when invalid
data is detected?

10. What is the easiest way to turn off all assertion checking in a program?

1.2 RUNNING TIME ANALYSIS

Time analysis consists of reasoning about an algorithm’s speed. Does the algo-
rithm work fast enough for my needs? How much longer does the method take
when the input gets larger? Which of several different methods is fastest? We’ll
discuss these issues in this section. An example will help start the discussion.

The Stair-Counting Problem

Suppose that you and your friend Judy are standing at the top of the Eiffel Tower.
As you gaze out over the French landscape, Judy turns to you and says, “I won-
der how many steps there are to the bottom?” You, of course, are the ever-
accommodating host, so you reply, “I’m not sure . . . but I’ll find out.” We’ll

Precondition:

Postcondition:
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look at three different methods that you could use and analyze the time require-
ments of each.

Method 1: Walk down and keep a tally. In the first method, Judy gives you a
pen and a sheet of paper. “I’ll be back in a minute,” you say as you dash down
the stairs. Each time you take a step down, you make a mark on the sheet of
paper. When you reach the bottom, you run back up, show Judy the piece of
paper, and say, “There are this many steps.”

Method 2: Walk down, but let Judy keep the tally. In the second method,
Judy is unwilling to let her pen or paper out of her sight. But you are undaunted.
Once more you say, “I’ll be back in a minute,” and you set off down the stairs.
But this time you stop after one step, lay your hat on the step, and run back to
Judy. “Make a mark on the paper!” you exclaim. Then you run back to your hat,
pick it up, take one more step, and lay the hat down on the second step. Then
back up to Judy: “Make another mark on the paper!” you say. You run back
down the two stairs, pick up your hat, move to the third step, and lay down the
hat. Then back up the stairs to Judy: “Make another mark!” you tell her. This
continues until your hat reaches the bottom, and you speed back up the steps
one more time. “One more mark, please.” At this point, you grab Judy’s piece of
paper and say, “There are this many steps.”

Method 3: Jervis to the rescue. In the third method, you don’t walk down the
stairs at all. Instead, you spot your friend Jervis by the staircase, holding the sign
drawn here:

each of the three stair-counting methods, just measure the actual time it takes to
carry out the method. You could do this with a stopwatch. But, there are some
drawbacks to measuring actual time. Actual time can depend on various irrele-
vant details, such as whether you or somebody else carried out the method. The
actual elapsed time may vary from person to person, depending on how fast
each person can run the stairs. Even if we decide that you are the runner, the
time may vary depending on other factors such as the weather, what you had for
breakfast, and what other things are on your mind.

Il y a 2689
marches
dans cet
escalier

(vraiment!)

The translation is There are 2689 steps in
this stairway (really!). So, you take the paper
and pen from Judy, write the number 2689,
and hand the paper back to her, saying,
“There are this many steps.”

This is a silly example, but even so, it
does illustrate the issues that arise when per-
forming a time analysis for an algorithm or
program. The first issue is deciding exactly
how you will measure the time spent carry-
ing out the method or executing the program.
At first glance the answer seems easy: For



Running Time Analysis 17

So, instead of measuring the actual elapsed time during each method, we
count certain operations that occur while carrying out the methods. In this exam-
ple, we will count just two kinds of operations:

1. Each time you walk up or down one step, that is one operation.
2. Each time you or Judy marks a symbol on the paper, that is one operation.

decide what 
operations to 
count

Of course, each of these operations takes a certain amount of time, and making a
mark may take a different amount of time than taking a step. But this doesn’t
concern us because we won’t measure the actual time taken by the operations.
Instead, we ask: How many operations are needed for each of the three meth-
ods? We could consider additional operations, such as operations to convert the
list of marks to a printed number (which would be convenient for Methods 1
and 2), but these limited operations will be adequate for our example.

In the first method, you take 2689 steps down, another 2689 steps up, and you
also make 2689 marks on the paper, for a total of  operations—that is
8067 total operations.

In the second method, there are also 2689 marks made on Judy’s paper, but
the total number of operations is considerably more. You start by going down
one step and back up one step. Then down two and up two. Then down three and
up three, and so forth. The total number of operations taken is:

Downward steps = 3,616,705 (which is )

Upward steps = 3,616,705

Marks made = 2689

Total operations = Downward steps
+ Upward steps
+ Marks made

 = 7,236,099

The third method is the quickest of all: Only four marks are made on the
paper (that is, we’re counting one “mark” for each digit of 2689), and there is no
going up and down stairs. The number of operations used by each of the meth-
ods is summarized here:

Method 1 8067 operations
Method 2 7,236,099 operations
Method 3 4 operations

Doing a time analysis for a program is similar to the analysis of the stair-
counting methods. For a time analysis of a program, we do not usually measure
the actual time taken to run the program because the number of seconds can
depend on too many extraneous factors—such as the speed of the processor, and
whether the processor is busy with other tasks. Instead, the analysis counts the

3 2689×

1 2 … 2689+ + +

typical
operations for 
program time 
analysis
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number of operations required. There is no precise definition of what constitutes
an operation, although an operation should satisfy your intuition of a “small
step.” An operation can be as simple as the execution of a single program state-
ment. Or we could use a finer notion of operation that counts each arithmetic
operation (addition, multiplication, etc.) and each assignment to a variable as a
separate operation.

dependence on 
input size

For most programs, the number of operations depends on the program’s input.
For example, a program that sorts a list of numbers is quicker with a short list
than with a long list. In the stairway example, we can view the Eiffel Tower as
the input to the problem. In other words, the three different methods all work on
the Eiffel Tower, but the methods also work on Toronto’s CN Tower, or the stair-
way to the top of the Statue of Liberty, or any other stairway.

When a method’s time depends on the size of the input, then the time can be
given as an expression, where part of the expression is the input’s size. The time
expressions for our three methods are given here:

Method 1 3n
Method 2 n + 2
Method 3 The number of digits in the number n

The expressions on the right give the number of operations performed by each
method when the stairway has n steps.

The expression for the second method is not easy to interpret. It needs to be
simplified in order to become a formula that we can easily compare to other for-
mulas. So, let’s simplify it. We start with the subexpression:

simplification of 
the Method 2 
time analysis

There is a trick that will enable us to find a simplified form for this expression.
The trick is to compute twice the amount of the expression and then divide the
result by 2. Unless you’ve seen this trick before, it sounds crazy. But it works
fine. The trick is illustrated in Figure 1.2. Let’s go through the computation of
that figure step-by-step.

We write the expression twice and add the two expressions.
But as you can see in Figure 1.2, we also use another trick: When we write the
expression twice, we write the second expression backwards. After we write
down the expression twice, we see the following:

We want the sum of the numbers on these two lines. That will give us twice the
value of , and we can then divide by 2 to get the correct value
of the subexpression .

1 2 … n+ + +( )

1 2 … n+ + +( )

1 2 … n+ + +( )

1 2 … n+ + +( )
+ n … 2 1+ + +( )

1 2 … n+ + +( )
1 2 … n+ + +( )
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Now, rather than proceed in the most obvious way, we instead add pairs of
numbers from the first and second lines. We add the 1 and the n to get . Then
we add the 2 and the  to again get . We continue until we reach the
last pair consisting of an n from the top line and a 1 from the bottom line. All the
pairs add up to the same amount, namely . Now that is handy! We get n
numbers, and all the numbers are the same, namely . So the total of all the
numbers on the preceding two lines is:

The value of twice the expression is n multiplied by . We are now essen-
tially done. The number we computed is twice the quantity we want. So, to
obtain our simplified formula, we only need to divide by 2. The final simplifica-
tion is thus:

We will use this formula to simplify the Method 2 expression, but you’ll also
find that the formula occurs in many other situations. The simplification for the
Method 2 expression is as shown at the top of the next page.

FIGURE  1.2 Deriving a Handy Formula

 can be computed by first computing the sum of twice , as 
shown here:

The sum is , so  is half this amount:

1 2 … n+ + +( ) 1 2 … n+ + +( )

 1 + 2 + … + n 1–( ) + n
+ n + n 1–( ) + … + 2 + 1

n 1+( ) + n 1+( ) + … + n 1+( ) + n 1+( )

n n 1+( ) 1 2 … n+ + +( )

1 2 … n+ + +( ) n n 1+( )
2

--------------------=

n 1+
n 1– n 1+

n 1+
n 1+

n n 1+( )

n 1+

1 2 … n+ + +( ) n n 1+( )
2

--------------------=
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Number of operations for Method 2
= n + 2

= n + 2 Plug in the formula for 

= n + n(n + 1) Cancel the 2s

= n + n2 + n Multiply out

= n2 + 2n Combine terms

So, Method 2 requires n2 + 2n operations.
simplification of 
the Method 3 
time analysis

The number of operations for Method 3 is just the number of digits in the inte-
ger n when written in the usual way. The usual way of writing numbers is called
base 10 notation. As it turns out, the number of digits in a number n, when writ-
ten in base 10 notation, is approximately equal to another mathematical quantity
known as the base 10 logarithm of n. The notation for the base 10 logarithm of
n is written:

log10n

base 10 notation 
and base 10 
logarithms

The base 10 logarithm does not always give a whole number. For example, the
actual base 10 logarithm of 2689 is about 3.43 rather than 4. If we want the
actual number of digits in an integer n, we need to carry out some rounding. In
particular, the exact number of digits in a positive integer n is obtained by
rounding log10n downward to the next whole number, and then adding 1. The
notation for rounding down and adding 1 is obtained by adding some marks to
the logarithm notation as follows:

This is all fine if you already know about logarithms, but what if some of this is
new to you? For now, you can simply define the above notation to mean the
number of digits in the base 10 numeral for n. You can do this because if others
use any of the other accepted definitions for this formula, they will get the same
answers that you do. You will be right! (And they will also be right.) In Section
11.3 of this book, we will show that the various definitions of the logarithm
function are all equivalent. For now, we will not worry about all that detail. We

1 2 … n+ + +( )

n n 1+( )
2

--------------------⎝ ⎠
⎛ ⎞ 1 2 … n+ + +( )

n10log 1+



Running Time Analysis 21

have larger issues to discuss first. The table of the number of operations for each
method can now be expressed more concisely, as shown here:

Method 1 3n
Method 2 n2 + 2n
Method 3

Big-O Notation

The time analyses we gave for the three stair-counting methods were very pre-
cise. They computed the exact number of operations for each method. But such
precision is sometimes not needed. Often it is enough to know in a rough man-
ner how the number of operations is affected by the input size. In the stair exam-
ple, we developed the methods thinking about a particular tower, the Eiffel
Tower, with a particular number of steps. We expressed our formulas for the
operations in terms of n, which stood for the number of steps in the tower. Now
suppose that we apply our various stair-counting methods to a tower with 10
times as many steps as the Eiffel Tower. If n is the number of steps in the Eiffel
Tower, then this taller tower will have 10n steps. The number of operations
needed for Method 1 on the taller tower increases tenfold (from 3n to
3 × (10n) = 30n); the time for Method 2 increases approximately 100-fold
(from about n2 to about (10n)2 = 100n2); and Method 3 increases by only one
operation (from the number of digits in n to the number of digits in 10n, or to be
very concrete, from the four digits in 2689 to the five digits in 26,890). We can
express this kind of information in a format called big-O notation. The symbol
O in this notation is the letter O, so big-O is pronounced “big Oh.”

We will describe three common examples of the big-O notation. In these
examples, we use the notion of “the largest term in a formula.” Intuitively, this
is the term with the largest exponent on n, or the term that grows the fastest as n
itself becomes larger. For now, this intuitive notion of “largest term” is enough.
Here are the examples:

quadratic time 
O(n2)

Quadratic time. If the largest term in a formula is no more than a constant
times n2, then the algorithm is said to be “big-O of n2,” written O(n2), and the
algorithm is called quadratic. In a quadratic algorithm, doubling the input size
makes the number of operations increase by approximately fourfold (or less).
For a concrete example, consider Method 2, requiring n2 + 2n operations. A
100-step tower requires 10,200 operations (that is, 1002 + 2 × 100). Doubling the
tower to 200 steps increases the time by approximately fourfold, to 40,400 oper-
ations (that is, 2002 + 2 × 200).

linear time O(n)Linear time. If the largest term in a formula is a constant times n, then the
algorithm is said to be “big-O of n,” written O(n), and the algorithm is called
linear. In a linear algorithm, doubling the input size makes the time increase by

n10log 1+
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approximately twofold (or less). For example, a formula of 3n + 7 is linear, so
that 3 × 200 + 7 is about twice 3 × 100 + 7.

logarithmic time 
O(log n)

Logarithmic time. If the largest term in a formula is a constant times a loga-
rithm of n, then the algorithm is “big-O of the logarithm of n,” written
O(log n), and the algorithm is called logarithmic. (The base of the logarithm
may be base 10, or possibly another base. We’ll talk about the other bases in
Section 11.3.) In a logarithmic algorithm, doubling the input size will make the
time increase by no more than a fixed number of new operations, such as one
more operation, or two more operations—or in general by c more operations,
where c is a fixed constant. For example, Method 3 for stair-counting has a log-
arithmic time formula. And doubling the size of a tower (perhaps from 500
stairs to 1000 stairs) never requires more than one extra operation.

Using big-O notation, we can express the time requirements of our three
stair-counting methods as follows:

Method 1 O(n)
Method 2 O(n2)
Method 3 O(log n)

order of an 
algorithm

When a time analysis is expressed with big-O, the result is called the order of
the algorithm. We want to reinforce one important point: Multiplicative con-
stants are ignored in the big-O notation. For example, both 2n and 42n are linear
formulas, so both are expressed as O(n), ignoring the multiplicative constants 2
and 42. As you can see, this means that a big-O analysis loses some information
about relative times. Nevertheless, a big-O analysis does provide some useful
information for comparing algorithms. The stair example illustrates the most
important kind of information provided by the order of an algorithm:

For example, using the quadratic method (Method 2) the fastest stair climber in
the world is still unlikely to do better than a slowpoke—provided that the slow-
poke uses one of the faster methods. In an application such as sorting a list, a
quadratic algorithm can be impractically slow on even moderately sized lists,
regardless of the processor speed. To see this, notice the comparisons show-
ing actual numbers for our three stair-counting methods, which are shown in
Figure 1.3.

The order of an algorithm generally is more important than
the speed of the processor.
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Time Analysis of C++ Functions

The principles of the stairway example can be applied to counting the number of
operations required by a function written in a high-level language such as C++.
As an example, consider the function implemented in Figure 1.4. When the
function is called, the user is asked to think of a number, and then the function
asks a series of questions until the number is found. An example is shown at the
bottom of the figure, where the user is asked to “think of a whole number from 1
to 100.”

As with the stairway example, the first step of the time analysis is to decide
precisely what we will count as a single operation. For C++ functions, a good
choice is to count the total number of C++ operations (such as an assignment, the
< operation, or the << operation) plus the number of function calls (such as the
call to assert). If the function calls did complex work themselves, then we
would also need to count the operations that are carried out there.

With this in mind, let’s analyze the guess_game function for the case where
the parameter is a positive integer n, and (just to be difficult) the user is thinking
of the number 1. How many operations does the function carry out in all? Our
analysis has three parts:

1. Prior to the for-loop, there are seven operations (one >= comparison, one
call to assert, four output operations, and an assignment to answer).
Then there is the loop initialization (guess = n). Thus, before the loop
body occurs, there are eight operations.

2. We then execute the body of the loop, and because our user is thinking of
the number 1, we execute this body n times. How many operations occur
during each execution of the loop body? We could count this number, but
let’s just say that each execution of the loop body requires k operations,
where k is some number around 10 or 20. If necessary, we’ll figure out k
later, but for now it is enough to know that we execute the loop body n
times, and each execution takes k operations, for a total of kn operations.

FIGURE  1.3 Number of Operations for Three Methods

Logarithmic
O(log n)

Linear
O(n)

Quadratic
O(n2)

Number of stairs (n)

Method 3, with

operations

Method 1, with
3n

operations

Method 2, with
n 2  + 2n

operations
10 2 30 120

100 3 300 10,200
1000 4 3000 1,002,000

10,000 5 30,000 100,020,000

n10log 1+
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3. After the loop finishes, there are five more operations (three in the test of
the if-statement, plus two << operations).

A Function Implementation

// Precondition: n > 0.
// Postcondition: The user has been asked to think of a number between 1 and n. The function
// asks a series of questions until the number is found.
// Library facilities used: cassert, iostream
{

int guess;
char answer;

assert(n >= 1);

cout << "Think of a whole number from 1 to " << n << "." << endl;
answer = 'N';
for (guess = n; (guess > 0) && (answer != 'Y') && (answer != 'y'); --guess)
{

cout << "Is your number " << guess << "?" << endl;
cout << "Please answer Y or N, and press return: ";
cin >> answer;

}

if ((answer == 'Y') || (answer == 'y'))
cout << "I knew it all along." << endl;

else
cout << "I think you are cheating!" << endl;

}

A Sample Dialogue from Calling guess_game(100):
Think of a whole number from 1 to 100.
Is your number 100?
Please answer Y or N, and press return: N
Is your number 99?
Please answer Y or N, and press return: N
Is your number 98?
Please answer Y or N, and press return: Y
I knew it all along.

 FIGURE  1.4 Guessing Game Function for the Time Analysis Example

void guess_game(int n)

www.cs.colorado.edu/~main/chapter1/guess.cxx WWW



Running Time Analysis 25

The total number of operations is now kn + 12. Regardless of how big k is, this
formula is always linear time. So, in the case where the user thinks of the num-
ber 1, the guess_game function takes linear time. In fact, this is a frequent pat-
tern that we summarize here:

Later you will see additional patterns, resulting in quadratic, logarithmic, and
other times. In fact, in Chapter 12 you will rewrite the guess_game function in a
better way that requires only logarithmic time.

Worst-Case, Average-Case, and Best-Case Analyses
The guess_game function has another important feature: For any particular
value of n, the number of required operations can differ depending on the user’s
input. For example, with n equal to 100, the user might think of the number 100,
and the loop body executes just one time. On the other hand, when the user is
thinking of the number 1, the loop body executes the maximum number of times
(n times). In other words, for any given n, different possible inputs from the user
result in a different number of operations. When this occurs, then we usually
count the maximum number of required operations for inputs of a given size.
Counting the maximum number of operations is called the worst-case analysis.

During a time analysis, you may sometimes find yourself unable to provide
an exact count of the number of operations. If the analysis is a worst-case analy-
sis, you may estimate the number of operations, always making sure that your
estimate is on the high side. In other words, the actual number of operations must
be guaranteed to be always less than the estimate that you use in the analysis.

In Chapter 12, when we begin the study of searching and sorting, you’ll see
two other kinds of time analysis: average-case analysis, which determines the
average number of operations required for a given n, and best-case analysis,
which determines the fewest number of operations required for a given n.

Self-Test Exercises for Section 1.2
11. Each of the following are formulas for the number of operations in some

algorithm. Express each formula in big-O notation.
a. n2 + 5n e. 5n + 3n2

b. 3n2 + 5n f . The number of digits in 2n
c. (n + 7)(n – 2) g. The number of times that n can be
d. 100n + 5 divided by 10 before dropping below 1.0

Linear Pattern
A loop that does a fixed amount of operations n times
requires O(n) time.

worst-case
analysis
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12. Determine which of the following formulas is O(n):
a. 16n3 c.
b. n2 + n + 2 d. 10n + 25

13. What is meant by worst-case analysis?
14. What is the worst-case big-O analysis of the following code fragment? 

for (i = 0; i < n; ++i) {
    for (j = i; j < n; ++j) {
        j += n;
    }
}

15. List the following formulas in order of running time analysis, from great-
est to least time requirements, assuming that n is very large: 
n2 + 1; 50 log n; 1,000,000; 10n + 10,000.

16. Write code for a function that uses a loop to compute the sum of all inte-
gers from 1 to n. Do a time analysis, counting each basic operation (such
as assignment and ++) as one operation.

1.3 TESTING AND DEBUGGING

Always do right. This will gratify some people, and
astonish the rest.

MARK TWAIN
To the Young People’s Society, February 16, 1901

program testing Program testing occurs when you run a program and observe its behavior.
Each time you execute a program on some input, you are testing to see how the
program works for that particular input, and you are also testing to see how long
the program takes to complete. Part of the science of software engineering is the
systematic construction of a set of test inputs that is likely to discover errors,
and such test inputs are the topic of this section.

Choosing Test Data

To serve as good test data, your test inputs need two properties:

n2/2

Properties of Good Test Data

1. You must know what output a correct program should
produce for each test input.

2. The test inputs should include those inputs that are most
likely to cause errors.
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Do not take the first property lightly—you must choose test data for which you
know the correct output. Just because a program compiles, runs, and produces
output that looks about right does not mean the program is correct. If the correct
answer is 3278 and the program outputs 3277, then something is wrong. How
do you know the correct answer is 3278? The most obvious way to find the cor-
rect output value is to work it out with pencil and paper using some method
other than that used by the program. To aid you in doing this, you might choose
test data for which it is easy to calculate the correct answer, perhaps by using
smaller input values or by using input values for which the answer is well
known.

Boundary Values

We focus on two methods for finding test data that is most likely to cause errors.
The first method is based on identifying and testing inputs called boundary val-
ues, which are particularly apt to cause errors. A boundary value of a problem
is an input that is one step away from a different kind of behavior. For example,
consider a function called time_check, with this precondition:

int time_check(int hour);
// Precondition: hour lies in the range 0 <= hour <= 23.

Two boundary values for time_check are hour equal to 0 (the lowest legal
value) and hour equal to 23 (the highest legal value). If we expect the function
to behave differently for morning hours (0 to 11) than for afternoon hours (12
through 23), then 11 and 12 are also boundary values. If we expect a different
behavior for hour equal to 0, then 1 is a boundary value. In fact, 0 and 1 have
special behavior in so many situations that it is a good idea to consider 0, 1, and
even –1 to be boundary values whenever they are legal input.

In general, there is no precise definition of a boundary value, but you should
develop an intuitive feel for finding inputs that are “one step away from different
behavior.”

Test Boundary Values
If you cannot test all possible inputs, at least test the
boundary values. For example, if legal inputs range from
zero to one million, then be sure to test input 0 and input
1000000. It is a good idea also to consider 0, 1, and –1 to be
boundary values whenever they are legal input.
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Fully Exercising Code
The second widely used testing technique requires intimate knowledge of how a
program has been implemented. The technique, called fully exercising code, is
simple, with two rules:

1. Make sure that each line of your code is executed at least once by some of
your test data. For example, there might be a portion of your code that is
only handling a rare situation. Make sure that this rare situation is
included among your set of test data.

2. If there is some part of your code that is sometimes skipped altogether,
then make sure that there is at least one test input that actually does skip
this part of your code. For example, there might be a loop where the body
sometimes is executed zero times. Make sure that there is a test input that
causes the loop body to be executed zero times.

profiler Many compilers have a software tool called a profiler to help fully exercise
code. A typical profiler will generate a listing indicating how often each state-
ment of your program was executed. This can help you spot parts of your pro-
gram that were not tested.

Debugging
Fixing the errors in your programming—debugging—is an important skill that
you’ve had to practice since your first days as a programmer. Some of our
debugging suggestions are available online at www.cs.colorado.edu/~main/
debugging.html. For this textbook, we’ll emphasize just one tip that we’ve
found most important.

HOW TO DEBUG

Finding a test input that causes an error is only half the problem of testing and
debugging. After an erroneous test input is found, you still must determine exactly

Fully Exercising Code

1. Make sure that each line of your code is executed at
least once by some of your test data. 

2. If there is some part of your code that is sometimes
skipped altogether, then make sure that there is at least
one test input that actually does skip this part of your
code.

Use a software tool called a profiler to ensure that you are
fully exercising your code.

online
debugging
suggestions

PROGRAMMING TIP��  
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why the “bug” occurs, and then “debug the program.” When you have found an
error, there is an impulse to dive right in and start changing code. It is tempting to
look for suspicious parts of your code and change these suspects to something
“that might work better.”

Avoid the temptation.
An impulsive change to suspicious code almost always makes matters worse.

Instead, you must discover exactly why a test case is failing and limit your changes
to corrections of known errors. Once you have corrected a known error, all test
cases should be rerun.

debuggerTracking down the exact reason why a test case is failing can be difficult. For
large programs, tracking down errors is nearly impossible without the help of a soft-
ware tool called a debugger. A debugger executes your code one line at a time, or
it may execute your code until a certain condition arises. Using a debugger, you
can specify what conditions should cause the program execution to pause. You can
also keep a continuous watch on the location of the program execution and on the
values of specified variables.

Self-Test Exercises for Section 1.3

17. List two properties of good test data.
18. What boundary values should you use as test inputs for the day variable

in the function date_check from page 15?
19. Suppose you write a program that accepts as input any integer in the

range –20 through 20, and outputs the number of digits in the input inte-
ger. What boundary values should you use as test inputs?

20. What are two rules for fully exercising code?
21. Suppose you write a program that accepts a single line as input, and out-

puts a message telling whether or not the line contains the letter A, and
whether or not it contained more than three A’s. What is a good set of test
inputs?

22. Describe how a profiler and a debugger typically aid in testing and
debugging programs.

Debugging Tip

1. Never start changing suspicious code on the hope that
the change “might work better.”

2. Instead, you should discover exactly why a test case is
failing and limit your changes to corrections of known
errors.

3. Once you have corrected a known error, all test cases
should be rerun.

Use a software tool called a debugger to help track down
exactly why an error occurs.
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CHAPTER SUMMARY

• The first step in producing a program is to write a precise description of
what the program is supposed to do.

• One good method for specifying what a function is supposed to do is to
provide a precondition and postcondition for the function. These form a
contract between the programmer who uses the function and the program-
mer who writes the function. Using the assert function to check precon-
ditions can significantly reduce debugging time, and the assertion-checking
can later be turned off if program speed is a consideration.

• Pseudocode is a mixture of C++ (or some other programming language)
and English (or some other natural language). Pseudocode is used to
express algorithms so that you are not distracted by details of C++ syntax.

• Understanding and using the C++ Standard Library can make program
development easier. In addition, studying the data structures of the
Standard Library can help you understand trade-offs between different
approaches, and can guide the design and implementation of your own
data structures. When you are designing your own data structures, an
approach that is compliant with the Standard Library allows others to
more easily understand your work, and your own work will readily bene-
fit from other pieces of the Standard Library.

• Time analysis is an analysis of how many operations an algorithm
requires. Often, it is sufficient to express a time analysis in big-O nota-
tion, which is the order of an algorithm. The order analysis is often
enough to compare algorithms and estimate how running time is affected
by changing input size. 

• Three important examples of big-O analyses are linear (O(n)), quadratic
(O(n2)), and logarithmic (O(log n)).

• An important testing technique is to identify and test boundary values.
These are values that lie on a boundary between different kinds of behav-
ior for your program.

• A second important testing technique is to ensure that your test cases are
fully exercising the code. A software tool called a profiler can aid in fully
exercising code.

• During debugging, you should discover exactly why a test case is failing
and limit your changes to corrections of known errors. Once you have
corrected a known error, all test cases should be rerun. Use a software tool
called a debugger to help track down exactly why an error occurs.

SOLUTIONS TO SELF-TEST EXERCISES
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Solutions to Self-Test Exercises ?Solutions to Self-Test Exercises

1. a) The potential for code reuse. b) The possi-
bility of future changes to the program.

2. A function prototype consists of the return
type, name, and parameter list, which are all
followed by a semicolon.

3. The function returns 7 on July 22, 2009. On
both July 30, 2009 and February 1, 2010 the
function returns 0 (since July 29, 2009 has
already passed). 

4. assert (month > 0 && month <=12);

5. Precondition: x >= 0. Postcondition: The
return value is the positive square root of x.

6. #include <cmath>
Older compilers may require <math.h>
instead.

7. using namespace std;

8. The modification should change only the con-
stants at the top of the program, the function
celsius_to_fahrenheit and the call to this
function.

9. Stopping early with an error message makes
debugging easier.

10. #define NDEBUG should appear before any
include directives.

11. Part d is linear (i.e., O(n)); parts f and g are
logarithmic (i.e., O(log n)); all of the others
are quadratic (i.e., O(n2)).

12. The only O(n) formula is (d).

13. Worst-case analysis counts the maximum
required number of operations for a function.
If the exact count of the number of operations
cannot be determined, the number of opera-
tions may be estimated, provided that the esti-
mate is guaranteed to be higher than the actual
number of operations.

14. This is a nested loop in which the number of
times the inner loop executes is one more than
the value of the outer loop index. The inner
loop statements execute n + (n – 1) + ... + 2 +
1 times. This sum is n(n + 1)/2 and gives
O(n2).

15. n2 + 1; 10n + 10,000; 50 log n; 1,000,000.

16. Here is one implementation of the function:
int sum(int n)
// Precondition: n >= 1.
// Postcondition: The value returned is the
// sum of all integers from 1 to n.
{
int answer, i;

answer = 0;
for (i = 1; i <= n; ++i)

answer += i;
return answer;

}

Our solution uses answer += i, which
causes the current value of i to be added to
what’s already in answer.

For a time analysis, there are two assign-
ment operations (answer = 0 and i = 1). The
<= test is executed n + 1 times (the first n
times it is true, and the final time, with i equal
to n + 1, it is false). The ++ and += operations
are each executed n times. The entire code is
O(n).

17. Choose test data for which you know the cor-
rect output. Test inputs should include those
that are most likely to cause errors.

18. 28, 29, 30, and 31 should be boundary values
to account for the number of days in any
month. 1 should also be tested as a lower
boundary value, and 27 as the biggest number
that cannot be the number of days in a month.
To some extent, though, this is a trick ques-
tion: Any time that the number of possible
inputs to a function is relatively small, we’d
suggest that a test program test all possible
input values.
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19. As always, 0, 1, and –1 are boundary values.
In this problem, –20 (smallest value) and 20
(largest value) are also boundary values, as are
9 and 10 (since the number changes from a
single digit to two digits) and –9 and –10. (By
the way, this particular problem is small
enough that it would be reasonable to test all
legal inputs, rather than testing just the bound-
ary values.)

20. Make sure that each line of your code is exe-
cuted at least once by some of your test data.
If part of your code is sometimes skipped dur-
ing execution, make sure that at least one test
input skips this part of your code.

21. You should include an empty line (with no
characters before the carriage return) and lines
with 0, 1, 2, and 3 A’s. Also include a line with
4 A’s (the smallest case with more than three)
and a line with more than 4 A’s. For the lines
with 1 or more A’s, include lines that have
only the A’s, and also include lines that have
A’s together with other characters. Also test
the case where all the A’s appear at the front or
the back of the line.

22. A profiler can ensure that your code is being
fully exercised (by printing the count of how
many times each line of your code has been
executed). Once an error has been noticed, a
debugger can help track down the cause of the
error by displaying the values of variables
while the code executes one line at a time.
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L EARN ING  OB J EC T I V ES
When you complete Chapter 2, you will be able to...

• specify and design new classes using a pattern of information hiding with private 
member variables, const member functions, and modification member functions.

• write a header file and a separate implementation file for any new class.
• create and use namespaces to organize new classes.
• use your new classes (and at least one STL class) in small test programs.
• use the automatic assignment operator and the automatic copy constructor.
• identify situations in which member functions and constructors can benefit from 

using default arguments.
• correctly identify and use value parameters, reference parameters, and const 

reference parameters.
• overload certain binary operators and input/output operators for new classes.
• identify the need for friend functions of a new class and correctly implement such 

nonmember functions (which are sometimes overloaded operators).
• Use STL classes, such as the pair class, in an application program.

CHAPTER  CONTENTS

2.1 Classes and Members
2.2 Constructors
2.3 Using a Namespace, Header File, and Implementation File
2.4 Classes and Parameters
2.5 Operator Overloading
2.6 The Standard Template Library and the Pair Class

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

The happiest way to deal with a man is never to tell him
anything he does not need to know.

ROBERT A. HEINLEIN
Time Enough for Love
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Abstract  Data Types and C++ Classes

Object-oriented programming (OOP) is an approach to
programming in which data occurs in tidy packages called objects.
Manipulation of an object happens with functions called member functions,
which are part and parcel of their objects. 

In C++, the mechanism to create objects and member functions is called a
class. Classes can support information hiding, which was presented as a corner-
stone of program design in Chapter 1. Typically one programming team designs
and implements a class, while other programmers use the class. The program-
mers that use the class have no knowledge of how the class is implemented. In
fact, the implementor of a C++ class can completely hide the knowledge of how
the class is implemented—resulting in ideal information hiding.

Such a strong emphasis on information hiding is motivated partly by
mathematical research about how programmers can improve their reasoning
about data types that are used in programs. These mathematical data types are
called abstract data types, or ADTs—and therefore, programmers sometimes
use the term ADT to refer to a class that is presented to other programmers with
information hiding. This chapter presents two examples of such classes. The
examples illustrate the features of C++ classes, with emphasis on information
hiding. By the end of the chapter you will be able to implement your own classes
in C++. Other programmers could use one of your classes without knowing the
details of how you implemented the class.

2.1 CLASSES AND MEMBERS

A class is a new kind of data type. Each class that you define is a collection of
data, such as integers, characters, and so on. In addition, a class has the ability to
include special functions, called member functions. Member functions are
incorporated into the class’s definition and are designed specifically to manipu-
late the class. A programmer who designs a class can even mandate that the only
way of manipulating the class is through its member functions. But this abstract
discussion does not really tell you what a class is. We need some examples. As
you read through the first example, concentrate on learning the techniques for
implementing a class. Also notice features that allow you to use a class written
by another programmer, without knowing details of the class’s implementation.

PROGRAMMING EXAMPLE: The Throttle Class

Our first example of a class is a new data type to store and manipulate the status
of a simple throttle. Classes such as our throttle class appear in programs that

emphasize
what work is 
done rather 
than how the 
work is done

the throttle 
class

34 Chapter 2 / Abstract Data Types and C++ Classes
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simulate real-world objects. For instance, a flight simulator might include
classes for the plane and various parts of the plane such as the engines, the
rudder, the altimeter, and even the throttle.

The simple throttle that we have in mind is a lever that can be moved to con-
trol fuel flow. The throttle we have in mind has a single shutoff point (where
there is no fuel flow) and a sequence of six on positions where the fuel is flowing
at progressively higher rates. At the topmost position, the fuel flow is fully on.
At the intermediate positions, the fuel flow is proportional to the location of the
lever. For example, with six possible positions, and the lever in the fourth posi-
tion, the fuel flows at of its maximum rate.

One function provided with the class permits a program to initialize a throttle
to its shutoff position. Once the throttle has been initialized, there is another func-
tion to shift the throttle lever by a given amount.

We also have two functions to examine the status of a throttle. The first of
these functions returns the amount of fuel currently flowing, expressed as a pro-
portion of the maximum flow. For example, this function will return approxi-
mately 0.667 when the six-position throttle is in its fourth position. The other
function returns a true-or-false value, telling whether the throttle is currently on
(that is, whether the lever is above the zero position). Thus, the throttle has a total
of four functions:

four throttle 
functions

1. A function to set a throttle to its shutoff position
2. A function to shift a throttle’s position by a given amount
3. A function that returns the fuel flow, expressed as a proportion of the

maximum flow
4. A function to tell us whether the throttle is currently on

We can define this new data type as a “class” called throttle that includes
data (to store the throttle’s current position) and the four functions to modify
and examine the throttle. Once the new class is defined, a programmer can
declare objects of type throttle and manipulate those objects with the func-
tions. Here is the class definition:

class throttle
declaring the 
throttle class

{
public:

// MODIFICATION MEMBER FUNCTIONS
void shut_off( );
void shift(int amount);
// CONSTANT MEMBER FUNCTIONS
double flow( ) const;
bool is_on( ) const;

private:
int position;

};

OFF

FAST

SLOW

4
6
---
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This class definition defines a new data type called throttle. The new data
type is a class, meaning that it may have some components that are data and
other components that are functions. Let’s examine the definition piece by piece.

The class head. The head of the definition consists of the C++ keyword class,
followed by the name of the new class. You may use any legal identifier for the
class’s name. We chose the name throttle. We use nouns for the names of new
classes—this isn’t required by C++, but it’s a part of our documentation stan-
dard (Appendix J).

The member list. The rest of the definition, from the opening bracket to the
closing semicolon, is the member list of the definition. 

The public section. The first part of the member list is called the public section.
It begins with the C++ keyword public followed by a colon and a list of items.
These items are available to anyone who uses the new data type. For the throttle,
the list contains the four functions. Such functions are called member functions
to distinguish them from ordinary functions. Another term is method, which
means the same as “member function.” When a member function is listed in a
class body, we list only the function’s prototype (that is, the head followed by a
semicolon). For example, one of the throttle function prototypes is:

void shift(int amount);

The prototype indicates that the function has one parameter (an integer called
amount). We will use this function to shift a throttle’s lever up or down by a
given amount. The implementation of the shift function does not appear in the
class definition; it will appear elsewhere with other function implementations.

One of the other throttle functions has the following prototype:

bool is_on( );

the bool type This function can be used to determine whether a throttle is currently on. The
return value of the function has the data type bool, which is a built-in data type
provided in the ANSI/ISO C++ Standard. The bool data type is intended solely
for true-or-false values (also called boolean values or logical values). The
important properties of the bool type are shown in Figure 2.1. If your compiler
does not support the bool type, then see Appendix E, “Dealing with Older
Compilers,” for alternatives.

public member 
functions

Anyone who declares a variable of type throttle can manipulate that throttle
with the four public member functions. In fact, these four functions are the only
way that a throttle may be manipulated, since there is nothing else available in
the public section of the definition.

modification
member
functions

You should notice that we have classified the public member functions into
two groups. The first two functions, shut_off and shift, are modification
member functions. A modification member function can change the value of an
object. For the throttle, the modification functions can change the position of the
throttle’s lever.
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FIGURE  2.1 The Boolean Data Type

C++ Has a Boolean Data Type

The results of true-or-false tests play an important role in programming. For example, we might
test whether two variables are equal (x == y), or compare the relative ordering of two integer
variables (i < j). In these cases, and others, the result of the test is either true or false.

In early versions of C and C++, false was represented by the integer 0, and true was
represented by any nonzero integer. But the 1996 C++ Standard provided a new built-in data
type called bool. The data type is intended to store true-or-false values that are generated from
various tests. Along with the data type are two new keywords, true and false, which are bool
constants.

Here is a summary of the important features of the bool type:

• A bool value may be true or false; no other values are permitted.

• The built-in relational operators (==, !=, <, <=, >, >=) produce a bool value.
• The binary “and” operator (&&) combines two bool arguments, producing a true result

only if both arguments are true. The binary “or” operator (||) combines two bool argu-
ments, producing a true result if either of its arguments is true. The “not” operator (!) is
applied to a single bool argument, producing a false result from a true argument, and
vice versa.

• User-defined functions may also compute and return bool values.

• A bool value may be used as the controlling expression of an if-statement or a loop.

For example, suppose we write a function with the following specification:

bool is_even(int i);
// Postcondition: The return value is true if and only if i is an even number.

We could use the is_even function in code that prints a message about a number:

if (is_even(j))
cout << j << " is even." << endl;

else
cout << j << " is odd." << endl;

The name “bool” is derived from the name of George Boole, a 19th-century mathematician who
developed the foundations for a formal calculus of logical values. Boole was a self-educated
scholar with limited formal training. He began his teaching career at the age of 16 as an
elementary school teacher and eventually became a professor at Queen’s College in Cork. As a
dedicated teacher, he died at the early age of 49—the result of pneumonia brought on by a two-
mile trek through the rain to lecture to his students.

If your compiler does not 
support the bool type,
see Appendix E.
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constant
member
functions

On the other hand, the functions flow and is_on are classified as constant
member functions. A constant member function may examine the status of an
object, but changing the object is forbidden. In our example, the two constant
member functions can examine but not change a throttle. The prototypes of the
constant member functions have the keyword const at the end (just after the
parameter list). Using the const keyword tells the compiler and other program-
mers that the function cannot change the object.

The private section. The second part of the member list is called the private
section. It begins with the C++ keyword private followed by a colon. After
the colon is a list of items that are part of the class but are not directly available
to programmers who use the class. In our example, the private section contains
one integer called position. This component is a member variable of the
class, in contrast to the other four members, which are member functions. Mem-
ber variables may be of any data type, such as int, char, double, and so on. 

private member 
variables

Our intention is to use the private member variable to store the current posi-
tion of a throttle, ranging from 0 to 6. The member variable is private, which
means that the programmer who implements the throttle class can access this
member. But programmers who use the new class have no way to read or assign
values directly to the private member variable.

CLARIFYING THE CONST KEYWORD
Part 2: Constant Member Functions

The keyword const can be placed after the
parameter list of a member function. This use of
const indicates that the function is a constant
member function.

A constant member function may examine the
status of its object, but it is forbidden from
changing the object.

Examples:
double flow( ) ;
bool is_on( ) ;

1. DECLARED CONSTANTS: PAGE 12
2. CONSTANT MEMBER FUNCTIONS
3. CONST REFERENCE PARAMETERS: PAGE 72
4. STATIC MEMBER CONSTANTS: PAGE 104
5. CONST ITERATORS: PAGE 144
6. CONST PARAMETERS THAT ARE POINTERS

OR ARRAYS: PAGE 171
7. THE CONST KEYWORD WITH A POINTER

TO A NODE, AND THE NEED FOR TWO VER-
SIONS OF SOME MEMBER FUNCTIONS:
PAGE 227

const
const

A Common Pattern for Classes
Public member functions permit programmers to modify and
examine objects of the new class. Use the keyword const
(after the function’s parameter list) when a member function
examines data without making modifications.

Private member variables of the class store the information
about the status of an object of the class.
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To summarize, we have declared two public member functions that examine
our new class without alterations, and these two functions are declared as const
functions. Two other public member functions actually allow data to be modi-
fied. The data itself is declared as a private member of the new class. This follows
a pattern that we will generally use for classes. Later you will see examples that
include private member functions (i.e., member functions that are available to the
implementor of the new class but forbidden to other programmers), and occa-
sionally public member variables (that may be used by any programmer).

As you have seen, the class body contains prototypes for the member func-
tions but not the full definitions of these functions. The full definitions for the
member functions occur after the class definition, in the same place as any other
function definition. There are a few peculiarities about the definition of a mem-
ber function, but before we look at the definitions, we’ll tackle another question:
How does a programmer use a class such as throttle?

Using a Class
programs can 
declare objects 
of a class

As with any other data type, you may declare throttle variables. These vari-
ables are called throttle objects, or sometimes throttle instances. They are
declared in the same way as variables of any other type. Here are two sample
declarations of throttle objects:

throttle my_throttle;
throttle control;

Every throttle object contains the private member variable position, but
there is no way for a program to access this component directly, because it is a
private member. The only way that a program can use its throttle objects is
by using the four public member functions. For example, suppose we have
declared the variables shown above, and we want to set control to its third
notch. We do this by calling the member functions, as shown here:

control.shut_off( );
control.shift(3);

Calling a member function always involves the following four steps:
1. Start with the name of the object that you are manipulating. In the

examples, we are manipulating control, so we begin with control. If
instead we wanted to manipulate my_throttle, then we would begin
with my_throttle. Remember that you cannot just call a member
function—you must always indicate which object is being manipulated.

how to use a 
member function

2. After the object name, place a single period. 
3. Next, write the name of the member function. For example, to call

control’s shut_off function, we write control.shut_off—which you
can pronounce “control dot shut off.” 
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4. Finally, list the arguments for the function call. In our example, shut_off
has no arguments, so we have an empty list ( ). The second function call,
to the function shift, requires one
argument, which is the amount (3) that
we are shifting the throttle.

Our example made function calls to the shut_off and shift member functions
of control. An OOP programmer usually would use slightly different terminol-
ogy, saying that we activated the shut_off and shift member functions.
“Activating a member function” is nothing more than OOP jargon for making a
function call to a member function.

As another example, here is a sequence of several activations to set a throttle
according to user input, and then print the throttle’s flow:

throttle control;
int user_input;

control.shut_off( );
cout << "Please type a number from 0 to 6: ";
cin >> user_input;
control.shift(user_input);
if (control.is_on( ))

cout << "The flow is " << control.flow( ) << endl;
else

cout << "The flow is now off" << endl;

Notice how the return value of control.flow is used directly in the output
statement. As with any other function, the return value of a member function
can be used as part of an output statement or other expression.

Using a throttle is easy because we don’t worry about how the member
functions accomplish their work. We simply activate each member function and
wait for it to return, just like any other function. This is information hiding at its
best.

A Small Demonstration Program for the Throttle Class

An example of a program using the throttle class is shown in Figure 2.2. The
program declares a throttle called sample and shifts the throttle upward accord-
ing to the user’s input. The throttle is then moved down one notch at a time,
with the flow printed at each notch. A typical dialogue with the program would
look like this (with the user’s input printed in bold):

I have a throttle with 6 positions.
dialogue with the 
demo program

Where would you like to set the throttle?
Please type a number from 0 to 6: 3
The flow is now 0.5
The flow is now 0.333333
The flow is now 0.166667
The flow is now off

control.shut_off( );
control.shift(3);
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A Program
// FILE: demo1.cxx
// This small demonstration shows how the throttle class is used.
#include <iostream> // Provides cout and cin
#include <cstdlib>  // Provides EXIT_SUCCESS
using namespace std; // Allows all Standard Library items to be used

class throttle
{
public:

// MODIFICATION MEMBER FUNCTIONS
void shut_off( );
void shift(int amount);
// CONSTANT MEMBER FUNCTIONS
double flow( ) const;
bool is_on( ) const;

private:
int position;

};

{
throttle sample;
int user_input;

// Set the sample throttle to a position indicated by the user.
cout << "I have a throttle with 6 positions." << endl;
cout << "Where would you like to set the throttle? " << endl;
cout << "Please type a number from 0 to 6: ";
cin >> user_input;
sample.shut_off( );
sample.shift(user_input);

// Shift the throttle down to zero, printing the flow along the way.
while (sample.is_on( ))
{

cout << "The flow is now " << sample.flow( ) << endl;
sample.shift(-1);

}
cout << "The flow is now off" << endl;
return EXIT_SUCCESS;

}

 FIGURE  2.2 Sample Program for the Throttle Class

int main( )

This is the declaration of 
a throttle object called 
sample.

These lines are the 
definition of the 
throttle class.

 In the actual program, you would place the implementations of the throttle’s
 four member functions here, but we haven’t yet written these implementations!

www.cs.colorado.edu/~main/chapter2/demo1.cxx WWW
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Implementing Member Functions

using the class 
name with two 
colons : :

The demonstration program in Figure 2.2 includes everything except the com-
plete definitions of the member functions. Writing definitions for member func-
tions is just like writing any other function, with one small difference: In the
head of the function definition, the class name must appear before the function
name, separated by two colons. In our example, throttle:: appears in the
head, before the function name. This requirement, called the scope resolution
operator, tells the compiler that the function is a member function of a particu-
lar class. For example, the definition of our first member function must include
the full name throttle::shut_off, as shown here:

void throttle::shut_off( )
// Precondition: None.

implementation
of shut_off

// Postcondition: The throttle has been turned off.
{

position = 0;
}

The reason for the scope resolution operator is that a function name might be
used as the name of another class’s member function, or as the name of another
ordinary function. By specifying the full name, throttle::shut_off, we indi-
cate that this is the implementation of the throttle member function, and not
some other shut_off function.

We use the term function implementation to describe a full function
definition such as this. The function implementation provides all the details of
how the function works, as opposed to the mere prototype that appears in the
class definition and gives no indication of how the function accomplishes its
work.

Our implementation of shut_off simply sets the private member variable
position to zero. But just whose position is being used here? Are we assigning
to my_throttle.position? Or to control.position? Or even to some other
throttle’s position member? The answer depends on just which object activates
shut_off. If my_throttle.shut_off is activated, then position refers to
my_throttle.position. If we activate control.shut_off, then position in
the implementation refers to control.position.

The Key to Member Variables
Each object keeps its own copies of all member variables.

When a member function’s implementation refers to a
member variable, then the actual member variable used
always comes from the object that activated the member
function.
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Because each object of a class keeps its own copies of the member variables,
it is possible to have several different objects of the same class in a single pro-
gram. For example, we might have these statements in a program:

throttle big;
throttle low;

big.shut_off( );
low.shut_off( );
big.shift(6);
low.shift(1);

cout << "The big flow is: " << big.flow( ) << endl;
cout << "The low flow is: " << low.flow( ) << endl;

The first output statement prints 1.0 (which is big’s flow). The second output
statement prints 0.166667 (which is low’s flow).

implementing
shift

By now you know enough about member functions to implement the other
three member functions of a throttle. For example, the shift function changes
the position member variable by the amount specified in the parameter. In the
implementation, we make sure that the shift doesn’t go below 0 or above 6, as
shown here:

void throttle::shift(int amount)
// Precondition: shut_off has been called at least once to initialize the throttle.
// Postcondition: The throttle’s position has been moved by amount (but
// not below 0 or above 6).
{

using +=position += amount;

if (position < 0)
position = 0;

else if (position > 6)
position = 6;

}

This might be the first time you’ve seen the += operator. Its effect is to take the
amount on the right side (such as amount) and add it to what’s already in the
variable on the left (such as position). This sum is then stored back in the vari-
able on the left side of +=.

Notice that the shift function has a precondition indicating that “shut_off
has been called at least once to initialize the throttle.” Without this precondition,
the member variable position would contain garbage—although this is an
example of a precondition that we cannot actually verify. Later we will use
a feature called constructors to guarantee that every object is properly initialized.

Declare two throttles.

Set the positions of the
throttle’s levers.

Print the flows.
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implementing
flow

The flow function simply returns the current flow as determined by the
position member variable, as shown here:

double throttle::flow( ) const
// Precondition: shut_off has been called at least once to initialize the throttle.
// Postcondition: The value returned is the current flow as a proportion of 
// the maximum flow.
{

return position / 6.0;
}

Since flow is a constant member function, we must include the keyword const
at the end of the function’s head. 

implementing
is_on

The final throttle function is called is_on. The function returns a boolean
true-or-false value, indicating whether the fuel flow is on. Here is one way to
implement is_on so that it returns the correct boolean value:

bool throttle::is_on( ) const
// Precondition: shut_off has been called at least once to initialize the throttle.
// Postcondition: If the throttle’s flow is above 0, then the function
// returns true; otherwise, it returns false.
{

return (flow( ) > 0);
}

Member Functions May Activate Other Members

The implementation of is_on illustrates a final important feature of member
functions: The implementation of a member function may activate other mem-
ber functions. For example, our implementation of is_on activates the flow
member function. When flow is used within the body of is_on, it is used with-
out an object name such as my_throttle or control. No object name is needed
in front of it—we just write flow( ); the actual instance of flow that will be
used is determined by the activation of is_on. So when my_throttle.is_on is
activated, it uses my_throttle.flow. On the other hand, when control.is_on
is activated, it uses control.flow.

STYLE FOR BOOLEAN VARIABLES

In the return statement of is_on, we wrote: return (flow( ) > 0);. The test in
the parentheses is evaluated, and the true-or-false value of this test is returned by

Divide by 6.0, since
the throttle has
six positions.

PROGRAMMING TIP��  



Constructors 45

the function. Whenever possible, use a true-or-false test (such as >) to return a
boolean value. This tip is one of several style issues concerning boolean values.

A second issue for boolean values is that the value can be used to directly con-
trol an if-statement or a loop. For example, in Figure 2.2 on page 41 we have the
following while-loop:

while (sample.is_on( ))
{

cout << "The flow is now " << sample.flow( ) << endl;
sample.shift(-1);

}

If the return value of the is_on function is true, then the loop continues. When
is_on returns false, the loop will end.

As a final tip, we generally use the word “is” for the first part of the name of a
function that returns a boolean value. This increases the readability of statements
such as the statement written above that reads “while sample is on.... ”

Self-Test Exercises for Section 2.1
1. What kind of member of a class supports information hiding?
2. When should a member of a class be declared public?
3. What values can a bool variable hold?
4. What is the difference between a class and an object?
5. Describe the difference between a modification member function and a

constant member function.
6. Describe the one common place where the scope resolution operator

throttle:: is used.
7. Write a C++ program that declares a throttle, shifts the throttle halfway

up (to the third position), and prints the current flow.
8. Add a new throttle member function that will return true if the current

flow is more than half. The body of your implementation should activate
flow and use the guidelines for boolean values listed above.

2.2 CONSTRUCTORS

The throttle class is complete. It can be used in a program, as we did in
Figure 2.2 on page 41. In that program we started with the throttle class defi-
nition, followed by the program that uses the new class, and finally the imple-
mentations of the four member functions. This works fine; all of Figure 2.2 can
be placed in a single file that is compiled and run like any other program. But
there are some improvements to make before leaving the throttle example.
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The first improvement deals with initializing a throttle. Three of the member
functions have a precondition indicating that “shut_off has been called at least
once to initialize the throttle.” Without this precondition, the member variable
position would contain garbage, and anything might happen. Unfortunately,
there is no way to test the precondition to ensure that a throttle has been
initialized.

Constructors are a way to solve this problem by providing an initialization
function that is guaranteed to be called. A constructor is a member function
with these special properties:

• If a class has a constructor, then a constructor is called automatically
whenever a variable of the class is declared. If a constructor has any
parameters, then the arguments for the constructor call must be given after
the variable name (at the point where the variable is declared).

• The name of a constructor must be the same as the name of the class. In
our example, the name of the constructor is throttle. This seems
strange: Normally we avoid using the same name for two different things.
But it is a requirement of C++ that the constructor use the same name as
the class.

• A constructor does not have any return value. Because of this, you must
not write void (or any other return type) at the front of the constructor’s
head. The compiler knows that every constructor has no return value, but
a compiler error occurs if you actually write void at the front of the
constructor’s head.

The Throttle’s Constructor

Let’s make these features concrete by implementing a throttle constructor. The
constructor we have in mind will actually make the throttle more flexible by
allowing the total number of throttle positions to vary from one throttle to
another. We will no longer be restricted to throttles with only six positions. For
example, a lawn mower throttle might need only four positions, whereas a 40-
position throttle could be used for a rocket that needs finer control.

adding a 
constructor to 
the throttle class

Our throttle constructor has one parameter, which tells the total number of
positions that the throttle contains. We do not need a second parameter for the
“current throttle position” because our constructor will always initialize the
current position to zero. Here is the prototype for the new constructor, along with
its precondition/postcondition contract:

throttle(int size);
// Precondition: 0 < size.
// Postcondition: The throttle has size positions above the shutoff position,
// and its current position is off.

It does look strange, seeing the word throttle used in this way, but we have no
choice: The name of the constructor must be the same as the name of the class.
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Also notice that the word void does not appear at the front of the prototype, nor
is there any other return type for the function. The constructor’s prototype is
placed in the throttle class definition along with the other member functions’
prototypes, as indicated here:

class throttle
{
public:

// CONSTRUCTOR

// MODIFICATION MEMBER FUNCTIONS
void shut_off( );
. . .

We’ll look at the implementation of the constructor in a moment, but first
let’s see some examples of using the constructor in declarations of throttle
objects. For example, here are the declarations of two throttles:

throttle mower_control(4);
throttle apollo(40);

After these declarations, each throttle is shut off. The mower_control has four
positions, and the apollo throttle has 40.

Often it is useful to provide several different constructors, each of which does
a different kind of initialization. For instance, suppose many of our throttles
require just one on position—a kind of all-or-nothing throttle. Then we could
provide a second constructor with no parameters. The second constructor gives
the throttle just one on position, and sets the current position to zero. The proto-
type for this constructor is shown here:

throttle( );
// Precondition: None.
// Postcondition: The throttle has one position above the shutoff position,
// and its current position is off.

A constructor with no parameters is called a default constructor. Here is a dec-
laration of two throttles, with the first using the default constructor and the sec-
ond using the other constructor:

throttle toggle;
throttle complicated(100);

When toggle uses the default constructor, there is no argument list—not even a
pair of parentheses. In other words, to use the default constructor, just declare an
object with no argument list. The default constructor will be called.

You may declare as many constructors as you like—one for each different
way of initializing an object. Each constructor must have a distinct parameter

This is the prototype for the
throttle constructor.

throttle(int size);

Prototypes for other member
functions appear as usual.
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list so that the compiler can tell them apart. Only one default constructor is
allowed.

To implement our new constructors, we need a new private member variable
called top_position, which keeps track of the maximum position of the throt-
tle. The default constructor sets top_position to 1, and the other constructor
sets top_position according to the constructor’s size parameter. The complete
new class definition, along with the implementations of the new constructors, is
given in Figure 2.3.

A Class Definition
class throttle
{
public:

// CONSTRUCTORS

// MODIFICATION MEMBER FUNCTIONS
void shut_off( );
void shift(int amount);
// CONSTANT MEMBER FUNCTIONS
double flow( ) const;
bool is_on( ) const;

private:
int top_position;
int position;

};

Implementations of the Constructors

 FIGURE  2.3 Constructors for the Throttle

throttle( );
throttle(int size);

A new private member 
variable keeps track of 
how many positions the 
throttle has. 

prototype for the 
default constructor 

prototype for the 
other constructor 

{
top_position = 1;
position = 0;

}

throttle::throttle( )
// Library facilities used: cassert
{

assert(0 < size);
top_position = size;
position = 0;

}

throttle::throttle(int size)



Constructors 49

What Happens If You Write a Class with No Constructors?

If you write a class with no constructors, then the compiler automatically creates
a simple default constructor. This automatic default constructor doesn’t do
much work. It just calls the default constructor for the member variables that are
objects of some other class. Generally, you should write your own constructors,
including your own default constructor, rather than depending on the automatic
default constructor.

ALWAYS PROVIDE CONSTRUCTORS

When you write a class, and you define the constructors, each variable of the class
will have one of your constructors called when the variable is declared. This
increases the reliability of programs by reducing the chance of using uninitialized
variables. We also recommend that you define a default constructor for each of
your classes. This allows programmers to declare a variable of your class, without
having to provide any arguments for a constructor.

Revising the Throttle’s Member Functions
Because we added a new member variable, top_position, we must revise the
member functions to use top_position rather than the number 6 for the number
of throttle positions. For example, here is the revised implementation of shift:

void throttle::shift(int amount)
// Postcondition: The throttle’s position has been moved by amount (but
// not below 0 or above the top position).
{

position += amount;

if (position < 0)
position = 0;

else if (position > )
position = ;

}

when there is no 
precondition

Notice that we no longer need a precondition, because we are guaranteed to
have one of the constructors called. When there is no precondition you may
omit it, as we have done here, or you may list the precondition as “None.”

Inline Member Functions
We’ll use a new technique to revise the other three member functions. The tech-
nique is to place the complete definitions of shut_off, flow, and is_on inside
the class definition, as shown in the three highlighted lines of Figure 2.4.

The use of double in the definition of flow changes top_position from an
integer to a double number (otherwise the division will perform an integer

PROGRAMMING TIP ��  

Use the member 
variable top_position 
instead of the number 6. 

top_position
top_position
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division, throwing away any remainder). This change of data types is called a
type cast. It is needed whenever you compute the ordinary division of two inte-
gers (and you want to include the fractional part in the result).

The other change we made in the implementations is to have is_on merely
examine position. This seems simpler than our original implementation (which
activated the flow function).

Placing a function definition inside the class definition is called an inline
member function. It has two effects:

• You don’t have to write the implementation later.
• Each time the inline function is used in your program, the compiler will

recompile the short function definition and place a copy of this compiled
short definition in your code. This saves some execution time (there is no
actual function call and function return), but it may be inefficient in space
(you end up with many copies of the same compiled code).

Notice that when you declare an inline member function, there is no semicolon
before the opening curly bracket or after the closing curly bracket.

WHEN TO USE AN INLINE MEMBER FUNCTION

Inline functions cause some inefficiency—your compiled code might be longer than
it needs to be. Inline functions also result in a messier class definition, which is
harder to read and harder to debug. Because of these problems, we recommend
using an inline member function only for the simple situation when the function def-
inition consists of a single short statement.

A Class Definition
class throttle
{
public:

// CONSTRUCTORS
throttle( );
throttle(int size);
// MODIFICATION MEMBER FUNCTIONS
void shut_off( )
void shift(int amount);
// CONSTANT MEMBER FUNCTIONS
double flow( ) const
bool is_on( ) const

private:
int top_position;
int position;

};

 FIGURE  2.4 Inline Member Functions

{ position = 0; }

{ return position / double(top_position); }
{ return (position > 0); }

The highlighted code shows
three inline member functions.

The type name “double” changes top_position
from an integer to a double number. The 
change is called a “type cast,” and it prevents
an unintended integer division.

PROGRAMMING TIP��  
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Self-Test Exercises for Section 2.2
9. Use an inline function to rewrite the “halfway on” function from Self-

Test Exercise 8 on page 45.
10. When an object variable is declared, what happens if the programmer did

not write a constructor for the class?
11. Find the error with the following constructor prototype:

void throttle(int size);

12. Write a new throttle constructor with two parameters: the total number of
positions for the throttle, and its initial position.

2.3 USING A NAMESPACE, HEADER FILE, 
AND IMPLEMENTATION FILE

It makes sense to make our new throttle class easily available to any program
that needs it. (After all, you never know when you might need a throttle.) We’d
like to do so without revealing all the details of the new class’s imple-
mentation. In addition, we don’t want other programmers to worry about
whether their own selection of names for variables and such will conflict with
the names that we happen to use. 

These goals are accomplished by three steps:
1. Creating a namespace
2. Writing the header file
3. Writing the implementation file

The purposes and techniques for each of these steps are discussed next. We also
discuss how another programmer can use the items that you have written with
these techniques.

Creating a Namespace
When a program uses different classes written by several different program-
mers, there is a possibility of a name conflict. We have written a throttle class,
but perhaps NASA also writes a throttle and a program needs to use both throt-
tles. This isn’t too likely with demonstration classes such as the throttle, but
common realistic names often have conflicts.

The solution is to use an organizational technique called a namespace. A
namespace is a name that a programmer selects to identify a portion of his or her
work. The name should be descriptive, but it should also include part of your real
name or email address so that it is unlikely to cause conflicts. Our first
namespace in Chapter 2 will be main_savitch_2A; later in the chapter we will
have main_savitch_2B, and we will use similar names for other chapters.
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namespace
grouping

All work that is part of our namespace must be in a namespace grouping, in
the following form:

namespace main_savitch_2A
{

}

The word namespace is a C++ keyword. The word main_savitch_2A is the
name that we chose for our namespace; it may be any legal C++ identifier. All
our other code appears inside the curly brackets. For example, the throttle class
declaration and the implementation of the throttle member functions will all be
placed in the namespace. 

A single namespace, such as main_savitch_2A, may have several different
namespace groupings. For example, the throttle class definition can appear in a
namespace grouping for main_savitch_2A at one point in the program. Later,
when we are ready to implement the throttle member functions, we can open a
second namespace grouping for main_savitch_2A, and place the function defi-
nitions in that second grouping. These two namespace groupings are both for the
main_savitch_2A namespace, although surprisingly, they don’t need to be in
the same file. Typically, they appear in two separate files:

• The class definition appears in a header file that provides all the informa-
tion that a programmer needs in order to use the class.

• The member function definitions appear in a separate implementation
file.

The rest of this section illustrates our format of the header and implementation
files for our throttle class, along with an example of how a program can use the
items in a namespace.

The Header File

The header file for a class provides all the information that a programmer needs
to use the class. In fact, all the information needed to use the class should appear
in a header file comment at the top of the header file. To use the class, a pro-
grammer need only read this informative comment. The comment should
include a list of all the public member functions, along with a precondition/
postcondition contract for each function. (If a function has no precondition, then
we will usually omit it, listing the postcondition on its own.) The comment does
not list any private members, because a programmer who uses the new class is
not concerned with private members. 

The class definition for the new class appears in a namespace grouping after
the header file comment. But only the class definition appears—the implementa-
tions of the member functions do not appear here (except for inline functions).

Any item that belongs to the namespace is written here.

a comment in 
the header file 
tells how to 
use the class
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There are some problems with putting the class definition in the header file.
One problem is that programmers who use the class might think that they have
to read this definition to use the class. They don’t. All the information needed to
use the class is in the header file comment. But C++ requires the class definition
to appear here, so we have no way around this problem.

avoid duplicate 
definition by 
using a macro 
guard

A second problem arises from the way that header files are sometimes used.
As you will see in later chapters, a program sometimes includes a header file more
than once. As a result, the class definition appears more than once, and compila-
tion fails because of “duplicate class definition.” We can avoid duplicate class
definition by placing all the header file’s definitions inside a compiler directive
called a macro guard. The total form of the throttle class declaration in our
namespace with a macro guard is shown here:

#ifndef MAIN_SAVITCH_THROTTLE_H
#define MAIN_SAVITCH_THROTTLE_H
namespace main_savitch_2A
{

class throttle
{

};
}
#endif

The first line, , indicates the start of the
macro guard. All the statements that appear between here and the  are
under the power of the macro guard. These statements will be compiled only if
the compiler has not yet seen a definition of the rather long word
MAIN_SAVITCH_THROTTLE_H.

So how does this avoid a duplicate definition? At the first appearance of the
code:

• The class definition is compiled.

• The word MAIN_SAVITCH_THROTTLE_H is also defined (by the definition
).

Now, if the code should appear a second time, the class definition is skipped
(since MAIN_SAVITCH_THROTTLE_H is already defined). Our throttle header file,
called throttle.h, is shown in Figure 2.5. In the past, most programmers used
.h as the end of the header file name (such as throttle.h), although this
practice has become less common because the standard header files (such as
iostream) no longer use the .h. However, we’ll continue to use the .h because
some text editing programs or compilers provide special modes based on the
.h file type. 

The usual class definition appears here.

#ifndef MAIN_SAVITCH_THROTTLE_H
#endif

#define MAIN_SAVITCH_THROTTLE_H
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A Header File
// FILE: throttle.h
// CLASS PROVIDED: throttle (part of the namespace main_savitch_2A)
//
// CONSTRUCTORS for the throttle class:
//
// Postcondition: The throttle has one position above the shut_off position, and it is
// currently shut off.
//
//
// Precondition: size > 0.
// Postcondition: The throttle has size positions above the shut_off position, and it is
// currently shut off.
//
// MODIFICATION MEMBER FUNCTIONS for the throttle class:
//
// Postcondition: The throttle has been turned off.
//
//
// Postcondition: The throttle’s position has been moved by
// amount (but not below 0 or above the top position).

(continued)

 FIGURE  2.5 Header File for the Throttle Class

throttle( )

throttle(int size)

void shut_off( )
Member
functions
often
have no
precondition.

void shift(int amount)

Header File for a Class

When you design and implement a class, you should provide
a separate header file.

At the top of the header file, place all of the documentation
that a programmer needs to use the class.

The class definition for the class appears after the docu-
mentation. But only the class definition appears and not
the implementations of member functions (except inline
functions).

Place the class definition inside a namespace, and place a
“macro guard” around the entire thing. The macro guard
prevents accidental duplicate definition.
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 (FIGURE  2.5 continued)

//
// CONSTANT MEMBER FUNCTIONS for the throttle class:
//
// Postcondition: The value returned is the current flow as a 
// proportion of the maximum flow.
//
//
// Postcondition: If the throttle’s flow is above 0 then
// the function returns true; otherwise it returns false.
//
// VALUE SEMANTICS for the throttle class (see the discussion on page 56):
// Assignments and the copy constructor may be used with throttle objects.

#ifndef MAIN_SAVITCH_THROTTLE 
#define MAIN_SAVITCH_THROTTLE

namespace main_savitch_2A
{

class throttle
{
public:

// CONSTRUCTORS
throttle( );
throttle(int size);
// MODIFICATION MEMBER FUNCTIONS
void shut_off( ) { position = 0; }
void shift(int amount);
// CONSTANT MEMBER FUNCTIONS
double flow( ) const { return position / double(top_position); } 
bool is_on( ) const { return (position > 0); }

private:
int top_position;
int position;

};

}

#endif

double flow( ) const

bool is_on( ) const

start of the namespace grouping

start of the macro guard

end of the macro guard

end of the namespace grouping

www.cs.colorado.edu/~main/chapter2/throttle.h WWW
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Describing the Value Semantics of a Class Within the Header File

The value semantics of a class determines how values are copied from one
object to another. In C++, the value semantics consists of two operations: the
assignment operator and the copy constructor.

The assignment operator. For two objects x and y, an assignment  cop-
ies the value of x to y. Assignments such as this are permitted for any new class
that we define. For a new class, C++ normally carries out assignments by simply
copying each member variable from the object on the right of the assignment to
the object on the left of the assignment. This method of copying is called the
automatic assignment operator. Later we will see examples where the auto-
matic assignment operator does not work. But for now, our new classes can use
the automatic assignment operator.

The copy constructor. A copy constructor is a constructor with exactly one
argument, and the data type of the argument is the same as the constructor’s
class. For example, a copy constructor for the throttle has one argument, and that
argument is itself a throttle. The usual purpose of a copy constructor is to initial-
ize a new object as an exact copy of an existing object. For example, here is a bit
of code that creates a 100-position throttle called x, shifts x to its middle position,
and then declares a second throttle that is initialized as an exact copy of x:

throttle x(100);
x.shift(50);

The highlighted statement activates the throttle’s copy constructor to initialize y
as an exact copy of x. After the initialization, x and y may take different actions,
ending up with different fuel flows, but at this point, both throttles are set to
position 50 out of 100.

There is an alternative syntax for calling the copy constructor. Instead of writ-
ing , you may write . This alternative syn-
tax looks like an assignment statement, but keep in mind that the actual effect is
a bit different. The assignment  merely copies x to the already existing
object, y. On the other hand, the declaration  both declares a
new object, y, and calls the copy constructor to initialize y as a copy of x. We will
always use the original form , because this form is less likely
to be confused with an ordinary assignment statement.

As the implementor of a class, you may write a copy constructor much like
any other constructor—and you will do so for classes in future chapters. But for
now we can take advantage of a C++ feature: C++ provides an automatic copy
constructor. The automatic copy constructor initializes a new object by merely
copying all the member variables from the existing object. For example, in the
declaration , the automatic copy constructor will copy the two
member variables from the existing throttle x to the new throttle y.

y = x

throttle y(x);

The throttle y is initialized as a
copy of x, so that both throttles
are at position 50 out of 100.

throttle y(x); throttle y = x;

y = x;
throttle y = x;

throttle y(x);

throttle y(x);
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For many classes, the automatic assignment operator and the automatic copy
constructor work fine. But as we have warned, we will later see classes where
the automatic versions fail. Merely copying member variables is not always suf-
ficient. Because of this, programmers are wary of assignments and the copy
constructor. To address this problem, we suggest that your documentation
include a comment indicating that the value semantics is safe to use.

DOCUMENT THE VALUE SEMANTICS

When you implement a class, the documentation should include a comment indi-
cating that the value semantics is safe to use. For example, in our throttle header
file we wrote:

// VALUE SEMANTICS for the throttle class: 
// Assignments and the copy constructor may be used with throttle
// objects.

The Implementation File
1. comment

2. include 
directives

3. reopen the 
namespace and 
define the 
implementations

An implementation file for a new class has several items: First, a small com-
ment appears, indicating that the documentation is available in the header file.
Second, an include directive appears, causing the compiler to grab the class def-
inition from the header file. In our throttle example, the include directive is:

#include "throttle.h"

When we list the name of the header file, "throttle.h", we use quotation
marks rather than angle brackets. The angle brackets (such as the include direc-
tive #include <iostream>) are used only to include a Standard Library facility,
but we use quotation marks for our own header files. 

After the include directive, the program reopens the namespace and gives the
implementations of the class’s member functions. The namespace is reopened by
the same syntax we saw in the header file:

namespace main_savitch_2A
{

}

Most compilers require specific endings for the name of an implementation
file, such as .cpp or .C. We will use .cxx for the endings of our implementation
file names, such as the complete implementation file throttle.cxx shown in
Figure 2.6.

PROGRAMMING TIP ��  

The definitions of the member functions are written here.
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An Implementation File
// FILE: throttle.cxx
// CLASS IMPLEMENTED: throttle (see throttle.h for documentation)

#include <cassert> // Provides assert
#include "throttle.h" // Provides the throttle class definition

namespace main_savitch_2A
{

{ // A simple on-off throttle
top_position = 1;
position = 0;

}

// Library facilities used: cassert
{

assert(size > 0);
top_position = size;
position = 0;

}

{
position += amount;

if (position < 0)
position = 0;

else if (position > top_position)
position = top_position;

}
}

 FIGURE  2.6 Implementation File for the Throttle Class

throttle::throttle( )

throttle::throttle(int size)

void throttle::shift(int amount)

www.cs.colorado.edu/~main/chapter2/throttle.cxx WWW

Implementation File for a Class
Each class has a separate implementation file that contains
the implementations of the class’s member functions. For
more coverage of implementation and header files, please
see www.cs.colorado.edu/~main/separation.html.
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Using the Items in a Namespace

Once the header and implementation files are in place, any program can use our
new class. At the top of the program, you place an include directive to include
the header file, as shown here for our example:

#include "throttle.h"

After the include directive, the program can use the items that are defined in the
namespace in one of three ways:

1. Place a using statement that makes all of the namespace available. The
format for the statement is:
using namespace main_savitch_2A;

This using statement makes all items available from the specified name-
space (main_savitch_2A). This is the same technique that we’ve been
using to pick up all the available items from the Standard Library (with
the statement ).

2. If we need to use only a specific item from the namespace, then we put a
using statement consisting of the keyword using followed by the name of
the namespace, two colons, and the item we want to use. For example:
using main_savitch_2A::throttle;

This allows us to use throttle from the namespace; if there are other
items in the namespace, however, they are not available.

3. With no using statement, we can still use any item by prefixing the item
name with the namespace and “::” at the point where the item is used.
For example, we could declare a throttle variable with the statement:
main_savitch_2A::throttle apollo;

This use of “::” is an example of the scope resolution operator that we
saw on page 42. It clarifies which particular throttle we are asking to
use.

A summary for creating and using namespaces is shown in Figure 2.7, including
a warning never to place a using statement in a header file. 

Our complete demonstration program using the revised throttle appears in
Figure 2.8 on page 61. When the complete program actually is compiled, you
may need to provide extra information about where to find a compiled version of
the implementation file, throttle.cxx. This process, called linking, varies from
compiler to compiler (see Appendix D). 

Notice that we include only the header file, and not the
implementation file.

using namespace std;
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FIGURE  2.7 Summary for Creating and Using a Namespace

1. The Global Namespace: Any items that are not explicitly placed in a namespace be-
come part of the so-called global namespace. These items can be used at any point
without any need for a using statement or a scope resolution operator.

2. C++ Standard Library: If you use the new C++ header file names (such as
<iostream> or <cstdlib>), then all of the items in the C++ Standard Library are auto-
matically part of the std namespace. The simplest way to use these items is to place a
using directive after the include statements: . On the other
hand, if you use the old C++ header file names (such as <iostream.h> or
<stdlib.h>), then the items are part of the global namespace, so that no using state-
ment or scope resolution operator is needed.

3. Creating Your Own Namespace: To create a new namespace, the items are placed in
a namespace grouping, in the following form:

namespace
{

}

The word namespace is a C++ keyword. The name of the namespace may be any C++
identifier, but it should be chosen to avoid likely conflicts with others’ namespaces (by
using part of your real name or email address). A single namespace may have several
different namespace groupings, possibly in different files. For example, a class defini-
tion can appear in a namespace grouping in a header file, whereas the member function
definitions appear in a second grouping of the same namespace in the implementation file.

4. Using a Namespace:
• To use all items from a namespace, put a using directive after all include statements,

in the form:
using namespace ;

• To use one item from a namespace, put a specific using directive after all include
statements, in the form:

using ;

• With no using directive, you can still use an item directly in a program by preceding
the item with the name of the namespace and “::”.

NEVER PUT A USING STATEMENT ACTUALLY IN A HEADER FILE

Sometimes a header file itself needs to use something from a namespace. In this case,
always use the third form shown above; never put a using statement in a header file (since
doing so can have unexpected results in other programs that include the header file).

using namespace std;

<The name for the namespace>

Any item that belongs to the namespace is written here.

< The name for the namespace>

< The name for the namespace>::<The name of the item>

PITFALL ��  
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A Program
// FILE: demo2.cxx
// This small demonstration shows how the revised throttle class is used.
#include <iostream> // Provides cout and cin
#include <cstdlib>  // Provides EXIT_SUCCESS
#include "throttle.h" // Provides the throttle class
using namespace std; // Allows all Standard Library items to be used
using main_savitch_2A::throttle;

const int DEMO_SIZE = 5; // Number of positions in a demonstration throttle

{
throttle sample(DEMO_SIZE); // A throttle to use for our demonstration
int user_input; // The position to which we set the throttle

// Set the sample throttle to a position indicated by the user.
cout << "I have a throttle with " << DEMO_SIZE << " positions." << endl;
cout << "Where would you like to set the throttle?" << endl;
cout << "Please type a number from 0 to " << DEMO_SIZE << ": ";
cin >> user_input;
sample.shift(user_input);

// Shift the throttle down to zero, printing the flow along the way.
while (sample.is_on( ))
{

cout << "The flow is now " << sample.flow( ) << endl;
sample.shift(-1);

}
cout << "The flow is now off" << endl;
return EXIT_SUCCESS;

}

A Sample Dialogue
I have a throttle with 5 positions.
Where would you like to set the throttle?
Please type a number from 0 to 5: 3
The flow is now 0.6
The flow is now 0.4
The flow is now 0.2
The flow is now off

 FIGURE  2.8 Sample Program for the Revised Throttle Class

int main( )

www.cs.colorado.edu/~main/chapter2/demo2.cxx WWW
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Self-Test Exercises for Section 2.3

13. What would a programmer read to learn how to use a new class?
14. What is the purpose of a macro guard?
15. What is the normal action of an assignment , if x and y are

objects?
16. Suppose that x is a throttle. What is the effect of the declaration

?
17. Write the #include directive and a using statement that must be present

for a main program to use the throttle class.
18. Design and implement a class called circle_location to keep track of

the position of a single point that travels around a circle. An object of
this class records the position of the point as an angle, measured in a
clockwise direction from the top of the circle. Include these public mem-
ber functions: 
• A default constructor to place the point at the top of the circle.
• Another constructor to place the point at a specified position.
• A function to move the point a specified number of degrees around

the circle. Use a positive argument to move clockwise, and a negative
argument to move counterclockwise. 

• A function to return the current position of the point, in degrees, mea-
sured clockwise from the top of the circle. 

Your solution should include a separate header file, implementation file,
and an example of a main program using the new class.

19. Design and implement a class called clock. A clock object holds one
instance of a time value such as 9:48 P.M. Have at least these public mem-
ber functions:
• A default constructor that sets the time to midnight
• A function to explicitly assign a given time (you will have to give

some thought to appropriate parameters for this function)
• Functions to retrieve information: the current hour, the current

minute, and a boolean function to determine whether the time is at or
before noon

• A function to advance the time forward by a given number of minutes
20. What is the global namespace?
21. Which of the three forms from page 59 should be used when part of a

namespace needs to be used within an actual header file?

y = x

throttle y(x)
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2.4 CLASSES AND PARAMETERS

Every programmer requires an unshakable understanding of functions and
parameters. The realm of OOP requires extra understanding because classes can
be used as the type of a function’s parameter, or as the type of the return value
from a function. This section illustrates several such functions, including a review
of different kinds of parameters. The examples use a new class called point.

PROGRAMMING EXAMPLE: The Point Class

The new class is a data type to store and
manipulate the location of a single point on a
plane, as shown in Figure 2.9. The example
point in Figure 2.9(a) lies at a location with
coordinates x = –1.0 and y = 0.8. The point
class has the member functions listed here:

• There is a constructor to initialize a
point. The constructor’s parameters use
default arguments that we’ll discuss in a
moment.

• There is a member function to shift a
point by given amounts along the x and
y axes, as shown in Figure 2.9(b).

• There is a member function to rotate a
point by 90° in a clockwise direction
around the origin, as shown in Figure
2.9(c).

• There are two constant member func-
tions that allow us to retrieve the cur-
rent x and y coordinates of a point.

These functions are simple, yet they form
the basis for an actual data type that is used in
drawing programs and other graphics applica-
tions. All the member functions, including the
constructor, are listed in the header file of
Figure 2.10 on page 64, with an implementa-
tion in Figure 2.11 on page 65. After you’ve
looked through the figures, we’ll review the
implementations, starting with default argu-
ments, which are used in an interesting way in
the point’s constructor.

x

-2 -1 0 1 2
-2

-1

0

1

2 y

A

(a) The white dot 
labeled A is a point 
with coordinates 
x = -1.0 and y = 0.8.

(c) The black dot 
labeled C was 
obtained by rotating 
point A 90° in a 
clockwise direction 
around the origin. The 
coordinates of point
C are x = 0.8 and 
y = 1.0.
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(b) The black dot 
labeled B was 
obtained by shifting 
point A by 1.3 units 
along the x axis and 
by -1.4 units along 
the y axis. The 
coordinates of point
B are x = 0.3 and 
y = -0.6.
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FIGURE  2.9 Three Points in a Plane
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A Header File
// FILE: point.h
// CLASS PROVIDED: point (part of the namespace main_savitch_2A)
//
// CONSTRUCTOR for the point class:
//
// Postcondition: The point has been set to (initial_x, initial_y).
//
// MODIFICATION MEMBER FUNCTIONS for the point class:
//
// Postcondition: The point has been moved by x_amount along the x axis
// and by y_amount along the y axis.
//
//
// Postcondition: The point has been rotated clockwise 90 degrees around the origin.
//
// CONSTANT MEMBER FUNCTIONS for the point class:
//
// Postcondition: The value returned is the x coordinate of the point.
//
//
//  Postcondition: The value returned is the y coordinate of the point.
//
// VALUE SEMANTICS for the point class:
// Assignments and the copy constructor may be used with point objects.

#ifndef MAIN_SAVITCH_POINT_H
#define MAIN_SAVITCH_POINT_H
namespace main_savitch_2A
{

class point
{
public:

// CONSTRUCTOR
point(double initial_x = 0.0, double initial_y = 0.0);
// MODIFICATION MEMBER FUNCTIONS
void shift(double x_amount, double y_amount);
void rotate90( );
// CONSTANT MEMBER FUNCTIONS
double get_x( ) const { return x; } 
double get_y( ) const { return y; }

private:
double x; // x coordinate of this point
double y; // y coordinate of this point

};
}
#endif

 FIGURE  2.10 Header File for the Point Class

point(double initial_x = 0.0, double initial_y = 0.0)

void shift(double x_amount, double y_amount)

void rotate90( )

double get_x( ) const

double get_y( ) const

www.cs.colorado.edu/~main/chapter2/point.h WWW
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Default Arguments

A default argument is a value that will be used for an argument when a pro-
grammer does not provide an actual argument. Default arguments may be listed
in the prototype of any function. For example, here is a modified version of a
function prototype that we used on page 15:

int date_check(int year, int month , int day );

The exact behavior of date_check is not important. The important thing is that
we have added default arguments for the month and day parameters. As shown

An Implementation File
// FILE: point.cxx
// CLASS IMPLEMENTED: point (see point.h for documentation)

#include "point.h"

namespace main_savitch_2A
{

{ // Constructor sets the point to a given position.
x = initial_x;
y = initial_y;

}

{
x += x_amount;
y += y_amount;

}

{
double new_x;
double new_y;

new_x = y; // For a 90-degree clockwise rotation, the new x is the original y,
new_y = -x; // and the new y is -1 times the original x.
x = new_x;
y = new_y;

}
}

 FIGURE  2.11 Implementation File for the Point Class

point::point(double initial_x, double initial_y)

void point::shift(double x_amount, double y_amount)

void point::rotate90( )

www.cs.colorado.edu/~main/chapter2/point.cxx WWW

= 1 = 1
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in the shaded part of the example, the default argument appears with an equals
sign after the parameter name. Once a default argument is available, the func-
tion can be called with or without certain arguments. 

For example, a program can call date_check with just the year argument:

date_check(2000);

Since the last two arguments were omitted in this function call, the default argu-
ments (month = 1 and day = 1) will be used. The function call is identical to call-
ing date_check(2000, 1, 1).

The function can also be called with a year and a month, omitting the day, as
in this example:

date_check(2000, 7);

In this example, the default argument will be used for the day, so the function
call is identical to calling date_check(2000, 7, 1).

default
arguments are 
especially
convenient for 
constructors

The general rules for providing and using default arguments are summarized
in Figure 2.12 on page 67. Default arguments are especially convenient for con-
structors, such as the point’s constructor in Figure 2.10 on page 64. The con-
structor’s prototype has these two default arguments:

point(double initial_x , double initial_y );

Both arguments of the constructor have a default of the double number 0.0, as
shown in these three declarations of point objects:

point a(-1, 0.8);
point b(-1);
point c;

The third use of our constructor—simply —is interesting because
defaults are used for both arguments. In effect, we have a constructor with no
arguments. A constructor with no arguments is a default constructor. As we
saw with the throttle, it’s important always to provide a default constructor. One
way to provide a default constructor is to have a constructor with a complete set
of default arguments.

A DEFAULT CONSTRUCTOR CAN BE PROVIDED 
BY USING DEFAULT ARGUMENTS

A good way to provide a default constructor is to have one constructor with default
arguments for all of its arguments. Don’t forget that default constructors are always
used with no argument list; not even the parentheses are present. So to use the
point’s default constructor, we write .

= 0.0 = 0.0

Uses the usual constructor with two arguments

Uses -1 for the first argument and uses the default
argument, initial_y = 0.0, for the second argument

Uses default arguments for both initial_x = 0.0
and initial_y = 0.0

point c;

PROGRAMMING TIP��  

point c;
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Parameters

review of 
function
parameters

Classes can be used as the type of a function’s parameter, just like any other data
type. We’ll review three different kinds of parameters, with examples that use
the new point class.

.

FIGURE  2.12 Default Arguments

Default Arguments

A default argument is a value that will be used for an argument when no actual argument is
provided. The usage follows the format and rules listed here.

Syntax in a prototype’s parameter list:
<type name> <variable name> = <default value>

Example:
int date_check(int year, int month , int date );

1. The default argument is specified only once—in the prototype—and not in the function’s imple-
mentation.

2. A function with several arguments does not need to specify default arguments for every argu-
ment. But if only some of the arguments have defaults, then those arguments must be right-
most in the parameter list.

3. In a function call, arguments with default values may be omitted from the right end of the actual
argument list. For example:

date_check(2000);
date_check(2000, 7);
date_check(2000, 7, 22);

= 1 = 1

Uses default arguments for month = 1 and date = 1

Uses default argument for date = 1

Does not use the default arguments at all

Value parameters. The simplest
parameters are value parameters.
To illustrate a value parameter,
we’ll write a simple function. The
function we have in mind has one
value parameter, a point that we’ll
call p. The integer returned by the
function is the number of 90° rota-
tions that would be needed to
move p into the upper-right quad-
rant, as shown in Figure 2.13.

This point, p, 
needs three 90° 
rotations to move 
it to the upper- 
right quadrant.

FIGURE  2.13 A Rotating Point
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Here is the function’s implementation:

int rotations_needed( )
// Postcondition: The value returned is the number of 90-degree
// clockwise rotations needed to move p into the upper-right
// quadrant (where x >= 0 and y >= 0).
{

int answer;

answer = 0;
while ((p.get_x( ) < 0) || (p.get_y( ) < 0))
{

p.rotate90( );
++answer;

}
return answer;

}

In C++, a value parameter is declared by placing the type name followed by the
parameter name. So, we have written  in the parameter list. The effect
of a value parameter is that any change made to the parameter within the body
of the function does not change the actual argument from the calling program.
Let’s look at an example in a program:

point sample(6, -4); // Constructor places the point at x = 6, y = –4.
cout << " x coordinate is " << sample.get_x( )

<< " y coordinate is " << sample.get_y( ) << endl;
cout << " Rotations: " << rotations_needed(sample) << endl;
cout << " x coordinate is " << sample.get_x( )

 << "  y coordinate is " << sample.get_y( ) << endl;

formal
parameters and 
arguments

After the constructor, the code prints a message with the point’s coordinates.
Then, in the second output statement, rotations_needed is called. The func-
tion’s parameter (p in this case) is referred to as the formal parameter to distin-
guish it from the value that is passed in during the function call. The passed
value (sample in this case) is the argument (sometimes called the actual
argument or the actual parameter).

the effect of a 
value parameter

With a value parameter, the argument provides the initial value for the formal
parameter. To be more precise, the formal parameter is implemented as a local
variable of the function, and the class’s copy constructor is used to initialize the
formal parameter as a copy of the actual argument. This is the only connection
between the argument and the formal parameter. So, if the formal parameter p
changes in our function body, the argument sample remains unchanged in the
calling program. In our example, p will rotate three times, ending up at x = 4 and
y = 6. The function returns the number of rotations (3), and sample still has its

point p

point p
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original value in the calling program. Therefore, the complete output from the
code is:

x coordinate is 6 y coordinate is -4
Rotations: 3
x coordinate is 6 y coordinate is -4

The value of the argument, sample, did not change.

Reference parameters. Reference parameters are important types of
parameters in C++. Our example of a reference parameter is similar to the
rotations_needed function. But this time the point p will be a reference param-
eter. The new function does not return a value; it merely rotates p into the upper-
right quadrant, as shown here:

void rotate_to_upper_right( )
// Postcondition: The point p has been rotated in 90-degree
// increments until p has been moved into the upper-right
// quadrant (where x >= 0 and y >= 0).
{

while ((p.get_x( ) < 0) || (p.get_y( ) < 0))
p.rotate90( );

}

In C++, a reference parameter is declared by placing the type name followed by
the symbol & and the parameter name. So, we have written  in the
parameter list. 

the effect of a 
reference
parameter

Here is the key to reference parameters: Any use of the parameter within the
body of the function will access the argument in the calling program. Let’s look
at an example in a program:

Value Parameters
A value parameter is declared by writing the type name
followed by the parameter name. With a value parameter, the
argument provides the initial value for the formal parameter.
The value parameter is implemented as a local variable of
the function, so that any changes made to the parameter in
the body of the function will leave the argument unaltered.

Example:
int rotations_needed( );point p

point& p

point& p
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point sample(6, -4); // Constructor places point at x = 6, y = –4.
cout << " x coordinate is " << sample.get_x( )

<< " y coordinate is " << sample.get_y( ) << endl;
rotate_to_upper_right(sample);
cout << " x coordinate is " << sample.get_x( )

 << " y coordinate is " << sample.get_y( ) << endl;

As before, the code prints the point’s coordinates and then calls the function.
The formal parameter is still called p and the argument is still sample—but p is
now a reference parameter.

Because p is a reference parameter, any use of p within the body of the func-
tion will actually access sample. Thus, it is the argument sample that is rotated
into the upper-right quadrant. When the function returns, sample has a new
value. The complete output from the code is:

x coordinate is 6 y coordinate is -4
x coordinate is 4 y coordinate is 6

The value of the argument sample was changed by the function.

USING A WRONG ARGUMENT TYPE FOR A REFERENCE PARAMETER

In order for a reference parameter to work correctly, the data type of an argument
must match exactly with the data type of the formal parameter. For example, sup-
pose we have this reference parameter:

void make_int_42(int& i)
// Postcondition: i has been set to 42.
{

i = 42;
}

Suppose we have an integer variable j, and we make the call make_int_42(j).

Reference Parameters
A reference parameter is declared by writing the type name
followed by the character & and the parameter name. With a
reference parameter, any use of the parameter within the
body of the function will access the argument from the calling
program. Changes made to the formal parameter in the body
of the function will alter the argument.

Example:
void rotate_to_upper_right( );point& p

PITFALL ��  
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After the function returns, j will have the value 42. But you might be surprised at
the output from this code:

double d;
d = 0;
make_int_42(d);
cout << d;

This example compiles, but because d is the wrong data type, a separate integer copy
of d is created to use as the argument. The double variable d is never changed to 42.

If the argument’s data type does not exactly match the data type of the formal
parameter, then the compiler will try to convert the argument to the correct type. If
the conversion is possible, then the compiler treats the argument like a value
parameter, passing a copy of the argument to the function. Fortunately, most com-
pilers provide a warning message such as “Temporary used for parameter ’i’
in call to ’make_int_42’”—just make sure that you pay attention to the com-
piler’s warnings!

Const reference parameters. For large data types, value parameters are less
efficient than reference parameters. This is because a value parameter must
make an extra copy of the argument to use within the body of the function.
Hence, we generally prefer to use reference parameters. But often a reference
parameter is unattractive because we don’t want a programmer to worry about
whether the function changes the actual argument. Changes are a definite possi-
bility with a reference parameter, but they cannot occur with a value parameter.

the effect of a 
const reference 
parameter

Sometimes there is a solution that provides the efficiency of a reference
parameter along with the security of a value parameter. The new parameter type
is called a const reference parameter, and it may be used whenever a function
does not attempt to make any changes to the parameter. For example, we can
write a function that computes the distance between two points. The function has
two point parameters, and neither parameter is changed by the function. There-
fore we can use const reference parameters, as shown in Figure 2.14. The figure
shows a function that computes the distance between two points, using this
prototype:

double distance( );

The const reference parameter uses the keyword const before the parame-
ter’s type, and it also uses the symbol & after the type. A const reference param-
eter is efficient (since it is a reference parameter), but a programmer is
guaranteed that the actual argument will not be altered by the function. For
example, in our implementation of distance we use only get_x and get_y,
both of which are const member functions and therefore cannot change p1 and
p2. It is important that get_x and get_y are actually declared as const member
functions, otherwise the compiler would not permit us to use them with the
const reference parameters p1 and p2.

does not change d

prints 0

const point& p1, const point& p2
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.

A Function Implementation
double distance( )
// Postcondition: The value returned is the distance between p1 and p2.
// Library facilities used: cmath
{

double a, b, c_squared;

// Calculate differences in x and y coordinates.
 a = p1.get_x( ) - p2.get_x( ); // Difference in x coordinates
b = p1.get_y( ) - p2.get_y( ); // Difference in y coordinates

// Use Pythagorean Theorem to calculate the square of the distance between the points.
c_squared = a*a + b*b;

return sqrt(c_squared);

}

 FIGURE  2.14 A Function with Const Reference Parameters

const point& p1, const point& p2

a2 + b2 = c2

a

b

Pythagorean
Theorem

c

p1

p2

www.cs.colorado.edu/~main/chapter2/newpoint.cxx WWW

CLARIFYING THE CONST KEYWORD
Part 3: Const Reference Parameters

A const reference parameter is declared
by writing the keyword const before a
reference parameter and placing & after
the parameter’s type. The parameter is
efficient, but unlike an ordinary reference
parameter, the function cannot attempt to
make any changes to the value of the
parameter.

Example:
double distance( , ...

If you use const reference parameters, be sure to follow the
consistency requirements in the Programming Tip on page 73.

1. DECLARED CONSTANTS: PAGE 12
2. CONSTANT MEMBER FUNCTIONS: PAGE 38
3. CONST REFERENCE PARAMETERS
4. STATIC MEMBER CONSTANTS: PAGE 104
5. CONST ITERATORS: PAGE 144
6. CONST PARAMETERS THAT ARE POINTERS OR

ARRAYS: PAGE 171
7. THE CONST KEYWORD WITH A POINTER TO A

NODE, AND THE NEED FOR TWO VERSIONS OF
SOME MEMBER FUNCTIONS: PAGE 227

const point& p1
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USE CONST CONSISTENTLY

When you define a new class along with functions and member functions to manip-
ulate the class, you should make a consistent use of const. In particular:

1. Any member functions that do not change the value of the object should be
declared constant member functions. This is accomplished by placing the
keyword const after the parameter list in both the prototype and the head of
the function’s definition (see page 38). For example, the prototype of the
throttle’s flow function is:

2. Whenever you use the class as the type of a parameter, and the function
does not alter the parameter, use a const reference parameter. This is
accomplished by placing the keyword const before the parameter’s type in
the parameter list, and placing the symbol & after the type name (see
page 72); for example, the prototype:

double distance( );

You should not use const unless you intend to use it at every location that meets
these requirements.

When the Type of a Function’s Return Value Is a Class

The type of a function’s return value may be a class. Here is a typical example:

 middle(const point& p1, const point& p2)
// Postcondition: The value returned is the point that
// is halfway between p1 and p2.
{

double x_midpoint, y_midpoint;

 // Compute the x and y midpoints.
x_midpoint = (p1.get_x( ) + p2.get_x( )) / 2;
y_midpoint = (p1.get_y( ) + p2.get_y( )) / 2;

// Construct a new point and return it.
point midpoint(x_midpoint, y_midpoint);

}

The function computes a new point in the local variable midpoint and then
returns a copy of this point. Often the return value of a function is stored in a

PROGRAMMING TIP ��  

double flow( ) const;

const point& p1, const point& p2

point Point Returned 
by the Middle 
Function

p1

p2 midpoint

return midpoint;
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local variable such as midpoint, but not always. Here’s another example, in
which one of the parameters is the return value:

 slower(const throttle& t1, const throttle& t2)
// Postcondition: The value returned is a copy of t1 or t2, whichever
// has the slower flow. If the flows are equal, then t1 is returned.
{

if (t1.flow( ) <= t2.flow( )) 

else

}

By the way, the C++ return statement uses the copy constructor to copy the
function’s return value to a temporary location before returning the value to the
calling program.

Self-Test Exercises for Section 2.4

22. Add default arguments to your throttle constructor from Self-Test Exer-
cise 12 on page 51. Once you have done this, are the other two construc-
tors still needed?

23. Which of these function calls could change the value of a point p:
cout << rotations_needed(p);
rotate_to_upper_right(p);

24. What is the difference between a formal parameter and an argument?
25. Suppose a function has a parameter named x, and the body of the func-

tion changes the value of x. When should x be a value parameter? When
should it be a reference parameter? With this function, could x ever be a
const reference parameter?

26. Suppose the data type of a parameter is a class. The parameter cannot be
modified inside the function. What kind of parameter is most efficient
and secure for this purpose?

2.5 OPERATOR OVERLOADING

A binary function is a function with two arguments. Often, when you design a
new class, there are binary functions to manipulate objects in the class. Some-
times the new binary functions are naturally described using symbols such as ==
and +, which are symbols that C++ already uses to describe its own operations
on numbers and other data types. For example, we might want to test whether
two points are equal, and it seems natural to write this code:

throttle

return t1;

return t2;
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point p1, p2;
if ( )

cout << "Those points are equal." << endl;

Unfortunately, the == operator cannot be used with a new class—unless you
define a binary function that tells exactly what == means. In fact, C++ lets you
define the meaning of many operators for a new class. Defining a new meaning
for an operator is called overloading the operator. We’ll look at several com-
mon overloading examples.

Overloading Binary Comparison Operators

The == operator that “compares for equality” can be overloaded for any new
class by defining a function with a rather peculiar name. The name of the new
function is operator ==, as shown in this example:

bool (const point& p1, const point& p2)
// Postcondition: The value returned is true if p1 and p2 
// are identical; otherwise false is returned.
{

return
(p1.get_x( ) == p2.get_x( )) 
&&
(p1.get_y( ) == p2.get_y( ));

}

In order for this function to return true, both parts of the && expression must be
true—in other words, both x and y coordinates of p1 must be equal to the corre-
sponding coordinate in p2.

operator ==Apart from the peculiar name operator ==, the function is just like any other
function. It returns a boolean value that can be used as a true-or-false value, such
as in an if-statement:

if ( )...

The overloaded operator is used in a program just like any other use of ==, by
putting the first argument before == and the second argument after ==.

common usages 
of == are still 
available

When you overload an operator, the common usages of that operator are still
available. For example, we can still use == to test the equality of two integers or
two doubles. In fact, in the body of our operator ==, we do use the ordinary ==
to compare the doubles p1.get_x( ) and p2.get_x( ). This is fine. For each use
of ==, the compiler determines the data type of the objects being compared and
uses the appropriate comparison function.

Once you have overloaded one operator, you can sometimes use the
overloaded operator to make an easy implementation of another operator. For

p1 == p2

operator ==

p1 == p2
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example, suppose we have defined operator == for the point class. Then we
can quickly overload != to be the “not equal” operator:

operator != bool operator !=(const point& p1, const point& p2)
// Postcondition: The value returned is true if p1 and p2 
// are not identical; otherwise false is returned.
{

return ;
}

The expression  deserves some examination. The == operator that
we use is the overloaded == that we just defined for points. It returns true if the
two points are equal, and false otherwise. We take the result of (p1 == p2)  and
reverse it with the usual not operator, “!”. So, if (p1 == p2) is true, then
!(p1 == p2) is false, and the != function returns false. On the other hand, if
(p1 == p2) is false, then !(p1 == p2) is true, and the != function returns true.

The operator == and operator != functions can also be defined as member
functions rather than existing on their own. In this case, the p1 in an expression
(p1 == p2) is the object that actually activates the member function, and p2 is an
argument. In fact, p2 will be the only argument if we implement == as a member

other binary 
comparison
operators

Overloading Binary Arithmetic Operators

In addition to the comparison operators, most of the other binary operators of
C++ also can be overloaded for a new class. For example, the operators +, -, *,
and /, which we normally think of as arithmetic operators, can all be overloaded
for a new class. As a natural example, physicists often use points as objects that
can be added by adding their x and y coordinates. If we could add two of our
points, then we might write this program:

!(p1 == p2)

!(p1 == p2)

function (since the object that activates a member
function is never actually listed in the parameter
list). The choice between member function and non-
member function is partly an issue of programming
style. We prefer the use of the nonmember function
since a nonmember function places the two argu-
ments (p1 and p2) on equal footing. There really is
no reason to say that p1 activates the operator any
more than p2 does. (Later, you will find that non-
member functions also provide more flexibility for
classes with a feature called conversions.)

Figure 2.15 shows the six binary operators from
C++ that are often overloaded as binary comparison
operators for new classes.

FIGURE  2.15
Binary Operators That 
Are Often Overloaded 
As Comparison 
Functions

== !=

< >

<= >=
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point speed1(5, 7); 
point speed2(1, 2); 
point total; 

cout << total.get_x( ) << endl; 
cout << total.get_y( ) << endl; 

operator +In fact, we can define the meaning of + for points by overloading the + operator.
The overloaded operator has two parameters, which are the two points being
added. And the function returns the sum of these two points, as shown here:

point (const point& p1, const point& p2)
// Postcondition: The sum of p1 and p2 is returned.
{

double x_sum, y_sum;

// Compute the x and y of the sum.
x_sum = (p1.get_x( ) + p2.get_x( ));
y_sum = (p1.get_y( ) + p2.get_y( ));
point sum(x_sum, y_sum);
return sum;

}

other arithmetic 
operators

Overloading Output and Input Operators

The standard C++ data types can be written and read using the output operator
<< and the input operator >>. For example, we can read and write an integer:

int i;
cin >> i;
cout << i;

total = speed1 + speed2;

sets total to
the sum of speed1
and speed2

prints 6

prints 9

operator +

As with the binary comparison operators, a
binary arithmetic operator can also be defined as a
member function rather than a function that stands
on its own. The member function would have just
one parameter, which is the right-hand argument in
an expression such as (p1 + p2). The left-hand argu-
ment is the object that activates the member func-
tion. Our programming style prefers implementing
the binary operators as nonmember functions.

Figure 2.16 shows the five binary operators from
C++ that are most often overloaded to perform arith-
metic operations.

FIGURE  2.16
Binary Operators That 
Are Often Overloaded 
As Arithmetic Functions

+ -

* /

%

reads the value of i from the
standard input

writes the value of i to
the standard output
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No doubt you would like to do the same with your impressive new point class:

point p;
cin >> p;
cout << p;

You can provide input /output power to the point class by overloading the
<< and >> operators. We start by overloading the output operator, which has the
mysterious prototype shown here:

ostream& operator <<(ostream& outs, const point& source);

Let’s demystify this problematic prototype. The function has two parameters:
outs (which is an ostream) and source (which is a point). We use the func-
tion by listing the two arguments like this:

cout << p;

As shown, the data type of cout is ostream, which means “output stream.” The
ostream class is part of the iostream library facility. The facility also defines
cout (the console output device or “standard output”) and provides the ability
for programmers to define other output streams (such as output streams con-
nected to a disk file or a printer). In any case, our intention is for the << function
to print the point named source to the ostream named outs. We can now
write most of our postcondition:

ostream& operator <<(ostream& outs, const point& source);
// Postcondition: The x and y coordinates of  have been
// written to .

The outs parameter is a reference parameter, meaning that the function can
change the output stream (by writing to it), and the change will affect the actual
argument (such as the standard output stream, cout). The source parameter is a
const reference parameter, meaning that the function will not alter the point that
it is writing.

One last mystery remains: The return type of the function is ostream&:

 operator <<(ostream& outs, const point& source);

For the most part, this return type means that the function returns an ostream.
In fact, the function returns the ostream that it has just written. There is addi-
tional meaning of the & symbol (called a reference return type). But we won’t
use that additional meaning until Chapter 6, so it is enough to know that the out-
put and input operators both require a reference return type.

reads the x and y coordinates
of p from the standard input

writes the x and y coordinates
of p to the standard output

The first argument, cout, is an ostream.

The second argument, p, is a point.

source
outs

ostream&
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With this in mind, we can now write the complete postcondition:

ostream& operator <<(ostream& outs, const point& source);
// Postcondition: The x and y coordinates of  have been 
// written to . The return value is the ostream .

The reason that the function returns an ostream is that C++ will then permit
the “chaining” of output statements such as the following:

cout << "The points are " << p << " and " << q << endl;

This example calls five << functions, with each function changing the ostream
and passing the result on to the next function call. 

operator <<The complete implementation of the point’s output operator is shown at the
top of Figure 2.17. Most of the work is done in this statement:

outs << source.get_x( ) << " "  << source.get_y( );

The statement uses the ordinary << operator to print the coordinates of the point,
with a single blank character in between.

source
outs outs

Function Implementations
ostream& operator <<(ostream& outs, const point& source)
// Postcondition: The x and y coordinates of source have been 
// written to outs. The return value is the ostream outs.
// Library facilities used: iostream
{

outs << source.get_x( ) << " "  << source.get_y( );
return outs;

}

istream& operator >>(istream& ins, point& target)
// Postcondition: The x and y coordinates of target have been 
// read from ins. The return value is the istream ins.
// Library facilities used: iostream
// Friend of: point class
{

ins >> target.x >> target.y;
return ins;

}

 FIGURE  2.17 Output and Input Operations for the Point

This prints the
point’s
coordinates
with a blank
in between.

This function must be a friend
function since it requires
direct access to the private
members of the point class.

www.cs.colorado.edu/~main/chapter2/newpoint.cxx WWW
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The prototype for the point’s input function is similar to the output function,
but it uses an istream (input stream) instead of an ostream, as shown here:

istream& operator >>(istream& ins, point& target);
// Postcondition: The x and y coordinates of  have been 
// read from . The return value is the istream .

operator >> The implementation of the input function is shown at the bottom of Figure 2.17.
The key work is accomplished with the usual >> operator reading two double
numbers in the statement shown here:

ins >> target.x >> target.y;

But hold on! The statement sends input directly to the private member variables
x and y of the point. Only member functions can access private member vari-
ables, and the input function is not a point member function. There are two pos-
sible solutions to the problem: 

1. We could write new member functions to set a point’s coordinates and use
these member functions within the input function’s implementation.

2. Because we are the implementor of the point class, and we are also writ-
ing the input function ourselves, we can grant special permission for the
input function to access the private members of the point class.

The second approach is called using a friend function, which we’ll explain now.

Friend Functions

friend functions 
can access 
private members

A friend function is a function that is not a member function, but that still
has access to the private members of the objects of a class. To declare a friend
function, the function’s prototype is placed in a class definition, preceded by the
keyword friend.

For example, to declare the point’s input function as a friend, we must insert
the friend prototype in the class definition, as shown here:

class point
{
public:

...
// FRIEND FUNCTIONS

private:
...

};

target
ins ins

The point class with a new friend

friend istream& operator >>(istream& ins, point& target);
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Once the friend prototype has been placed in the class definition, the body of the
function may access private members of its point parameter, as shown here:

istream& operator >>(istream& ins, point& target)
// Postcondition: The x and y coordinates of target have been 
// read from ins. The return value is the istream ins.
// Library facilities used: iostream
//
{

ins >> target.  >> target. ;
return ins;

}

Notice that a friend function is not a member function, so it is not activated
by a particular object of a class. All of the information that the friend function
manipulates must be present in its parameters. It would be illegal to simply
write x or y in the body of our function; we must write target.x and target.y.
In our case, the friend operator >> has one point parameter, and it is the
private member variables of this parameter that the function may access.

friendship and 
information
hiding

Friendship may be provided to any function, not just to operator functions.
But friendship should be limited to functions that are written by the programmer
who implements the class—after all, this programmer is the only one who really
knows about the private members. In this way, information hiding about a new
class remains intact.

WHEN TO USE A FRIEND FUNCTION

When you are implementing a class, you often implement additional functions to
manipulate objects of the class. If a function needs access to private members of
the class, then you should first consider providing the access via a member func-
tion. However, if a member function is inconvenient or unacceptable for other rea-
sons, then you may grant friendship to a function, giving it access to the class’s
private members. 

Friend of: point class

x y

Friend Functions
A friend function is a function that is not a member function,
but that still needs access to private members of some of its
parameters. To declare a friend function, the function’s
prototype is placed in a class definition, preceded by the
keyword friend.

Friendship should be limited to functions that are written by
the programmer who implements the class.

PROGRAMMING TIP ��  
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The Point Class—Putting Things Together

We have defined quite a few new functions to manipulate points. In all, we now
have:

• The constructor
• The two original modification functions (shift and rotate90), and the

two original constant functions (get_x and get_y)
• Overloaded comparison operators == and !=
• Overloaded arithmetic operator + to add two points
• Overloaded output and input operators
• Functions middle, rotations_needed, rotate_to_upper_right, and

distance from Section 2.4

We could continue with more point functions, but there is a definite danger of
never finishing Chapter 2. So we’ll stop here, collecting most of the items into a
new, improved point class. The header file for the new class is newpoint.h,
shown in Figure 2.18. Notice that the header file needs to use ostream and
istream from the std namespace. But, a using statement should never appear
in a header file (see page 60), so we use the full names std::ostream and
std::istream.

The implementation should go in a separate file named newpoint.cxx. What
should be present in newpoint.cxx? (See Self-Test Exercise 32 on page 86.)

When you provide functions or operators to manipulate a class, you should
follow these lists for good information hiding:

In the Header File:
• Documentation, including a 

precondition/postcondition
contract for each function

• Class definitions for any new 
classes

• Prototypes for any other func-
tions that are neither member 
functions nor friend functions

In the Implementation File:
• An include directive to include 

the header file
• Implementations for each 

member function (except for 
the inline functions)

• Implementations for each 
friend function and other 
functions that are not 
member functions
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A Header File
// FILE: newpoint.h (revised from point.h in Figure 2.10 on page 64)
// CLASS PROVIDED: point (a class for a point on a two-dimensional plane)
//
// CONSTRUCTOR for the point class:
//
// Postcondition: The point has been set to (initial_x, initial_y).
//
// MODIFICATION MEMBER FUNCTIONS for the point class:
//
// Postcondition: The point has been moved by x_amount along the x axis
// and by y_amount along the y axis.
//
//
// Postcondition: The point has been rotated clockwise 90 degrees.
//
// CONSTANT MEMBER FUNCTIONS for the point class:
//
// Postcondition: The value returned is the x coordinate of the point.
//
//
// Postcondition: The value returned is the y coordinate of the point.
//
// NONMEMBER FUNCTIONS for the point class:
//
// Postcondition: The value returned is the distance between p1 and p2.
//
//
// Postcondition: The point returned is halfway between p1 and p2.
//
//
// Postcondition: The sum of p1 and p2 is returned.
//
//
// Postcondition: The return value is true if p1 and p2 are identical.
//
//
// Postcondition: The return value is true if p1 and p2 are not identical.
//
//
// Postcondition: The x and y coordinates of source have been 
// written to outs. The return value is the ostream outs.

(continued)

 FIGURE  2.18 Header File for the New Point Class

point(double initial_x = 0.0, double initial_y = 0.0)

void shift(double x_amount, double y_amount)

void rotate90( )

double get_x( ) const

double get_y( ) const

double distance(const point& p1, const point& p2)

point middle(const point& p1, const point& p2)

point operator +(const point& p1, const point& p2)

bool operator ==(const point& p1, const point& p2)

bool operator !=(const point& p1, const point& p2)

ostream& operator <<(ostream& outs, const point& source)
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 (FIGURE  2.18 continued)

//
//
// Postcondition: The x and y coordinates of target have been
// read from ins. The return value is the istream ins.
//
// VALUE SEMANTICS for the point class:
// Assignments and the copy constructor may be used with point objects.

#ifndef MAIN_SAVITCH_NEWPOINT_H
#define MAIN_SAVITCH_NEWPOINT_H
#include <iostream> // Provides ostream and istream

namespace main_savitch_2B
{

class point
{
public:

// CONSTRUCTOR
point(double initial_x = 0.0, double initial_y = 0.0);
// MODIFICATION MEMBER FUNCTIONS
void shift(double x_amount, double y_amount);
void rotate90( );
// CONSTANT MEMBER FUNCTIONS
double get_x( ) const { return x; } 
double get_y( ) const { return y; }
// FRIEND FUNCTION
friend std::istream& operator >>(std::istream& ins, point& target);

private:
double x, y; // x and y coordinates of this point

};

// NONMEMBER FUNCTIONS for the point class 
double distance(const point& p1, const point& p2);
point middle(const point& p1, const point& p2);
point operator +(const point& p1, const point& p2);
bool operator ==(const point& p1, const point& p2);
bool operator !=(const point& p1, const point& p2);
std::ostream& operator <<(std::ostream & outs, const point& source);

}

#endif

istream& operator >>(istream& ins, point& target)

Using a new namespace
avoids conflict with the other
point class from Section 2.4.

prototype for a friend function

prototypes
for
nonmember
functions

www.cs.colorado.edu/~main/chapter2/newpoint.h WWW
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Summary of Operator Overloading

We have mentioned more than a dozen C++ operators that may be overloaded
for your own classes. In all, there are 44 such operators, although we shall use
only the ones you have seen in this chapter plus two assignment operators that
you’ll meet in the next two chapters.

Programming style varies widely for overloading operators. The eventual
style you adopt should be clear and consistent. Our own guidelines for operator
overloading within this book are listed in Figure 2.19.

Self-Test Exercises for Section 2.5

27. Overload the < operator for the throttle. The function should return true
if the flow of the first throttle is less than the flow of the second.

28. Overload the - operator for the point, as a binary arithmetic operator.
29. Why should friend functions be written only by the programmer who

implements a class?

FIGURE  2.19 Guidelines for Operator Overloading

Binary comparison 
operators
== != <= >= < >

Overload as a nonmember function with two 
parameters, returning a boolean value

See point 
example on 
page 75

Binary arithmetic 
operators
+ - * / %

Overload as a nonmember function with two 
parameters

See point 
example on 
page 76

Input and output
>> <<

Overload as a nonmember function, returning 
an istream or ostream

See point 
example on 
page 77

Auxiliary
assignment
operators

+= -= etc.

When the + operator is overloaded, then we 
will usually also overload += as a member 
function so that x += y has the same effect 
as x = x + y

See bag 
example on 
page 102

Assignment
operator
=

Must be overloaded as a member function if 
we want x = y to do more than copy member 
variables from the object y to the object x

See bag 
example on 
page 188
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30. What is incorrect in the following implementation of a friend input func-
tion of the point class?
istream& operator >> (istream& ins, point& target)
// target has x and y data members
// friend of : point class
{

 ins >> x >> y;
 return ins;

}

31. Overload the output operator for the throttle so that it prints 100 times
the current flow, followed by a % sign.

32. What should be present in the implementation file newpoint.cxx?

2.6 THE STANDARD TEMPLATE LIBARY AND THE PAIR 
CLASS

As a computer scientist, it’s important for you to understand how to build and
test your own classes, but frequently you’ll find that a suitable class has already
been built for you to use in an application—there’s no need for you to write
everything from scratch! In C++, a variety of container classes called the Stan-
dard Template Library (STL) is available for all programs. This section pro-
vides an introduction to one of the simplest STL classes: the pair class.

Each pair object can hold two pieces of data, perhaps an integer and a double
number, or a char and a bool value, or even a couple of throttles. The two pieces
of data don’t have to be the same data type, but the programmer must specify the
types of the pieces when the pair object is declared. Here’s a little example that
declares a pair with an integer (as the first piece) and a double (as the second):

#include <utility>  // Provides the pair class
using namespace std; // The pair is part of the std namespace

int main( )
{

pair<int, double> p;

p.first = 42; // first is the member variable for the int piece
p.second = 9.25; // second is the member variable for the double
...

Notice that the member variables, first and second, are both public member
variables. The data types of these two pieces are specified in the angle brackets,

, as part of the object’s declaration. We’ll see more of
these angle brackets—called the template instantiation—as we see more of the
STL, and eventually we’ll write our own template classes.

pair<int, double>
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CHAPTER SUMMARY

• Object-oriented programming (OOP) supports information hiding by
placing data in packages called objects, which are implemented via
classes in C++. Objects are manipulated through functions called member
functions, which are defined along with their classes.

• A new data type, together with the functions to manipulate the type, is
called an abstract data type or class. The term abstract refers to the fact
that we emphasize the abstract specification of what has been provided,
disassociated from any actual implementation.

• Private member variables support information hiding by forbidding data
components of a class to be accessed outside of the class’s member func-
tions. If the implementor of a new class needs other functions to have
access to the member variables, then the other functions may be declared
as friend functions.

• A constructor is a member function that is automatically called to initial-
ize a variable when the variable is declared. Defining constructors
increases the reliability of your classes by reducing the chance of using an
uninitialized variable.

• To avoid conflicts between different items with the same name, your work
should be placed in a namespace. When choosing a name for the
namespace, use part of your real name or email address to avoid conflicts
with other namespaces.

• Place the documentation and class definition for a new class in a separate
header file. Place the implementations of the member functions in a sepa-
rate implementation file.

• C++ provides three common kinds of parameters: With a value parame-
ter, the argument provides only the initial value for the formal parameter.
With a reference parameter, any use of the parameter within the body of
the function will access the argument from the calling program. A const
reference parameter has the efficiency of an ordinary reference parame-
ter, but there is a guarantee that the argument will not be changed by the
function.

• C++ permits you to define the meaning of operators such as + and == for
your new classes.

• C++ provides many prebuilt classes—the Standard Template Library—
for all programmers to use.
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SOLUTIONS TO SELF-TEST EXERCISES
? Solutions to Self-Test Exercises

1. The private members.

2. Public members of a class are available to
anyone using the class.  Member functions are
often declared public so that users can call
them in order to manipulate an instance of the
class.

3. true and false

4. A class is a kind of data type that defines data
members and member functions that operate
on the data. An object is an instance of a class,
and is declared as a variable. Once a class is
defined, a programmer can declare many
objects of that class and manipulate the
objects with its functions. 

5. A constant member function cannot make any
changes to the object’s member variables.

6. The scope resolution operator is used at the
head of each member function implementa-
tion. See the example use of the scope resolu-
tion operator on page 42.

7. The program should include the following
statements:
throttle exercise;
exercise.shut_off( );
exercise.shift(3);
cout << exercise.flow( ) << endl;

8. The prototype for the new member function is
placed in the class definition. The function
implementation is:
bool throttle::is_above_half( ) const
// Precondition: shut_off has been called at
// least once to initialize the throttle.
// Postcondition: The return value is true if
// the current flow is above 0.5.
{

return (flow( ) > 0.5);
}

9. In the public section of the class definition:
bool is_above_half( ) const

{ return (flow( ) > 0.5); }

10. The compiler automatically creates a simple
default constructor.

11. The keyword void should be removed. Con-
structors do not have a return type.

12. The prototype for the new constructor is
placed in the class definition. The constructor
implementation is:
throttle::throttle
(int size, int initial)
// Precondition: (0 < size) and
// (0 <= initial <= size).
// Postcondition: The throttle has size
// positions above the shutoff position, and
// it is currently in the position given by the
// parameter initial.
// Libraries used: cassert
{

assert(size > 0);
assert(initial >= 0);
assert(initial <= size);
top_position = size;
position = initial;

}

13. All the information needed to use the class is
in the comment at the front of the header file.

14. A macro guard prevents accidental duplica-
tion of a class definition. Normally, if a pro-
gram includes a header file more than once,
compilation will fail. A macro guard directs
the compiler to skip duplicate class defini-
tions.

15. The automatic assignment operator will copy
the member variables of x to y.

16. The automatic copy constructor will initialize
y as a copy of x (by copying the member vari-
ables).
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17. #include "throttle.h"
using namespace main_savitch_2A;

18. Hint: Keep track of the current angle in a pri-
vate member variable. If the variable goes
below zero, or becomes >= 360, then readjust
it so that it lies between 0 and 360.

19. You’ll find part of a solution in Figure 14.1 on
page 685.

20. Any items that are not explicitly placed
in a namespace become part of a global
namespace, and can be used without a using
statement or a scope resolution operator.

21. Never put a using statement in a header file;
the third form should be used.

22. Change the constructor’s prototype to this:
throttle(int size = 1, int initial = 0)

The other two constructors are no longer
needed.

23. rotate_to_upper_right can change p
because the parameter is a reference parame-
ter. But the call to rotations_needed cannot
change p because it uses a value parameter.

24. A function’s parameter is referred to as the
formal parameter to distinguish it from the
value that is passed in during the function call.
The argument is the passed value.

25. x should be a value parameter if you want the
actual argument to remain unchanged. It
should be a reference parameter if you want
changes to x to affect the actual argument. It can
never be a const reference parameter because
the function’s body alters the parameter.

26. Value parameters are less efficient for large
data types because their values are copied.
However, reference types are less secure
because they are modifiable.  A const refer-
ence parameter provides the best solution by
providing a reference parameter that cannot be
modified.

27. Here is the implementation:
int operator < (

const throttle& t1,
const throttle& t2

)
// Postcondition: The return value is true if
// the flow of t1 is less than the flow of t2.
{

return (t1.flow( ) < t2.flow( ));
}

28. The solution is the same as the + operator on
page 77, but replace each plus sign with a
minus sign.

29. This advice supports information hiding, be-
cause the programmer who implements the
class is the only one who knows about the
private members.

30. Friend functions are not activated by a partic-
ular object of a class. Therefore, the name of
the object variable must precede the member
variables accessed by the friend function, as
follows:

ins >> target.x >> target.y;

31. Here is the implementation (you fill in the
postcondition):
ostream& operator << (

ostream& outs,
const throttle& source

)
{

outs << 100*source.flow( ) << '%';
return outs;

}

32. The top of newpoint.cxx contains a short
comment indicating that the documentation
for how to use the point class is in the header
file. The function implementations appear
after the comment, including all the functions
listed in Figure 2.18 on page 83, except for
get_x and get_y (which are inline functions).
These implementations must be in a name-
space grouping. In the header file, we used
main_savitch_2B for the namespace to avoid
conflict with the earlier point (which was in
the namespace main_savitch_2A).
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Specify, design, and implement a class that
can be used in a program that simulates a
combination lock. The lock has a circular

knob, with the numbers 0 through 39 marked on the
edge, and it has a three-number combination, which
we’ll call x, y, z. To open the lock, you must turn the
knob clockwise at least one entire revolution, stop-
ping with x at the top; then turn the knob counter-
clockwise, stopping the second time that y appears at
the top; finally turn the knob clockwise again, stop-
ping the next time that z appears at the top. At this
point, you may open the lock.

Your lock class should have a constructor that

for default arguments). Also provide member func-
tions:

to alter the lock’s combination to a new three-
number combination
to turn the knob in a given direction until a
specified number appears at the top
to close the lock

(d)
(e) to inquire about the status of the lock (open or

(f) to tell you what number is currently at the top

called statistician
initialized, it can be given a sequence of

double numbers. Each number in the sequence is

function called next_number
declare a statistician called s
quence of numbers 1.1, –2.4, 0.8 as shown here:

statistician s;
s.next_number(1.1);
s.next_number(-2.4);
s.next_number(0.8);

After a sequence has been given to a statistician,

mation about the sequence. Include member func-

1

2

tions that will provide the length of the sequence, the
last number of the sequence, the sum of all the num-
bers in the sequence, the arithmetic mean of the
numbers (i.e., the sum of the numbers divided by
the length of the sequence), the smallest number in
the sequence, and the largest number in the se-
quence. Notice that the length and sum functions can
be called at any time, even if there are no numbers in
the sequence. In this case of an “empty” sequence,
both length and sum will be zero. But the other
member functions all have a precondition requiring
that the sequence is non-empty.

You should also provide a member function that
erases the sequence (so that the statistician can start
afresh with a new sequence).

Notes: Do not try to store the entire sequence
(because you don’t know how long this sequence
will be). Instead, just store the necessary
information about the sequence: What is the
sequence length? What is the sum of the numbers in
the sequence? What are the last, smallest, and largest
numbers? Each of these pieces of information can be
stored in a private member variable that is updated
whenever next_number is activated.

Overload the + operator to allow you to
add two statisticians from the previous
project. If s1 and s2 are two statisticians,

then the result of s1 + s2 should be a new statisti-
cian that behaves as if it had all of the numbers of s1
followed by all of the numbers of s2.

Specify, design, and implement a class for a
card in a deck of playing cards. The object
should contain methods for setting and

retrieving the suit and rank of a card.

Specify, design, and implement a class that
can be used to keep track of the position of a
point in three-dimensional space. For example,

consider the point drawn at the top of the next col-
umn. The point shown there has three coordinates:

3

4

5
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x = 2.5, y = 0, and z = 2.0. Include member func-
tions to set a point to a specified location, to shift a
point a given amount along one of the axes, and to
retrieve the coordinates of a point. Also provide
member functions that will rotate the point by a
specified angle around a specified axis.

To compute these rotations, you will need a bit of
trigonometry. Suppose you have a point with coor-
dinates x, y, and z. After rotating this point (counter-
clockwise) by an angle , the point will have new
coordinates, which we’ll call , , and . The
equations for the new coordinates use the cmath li-
brary functions sin and cos, as shown here:
After a  rotation around the x-axis:

After a  rotation around the y-axis:

After a  rotation around the z-axis:

In three-dimensional space, a line segment is
defined by its two endpoints. Specify, design,
and implement a class for a line segment.

The class should have two private member variables
that are points from the previous project.

Specify, design, and implement a class that
can be used to hold information about a
musical note. A programmer should be able

x-axis

y-axis

z-axis

Coordinates of
this point are
x = 2.5
y = 0
z = 2.0

θ
x′ y′ z′

θ
x′ x=
y′ y θ( ) z θ( )sin–cos=
z′ y θ( ) z θ( )cos+sin=

θ
x′ x θ( ) z θ( )sin+cos=
y′ y=
z′ x– θ( ) z θ( )cos+sin=

θ
x′ x θ( ) y θ( )sin–cos=
y′ x θ( ) y θ( )cos+sin=
z′ z=
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to set and retrieve the length of the note and the
value of the note. The length of a note may be a six-
teenth note, eighth note, quarter note, half note, or
whole note. A value is specified by indicating how
far the note lies above or below the A note that or-
chestras use in tuning. In counting “how far,” you
should include both the white and black notes on a
piano. For example, the note numbers for the octave
beginning at middle C are shown here:

The default constructor should set a note to a
middle C quarter note. Include member functions to
set a note to a specified length and value. Write
member functions to retrieve information about a
note, including functions to tell you the letter of the
note (A, B, C, etc.), whether the note is natural or
sharp (i.e., white or black on the piano), and the fre-
quency of a note in hertz. To calculate the frequen-
cy, use the formula , where n is the note
number. Feel free to include other useful member
functions.

A one-variable quadratic expression is an
arithmetic expression of the form

, where a, b, and c are some
fixed numbers (called the coefficients) and x is a
variable that can take on different values. Specify,
design, and implement a class that can store infor-
mation about a quadratic expression. The default
constructor should set all three coefficients to zero,
and another member function should allow you to
change these coefficients. There should be constant
member functions to retrieve the current values of
the coefficients. There should also be a member
function to allow you to “evaluate” the quadratic ex-
pression at a particular value of x (i.e., the function
has one parameter x, and returns the value of the ex-
pression ).

Also overload the following operators (as non-
member functions) to perform these indicated oper-
ations:

C D E GF A B

-9 -7 -5 -2-4 0 2

C# D# G#F# A#
-8 -6 -1-3 1

Note
numbers
for the
octave of
middle C

440 2n 12⁄×

8
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quadratic operator +(
const quadratic& q1,
const quadratic& q2

);
// Postcondition: The return value is the 
// quadratic expression obtained by adding 
// q1 and q2. For example, the c coefficient 
// of the return value is the sum of q1’s c 
// coefficient and q2’s c coefficient.

quadratic operator *(
double r, 
const quadratic& q

);
// Postcondition: The return value is the 
// quadratic expression obtained by
// multiplying each of q’s
// coefficients by the number r.

Notice that the left argument of the overloaded
operator * is a double number (rather than a qua-
dratic expression). This allows expressions such as
3.14 * q, where q is a quadratic expression.

This project is a continuation of the previous
project. For a quadratic expression such
as , a real root is any double

number x such that . For example,
the quadratic expression  has one of its
real roots at , because substituting
in the formula  yields the value:

There are six rules for finding the real roots of a qua-
dratic expression:

(1) If a, b, and c are all zero, then every value of
x is a real root.

(2) If a and b are zero, but c is nonzero, then there
are no real roots.

(3) If a is zero, and b is nonzero, then the only
real root is .

(4) If a is nonzero and , then there are
no real roots.

(5) If a is nonzero and , then there is
one real root .

(6) If a is nonzero, and , then there are

9
ax2 bx c+ +

ax2 bx c+ + 0=
2x2 8x 6+ +

x 3–= x 3–=
2x2 8x 6+ +

2 32–( )× 8 3–( )× 6+ + 0=

x c b⁄–=

b2 4ac<

b2 4ac=
x b 2⁄ a–=

b2 4ac>

two real roots:

Write a new member function that returns the num-
ber of real roots of a quadratic expression. This an-
swer could be 0, or 1, or 2, or infinity. In the case of
an infinite number of real roots, have the member
function return 3. (Yes, we know that 3 is not infin-
ity, but for this purpose it is close enough!) Write
two other member functions that calculate and re-
turn the real roots of a quadratic expression. The pre-
condition for both functions is that the expression
has at least one real root. If there are two real roots,
then one of the functions returns the smaller of the
two roots, and the other function returns the larger of
the two roots. If every value of x is a real root, then
both functions should return zero.

Specify, design, and implement a class that
can be used to simulate a lunar lander, which
is a small spaceship that transports astro-

nauts from lunar orbit to the surface of the moon.
When a lunar lander is constructed, the following
items should be specified, with default values as in-
dicated:

(1) Current fuel flow rate as a fraction of the
maximum fuel flow (default zero)

(2) Vertical speed of the lander (default zero
meters/sec)

(3) Altitude of the lander (default 1000 meters)
(4) Amount of fuel (default 1700 kg)
(5) Mass of the lander when it has no fuel (de-

fault 900 kg)
(6) Maximum fuel consumption rate (default

10 kg/sec)
(7) Maximum thrust of the lander’s engine (de-

fault 5000 newtons)
Don’t worry about other properties (such as horizon-
tal speed). 

The lander has constant member functions that
allow a program to retrieve the current values of any
of these seven items. There are only two modifica-
tion member functions, described next.

The first modification function changes the
current fuel flow rate to a new value ranging from
0.0 to 1.0. This value is expressed as a fraction of the
maximum fuel flow. 

x b– b2 4ac––
2a

--------------------------------------=

x b– b2 4ac–+
2a

--------------------------------------=
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The second modification function simulates the
passage of a small amount of time. This time, called
t, is expressed in seconds and will typically be a
small value such as 0.1 seconds. The function will
update the first four values in the previous list, to re-
flect the passage of t seconds. To implement this
function, you will require a few physics formulas,
listed next. These formulas are only approximate,
because some of the lander’s values are changing
during the simulated time period. But if the time
span is kept short, these formulas will suffice.

Fuel flow rate: Normally, the fuel flow rate does
not change during the passage of a small amount of
time. But there is one exception: If the fuel flow rate
is greater than zero, and the amount of fuel left is
zero, then you should reset the fuel flow rate to zero
(because there is no fuel to flow).

Velocity change: During t seconds, the velocity
of the lander changes by approximately this amount
(measured in meters/sec):

The value m is the total mass of the lander, measured
in kilograms (i.e., the mass of a lander with no fuel,
plus the mass of any remaining fuel). The value f is
the thrust of the lander’s engine, measured in new-
tons. You can calculate f as the current fuel flow rate
times the maximum thrust of the lander. The number
–1.62 is the downward acceleration from gravity on
the moon.

Altitude change: During t seconds, the altitude
of the lander changes by  meters, where v is the
vertical velocity of the lander (measured in meters/
sec, with negative values downward).

Change in remaining fuel: During t seconds,
the amount of remaining fuel is reduced by
kilograms. The value of r is the current fuel flow
rate, and c is the maximum fuel consumption (mea-
sured in kilograms per second).

We suggest that you calculate the changes to the
four items in the order listed here. After all the
changes have been made, there are two further ad-
justments. First, if the altitude has dropped below
zero, then reset both altitude and velocity to zero (in-
dicating that the ship has landed). Second, if the total
amount of remaining fuel drops below zero, then re-

t f
m
---- 1.62–⎝ ⎠

⎛ ⎞×

t v×

t r c××

set this amount to zero (indicating that we have run
out of fuel).

In this project you will design and imple-
ment a class that can generate a sequence
of pseudorandom integers, which is a

sequence that appears random in many ways. The
approach uses the linear congruence method, ex-
plained here.

The linear congruence method starts with a num-
ber called the seed. In addition to the seed, three oth-
er numbers are used in the linear congruence
method, called the multiplier, the increment, and
the modulus. The formula for generating a sequence
of pseudorandom numbers is quite simple. The first
number is:

(multiplier * seed + increment) % modulus

This formula uses the C++ % operator, which com-
putes the remainder from an integer division.

Each time a new random number is computed,
the value of the seed is changed to that new number.
For example, we could implement a pseudorandom
number generator with multiplier = 40, incre-
ment = 725, and modulus = 729. If we choose the
seed to be 1, then the sequence of numbers will pro-
ceed as shown here:

First number
= (multiplier * seed + increment) % modulus
= (40 * 1 + 725) % 729
= 36
and 36 becomes the new seed.

Next number
= (multiplier * seed + increment) % modulus
= (40 * 36 + 725) % 729
= 707
and 707 becomes the new seed.

Next number
= (multiplier * seed + increment) % modulus
= (40 * 707 + 725) % 729
= 574
and 574 becomes the new seed, and so on.

These particular values for multiplier, increment,
and modulus happen to be good choices. The pattern
generated will not repeat until 729 different numbers

11
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have been produced. Other choices for the constants
might not be so good.

For this project, design and implement a class
that can generate a pseudorandom sequence in the
manner described. The initial seed, multiplier, incre-
ment, and modulus should all be parameters of the
constructor. There should also be a member function
to permit the seed to be changed, and a member
function to generate and return the next number in
the pseudorandom sequence.

Add a new member function to the random
number class of the previous project. The
new member function generates the next

pseudorandom number but does not return the num-
ber directly. Instead, the function returns this num-
ber divided by the modulus. (You will have to cast
the modulus to a double number before carrying out
the division; otherwise, the division will be an inte-
ger division, throwing away the remainder.) 

The return value from this new member function
is a pseudorandom double number in the range
[0...1). (The square bracket, [, indicates that the
range does include 0, but the rounded parenthesis,
), indicates that the range goes up to 1,

without actually including 1.)

Run some experiments to determine the dis-
tribution of numbers returned by the new
pseudorandom function from the previous

project. Recall that this function returns a double
number in the range [0...1). Divide this range into
10 intervals, and call the function one million times,
producing a table such as this:

Range Number of
Occurrences

[0.0 ... 0.1) 99889
[0.1 ... 0.2) 100309
[0.2 ... 0.3) 100070
[0.3 ... 0.4) 99940
[0.4 ... 0.5) 99584
[0.5 ... 0.6) 100028
[0.6 ... 0.7) 99669
[0.7 ... 0.8) 100100
[0.8 ... 0.9) 100107
[0.9 ... 1.0) 100304

12
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Run your experiment for different values of the
multiplier, increment, and modulus. With good
choices of the constants, you will end up with about
10% of the numbers in each interval. A pseudo-
random number generator with this equal-interval
behavior is called uniformly distributed.

This project is a continuation of the previous
project. Many applications require pseudo-
random number sequences that are not uni-

formly distributed. For example, a program that
simulates the birth of babies can use random
numbers for the birth weights of the newborns. But
these birth weights should have a Gaussian
distribution. In a Gaussian distribution, numbers
are more likely to fall in intervals near the center of
the overall distribution. The exact probabilities of
falling in a particular interval can be computed from
knowing two numbers: (1) the center of the overall
distribution (called the median), and (2) a number
called the standard deviation, which indicates how
widely spread the distribution appears.

Generating a pseudorandom number sequence
with an exact Gaussian distribution can be difficult,
but there is a good way to approximate a Gaussian
distribution using uniformly distributed random
numbers in the range [0...1). The approach is to
generate 12 uniformly distributed pseudorandom
numbers, each in the range [0...1). These numbers
are then combined to produce the next number in
the Gaussian sequence. The formula to combine the
numbers is given here, where sum is the sum of the
12 numbers and sd is the desired standard deviation:

Next number in the Gaussian sequence

Add a new member function to the random number
class, which produces a sequence of pseudorandom
numbers with approximate Gaussian distribution.

Write a class for rational numbers. Each
object in the class should have two integer
values that define the rational number: the

numerator and the denominator. For example, the
fraction 5/6 would have a denominator of 5 and a nu-
merator of 6. Include a constructor with two argu-
ments that can be used to set the numerator and

14

= median + (sum – 6) sd×
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denominator (forbidding zero in the denominator).
Provide default values of zero for the numerator and
one for the denominator.

Overload the input and output operators. Num-
bers are to be read and written in the form 1/2,
32/15, 300/401, and so forth. Note that the numer-
ator, the denominator, or both may contain a minus
sign, so -1/2, 32/-15, and -300/-401 are possible.

Include a function to normalize the values stored
so that, after normalization, the denominator is pos-
itive and as small as possible. For example, after
normalization, 4/-8 would be represented the same
as -1/2.

Overload the usual arithmetic operators to pro-
vide addition, subtraction, multiplication, and divi-
sion of two rational numbers. Overload the usual
comparison operations to allow comparison of two
rational numbers.

Hints: Two rational numbers a/b and c/d are
equal if a*d equals c*b. For positive rational num-
bers, a/b is less than c/d, provided a*d is less than
c*b.

Write a class to keep track of a balance in a
bank account with a varying annual interest
rate. The constructor will set both the balance

and the annual interest rate to some initial values
(with defaults of zero). 

The class should have member functions to
change or retrieve the current balance or interest
rate. There should also be functions to make a de-
posit (add to the balance) or a withdrawal (subtract
from the balance). Finally, there should be a func-
tion that adds interest to the balance at the current in-
terest rate. This function should have a parameter
indicating how many years’ worth of interest are to
be added (for example, 0.5 years indicates that the
account should have six months’ interest added).

Use the class as part of an interactive program
that allows the user to determine how long an initial
balance will take to grow to a given value. The pro-
gram should allow the user to specify the initial bal-
ance, the interest rate, and whether there are
additional yearly deposits.

Specify, design, and implement a class
called date. Use integers to represent a
date’s month, day, and year. Write a mem-
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ber function to increment the date to the next day.
Include friend functions to display a date in both

number and word format.

Specify, design, and implement a class
called employee. The class has data mem-
bers for the employee's name, ID number,

and salary based on an hourly wage. Member func-
tions include computing the yearly salary and in-
creasing the salary by a certain percentage. Add
additional data members to store biweekly paycheck
information and calculate overtime (for over 40
hours per week) for each paycheck. 

Write a class for complex numbers. A com-
plex number has the form a + bi, where a
and b are real numbers and i is the square

root of -1. We refer to a as the real part and b as
the imaginary part of the number. The class should
have two data members to represent the real and
imaginary numbers; the constructor takes two ar-
guments to set these members. Discuss and imple-
ment other appropriate operators for this class.

Write a class called fueler that can keep
track of the fuel and mileage of a vehicle.
Include private member variables to track 

the amount of fuel that the vehicle has consumed
and the distance that the vehicle has traveled. You
may choose whatever units you like (for example,
fuel could be measured in U.S. gallons or Imperial
gallons or liters), but be sure to document your
choices at the point where you declare the vari-
ables.

The class should have a constructor that initializ-
es these variables to zero. Include a member func-
tion that can later reset both variables to zero. There
are two different modification member functions to
add a given amount to the total distance driven (one
has a miles parameter, and the other has a kilometers
parameter); similarly, there are three member func-
tions to a given amount to the total fuel consumed
(with different units for the amount of fuel).

The class has two const member functions to re-
trieve the total distance driven (in miles or km),
three functions for the fuel consumed (in U.S. gal-
lons, Imperial gallons, or liters) and four for the fuel
mileage (in U.S. mpg, Imperial mpg, km per liters,
or liters per 100 km).
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L EARN ING  OB J EC T I V ES
When you complete Chapter 3, you will be able to...

• design and implement collection classes that use partially filled arrays to store a 
collection of elements, generally using linear�time algorithms to access, insert, and 
remove elements.

• use typedef statements within a container class definition to specify the data type 
of the container’s elements.

• use static const members within a class definition to define fixed integer 
information such as the size of an array.

• use the C++ Standard Library copy function to copy part of an array from one 
location to another.

• write and maintain an accurate invariant for each class that you implement.
• write simple interactive test programs to test any newly implemented container 

class.
• write programs that use the multiset class and its iterators (part of the C++ 

Standard Template Library)

CHAPTER  CONTENTS

3.1 The Bag Class
3.2 Programming Project: The Sequence Class
3.3 Interactive Test Programs
3.4 The STL Multiset Class and Its Iterator

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

(I am large. I contain multitudes.)

WALT WHITMAN
“Song of Myself”

33 Conta iner  C lassesConta iner  C lasses
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Container Classes

The throttle and point classes in Chapter 2 are good examples
of abstract data types. But their applicability is limited to a few specialized pro-
grams. This chapter begins the presentation of several classes with broad appli-
cability in programs large and small. The two particular classes in this chapter—
bags and sequences—are examples of container classes. Intuitively, a container
class is a class where each object contains a collection of items. For example,
one program might keep track of a collection of integers, perhaps the ages of all
the people in your family. Another program, perhaps a cryptography program,
can use a collection of characters.

The bag and sequence classes are both simple versions of more complex
classes from the C++ Standard Library. The goal is for you to understand and use
the bag and sequence classes as a bridge to understanding and using the standard
container classes. Over the next few chapters, variations of the bag and sequence
classes will teach you how to write your own container classes that are compliant
with the C++ Standard Library, and therefore your own classes can take advan-
tage of standard algorithms for such tasks as searching and sorting.

A key feature of a good container class is that it should be easy to change the
type of item in the container so that a new application can use the container. With
this kind of “easy reuse,” many different applications can use the same container
class. The same container class can be used by one program for a collection of
integers, and by another program for a collection of characters or some other data
type. In this chapter we use typedef statements to provide the ability to easily
change the type of item in a container class. In Chapter 6, which focuses explic-
itly on software reusability, we’ll use a different feature called templates, which
is also used by the Standard Library container classes.

3.1 THE BAG CLASS

This section provides an example of a container class, called a bag of integers.
To define the new bag data type, think about an actual bag—a grocery bag or a
garbage bag—and imagine writing integers on slips of paper and putting them
in the bag. A bag of integers is similar to this imaginary bag: a container that
can hold a collection of integers that we place into it. A bag of integers can be
used by any program that needs to store a collection of integers for later use. For
example, later we will write a program that keeps track of the ages of your fam-
ily’s members. If you have a large family with 10 people, the program keeps
track of 10 ages—and these ages are kept in a bag of integers.

The Bag Class 97
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The Bag Class—Specification

We’ve given an intuitive description of a bag of integers, but for a more precise
specification of the bag class, we must describe the collection of functions to
manipulate a bag object. We’ll do this by providing a prototype for each of the
functions, most of which are member functions. With each prototype we also
specify the precise action that the function will perform. These specifications
will later become our precondition/postcondition contracts. Let’s look at the
functions one at a time.

The constructor. The bag class has a default constructor to initialize a bag to
be empty. The name of the constructor must be the same as the name of the class
itself, so the prototype for our constructor is the following:

bag( );

The value semantics. As part of our specification, we require that bag objects
can be copied with an assignment statement. Also, a newly declared bag can be
initialized as a copy of another bag, using the copy constructor such as:

bag b;
b.insert(42);

At this point, because we are only specifying which operations can manipulate a
bag, we don’t need to say anything more about the value semantics.

A typedef for the value_type. So far we have considered only bags of inte-
gers. But to be more flexible, we won’t actually use the name int when we refer
to the types of the items in the bag. Instead, we will use the name value_type
for the data type of the items in a bag. Some programs might need a bag of inte-
gers, and those programs will set the value_type to an int. Other programs
might use a different value_type. In order for the bag to have this flexible
value_type, we will place the following statement at the top of the public
section of the bag’s class definition:

class bag
{
public:

...

This statement is a typedef statement. It consists of the keyword typedef fol-
lowed by a data type (such as int) and then a new identifier, such as
value_type. We are not required to use the specific name value_type; we
could have used any meaningful name. But the Standard Library container
classes use the name value_type, so we have done so for consistency.

b now contains a 42.

c is initialized
with the copy constructor
to be a copy of b.bag c(b);

typedef int value_type;
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The effect of the typedef statement is that bag functions can use the name
value_type as a synonym for the data type int. Wherever a bag member func-
tion uses the name value_type, the compiler will recognize it as simply another
name for int. Other functions, which are not bag member functions, can use the
name bag::value_type as the type of the items in a bag. Moreover, if we want
a new kind of bag, we can simply change the word int to a new data type and
recompile. No other changes will be needed anywhere in our program. For exam-
ple, to declare a bag of double numbers we change the typedef statement to the
following:

class bag
{
public:

typedef  value_type;
...

In Chapter 6, we will use an alternative way to define value_type. The
alternative, called a template class, is more cumbersome, but it overcomes some
drawbacks of the typedef statement. Meanwhile, the next C++ Feature shows
how we used the C++ typedef statement.

TYPEDEF STATEMENTS WITHIN A CLASS DEFINITION

Within a class definition, we can place a typedef statement of the following form:

class
{
public:

typedef
...

This statement is a typedef statement. It consists of the keyword typedef followed
by a data type (such as int) and then a new identifier (such as value_type). The
effect of this typedef statement is that member functions can use the new name
value_type as a synonym for the data type. Functions that are not member func-
tions can also use the name, but its use must be preceded by the class name and
“::” (for example, bag::value_type).

The size_type. In addition to the value_type, our bag defines another data
type that can be used for variables that keep track of how many items are in a
bag. This type will be called size_type, with its definition near the top of the
bag class definition:

class bag
{
public:

typedef int value_type;
typedef  size_type;
...

double

C++ FEATURE ++

< Name of the class >

< A data type such as int or double > < A new name >

<an integer type of some kind>
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Once we have provided the size_type definition, we can use size_type for
any variable that’s counting how many items are in a bag. This is another pro-
gramming idea that we got from the Standard Library containers—they all have
a built-in size_type as part of the class.

Of course, we still must decide which data type to use for “an integer type of
some kind” in the typedef statement. We could use an ordinary int, but C++
provides a better alternative: the size_t data type, described next.

THE STD::SIZE_T DATA TYPE

The data type size_t is an integer data type that can hold only non-negative num-
bers. Each C++ implementation guarantees that the values of the size_t type are
sufficient to hold the size of any variable that can be declared on your machine.
Therefore, when you want to describe the size of some array or other variable, the
best choice is the size_t data type. The size_t type is part of the std
namespace from the Standard Library facility, cstdlib. To use size_t in a header
file, we must include cstdlib and use the full name std::size_t.

Our bag definition uses size_t as shown here:

class bag
{
public:

typedef int value_type;
typedef  size_type;
...

With the bag definition, or within an implementation of a bag member function,
we can use the type size_type. Other programmers can also use this data type,
but they must write the full name—bag::size_type.

The size member function. The bag has a constant member function called
size. The prototype uses the bag’s size_type:

size_type size( ) const;

As you might guess, the return value of the size function tells how many items
are currently in the bag. To illustrate the use of the function, suppose first_bag
contains one copy of the number 4 and two copies of the number 8. Then
first_bag.size( ) returns 3.

The insert member function. This is a member function that places a new
integer, called entry, into a bag. Here is the prototype:

void insert(const value_type& entry);

C++ FEATURE++

std::size_t
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As an example, here is a sequence of function calls for a bag called first_bag:

bag first_bag;
first_bag.insert(8);
first_bag.insert(4);
first_bag.insert(8);

After these statements are executed, first_bag contains three integers: the
number 4 and two copies of the number 8. It is important to realize that a bag
can contain many copies of the same integer, such as this example with two cop-
ies of 8.

Notice that the entry parameter is a const reference parameter. This may
seem strange since the usual purpose of a const reference parameter is to improve
efficiency when a parameter is a large object. Integers are not large, but we may
later change the value_type to something that is large. With this in mind, we
will use const reference parameters for value_type parameters, whenever this
is possible (i.e., whenever the function’s implementation does not change the
value of the parameter).

The count member function. This is a constant member function that deter-
mines how many copies of a particular number are in a bag. The prototype uses
size_type:

size_type count(const value_type& target) const;

The activation of count(n) returns the number of occurrences of n in a bag. For
example, if first_bag contains the number 4 and two copies of the number 8,
then we will have these values:

cout << first_bag.count(1) << endl;
cout << first_bag.count(4) << endl;
cout << first_bag.count(8) << endl;

The erase_one and erase member functions. These two member functions
have the following prototypes:

bool erase_one(const value_type& target);
size_type erase(const value_type& target);

Provided that the target is actually in the bag, the erase_one function
removes one copy of target and returns true. If target is not in the bag,
attempting to erase one copy has no effect on the bag, and the function returns
false. The erase function removes all copies of the target; its return value tells
how many copies were removed (which could be zero).

After these statements, first_bag
contains two 8s and a 4.

Prints 0

Prints 1

Prints 2
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Union operator. The union of two bags is a new larger bag that contains all the
numbers in the first bag plus all the numbers in the second bag, as shown here:

In the drawing we wrote “+” for “union.” To implement the union, we will over-
load the + operator as a nonmember function with this prototype:

bag operator +(const bag& b1, const bag& b2);

The function is not a member function because of our guidelines about over-
loading binary operators (see page 85).

Overloading the += operator. The + operator is defined for bags, so it is sen-
sible to also overload +=. The overloaded += will allow us to add the contents of
one bag to the existing contents of another bag in much the same way that +=
works for integers or real numbers. We intend to use += as shown here:

bag first_bag, second_bag;
first_bag.insert(8);
second_bag.insert(4);
second_bag.insert(8);
first_bag += second_bag;

After these statements first_bag contains one 4 and two 8s.
overload += as a 
member function

Our style preference is to overload += as a member function. The reason is that
the first argument (to the left of the +=) has special significance: It is the argu-
ment that actually has its value changed. The second argument (to the right of the
+=) never has its value changed. By making the operator += into a member func-
tion, we place special emphasis on the left argument in a statement such as:

first_bag += second_bag; 

This statement means “activate the += member function of first_bag, and use
second_bag as the argument.” Here is the prototype of the member function:

void operator +=(const bag& addend);

There are several points to notice:

• This is a void function. It does not return a value. It only alters the con-
tents of the bag that activates the function.

+ is

This adds the contents of
second_bag to what’s
already in first_bag.
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• The function has only one parameter, addend. This is the right-hand bag
in an expression such as . The left-hand bag
is the bag that activates += and that has its contents altered.

• We use the name addend for the parameter, meaning “something to be
added,” but you may use whatever name you like.

The bag’s CAPACITY. That’s the end of our list of functions, and we’re
almost ready to write the header file. But first, we describe one more handy C++
feature that is related to how we will store the items in a bag.

Our plan is for bounded bags that can hold 30 items each. (Later we will
remove this restriction, providing an unbounded bag class.) There is nothing
magic about the number 30—we just picked it as a conveniently small size for
our first bags. Later, we might want to change the size 30, allowing bags that hold
42 or 5000 or some other number of items. To make it easy to change the bag’s
size, and also to make our programs more readable, we will use a name such as
CAPACITY rather than simply using the number 30. 

The best way to define CAPACITY is as a static member constant, as shown in
the example here:.

class bag
{
public:

typedef int value_type;
typedef std::size_t size_type;

...

The keyword const has the same meaning that we have seen with other con-
stant declarations, so that the value of CAPACITY is defined once and cannot be
changed while the program is running. 

The keyword static modifies the definition in a useful way. Usually each
object has its own copy of each member variable. But when the keyword static
is used with a class member, it means that all of the class’s objects use the same
value. This is different! For example, with the bag’s static member constant,
every bag has the same CAPACITY of 30. In fact, the only reason that we can set
the CAPACITY to 30 within the class definition is because every bag has the same
value for CAPACITY. When a program declares a bag b, the program can refer to
the capacity with the usual notation for selecting a member: b.CAPACITY.
Because every bag has the same capacity, a program can also refer to a bag’s
capacity using the bag:: “scope resolution operator,” as shown in this example:

bag b;
cout << "The capacity of b is " <<  << endl;
cout << “Every bag has capacity " <<  << endl;

As shown in this example, we recommend all uppercase letters for the name of
any constant. This makes it easy to recognize which values are constant.

first_bag += second_bag

static const size_type CAPACITY = 30;

b.CAPACITY
bag::CAPACITY
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In addition to declaring the static member constant within the class definition,
the program must also repeat the declaration of the constant in the implementa-
tion file. In our example, the following single line must appear in the implemen-
tation file: const bag::size_type bag::CAPACITY;

We have described the general format of a static member constant, but there are
a few pitfalls to beware of:

• The keyword static is not repeated in the implementation file because
static has a different meaning outside of the class definition.

• When the constant is declared in the implementation file, we must use the
full type name (such as bag::size_type), rather than the short version
(such as size_type) because the short version may be used only in the
class definition or within an implementation of a member function.

• In the implementation file, we must also use the full name of the constant
(such as bag::CAPACITY) rather than the short version (such as CAPACITY),
otherwise the compiler won’t know that this is a member of a class.

For future reference, here is a summary of static member constants, including a
note about where the initial value must appear for different types of constants.

CLARIFYING THE CONST KEYWORD
Part 4: Static Member Constants

A static member constant has the two keywords static and
const before its declaration in a class. For example, in our bag
class definition:

static const size_type CAPACITY = 30;

The keyword static indicates that the entire class has only one
copy of this member, and the keyword const indicates that a
program cannot change the value (which is just like ordinary
declared constants).

In addition to declaring the static member constant within the
class definition, the constant must be redeclared in the
implementation file without the keyword static. For example:

const bag::size_type bag::CAPACITY;

Notice that the initial value (such as 30), is given only in the header
file, not the implementation file. However, this technique of
defining the value in the header file is allowed only for integer
types such as int and size_t. Noninteger types must be done
the other way around, leaving the value out of the header file and
defining this value in the implementation file. The reason for this
difference is that integral values are often used within the class
definition to define something such as an array size.
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Older Compilers Do Not Support Initialization
of Static Member Constants
The ability to initialize and use a static member constant within the class defini-
tion is a relatively new feature. If you have an older compiler that does not sup-
port static constant members, then Appendix E, “Dealing with Older
Compilers,” provides an alternative for your programming. 

The Bag Class—Documentation

We now know enough about the bag class to write the documentation of the
header file, as shown in Figure 3.1. We’ve used the name bag1.h for this header
file because it is the first of several different kinds of bags that we plan to
implement.

The documentation includes information about the two typedef statements
(value_type and size_type) and the static member constant (CAPACITY).
In particular, notice that we have been very specific about what sort of data type
is required for the value_type. The value_type may be any of the C++
built-in data types (such as int or char), or it may be a class with a default
constructor, an assignment operator, and operators to test for equality (x == y)
and non-equality (x != y).

Take a moment to read and understand all of the preconditions in Figure 3.1,
such as this precondition for the += operator:

Precondition: size( ) + addend.size( ) <= CAPACITY.

In this precondition, size( ) refers to the size of the bag that activates the func-
tion, and CAPACITY refers to the capacity of the bag that activates the function.
On the other hand, addend.size( ) refers to the size of the addend, which is a
parameter of the function.

Documentation for a Header File
// FILE: bag1.h
// CLASS PROVIDED: bag (part of the namespace main_savitch_3)
//
// TYPEDEFS and MEMBER CONSTANTS for the bag class:
//
// bag::value_type is the data type of the items in the bag. It may be any of the C++ 
// built-in types (int, char, etc.), or a class with a default constructor, an assignment
// operator, and operators to test for equality (x == y) and non-equality (x != y).

(continued)

 FIGURE  3.1 Documentation for the Bag Header File

typedef ____ value_type
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 (FIGURE  3.1 continued)

//
// bag::size_type is the data type of any variable that keeps track of how many items
// are in a bag.
//
//
// bag::CAPACITY is the maximum number of items that a bag can hold.
//
// CONSTRUCTOR for the bag class:
//
// Postcondition: The bag has been initialized as an empty bag.
//
// MODIFICATION MEMBER FUNCTIONS for the bag class:
//
// Postcondition: All copies of target have been removed from the bag.
// The return value is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
//
//
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been added to the bag.
//
//
// Precondition: size( ) + addend.size( ) <= CAPACITY.
// Postcondition: Each item in addend has been added to this bag.
//
// CONSTANT MEMBER FUNCTIONS for the bag class:
//
// Postcondition: The return value is the total number of items in the bag.
//
//
// Postcondition: The return value is number of times target is in the bag.
//
// NONMEMBER FUNCTIONS for the bag class:
//
// Precondition: b1.size( ) + b2.size( ) <= bag::CAPACITY.
// Postcondition: The bag returned is the union of b1 and b2.
//
// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.

typedef ____ size_type

static const size_type CAPACITY = _____

bag( )

size_type erase(const value_type& target)

bool erase_one(const value_type& target)

void insert(const value_type& entry)

void operator +=(const bag& addend)

size_type size( ) const

size_type count(const value_type& target) const

bag operator +(const bag& b1, const bag& b2) 

www.cs.colorado.edu/~main/chapter3/bag1.h WWW
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Documenting the Value Semantics

One of the requirements for the value_type may seem peculiar—why do we
require that value_type “must have an assignment operator”? Doesn’t every
data type permit assignments such as x = y? Won’t there always be an automatic
assignment operator? No! For example, x = y is forbidden when x and y are
arrays. Later we will see other data types that require care in defining what the
assignment operator actually means.

The Bag Class—Demonstration Program

With the documentation in hand, we can write a program that uses a bag. We
don’t need to know how the functions are implemented. As an example, a dem-
onstration program appears in Figure 3.2. The program asks a user about the
ages of family members. The user enters the ages followed by a negative num-
ber to indicate the end of the input, and these ages are put into a bag. The pro-
gram then asks the user to type the ages again, as a simple test.

A Program
// FILE: bag_demo.cxx
// This is a small demonstration program showing how the bag class is used.
#include <iostream> // Provides cout and cin
#include <cstdlib> // Provides EXIT_SUCCESS
#include "bag1.h" // With value_type defined as an int
using namespace std;
using namespace main_savitch_3;

// PROTOTYPES for functions used by this demonstration program:

// Postcondition: The user has been prompted to type in the ages of family members. These
// ages have been read and placed in the ages bag, stopping when the bag is full or when the
// user types a negative number.

// Postcondition: The user has been prompted to type in the ages of family members again.
// Each age is removed from the ages bag when it is typed, stopping when the bag is empty.

{
bag ages;

get_ages(ages);
check_ages(ages);
cout << "May your family live long and prosper." << endl;
return EXIT_SUCCESS;

} (continued)

 FIGURE  3.2 Demonstration Program for the Bag Class

void get_ages(bag& ages);

void check_ages(bag& ages);

int main( )
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 (FIGURE  3.2 continued)

{
int user_input;

cout << "Type the ages in your family." << endl;
cout << "Type a negative number when you are done:" << endl;
cin >> user_input;
while (user_input >= 0)
{

if (ages.size( ) < ages.CAPACITY) 
ages.insert(user_input);

else
cout << "I have run out of room and can’t add that age." << endl;

cin >> user_input;
}

}

{
int user_input;

cout << "Type those ages again. Press return after each age:" << endl;
while (ages.size( ) > 0)
{

cin >> user_input;
if (ages.erase_one(user_input))

            cout << "Yes, I've found that age and removed it." << endl;
else

            cout << "No, that age does not occur!" << endl;
}

}

Sample Dialogue with the Program
Type the ages in your family.
Type a negative number when you are done:
5 19 47 -1
Type those ages again. Press return after each age:
19
Yes, I’ve found that age and removed it.
36
No, that age does not occur!
5
Yes, I’ve found that age and removed it.
47
Yes, I’ve found that age and removed it.
May your family live long and prosper.

void get_ages(bag& ages)

void check_ages(bag& ages)

www.cs.colorado.edu/~main/chapter3/bag_demo.cxx WWW
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The Bag Class—Design

There are several ways to design the bag class. For now, we’ll keep things sim-
ple and design a somewhat inefficient data structure using an array. The data
structure will be redesigned several times to allow more efficient functions.

We start the design by thinking about the data structure—the actual configu-
ration of private member variables used to implement the class. The primary
structure for our design is an array that stores the items of a bag. Or, to be more
precise, we use the beginning part of a large array. Such an array is called a
partially filled array. For example, if the bag contains the integer 4 and two
copies of 8, then the first part of the array could look this way:

This array will be one of the private member variables of the bag class. The
length of the array will be determined by the constant CAPACITY, but as the pic-
ture indicates, when we are using the array to store a bag with just three items,
we don’t care what appears beyond the first three components. Starting at index
3, the array might contain all zeros, or it might contain garbage, or our favorite
number—it really doesn’t matter.

Because part of the array can contain garbage, the bag class must keep track
of one other item: How much of the array is currently being used? For example,
in the picture above, we are using only the first three components of the array
because the bag contains three items. The amount of the array being used can be
as small as zero (an empty bag) or as large as CAPACITY (a full bag). The amount
increases as items are added to the bag, and it decreases as items are removed. In
any case, we will keep track of the amount in a private member variable called
used. With this approach, there are two private members for a bag. Notice that
the total size of the array is determined by the CAPACITY constant.

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef int value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;

private:

};

use the 
beginning part 
of an array

[2][0] [1]

data
8 4 8Components of

the partially filled
array contain the
items of the bag. [3] [4] [5]

Parts
Unknown

the bag’s 
member
variables

two private
member variables
for the bag

The rest of the public members will be listed later.

value_type data[CAPACITY]; // An array to store items
size_type used; // How much of the array is used
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THE VALUE_TYPE MUST HAVE A DEFAULT CONSTRUCTOR

The value_type is used as the component type of an array in the private member
variable shown here:

class bag
{
...
private:

...

If the value_type is a class with constructors (rather than one of the C++ built-in
types), then the compiler must initialize each component of the data array using the
item’s default constructor. This is why our bag documentation includes the state-
ment that the value_type type must be “a class with a default constructor . . . .”

The point to remember is that when an array has a component type that is a
class, the compiler uses the default constructor to initialize the array components.

The Invariant of a Class
We’ve defined the bag data structure, and we have a good intuitive idea of how
the structure will be used to represent a bag of items. But as an aid in imple-
menting the class we should also write down an explicit statement of how the
data structure is used to represent a bag. In the case of the bag, we need to state
how the member variables of the bag class are used to represent a bag of items.
There are two rules for our bag implementation:

rules that dictate 
how the member 
variables are 
used to 
represent a 
value

1. The number of items in the bag is stored in the member variable used.
2. For an empty bag, we do not care what is stored in any of data; for a

non-empty bag, the items in the bag are stored in data[0] through
data[used-1], and we don’t care what is stored in the rest of data.

The rules that dictate how the member variables of a class represent a value
(such as a bag of items) are called the invariant of the class. The knowledge of
these rules is essential to the correct implementation of the class’s functions.
With the exception of the constructors, each function depends on the invariant
being valid when the function is called. And each function, including the con-
structors, has a responsibility of ensuring that the invariant is valid when the
function finishes. In some sense, the invariant of a class is a condition that is an
implicit part of every function’s postcondition. And (except for the constructors)
it is also an implicit part of every function’s precondition. The invariant is not
usually written as an explicit part of the preconditions and postconditions
because the programmer who uses the class does not need to know about these
conditions. But to the implementor of the class, the invariant is indispensable. In
other words, the invariant is a critical part of the implementation of a class, but
it has no effect on the way the class is used.

PITFALL ��  

value_type data[CAPACITY]; // An array to store items

The invariant 
is a critical part 
of a class’s
implementation.

Key Design 
Concept
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The Bag Class—Implementation
Once the invariant of the bag is stated, the implementation of the functions is
relatively simple because there is no interaction between the functions—except
for their cooperation at keeping the invariant valid. Let’s discuss each function
along with its implementation.

The constructor. The default constructor initializes a bag as an empty bag,
and does no other work. The only task involved is to set the member used to
zero, which can be accomplished with an inline member function:

implementing
the constructor

bag( ) { used = 0; }

The value semantics. Our documentation indicates that assignments and the
copy constructor may be used with a bag. Our plan is to use the automatic assign-
ment operator and the automatic copy constructor, each of which simply copies
the member variables from one bag to another. This is fine because the copying
process will copy both the data array and the member variable used.

For example, if a programmer has two bags x and y, then the statement 
will invoke the automatic assignment operator to copy all of x.data to y.data,
and to copy x.used to y.used. This is exactly what we want the assignment
operator to do, and the automatic copy constructor is also correct.

So, our only “work” for the value semantics is confirming that the automatic
operations are correct. Don’t you wish all implementations were that easy?

The count member function. To count the number of occurrences of a partic-
ular item in a bag, we step through the used portion of the partially filled array.
Remember that we are using locations data[0] through data[used-1], so the
correct loop is shown in this implementation:

bag::size_type bag::count(const value_type& target) const
implementing
the count 
function

{
size_type answer;
size_type i;
answer = 0;

return answer;
}

The Invariant of a Class
Always make an explicit statement of the rules that dictate
how the member variables of a class are used. These rules
are called the invariant of the class. All of the functions
(except the constructors) can count on the invariant being
valid when the function is called. Each function also has the
responsibility of ensuring that the invariant is valid when the
function finishes.

y = x

for (i = 0; i < used; ++i)
if (target == data[i])

++answer;
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NEEDING TO USE THE FULL TYPE NAME BAG::SIZE_TYPE

When we implement the count function, we must take care to write the return
type as shown here:

bag::count(const value_type& target)

We have used the completely specified type rather than just
size_type. This is because many compilers do not recognize that you are
implementing a bag member function until after seeing bag::count. In the
implementation, after bag::count, we may use simpler names such as
size_type and value_type, but before bag::count, we should use the full
type name bag::size_type.

The insert member function. The insert function checks that there is room to
insert a new item. If so, then the item is placed in the next available location of
the array. What is the index of the next available location? For example, if used
is 3, then data[0], data[1], and data[2] are already occupied, and the next
location is data[3]. In general, the next available location is data[used]. We
can place the new item in data[used], as shown in this implementation:

void bag::insert(const value_type& entry)
implementing
insert

// Library facilities used: cassert
{

assert(size( ) < CAPACITY);

++used;
}

Within a member function we can refer to the static member constant CAPACITY
with no extra notation. This refers to the CAPACITY member constant of the bag
that activates the insert function.

MAKE ASSERTIONS MEANINGFUL

At the start of the insert member function, we wrote the assertion:

assert(size( ) < CAPACITY);

Of course, we could have written “used < CAPACITY” instead, but it is better to
write assertions with public members (such as the size function). The public mem-
ber is better because it has meaning to the programmer who uses our class. If the
assertion fails, that programmer will understand the message “Assertion failed:
size( ) < CAPACITY.”

The erase_one member function. The erase_one function takes several
steps to remove an item named target from a bag. In the first step, we find the
index of target in the bag’s array, and store this index in a local variable named
index. For example, suppose that target is the number 6 in the five-item bag
drawn at the top of the next page.

PITFALL ��  

bag::size_type

bag::size_type

data[used] = entry;

See Self-Test Exercise 13 
for an alternative approach 
to these steps.

PROGRAMMING TIP��  
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In this example, target is a parameter to the erase_one member function,
index is a local variable in the erase_one member function, and used is the
familiar bag member variable. As you can see in the drawing, the first step of
erase_one was to locate the target (6) and place the index of the target in the
local variable named index.

Once the index of the target is found, the second step is to take the final item
in the bag and copy it to data[index]. The reason for this copying is so that all
the bag’s items stay together at the front of the partially filled array, with no
holes. In our example, the number 8 is copied to data[index] as shown here:

The third step is to reduce the value of used by one—in effect reducing the used
part of the array by one. In our example, used is reduced from 5 to 4:

index
1

data
3 6 4 9 8

used
5

target
6

[2][0] [3] [4] [5][1]

. . .
The index of the target
is found and placed in
a local variable
named index.

index
1

data
3 6 4 9

used
5

target
6

[2][0] [3] [4] [5][1]

8
8 . . .

The final item
is copied onto
the item that
we are
removing.

index
1

data
3 8 4 9

usedtarget
6

[2][0] [3] [4] [5][1]

. . .The value of used

5
4

is reduced by
one to indicate
that one item
has been
removed.
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The code for the erase_one function, shown in Figure 3.3, follows these three
steps. The only item added is a check that the target is actually in the bag. If we
discover that the target is not in the bag, then we do not need to remove anything
(and the function returns false). Also note that our function works correctly for
the boundary values of removing the first or last item in the array.

implementing
erase_one

Before we continue, we want to point out some programming techniques.
Look at the following while-loop from Figure 3.3:

index = 0; 
while ((index < used) && (data[index] != target))

 ++index;

To begin, the index is set to zero. The boolean expression indicates that the
loop continues as long as index is still a location in the used part of the array
(i.e., index < used) and we have not yet found the target (i.e., data[index]
!= target). Each time through the loop, the index is incremented by one

A Member Function Implementation
bool bag::erase_one(const value_type& target)
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
{

size_type index; // The location of target in the data array

// First, set index to the location of target in the data array, which could be as small as
// 0 or as large as used-1. If target is not in the array, then index will be set equal to 
// used.
index = 0; 
while ((index < used) && (data[index] != target))

 ++index;

if (index == used)
return false; // target isn’t in the bag, so no work to do.

// When execution reaches here, target is in the bag at data[index].
// So, reduce used by 1 and copy the last item onto data[index].
--used;
data[index] = data[used];
return true;

}

 FIGURE  3.3 Implementation of the Member Function to Remove an Item

See Self-Test Exercise 13 for an 
alternative approach to this step.

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW
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(++index). No other work is needed in the loop, so the body of the loop has no
other statements.

An important programming technique concerns the boolean expression
shown here:

index = 0;
while ( )

++index;

Look at the expression data[index] in the second part of the test. The valid
indexes for data range from 0 to used-1. But, if the target is not in the array,
then index will eventually reach used, which could be an invalid index. At that
point, with index equal to used, we must not evaluate the expression
data[index]. In some situations, trying to evaluate data[index] with an
invalid index can even cause your program to crash. The general rule: Never
use an invalid index with an array.

short-circuit
evaluation of 
logical
operations

Avoiding the invalid index is the reason for the first part of the logical test
(i.e., index < used). Moreover, the test for (index < used) must appear before
the other part of the test. Placing (index < used) first ensures that only valid
indexes are used. The insurance comes from a technique called short-circuit
evaluation, which C++ uses to evaluate boolean expressions. In short-circuit
evaluation a boolean expression is evaluated from left to right, and the evalua-
tion stops as soon as there is enough information to determine the value of the
expression. In our example, if index equals used, then the first part of the logical
expression (index < used) is false, so the entire && expression must be false. It
doesn’t matter whether the second part of the && expression is true or false.
Therefore, C++ doesn’t bother to evaluate the second part of the expression, and
the potential error of an invalid index is avoided.

The operator +=. The operator += is a member function. Most of the work of
this function is accomplished by a loop that copies each of the items from
addend.data to the data array of the object that activates +=. One possible
implementation uses a loop, something like this:

void bag::operator +=(const bag& addend)
{

...
for (i = 0; i < number of items to copy; ++i)
{

++used;
}

}
implementing
operator +=

The key assignment statement in the loop is highlighted. On the left of the
assignment we have written data[used], which is the next available location of
the data array for the object that activated the function. On the right of the
assignment we have written addend.data[i], which is item number i from the
data array that we are copying.

There’s nothing wrong with the loop-based implementation, but an alterna-
tive that avoids an explicit loop is shown in Figure 3.4. The implementation
uses the copy function from the <algorithm> Standard Library. This function
can

(index < used) && (data[index] != target)

data[used] = addend.data[i];
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can copy items from one array to another, as described in the following C++ Feature.

THE COPY FUNCTION FROM THE C++ STANDARD LIBRARY

The Standard Library contains a copy function for easy copying of items from one loca-
tion to another. The function is part of the std namespace in the <algorithm> facility,
and is used as follows:

copy(<beginning location>, <ending location>, <destination>);

The function starts at the specified beginning location and copies an item to the desti-
nation. It continues beyond the beginning location, copying more and more items to the
next spot of the destination, until we are about to copy the ending location. The ending
location is not copied. All three parameters are often locations within arrays. For exam-
ple, suppose that b and c are arrays. To copy the items b[0]...b[9] into locations
c[40]...c[49], we could write:

copy(b, b + 10, c + 40);

This call to copy starts copying items from b[0], b[1], b[2], .... It stops when it
reaches b[10] (and b[10] is not copied). The copied items go into array c, at loca-
tions c[40], c[41], c[42], .... The destination must not overlap the source.

As shown in this example, to specify a location that is at the start of an array, just use
the array name (such as b). To specify a location at index i of an array, write the array
name followed by “+ i” (such as b + 10 or c + 40).

The statement copy(addend.data, addend.data + addend.used, data + used)
is used in Figure 3.4 to copy items from addend.data into the data array. The copied
items come from the start of addend.data, continuing up to but not including
addend.data[addend.used]. The copied items are placed in the data array starting
at location data[used].

A Member Function Implementation
void bag::operator +=(const bag& addend)
// Precondition: size( ) + addend.size( ) <= CAPACITY.
// Postcondition: Each item in addend has been added to this bag.
// Library facilities used: algorithm, cassert
{

assert(size( ) + addend.size( ) <= CAPACITY);

copy(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

 FIGURE  3.4 Implementation of the Operator += Member Function

The copy function is from 
the <algorithm> part of the 
C++ Standard Library

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW

C++ FEATURE++



The Bag Class 117

The operator +. The operator + is different from our other functions. It is an
ordinary function rather than a member function. The function must take two
bags, add them together into a third bag, and return this third bag. The “third bag”
is declared as a local variable called answer in this implementation:

bag operator +(const bag& b1, const bag& b2)
// Library facilities used: cassert
{

bag answer;

assert(b1.size( ) + b2.size( ) <= bag::CAPACITY);

answer += b1;
answer += b2;
return answer;

}

Notice that this function does not need to be a friend function. Why not? (See
the answer to Self-Test Exercise 11.) Also, the function implementation can
access the static member constant with the notation bag::CAPACITY.

The Bag Class—Putting the Pieces Together

Only the erase and size functions remain to be implemented. We’ll leave
erase as an exercise (it is similar to erase_one), and size will be an inline
function of the class definition shown in the completed header file of Figure 3.5
on page 118. Notice that in the header file we also list the prototype of the bag’s
operator + function. This is not a member function, so the prototype appears
after the end of the bag class definition.
All the function implementations are collected in the implementation file of
Figure 3.6 on page 119.

DOCUMENT THE CLASS INVARIANT IN THE IMPLEMENTATION FILE

We wrote the invariant for the bag class at the top of the implementation file in
Figure 3.6. This is the best place to document the class’s invariant. In particular, do
not write the invariant in the header file, because a programmer who uses the class
does not need to know about how the invariant dictates the use of private fields.
But the programmer who implements the class does need to know about the
invariant.

Add in the items of b1.

Add in the items of b2.

PROGRAMMING TIP ��  
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A Header File
// FILE: bag1.h
// CLASS PROVIDED: bag (part of the namespace main_savitch_3)

#ifndef MAIN_SAVITCH_BAG1_H
#define MAIN_SAVITCH_BAG1_H
#include <cstdlib> // Provides size_t

namespace main_savitch_3
{

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef int value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR
bag( ) { used = 0; } 
// MODIFICATION MEMBER FUNCTIONS
size_type erase(const value_type& target);
bool erase_one(const value_type& target);
void insert(const value_type& entry);
void operator +=(const bag& addend);
// CONSTANT MEMBER FUNCTIONS
size_type size( ) const { return used; }
size_type count(const value_type& target) const;

private:
value_type data[CAPACITY]; // The array to store items
size_type used; // How much of array is used

};

// NONMEMBER FUNCTIONS for the bag class
bag operator +(const bag& b1, const bag& b2);

}

#endif

 FIGURE  3.5 Header File for the Bag Class

See Figure 3.1 on page 105 for the other documentation that goes here.

If your compiler does not permit 
initialization of static constants, 
see Appendix E.

www.cs.colorado.edu/~main/chapter3/bag1.h WWW
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An Implementation File
// FILE: bag1.cxx
// CLASS IMPLEMENTED: bag (see bag1.h for documentation)
// INVARIANT for the bag class:
// 1. The number of items in the bag is in the member variable used.
// 2. For an empty bag, we do not care what is stored in any of data; for a non-empty bag,
// the items in the bag are stored in data[0] through data[used-1], and we don’t care
// what’s in the rest of data.

#include <algorithm> // Provides copy function
#include <cassert> // Provides assert function
#include "bag1.h"
using namespace std;

namespace main_savitch_3
{

const bag::size_type bag::CAPACITY;

{

}

{
size_type index; // The location of target in the data array

// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as used-1.
// If target is not in the array, then index will be set equal to used.
index = 0; 
while ((index < used) && (data[index] != target))

++index;

if (index == used) // target isn’t in the bag, so no work to do
return false;

// When execution reaches here, target is in the bag at data[index].
// So, reduce used by 1 and copy the last item onto data[index].
--used;
data[index] = data[used];
return true;

} (continued)

 FIGURE  3.6 Implementation File for the Bag Class

See “Static Member Constants” 
on page 104 for an explanation 
of this line.

bag::size_type bag::erase(const value_type& target) 

See the solution to Self-Test Exercise 12 on page 147.

bool bag::erase_one(const value_type& target) 

See Self-Test Exercise 13 for an 
alternative approach to this step.
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 (FIGURE  3.6 continued)

// Library facilities used: cassert
{

assert(size( ) < CAPACITY);

data[used] = entry;
++used;

}

// Library facilities used: algorithm, cassert
{

assert(size( ) + addend.size( ) <= CAPACITY);

copy(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

{
size_type answer;
size_type i;

answer = 0;
for (i = 0; i < used; ++i)

if (target == data[i])
++answer;

return answer;
}

// Library facilities used: cassert
{

bag answer;

assert(b1.size( ) + b2.size( ) <= bag::CAPACITY);

answer += b1;
answer += b2;
return answer;

}
}

void bag::insert(const value_type& entry) 

See Self-Test Exercise 13 
for an alternative approach 
to these steps.

void bag::operator +=(const bag& addend) The copy function is 
from the <algorithm> 
part of the C++ 
Standard Library.

bag::size_type bag::count(const value_type& target) const

bag operator +(const bag& b1, const bag& b2) 

www.cs.colorado.edu/~main/chapter3/bag1.cxx WWW
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The Bag Class—Testing

Thus far, we have focused on the design and implementation of new classes,
including new member functions and operator overloading. But it’s also impor-
tant to continue practicing the other aspects of software development, particu-
larly testing. Each of the bag’s new functions must be tested, including the
overloaded operators. As shown in Chapter 1, it is important to concentrate the
testing on boundary values. At this point, we will alert you to only one potential
pitfall, leaving the complete testing to Programming Project 1 on page 149.

AN OBJECT CAN BE AN ARGUMENT TO ITS OWN MEMBER FUNCTION

The same variable is sometimes used on both sides of an assignment or other
operator. For example, the value of an integer d is doubled by the highlighted state-
ment here:

int d = 5;

A similar technique can be used with a bag, as shown here:

bag b;
b.insert(5);
b.insert(2);

The highlighted statement takes all the items in b (the 5 and the 2) and adds them
to what’s already in b, so b ends up with two copies of each number.

In the += statement, the bag b is activating the += operator, but this same bag b
is the actual argument to the operator. This is a situation that must be carefully
tested. As an example of the danger, consider the incorrect implementation of +=
in Figure 3.7. Do you see what goes wrong with ? (See the answer to Self-
Test Exercise 14.)

PITFALL ��  

d += d;

Add the current value of d
to d, giving it a value of 10.

b += b;

b now contains a 5 and a 2.

Now b contains two 5s and two 2s.

The situation: A member function has a parameter type
that is the same as the member function’s class. For exam-
ple, the bag’s += operator has a parameter that is itself a
bag.

The danger: The member function might fail when an object
activates the member function and the same object is used
as the actual argument. For example, a bag b could be used
in the statement: .

Always test this special situation.

b += b

b += b
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The Bag Class—Analysis

We finish this section with a time analysis of the bag’s functions. We’ll use the
number of items in a bag as the input size. For example, if b is a bag containing
n integers, then the number of operations required by b.count is a formula
involving n. To count the operations, we’ll count the number of statements exe-
cuted by the function, although we won’t need an exact count since our answer
will use big-O notation. Except for the return statement, all of the work in count
happens in this loop:

for (i = 0; i < used; ++i)
if (target == data[i])

++answer;

We can see that the body of the loop will be executed exactly n times—once for
each item in the bag. The body of the loop also has another important property:
The body contains no other loops or calls to functions that contain loops.
This is enough to conclude that the total number of statements executed by
count is no more than:

The “+3” at the end is for the initialization of i, the final test of (i < used), and
the return statement. Regardless of how many statements are actually in the
loop, the time expression is always O(n)—so the count function is linear.

A Wrong Member Function Implementation

// Library facilities used: cassert
{

size_type i; // An array index

assert(size( ) + addend.size( ) <= CAPACITY);

for (i = 0; i < addend.used; ++i)
{

data[used] = addend.data[i];
++used;

}
}

 FIGURE  3.7 Wrong Implementation of the Bag’s += Operator

void bag::operator +=(const bag& addend)

WARNING!

There is a bug in this 
implementation. See Self-Test
Exercise 14.

n (number of statements in the loop) 3+×
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A similar analysis shows that erase_one is also linear, although its loop
sometimes executes fewer than n times. However, the fact that erase_one
sometimes requires fewer than  does not
change the fact that the function is O(n). In the worst case, the loop does execute
a full n iterations, therefore the correct time analysis is no better than O(n).

constant time 
O(1)

Several of the other bag functions do not contain any loops at all, and do not
call any functions with loops. This is a pleasant situation because the time
required for any of these functions does not depend on the number of items in the
bag. For example, when an item is added to a bag, the new item is always placed
at the end of the array, and the insert function never looks at the items that were
already in the bag. When the time required by a function does not depend on the
size of the input, the procedure is called constant time, which is written O(1).
But be careful in analyzing the += operator. Its call to the copy function requires
time that is proportional to the size of the addend bag, so it is not constant time.

The time analyses of all the functions are summarized in Figure 3.8.

Self-Test Exercises for Section 3.1

1. When are typedef statements useful?
2. What is the size_t data type, and where is it defined?
3. The bag’s documentation in Figure 3.1 on page 105 says that the

value_type may be a class, but only if it has a default constructor and
several operators. Why?

4. In the bag class, why is the entry parameter in the insert member
function a const reference parameter?

5. Draw a picture of mybag.data after these statements:
bag mybag;
mybag.insert(1);
mybag.insert(2);
mybag.insert(3);
mybag.erase_one(1);

n (number of statements in the loop)×

FIGURE  3.8 Time Analysis for the Bag Functions (First Version)

Operation Time Analysis Operation Time Analysis
Default

constructor
O(1) Constant time += another

bag
O(n) n is the size of

the other bag 
count O(n) n is the size of 

the bag
b1 + b2 O(n1 + n2) n1 and n2 are the 

sizes of the bags
erase_one O(n) Linear time insert O(1) Constant time

erase O(n) Linear time size O(1) Constant time
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6. Suppose the following statement is added to the statements in the previ-
ous exercise: cout << mybag.count(1) << endl;. What output is pro-
duced?

7. Why is the static member constant, CAPACITY, given a value in the
header file, and not in the implementation file? 

8. Write the invariant of the bag class.
9. What is short-circuit evaluation?

10. Use the copy function to copy six elements from the start of an array x
into an array y starting at y[42].

11. Why isn’t the bag’s operator + function a friend function?
12. Implement the bag’s erase member function.
13. Rewrite the last two statements of erase_one (Figure 3.3 on page 114)

as a single statement, using the expression --used as the index. (If you
are unsure of the meaning of --used as an index, then go ahead and peek
at our answer at the back of the chapter.) Use used++ as the index to
make a similar alteration to the insert function member.

14. Suppose we implement the += operator as shown in Figure 3.7 on
page 122. What goes wrong with ?

15. What is the meaning of O(1)?

3.2 PROGRAMMING PROJECT: THE SEQUENCE CLASS

You are ready to tackle a container class implementation on your own. The class
is a container class called a sequence. A sequence is similar to a bag—both con-
tain a bunch of items. But unlike a bag, the items in a sequence are arranged in
an order, one after another.

how a sequence 
differs from a 
bag

How does this differ from a bag? After all, aren’t the bag items arranged one
after another in the partially filled array that implements the bag? Yes, but that’s
a quirk of our particular bag implementation, and the order is just haphazard. 

internal iterators 
versus
external iterators

In contrast, the items of a sequence are kept one after another, and member
functions will allow a program to step through the sequence one item at a time.
Member functions also permit a program to control precisely where items are
inserted and removed within the sequence. The technique of using member func-
tions to access items is called an internal iterator, which differs from external
iterators of the Standard Library containers. Later, in Chapter 6, we will exam-
ine external iterators in detail and add them to both the bag and the sequence.

The Sequence Class—Specification
Our sequence is a class that depends on an underlying value_type, and the
class also provides a size_type. It’s a good habit to use these particular names
for all our classes since you’ll find the same names for the Standard Library

b += b
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container classes. At the moment, a sequence will be limited to no more than 30
items. As with our bag, the value_type, size_type, and sequence capacity
will be defined in the public section of the class definition. Throughout the dis-
cussion, we will use examples in which the items are double numbers, and the
sequence has no more than 30 items. So the header file has these definitions:

class sequence
{
public:

// TYPEDEF and MEMBER CONSTANTS

...

Keep in mind that the capacity and item type can easily be changed and recom-
piled if we need other kinds of sequences. Also, remember the alternatives if
your compiler does not support this way of initializing a static constant in a
class definition (see Appendix E). 

The class that we implement will be called sequence. We’ll now specify the
member functions of this new class.

Default constructor. The sequence class has just one constructor—a default
constructor that creates an empty sequence.

The size member function. The size member function returns the number of
items in the sequence. The prototype is given here along with the postcondition:

size_type size( ) const;
// Postcondition: The return value is the number of items in the sequence.

For example, if scores is a sequence containing the values 10.1, 40.2, and 1.1,
then scores.size( ) returns 3. Throughout our examples, we will draw
sequences vertically, with the first item on top, as shown in the picture in the
margin (where the first item is 10.1).

Member functions to examine a sequence. We will have member functions
to build a sequence, but it will be easier to first explain the member functions
that examine a sequence that has already been built. Now, with the bag class, all
that we can do is inquire how many copies of a particular item are in the bag. A
sequence is more flexible, allowing us to examine the items one after another.
The items must be examined in order, from the front to the back of the sequence.
Three member functions work together to enforce the in-order retrieval rule.
The functions’ prototypes are given here:

void start( );
value_type current( ) const;
void advance( );

When we want to retrieve the items in a sequence, we begin by activating
start. After activating start, the current function returns the first item in the

typedef double value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;

10.1
40.2

1.1
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sequence. Each time we call advance, the current function changes so that
it returns the next item in the sequence. For example, if a sequence named
numbers contains the four numbers 37, 10, 83, and 42, then we can write the
following code to print the first three numbers:

numbers.start( );
start,
current,
advance

cout << numbers.current( ) << endl;
numbers.advance( );
cout << numbers.current( ) << endl;
numbers.advance( );
cout << numbers.current( ) << endl;

One other member function cooperates with current. The function, called
is_item, returns a boolean value to indicate whether there actually is another
item for current to provide, or whether current has advanced right off the
end. The is_item prototype is given here with a postcondition:

bool is_item( ) const;
// Postcondition: A true return value indicates that there is a valid
// “current” item that can be obtained from the current member function. 
// A false return value indicates that there is no valid current item.

Using all four of the member functions in a for-loop, we can print an entire
sequence, as shown here for the numbers sequence:

for (numbers.start( ); numbers.is_item( ); numbers.advance( ))
cout << numbers.current( ) << endl;

The insert and attach member functions. There are two member functions to
add new items to a sequence. One of the functions, called insert, places a new
item before the current item. For example, suppose that we have created the
sequence shown in the margin with three items, and that the current item is 8.8.
In this example, we want to add 10.0, immediately before the current item. When
10.0 is inserted before the current item, other items—such as 8.8 and 99.0—will
move down to make room for the new item. After the insertion, the sequence has
the four items shown in the lower box.

If there is no current item, then insert places the new item at the front of the
sequence. In any case, after the insert function returns, the newly inserted item
will be the current item, as specified in this precondition/postcondition contract:

void insert(const value_type& entry);
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence 
// before the current item. If there was no current item, then the new entry 
// has been inserted at the front. In either case, the new item is now the
// current item of the sequence.

A second member function, called attach, also adds a new item to a
sequence, but the new item is added after the current item, as specified here:

Prints 37

Prints 10

Prints 83

42.1

99.0
8.8

42.1

8.8
99.0

10.0

The
sequence
grows by 
inserting
10.0 before 
the current 
item.
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void attach(const value_type& entry);
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence
// after the current item. If there was no current item, then the new entry
// has been attached to the end. In either case, the new item is now the
// current item of the sequence.

If there is no current item, then the attach function places the new item at the
end of the sequence (rather than the front). Either insert or attach can be used
to place the first item on a sequence.

The remove_current member function. The current item can be removed
from a sequence. The member function for a removal has no parameters:

void remove_current( );
// Precondition: is_item returns true.
// Postcondition: The current item has been removed from the sequence,
// and the item after this (if there is one) is now the new current item.

The function’s precondition requires that there is a current item; it is this current
item that is removed. For example, suppose scores is the four-item sequence
shown at the top of the box in the margin, and the highlighted 8.3 is the current
item. After activating scores.remove_current( ), the 8.3 has been deleted,
and the 4.1 is now the current item.

The Sequence Class—Documentation
The header file for this first version of our sequence class is shown in
Figure 3.9 on page 128. The header file includes the class definition with our
suggestion for three member variables. We discuss these member variables next.

The Sequence Class—Design
Our suggested design for the sequence class has three private member variables.
The first variable, data, is an array that stores the items of the sequence. Just
like the bag, data is a partially filled array. A second member variable, called
used, keeps track of how much of the data array is currently being used. There-
fore, the used part of the array extends from data[0] to data[used-1]. The
third member variable, current_index, gives the index of the “current” item in
the array (if there is one). If there is no valid current item in the sequence, then
current_index will be the same number as used (since this is larger than any
valid index). Here is the complete invariant of our class, stated as three rules:

1. The number of items in the sequence is stored in the member variable
used.

2. For an empty sequence, we do not care what is stored in any of data; for
a non-empty sequence, the items are stored in their sequence order from
data[0] to data[used-1], and we don’t care what is stored in the rest of
data.

3. If there is a current item, then it lies in data[current_index]; if there is
no current item, then current_index equals used.

(text continues on page 130)

3.7

4.1
3.1

8.3

3.7

3.1
4.1

Before
the
removal

After
the
removal
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A Header File
// FILE: sequence1.h
// CLASS PROVIDED: sequence (part of the namespace main_savitch_3)
//
// TYPEDEF and MEMBER CONSTANTS for the sequence class:
//
// sequence::value_type is the data type of the items in the sequence. It may be any of the
// C++ built-in types (int, char, etc.), or a class with a default constructor, an assignment
// operator, and a copy constructor
//
//
// sequence::size_type is the data type of any variable that keeps track of how many
// items are in a sequence.
//
//
// sequence::CAPACITY is the maximum number of items that a sequence can hold.
//
// CONSTRUCTOR for the sequence class:
//
// Postcondition: The sequence has been initialized as an empty sequence.
//
// MODIFICATION MEMBER FUNCTIONS for the sequence class:
//
// Postcondition: The first item in the sequence becomes the current item (but if the
// sequence is empty, then there is no current item).
//
//
// Precondition: is_item returns true.
// Postcondition: If the current item was already the last item in the sequence, then there 
// is no longer any current item. Otherwise, the new item is the item immediately after
// the original current item.
//
//
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence before the
// current item. If there was no current item, then the new entry has been inserted at the
// front. In either case, the new item is now the current item of the sequence.
//
//
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been inserted in the sequence after the current
// item. If there was no current item, then the new entry has been attached to the end of 
// the sequence. In either case, the new item is now the current item of the sequence.
//
//
// Precondition: is_item returns true.
// Postcondition: The current item has been removed from the sequence, and the
// item after this (if there is one) is now the new current item. (continued)

 FIGURE  3.9 Header File for the Sequence Class

typedef ____ value_type

typedef ____ size_type

static const size_type CAPACITY = _____

sequence( )

void start( )

void advance( )

void insert(const value_type& entry)

void attach(const value_type& entry)

void remove_current( )

128
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 (FIGURE  3.9 continued)

// CONSTANT MEMBER FUNCTIONS for the sequence class:
//
// Postcondition: The return value is the number of items in the sequence.
//
//
// Postcondition: A true return value indicates that there is a valid “current” item that 
// may be retrieved by the current member function (listed below). A false return value
// indicates that there is no valid current item.
//
//
// Precondition: is_item( ) returns true.
// Postcondition: The item returned is the current item in the sequence.
//
// VALUE SEMANTICS for the sequence class:
// Assignments and the copy constructor may be used with sequence objects.

#ifndef MAIN_SAVITCH_SEQUENCE_H
#define MAIN_SAVITCH_SEQUENCE_H
#include <cstdlib> // Provides size_t

namespace main_savitch_3
{

class sequence
    {

public:
// TYPEDEFS and MEMBER CONSTANTS
typedef double value_type;
typedef std::size_t size_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR
sequence( );
// MODIFICATION MEMBER FUNCTIONS
void start( );
void advance( );
void insert(const value_type& entry);
void attach(const value_type& entry);
void remove_current( );
// CONSTANT MEMBER FUNCTIONS
size_type size( ) const;
bool is_item( ) const;
value_type current( ) const;

private:
value_type data[CAPACITY];
size_type used;
size_type current_index;

};
}

#endif

size_type size( ) const

bool is_item( ) const

value_type current( ) const

If your compiler does not permit 
initialization of static constants, see 
Appendix E.

The three private member 
variables are discussed in the 
section “The Sequence Class—
Design” on page 127.

www.cs.colorado.edu/~main/chapter3/sequence1.h WWW

129



130  Chapter 3 / Container Classes

As an example, suppose that a sequence contains four numbers, with the current
item at data[2]. The member variables of the object might appear as shown
here:

In this example, the current item is at data[2], so the current( ) function
would return the number 6. At this point, if we called advance( ), then
current_index would increase to 3, and current( ) would then return 9.

Normally, a sequence has a “current” item, and the member variable
current_index contains the location of that current item. But if there is no cur-
rent item, then current_index contains the same value as used. In our example,
if current_index was 4, then that would indicate that there is no current item.
Notice that this value (4) is beyond the used part of the array (which stretches
from data[0] to data[3]).

invariant of the 
class

The stated requirements for the member variables form the invariant of the
sequence class. You should place this invariant at the top of your implementation
file (sequence1.cxx). We will leave most of this implementation file up to you,
but we will offer some hints and a bit of pseudocode.

The Sequence Class—Pseudocode for the Implementation

The remove_current function. This function removes the current item from
the sequence. First check that the precondition is valid (use is_item( ) in an
assertion). Then remove the current item by shifting each of the subsequent
items leftward one position. For example, suppose we are removing the current
item from the sequence drawn here:

What is the current item in this picture? It is the 1.4 since current_index is 1,
and data[1] contains the 1.4.

current_index
2

data

3 1.4 6 9

used
4

[2][0] [3] [4] [5][1]

. . .

current_index
1

data

3 1.4 6 9

used
5

[2][0] [3] [4] [5][1]

. . .1.1



Programming Project: The Sequence Class 131

In the case of the bag, we could remove an element such as 1.4 by copying the
final item (1.1) onto the 1.4. But this approach won’t work for the sequence
because the items would lose their sequence order. Instead, each item after the
1.4 must be moved leftward one position. The 6 moves from data[2] to
data[1]; the 9 moves from data[3] to data[2]; the 1.1 moves from data[4]
to data[3]. This is a lot of movement, but a simple for-loop suffices to carry out
all the work. This is the pseudocode:

for (i = the index after the current item; i < used; ++i)
Move an item from data[i] back to data[i-1];

do not use the 
copy function

You should not use the copy function from <algorithm> since that function
forbids the overlap of the source with the destination.

When the loop completes, you should reduce used by one. The final result for
our example is shown here:

After the removal, the current_index is unchanged. In effect, this means
that the item that was just after the removed item is now the current item. You
should check that the function works correctly for boundary values—removing
the first item and removing the final item. In fact, both these cases do work fine.
When the final item is removed, current_index will end up with the same value
as used, indicating that there is no longer a current item.

The insert function. If there is a current item, then the insert function must
take care to insert the new item just before the current position. Items that are
already at or after the current position must be shifted rightward to make room
for the new item. We suggest that you start by checking the precondition. Then
shift items at the end of the array rightward one position each until you reach the
position for the new item. 

For example, suppose you are inserting 1.4 at the location data[1] in this
sequence:

current_index
1

data

3 6 9 1.1

used
4

[2][0] [3] [4] [5][1]

. . .

data

3 6 9 1.1

used
4

[2][0] [3] [4] [5][1]

. . .

current_index
1



132  Chapter 3 / Container Classes

You would begin by shifting the 1.1 rightward from data[3] to data[4]; then
move the 9 from data[2] to data[3]; then the 6 moves from data[1] right-
ward to data[2]. At this point, the array looks like this:

Of course, data[1] actually still contains a 6 since we just copied the 6 from
data[1] to data[2]. But we have drawn data[1] as an empty box to indicate
that data[1] is now available to hold the new item (that is, the 1.4 that we are
inserting). At this point we can place the 1.4 in data[1] and add one to used, as
shown here:

The pseudocode for shifting the items rightward uses a for-loop. Each itera-
tion of the loop shifts one item, as shown here:

for (i = used; ; --i)
data[i] = data[i-1];

The key to the loop is the test . How do
we test whether a position is the wrong spot for the new item? A position is
wrong if (i > current_index). Can you now write the entire member function
in C++? (See the solution to Self-Test Exercise 18, and don’t forget to handle
the special case when there is no current item.)

Other member functions. The other member functions are straightforward;
for example, the attach function is similar to insert. You’ll need to watch out
for the pitfall about using full names (see page 112). Some additional useful
member functions are described in Programming Projects 3 and 4 on page 149. 

Self-Test Exercises for Section 3.2

16. What is the difference between a sequence and a bag? What additional
operations does a sequence require? 

data

3 6 9

[2][0] [3] [4] [5][1]

. . .1.1

data

3 1.4 6 9

used
5

[2][0] [3] [4] [5][1]

. . .1.1

current_index
1

data[i] is the wrong spot for entry

data[i] is the wrong spot for entry
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17. What is the difference between internal and external iterators?
18. Write the insert function for the sequence. Why should this implemen-

tation avoid using the copy function from <algorithm>?
19. Suppose that a sequence has 24 items, and there is no current item.

According to the invariant of the class, what is current_index?
20. Suppose g is a sequence with 10 items. You activate g.start( ), then acti-

vate g.advance( ) three times. What value is then in g.current_index?
21. What are good boundary values to test the remove_current function?
22. Write a demonstration program that asks the user for a list of family

member ages, then prints the list in the same order that it was given.
23. Write a new member function to remove a specified item from a

sequence. The function has one parameter (the item to remove).
24. For a sequence of numbers, suppose that you attach 1, then 2, then 3, and

so on up to n. What is the big-O time analysis for the combined time of
attaching all n numbers? How does the analysis change if you insert n
first, then n–1, and so on down to 1—always using insert instead of
attach?

3.3 INTERACTIVE TEST PROGRAMS

Your sequence class is a good candidate for an interactive test program that fol-
lows a standard format. The format, illustrated by the program of Figure 3.10,
can be used with any class. The start of the main program declares an object—in
this case, a sequence object. The rest of the main program is an interactive loop
that continues as long as the user wants. Three things occur inside the loop: 

1. A small menu of choices is written for the user. Each choice is printed
along with a letter or other meaningful character to allow the user to select
the choice.

2. The user’s selection from the menu is read. 
3. Based on the user’s selection, some action is taken on the sequence

object.

Our example interactive test program for the sequence is shown in Figure
3.10, with part of a sample dialogue in Figure 3.11 on page 137. Some of the
techniques used in the test program are familiar. For example, subtasks, such as
printing the menu, are accomplished with functions. Two techniques in the test
program may be new to you: converting input to uppercase letters, and acting on
the input via a switch statement. We’ll discuss these two techniques after you’ve
looked through the program.
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CONVERTING INPUT TO UPPERCASE LETTERS

Even small test programs should have some flexibility regarding user input. For
example, the program should accept either upper- or lowercase letters for each
menu choice. We accomplish this by reading the user’s input and then, if neces-
sary, converting a lowercase letter to the corresponding uppercase letter. The con-
version is carried out by a function toupper with this specification:

char toupper(char c);
// Postcondition: If c is a lowercase letter, then the return value is the
// uppercase equivalent of c. Otherwise the return value is just c itself.

The toupper function is part of the <cctype> facility. In our main program, we use
toupper to convert the result of the get_user_command function, as shown here:

choice = toupper(get_user_command( ));

A Program
// FILE: sequence_test.cxx
// An interactive test program for the new sequence class
#include <cctype> // Provides toupper
#include <iostream> // Provides cout and cin
#include <cstdlib>  // Provides EXIT_SUCCESS
#include "sequence1.h" // With value_type defined as double
using namespace std;
using namespace main_savitch_3;

// PROTOTYPES for functions used by this test program:

// Postcondition: A menu of choices for this program has been written to cout.

// Postcondition: The user has been prompted to enter a one-character command.
// The next character has been read (skipping blanks and newline characters), 
// and this character has been returned.

// Postcondition: The items on display have been printed to cout (one per line).

// Postcondition: The user has been prompted to enter a real number. The
// number has been read, echoed to the screen, and returned by the function. (continued)

 FIGURE  3.10 Interactive Test Program for the Sequence Class

void print_menu( );

char get_user_command( );

void show_sequence(sequence display);

double get_number( );

C++ FEATURE++
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 (FIGURE  3.10 continued)

{
sequence test; // A sequence that we’ll perform tests on
char choice; // A command character entered by the user

cout << "I have initialized an empty sequence of real numbers." << endl;

do
{

print_menu( );
choice = toupper(get_user_command( ));
switch (choice)
{

case '!': test.start( );
break;

case '+': test.advance( );
break;

case '?': if (test.is_item( ))
cout << "There is an item." << endl;

else
cout << "There is no current item." << endl;

break;
case 'C': if (test.is_item( ))

cout << "Current item is: " << test.current( ) << endl;
else

cout << "There is no current item." << endl;
break;

case 'P': show_sequence(test);
break;

case 'S': cout << "Size is " << test.size( ) << '.' << endl;
break;

case 'I': test.insert(get_number( ));
break;

case 'A': test.attach(get_number( ));
break;

case 'R': test.remove_current( );
cout << "The current item has been removed." << endl;
break;

case 'Q': cout << "Ridicule is the best test of truth." << endl;
break;

default: cout << choice << " is invalid." << endl;
}

}
while ((choice != 'Q'));

return EXIT_SUCCESS;
} (continued)

int main( )
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 (FIGURE  3.10 continued)

// Library facilities used: iostream
{

cout << endl; // Print blank line before the menu
cout << "The following choices are available: " << endl;
cout << " ! Activate the start( ) function" << endl;
cout << " + Activate the advance( ) function" << endl;
cout << " ? Print the result from the is_item( ) function" << endl;
cout << " C Print the result from the current( ) function" << endl;
cout << " P Print a copy of the entire sequence" << endl;
cout << " S Print the result from the size( ) function" << endl;
cout << " I Insert a new number with the insert(...) function" << endl;
cout << " A Attach a new number with the attach(...) function" << endl;
cout << " R Activate the remove_current( ) function" << endl;
cout << " Q Quit this test program" << endl;

}

// Library facilities used: iostream
{

char command;

cout << "Enter choice: ";
cin >> command; // Input of characters skips blanks and newline character

return command;
}

// Library facilities used: iostream
{

for (display.start( ); display.is_item( ); display.advance( ))
cout << display.current( ) << endl;

}

// Library facilities used: iostream
{

double result;

cout << "Please enter a real number for the sequence: ";
cin >> result;
cout << result << " has been read." << endl;
return result;

}

void print_menu( )

char get_user_command( )

void show_sequence(sequence display)

double get_number( )

www.cs.colorado.edu/~main/chapter3/sequence_test.cxx WWW
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A Sample Dialogue
I have initialized an empty sequence of real numbers.

The following choices are available:
 !  Activate the start( ) function
 +  Activate the advance( ) function
 ?  Print the result from the is_item( ) function
C Print the result from the current( ) function

 P  Print a copy of the entire sequence
S  Print the result from the size( ) function

 I  Insert a new number with the insert(...) function
 A  Attach a new number with the attach(...) function
 R  Activate the remove_current( ) function
 Q  Quit this test program
Enter choice: A
Please enter a real number for the sequence: 3.14
3.14 has been read.

The following choices are available:
 !  Activate the start( ) function
 +  Activate the advance( ) function
 ?  Print the result from the is_item( ) function
 C  Print the result from the current( ) function
 P  Print a copy of the entire sequence
 S  Print the result from the size( ) function
 I  Insert a new number with the insert(...) function
 A  Attach a new number with the attach(...) function
 R  Activate the remove_current( ) function
 Q  Quit this test program
Enter choice: S
Size is 1.

 FIGURE  3.11 Part of a Sample Dialogue from the Program of Figure 3.10

The dialogue continues until the user types Q to stop the program. 
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THE SWITCH STATEMENT

After the user’s choice is read, the main program takes an action. The action
depends on the single character that the user typed from the menu. An effective
statement to select among many possible actions is the switch statement, with the
general form:

switch ( )
{

}

When the switch statement is reached, the control value is evaluated. The program
then looks through the body of the switch statement for a matching case label. For
example, if the control value is the character 'A', then the program looks for a case
label of the form . If a matching case label is found, then the program
goes to that label and begins executing statements. Statements are executed one
after another—but if a break statement (of the form ) occurs, then the pro-
gram skips to the end of the body of the switch statement.

If the control value has no matching case label, then the program will look for a
default label of the form . This label handles any control values that
don’t have their own case label.

If there is no matching case label and no default label, then the whole body of
the switch statement is skipped.

For an interactive test program, the switch statement has one case label for
each of the menu choices. For example, one of the menu choices is the character
'A', which allows the user to attach a new number to the sequence. In the switch
statement, the 'A' command is handled as shown here:

switch (choice)
{

...

...
}

Self-Test Exercises for Section 3.3

25. Name the library facilities that provide toupper, EXIT_SUCCESS, cout,
and cin.

26. What are values of toupper('a'), toupper('A'), and toupper('+')?
27. What situation calls for a switch statement?
28. The show_sequence function on page 136 uses a value parameter rather

than a reference parameter. Why?

C++ FEATURE++

<Control value>

<Body of the switch statement>

case 'A':

break;

default:

case 'A': test.attach(get_number( ));
break;
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3.4 THE STL MULTISET CLASS AND ITS ITERATOR

This section provides a first introduction to a container class from the Standard
Template Library (STL)—the multiset—including a feature called the iterator,
which permits a programmer to easily step through all the elements of an STL
container class.

The Multiset Template Class
A multiset is an STL class similar to our bag. Just like the bag, it permits a col-
lection of items to be stored, where each item may occur multiple times in the
multiset. Another STL class, the set class, has the same interface as the multiset
class, except that it stores elements without repetition. Additional insertions of
an element that is already in a set will have no effect. 

A program that uses multisets or sets must include the header file <set>.
Here’s a small example that creates a multiset of integers, called first:

multiset<int> first;
first.insert(8);
first.insert(4);
first.insert(8);

The name of the data type is multiset, but this name is augmented by <int>
to indicate the type of elements that will reside in the bag. This augmentation is
called a template instantiation, and it differs from the way that we specified the
underlying type for our own bag. We will learn how to write such template
classes in Chapter 6, but for now we merely want to use a multiset of integers,
so we don’t need to know how it is implemented. 

The type of the item in a multiset has one restriction that is not required for
our own bag: It must be possible to compare two items using a “less than” oper-
ator. Usually, this comparison operator is simply the “<” operator that is pro-
vided for a built-in data type (such as integers) or provided as a function for a
class (such as strings). There are several other ways to provide a comparison
function, but however it is defined, it must satisfy the rules of a strict weak
ordering, as shown in Figure 3.12. The reason for the restriction is to allow a

After these statements, first
contains two 8s and a 4.

FIGURE  3.12 Strict Weak Ordering

A strict weak ordering for a class is a comparison operator (<) that meets these requirements:

1. Irreflexivity: If x and y are equal, then neither (x < y) nor (y < x) is true. Among other things,
this means that (x < x) is never true.

2. Antisymmetry: If x and y are not equal, then either (x < y) or (y < x) is true, but not both.
3. Transitivity: Whenever there are three values (x, y, and z) with (x < y) and (y < z), then

(x < z) is also true.
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more efficient implementation that we will examine in Chapter 10. But before we
get to that implementation, let’s examine some of the multiset member functions.

Some Multiset Members

Constructors. A default constructor creates an empty multiset; a copy con-
structor makes a copy of another multiset. There are also other constructors that
we won’t use.

Members that are similar to the bag. These members are similar to our bag:

A type definition for the value_type
A type definition for the size_type
size_type count(const value_type& target) const;
size_type erase(const value_type& target);
size_type size( ) const;

The insert member function. The multiset’s insert function can be used
exactly like the bag’s insert function to add an item to a multiset. However, the
actual prototype for the multiset’s insert function specifies a return value called
an iterator, as shown here:

iterator insert(const value_type& entry);

Let’s examine the multiset’s iterator in some detail.

Iterators and the [...) Pattern

An iterator is an object that permits a programmer to easily step through all the
items in a container, examining the items and (perhaps) changing them. Any
STL container has a standard member function called begin that returns an iter-
ator providing access to the first item in the container.

For a multiset, this “first” element is the smallest item according to the “less
than” ordering that must be provided for the item type of any multiset. For other
kinds of container classes, the “first” element might be implemented in some
other way, and the exact mechanism used by begin isn’t usually important. 

The important concept is a general pattern whereby a programmer can use the
begin function and related operations to step through all the items in a container.
In all, there are four operations required for the pattern:

• begin: A container has a begin member function that we have already
discussed. Its return value is an iterator that provides access to the first
item in the container. For example, suppose that actors is a multiset of
strings. Then we can write this code to obtain the beginning iterator:

multiset<string>::iterator role;

role = actors.begin( );
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The iterator in this example is a variable called role, and its data type is
multiset<string>::iterator. The multiset<string>::iterator
data type is part of the multiset class, similar to the way that value_type
and size_type are part of the class.

• The * operator: Once a program has created an iterator, the * (asterisk)
operator can be used to access the current element of the iterator. In the
role example, we could print the current string of the role iterator with
this statement:
cout << *role << endl;

The asterisk can be applied to any iterator, causing the iterator to return its
current item. The notation *role was intentionally designed to make the
iterator look as if it were a pointer to an item. If it actually was a pointer,
then *role would mean “the item that role points to.” Of course, role is
an iterator, not a pointer, but *role can still be thought of as “getting the
iterator’s current item.”

the multiset 
iterator cannot 
be used to 
change an item 
directly

In general, the *role notation can be used for both accessing and
changing the iterator’s current item. For example, an item might be
changed with an assignment: . However, some itera-
tors forbid the item from being changed. This is the case for the multiset’s
iterator, where the * operator can be used to access an item in the multiset,
but not to change an item.

• The ++ operator: The ++ operator can be used to move an iterator for-
ward to the next item in its collection. Here’s an example statement:
++role;

The ++ operator can be used before the iterator (as in ++role) or after the
iterator (as in role++). In addition to moving the iterator forward, both
versions of the ++ operator are actually functions that return an iterator. In
particular: the return value of ++role is the iterator after it has already
moved forward, whereas the return value of role++ is a copy of the itera-
tor before it has moved forward. For most iterators, the ++role version is
more efficient because it does not need to keep a copy of the old iterator
before it moved forward. Therefore, we prefer to use the ++role version.

• end: A container has an end member function that returns an iterator to
mark the end of its items. If an iterator moves forward through the
container, it will eventually reach the end. Once it reaches the end, it has
already gone beyond the last item of the container and the * operator must
not be used any more because there are no more items.

example of 
using an iterator

It’s time to see the whole pattern for using an iterator in a small example. The
example creates a multiset of integers, then uses an iterator to step through those
integers one at a time. 

*role = "shemp";
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multiset<int> ages;
multiset<int>::iterator it;
ages.insert(4);
ages.insert(12);
ages.insert(18);
ages.insert(12);

for (it = ages.begin( ); it!= ages.end( ); ++it)
{

cout << *it << endl;
}

The for-loop steps through the items of the multiset, printing the four integers,
in order from smallest to largest. Notice that the multiset has two copies of 12:

4
12
12
18

Notice what happens when it is at 18. At this point, it has not yet reached
ages.end( ). In effect, you can imagine that ages.end( ) is “one item
beyond the last item.” So, the body of the loop is entered, and we print *it
(which is the 18). After this, the loop moves it forward with the statement
++it. This moves it beyond the last item, so now it is equal to ages.end( ),
and the loop finishes. Once it reaches the end, we must not access *it because
it has gone beyond the last item.

DO NOT ACCESS AN ITERATOR’S ITEM AFTER REACHING END( )

When an iterator i is equal to the end( ) iterator of its container, you must not try
to access the item *i. Remember that end( ) is one location past the last item of
the container.

Here is the general pattern that you can use for any iterator i and container
object c:

for (i = c.begin( ); i != c.end( ); ++i)
{

...statements to access the item *i
}

the [...) pattern This pattern is called the [...) pattern, or the left-inclusive pattern. The nota-
tion comes from the way that mathematicians write [0...100) to indicate the set

PITFALL ��  



The STL Multiset Class and Its Iterator 143

of numbers starting at zero and going up to (but not including) 100. In the same
way, our for-loop iterates through the set of values starting at begin( ) and
going up to (but not including) the end( ) value.

By the way, we can now explain the return value of the multiset’s insert
function:

iterator insert(const value_type& entry);

The return value of this member function is an iterator where the current item is
the item that was just inserted.

Testing Iterators for Equality

The [...) pattern uses one operation on iterators that you might not have
noticed: It uses the != operation to test whether two iterators of the same con-
tainer are not equal. Iterators can also be compared to see whether they are equal
(using the == operation). For a container object, two of its iterators are equal if
they are at the same location, or if they have both gone to the end( ) of the con-
tainer. (It is an error to compare two iterators from different containers.)

Other Multiset Operations

Multisets have other operations, some of which use iterators. Here are two
example multiset member functions:

iterator find(const value_type& target);
void erase(iterator i);

The find function searches for the first item in the multiset that is equal to the
specified target. If it finds such an item, then it returns an iterator whose current

The [ . . . ) Pattern
Iterators are often used with the [ . . . ) pattern (called the
left-inclusive pattern). For an iterator i and a container c,
the pattern is:

for (i = c.begin( ); i != c.end( ); ++i)
{

...statements to access the item *i

}

The for-loop iterates through the set of values starting at
begin( ) and going up to (but not including) the end( )
value.
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element is equal to that item. If there is no such item, then find returns an itera-
tor that is equal to end( ). The erase function is an alternative to the usual
erase function. Its parameter is an iterator, and the function removes the itera-
tor’s current item.

erasing one
occurrence
of an item

Using find and erase together, we can write code that will erase the first
occurrence of a given target. For example, this code will erase the first occur-
rence of 42 in the multiset m:

multiset<int> m;
multiset<int>::iterator position;

position = m.find(42);
if (position != m.end( ))

m.erase(position);

Invalid Iterators
After an iterator has been set, it can easily move through its container. However,
changes to the container—either insertions or removals—can cause all of the
container’s iterators to become invalid. The precise operations that invalidate
iterators vary from one container to another. Some examples are obvious; for
example, the position iterator in the code just shown is invalid after its item is
erased. Other examples are not so obvious, such as containers where insertions
can invalidate all iterators.

When an iterator becomes invalid because of a change to its container, that
iterator can no longer be used until it is assigned a new value.

CHANGING A CONTAINER OBJECT CAN INVALIDATE ITS ITERATORS

When an iterator’s underlying container changes (by an insertion or a deletion), the
iterator generally becomes invalid. Unless the class documentation says otherwise,
that iterator should no longer be used until it is reassigned a new value from the
changed container.

CLARIFYING THE CONST KEYWORD Part 5: Const Iterators

A const iterator is an iterator that is forbidden from changing its underlying
container in any way. For example, a const iterator cannot be used with the mul-
tiset erase function. Const iterators can be obtained from the begin and end
functions of any constant container, such as a parameter that is declared as a
const multiset. Here’s an example of a small function that counts how
many integers in a multiset are less than a specified target:

PITFALL ��  
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// Counts number of integers less than a given target:
multiset<int>::size_type count_less_than_target

(const multiset<int>& m, int target)
{

multiset<int>::size_type answer = 0;
multiset<int>::  it;

for (it = m.begin( ); it!= m.end( ); ++it)
{

if (*it < target)
++answer;

}
return answer;

}

The iterator (it) is declared as multiset<int>::  rather than
multiset<int>::iterator. The const_iterator data type is part of the
multiset class, just like value_type, size_type, and the ordinary iterator. It
is written as a single word (const_iterator) and does not use the keyword
const, but its purpose is related to the keyword const, as explained here:

1. Consider a multiset that is declared with the keyword const, such as the
multiset m in the count_less_than_target function. In this case, the
return value of m.begin( ) and m.end( ) are const_iterator rather
than iterator.

a const iterator 
is forbidden from 
changing any 
items in its 
container

2. A const iterator can move through its container of items, but it is forbid-
den from adding, removing, or changing any items. For example, if it is a
const iterator for the multiset m, then we may not activate m.erase(it).

From the second rule, we would say that the words “const iterator” are a bit mis-
leading because the iterator itself isn’t constant: It can move through the collec-
tion. It is the objects in the collection that cannot be changed by a const iterator.

Self-Test Exercises for Section 3.4

29. What is the difference between the set and multiset STL classes? 
30. Revise the ages program from Figure 3.2 so that it uses a multiset rather

than a bag. Also, after the user types the final number, please output a list
of all the ages in order from smallest to biggest.

31. Suppose m is a multiset. In what situation would m.begin( ) equal
m.end( )?

32. Write the left-inclusive pattern for an iterator i and a container c.
33. In general, how does an iterator become invalid?
34. Write a function that has one parameter: a non-empty const multiset of

double numbers. The return value is the average of the numbers.

const_iterator

const_iterator
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CHAPTER SUMMARY

• A container class is a class where each object contains a collection of
items. Bags and sequences are two examples of container classes; the
C++ Standard Library also provides a variety of flexible container
classes.

• A container class should be implemented in a way that makes it easy to
alter the data type of the underlying items. In C++, the simple approach to
this problem uses a typedef statement to define the type of the container’s
item.

• The simplest implementations of container classes use a partially filled
array. Using a partially filled array requires each object to have at least
two member variables: the array itself and another variable to keep track
of how much of the array is being used.

• When you design a class, always make an explicit statement of the rules
that dictate how the member variables are used. These rules are called the
invariant of the class, and should be written at the top of the implementa-
tion file for easy reference.

• Small classes can be tested effectively with an interactive test program
that follows the standard format of our sequence test program.

• You don’t have to write every container class from scratch. The C++
Standard Template Library (STL) provides a variety of container classes
that are useful in many different settings.

• Our own bag class is based on the STL’s multiset class. However, the
multiset class requires a template instantiation (to specify the type of the
underlying elements), and it has iterators to step through the items one
after another.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. A typedef statement allows for flexibility
when the data type for an item needs to be
modified for a program depending on the
application. The data type may simply be
modified in the typedef statement rather than
in the entire program.

2. The size_t data type is an integer that can
hold only non-negative numbers.  It is part of
the C++ Standard Library facility, cstdlib.

3. The default constructor is required because
value_type is used as the component type of
an array. Each of the required operators (=,
==, and !=) is used with the value_type in at
least one of the bag’s member functions.

4. The entry parameter is an item of type
value_type.  It is more efficient to make the
parameter a const reference parameter for
those cases in which value_type is a large
object.
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5.

6. 0

7. Static member constants that are integer types
can be given a value in the header file because
integral values are often used within the class
definition to define other objects, such as the
size of an array.

8. See the two rules on page 110.

9. A short-circuit evaluation of a boolean expres-
sion evaluates the expression from left to
right, stopping as soon as there is enough
information to determine the value of the
expression. If two logical operations in an
expression must be true for the entire expres-
sion to be true, the second operation is not
evaluated if the first operation is false.

10. copy(x, x+6, y+42);

11. It does not need to be a friend function
because it does not directly access any private
members of the bag.

12. bag::size_type
bag::erase(const value_type& target)
{

size_type index = 0;
size_type many_removed = 0;

while (index < used)
{

if (data[index] == target)
 {

--used;
data[index] = data[used];
++many_removed;

 }
else

++index;
}

return many_removed;
}

13. The two statements can be replaced by one
statement: data[index] = data[--used];.

[0] [1]

3 2 We don’t care what
appears beyond
data[1].

When --used appears as an expression, the
variable used is decremented by one, and the
resulting value is the value of the expression.
(On the other hand, if used-- appears as an
expression, the value of the expression is the
value of used prior to subtracting one.) Simi-
larly, the last two statements of insert can be
combined to data[used++] = entry;. In this
case, we have the expression used++ as the
index because we want to use the old value of
used (before adding one) as the index.

14. If we activate b += b, then the private member
variable used is the same variable as
addend.used. Each iteration of the loop adds
1 to used, and hence addend.used is also in-
creasing, and the loop never ends. To correct
the problem, you could store the initial value
of addend.used in a local variable, and use
this local variable to determine when the loop
ends.

15. A running time of O(1) means that a function
does not depend on the size of the input and
runs in constant time.

16. Both contain a collection of items, but the
items in a sequence are arranged in order, one
after another.  The start, advance, current,
remove_current, attach, and is_item
functions are required to manipulate items at a
precise location.

17. Internal iterators use the member functions of
a container to access the items of a container.
External iterators have their own member
functions to access items of a sequence. 

18. void sequence::insert
(const value_type& entry)
{
size_type i;

assert(size( ) < CAPACITY);

if (!is_item( ))
current_index = 0;

for (i = used; i > current_index; --i)
data[i] = data[i-1];

data[current_index] = entry;
++used;

}
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The source and target of the copy function
may not overlap, so it should not be used for
this example.

19. 24

20. g.current_index will be 3 (since the fourth
item occurs at data[3]).

21. The remove_current function should be
tested when the sequence size is just 1, and
when the sequence is at its full capacity. At
full capacity, you should try removing the first
item and the last item in the sequence. 

22. Your program can be similar to Figure 3.2 on
page 107.

23. Here is our function’s prototype, with a post-
condition:
void

remove(const value_type& target);
// Postcondition: If target was in the
// sequence, then the first copy of target has
// been removed, and the item after
// the removed item (if there is one)
// becomes the new current item; otherwise
// the sequence remains unchanged.

The easiest implementation searches for the
index of the target. If this index is found, then
set current_index to this index, and activate
the ordinary remove_current function.

24. The total time to attach 1, 2, ..., n is O(n). The
total time to insert n, n–1, ..., 1 is O(n2). The
larger time for the insert is because an inser-
tion at the front of the sequence requires all of
the existing items to be shifted right to make
room for the new item. Hence, on the second
insertion, one item is shifted. On the third
insertion, two items are shifted. And so on to
the nth item, which needs n–1 shifts. The total
number of shifts is 1+2+...+(n–1), which is
O(n2). (To show that this sum is O(n2), use a
technique similar to that used in Figure 1.2 on
page 19.)

25. toupper is in cctype; EXIT_SUCCESS is in
cstdlib; cout and cin are in iostream.

26. The first two calls return 'A'. The function
call toupper('+') returns '+'.

27. Use a switch statement when a single control
value determines which of several possible
actions is to be taken.

28. With a reference parameter, the advancing of
the current element through the sequence
would alter the actual argument.

29. The multiset class allows duplicate values in
the container, whereas the set class requires
unique values.

30. The first change is to #include <set> and
use the std namespace; then change each
occurrence of bag to multiset<int>. The
code to print the ages is similar to the for-loop
on page 142.

31. When m contains no items.

32. for (i = c.begin(); i != c.end(); ++i)
{...}

33. An iterator can become invalid whenever a
change is made to the underlying container.

34. Here is one solution. We assume that <set>
has been included, and that we are using the
std namespace. 
double
average(const multiset<double>& m)
{

multiset<double>::const_iterator p;
double total = 0;

assert(m.size( ) > 0);

for (
p = m.begin( ); 
p != m.end( )); 
++m)

{
total += *p;

}
return total/m.size( );

}
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

ple, if x has three items, then we want to be able to
write x[0], x[1], and x[2] to access these three
items. This use of the square brackets is called the
subscript operator. The subscript operator may be
overloaded as a member function, with the proto-
type shown here as part of the sequence class:

class sequence
{
public:
...
value_type operator [ ] (size_type index)
const;
...

As you can see, the operator [ ] is a member func-
tion with one parameter. The parameter is the index
of the item that we want to retrieve. The implemen-
tation of this member function should check that the
index is a valid index (i.e., index is less than the
sequence size), and then return the specified item.

For this project, specify, design, and implement
this new subscript operator for the sequence.

A bag can contain more than one copy of an
item. For example, the chapter describes a
bag that contains the number 4 and two cop-

ies of the number 8. This bag behavior is different
from a set, which can contain only a single copy of
any given item. Write a new container class called
set, which is similar to a bag, except that a set can
contain only one copy of any given item. You’ll
need to change the interface a bit. For example, in-
stead of the bag’s count function, you’ll want a con-
stant member function such as this:

bool set::contains
(const value_type& target) const;
// Postcondition: The return value is true if 
// target is in the set; otherwise the return 
// value is false.

Make an explicit statement of the invariant of the set
class. Do a time analysis for each operation. At this

5

A black box test of a class is a program
that tests the correctness of the class’s mem-
ber functions without directly examining the

private members of the class. You can imagine that
the private members are inside an opaque black box
where they cannot be seen, so all testing must occur
only through activating the public member func-
tions.

Write a black box test program for the bag class.
Make sure that you test the boundary values, such as
an empty bag, a bag with one item, and a full bag.

Implement operators for - and -= for the
bag class from Section 3.1. For two bags x
and y, the bag x-y contains all the items of

x, with any items from y removed. For example,
suppose that x has seven copies of the number 3,
and y has two copies of the number 3. Then x-y
will have five copies of the number 3 (i.e., 7 - 2
copies of the number 3). In the case where y has
more copies of an item than x does, the bag x-y will
have no copies of that item. For example, suppose
that x has nine copies of the number 8, and y has 10
copies of the number 8. Then x-y will have no 8s.
The statement x -= y should have the same effect as
the assignment x = x-y;

Implement the sequence class from Section
3.2. You may wish to provide some addi-
tional useful member functions, such as:

(1) a function to add a new item at the front of the
sequence; (2) a function to remove the item from the
front of the sequence; (3) a function to add a new
item at the end of the sequence; (4) a function that
makes the last item of the sequence become the cur-
rent item; (5) operators for + and +=. For the + oper-
ator, x + y contains all the items of x, followed by all
the items of y. The statement x += y appends all of
the items of y to the end of what’s already in x.

For a sequence x, we would like to be able
to refer to the individual items using the
usual C++ notation for arrays. For exam-

1

2

3

4
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point, an efficient implementation is not needed. For
example, just adding a new item to a set will take lin-
ear time because you’ll need to check that the new
item isn’t already present. Later we’ll explore more
efficient implementations (including the implemen-
tation of set in the C++ Standard Library).

You may also want to add additional operations
to your set class, such as an operator for subtraction.

Suppose that you implement a sequence
where the value_type has a comparison
operator < to determine when one item is

“less than” another item. For example, integers,
double numbers, and characters all have such a com-
parison operator (and classes that you implement
yourself may also be given such a comparison). Re-
write the sequence class using a new class name,
sorted_sequence. In a sorted sequence, the insert
function always inserts a new item so that all the
items stay in order from smallest to largest. There is
no attach function. All the other functions are the
same as the original sequence class.

In this project, you will implement a new
class called a bag with receipts. This new
class is similar to an ordinary bag, but the

way that items are added and removed is different.
Each time an item is added to a bag with receipts, the
insert function returns a unique integer called the
receipt. Later, when you want to remove an item,
you must provide a copy of the receipt as a parame-
ter to the remove function. The remove function re-
moves the item whose receipt has been presented,
and also returns a copy of that item through a refer-
ence parameter.

Here’s an implementation idea: A bag with re-
ceipts can have two private arrays, like this:

class bag_with_receipts
{
...
private:

value_type data[CAPACITY];
bool in_use[CAPACITY];

};

Arrays such as these, which have the same size, are
called parallel arrays. The idea is to keep track of

6

7

which parts of the data array are being used by plac-
ing boolean values in the second array. When
in_use[i] is true, then data[i] is currently being
used; when in_use[i] is false, then data[i] is cur-
rently unused. When a new item is added, we will
find the first spot that is currently unused and store
the new item there. The receipt for the item is the in-
dex of the location where the new item is stored.

Another way to store a collection of items is
in a keyed bag. In this type of bag, when-
ever an item is added, the programmer using

the bag also provides an integer called the key. Each
item added to the keyed bag must have a unique key;
two items cannot have the same key. So, the inser-
tion function has the specification shown here:

void keyed_bag::insert
(const value_type& entry, int key);
// Precondition: size( ) < CAPACITY, and the 
// bag does not yet contain any item with
// the given key.
// Postcondition: A new copy of entry has 
// been added to the bag, with the given key.

When the programmer wants to remove an item
from a keyed bag, the key of the item must be spec-
ified, rather than the item itself. The keyed bag
should also have a boolean member function that
can be used to determine whether the bag has an
item with a specified key.

A keyed bag differs from the bag with receipts
(in the previous project). In a keyed bag, the pro-
grammer using the class specifies a particular key
when an item is inserted. In contrast, for a bag with
receipts, the insert function returns a receipt, and the
programmer using the class has no control over what
that receipt might be.

For this project, do a complete specification, de-
sign, and implementation of a keyed bag.

This is a simple version of a longer project
that will be developed in Chapter 4. The
project starts with the definition of a one-

variable polynomial, which is an arithmetic
expression of the form:

8

9

a0 a1x a2x2 … akxk+ + + +
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The highest exponent, k, is called the degree of the
polynomial, and the constants  are the
coefficients. For example, here are two polynomials
with degree 3:

Specify, design, and implement a class for polyno-
mials. The class may contain a static member con-
stant, MAXDEGREE, which indicates the maximum
degree of any polynomial. (This allows you to store
the coefficients in an array with a fixed size.) Spend
some time thinking about operations that make
sense on polynomials. For example, you can write
an operation that adds two polynomials. Another op-
eration should evaluate the polynomial for a given
value of x.

Specify, design, and implement a class that
can be one player in a game of tic-tac-toe.
The constructor should specify whether the

object is to be the first player (X’s) or the second
player (O’s). There should be a member function to
ask the object to make its next move, and a member
function that tells the object what the opponent’s
next move is. Also include other useful member
functions, such as a function to ask whether a given
spot of the tic-tac-toe board is occupied, and if so,
whether the occupation is with an X or an O. Also,
include a member function to determine when the
game is over, and whether it was a draw, an X win,
or an O win.

Use the class in two programs: a program that
plays tic-tac-toe against the program’s user, and a
program that has two tic-tac-toe objects that play
against each other.

Specify, design, and implement a container
class that can hold up to five playing cards.
Call the class pokerhand, and overload the

boolean comparison operators to allow you to
compare two poker hands. For two hands x and y,
the relation x > y means that x is a better hand than
y. If you do not play in a weekly poker game
yourself, then you may need to consult a card rule
book for the rules on the ranking of poker hands.

a0 a1 …, ,

2.1 4.8x 0.1x2 7.1–( )x3+ + +

2.9 0.8x 10.1x2 1.7x3+ + +
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Specify, design, and implement a class that
keeps track of rings stacked on a peg, rather
like phonograph records on a spindle. An

example with five rings is shown here:

The peg may hold up to 64 rings, with each ring
having its own diameter. Also, there is a rule that re-
quires each ring to be smaller than any ring under-
neath it, as shown in our example. The class’s
member functions should include: (a) a constructor
that places n rings on the peg (where n may be as
large as 64); use 64 for a default argument. These n
rings have diameters from n inches (on the bottom)
to 1-inch (on the top). (b) a constant member func-
tion that returns the number of rings on the peg. (c)
a constant member function that returns the diameter
of the topmost ring. (d) a member function that adds
a new ring to the top (with the diameter of the ring
as a parameter to the function). (e) a member func-
tion that removes the topmost ring. (f) an overload-
ed output function that prints some clever
representation of the peg and its rings. Make sure
that all functions have appropriate preconditions to
guarantee that the rule about ring sizes is enforced.
Also spend time designing appropriate private data
fields.

In this project, you will design and imple-
ment a class called towers, which is part
of a program that lets a child play a game

called Towers of Hanoi. The game consists of three
pegs and a collection of rings that stack on the pegs.
The rings are different sizes. The initial configura-
tion for a five-ring game is shown here, with the first
tower having rings ranging in size from one inch (on
the top) to five inches (on the bottom). 

The rings are stacked in decreasing order of their
size, and the second and third towers are initially
empty. During the game, the child may transfer

12

Rings stacked
on a peg

13

Initial configuration for
a five-ring game of
Towers of Hanoi
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rings one at a time from the top of one peg to the top
of another. The object of the game is to move all the
rings from the first peg to the second peg. The diffi-
culty is that the child may not place a ring on top of
one with a smaller diameter. There is the one extra
peg to hold rings temporarily, but the prohibition
against a larger ring on a smaller ring applies to it as
well as to the other two pegs. A solution for a three-
ring game is shown here:

The towers class must keep track of the status of
all three pegs. You might use an array of three pegs,
where each peg is an object from the previous
project. The towers functions are specified here:

towers::towers(size_t n = 64);
// Precondition: 1 <= n <= 64.
// Postcondition: The towers have been initialized
// with n rings on the first peg and no rings on
// the other two pegs. The diameters of the first 
// peg’s rings are from one inch (on the top) to n
// inches (on the bottom).

size_t towers::many_rings
(int peg_number) const;
// Precondition: peg_number is 1, 2, or 3.
// Postcondition: The return value is the number 
// of rings on the specified peg.

At game start After 1 move

After 2 moves After 3 moves

After 5 movesAfter 4 moves

After 7 movesAfter 6 moves

size_t towers::top_diameter
(int peg_number) const;
// Precondition: peg_number is 1, 2, or 3.
// Postcondition: If many_rings(peg_number) > 0, 
// then the return value is the diameter of the top 
// ring on the specified peg; otherwise the return 
// value is zero.

void towers::move
(int start_peg; int end_peg);
// Precondition: start_peg is a peg number
// (1, 2, or 3), and many_rings(start_peg) > 0;
// end_peg is a different peg number (not equal 
// to start_peg), and top_diameter(end_peg) is 
// either 0 or more than top_diameter(start_peg).
// Postcondition: The top ring has been moved 
// from start_peg to end_peg.

Also overload the output operator so that a towers
object may be displayed easily.

Use the towers object in a program that allows a
child to play Towers of Hanoi. Make sure that you
don’t allow the child to make any illegal moves.

Specify, design, and implement a class
where each object keeps track of a large
integer with up to 100 digits in base 10. The 

digits can be stored in an array of 100 elements and
the sign of the number can be stored in a separate
member variable, which is +1 for a positive number
and –1 for a negative number.

The class should include several convenient con-
structors, such as a constructor to initialize an object
from an ordinary int. Also overload the usual arith-
metic operators and comparison operators (to carry
out arithmetic and comparisons on these big num-
bers) and overload the input and output operators.

Use the card class developed in Chapter 2
(Programming Project 4) to create a new
class for a deck of cards. The deck class has a

sequence with a capacity of 52 to hold the cards.
The constructor assigns 52 cards in order of suit and
rank to the sequence. A friend function should dis-
play the entire deck using words (i.e., “the ace of
spades”).   More functions will be added to this class
in Chapter 5 (Project 16).

14

15
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Specify, design, and implement a program
that stores the birthdays of your friends. Cre-
ate a person class, that stores a name and a

date object. The name can be a string (see Appen-
dix H) and the date object can be from Project 17 of
Chapter 2. The person class can use the automatic
assignment operator and copy constructor, but it will
need an overloaded equality comparison operator
and an overloaded output operator. Store the person
objects in a sequence. Provide member functions to
find and display a person, as well as to display the
entire sequence. Write an interactive test program
that gives the user options to insert, find, and display
the contents of the sequence. 

In this project, you will design and imple-
ment a class that contains a container of
employees, using the employee class from 

Project 18 in Chapter 2. Modify the employee class
to include equality and comparison operators.

Provide functions that calculate statistics on the
employees, such as average age, average salary,
number of hours worked, number of overtime hours,
ratio of male/females, etc.  Feel free to add data
members and modify the constructor to the
employee class to store any necessary information.

Write an interactive test program. The program
should give the user a menu of choices to add, re-
move, or modify an employee, and to print any
available statistics.

Write a program that reads a list of nine-
digit number from the keyboard. It stores the
numbers in a multiset, and then goes through

the set to determine whether there are any duplicate
entries. For each duplicate entry, print a message
that says how many times that entry occurred in the
multiset.

Write a program that uses a multiset of
strings to keep track of a list of chores that
you have to accomplish today. The user of

the program can request several services: 1) add an

16

17

18

19

item to the list of chores; 2) ask how many chores
are in the list; 3) use the iterator to print the list of
chores to the screen; 4) delete an item from the list;
5) exit the program.

If you know how to read and write strings from a
file, then have the program obtain its initial list of
chores from a file. When the program ends, it should
write all unfinished chores back to this file.

Write a program that contains two arrays
called actors and roles, each of size N.
For each i, actors[i] is the name of an act-

or and roles[i] is a multiset of strings that contains
the names of the movies that the actor has appeared
in.

The program reads the initial information for
these arrays from files in a format that you design.

Once the program is running, the user can type in
the name of an actor and receive a list of all the mov-
ies for that actor. Or the user may type the name of
a movie and receive a list of all the actors in that
movie.

The Cambridge mathematician John Conway
invented a set of rules for how a configura-
tion of a grid of colored squares can change

over time. One color represents a “live” square, and
another represents a “dead” square. The rules, called
The Game of Life, were partly motivated by a desire
to characterize the complexity of self-replication.

For this project, do research on the rules and cre-
ate a class called life. The class has static member
constants for the number of rows and columns in the
grid. (Although Conway’s grid was infinite, yours
will be a fixed size). The constructor initially makes
a game with all dead squares; const member func-
tions allow a program to retrieve the current state of
any individual square; modification member func-
tions allow a program to change the state of an indi-
vidual square or to apply Conway’s rules to change
the entire grid.

Use the class in a program that allows the user to
set up an initial configuration and then run the game.

20
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L EARN ING  OB J EC T I V ES
When you complete Chapter 4, you will be able to...

• trace through code with simple pointers that contain the addresses of individual 
variables.

• use pointer variables along with the C++ new operator to allocate single dynamic 
variables and dynamic arrays.

• use the C++ delete operator to release dynamic variables and dynamic arrays 
when they are no longer needed.

• follow the behavior of pointers and arrays as parameters to functions.
• implement container classes so that the elements are stored in a dynamic array 

with a capacity that is adjusted by the class’s member functions as needed.

CHAPTER  CONTENTS

4.1 Pointers and Dynamic Memory
4.2 Pointers and Arrays as Parameters
4.3 The Bag Class with a Dynamic Array
4.4 Prescription for a Dynamic Class
4.5 The STL String Class and a Project
4.6 Programming Project: The Polynomial

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

And bade his messengers ride forth
East and west and south and north

THOMAS BABINGTON
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Pointers and Dynamic Arrays

The container classes from Chapter 3 still have a vexing limita-
tion. Their capacity is declared as a constant in the class definition. For exam-
ple, the bag::CAPACITY constant determines the capacity of every bag. If we
need bigger bags, then we can increase the constant and recompile, but doing so
increases the size of every bag. This is wasteful for a program that needs one
large bag and many small bags. Even the small bags have the capacity of the
largest bag.

The solution is to provide control over the size of each bag, independent of
each of the other bags. This control can come from dynamic arrays, which are
arrays whose size is determined only after a program is actually running.
Dynamic arrays require an understanding of pointers and dynamic memory,
which are introduced and developed in the first two sections of this chapter. The
dynamic arrays are then used for a new implementation of the bag class in Sec-
tion 4.3, and for two projects. The understanding of pointers that you gain in this
chapter also forms the foundation for many classes in subsequent chapters.

4.1 POINTERS AND DYNAMIC MEMORY

In order to improve our container class implementations, we need to know about
pointers. A pointer is the memory address of a variable. To understand this def-
inition, you need a mental picture of the computer’s memory as consisting of
numbered memory locations (called bytes). Each variable in a program is stored
in a sequence of adjacent bytes. For example, on some machines each integer
variable requires four bytes. On such a machine, an integer declaration

such as xxx
An integer 
variable might 
require four 
bytes of 
memory. 998

997
996
995
994
993
992
991
990
989
988
987
986

A program 
might provide 
these four 
bytes for an 
integer i.
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the size of each 
bag will be 
independent of 
the other bags

such as  provides four adjacent bytes of memory to
store the value of the integer i. The example drawn here
provides bytes numbered 990 through 993 for an integer
variable i.

The numbers labeling each byte are called the memory
addresses. When a variable occupies several adjacent bytes,
then the memory address of the first byte is also called the
memory address of the variable. So in our example, the
address of the integer i is 990. The address of a variable is
called a pointer. These addresses are called pointers because
they can be thought of as “pointing” to a variable. The
address “points” to the variable because it identifies the vari-
able by telling where the variable is, rather than telling what
the variable’s name is. Our integer i can be pointed out by
saying, “It’s over there at location 990.”

int i;
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Pointer Variables

Pointers are much more useful than mere indications of variable locations. To
begin to see the utility of pointers, we must look at variables that are designed to
store pointers. A variable to store a pointer must be declared as a special pointer
variable by placing an asterisk before the pointer variable’s name. The complete
declaration of a pointer variable must contain three items, as shown here:

double *my_first_ptr;

declaring pointer 
variables

In our example, my_first_ptr is a pointer variable that is capable of pointing
to any double variable. In other words, my_first_ptr can hold the memory
address of a double variable. The pointer variable my_first_ptr does not actu-
ally contain a double number itself—it merely contains the address of a double
variable. Also, since we used the double data type in our declaration,
my_first_ptr cannot contain a pointer to a variable of some other type, such as
int or char. It may contain only a pointer to a double variable.

If you declare several pointer variables on a single line, then an asterisk must
appear before each variable name. For example, to declare two pointers to char-
acters:

char *c1_ptr, *c2_ptr;

If you omit the asterisk before c2_ptr, then c2_ptr will be an ordinary charac-
ter variable rather than a pointer to a character. For additional clarity we often
use “_ptr” as the end of a pointer variable’s name, or we use “cursor” as part
of a pointer variable’s name because a “cursor” means a pointer that “runs
through a structure.”

the type of data
that the pointer
variable can 
point to an asterisk

the name of the
newly declared

pointer
variable

Pointer Variable Declarations
A variable that is a pointer to other variables of type
Type_Name is declared in the same way that you declare a
variable of type Type_Name, except that you place an
asterisk at the beginning of the variable name.

Syntax:
Type_Name *var_name1;

Examples:
int *cursor;
char *c1_ptr, *c2_ptr;

declaring two char pointers
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Of course, a pointer variable is of no use unless there is something for it to
point to. For example, consider these two declarations:

int *example_ptr;
int i;

We can make example_ptr contain the address of i by using the & operator
shown here:

example_ptr = &i;

the & operatorThe & operator, called the address operator, provides the address of a variable;
for instance, &i is “the address of the integer variable i.” So the assignment
statement places “the address of i” into example_ptr. Or we could simply say
that example_ptr now “points to” i.

the * operatorAfter the assignment, you have two ways to refer to i: You can call it i, or
you can call it “the variable pointed to by example_ptr.” In C++ “the variable
pointed to by example_ptr” is written *example_ptr. This is the same asterisk
notation that we used to declare *example_ptr, but now it has yet another
meaning. When the asterisk is used in this way, it is called the dereferencing
operator, and the pointer variable is said to be dereferenced. For example:

i = 42;
example_ptr = &i;
cout << i << endl;
cout << << endl;

The dereferencing operator can produce some surprising results. Consider
the following code:

i = 42;
example_ptr = &i;
*example_ptr = 0;
cout << *example_ptr << endl;
cout << i << endl;

As long as example_ptr contains a pointer to i, then i and *example_ptr refer
to the same variable. So when you set *example_ptr equal to 0, you are really
setting i equal to 0.

The symbol & that is used as the address operator is the same symbol that is
used in a function’s parameter list to specify a reference parameter (see page 69).
This is more than a coincidence. The implementation of a reference parameter is
accomplished by using the address of the actual argument, rather than making a
completely separate copy (as a value parameter does). These two usages of the
symbol & are much the same, but since they are slightly different, we will
consider them to be two different (but closely related) usages of the symbol &.

This statement puts the address of i into the
pointer variable example_ptr.

Both statements print 42.

This dereferences example_ptr.

*example_ptr

This prints 0.

This also prints 0.
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Using the Assignment Operator with Pointers

You can copy the value of one pointer variable to another with the usual assign-
ment operator. For example:

int i = 42;
int *p1;
int *p2;
p1 = &i;

cout << *p1 << endl;
cout << *p2 << endl;

When dealing with pointer variables, there is a critical distinction between a
pointer variable (such as p1) and the thing it points to (such as *p1). Do not con-
fuse the meaning of these two assignment statements:

p2 = p1; versus *p2 = *p1;

As we have seen,  means “make p2 point to the same variable that p1 is
already pointing to.” On the other hand, the inclusion of the dereferencing aster-
isks in gives the statement quite a different meaning. The new
meaning is to “copy the value from the variable that p1 points to, to the variable
that p2 points to.” Here is an example, which starts by declaring two integers
and two pointers to integers: 

int i = 42;
int j = 80;
int *p1;
int *p2;
p1 = &i;
p2 = &j;

p1 now points to i.

Now p2 also points to i.

So, both statements
will print 42.

p2 = p1;

The highlighted assignment statement says “make p2 point to
the same variable that p1 is already pointing to.”

A pointer variable is usually drawn as a box containing an
arrow. The arrow points to the variable whose address is stored
in the pointer. For example, after the assignment , we
would draw the picture shown in the margin. There are now
three names for the variable i: You can call it i, or you can call
it *p1, or you can call it *p2.

p2 = p1

int i

int *p1
int *p2

42

After the statements:
p1 = &i;
p2 = p1;

p2 = p1

*p2 = *p1

int i42

int j80

int *p1

int *p2
After the statements, the
pointer variables are as
shown to the right.



Pointers and Dynamic Memory 159

Once the two pointers are initialized, we can see the effect of an assignment
statement:

*p2 = *p1;

The assignment statement has copied the value 42 from the variable that p1
points to, to the variable that p2 points to. In effect, j has changed its contents,
but the pointers themselves still point to separate memory locations.

Dynamic Variables and the new Operator

Pointers may point to ordinary variables, such as i in our previous example. But
the real power of pointers arises when pointers are used with special kinds of
variables called dynamically allocated variables, or more simply, dynamic
variables. Dynamic variables are like ordinary variables, with two important
differences:

1. Dynamic variables are not declared. A program may use many dynamic
variables, but the dynamic variables never appear in any declaration the
way an ordinary variable does. Moreover, a dynamic variable has no iden-
tifier (such as the identifiers i and j that are used in our examples).

2. Dynamic variables are created during the execution of a program. Only at
that time does a dynamic variable come into existence.

To create a dynamic variable while a program is running, C++ programs use an
operator called new , as shown here:

Pointer Variables Used with =
If p1 and p2 are pointer variables, then the assignment

 changes p2 so that it points to the same variable
that p1 already points to.

On the other hand, the assignment  copies the
value from the variable that p1 points to, to the variable that
p2 points to—but the pointers p1 and p2 still point to the
memory locations that they pointed to before the assignment
statement.

int iint *p1 42

int jint *p2 42

After this assignment statement,
the pointer variables still point
to different locations, but the
contents of one of those
locations has changed.

p2 = p1

*p2 = *p1
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double *d_ptr;

In this example, the new operator creates a new dynamic variable of type
double and returns a pointer to this new dynamic variable. The pointer is
assigned to the pointer variable d_ptr. The creation of new dynamic variables is
called memory allocation and the memory is dynamic memory, so we may say
that “d_ptr points to a newly allocated double variable from dynamic memory.”
Here is another example, which allocates a new int variable:

int *p1;

p1 = new int;

*p1 = 42;

The assignment statement at the end of this example places 42 in the dynamic
variable that p1 points to.

Using new to Allocate Dynamic Arrays

We have seen the new operator allocate one dynamic variable at a time. But in
fact, new can allocate an entire array at once. The number of array components
is listed in square brackets, immediately after the component data type, as
shown here:

double *d_ptr;

When new allocates an entire array, it actually returns a pointer to the first com-
ponent of the array. In our example, the new operator allocates an array of 10
double components and returns a pointer to the first component of the array.
The pointer is assigned to the pointer variable d_ptr. After the allocation, the
array can be accessed by using array notation with the pointer variable d_ptr.

d_ptr = new double;

At this point, p1 is declared,
but it has nothing to point to.

p1 ?

Now p1 is pointing to a newly
allocated integer variable.

p1

A new integer is
allocated by the new
operator.

The new integer variable now p1

contains our favorite number, 42.
42

The new operator allocates an
array of 10 double components
and points d_ptr to the first
component.

d_ptr = new double[10];
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For example, the following statement will place 3.14 in the [9] component of
the new array:

d_ptr[9] = 3.14;

Here is another example, which allocates a new int array:

int *p1;

p1 = new int[4];

p1[2] = 42;

The assignment statement at the end of this example places 42 in the [2] com-
ponent of the array that p1 points to. 

All the versions of new are summarized in Figure 4.1, including information
about which constructor gets called when new allocates a new object of a class.
The array version of new is particularly useful because the number of array com-
ponents can be calculated while the program is running. Therefore, the number
of components can depend on factors such as user input. This is dynamic
behavior—behavior that is determined when a program is running—and the
arrays allocated by new are called dynamic arrays.

dynamic
behavior is 
determined
while a program 
is running

As an example of dynamic behavior, consider a program that reads a list of
numbers and computes the average of the numbers. After computing the average,
the program prints the list with an indication of which numbers are below the
average and which are above. We would like this program to work for ten num-

Because d_ptr points to an array with 10 components, we
can use array notation to access component [9].

At this point, p1 is declared,
but it has nothing to point to.

p1 ?

Now p1 is pointing to a new
array of four integers.

p1

[0] [1] [2] [3]

a newly
allocated
array of
four
integers

The [2] component of the
array now contains 42.

p1

[0] [1] [2] [3]

42



162  Chapter 4 / Pointers and Dynamic Arrays

bers, or a hundred numbers, or however many numbers we happen to have. The
size of the array can be determined by user input, as shown here:

size_t array_size;
int *numbers;

cout << "How many numbers do you have? ";
cin >> array_size;
numbers = 

We’ll fully develop this example in a moment, but first we need a closer look at
memory allocation.

FIGURE  4.1 The new Operator

The new Operator

The new operator allocates memory for a dynamic variable of a specified type and returns a
pointer to the newly allocated memory. For example, the following code allocates a new dynamic
integer variable and sets p to point to this new variable:

int *p;
p = new int;

If the dynamic variable is an object of a class, then the default constructor will be called to
initialize the new class instance. A different constructor will be called if you place the
constructor’s arguments after the type name in the new statement. For example:

throttle *t_ptr;
t_ptr = new throttle(50);

The new operator can also allocate a dynamic array of components, returning a pointer to the first
element. The size of the array is specified in square brackets after the data type of the
components:

double *d_ptr;
d_ptr = new double[50];

d_ptr[3] = 3.14;

If the data type of the array component is a class, then the default constructor is used to initialize
all components of the dynamic array. There is no mechanism to use a different constructor on the
array components.

This calls the constructor with
an integer argument.

This allocates a dynamic array of 50 doubles.

This assigns 3.14 to the [3] component of the
array that d_ptr points to.

new int[array_size];
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The Heap and the bad_alloc Exception
the heapWhen new allocates a dynamic variable or dynamic array, the memory comes

from a location called the program’s heap (also called the free store). Some
computers provide huge heaps, more than a billion bytes. But even the largest
heap can be exhausted by allocating too many dynamic variables. When the
heap runs out of room, the new operator fails.

the bad_alloc 
exception

The new operator indicates its failure by a mechanism called the bad_alloc
exception. Normally, an exception causes an error message to be printed and
the program halts. Alternatively, a programmer can “catch” an exception and
try to fix the problem, but we won’t discuss catching exceptions here. 

Some older versions of C++ deal with new failure in a different way, by
returning a special pointer value called the null pointer. This older behavior can
still be obtained if the programmer writes the new operator in the form
new(nothrow) rather than simply new. The word nothrow is a constant in the
header file <new>.

For us, the normal failure—resulting in an error message and halting—will
be sufficient. We will, however, clearly document which functions use new so
that more experienced programmers can deal with a bad_alloc in their own
manner.

The delete Operator

The size of the heap varies from one computer to another. It could be just a few
thousand bytes or more than a billion. Small programs are not likely to use all of
the heap. However, even with small programs, it is an efficient practice to
release any heap memory that is no longer needed. If your program no longer
needs a dynamic variable, the memory used by that dynamic variable can be
returned to the heap where it can be reused for more dynamic variables. In C++,
the delete operator is used to return the memory of a dynamic variable back to
the heap. The delete operator is called by writing the word delete, followed
by the pointer variable. An example appears at the top of the next page.

Failure of the new Operator
The new operator usually indicates failure by throwing an
exception called the bad_alloc exception. Normally, an
exception causes an error message to be printed and the
program to halt. (Older C++ implementations use a different
mechanism for new failure.)

We clearly document which functions use new so that
experienced programmers can deal with the failure in their
own manner.
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int *example_ptr;
example_ptr = new int;

// Various statements that use *example_ptr appear here. When the
// program no longer needs the dynamic variable that example_ptr
// points to, the memory for that dynamic variable is returned to 
// the heap with the following statement:

After the delete statement, the memory that example_ptr was pointing to has
been returned to the heap for reuse. Using the delete operation is called free-
ing or releasing memory.

A slightly different version of delete is used to release a dynamic array. In
this case, the square brackets [ ] appear between the word delete and the
pointer variable’s name, as shown here:

int *example_ptr;
example_ptr = new int[50];

// Various statements that use the array example_ptr[. . .] appear
// here. When the program no longer needs the dynamic array, the
// memory for that dynamic array is returned to the heap with
// the following statement:

When delete [ ] releases a dynamic array, there is no need for the array’s size
inside the square brackets. The software that controls the heap automatically
keeps track of the array’s size. Figure 4.2 on page 165 summarizes the delete
operator.

DEFINE POINTER TYPES

You can define a name for a pointer type so that pointer variables can be declared
like other variables, without placing an asterisk in front of each pointer variable. For
example, the following defines a data type called int_pointer, which is the type
for pointer variables that point to int variables:

typedef int* int_pointer;

A type definition such as this usually appears in a header file or with the collection
of function prototypes that precede a main program. After this type definition, the
declaration  is equivalent to .

delete example_ptr;

delete [ ] example_ptr;

PROGRAMMING TIP��  

int_pointer i_ptr; int *i_ptr;
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Self-Test Exercises for Section 4.1

1. Describe two different uses of & in a C++ program.
2. Write two different statements that print the value of i after the follow-

ing code has been executed:
int *int_ptr, i;
i = 30;
int_ptr = &i;

3. Write code that (1) allocates a new array of 1000 integers; (2) places the
numbers 1 through 1000 in the components of the new array; and
(3) returns the array to the heap.

4. How are dynamic variables different than ordinary variables?
5. What happens if the new operator fails to allocate memory from the

heap?

FIGURE  4.2 The delete Operator

The delete Operator

The delete operator frees memory that has been used for dynamic variables. The memory is
returned to the heap, where it can be reused at a later time. For example, the following code
allocates an integer dynamic variable, and frees the memory when it is no longer needed:

int *p;
p = new int;

// Various statements that use *p appear here. When the program no longer
// needs the dynamic variable that p points to, the memory for that
// dynamic variable is returned to the heap with the following statement:

The delete operator can also free a dynamic array of components. All of the array’s memory is
returned to the heap, where it can be reused. To free an entire array, the array brackets [ ] are
placed after the word delete, as shown here:

int *p;
p = new int[50];

// Various statements that use the array p[. . .] appear here. When the program no
// longer needs the dynamic array, the memory for that dynamic array is returned
// to the heap with the following statement:

The array size does not need to be specified with the delete operator.

delete p;

delete [ ] p;
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6. What output is produced by the following? 
int *p1;
int *p2;

p1 = new int;
p2 = new int;
*p1 = 100;
*p2 = 200;
cout << *p1 << " and " << *p2 << endl;
delete p1;
p1 = p2;
cout << *p1 << " and " << *p2 << endl;
*p1 = 300;
cout << *p1 << " and " << *p2 << endl;
*p2 = 400;
cout << *p1 << " and " << *p2 << endl;
delete p1;

7. The previous exercise calls delete. Why is this a good idea?

4.2 POINTERS AND ARRAYS AS PARAMETERS

A function parameter may be a pointer or an array—but some care is needed to
ensure that the connection between the argument and the formal parameter is
the intended connection. We’ll look at several common situations.

Value parameters that are pointers. Figure 4.3 shows a silly function to
illustrate a value parameter that is a pointer. The function’s prototype is:

void make_it_42( );

The prototype indicates that the parameter i_ptr has type int*, that is, a
pointer to an integer. The parameter is a value parameter because the reference
symbol & does not appear. Within the parameter list, many programmers place

A Function Implementation

// Precondition: i_ptr is pointing to an integer variable.
// Postcondition: The integer that i_ptr is pointing at has been changed to 42.
{

*i_ptr = 42;
}

 FIGURE  4.3 A Value Parameter That Is a Pointer

void make_it_42(int* i_ptr)

int* i_ptrmany
programmers
place the *
with the data 
type
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the asterisk with the data type (int) rather than with the parameter name
(i_ptr)—although the compiler will accept the asterisk in either position. The
reason for the placement with the data type is to emphasize that the “complete
type” of the parameter is “an integer pointer.”

The only purpose of make_it_42 is to show what happens when a value
parameter is a pointer. Notice that the body of the function does not actually
change i_ptr; it changes only the integer that i_ptr points to. Let’s examine a
program that calls make_it_42. The program declares a pointer to an integer,
allocating memory for the pointer to point to, and calls make_it_42:

int *main_ptr;
main_ptr = new int;

make_it_42(main_ptr);

As with any value parameter, the actual argument provides the initial value for
the formal parameter. In the example, main_ptr provides the initial value for
the formal parameter i_ptr of the make_it_42 function. This means that the
parameter i_ptr will point to the same place that main_ptr is already pointing
to. At the start of the function’s execution, we have this situation:

Within the make_it_42 function, we have the assignment . The
assignment places 42 in the location that i_ptr points to, as shown here:

Now main_ptr is pointing
to a newly allocated integer.

main_ptr

a new integerNext, we call make_it_42, with
main_ptr as the actual parameter.

i_ptr

main_ptr

a new integer

The argument, main_ptr,
provides the initial value
for the parameter i_ptr.

*i_ptr = 42

i_ptr

main_ptr

a new integer

42
In the body of make_it_42,
the assignment statement
*i_ptr = 42 
places 42 in the location
that i_ptr points to.
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Finally, the function returns and the formal parameter i_ptr is no longer avail-
able. However, the pointer variable main_ptr is still around, and it is still point-
ing to the same location. But the location has a new value of 42, as shown here:

In ordinary C programming (rather than C++), pointers are frequently used as
value parameters. This is because C did not originally have reference parameters,
so the only convenient way for a function to affect its actual arguments is with a
value parameter that is a pointer.

Array parameters. There is a surprising twist when a parameter is an array.
The parameter is automatically treated as a pointer that points to the first ele-
ment of the array. Within the body of the function, the pointer can be used with
array notation, which is just like any other pointer that points to the first element
of an array. For example, Figure 4.4 shows a function to set the first n elements
of an array to the number 42. 

a surprising twist 
for array 
parameters

Notice that the array parameter is indicated by placing brackets after the
parameter name so the function’s prototype is:

void make_it_all_42( , size_t n);

The size of the array is not needed inside the brackets, but usually there is
another parameter (such as size_t n) that indicates the size of the array.

If the body of the function changes the components of the array, the changes
do affect the actual argument. The reason that the argument is affected is that an

Value Parameters That Are Pointers
When a value parameter is a pointer, the function may
change the value in the location that the pointer points to.
The actual argument in the calling program will still point to
the same location, but that location will have a new value.

Syntax in the parameter list:
Type_Name* var_name

Example from Figure 4.3 on page 166,
void make_it_42( );

main_ptr

a new integer

The original argument,
42main_ptr, is pointing to

the same location, but
the location has a new
value.

int* i_ptr

double data[ ]
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array parameter is actually a pointer to the first element of the array. Here is an
example that calls the function from Figure 4.4:

double main_array[10];
make_it_all_42(main_array, 10);
cout << main_array[5];

The actual argument of make_it_all_42 may be a dynamic array, as shown
here:

double *numbers;
numbers = new double[10];
make_it_all_42(numbers, 10);

Array Parameters
A parameter that is an array is indicated by placing [ ] after
the parameter name, as shown here:

Syntax in the parameter list:
Type_Name var_name[ ]

Example from Figure 4.4:
void make_it_all_42( , size_t n);

There is usually a separate size_t parameter to indicate the
size of the array. Any changes that the function makes to the
components of the array do affect the actual argument.

Set all 10 array components to 42.

This prints 42.

Allocate a dynamic array.

Set all elements to 42.

A Function Implementation

// Precondition: data is an array with at least n components.
// Postcondition: The first n elements of the array data have been set to 42.
// Library facilities used: cstdlib
{

size_t i; 

for (i = 0; i < n; ++i) 
data[i] = 42;

}

 FIGURE  4.4 An Array Parameter

void make_it_all_42(double data[ ], size_t n)

double data[ ]
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Const parameters that are pointers or arrays. A parameter that is a pointer
or an array may also include the const keyword, as in these two prototypes:

bool is_42(  int* i_ptr);
double average( double data[ ], size_t n);

The const keyword in the first prototype indicates that i_ptr is a pointer to a
constant integer. In other words, the implementation of is_42 may examine
*i_ptr, but may not change the value of *i_ptr. The complete body of is_42
is shown in Figure 4.5, where *i_ptr is compared to the number 42.

The second prototype indicates that data is an array and, because of the const
keyword, the function cannot change the array entries. The average function
may examine all the array entries, but it may not change them. Our intention is
for average to return the arithmetic average of all the entries in the data array,
as shown in the second half of Figure 4.5.

const
const

A Function Implementation

// Precondition: i_ptr is pointing to an integer variable.
// Postcondition: The return value is true if *i_ptr is 42.
{

return (*i_ptr == 42);

}

// Library facilities used: cassert, cstdlib
{

size_t i; // An array index
double sum; // The sum of data[0] through data[n - 1]

assert(n > 0);

// Add up the n numbers and return the average.
sum = 0;
for (i = 0; i < n; ++i) 

sum += data[i];
return (sum/n);

}

 FIGURE  4.5 A Const Parameter That Is a Pointer or Array

bool is_42(const int* i_ptr)

double average(const double data[ ], size_t n)
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Reference parameters that are pointers. Sometimes a function will actually
change a pointer parameter so that the pointer points to a new location, and the
programmer needs the change to affect the actual argument. This is the only sit-
uation where a reference parameter will be a pointer. For example, Figure 4.6
shows a function named allocate_doubles that allocates memory for a new
dynamic array. Here is the function’s prototype:

void allocate_doubles( , size_t& n);

The parameter p is a pointer to a double (that is, double*) and it is a reference
parameter (indicated by the symbol &). The complete parameter type is thus
double*&.

In the implementation of allocate_doubles, the parameter p is changed so
that it points to a newly allocated array. In a program, we can use
allocate_doubles to allocate an array of double values, with the size of the
array determined by interacting with the user. Here is an example that calls
allocate_doubles:

double *numbers;
size_t array_size;
allocate_doubles(numbers, array_size);

In this example, the allocate_doubles function asks the user how many
double numbers should be allocated. The user’s answer is used to set the

CLARIFYING THE CONST KEYWORD
Part 6: Const Parameters That Are Pointers or Arrays
A parameter that is a pointer or array
may include the const keyword, as
shown here:

Syntax in the parameter list:

const Type_Name* var_name
const Type_Name var_name[ ]

Examples from Figure 4.5:

bool is_42(  int* i_ptr);
double average( double data[ ], ...

The functions may examine the item that is pointed to (or the
array), but changing the item (or array) is forbidden.

1. DECLARED CONSTANTS: PAGE 12
2. CONSTANT MEMBER FUNCTIONS: PAGE 38
3. CONST REFERENCE PARAMETERS: PAGE 72
4. STATIC MEMBER CONSTANTS: PAGE 104
5. CONST ITERATORS: PAGE 144
6. CONST PARAMETERS THAT ARE POINTERS OR

ARRAYS
7. THE CONST KEYWORD WITH A POINTER TO A

NODE, AND THE NEED FOR TWO VERSIONS OF
SOME MEMBER FUNCTIONS: PAGE 227

const
const

double*& p
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argument, array_size. The function then allocates an array of the requested
size, and the argument called numbers is set to point to the first component of
the array. Because the function makes its formal parameter p point to a newly
allocated array of double numbers, and we want the actual argument numbers to
point to the newly allocated memory, we are required to use a reference
parameter.

If you have defined a type definition for a pointer type, then you can avoid the
cumbersome syntax of *&. For example, if double_ptr has been defined to be a
pointer to a double number, then we could write this prototype:

void allocate_doubles( , size_t& n);

Reference Parameters That Are Pointers
Sometimes a function will actually change a pointer
parameter so that the pointer points to a new location, and
the programmer needs the change to affect the actual
parameter. This is the only situation in which a reference
parameter will be a pointer.

Syntax in the parameter list:
Type_Name*& var_name

Example from Figure 4.6:
void allocate_doubles( , size_t& n);

A Function Implementation

// Postcondition: The user has been prompted for a size n, and this size has been read.
// The pointer p has been set to point to a new dynamic array containing n doubles. 
// NOTE: If there is insufficient dynamic memory, then bad_alloc is thrown.
// Library facilities used: iostream, cstdlib
{

cout << "How many doubles should I allocate?" << endl;
cout << "Please type a positive integer answer: ";
cin >> n;
p = new double[n];

}

 FIGURE  4.6 A Reference Parameter That Is a Pointer

void allocate_doubles(double*& p, size_t& n)

Allocate the array of n doubles.

double_ptr& p

double*& p
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Self-Test Exercises for Section 4.2

8. Suppose that p is a value parameter of type int*. What happens when a
function does an assignment to *p?

9. When should a pointer parameter be a reference parameter?
10. Suppose that an array is passed as a parameter. How does this differ from

the usual use of a value parameter?
11. Write the prototype for a function called make_intarray.  The function

takes two reference parameters:  a pointer that will be used to point to the
array, and a size_t data type to indicate the size of the array.

12. Write a function with one reference parameter that is a pointer to an inte-
ger. The function allocates a dynamic array of n integers, making the
pointer point to this new array. It then fills the array with 0 through n - 1.

13. Why do average and compare on page 175 use the keyword const with
the data array, but fill_array does not?

14. Write a function that copies n elements from the front of one integer
array to the front of another. One of the arrays should be a const parame-
ter, and the other should be an ordinary array parameter.

15. Describe in English the behavior of the program in Figure 4.7.

A Program
// FILE: dynademo.cxx
// This is a small demonstration program showing how a dynamic array is used.
#include <iostream>  // Provides cout and cin
#include <cstdlib> // Provides EXIT_SUCCESS and size_t
#include <cassert> // Provides assert
using namespace std;

// PROTOTYPES for functions used by this demonstration program

// Postcondition: The user has been prompted for a size n, and this size has been read.
// The pointer p has been set to point to a new dynamic array containing n doubles. 
// NOTE: If there is insufficient dynamic memory, then bad_alloc is thrown.

// Precondition: data is an array with at least n components.
// Postcondition: The user has been prompted to type n doubles, and these
// numbers have been read and placed in the first n components of the array.

(continued)

 FIGURE  4.7 Demonstration Program for Dynamic Arrays

void allocate_doubles(double*& p, size_t& n);

void fill_array(double data[ ], size_t n);



174  Chapter 4 / Pointers and Dynamic Arrays

 (FIGURE  4.7 continued)

// Precondition: data is an array with at least n components, and n > 0.
// Postcondition: The value returned is the average of data[0]..data[n -1].

// Precondition: data is an array with at least n components.
// Postcondition: The values data[0] through data[n - 1] have been printed with a
// message saying whether they are above, below, or equal to value.

{
double *numbers; // Will point to the first component of an array
size_t array_size;
double mean_value;

// Allocate an array of doubles to hold the user’s input.
cout << "This program will compute the average of some numbers. The\n";
cout << "numbers will be stored in an array of doubles that I allocate.\n";
allocate_doubles(numbers, array_size);

// Read the user’s input and compute the average.
fill_array(numbers, array_size);
mean_value = average(numbers, array_size);

// Print the output.
cout << "The average is: " << mean_value << endl;
compare(numbers, array_size, mean_value);
cout << "This was a mean program.";

return EXIT_SUCCESS;
}

// Library facilities used: cstdlib
{

size_t i;
cout << "Please type " << n << " double numbers: " << endl;

// Read the n numbers one at a time.
for (i = 0; i < n; ++i) 

cin >> data[i];
}

(continued)

double average(const double data[ ], size_t n);

void compare(const double data[ ], size_t n, double value);

int main( )

void allocate_doubles(double*& p, size_t& n)
See Figure 4.6 on page 172 for the body of this function. 

void fill_array(double data[ ], size_t n)
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 (FIGURE  4.7 continued)

{
size_t i;

for (i = 0; i < n; ++i)
{

cout << data[i];
if (data[i] < value)

cout << " is less than ";
else if (data[i] > value) 

cout << " is more than ";
else

cout << " is equal to ";
cout << value << endl;

}
}

// Library facilities used: cassert, cstdlib
{

size_t i; // An array index
double sum; // The sum of data[0] through data[n - 1]

assert(n > 0);

// Add up the n numbers and return the average.
sum = 0;
for (i = 0; i < n; ++i) 

sum += data[i];
return (sum/n);

}

A Sample Dialogue
This program will compute the average of some numbers. The
numbers will be stored in an array of doubles that I allocate.
How many doubles should I allocate?
Please type an integer answer: 3
Please type 3 double numbers:
15.1 24.6 86.3
The average is: 42
15.1 is less than 42
24.6 is less than 42
86.3 is more than 42
This was a mean program.

void compare(const double data[ ], size_t n, double value)

double average(const double data[ ], size_t n)

www.cs.colorado.edu/~main/chapter4/dynademo.cxx WWW
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4.3 THE BAG CLASS WITH A DYNAMIC ARRAY

Pointers enable us to define data structures whose size is determined when a
program is actually running rather than at compilation time. Such data structures
are called dynamic data structures. This is in contrast to static data struc-
tures, which have their size determined when a program is compiled. 

A class may be a dynamic data structure—in other words, it may use dynamic
memory. When a class uses dynamic memory, several new factors come into
play. In this section, we’ll illustrate these factors by implementing a new bag
class that contains its items in a dynamic array rather than an array of fixed size.
Apart from the use of a dynamic array, the new bag is much the same as the orig-
inal bag class from Section 3.1.

Pointer Member Variables

The original bag class in Section 3.1 has a member variable that is a static array
containing the bag’s items. Our new, dynamic bag has a member variable that is
a pointer to a dynamic array. In both cases, the array is a partially filled array,
containing the bag’s items at the front of the array. Here is a comparison of the
member variables of the two class definitions:

A static bag has a private member variable, data, which is an array that can
hold up to CAPACITY items. The static bag can never hold more than CAPACITY
items. That’s the limit.

On the other hand, a dynamic bag has a private member variable, also called
data, which is a pointer to a value_type item. The constructor for the dynamic
bag will allocate a dynamic array, and point data at the newly allocated array.
As a program runs, a new, larger dynamic array can be allocated when we need
more capacity. Because the size of the dynamic array can change, the dynamic
bag actually needs one more private member variable to keep track of how much
memory is currently allocated. At the top of the next page, we show the complete
private section of the new bag class, including the extra member variable.

The Static Bag:

// From bag1.h in Section 3.1:
class bag
{

...
private:

size_type used;
};

value_type data[CAPACITY];

The Dynamic Bag:

// From bag2.h in this section:
class bag
{

...
private:

size_type used;
...

};

value_type *data;
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class bag
{
public:

...
private:

value_type *data; // Pointer to dynamic array
size_type used; // How much of array is being used

// Current capacity of the bag
};

With this much of the class definition in hand, we can now state the invariant of
the dynamic bag class:

Member Functions Allocate Dynamic Memory As Needed

When a class uses dynamic memory, the class’s member functions allocate
dynamic memory as needed. For example, the constructor of the dynamic bag
allocates the dynamic array that the member variable data points to. But how
big should this array be? Our plan is to have the constructor allocate a dynamic
array whose initial size is determined by a parameter to the constructor. As a
bag is used in a program, the size of its dynamic array may, in effect, increase to
whatever capacity is needed. 

In other words, the parameter to the constructor determines the initial capac-
ity of the bag, but even after this initial capacity is reached, more items can be
inserted. Whenever items are inserted into a bag—through the insert member
function or the += operator—the bag’s current capacity is examined. If the cur-
rent capacity is too small, then the member function allocates a new, larger
dynamic array. The user of a bag does not need to do anything special to obtain
the increased capacity. The insert and += functions increase the capacity as
needed.

the importance 
of the initial 
capacity

You might wonder why a programmer needs to be concerned about the initial
capacity of a bag. Can’t a programmer just start with a small initial capacity and
insert items one after another? The insert function will take care of increasing
the capacity as needed. Yes, this approach will always work correctly. But if

Invariant for the Revised Bag Class

1. The number of items in the bag is in the member variable
used.

2. The actual items of the bag are stored in a partially filled
array. The array is a dynamic array, pointed to by the
member variable data.

3. The total size of the dynamic array is in the member vari-
able capacity.

size_type capacity;
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there are many items, then many of the activations of insert would need to
increase the capacity. This could be inefficient. Each time the capacity is
increased, new memory is allocated, the items are copied into the new memory,
and the old memory is released. To avoid this repeated allocation of memory, a
programmer can request a large initial capacity. With this in mind, here is the
documentation for the new bag constructor:

bag(size_type initial_capacity = DEFAULT_CAPACITY);
// Postcondition: The bag is empty with a capacity given by the parameter.
// The insert function will work efficiently (without allocating new
// memory) until this capacity is reached.

For example, suppose that a programmer is going to place 1000 items into a bag
named kilosack. When the bag is declared, the programmer can specify a
capacity of 1000, as shown here:

bag kilosack(1000);

After the initial capacity is reached, the insert function continues to work
correctly, but it might be slowed down by memory allocations.

the constructor 
serves as a 
default
constructor

Notice that the parameter of the constructor has a default argument,
DEFAULT_CAPACITY, which will be a constant in our class definition. Because of
the default argument, the single constructor actually serves two purposes: It can
be used with an argument to construct a bag with a specific capacity, or it can be
used as a default constructor (with no argument list). When the constructor is
used with no argument list, DEFAULT_CAPACITY is used for the initial capacity.
Here are two examples, using the default constructor and using the constructor
with an argument:

bag ordinary;
bag super(9000);

Here is one more example to show how the new constructor works with the
other members. The example declares a bag with an initial capacity of 6 and
places three items in the bag:

bag sixpack(6);
sixpack.insert(10);
sixpack.insert(20);
sixpack.insert(30);

1000 items can be efficiently added to kilosack.

The initial capacity is DEFAULT_CAPACITY.

The initial capacity is 9000.

The constructor creates a bag
with an initial capacity of 6.
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After these declarations, the bag’s private member variables look like this:

Later, the program could insert more items into this bag, maybe even more than
six. If there are more than six items, then the bag’s member functions will
increase the bag’s capacity as needed.

After a bag has been declared and is already in use, a programmer can make
an explicit adjustment to the bag’s capacity via a new member function called
reserve. Here is the specification of the member function:

void reserve(size_type new_capacity);
// Postcondition: The bag’s current capacity is changed to the 
// new_capacity (but not less than the number of items already in the bag). 
// The insert function will work efficiently (without allocating new memory) until 
// the new capacity is reached.

To some extent, the reserve function is a luxury. Programmers can avoid
reserve altogether, allowing the other member functions to adjust the size of a
bag as needed. But by using the reserve member function, the bag’s efficiency is
improved.

use names from 
the Standard 
Library container 
classes when 
possible

Using the name reserve for this function may seem like a strange choice. We
choose the name to match the Standard Library container classes that have a
reserve member function to change the container’s capacity.

All told, five of the member functions that we have seen so far can allocate
new dynamic memory: the constructor, reserve, insert, and the two operators
(+= and +). As with any function that allocates dynamic memory, these functions
are subject to possible failure—the heap might run out of room. In this case, the
function calls the new operator, and the new operator will fail, throwing the
bad_alloc exception. This prints an error message and halts the program. For
our programs, the error-message-and-halt will suffice. But part of our class doc-
umentation will indicate which member functions allocate dynamic memory so
that more experienced programmers can deal with the exception in their own
way. You can see this documentation at the bottom of Figure 4.8, which provides
the complete documentation for the header file (bag2.h) of our new bag class.

capacity

[2] [3] [4] [5][0] [1]

useddata

10 20 30

3 6
The private member
variables of the bag
include a pointer to
a dynamically
allocated array of
six elements. The
first three elements
are now being used.
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Documentation for a Header File
// TYPEDEFS and MEMBER CONSTANTS for the bag class:
//
// bag::value_type is the data type of the items in the bag. It may be any of the C++
// built-in types (int, char, etc.), or a class with a default constructor, an assignment
// operator, and operators to test for equality (x == y) and non-equality (x != y).
//
//
// bag::size_type is the data type of any variable that keeps track of how many items
// are in a bag.
//
//
// bag::DEFAULT_CAPACITY is the initial capacity of a bag that is created by the default
// constructor.
//
// CONSTRUCTOR for the bag class:
//
// Postcondition: The bag is empty with an initial capacity given by the parameter. The
// insert function will work efficiently (without allocating new memory) until this capacity 
// is reached.
//
// MODIFICATION MEMBER FUNCTIONS for the bag class:
//
// Postcondition: All copies of target have been removed from the bag.
// The return value is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
//
//
// Postcondition: A new copy of entry has been inserted into the bag.
//
//
// Postcondition: The bag’s current capacity is changed to the
// new_capacity (but not less than the number of items already in
// the bag). The insert function will work efficiently (without allocating
// new memory) until the new capacity is reached.
//
//
// Postcondition: Each item in addend has been added to this bag.
// (continued)

 FIGURE  4.8 Documentation for the Dynamic Bag Header File

typedef _____ value_type

typedef ____ size_type

static const size_type DEFAULT_CAPACITY = _____

bag(size_type initial_capacity = DEFAULT_CAPACITY)

size_type erase(const value_type& target)

bool erase_one(const value_type& target)

void insert(const value_type& entry)

void reserve(size_type new_capacity)
The reserve member
function provides
efficiency.

void operator +=(const bag& addend)
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PROVIDE DOCUMENTATION ABOUT POSSIBLE DYNAMIC MEMORY FAILURE

When a class uses dynamic memory, you should include documentation to indicate
which member functions allocate dynamic memory. This will allow experienced pro-
grammers to deal with potential failure.

The documentation in Figure 4.8 provides adequate information for a pro-
grammer to use our new bag class. But before we implement the class there are
two extra factors that play an important role whenever a class uses dynamic
memory. The first factor is the value semantics (i.e., the assignment operator and
the copy constructor). The second factor is a requirement for a special member
function called a destructor. We’ll discuss these two factors before completing
the implementation.

Value Semantics

The value semantics of the bag class determines how values are copied from
one bag to another—in assignment statements and when one bag is initialized as
a copy of another. Until now, we have not worried much about value semantics.
With all our other classes, it was sufficient to use the automatic assignment
operator and the automatic copy constructor. So, in the past, when we wrote

, we were content to let the automatic assignment operator copy all the
member variables from the object x to the object y.

 (FIGURE  4.8 continued)
// CONSTANT MEMBER FUNCTIONS for the bag class:
//
// Postcondition: The return value is the total number of items in the bag.
//
//
// Postcondition: The return value is the number of times target is in the bag.
//
// NONMEMBER FUNCTIONS for the bag class:
//
// Postcondition: The bag returned is the union of b1 and b2.
//
// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.
//
// DYNAMIC MEMORY USAGE by the bag:
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// the constructors, reserve, insert, operator += , operator +, and the assignment operator.

size_type size( ) const

size_type count(const value_type& target) const

bag operator +(const bag& b1, const bag& b2)

www.cs.colorado.edu/~main/chapter4/bag2.h WWW

PROGRAMMING TIP ��  

the value 
semantics
determines
how values are 
copied

y = x
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Our days of easy contentment are done. The automatic assignment operator
fails for the dynamic bag (or for any other class that uses dynamic memory).

Here is an example to show what goes wrong. Suppose we set up a bag called
x with an initial capacity of 5, containing the integers 10, 20, and 30—then we
copy the private member variables of x to another bag y. The result is that the
two pointers, x.data and y.data, both point to the same dynamic array, like
this:

The problem with this arrangement is that a subsequent change to x’s array will
also change y’s array. Normally, this is not what we want; after an assignment

, we do not want further changes to one object to directly affect the other.
Instead, when we assign , we want y to have its own dynamic array,

completely separate from x’s dynamic array. Of course, the dynamic array of y
will contain the same values as the x array, but these two arrays will not share the
same dynamic memory. The desired situation after the assignment looks like this:

To achieve this situation, we must provide our own assignment operator
rather than relying on the automatic assignment operator. We can do this by over-
loading the assignment operator for the bag class, in roughly the same way that
we have overloaded other operators for the bag. The operator will be overloaded
as a bag member function with the prototype given here:

void bag::operator =(const bag& source);
// Postcondition: The bag that activated this function has the same items
// and capacity as source.

x.capacity

[2] [3] [4][0] [1]

x.used x.data

10 20 3035

y.capacity y.used y.data

35

y = x
y = x

x.capacity

[2] [3] [4][0] [1]

x.used x.data

10 20 3035

y.capacity y.used y.data

35

[2] [3] [4][0] [1]

10 20 30
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When you overload the assignment operator, C++ requires it to be a member
function. In an assignment statement , the bag y is activating the func-
tion, and the bag x is the argument for the parameter named source. In a
moment we will implement this member function, and you will see how it cor-
rectly makes a new dynamic array rather than merely copying the pointer.

The second part of the value semantics is the copy constructor, which is acti-
vated when a new object is initialized as a copy of an existing object, such as the
declaration:

bag y(x); // Initialize y as a copy of the bag x.

Unless you indicate otherwise, y is initialized using the automatic copy con-
structor, which merely copies the member variables from x to y. If you want to
avoid the simple copying of member variables, then you must provide a copy
constructor with the prototype:

bag::bag(const bag& source);
// Postcondition: The bag that is being constructed has been initialized
// with the same items and capacity as source.

The parameter of the copy constructor is usually a const reference parameter
(although it is seldom used, C++ also permits an ordinary reference parameter,
but does not allow a value parameter). If a copy constructor is present, then it is
used instead of the automatic copy constructor. The copy constructor also has
several other uses that we’ll discuss on page 195.

Our documentation of the bag in Figure 4.8 on page 180 indicates that the
assignment operator and copy constructor are safe to use with the bag class:

// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.

Value Semantics and Dynamic Memory
If a class uses dynamic memory, the automatic assignment
operator and the automatic copy constructor fail. The imple-
mentor of the class must provide member functions for the
assignment operator and the copy constructor. For example:

class bag
{
public:

bag(const bag& source);
void operator =(const bag& source);
...

The documentation of the class should indicate that the value
semantics may be used.

y = x
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One final point about the value semantics: The programmer who uses the bag
does not need to know whether the implementor has overridden the automatic
value semantics. This programmer needs to know only that there is a valid value
semantics. Therefore, the bag documentation indicates that there is a valid value
semantics, but does not indicate whether the automatic value semantics was
overridden.

The Destructor

The final new factor for a class that uses dynamic memory is a special member
function called the destructor. The primary purpose of the destructor is to
return an object’s dynamic memory to the heap when the object is no longer in
use. The destructor has three unique features:

• The name of the destructor is always the tilde character (~) followed by
the class name. In our example the name of the destructor is ~bag.

• The destructor has no parameters and no return value. As with the con-
structor, you must not write void (or any other return type) at the front of
the destructor’s prototype. However, you must list the empty parameter
list, as shown in this prototype: .

• Programmers who use a class should not need to know about the destruc-
tor. This is because programs rarely activate the destructor explicitly.
What good is a destructor that is never activated? The answer is that
destructors are activated, but the activation is usually automatic whenever
an object becomes inaccessible.

Several common situations cause automatic destructor activation:

1. Suppose a function has a local variable that is an object, like this:
void example1( )
{

bag sample1;
...

destructors are 
automatically
activated when 
an object 
becomes
inaccessible

When the function example1 returns, the destructor sample1.~bag( ) is
automatically activated. The general situation: When a local variable is
an object with a destructor, the destructor is automatically activated
when the function returns.

2. Suppose a function has a value parameter that is an object, like this:
void example2(bag sample2)
// Does some calculation using a bag

As with the previous example, when the function example2 returns, the
destructor sample2.~bag( ) is automatically activated. On the other
hand, if sample2 was a reference parameter, then the destructor would
not be activated because a reference parameter is actually an object in the
calling program, and that object is still accessible.

~bag( );
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3. Suppose that a dynamic variable is an object, as shown here:
bag *b_ptr;
b_ptr = new bag;
...
delete b_ptr;

When  is executed, the destructor for *b_ptr is automat-
ically activated. The destructor ensures that the dynamic array used by
*b_ptr is released.

There are several other situations where a destructor is automatically called,
but the three examples you have seen provide the general idea. Because destruc-
tors are not directly activated by a program, we omitted the destructor from the
how-to-use-a-bag documentation of Figure 4.8 on page 180.

The Revised Bag Class—Class Definition

We can now write the complete class definition for the dynamic bag. As usual,
the class definition appears in the header file, surrounded by a macro guard.
This definition is shown in Figure 4.9 (where the file is called bag2.h).

Notice that the bag’s operator + function is not a member function.

The Destructor
The destructor of a class is a member function that is auto-
matically activated when an object becomes inaccessible.
The destructor has no arguments and its name must be the
character ~ followed by the class name (e.g., ~bag for the
bag class).

Because the destructor is automatically called, programs
rarely make explicit calls to the destructor, and we generally
omit the destructor from the documentation that tells how to
use the class.

The primary responsibility of the destructor is simply
releasing dynamic memory.

delete b_ptr
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A Header File
// FILE: bag2.h (part of the namespace main_savitch_4)
// CLASS PROVIDED: bag 

#ifndef MAIN_SAVITCH_BAG2_H
#define MAIN_SAVITCH_BAG2_H
#include <cstdlib> // Provides size_t

namespace main_savitch_4
{

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef int value_type;
typedef std::size_t size_type;
static const size_type DEFAULT_CAPACITY = 30;
// CONSTRUCTORS and DESTRUCTOR
bag(size_type initial_capacity = DEFAULT_CAPACITY);

// MODIFICATION MEMBER FUNCTIONS
void reserve(size_type new_capacity);
bool erase_one(const value_type& target);
size_type erase(const value_type& target);
void insert(const value_type& entry);
void operator +=(const bag& addend);

// CONSTANT MEMBER FUNCTIONS
size_type size( ) const { return used; }
size_type count(const value_type& target) const;

private:
value_type *data; // Pointer to partially filled dynamic array
size_type used; // How much of array is being used
size_type capacity; // Current capacity of the bag

};

// NONMEMBER FUNCTIONS for the bag class
bag operator +(const bag& b1, const bag& b2);

}

#endif

 FIGURE  4.9 Header File for the Bag Class with a Dynamic Array

See Figure 4.8 on page 180 for the other documentation that goes here.

Prototype for the destructor 
is discussed on page 184.

Prototype for the overloaded 
operator = is discussed on 
page 182.

Prototype for the copy 
constructor is discussed on 
page 183.

If your compiler does not 
permit initialization of static 
constants, see Appendix E.

bag(const bag& source); 
~bag( ); 

void operator =(const bag& source); 

www.cs.colorado.edu/~main/chapter4/bag2.h WWW
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The Revised Bag Class—Implementation
We’ll look at the implementation of the new bag member functions. Three func-
tions are particularly important: the copy constructor, the destructor, and the
assignment operator. These three member functions are always needed when a
class uses dynamic memory.

The constructors. Each of the constructors is responsible for setting up the
three private member variables in a way that satisfies the invariant of the
dynamic bag class. For example, here is the implementation of the first construc-
tor. Notice how all three private member variables are assigned values:

bag::bag(size_type initial_capacity)
{

 = new value_type[initial_capacity];
 = initial_capacity;

 = 0;
}

the copy 
constructor

The bag’s copy constructor is similar, also allocating memory for a dynamic
array. In the case of the copy constructor, the capacity of the dynamic array is
the same as the capacity of the bag that is being copied. After the dynamic array
has been allocated, the items may be copied into the newly allocated array, as
shown here:

bag::bag(const bag& source)
{

 = new value_type[source.capacity];
 = source.capacity;

 = source.used;
copy(source.data, source.data + used, data);

}

Notice that we used the Standard Library copy function (described in the C++
Feature on page 116).

The destructor. The primary responsibility of the destructor is releasing
dynamic memory. Sometimes there is other “cleanup” work needed, but not for
the bag’s destructor, which has only one statement:

the destructorbag::~bag( )
{

delete [ ] data;
}

The most formidable aspect of the destructor is getting used to the ~ in the
name.

data
capacity
used

The parameter,
initial_capacity, tells
how many items to
allocate for the
dynamic array.

The amount of memory
allocated for source
determines how much
memory to allocate for
the new dynamic array.

data
capacity
used

The private member variable called data
points to the dynamic array.
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The assignment operator. The implementation of the assignment operator is
nearly identical to the copy constructor. There are only small differences: 

• The copy constructor is constructing a bag from scratch. It allocates the
initial memory for the partially filled array.

• The assignment operator is not constructing a new bag, meaning that
there is already a partially filled array allocated. The size of this array
might need to be changed, or we might be satisfied with the array that
already exists. If we do end up allocating a new array, then the original
array must be returned to the heap.

• In the assignment operator, it is possible that the source parameter
(which is being copied) is the same object that activates the operator. With
a bag b, this would occur if a programmer writes  (called a self-
assignment). Perhaps you think that self-assignments are pointless, but
nevertheless the assignment operator should work correctly, assigning b
to be equal to its current value—that is, leave the bag unchanged. 

The solution for the self-assignment is to provide a special check at the start
of the operator. If we find that an assignment such as  is occurring, then
we will return immediately. We can check for this condition by determining
whether source is the same object as the object that activated the operator. This
is done with a special boolean test that can be used at the start of any assignment
operator:

// Check for possible self-assignment:
if (this == &source)

return;

the keyword 
“this”

The test uses the keyword this, which can be used inside any member function
to provide a pointer to the object that activated the function. The expression
&source is a common use of the & operator, which provides the address of the
source object. If the this pointer is the same as the address of the source
object, we have a self-assignment and we can return immediately, with no work.

HOW TO CHECK FOR SELF�ASSIGNMENT

At the start of any assignment operator, always check for a possible self-
assignment with the pattern:

if (this == &source)
return;

After checking for a possible self-assignment, our bag assignment operator
handles potential new memory allocation, using a local variable, new_data,
which is a pointer to a new dynamic array: . The code
for this potential memory allocation is given at the top of the next page.

b = b

b = b

PROGRAMMING TIP��  

value_type *new_data;
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if (capacity != source.capacity)
{

new_data = new value_type[source.capacity];
delete [ ] data;
data = new_data;
capacity = source.capacity;

}

Let’s trace through the statements of this memory allocation. To trace the
statements, we assume that source is a bag with a capacity of 5. We will exe-
cute the statements assuming that the bag that activated the function has a mere
capacity of 2. When the assignment begins, we have this situation:

Since the current capacity (2) is not equal to the amount needed (5), the code
enters the body of the if-statement. In the body, we have a local variable,
new_data, which is set to point to a newly allocated array of five items, as shown
here:

Once the new array has been allocated, we return the old array to the heap and
assign , so that the data pointer points to the new array:

Allocate memory
for the new array.

Return the old

The pointer, data, 
now points to the
newly allocated array.

array to the heap.

capacity used data

?2

[0] [1]

[0] [1]

capacity used data

?2

[2] [3] [4][0] [1]

new_data

data = new_data

to the heap

[0] [1]

Returned

[2] [3] [4][0] [1]

new_data

?2

capacity used data
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Finally, capacity is changed to 5, and we no longer need the local variable
new_data, as shown here:

At this point, all that remains is to copy the items from source’s array into the
newly allocated array, and to correctly set the value of used. You can see how
this is accomplished with the copy function in the complete function implemen-
tation in Figure 4.10.

capacity used data

?5

[2] [3] [4][0] [1]

A Member Function Implementation

// Library facility used: algorithm
{

value_type *new_data;

// Check for possible self-assignment:
if (this == &source)

return;

if (capacity != source.capacity)
{

new_data = new value_type[source.capacity];
delete [ ] data;
data = new_data;
capacity = source.capacity;

}

used = source.used;
copy(source.data, source.data + used, data);

}

 FIGURE  4.10 Implementation of the Bag’s = Operator

void bag::operator =(const bag& source)

If necessary,
allocate a
dynamic array of
a different size.

Use the copy function
to copy data from the
source.

www.cs.colorado.edu/~main/chapter4/bag2.cxx WWW
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It is tempting to implement the new memory allocation without the local vari-
able new_data, using just two statements:

delete [ ] data; // Release old array
data = new value_type[source.capacity]; // Allocate new array

This shortcut could cause a headache. If there is insufficient memory, the new
operator will throw a bad_alloc exception—but with the shortcut approach,
the bag is not valid when the exception is thrown (since the array has already
been released). With an invalid bag, the usual exception handling mechanism
can fail before it has a chance to print a sensible error message. The failure
occurs because the mechanism activates the destructor for any object that was
previously constructed. When the destructor is given an invalid object—such as
our invalid bag—the destructor may cause an error message that will be more
confusing than the usual message from bad_alloc. As a result, your programs
will be harder to debug. The invalid bag also makes it harder for experienced
programmers to deal with the bad_alloc exception in a way that tries to
recover without halting the program. 

Because of these problems, we suggest that member functions always ensure
that all objects are valid prior to calling new. Also, your documentation should
indicate which functions allocate dynamic memory. For the bag, we have already
taken care of this documentation in the header file with this comment (from the
bottom of Figure 4.8 on page 181):

// DYNAMIC MEMORY USAGE by the bag:
// If there is insufficient dynamic memory then the following functions
// throw bad_alloc: the constructors, reserve, insert, operator +=,
// operator +, and the assignment operator.

HOW TO ALLOCATE MEMORY IN A MEMBER FUNCTION

When a member function allocates memory, it is a good idea to have the invariant
of the class valid when the call to the new operator is made. Also, the documenta-
tion should indicate which functions allocate dynamic memory. This approach aids
debugging and allows experienced programmers to deal with bad_alloc excep-
tions in a sensible way.

This tip is not necessary (and often not possible) for constructors that allocate
dynamic memory. But it is critical for easy debugging of other member functions.

The reserve member function. Our design includes a member function called
reserve, which is called to explicitly increase the capacity of a bag. Here is the
function’s prototype with a postcondition:

PROGRAMMING TIP ��  
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void reserve(size_type new_capacity);
// Postcondition: The bag’s current capacity is changed to the
// new_capacity (but not less than the number of items already in the bag). 
// The insert function will work efficiently (without allocating new memory)
// until the new capacity is reached.

The reserve function is one of the functions shown in the complete implemen-
tation file of Figure 4.11. The function first carries out a couple of checks. After
the checks, the new array is allocated with a new size, the items are copied into
the new array, and the original array is released. The private member variable
data is then made to point at the new array, and capacity is set to indicate how
much memory is now allocated.

The Revised Bag Class—Putting the Pieces Together

Several of the other bag member functions need small changes to work correctly
with the dynamic array. The most obvious change is that member functions such
as insert must ensure that there is sufficient capacity before a new item is
inserted. If more room is needed, then the function increases the bag’s capacity
by activating reserve. The necessary changes to the bag functions are marked
in the new implementation file of Figure 4.11.

An Implementation File
// FILE: bag2.cxx (part of namespace main_savitch_4)
// CLASS implemented: bag (see bag2.h for documentation)
// INVARIANT for the bag class:
// 1. The number of items in the bag is in the member variable used.
// 2. The actual items of the bag are stored in a partially filled array.
// The array is a dynamic array, pointed to by the member variable data.
// 3. The size of the dynamic array is in the member variable capacity.

#include <algorithm> // Provides copy function
#include <cassert> // Provides assert function
#include "bag2.h"
using namespace std;

namespace main_savitch_4
{

const bag::size_type bag::DEFAULT_CAPACITY;
(continued)

 FIGURE  4.11 Implementation File for the Bag Class with a Dynamic Array
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 (FIGURE  4.11 continued)

{
 data = new value_type[initial_capacity];
capacity = initial_capacity;
used = 0;

}

// Library facilities used: algorithm
{

data = new value_type[source.capacity];
capacity = source.capacity;
used = source.used;
copy(source.data, source.data + used, data);

}

{
delete [ ] data;

}

// Library facilities used: algorithm
{

value_type *larger_array;

if (new_capacity == capacity)
return; // The allocated memory is already the right size.

if (new_capacity < used)
new_capacity = used; // Can’t allocate less than we are using.

larger_array = new value_type[new_capacity];
copy(data, data + used, larger_array);
delete [ ] data;
data = larger_array;
capacity = new_capacity;

}

(continued)

bag::bag(size_type initial_capacity) 

bag::bag(const bag& source) 

bag::~bag( )

void bag::reserve(size_type new_capacity)

bag::size_type bag::erase(const value_type& target) 
No change from the original bag: See the solution to Self-Test Exercise 12 on page 147.

bool bag::erase_one(const value_type& target) 
No change from the original bag: See the implementation in Figure 3.3 on page 114.

The revised bag has two 
constructors. The first 
constructor serves as a 
default constructor since 
the parameter has a 
default argument. The 
second constructor is a 
copy constructor, which 
you can read about on 
page 187.

Read about the destructor 
on page 187.
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Self-Test Exercises for Section 4.3

16. Describe the difference between a dynamic data structure and a static
data structure.

17. Why does a programmer need to be concerned with the initial capacity
of a container if dynamic memory can be allocated as needed?

18. Suppose that you declare a bag like this: . What is the
initial capacity? What will happen if you try to put 31 items in the bag?

 (FIGURE  4.11 continued)

{
if (used == capacity)

reserve(used+1);
data[used] = entry;
++used;

}

// Library facilities used: algorithm
{

if (used + addend.used > capacity)
reserve(used + addend.used);

copy(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

{
bag answer(b1.size( ) + b2.size( ));

answer += b1;
answer += b2;
return answer;

}
}

void bag::insert(const value_type& entry)

The first action of the insert function
is to ensure that there is room for a
new item.

void bag::operator +=(const bag& addend)
The += operator starts by
ensuring that there is
enough room for the
new items.

void bag::operator =(const bag& source) 
See the implementation in Figure 4.10 on page 190.

bag::size_type bag::count(const value_type& target) const
No change from the original bag: See the implementation in Figure 3.6 on page 119.

bag operator +(const bag& b1, const bag& b2)

The function
declares a
bag of sufficient size.

www.cs.colorado.edu/~main/chapter4/bag2.cxx WWW

bag exercise;
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19. If a bag is full, then the insert function increases the bag’s capacity by
only one. This could be inefficient if we are inserting a sequence of items
into a full bag, since each insertion calls reserve. Rewrite the bag’s
insert function so that it increases the capacity by at least 10%. 

20. What is the primary responsibility of the destructor? When is the
destructor of an object activated?

21. Write a prototype for the destructor of the sequence class described in
Chapter 3.

22. What does the keyword this refer to?
23. Why does the bag’s assignment operator need to be overloaded? Does

our implementation work correctly for self-assignment ( )?

4.4 PRESCRIPTION FOR A DYNAMIC CLASS

This section summarizes the important factors for a class that uses dynamic
memory. We also point out the additional importance of the copy constructor.

Four Rules
When a class uses dynamic memory, you will generally follow these four rules:

1. Some of the member variables of the class are pointers.
2. Member functions allocate and release dynamic memory as needed.
3. The automatic value semantics of the class is overridden (otherwise two

different objects end up with pointers to the same dynamic memory). This
means that the implementor must write an assignment operator and a copy
constructor for the class.

4. The class has a destructor. The primary purpose of the destructor is to
return all dynamic memory to the heap.

Special Importance of the Copy Constructor

When a class uses dynamic memory, the programmer who implements the class
writes a copy constructor. The copy constructor is used when one object is to be
initialized as a copy of another, as in the declaration:

bag y(x); // Initialize y as a copy of x.

There are three other common situations where the copy constructor is used.
These situations reinforce the need for special value semantics when an object
uses dynamic memory.

Alternative syntax. The first situation is really just an alternative syntax for
using the copy constructor to initialize a newly declared object. The alternative
syntax is:

bag y = x; // Initialize y as a copy of x.

x = x
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This syntax is an alternative to . Both versions merely activate the
copy constructor to initialize y as a copy of x.

Returning an object from a function. The second situation that uses the copy
constructor is when a return value of a function is an object. For example, the
bag’s operator + returns a bag object. The function computes its answer in a
local variable, and then has a return statement. When the return statement is exe-
cuted, here’s what actually happens: The value from the local variable is copied
to a temporary location called the return location. The local variable itself is
then destroyed (along with any other local variables), and the function returns to
the place where it was called. 

Unless you indicate otherwise, the copying into the return location occurs by
using the automatic copy constructor, which copies all the member variables
from the local variable to the return location. If you want to avoid the simple
copying of member variables, then you must provide a copy constructor. If a
copy constructor is present, then it is used to copy the return value from a func-
tion’s local variable to the return location.

When a value parameter is an object. A third situation arises when a value
parameter is an object. For example, on page 68 we declared a function to do a
calculation on a point, with this prototype:

int rotations_needed( );

When the function is called, the actual argument is copied to the formal parame-
ter p. The copying occurs by using the copy constructor.

USING DYNAMIC MEMORY REQUIRES A DESTRUCTOR, A COPY 
CONSTRUCTOR, AND AN OVERLOADED ASSIGNMENT OPERATOR

When a member variable of a class is a pointer to dynamic memory, the class
should always be given a destructor, and the value semantics should always be
defined (that is, a copy constructor and an overloaded assignment operator should
be provided).

• The destructor is responsible for returning an object’s dynamic memory to
the heap. If you forget the destructor, then dynamic memory that is allocated
to the object will continue to occupy heap memory, even when the object is
no longer needed.

• The copy constructor and the overloaded assignment operator are responsi-
ble for correctly copying one object to another. Make sure that the copying
process allocates new memory for the new copy, rather than just copying the
pointers from one object to another. If you forget the copy constructor, then
value parameters and return values from functions will perform incorrectly.

bag y(x);

point p

PITFALL ��  



The STL String Class and a Project 197

Self-Test Exercises for Section 4.4

24. Name the three situations where a copy constructor is activated.
25. Suppose a function returns an object. What value does the function

return if the class did not provide a new copy constructor?

4.5 THE STL STRING CLASS AND A PROJECT

C programs abound with oversize arrays to hold character sequences of worst-
case length. Or they contain ornate logic to allocate and free storage, copy
strings about, and get those terminating null characters where they belong.

Little wonder, then, that writing string classes is one of the more popular
indoor sports among C++ programmers.

P. J. PLAUGER
The Draft Standard C++ Library

As P.J. Plauger notes, writing classes for string manipulation has been a popular
pastime. Or at least that was the case in olden days. The Standard Template
Library (STL) now includes a string class, so the string-writing sport has
recently declined in popularity. Nevertheless, designing and implementing part
of a dynamic string class is still an instructive exercise. In this section, we’ll
provide some documentatiion for the STL string class and discuss how it’s
implemented by outlining our own version of the class.

Null-Terminated Strings
In C or C++, an array of characters can be used to hold a simple kind of string.
This is natural since a string is a sequence of characters, and an array of charac-
ters is just what’s needed to store a sequence of characters. Thus, the following
array declaration provides us with a string variable capable of storing a string
with nine or fewer characters:

char s[10];

the null 
character marks 
the end of the 
string

That is not a mistake. We said that s can hold a string with nine or fewer char-
acters. The string variable s cannot hold a full 10 characters even though the
array does contain 10 components. That is because the characters of the string are
placed in the array followed by the special symbol '\0', which is placed in the
array immediately after the last character of the string. Thus, if s contains the
string "Hi Mom!" then the array components are filled as shown here:

the longest 
possible string 
is one less than 
the size of the 
array

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

char s[10] H i M o m ! \0 ? ?

a blank special '\0'
symbol
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The character '\0' marks the end of the string. If you read the characters in
the string starting at s[0], and proceed to s[1], and then to s[2], and so on, you
know that when you encounter the symbol '\0', then you have reached the end
of the string. Since the symbol '\0' always occupies one component of the array,
the length of the longest possible string is one less than the size of the array.

The character '\0' is called the null character, and the string itself is
called a null-terminated string. In a program, the null character is written
'\0'—the single quote marks are used with all C++ characters such as 'a', 'b',
'c'. The \0 (a backslash followed by a zero) indicates the null character. It looks
like two characters, but it is officially a single character, and it occupies just one
location in a character array. 

string variables 
versus arrays of 
characters

The only distinction between a string variable and an array of characters is the
fact that a string variable must use the null character to mark the end of the string.
This is a distinction in how the array is used rather than a distinction about what
the array is. A string variable is a character array, but it is used in a different
way.

Initializing a String Variable

You can initialize a string variable when you declare it, as shown here:

char proclaim[20] = "Make it so.";

Notice that the string assigned to the string variable need not fill the entire array.
When you initialize a string variable, you can omit the array size and C++ will

automatically calculate the size to be exactly long enough to hold the string plus
the null terminating character. For example:

char thought[ ] = "Peace";

The Empty String

Sometimes a program needs a string that has no characters at all, not even a sin-
gle blank. This string with no characters is called the empty string, and it is
specified by two double quotes with nothing in between. For example:

char quiet[20] = "";

There is not even a space between the two double quote marks. The initializa-
tion of quiet will put the null terminator at location quiet[0], so there are no
characters before the termination. This is a very quiet quip indeed.

This allocates an array
of six characters.
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Reading and Writing String Variables

C++ supports reading and writing string variables with the usual >> and <<
operators. For example:

char message[20] = "Noise";
cout << message;
cin >> message;

The string-reading mechanism begins by skipping any white space in the input
stream. White space consists of any blank, tab, or the return key. The operation
then reads characters until some more white space is encountered, placing these
characters in the string variable. The white space character itself is not read, but
a null terminating character is placed at the end of the string, making it a valid
null-terminated string.

USING = AND == WITH STRINGS

Strings are not like other data types. Many of the usual operations simply do not
work for strings. You cannot use a string variable in an assignment statement using
=. If you use == to test strings for equality, you will not get the result you expect.
The reason for these problems is that strings are implemented as arrays rather
than simple values.

An attempt to assign a value to a string variable will quickly show the problem,
as in this example:

char greeting[10];
greeting = "Hello";

This example results in a compilation error. Although you can use the equals sign
to assign a value to a string variable when the variable is declared, you cannot do it
any place else in your program.

You also cannot use the operator == in an expression to compare two strings for
equality. Things are actually worse than that: You can use == to test two string vari-
ables, but it does not test for the strings being equal. A good compiler will warn you
that == actually tests to see whether the starting addresses of the arrays are the
same. But you will get incorrect results if you think you are testing for string equal-
ity.

There are ways around the string problems, which we will discuss next.

The strcpy Function

The easiest way to assign a value to a string variable is with the library function
strcpy, as shown here:

strcpy(greeting, "Hello");

This prints Noise.
This reads a string from
the standard input device.

PITFALL ��  

Illegal!

This is legal, using
strcpy from cstring.
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This function call will set the value of greeting to "Hello", using the strcpy
function from the cstring library. The precise function prototype is:

char* strcpy(char target[ ], const char source[ ]);
// Precondition: source is a null-terminated string, and target is an array
// that is long enough to hold a copy of source.
// Postcondition: source has been copied to target, and the return value is 
// a pointer to the first character of target.

Notice that the return value is a pointer to a character, indicated by char* in the
prototype. This pointer points to the first character of the target array.

The strcat Function

Another cstring library function is strcat, which serves to add one string
onto the end of another. The “cat” in “strcat” comes from catenate (or
concatenate), meaning to connect in a series. The strcat function copies its
second argument onto the end of its first argument, as shown here:

char greeting[20] = "Hello ";
strcat(greeting, "Good-bye");

After the function call, greeting contains "Hello Good-bye". The precise
prototype of strcat is:

char* strcat(char target[ ], const char source[ ]);
// Precondition: target and source are null-terminated strings,
// and target is long enough to catenate source on the end.
// Postcondition: source has been catenated to target, and the
// return value is a pointer to the first character of target.

DANGERS OF STRCPY, STRCAT, AND READING STRINGS

Be careful using the strcpy and strcat functions, and also reading strings. None
of these operations check that the string variable actually has sufficient room to
hold the copied string. If you try to copy a string with 100 characters into an array of
size 50, the result will be the same disaster that occurs whenever you try to access
an array beyond its declared bounds. Such behavior usually results in writing to
memory locations that are not part of the array, often changing values of other
declared variables. 

During debugging, if you notice that a variable seems to be changing its value
for no apparent reason, then think about the string variables and other arrays that
your program uses. Have you accessed a string variable or array beyond its
declared size?

“Good-bye” is added to the
end of what’s already in
greeting.

PITFALL ��  



The STL String Class and a Project 201

The strlen Function

A cstring library function named strlen returns the number of characters in a
null-terminated string, as shown here:

size_t strlen(const char s[ ]);
// Precondition: s is a null-terminated string.
// Postcondition: The return value is the number of characters in s,
// up to (but not including) the null character.

For example, strlen("Hello Good-bye") is 14. The strlen function returns
0 for the length of the empty string.

The strcmp Function

You can use the library function strcmp to compare two strings. The function is
part of cstring, with the prototype given here:

int strcmp(const char s1[ ], const char s2[ ]);
// Precondition: s1 and s2 are null-terminated strings.
// Postcondition: The return value indicates the following:
// The return value is 0 -- s1 is equal to s2;
// The return value < 0 -- s1 is lexicographically before s2; 
// The return value > 0 -- s1 is lexicographically after s2.

As you can see, strcmp returns zero if its two string arguments are equal to each
other. If the strings are not equal, then they are compared in the lexicographic
order, which is the normal alphabetical order for ordinary words of all lower-
case letters. For example, strcmp("chaos", "order") will return some nega-
tive number, since "chaos" is alphabetically before "order". On the other
hand, strcmp("order", "chaos") will return some positive integer.

comparing
strings with 
strcmp

Strings of all uppercase letters are also handled alphabetically, but strings that
mix upper- and lowercase letters have unspecified results. For example, most
compilers use a lexicographic order that places all uppercase letters before any
lowercase letters, so that "Order" (with a capital O) is actually before "chaos",
although some compilers might reverse this order.

The complete cstring library facility has more than a dozen functions for
manipulating null-terminated strings. But the four functions, strcpy, strcat,
strlen, and strcmp, are enough to start us on our own string project.

The String Class—Specification

The STL provides a string class that avoids the pitfalls of null-terminated
strings. In particular, the string class has a proper value semantics, allowing
assignment statements and other copying of values without problems.

Strings may also be compared using the usual six operators to test for equality
(==), and various inequalities (!=, >=, <=, >, <). The inequalities use the familiar
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lexicographic ordering that we just talked about. For example,
"chaos" < "order" will be true because "chaos" is lexicographically before
"order".

More details of the STL string class are given in an appendix (page 798), and
you should use that class widely in your programs. As a computer scientist, you
should also understand how it’s implemented, so we now present a specification
for a simple version of a string class (see Figure 4.12).

Documentation for a Header File
// FILE: mystring.h
// CLASS PROVIDED: string (a simple version of the Standard Library string class)
//
// CONSTRUCTOR for the string class:
//  -- default argument is the empty string.
// Precondition: str is an ordinary null-terminated string.
// Postcondition: The string contains the sequence of chars from str.
//
// CONSTANT MEMBER FUNCTIONS for the string class:
//
// Postcondition: The return value is the number of characters in the string.
//
//
// Precondition: position < length( ).
// Postcondition: The value returned is the character at the specified position of the
// string. A string’s positions start from 0 at the start of the sequence and go up to 
// length( ) – 1 at the right end.
//
// MODIFICATION MEMBER FUNCTIONS for the string class:
//
// Postcondition: addend has been catenated to the end of the string.
//
//
// Precondition: addend is an ordinary null-terminated string.
// Postcondition: addend has been catenated to the end of the string.
//
//
// Postcondition: The single character addend has been catenated to the end of the string.
//
//
// Postcondition: All functions will now work efficiently (without allocating new memory)
// until n characters are in the string.

(continued)

 FIGURE  4.12 Documentation for the Simple String Class

string(const char str[ ] = "")

size_t length( ) const

char operator [ ](size_t position) const

void operator +=(const string& addend) 

void operator +=(const char addend[ ])

void operator +=(char addend)

void reserve(size_t n)
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Constructor for the String Class
The string class has a constructor with one argument, shown in this prototype:

string(const char str[ ] = "");

The constructor initializes the string to contain the sequence of characters that is
in the ordinary null-terminated string called str. For example, if we want to cre-
ate one of our strings that contains the sequence "Peace", then we may write:

char sequence[6] = "Peace";
string greeting(sequence);

Without the variable sequence, we could also declare greeting as shown here:
string greeting("Peace");

 (FIGURE  4.12 continued)

// NONMEMBER FUNCTIONS for the string class:
//
// Postcondition: The string returned is the catenation of s1 and s2.
//
//
// Postcondition: A string has been read from the istream ins, and the istream ins is then
// returned by the function. The reading operation skips white space (i.e., blanks, tabs,
// newlines) at the start of ins. Then the string is read up to the next white space or the end
// of the file. The white space character that terminates the string has not been read.
//
//
// Postcondition: The sequence of characters in source has been written to outs. 
// The return value is the ostream outs.
//
//
// Postcondition: A string has been read from the istream ins. The reading operation reads
// all characters (including white space) until the delimiter is read and discarded (but not
// added to the end of the string). The return value is the istream ins.
//
// VALUE SEMANTICS for the string class:
// Assignments and the copy constructor may be used with string objects.
//
// COMPARISONS for the string class:
// The six comparison operators (==, !=, >=, <=, >, and <) are implemented for the string 
// class, using the usual lexicographic order on strings.
//
// DYNAMIC MEMORY usage by the string class: 
// If there is insufficient dynamic memory, the following functions throw bad_alloc:
// the constructors, reserve, operator +=, operator +, and the assignment operator.

string operator +(const string& s1, const string& s2)

istream& operator >>(istream& ins, string& target)

ostream& operator <<(ostream& outs, const string& source)

istream& getline(istream& ins, string& target, char delimiter = '\n')

www.cs.colorado.edu/~main/chapter4/mystring.h WWW
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Both approaches declare greeting to be one of our string objects that contains
the sequence of characters "Peace".

The string constructor can also be used with no arguments (that is, as a default
constructor). In this case, the str argument uses the default argument, which is
the empty string. For example, the following declares jack to be a string object
with no characters:

string jack;

Overloading the operator [ ]
One of the string’s member functions is an overloaded operator with this speci-
fication:

char operator [ ](size_t position) const;
// Precondition: position < length( ).
// Postcondition: The value returned is the character at the specified
// position of the string. Note: A string’s positions start from 0 at the start
// of the sequence and go up to length( ) – 1 at the right end.

This member function allows you to use the syntax of square brackets to exam-
ine the individual characters of a string object. For example:

string greeting("Peace");
cout << greeting[0]; // Prints the P from greeting.

The name of this member function, operator [ ], is rather peculiar, but other
than that it is just like any other overloaded operator.

Some Further Overloading
The string specification introduces another important feature of classes. Often, a
class has several different functions with the same name. In our string class,
there are three different += member functions with these prototypes:

void string::operator +=(const string& addend);
void string::operator +=(const char addend[ ]);
void string::operator +=(char addend);

All three of these functions are called “operator +=” and all three can be used
in a program. This is an example of overloading a single function name to carry
out several related tasks.

When one of the functions is used, the compiler looks at the type of the argu-
ment to determine which of the three functions to call. For example:

string jack;
string adjective("nimble");

jack += adjective;
jack += '&';
jack += "quick";
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When the compiler sees the first += in the statement , the
argument adjective is seen to be a string, so the compiler will call the mem-
ber function with this prototype:

void string::operator +=(const & addend);

On the other hand, in the statement , the argument '&' is a char-
acter, so the compiler will call the member function with this prototype:

void string::operator +=( addend);

Finally, with the third statement , the compiler sees the
string constant "quick" as a character array and calls the member function with
this prototype:

void string::operator +=(const addend );

At the end of the three statements, the string jack contains the phrase
"nimble&quick". The three different += functions are easily handled by the
compiler. As the implementor of the class, you write all three functions just like
any other function.

Other Operations for the String Class
In addition to the features that we have already mentioned, our specification
indicates that assignments and the copy constructor may be used with string
objects (that is, a valid value semantics). Since the string uses dynamic memory,
you cannot rely on the automatic assignment operator and copy constructor.
Instead, you must implement your own assignment operator and copy construc-
tor. There are also functions for reading, writing, and comparing strings. 

The String Class—Design
With our design, a programmer can use strings with no worries about how long
a string becomes. That programmer does not need to think about how a string is
stored or what happens when the length of a string increases. 

The plan is to have a private member variable that is a dynamic array to hold
the null-terminated string. Each member function ensures that the array has
sufficient room, increasing the size of the array whenever necessary. A program-
mer can also explicitly set the size of the dynamic array that holds the null-
terminated string, by calling the reserve function. But, similar to the dynamic
bag class, explicit resizing is not required—it is just a convenience for efficiency.
Let’s examine the design considerations that our plan entails. We suggest three
private member variables, shown here:

class string
{

...
private:

char *characters;
std::size_t allocated;
std::size_t current_length;

};

jack += adjective

string

jack += '&'

char

jack += "quick"

char [ ]
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The use of the member variables is controlled by the invariant of the class:

Notice that there is a requirement for the current length of the string to always
be less than the amount of memory allocated for the dynamic array. This allows
room for the extra null terminator at the end of the sequence.

The String Class—Implementation
We’ll leave most of the string implementation up to you, but we will discuss a
few points including the constructors, the destructor, and some of the operators.

Before the discussion, we should point out a small extravagance in our three
member variables. We could manage without current_length by using the
library function strlen, but keeping track of the length ourselves is likely to be
more efficient than continually asking strlen to recompute the length.

Constructors. The constructor is responsible for initializing the three private
member variables. The initialization occurs by copying a character sequence
from an ordinary null-terminated string, as shown in the first part of Figure
4.13. Notice that the constructor makes use of the library function strcpy to
copy the null-terminated string from the parameter str to the dynamic array
characters. Within your string implementation, you should make use of the
library functions whenever they are needed.

The destructor. We did not list a destructor in the documentation of the
string class, since programmers typically do not activate a destructor directly.
But, since the class uses dynamic memory, you must implement a destructor.
Your destructor will return the string’s dynamic array to the heap.

Comparison operators. The string class has six comparison operators. For
example, the prototype for the equality comparison is:

bool operator ==(const string& s1, const string& s2);

Each comparison function can be implemented with an appropriate call to the
library function strcmp. For example, an implementation of == is shown in the
second part of Figure 4.13. Notice that our implementation must be a friend
since it accesses characters, which is a private member variable.

Invariant for the String Class

1. The string is stored as a null-terminated string in the
dynamic array that characters points to.

2. The total length of the dynamic array is stored in the
member variable allocated.

3. The total number of characters prior to the null character
is stored in current_length, which is always less than
allocated.

use friend 
functions when 
necessary
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The reserve function. Our design includes a member function called
reserve, similar to the dynamic bag’s reserve function. Here is the precondi-
tion/postcondition contract:

void reserve(size_t n);
// Postcondition: All functions will now work efficiently (without allocating
// new memory) until n characters are in the string.

Programmers who use our string class never need to activate reserve, but they
may wish to, for better efficiency.

Our own implementations of other member functions can also activate
reserve whenever a larger array is needed. When a member function activates
reserve, the activation should occur before any other changes are made to the
string. This follows our usual programming guideline of allocating new memory
before changing an object. (See “How to Allocate Memory in a Member Func-
tion” on page 191.)

The operator >>. Our input operator begins by skipping any white space in
the input stream. (All the standard >> operators in C++ start by skipping white
space.) After skipping the initial white space, our string input operator reads a
string—reading up to but not including the next white space character (or until
the input stream fails, which might occur from several causes, such as reaching
the end of the file). The function isspace from the <cctype> library facility

Implementations of a Constructor and an Operator

// Library facilities used: cstring
{

current_length = strlen(str);
allocated = current_length + 1;
characters = new char[allocated];
strcpy(characters, str);

}

// Postcondition: The return value is true if s1 is identical to s2.
// Library facilities used: cstring
{

return (strcmp(s1.characters, s2.characters) == 0);
}

 FIGURE  4.13 Implementation of a String Constructor and an Operator

string::string(const char str[ ])

The constructor
must provide initial
values for the three
member variables.

bool operator ==(const string& s1, const string& s2)

The boolean 
operator == must
be a friend of the
string class.



208  Chapter 4 / Pointers and Dynamic Arrays

can help. This function has one argument (a character); it returns true if its argu-
ment is one of the white space characters. With this in mind, we can skip any
initial white space with this loop:

while (ins && isspace(ins.peek( )))
ins.ignore( );

ins, peek, ignore The loop also uses three istream features: 

1. In a boolean expression, the name of the istream (which is ins) acts as a
test of whether the input stream is bad. If ins results in a true value, then
the stream is okay; a false value indicates a bad input stream. 

2. The peek member function returns the next character to be read (without
actually reading it). 

3. The ignore member function reads and discards the next character.

After skipping the initial white space, your implementation should set the
string to the empty string, and then read the input characters one at a time, add-
ing each character to the end of the string. The reading stops when you reach
more white space (or the end of the file). 

Once the target string reaches its current capacity, our approach continues to
work correctly, although it is inefficient because target is probably resized by
the += operator each time that we add another character. Your documentation
should warn programmers of this inefficiency so that a programmer can explic-
itly resize the target before calling the input operator.

An alternative method of reading input is provided by the getline function.

Demonstration Program for the String Class

Figure 4.14 shows a short demonstration program for the string class. The pro-
gram asks the user for his or her first and last name, and then prints some mes-
sages. A sample dialogue would go something like this:

What is your first name? Timothy
My first name is Demo.
What is your last name? Program
That is the same as my last name!
I am happy to meet you, Timothy Program.

The program uses several C++ object features such as an automatic conversion
from ordinary strings to our new class. We’ll discuss these features on page 210,
and you can try them out with your own string class.
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A Program
// FILE: str_demo.cxx (a small demonstration program showing how the string class is used)
#include <iostream> // Provides cout and cin
#include <cstdlib> // Provides EXIT_SUCCESS
#include "mystring.h" // Provides our new string class
using namespace std;

// PROTOTYPES for functions used by this demonstration program:

// The two strings, mine and yours, are compared. If they are the same, then a
// message is printed saying they are the same; otherwise mine is printed
// in a message. In either case, the string variety is part of the message.

{
const main_savitch_4::string BLANK(" ");
main_savitch_4::string me_first("Demo");
main_savitch_4::me_last("Program");
main_savitch_4::string you_first, you_last, you;

cout << "What is your first name? ";
cin >> you_first;
match("first name", me_first, you_first);
cout << "What is your last name? ";
cin >> you_last;
match("last name", me_last, you_last);

you = you_first + BLANK + you_last;
cout << "I am happy to meet you, " << you << "." << endl;
return EXIT_SUCCESS;

}

{
if (mine == yours)

cout << "That is the same as my " << variety << '!' << endl;
else

cout << "My " << variety << " is " << mine << '.' << endl;
}

 FIGURE  4.14 Demonstration Program for the String Class

void match(const main_savitch_4::string& variety,
const main_savitch_4::string& mine,
const main_savitch_4::string& yours);

int main( )

void match(const main_savitch_4::string& variety,
const main_savitch_4::string& mine,
const main_savitch_4::string& yours)

www.cs.colorado.edu/~main/chapter4/str_demo.cxx WWW

Constants of type string may be 
declared. (See page 210.)

See “Constructor-Generated
Conversions” on page 210 to 
read about the use of an 
ordinary string for the first 
argument of the match function.

Overloaded operators, such as 
the + operator, may be used in 
complex expressions. (See 
page 211.)
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Chaining the Output Operator

Look at the function match at the bottom of Figure 4.14. The function has three
constant string parameters. Two of the parameters (mine and yours) are com-
pared using the string’s == operator. If the strings are equal, then the third
parameter (variety) is printed as part of a message:

cout << "That is the same as my " <<  << '!' << endl;

For example, if variety is the string "first name", then the output statement
prints "That is the same as my first name!" The actual output involves a
sequence, or “chaining,” of four occurrences of the output operator <<.

1. The first << prints the string constant: "That is the same as my ".
This is an ordinary C++ string constant, not a string object.

2. The second << prints the string object, variety, using the << operator
of the new string class.

3. The third << prints an exclamation point as an ordinary character.
4. The final << prints the end-of-line.

The key point is that the << operator of the string class may be chained in
combination with other objects to print a series of objects—some string
objects, some not.

Declaring Constant Objects

The top of the main program in Figure 4.14 declares several strings. The first
declaration is:

const string BLANK(" ");

This declares a constant string named BLANK, which is initialized as a sequence
that contains just a single blank. Using the name BLANK in this way makes it eas-
ier to read statements that use a blank. The use of the keyword const forbids the
program from actually changing BLANK to a different string. As part of our doc-
umentation standard (Appendix J), we use all uppercase letters for the names of
declared constants.

Constructor-Generated Conversions

In the main program of Figure 4.14, we have two calls to the match function.
For example:

match( , me_first, you_first);

Look at the first argument, "first name", which is an ordinary string constant.

variety

A single blank is written here
between two quote marks.

"first name"
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But the first parameter of match is not an ordinary string; it is a string object
from our new string class:

void match(  variety, ...

How can this be? Isn’t this an error because the argument is a different type than
the formal parameter? The answer is no, because of a special conversion opera-
tion that is automatically applied by C++. Here is how the conversion works:
When a type mismatch is detected, the compiler attempts to convert the given
value into a value of the needed type. In our example, the compiler tries to con-
vert the string constant  into a string object. One of the conver-
sion mechanisms is to find a constructor for the needed type, with a single
parameter. In our example, the compiler uses this constructor:

string(const char str[ ]);

to convert the ordinary string constant to a string object. The constructed
string object is then used for the first argument of match.

Using Overloaded Operations in Expressions

The string class has overloaded binary + to perform string catenation. The way
that + is used in the main program of Figure 4.14 may seem unusual:

you = you_first + BLANK + you_last;

The compiler treats the expression using ordinary associativity rules for the
+ operator in an expression. As usual for a series of + operations, the leftmost +
is applied first, equivalent to this parenthesized expression, where the high-
lighted part is evaluated first:

you =  + you_last;

Our String Class Versus the C++ Library String Class

The new string class is implemented with a header file (mystring.h) and an
implementation file (mystring.cxx) that you write. The class has only a hand-
ful of operations—enough for us to write some sample programs. With these
sample programs, and programs that you write, you may use mystring.h.
However, if you have a newer compiler that provides a Standard Library
string class, then you may wish to use the library’s class instead of our simple
class. The library string class has all of our operations and more.

Self-Test Exercises for Section 4.5

26. Write C++ code that declares a regular C++ null-terminated string that
holds up to 20 characters, reads user input into the string, appends an
exclamation point to the end of the string, and prints the result.

const string&

"first name"

(you_first + BLANK)
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27. Suppose that strlen was not part of the cstring library. Implement
strlen yourself, using the prototype on page 201.

28. Describe the major motivation for implementing a string class instead
of using ordinary string variables.

29. What are the three private member variables for our string class?
30. Why does the string class need a destructor?
31. Which of the string member functions are likely to activate reserve?
32. Which of the nonmember functions should be friends of the string

class?
33. What modifications would be needed in the demonstration program of

Figure 4.14 if the Standard Library string class were used instead of the
mystring class? 

4.6 PROGRAMMING PROJECT: THE POLYNOMIAL

A one-variable polynomial is an arithmetic expression of the form:

The highest exponent, k, is called the degree of the polynomial, and the con-
stants  are the coefficients. For example, here is a polynomial with
degree 3

Each individual term of a polynomial consists of a real
number as a coefficient (such as 0.3), the variable x, and
a non-negative integer as an exponent. The x1 term is
usually written with just an x rather than x1; the x0 term
is usually written with just the coefficient (since x0 is always
defined to be 1); and a negative coefficient may also be
written with a subtraction sign, so another way to write the
same polynomial is:

For any specific value of x, a polynomial can be evaluated
by plugging the value of x into the expression. For example,
the value of the sample polynomial at x = 2 is:

A typical algebra exercise is to plot the graph of a polyno-
mial for each value of x in a given range. For example,
Figure 4.15 plots the value of a polynomial for each x in the
range of –2 to +2. 

akxk … a2x2 a1x1 a0x0+ + + +

a0 a1 …, ,

0.3x3 0.5x2 0.9–( )x1 1.0x0+ + +

x

-2 -1 0 1 2
-1

0

1

2

3 f(x)

FIGURE  4.15 A Polynomial

The graph of the function f(x) 
defined by the polynomial

0.3x3 0.5x2 0.9x– 1.0+ +

0.3x3 0.5x2 0.9x– 1.0+ +

0.3 2( )3 0.5 2( )2 0.9 2( )– 1.0+ + 3.6=
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For this project, you should specify, design, and implement a class for poly-
nomials. The coefficients are double numbers, and the exponents are non-
negative integers. The coefficients should be stored in a dynamic array of double
numbers, with the exponent for the xk term stored in location [k] of the array.
The maximum index of the array needs to be at least as big as the degree of the
polynomial, so that the largest nonzero coefficient can be stored. For the example
polynomial , the start of the coefficient array contains
these numbers:

In addition, the class should have a member variable to keep track of the current
size of the dynamic array and another member variable to keep track of the cur-
rent degree of the polynomial. (You could manage without the degree variable,
but having it around makes certain operations more efficient.)

The rest of this section lists some member functions and nonmember func-
tions that you could provide to the polynomial class.

A. Constructors and destructor.
polynomial( ); // Default constructor
polynomial(double a0); // Set the x0 coefficient only
polynomial(const polynomial& source); // Copy constructor
~polynomial( );

The default constructor creates a polynomial with all zero coefficients. The sec-
ond constructor creates a polynomial with the specified parameter as the coeffi-
cient of the x0 term, and all other coefficients are zero. For example:

polynomial p(4.2); // p has only one nonzero term, 4.2x0, which is the 
// same as the number 4.2 (since x0 is defined as 
// equal to 1).

B. Assignment operator.
polynomial& operator = (const polynomial& source);

This is the usual overloaded assignment operator, with one change: The return
type is polynomial& rather than void. This return type is similar to an ordi-
nary polynomial, but the extra symbol & makes it a reference return type, similar
to the return type ostream& of our output operators. The complete details of a
reference return type are beyond this project. For your implementation, you
should know two facts:

1. The function implementation should return the object that activated the
assignment. This is accomplished with the keyword this (which we also
saw on page 188). The syntax is: , which means “return

0.3x3 0.5x2 0.9x– 1.0+ +

1.0 -0.9 0.5 0.3

[2][0] [3] [4] [5][1]

. . .

return *this;
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the object that this points to.” Since this always points to the object that
activates the function, the return statement has the effect that we need.

chained
assignment
a = b = c

2. Using polynomial& as the return type permits a sequence of chained
assignments. For example, if a, b, and c are three polynomials, we can
write , which copies the value of c to b, and then copies the
new value of b to a (chained assignments work from right to left).

Remember to have your implementation check for a possible self-assignment.

C. A second assignment operator.
polynomial& operator =(double a0);

For a polynomial b, this assignment can be activated in a statement such as
. The double number, 4.2, becomes the argument a0 for this assign-

ment. The implementation will use this number as the coefficient for the x0 term,
and all other coefficients are set to zero.

If you read the information on constructor-generated conversions (page 210),
then you might notice that this second version of the assignment operator isn’t
entirely needed. Even without this assignment operator, we could write an
assignment ; in this case, the compiler would apply the polynomial
constructor to the number 4.2 (creating the polynomial 4.2x0), and then this poly-
nomial would be assigned to b. However, writing an explicit assignment operator
to allow  is generally more efficient because we avoid the overhead of
the constructor-generated conversion.

D. Modification member functions.
void add_to_coef(double amount, unsigned int k);
void assign_coef(double new_coefficient, unsigned int k);
void clear( );
void reserve(size_t number);

The add_to_coef function adds the specified amount to the coefficient of the xk

term. The assign_coef function sets the xk coefficient to new_coefficient. In
both cases, the parameter k is an unsigned int, which is the C++ data type that
is like an int, but may never have a negative value.

The clear function sets all coefficients to zero. The reserve function works
like reserve for the bag class, making sure that the underlying array has at least
the requested size.

E. Constant member functions.
double coefficient(unsigned int k) const;
unsigned int degree( ) const;
unsigned int next_term(unsigned int k) const;

The coefficient function returns the coefficient of the xk term. 
The degree function returns the degree of the polynomial. For a polynomial

where all coefficients are zero, our degree function returns 0 (although mathema-
ticians usually use –1 for the degree of such a polynomial). 

a = b = c

b = 4.2

b = 4.2

b = 4.2
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The next_term function returns the exponent of the next term with a nonzero
coefficient after xk. For example, if the x3 term of p is 0 and the x4 term of p is
6x4, then p.next_term(2) returns the exponent 4 (since 4 is the next exponent
after 2 with a nonzero coefficient). If there are no nonzero terms after xk, then
next_term(k) should return the constant UINT_MAX from the library facility
<climits>. (This constant is the largest unsigned int.)

F. Evaluation functions.
double eval(double x) const;
double operator ( )(double x) const;

The eval function evaluates a polynomial at the given value of x. For example, if
p is , then p.eval(2) is ,
which is 3.6. 

The second function also evaluates the polynomial, but it does so with some
strange syntax. The name of this second function is “operator ( ),” and it has
one parameter (the double number x). To activate the operator ( ) for a poly-
nomial p, you write the name p followed by the parameter in parentheses. For
example: p(2). The implementation of the operator ( ) does the same work as
the eval function; the two separate implementations just give the programmer a
choice of syntax. You can write p.eval(2), or you can write p(2) in a program.

G. Arithmetic operators. You can overload the binary arithmetic operators of
addition, subtraction, and multiplication to add, subtract, and multiply two poly-
nomials in the usual manner. (Division is not possible, because it can result in
fractional exponents.) For example:

The product, , is obtained by multiplying each separate term of q times
each separate term of r and adding the results together.

Other operations. You might consider other member functions, which are
described in the Chapter 4 part of the online projects at www.cs.colorado.edu/
~main/projects. Among other things, this online description includes operations
that first-semester calculus students can connect to their calculus studies of
derivatives, integration, and finding a root of a polynomial.

0.3x3 0.5x2 0.9x– 1.0+ + 0.3 2( )3 0.5 2( )2 0.9 2( )– 1.0+ +

Suppose q 2x3 4x2 3x 1+ + += and r 7x2 6x 5.+ +=

Then: q r+ 2x3 11x2 9x 6+ + +=

q r– 2x3 3x2– 3x– 4–=

q r× 14x5 40x4 55x3 45x2 21x 5+ + + + +=

q r×
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CHAPTER SUMMARY

• A pointer stores an address of another variable. Pointers are most useful
when they are used to point to dynamically allocated memory, such as a
dynamic array. The size of a dynamic array does not need to be deter-
mined until a program is running. Such behavior, determined at run time,
is called dynamic behavior. Dynamic behavior is more flexible than deci-
sions that are made at compile time (i.e., static behavior).

• The member variables of classes are frequently arrays or dynamic arrays.
Ordinary arrays are simple to program, and are often sufficient. Dynamic
arrays provide better flexibility since their size can vary according to
need. However, dynamic arrays also involve more complex programming
since the necessary memory must be allocated correctly, and freed when it
is no longer needed.

• In C++, the new operator is used to allocate dynamic memory. The
delete operator is used to free dynamic memory.

• The new operator usually indicates failure by throwing a special function
exception bad_alloc. Normally the exception halts the program with an
error message. You should clearly document which functions use new, so
that experienced programmers can deal with the exception in their own
way.

• Strings and bags are two examples of classes that can be implemented
with dynamic arrays.

• Classes that use dynamic memory should always include a copy construc-
tor, an overloaded assignment operator, and a destructor. The copy con-
structor and assignment operator must each copy an object by making a
new copy of the dynamic memory (rather than just copying a pointer).
The destructor is responsible for freeing dynamic memory.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. One use of & indicates a reference parameter.
A second use of & provides the address of a
variable.

2. cout << *int_ptr << endl;
cout << i << endl;

3. int *exercise;
size_t i;

exercise = new int[1000];
for (i = 1; i <= 1000; ++i)

exercise[i-1] = i;
delete [ ] exercise;

4. Dynamic variables are not declared, but are
created during the execution of a program.

5. If the new operator is unable to allocate mem-
ory because of a full heap, the bad_alloc
exception is thrown. If the exception is not
caught, an error message is printed and the pro-
gram halts. 

6. 100 and 200
200 and 200
300 and 300
400 and 400
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7. We no longer need the memory that p1 points
to.

8. The function changes the value in the location
that the pointer points to.  The actual argument
in the calling program will still point to the
same location, but that location will have a
new value.

9. A parameter that is a pointer must be a refer-
ence parameter if the function makes the
pointer point to a new location and you want
the actual argument to point to this new loca-
tion also.

10. When an array is passed as a parameter,
changes to the array affect the actual argu-
ment. This is because the parameter is treated
as a pointer that points to the first component
of the array. This is different from a value
parameter (where changes to the parameter do
not affect the actual argument).

11. void make_intarray 
(double*& array_ptr, size_t& n);

12. The critical point is that the pointer parameter
must be a reference parameter, as shown here:
void exercise(int*& p, size_t n);

13. Neither average nor compare changes the
contents of the array, so the keyword const
may be used. The fill_array function does
change the array’s contents, so const must
not be used.

14. Here is the function:
void copyints(

int target[ ], 
const int source[ ],
size_t n

)
// Postcondition: source[0] through
// source[n –1] have been copied to
// target[0] through target[n –1].
{

size_t i;

for (i = 0; i < n; ++i)
target[i] = source[i];

}

15. The program reads a list of numbers, storing
the values in a dynamic array. The program

then calculates the average and prints the list
of the numbers with each number compared to
the average.

16. Typically, the size of a dynamic data structure
is not determined until a program is running.
But the size of a static data structure is deter-
mined at the time of compilation.

17. If the initial capacity is too small, numerous
calls to reallocate memory, copy items into
new memory, and release old memory will be
needed. To avoid this inefficiency, program-
mers should attempt to make the initial capac-
ity sufficiently large. 

18. The initial capacity is DEFAULT_CAPACITY
(which is 30). If 31 items are placed in the
bag, then the insert function will increase
the capacity to 31.

19. In the insert implementation, the call to
reserve becomes : 

reserve(int(used*1.1 + 1));
The extra “+1” causes fractions to round up.

20. The primary responsibility of a destructor is to
free the dynamic memory used by an object.
See the list on page 184 for situations when
the destructor is automatically called.

21. ~sequence();

22. The keyword this can be used inside any
member function to provide a pointer to the
object that activated the member function.

23. Ordinarily, the assignment operator merely
copies member variables from one object to
another. But since the new bag uses dynamic
memory, the assignment operator must make a
copy of the dynamic memory rather than just
copying the pointer, which is a member vari-
able. The way to get the assignment operator
to do the extra work is by overloading the
assignment operator.

Our implementation of the assignment
operator does work correctly for a self-
assignment.

24. The copy constructor can be called to con-
struct a new object, just like any other con-
structor. It is also called when a value
parameter is an object or when a function
returns an object.
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Add more operations to the string class
from Section 4.5. Some possibilities are
listed here:

(a) A new constructor that has one parameter (a
character). The constructor initializes the string to
have just this one character.

(b) An insertion function that allows you to insert
a string at a given position in another string.

(c) A deletion function that allows you to delete
a portion of a string.

(d) A replacement function that allows you to re-
place a single character in a string with a new char-
acter.

(e) A replacement function that allows you to re-
place a portion of a string with another string.

(f ) A search function that searches a string for
the first occurrence of a specified character.

(g) A search function that counts the number of
occurrences of a specified character in a string.

(h) A more complex search function that search-
es through a string for an occurrence of some small-
er string.

1 Revise one of the container classes from
Chapter 3, so that it uses a dynamic array.
Some choices are: (a) the sequence from

Section 3.2; (b) the set (Project 5 on page 149); (c)
the sorted sequence (Project 6 on page 150); (d) the
bag with receipts (Project 7 on page 150); (e) the
keyed bag (Project 8 on page 150).

Implement the polynomial class from Sec-
tion 4.6 using a dynamic array so that there
is no maximum degree. If you have studied

calculus, then include the optional member func-
tions from the Chapter 4 section of the project page
at www.cs.colorado.edu/~main/projects/.

Write a checkbook balancing program. The
program will read in the following for all
checks that were not cashed as of the last

time you balanced your checkbook: the number of
each check, the amount of the check, and whether it

2

3

4

25. If no copy constructor is provided, the auto-
matic copy constructor simply copies all the
member variables from the local variable to
the return location.

26. char s[21];
cin >> s;
strcat(s, "!");
cout << s;

27. Here is the function:
size_t strlen(const char s[ ])
{

size_t len = 0;

while s[len] != ‘\0’)
++len;

return len;
}

28. Ordinary string variables do not support oper-
ations such as assignment and comparisons.

29. Private member variables of the string class
are characters, current_length, and
allocated (see the definition on page 205).

30. Any class that uses dynamic memory needs a
destructor to return its dynamic memory to the
heap.

31. The operators =, +, +=, and >>, and the copy
constructor.

32. Any nonmember function that accesses a pri-
vate member variable must be a friend func-
tion. In our implementation, the output
operator and the six boolean functions were
friends, but your implementation might need
different friends (depending on where you
access private member variables).

33. The header file "mystring.h" would be
replaced with <string>.
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has been cashed yet. Use a dynamic array of
“checks,” where each check is an object of a data
type called check that you design and implement
yourself. In addition to the checks, the program also
reads all the deposits as well as the old and new ac-
count balance. You may want a second dynamic ar-
ray to hold the list of deposits. The new account
balance should equal the old balance plus all depos-
its, minus all checks that have been cashed.

The program also prints several items: the total
of the checks cashed, the total of the deposits, what
the new balance should be, and how much this fig-
ure differs from what the bank says the new account
balance is. Also print two lists of checks: the checks
cashed since the last time you balanced your check-
book, and a list of checks still not cashed.

Write a program that uses a dynamic list of
strings to keep track of a list of chores that
you have to accomplish today. The user of

the program can request several services: (1) Add an
item to the list of chores; (2) Ask how many chores
are in the list; (3) Have the list of chores printed to
the screen; (4) Delete an item from the list; (5) Exit
the program.

If you know how to read and write strings from a
file, then have the program obtain its initial list of
chores from a file. When the program ends, it should
write all unfinished chores back to this file.

A common operation for input strings is
to tokenize, or separate, strings with a
delimiter of the user’s choice.  Write a string 

tokenizer function for a string class (either the one
developed in this class, or the STL string). The
function takes three parameters: a const string that
contains the original input; a const string that desig-
nates the delimiter (for example, " "); and a contain-
er to store each token as it is found. Write a test
program that prints out the tokens.

In this project, you will use the STL string
class to manipulate an input string.  Refer to
Appendix H for various string functions that 

might be useful. 
Write an interactive program that prompts a user

to input text of up to 10 lines.  The input can be ter-

5

6

7

minated with a special symbol(s), such as an aster-
isk, at the beginning of the final line. Give a second
prompt to the user to enter a string of the form
sub:replace, where sub is a substring of the origi-
nal sentence and replace is a replacement string.
The program should find each occurrence of sub
and prompt the user for confirmation to replace the
original text with the replacement string. Print the
modified text after completion and prompt the user
to exit or to enter another replacement string.

An array can be used to store large integers
one digit at a time. For example, the integer
1234 could be stored in the array a by setting

a[0] to 1, a[1] to 2, a[2] to 3, and a[3] to 4. How-
ever, for this project, you might find it easier to store
the digits backward, that is, place 4 in a[0], place 3
in a[1], place 2 in a[2], and place 1 in a[3].

Design, implement, and test a class in which
each object is a large integer with each digit stored
in a separate element of an array. You’ll also need a
private member variable to keep track of the sign of
the integer (perhaps a boolean variable). The num-
ber of digits may grow as the program runs, so the
class must use a dynamic array.

Discuss and implement other appropriate opera-
tors for this class.

Suppose that you want to implement a bag
class to hold non-negative integers, and you
know that the biggest number in the bag will

never be more than a few thousand. One approach
for implementing this bag is to have a private mem-
ber variable that is an array of integers called count
with indexes from 0 to M (where M is the maximum
number in the bag). If the bag contains six copies of
a number n, then the object has count[n] = 6 to rep-
resent this fact.

For this project, reimplement the bag class from
Figure 4.9 using this idea. You will have an entirely
new set of private member variables; for the public
member functions, you may delete the reserve
function, but please add a new function that the pro-
grammer can use to specify the maximum number
that he or she anticipates putting into the bag. Also
note that the insert member function must check to
see whether the current maximum index of the dy-
namic array is at least as big as the new number. If
not, then the array size must be increased.

8

9
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L EARN ING  OB J EC T I V ES
When you complete Chapter 5, you will be able to...

• design, implement, and test functions to manipulate nodes in a linked list,
including inserting new nodes, removing nodes, searching for nodes, and
processing (such as copying) that involves all the nodes of a list.

• design, implement, and test collection classes that use linked lists to store a
collection of elements, generally using a node class to create and manipulate the
linked lists.

• analyze problems that can be solved with linked lists and, when appropriate,
propose alternatives to simple linked lists, such as doubly linked lists and lists with
dummy nodes.

• understand the trade�offs between dynamic arrays and linked lists in order to
correctly select between the STL vector, list, and deque classes

CHAPTER  CONTENTS

5.1 A Fundamental Node Class for Linked Lists
5.2 A Linked�List Toolkit
5.3 The Bag Class with a Linked List
5.4 Programming Project: The Sequence Class with a Linked List
5.5 Dynamic Arrays vs. Linked Lists vs. Doubly Linked Lists
5.6 The STL Vector vs. the STL List vs. the STL Deque

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

The simplest way to interrelate or link a set of elements is
to line them up in a single list... For, in this case, only a

NIKLAUS WIRTH
Algorithms + Data Structures = Programs

single link is needed for each element to refer to its
successor.

5 Linked Lists5chapte
r
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L inked L is ts

We begin this chapter with a concrete discussion of a new data
structure, the linked list, which is used to implement a list of items arranged in
some kind of order. The linked-list structure uses dynamic memory that shrinks
and grows as needed, but in a different manner than dynamic arrays. The discus-
sion of linked lists includes the necessary class definition in C++, together with
fundamental functions to manipulate linked lists.

Once you understand the fundamentals, linked lists can be used as part of
your container classes, similar to the way that arrays have been used in previ-
ous classes. For example, linked lists can be used to reimplement the bag and
sequence classes from Chapter 3.

By the end of the chapter you will understand linked lists well enough to use
them in various programming projects (such as the revised bag and sequence
classes), and in the projects of future chapters. You will also know the advan-
tages and drawbacks of using linked lists versus dynamic arrays for these
projects.

5.1 A FUNDAMENTAL NODE CLASS FOR LINKED LISTS

A linked list is a sequence of items arranged one after another, with each item
connected to the next by a link. A common programming technique is to place
each item together with the link to the next item, resulting in a simple compo-
nent called a node. A node is represented pictorially as a box with the item writ-
ten inside the box and the link drawn as an arrow pointing out of the box.

Several typical nodes are drawn in Figure 5.1. For example, the topmost node
has the number 12.1 as its data. Most of the nodes in the figure also have an arrow
pointing out of the node. These arrows, or links, are used to connect one node to
another. The links are represented as arrows because they do more than simply
connect two nodes. The links also place the nodes in a sequence. In Figure 5.1,
the five nodes form a sequence from top to bottom. The first node is linked to the
second node, the second node is linked to the third node, and so on until we reach
the last node. We must do something special when we reach the last node,
since the last node is not linked to another node. In this special case, we replace
the link in this node with a note saying “end marker.”

Declaring a Class for Nodes
As you might guess from our pictures, the links between nodes are implemented
using pointers. But pointers to what? Remember that we cannot simply declare a

12.1

14.6

-4.8

9.3

10.2

end marker

FIGURE  5.1
Linked List 
Made of Nodes 
Connected with 
Links

linked lists are 
used to 
implement a list 
of items 
arranged in 
some kind of 
order
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pointer; each pointer must be declared as a pointer to a particular type of data.
For example, we have pointers to integers, pointers to characters, pointers to
throttles. In the case of a linked list, each link is a pointer to a node.

But what exactly is a node? To answer this question, look once more at our
pictures. Each node is a combination of two things: a piece of data (a double
number in our example) and a link to the next node. In C++, we can define a new
class for a node that contains these as two member variables shown here:

class node
{
...
private:

double data_field;
node *link_field;

};

We’ll look at the member functions shortly, but first let’s examine some other
issues.

Using a Typedef Statement with Linked-List Nodes

Until now we have considered only nodes where the data consists of a double
number. But, in general, other kinds of data are just as useful. Linked lists of
integers, or characters, or even strings, are all useful. In other words, the node
class depends on an underlying data type—the type of data in each node. To
allow for easy changing of the item type, we generally use a typedef statement
to define the name value_type to be a synonym for the type of data in each
node. The value_type is then used within the node class, as shown here:

class node
{
public:

typedef double ;
...

private:
 data_field;

node *link_field;
};

This is the same technique that we’ve used before to define the type of elements
in a bag or sequence. If we need to change the type of items in the nodes, then
we will change only the  in the typedef statement. Whenever
a program needs to refer to the item type, we can use the expression

.

value_type

value_type

value_type

node::value_type
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Head Pointers, Tail Pointers

Usually, programs do not actually declare node variables. Instead, when we
build and manipulate a linked list, the list is accessed through one or more
pointers to nodes. The most common access to a linked list is through the list’s
first node, which is called the head of the list. A pointer to the first node is
called the head pointer. Sometimes we maintain a pointer to the last node in a
linked list. The last node is the tail of the list, and a pointer to the last node is the
tail pointer. We could also maintain pointers to other nodes in a linked list. 

Each pointer to a node must be declared as a pointer variable. For example, if
we are maintaining a linked list with a head and tail pointer, then we would
declare two pointer variables:

node *head_ptr;
node *tail_ptr;

The program could now proceed to create a linked list, always keeping
head_ptr pointing to the first node and tail_ptr pointing to the last node, as
shown in Figure 5.2.

Building and Manipulating Linked Lists
Whenever a program builds and manipulates a linked list, the
access to the nodes in the list is through one or more
pointers to nodes. Typically, a program includes a pointer to
the first node (the head pointer) and a pointer to the last
node (the tail pointer).

Class Declaration for a Node
class node
{
public:

typedef double value_type;
...

private:
value_type data_field;
node *link_field;

};

Declarations of Two Pointers to Nodes
node *head_ptr;
node *tail_ptr;

 FIGURE  5.2 Node Class Declaration in a Program with a Linked List

head_ptr

A computation 
might create a 
small linked list 
with three 
nodes, as 
shown here. The 
head_ptr and
tail_ptr
variables
provide access 
to two nodes 
inside the list.

14.6

42.1

end marker

23.6

tail_ptr
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The Null Pointer

Figure 5.3 illustrates a linked list with a head pointer and one new feature. Look
at the link of the final node. Instead of a pointer, we have written the word NULL.
The word NULL indicates the null pointer, which is a special C++ constant. You
can use the null pointer for any pointer value that has no place to point. There
are two common situations where the null pointer is used:

• Use the null pointer for the link field of the final node of a linked list.
• When a linked list does not yet have any nodes, use the null pointer for

the value of the head pointer and tail pointer. Such a list is called the
empty list.

In a program, the null pointer may be written as NULL, which is defined in the
Standard Library facility <cstdlib>. (Though surprisingly, it’s not part of the
std namespace. You can simply write NULL without std::.)

The null pointer can be assigned to a pointer variable with an ordinary assign-
ment statement. For example:

node *head_ptr;
head_ptr = NULL; // Uses the constant NULL from cstdlib

The Meaning of a Null Head Pointer or Tail Pointer
Keep in mind that the head pointer and tail pointer of a linked list may be NULL,
which indicates that the list is empty (has no nodes). In fact, this is the way that
most linked lists start out. Any functions that you write to manipulate linked
lists must be able to handle a null head pointer and tail pointer.

The Node Constructor
The node constructor has parameters to initialize both the data and link fields, as
shown in this prototype:

node(
const value_type& init_data = value_type( ),
const node* init_link = NULL

);

The default value for the data is listed as . This
notation means “the parameter named init_data has a default argument that is

The Null Pointer
The null pointer is a special C++ pointer value that can be
used for any pointer that does not point anywhere. It is
defined as NULL in <cstdlib>. NULL is not part of the std
namespace, so you write NULL without std::.

-4.8

9.3

10.2

NULL

head_ptr

FIGURE  5.3
Linked List 
with the Null 
Pointer at the 
Final Link

init_data = value_type( )
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created by the value_type default constructor.” This syntax was not allowed in
older versions of C++, since the built-in types (such as int and double) did not
have default constructors. But the new ANSI/ISO C++ Standard does permit the
notation with the built-in types. Each of the built-in types has a default construc-
tor that returns zero (for numbers) or false (for the bool type).

default
constructors for 
the built-in types

In our case, value_type is defined as double, so the init_data parameter
will be zero if a default argument is needed. And the init_link parameter will
be NULL if a default argument is needed. 

The constructor’s implementation merely copies the two parameters
(init_data and init_link) to the node’s two member variables (data_field
and link_field).

As an example, consider three activations of the new operator for three vari-
ables (p, q, and r) that are pointers to nodes. The three activations of the new
operator will call the constructor in three different ways, as shown next.

// With no arguments, we will use both default values, so p’s data will be 
// set to zero and p’s link will be set to NULL:
p = new node;
// We can explicitly set the data part of q’s node to 4.9, and use the
// default argument of NULL for q’s link field, like this:
q = new node(4.9);
// We can create a new node for r to point to with data of 1.6 and a
// link field that points to the same node as p:
r = new node(1.6, p);

After these three assignments, the three nodes are set up like this:

The Node Member Functions
The node has five public member functions for setting and retrieving the data
and link fields. The prototypes and inline implementations are shown in the
complete node definition in Figure 5.4. The first two functions, set_data and
set_link, simply store a new value in the data or link field of the node. The
data member function returns a copy of the node’s current data field. And when
you look at the link function, you might think that you have double vision
because the link function appears in two slightly different forms. We’ll explain
that duplication in a moment. But first, let’s examine a new notation for activat-
ing member functions.

1.6 0 4.9

NULLr

p

q

NULL
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The Member Selection Operator
Suppose that a program has built the linked list shown in the margin. Now,
head_ptr is a pointer to a node, so here is a small quiz: Using the dereferencing
asterisk, what is the data type of *head_ptr? Remember that *head_ptr means
“the thing that head_ptr points to.” Looking at the picture you can see that the
data type of *head_ptr is a node.

As with any object, you can access the public member functions of
*head_ptr. For example, the following writes the data (12.1) from the head
node:

cout << (*head_ptr).data( );

The expression (*head_ptr).data( ) means “activate the data member func-
tion of the node pointed to by head_ptr.” The parentheses are necessary
around the first part of the expression, (*head_ptr), because the operation of
accessing a member (such as the data member function) has higher
precedence than the dereferencing asterisk. Without the parentheses, the

A Class Definition
class node
{
public:

// TYPEDEF
typedef double value_type;

// CONSTRUCTOR
node(

const value_type& init_data = value_type( ),
node* init_link = NULL

)
{ data_field = init_data; link_field = init_link; }

// Member functions to set the data and link fields:
void set_data(const value_type& new_data) { data_field = new_data; }
void set_link(node* new_link) { link_field = new_link; }

// Constant member function to retrieve the current data:
value_type data( ) const { return data_field; }

// Two slightly different member functions to retrieve the current link:
const node* link( ) const { return link_field; }
node* link( ) { return link_field; }

private:
value_type data_field;
node* link_field;

};

 FIGURE  5.4 The Complete Node Class Definition

www.cs.colorado.edu/~main/chapter5/node1.h WWW

12.1

9.3

10.2

NULL

head_ptr
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meaning of *head_ptr.data( ) will cause a syntax error, trying to activate
head_ptr.data( ) before dereferencing.

Because of the parentheses problem, C++ offers an alternative way to select
a member of a class, shown here:

the -> operatorThe symbol “->” is considered a single operator (rather than two separate sym-
bols “-” and “>”). It is called the member selection operator or component
selection operator. Visually, the p->m operator reminds you of an arrow, lead-
ing from the pointer p to the object that contains the member m. Using the mem-
ber selection operator, we can print the data from the first node of the list in
Figure 5.3, as shown here: .

CLARIFYING THE CONST KEYWORD

Part 7: The Const Keyword with a Pointer to a Node, and the Need for Two
Versions of Some Member Functions

Consider this pointer to a node:

node *p;

After this declaration, we can allocate a node for p
to point to ( ) and then activate
any of the member functions (such as

 or ).

In constrast, consider the situation in Chapter 4
(page 170), where we saw the use of the keyword
const with a pointer. A simple example using the
const keyword is a parameter declared this way:

const node *c;

This parameter is a pointer to a node. The const keyword means that the

The -> Operator
If p is a pointer to a class, and m is a member of the class,
then  means the same as .
Example:  is the syntax for activating
the data function of the node pointed to by head_ptr.

p->m (*p).m
head_ptr->data( )

cout << head_ptr->data( );

1. DECLARED CONSTANTS: PAGE 12
2. CONSTANT MEMBER FUNCTIONS: PAGE 38
3. CONST REFERENCE PARAMETERS: PAGE 72
4. STATIC MEMBER CONSTANTS: PAGE 104
5. CONST ITERATORS: PAGE 144
6. CONST PARAMETERS THAT ARE POINTERS OR

ARRAYS: PAGE 171
7. THE CONST KEYWORD WITH A POINTER TO A

NODE, AND THE NEED FOR TWO VERSIONS OF
SOME MEMBER FUNCTIONS

p = new node;

p->set_data( ) p->data( )
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pointer c cannot be used to change the node. To be precise, for the declaration
:

1. You might think that the const keyword prevents c from moving around
and pointing to different nodes. That is wrong. The pointer c can move
and point to many different nodes, but we are forbidden from using c to
change any of those nodes that c points to. (If you should wish to create a
pointer that can be set once during its definition and never changed to
point to a new object, then put the word const after the *. For example:

.)
2. Because of the const keyword, you might think that the node that c

points to can never be changed by any means. That’s not quite right either.
Why not? The reason is that we might have another ordinary pointer that
points to the same node that c points to. In that case, the node could be
changed by accessing it through the ordinary pointer. The const keyword
only prevents changing the node by accessing it through c.

3. To enforce the const rule, the C++ compiler permits a pointer such as
c to activate only constant member functions. For example, with our
declaration of c as , we can activate , but

 is forbidden.
The third rule is a good one, but for applications such as linked lists, the rule of
the C++ compiler doesn’t go quite far enough. We recommend an additional
programming tip that increases reliability:

A RULE FOR A NODE’S CONSTANT MEMBER FUNCTIONS

A node’s constant member functions should never provide a result that could later
be used to change any part of the linked list. This increases reliability because we
can clearly see which functions have the possibility of causing an alteration to the
underlying data structure.

providing a 
const version 
and a non-const 
version of a 
function

Our programming tip has a surprising effect: We must sometimes write two
similar versions of the same member function. For example, the purpose of the
link member function is to obtain a copy of a node’s link field. At first glance,
this sounds like a constant member function, since retrieving a member variable
does not change an object. We might write this:

node* link( ) const { return link_field; }

This implementation does compile, but it violates our programming tip about
constant member functions. For example, suppose we have this list set up:

const node *c

node *const c = &first;

const node *c c->data( )
c->set_data( )

PROGRAMMING TIP��  

WARNING!
This link 
implementation
has a bug!

1.6 3.0

head_ptr NULL
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Using the constant member function, link, we can execute two statements that
change the data in one of the nodes:

node *second = head_ptr->link( );

After this first statement, we have the following situation:

The variable second is just an ordinary pointer to a node. It is not a pointer to a
constant node, so we can activate any of its member functions, such as:

second->set_data(9.2);

After this statement, the data in the second node is now 9.2:

This is a bad situation because the node’s constant member functions should
never provide a result that we can later use to change any part of the linked list.
With this in mind, it makes sense to implement link as a non-constant member
function. Making the function non-constant provides better accuracy about how
the function’s results might be used. So, we will implement link as a non-
constant member function, like this:

node* link( ) { return link_field; }

Unfortunately, this solution has another problem. Suppose that c is a parame-
ter . We are allowed to activate only the constant member
functions. So, with the non-constant link implementation, we could never acti-
vate c->link( ). The final solution is to provide a second version of the link
member function, implemented this way:

const node* link( ) const { return link_field; }

This second version is a constant member function, so c->link( ) can be used,
even if c is declared with the const keyword. Even though the implementations
of both functions are the same (they both return the link_field), the compiler
converts the link_field to the type  for the const version of the
function. Therefore, the return value from the const version of the function can-
not later be used to change any part of the linked list.

1.6 3.0

head_ptr NULL
second

1.6 9.2

head_ptr NULL
second

const node *c

const node*
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When both a const and a non-const version of a function are present, the com-
piler automatically chooses the correct version, depending on whether the func-
tion was activated by a constant node (such as ) or by an
ordinary node.

DEREFERENCING THE NULL POINTER

One of the most common pointer errors is writing the expression *p or p-> when
the value of the pointer p is the null pointer. This must always be avoided because
the null pointer does not point to anything. Therefore, when p is the null pointer, *p
(which means “the thing that p points to”) is meaningless. In this case, p-> is also
meaningless. Because the asterisk in *p is called the dereferencing operator, we
can state this rule: Never dereference the null pointer.

Accidental dereferencing of the null pointer is sometimes a hard error to track
down. The error does not cause a syntax error. Instead, when the program is
running, there will be an attempt to interpret the null pointer as if it were a valid
address. Sometimes this causes an immediate run-time error with a message such
as “Address protection violation” or “Bus error, core dumped.” But on other
machines, the null address might be a valid address, causing your program to read
or write an unintended memory location. Often this memory location is part of the
machine’s operating system, resulting in part of the operating system being cor-
rupted. At some later point, perhaps after your program has completed, the cor-
rupted operating system can cause an error. Fortunately, restarting your machine
usually writes a fresh copy of the operating system into memory—but even so,
never dereference the null pointer!

Self-Test Exercises for Section 5.1

1. Write the class definition needed for a node in a linked list. Use the name
value_type for the type of the data.

2. What is the meaning of the C++ constant NULL? What additional code is
needed in a program in order to use NULL?

3. Describe two common uses for the null pointer.

When to Provide Both Const and Non-Const Versions
of a Member Function

When the return value of a member function is a pointer to a
node, you should generally have two versions: a const
version that returns a , and an ordinary
version that returns an ordinary pointer to a node.

const node *c

const node*
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4. What value does the default constructor of value_type give if the
value_type is one of the built-in number or bool types?

5. What is the data type of head_ptr in Figure 5.3 on page 224? What is
the data type of *head_ptr? What is the data type of head_ptr->data( )?

6. Suppose that head_ptr points to the first node of a non-empty linked
list. Write code to print the word “zero” if the data in the first node is 0.

7. Consider this statement: cout << (*head_ptr).data( );. What would
happen if the parentheses around head_ptr were omitted? Write the
alternative syntax to activate the data( ) class member.

8. Suppose that b_ptr is a pointer to a bag (from Chapter 3). One of the
bag’s member functions is size, which returns the number of elements
in a bag. Write a statement that prints the number of elements in the bag
pointed to by b_ptr. Use the member selection operator.

9. Describe a problem that can occur if you dereference the null pointer.
10. Why is this link implementation wrong?

node* link( ) const { return link_field; }

11. What is the solution for the problem in the previous exercise?
12. Why is it okay to have just a single const version of the node’s data

member function (without a second non-const version)?

5.2 A LINKED-LIST TOOLKIT

We’re now in a position to design container classes that use linked lists to store
their items. The member functions of the container class will put things into the
linked list and take them out. This use of a linked list is similar to our previous
use of an array in a container class. However, you may find that storing and
retrieving items from a linked list is more work than using an array because we
don’t have the handy indexing mechanism (such as data[i]) to read or write
elements. Instead, the class requires extra functions just to build and manipulate
the lists—parts that are not central to the container’s main objectives. 

In fact, many container classes might need these same extra functions, which
suggests that we should write a collection of linked-list functions once and for
all, allowing any programmer to use the functions in the implementation of a
container class. This is what we will do, creating a small toolkit of fundamental
linked-list functions. The primary purpose of the toolkit is to allow a container
class to store elements in a linked list with a simplicity and clarity that is similar
to using an array. In addition, having the functions written and thoroughly tested
once will allow us to use the functions to implement many different container
classes with high confidence in their reliability. 

a collection of 
linked-list
functions
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The toolkit comes in two parts: a header file and an implementation file. The
contents of the two files are discussed in this section.

Linked-List Toolkit—Header File

For functions that manipulate linked lists of double numbers, the header file
contains the node class definition and prototypes for the functions. For exam-
ple, one function prototype is as shown here:

size_t list_length(const node* head_ptr);

The list_length function computes the number of nodes in a linked list. The
parameter, head_ptr, is a pointer to the first node of the linked list. An empty
list is indicated by setting head_ptr to the null pointer. Since we are not going
to change the list, this parameter is a .

The functions, including list_length, are implemented in a separate imple-
mentation file. Each of the functions has one or more parameters that are pointers
to nodes in a linked list.

Computing the Length of a Linked List
Our first toolkit function computes the length of a linked list, which is simply
the number of nodes. Here is the prototype:

size_t list_length(const node* head_ptr);
list_length // Precondition: head_ptr is the head pointer of a linked list.

// Postcondition: The value returned is the number of nodes in
// the linked list.

The parameter, head_ptr, is a pointer to a head node of a list. If the list is not
empty, then head_ptr points to the first node of the list. If the list is empty, then

Functions That Manipulate Linked Lists
A function that manipulates linked lists has one or more
parameters that are pointers to nodes in the list. If the
function does not plan to change the list, then the parameter
should be a .

The functions should generally be capable of handling an
empty list (which is indicated by a head pointer that is null). In
fact, the ability to handle an empty list is one of the reasons
why list manipulation functions are generally not node
member functions (since each node member function must
be activated by a specific node, and the empty list has no
nodes!).

const node*

const node*
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head_ptr is the null pointer (and the function returns zero, since there are no
nodes).

Our implementation uses a pointer variable to step through the list, counting
the nodes one at a time. Here are the three steps of the pseudocode, using a
pointer variable named cursor to step through the nodes of the list one at a time.
(We often use the name cursor for such a pointer, since “cursor” means a
“pointer that runs through a structure.”)

1. Initialize a variable named answer to zero (this variable will keep track of
how many nodes we have seen so far).

2. Make cursor point to each node of the list, starting at the head node.
Each time cursor points to a new node, add one to answer.

3. return answer.
Both cursor and answer are local variables in the function.

The first step initializes answer to zero, because we have not yet seen any
nodes.

how to traverse 
all the nodes of 
a linked list

The implementation of Step 2 is a for-loop, following a pattern that you
should use whenever all of the nodes of a linked list must be traversed. The gen-
eral pattern looks like this:

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
{

...
}

In our function, the computation inside the loop is simple because we are just
counting the nodes. Therefore, in our body we will just add one to answer, as
shown in this code:

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
++answer;

Let’s examine the loop on an example. Suppose that the linked list has three
nodes containing the numbers 10, 20, and 30. After the loop initializes (with

), we have the situation shown next.

Notice that cursor points to the same node that head_ptr is pointing to. 

Inside the body of the loop, you may
carry out whatever computation is
needed for a node in the list.

cursor = head_ptr

10 20 30

NULL

head_ptr

cursor answer

0
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Since cursor is not NULL, we enter the body of the loop. Each iteration incre-
ments answer and then executes . The effect of

 is to copy the link field of the first node into
cursor itself, so that cursor ends up pointing to the second node. In general, the
statement  moves cursor to the next node. So, at
the completion of the loop’s first iteration, the situation is this:

The loop continues. After the second iteration, answer is 2, and cursor points
to the third node of the list, as shown here:

Each time we complete an iteration of the loop, cursor points to some location
in the list, and answer is the number of nodes before this location. In our exam-
ple, we are about to enter the loop’s body for the third and last time. During the
last iteration, answer is incremented to 3, and cursor becomes NULL, as shown
here:

The pointer variable cursor has become NULL because the loop control state-
ment  copied the link field of the third node into
cursor. Since this link is NULL, the value in cursor is now NULL. At this point,
the loop’s control test  is false. The loop ends, and the func-
tion returns the answer 3. 

cursor = cursor->link( )
cursor = cursor->link( )

cursor = cursor->link( )

10 20 30

NULL

head_ptr

cursor answer

1

10 20 30

NULL

head_ptr

cursor answer

2

10 20 30

NULL

head_ptr

cursor answer

3NULL

cursor = cursor->link( )

cursor != NULL
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The complete implementation of the list_length function is shown in
Figure 5.5. Notice that the local variable, cursor, is declared using the const
keyword: . This is required because the head_ptr
parameter is const, so that if cursor was not const, then the compiler would not
permit the assignment . In general, if a pointer is declared
using the const keyword, then that pointer can be assigned only to another
pointer that is also declared with the const keyword.

HOW TO TRAVERSE A LINKED LIST

You should learn the important pattern for traversing a linked list, as used in the
list_length function (Figure 5.5). The same pattern can be used whenever you
need to step through the nodes of a linked list one at a time.

The first part of the pattern concerns moving from one node to another. When-
ever we have a pointer that points to some node, and we want the pointer to point
to the next node, we must use the link of the node. Here is the reasoning that we
follow:

1. Suppose cursor points to some node;
2. Then cursor->link( ) points to the next node (if there is one), as shown

here:

A Function Implementation

// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The value returned is the number of nodes in the linked list.
// Library facilities used: cstdlib
{

const node *cursor;
size_t answer;

answer = 0;
for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))

++answer;

return answer;
}

 FIGURE  5.5 A Function to Compute the Length of a Linked List

size_t list_length(const node* head_ptr)

Step 2 of the
pseudocode

www.cs.colorado.edu/~main/chapter5/node1.cxx WWW

const node *cursor;

cursor = head_ptr

PROGRAMMING TIP ��  
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3. To move cursor to the next node, we use the assignment statement:
cursor = cursor->link( );

If there is no next node, then cursor->link( ) will be NULL, and therefore
our assignment statement will set cursor to NULL.

The key is to know that the assignment statement 
moves cursor so that it points to the next node. If there is no next node, then the
assignment statement sets cursor to NULL.

The second part of the pattern shows how to traverse all of the nodes of a linked
list, starting at the head node. The pattern of the loop looks like this:

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
{

...
}

You’ll find yourself using this pattern continually in functions that manipulate linked
lists.

FORGETTING TO TEST THE EMPTY LIST

Functions that manipulate linked lists should always be tested to ensure that they
have the right behavior for the empty list. For example, when head_ptr is NULL
(indicating the empty list), our list_length function should return 0. 

Parameters for Linked Lists

When a function manipulates a linked list, one of the parameters must be a
pointer to a node in the list—often the head pointer, but sometimes another
pointer is used. These pointers to nodes are generally used as parameters in just
three ways, requiring a bit of discussion before we can proceed with our toolkit.
(And you thought you already knew everything there is to know about
parameters!)

Parameters that are pointers with the const keyword. We have already ex-
amined this case in some detail. For example, the list_length function has
such a parameter:

10 20
cursor

. . .

The pointer in the shaded 
box is cursor->link( ),
and it points to the next 
node after cursor.

cursor = cursor->link( )

Inside the body of the loop, you may
carry out whatever computation is
needed for a node in the list.

PITFALL ��  

how to use a 
node pointer as 
a parameter
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size_t list_length(  head_ptr);

The function uses the head pointer to access the list’s nodes, but the function
does not change any part of the list. In general, this is the situation when you
should use : A pointer to a constant node should be used when the
function needs access to the linked list and the function will not make any
changes to any of the list’s nodes.

Value parameters that are pointers to a node. The second sort of node
pointer parameter is a value parameter without the const keyword. For example,
one of the toolkit’s functions will add a new node after a specified node in the
list. The function has this prototype with a :

void list_insert(  p, const node::value_type& entry) 
// Precondition: previous_ptr points to a node in a linked list.
// Postcondition: A new node containing the given entry has been added
// after the node that p points to.

The function uses the pointer p to access the list’s nodes, and a new node is
added after the p node. The pointer p will not change; it will stay pointing at the
same node. But that node’s link field will change and a new node will be added
to the list. In general, this is the situation when you should use a value parame-
ter: A node pointer should be a value parameter when the function needs access
to the linked list, and the function might change the linked list, but the function
does not need to make the pointer point to a new node.

Reference parameters that are pointers to a node. Sometimes a function
must make a pointer point to a new node. For example, one of the toolkit func-
tions will add a new node at the front of a linked list, with this prototype and
precondition/postcondition contract:

void list_head_insert
(  head_ptr, const node::value_type& entry);
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: A new node containing the given entry has been added at
// the head of the list; head_ptr now points to the head of the new, longer
// linked list.

The head_ptr is a reference parameter, since the function creates a new head
node and makes the head pointer point to this new node. A node pointer should
be a reference parameter when the function needs access to the linked list and
the function makes the pointer point to a new node. This change to the pointer
will make the actual argument point to a new node.

const node*

const node*

node*

node*

node*&
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Inserting a New Node at the Head of a Linked List

The next function in our toolkit is the list_head_insert function that we
mentioned earlier, with a reference parameter that is a pointer. The function
adds a new node at the head of a linked list. This is the easiest place to add a
new node. The function prototype with complete documentation is given here:

void list_head_insert
(node*& head_ptr, const node::value_type& entry);
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: A new node containing the given entry has been added at
// the head of the list; head_ptr now points to the head of the new, longer
// linked list.
// NOTE: If there is insufficient dynamic memory for a new
// node, then bad_alloc is thrown.

As we saw a moment ago, the head pointer is a reference parameter, since the
function makes the head pointer point to a new node. Also, the documentation
indicates what happens if there is insufficient dynamic memory for a new node.

Inserting a new node at the head of the linked list requires just a single state-
ment:

head_ptr = new node(entry, head_ptr);

Let’s step through the execution of this statement to see how the new node is
added at the front of the list. For the example, suppose that head_ptr points to
the short list shown here, and that the new entry is the number 5:

Parameters for Linked Lists
When a function needs access to a linked list, use a node*
parameter and follow these guidelines:

1. Use a pointer to a constant node, , when
the function needs access to the linked list and the func-
tion will not make any changes to any of the list’s nodes.

2. Use a value parameter, , when the function may
change the list in some way, but it does not need to
make the pointer point to a new node. 

3. Use a reference parameter, , when the function
needs access to the linked list and the function may
make the pointer point to a new node.

const node*

node*

node*&

list_head_insert

10 20 30

NULL
head_ptr
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When the new operator is called, it activates the constructor and a new node
is created with the entry as the data and with the link pointing to the same node
that head_ptr points to. Here’s what the picture looks like, with the link of the
new node shaded (and the new entry equal to 5):

The new operator returns a pointer to the newly created node, and in the state-
ment we wrote, . You can read
this statement as saying “make head_ptr point to the newly created node.”
Therefore, we end up with this situation:

The technique works correctly even if we start with an empty list (in which the
head_ptr is null). In this case, the new operator correctly creates the first node
of the list. To see this, suppose we start with a null head_ptr and execute the
statement with entry equal to 5. The constructor creates a new node with 5 as
the data and with head_ptr as the link. Since head_ptr is null, the new node
looks like this (with the link of the new node shaded):

After the constructor returns, head_ptr is assigned to refer to the new node, so
the final situation looks like this:

10 20 30

NULL

head_ptr

5

head_ptr = new node(entry, head_ptr)

10 20 30

NULL

head_ptr

5

head_ptr

5

NULL
NULL

head_ptr

5

NULL
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As you can see, the statement  has
correctly added the first node to a list. If we are maintaining a pointer to the tail
node, then we would also set the tail to point to this one node.

The complete implementation of list_head_insert is shown in Figure 5.6.

Inserting a New Node That Is Not at the Head
New nodes are not always inserted at the head of a linked list. They may be
inserted in the middle or at the tail of a list. For example, suppose you want to
insert the number 42 after the 20 in this list:

Adding a New Node at the Head of a Linked List
Suppose that head_ptr is the head pointer of a linked list.
Then this statement adds a new node at the front of the list
with the specified new entry:

head_ptr = new node(entry, head_ptr);

This statement works correctly even if we start with an empty
list (in which case the head pointer is null).

head_ptr = new node(entry, head_ptr)

A Function Implementation

// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: A new node containing the given entry has been added at the head of the linked
// list; head_ptr now points to the head of the new, longer linked list. NOTE: If there is insufficient
// dynamic memory for a new node, then bad_alloc is thrown before changing the list.
{

head_ptr = new node(entry, head_ptr);
}

 FIGURE  5.6 A Function to Insert at the Head of a Linked List

void list_head_insert(node*& head_ptr, const node::value_type& entry)

www.cs.colorado.edu/~main/chapter5/node1.cxx WWW
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After the insertion, the new, longer list has these four nodes:

Whenever an insertion is not at the head, the insertion process requires a
pointer to the node that is just before the intended location of the new node. In
our example, we would require a pointer to the node that contains 20, since we
want to insert the new node after this node. We use the name previous_ptr for
the pointer to the node that is just before the location of the new node. So to insert
an item after the 20, we would first have to set up previous_ptr as shown here:

Once a program has calculated previous_ptr, the insertion can proceed. Our
third toolkit function carries out the insertion, as indicated by this prototype:

void list_insert
(node* previous_ptr, const node::value_type& entry);

list_insert// Precondition: previous_ptr points to a node in a linked list.
// Postcondition: A new node containing the given entry
// has been added after the node that previous_ptr points to.
// NOTE: If there is insufficient dynamic memory for a new
// node, then bad_alloc is thrown before changing the list. 

Notice that previous_ptr is a value parameter that is a pointer to a node. This
allows us to change the list (by inserting a new node), but we will not make
previous_ptr point to a new node.

The list_insert could be implemented with a single line, similar to
list_head_insert. But the implementation is more clear if we break it into four
steps:

10 20 30

NULL
head_ptr

42

10 20 30

NULL
head_ptr

previous_ptr
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1. Allocate a new node pointed to by a local variable called insert_ptr.
2. Place the new entry in the data field of the new node.
3. Make the link_field of the new node point to the node after the new

node’s location (or NULL if there are no nodes after the new location).
4. Make previous_ptr->link_field point to the new node that we just

created.

Let’s follow the four steps for the example of inserting 42 after the second node
of a small list. After the first two steps, the new node has been created, contain-
ing the number 42, as shown here:

We’ve drawn the head pointer in this picture, though the function does not actu-
ally use the head pointer. Steps 3 and 4 make use of only previous_ptr. For
example, Step 3 sets the link field of the new node to point to the node after the
new node’s location. What is the node after the new location? It is not
previous_ptr, since previous_ptr points to the node before the new location.
But the pointer named previous_ptr->link( ) does point to the node after
the location of the new node. The pointer previous_ptr->link( ) is shaded
in this picture, to show that it points to the spot after the new node’s location:

Here is the function activation that carries out Step 3: 
insert_ptr->set_link( previous_ptr->link( ) );
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After setting this link, we have this situation:

Another statement, , does Step 4, as
shown here:

After inserting the new node containing 42, you can step through the complete
linked list, starting at the head node 10, then 20, then 42, and finally 30. The
list_insert function implementation is shown in Figure 5.7 on page 244.
Notice that previous_ptr is not a reference parameter, since we are not making
previous_ptr point to a new node.

UNINTENDED CALLS TO DELETE AND NEW

The list_insert function uses a local variable, insert_ptr, that is a pointer.
When the function finishes, insert_ptr is no longer needed, and it will go away,
just like any other local variable. But watch out! A common error is to think
“insert_ptr is no longer needed, so I should write the statement

 at the end of the list_insert function.” Don’t!
The effect of  is to get rid of the node that insert_ptr

points to. In other words, you will get rid of the very node that you worked so hard
to insert. The general rule is this: Never call delete unless you are actually reduc-
ing the number of nodes.

A similar error might occur with the local variable cursor in the list_length
function. You might be tempted to write  to try to initialize
this pointer variable. Don’t! The effect of  is to create a new
node that was not previously part of the linked list. But cursor does not need to point
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previous_ptr->set_link(insert_ptr);
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cursor = new node
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Three Function Implementations

// Precondition: previous_ptr points to a node in a linked list.
// Postcondition: A new node containing the given entry has been added after the node that
// previous_ptr points to. NOTE: If there is insufficient dynamic memory for a new
// node, then bad_alloc is thrown before changing the list. 
{

node *insert_ptr;

insert_ptr = new node;
insert_ptr->set_data(entry);
insert_ptr->set_link( previous_ptr->link( ) );
previous_ptr->set_link(insert_ptr);

}

// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The return value is a pointer to the first node containing the specified target in its
// data field. If there is no such node, the null pointer is returned. 
// Library facilities used: cstdlib
{

node *cursor;

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
if (target == cursor->data( ))

return cursor;
return NULL;

}

// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The return value is a pointer to the first node containing the specified target in its
// data field. If there is no such node, the null pointer is returned. 
// Library facilities used: cstdlib
{

const node *cursor;

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
if (target == cursor->data( ))

return cursor;
return NULL;

}

 FIGURE  5.7 Implementations of Three Linked-List Functions

void list_insert(node* previous_ptr, const node::value_type& entry)

node* list_search(node* head_ptr, const node::value_type& target)

const node* list_search(const node* head_ptr, const node::value_type& target)

www.cs.colorado.edu/~main/chapter5/node1.cxx WWW
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to a new node; it merely steps through the existing nodes of the linked list. The gen-
eral rule is this: Never call new unless you are actually increasing the number of
nodes.

Searching for an Item in a Linked List

When the job of a subtask is to find a single node, it makes sense to implement
the subtask as a function that returns a pointer to that node. Our next toolkit
operation is such a function, returning a pointer to a node that contains a speci-
fied item. We will actually implement two versions of the search function, with
these slightly different prototypes:

node* list_search
(node* head_ptr, const node::value_type& target);
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The return value is a pointer to the first node containing
// the specified target in its data field. If there is no such node, 
// the null pointer is returned. 

const node* list_search
(const node* head_ptr, const node::value_type& target);
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The return value is a pointer to the first node containing
// the specified target in its data field. If there is no such node, 
// the null pointer is returned. 

The first version of list_search has a  parameter, and the return
value is also a . This means that the return value of the first function
could be used to change the list. For example, with the linked list shown in the
margin, we could execute these statements to find a pointer to the shaded node
(containing –4.8) and change its data to 6.8:

node* p;
p = list_search(head_ptr, -4.8); // p now points to the –4.8 node.
p->set_data(6.8); // Change p’s data to 6.8.

On the other hand, the return value from the second version of the function is
. So the second function can find a specified node, but the com-

piler will prevent us from using the returned pointer to change the list. 
For any use of list_search, the compiler looks at the type of the first argu-

ment to determine which version to use. If the first argument is a pointer that is
declared as , then the compiler will use the list_search that returns

. But if the first argument is , then the compiler will use the
second version of list_search, whose return value is also .

The implementations of list_search are shown in Figure 5.7. Most of the
work is carried out with the usual traversal pattern, using a local pointer variable
called cursor to step through the nodes one at a time:

node*
node*

const node*

node*
node* const node*

const node*

12.1

14.6

-4.8

10.2

NULL

head_ptr
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for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
{

if
return cursor;

}

As the loop executes, cursor points to the nodes of the list, one after another.
The test inside the loop determines whether we have found the sought-after
node, and if so, then a pointer to the node is immediately returned with the
return statement . When a return statement occurs like this,
inside a loop, the function returns without ado—the loop is not run to completion.

On the other hand, should the loop actually complete by eventually setting
cursor to NULL, then the sought-after node is not on the list. According to the
function’s postcondition, the function returns NULL when the node is not on the
list. This is accomplished with one more return statement— —at
the end of the function’s implementation.

Finding a Node by Its Position in a Linked List
Our toolkit has another function that returns a pointer to a node in a linked list.
Here is the prototype:

node* list_locate(node* head_ptr, size_t position);
// Precondition: head_ptr is the head pointer of a linked list, and position > 0.
// Postcondition: The pointer returned points to the node at the specified
// position in the list. (The head node is position 1, the next node is position 
// 2, and so on.) If there is no such position, then the null pointer is
// returned.

In this function, a node is specified by giving its position in the list, with the
head node at position 1, the next node at position 2, and so on. For example,
with the list shown in the margin, the function list_locate(head_ptr, 3)
will return a pointer to the shaded node. Notice that the first node is number 1,
not number 0 as in an array. The specified position might also be larger than the
length of the list. In this case, the function returns the null pointer.

The implementation of list_locate is left as Self-Test Exercise 25, where
you will implement two versions: one where the head pointer and return value

When to Provide Two Versions for a Function
When a nonmember function has a parameter that is a
pointer to a node, and the return value is also a pointer to a
node, you should often have two versions: one version where
the parameter and return value are both , and a
second version where the parameter and return values are
both .

(target == the data in the node that cursor points to)

return cursor

return NULL

node*

const node*

12.1

14.6

-4.8

10.2

NULL

head_ptr
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are  and a second version using . You can use a variation of
the list traversal technique that we have already seen. The variation is useful
when we want to move to a particular node in a linked list and we know the ordi-
nal position of the node (such as position number 1, position number 2, and so
on). Start by pointing a pointer variable, cursor, to the head node of the list. A
loop then moves the cursor forward the correct number of spots, as shown here:

cursor = head_ptr;
for (i = 1; (i < position) && (cursor != NULL); ++i)

cursor = cursor->link( );

Each iteration of the loop executes  to move the
cursor forward one node. Normally, the loop stops when i reaches position,
and cursor points at the correct node. The loop can also stop if cursor
becomes NULL, indicating that position was larger than the number of nodes
on the list.

Copying a Linked List

Our next linked-list function makes a copy of a linked list, providing both head
and tail pointers for the newly created copy. Here is the prototype:

void list_copy
(const node* source_ptr, node*& head_ptr, node*& tail_ptr);
// Precondition: source_ptr is the head pointer of a linked list.
// Postcondition: head_ptr and tail_ptr are the head and tail pointers for
// a new list that contains the same items as the list pointed to by
// source_ptr. NOTE: If there is insufficient dynamic memory to create the
// new list, then bad_alloc is thrown.

For example, suppose that source_ptr points to the following list:

The list_copy function creates a completely separate copy of the three-node list.
The copy of the list has its own three nodes, which also contain the numbers 10,
20, and 30. Through the parameter list, the list_copy function returns pointers to
the head and tail of the newly created list. The original list remains unchanged and
there are no pointers connecting the new list to the original list (therefore the
source_ptr parameter can be declared as ).

The pseudocode begins by setting the new head and tail pointers to NULL, then
handling one special case—the case where the original list is empty (so that
source_ptr is the null pointer). In this case the function simply returns (since
the head and tail pointers have already been set to NULL). The complete
pseudocode is given here:

node* const node*

cursor = cursor->link( )

10 20 30

NULL

source_ptr

const node*
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1. Set head_ptr and tail_ptr to NULL.
2. if (source_ptr == NULL), then return with no further work.
3. Allocate a new node for the head node of the new list that we are creating.

Make both head_ptr and tail_ptr point to this new node, and copy
data from the head node of the original list to our new node.

4. Make source_ptr point to the second node of the original list, then the
third node, then the fourth node, and so on until we have traversed all of
the original list. At each node that source_ptr points to, add one new
node to the tail of the new list, and move the tail pointer forward to the
newly added node, as follows:

4.1 list_insert(tail_ptr, source_ptr->data( ));
4.2 tail_ptr = tail_ptr->link( );

The fourth step of the pseudocode is implemented by this code:

source_ptr = source_ptr->link( );
while (source_ptr != NULL)
{

list_insert(tail_ptr, source_ptr->data( ));
tail_ptr = tail_ptr->link( );
source_ptr = source_ptr->link( );

}

Prior to the loop, we set source_ptr to the second node of the original list
with the assignment statement . If
there is no second node of the original list, then this assignment will set
source_ptr to the null pointer, which is fine since we require the test

 in order for the loop to continue.
The first two statements in the body of the loop are Steps 4.1 and 4.2 in our

pseudocode. Step 4.1 inserts a new node at the tail end of the newly created list.
Step 4.2 moves the tail pointer of the new list forward, to the new end of the list.

At the end of each loop iteration, we move source_ptr to the next node in
the original list with the assignment .

As an example, consider again the three-node list with data 10, 20, and 30.
The first two steps of the pseudocode are carried out and then the source_ptr is
initialized with the statement . At this
point, the function’s pointers look like this:

source_ptr = source_ptr->link( )

source_ptr != NULL

source_ptr = source_ptr->link( )

source_ptr = source_ptr->link( )

10 20 30

NULL

10

head_ptr NULL

source_ptr

tail_ptr
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Notice that we have already copied the first node of the linked list. During the
first iteration of the loop, we copy the second node of the linked list—the node
that is pointed to by source_ptr. The first part of copying the node is a call to
one of our other tools, list_insert, as shown here:

list_insert(tail_ptr, source_ptr->data( ));

This function call adds a new node to the end of the list that we are creating (i.e.,
after the node pointed to by tail_ptr), and the data in the new node is the
number 20 (i.e., the data from source_ptr->data( )). Immediately after the
insertion, the function’s pointers look like this:

The second statement in the loop body moves tail_ptr forward to the new tail
of the new list, as shown here:

tail_ptr = tail_ptr->link( );

This is the usual way that we make a pointer “move to the next node,” as we
have seen in other functions such as list_search. After moving the tail
pointer, the function’s pointers are configured as shown next.

In this example, source_ptr will move to the third node, and the body of the
loop will execute one more time to copy the third node to the new list. Then the
loop will end. The full implementation of list_copy is shown in Figure 5.8.

10 20 30

NULL source_ptr

tail_ptr

10

head_ptr

20

NULL

10 20 30

NULL source_ptr

tail_ptr

10

head_ptr

20

NULL
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Removing a Node at the Head of a Linked List
Our toolkit has three more functions, all of which remove nodes from a linked
list. The first removal function removes the head node, as specified here:

void list_head_remove(node*& head_ptr);
list_head
_remove

// Precondition: head_ptr is the head pointer of a linked list,
// with at least one node.
// Postcondition: The head node has been removed and returned to the
// heap; head_ptr is now the head pointer of the new, shorter linked list.

As with list_head_insert, the head pointer is a reference parameter, since the
function makes the head pointer point to a different node.

Function Implementation

// Precondition: source_ptr is the head pointer of a linked list.
// Postcondition: head_ptr and tail_ptr are the head and tail pointers for a new list that contains
// the same items as the list pointed to by source_ptr. NOTE: If there is insufficient
// dynamic memory to create the new list, then bad_alloc is thrown.
// Library facilities used: cstdlib
{

head_ptr = NULL;
tail_ptr = NULL;

// Handle the case of the empty list.
if (source_ptr == NULL)

return;

// Make the head node for the newly created list, and put data in it.
    list_head_insert(head_ptr, source_ptr->data( ));

tail_ptr = head_ptr;

// Copy the rest of the nodes one at a time, adding at the tail of new list.
source_ptr = source_ptr->link( ); 
while (source_ptr != NULL)
{

list_insert(tail_ptr, source_ptr->data( ));
tail_ptr = tail_ptr->link( );
source_ptr = source_ptr->link( );

}
}

 FIGURE  5.8 Function for Copying a Linked List

void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr)

Loop for Step 4

www.cs.colorado.edu/~main/chapter5/node1.cxx WWW
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At first glance, it seems that the head node can be removed with just two steps:
(1) Move the head pointer to the next node of the list; and (2) return the original
head node to the heap. There is a small flaw with these steps: After we move the
head pointer in Step 1, we no longer have any contact with the original head
node. So, our complete pseudocode requires three steps:

1. Set a pointer named remove_ptr to point to the head node. (This is how
we maintain contact with the original head node.)

2. Move the head pointer so that it points to the second node (or it becomes
NULL if there is no second node).

3. delete remove_ptr. (This returns the original head node to the heap.)
These three steps are implemented in the top of Figure 5.9 on page 253.

Removing a Node That Is Not at the Head
Our second removal function removes a node that is not at the head of a linked
list. The approach is similar to inserting a node in the middle of a linked list. To
remove a midlist node, we must set up a pointer to the node that is just before
the node that we are removing. For example, to remove the 42 from the follow-
ing list, we would need to set up previous_ptr as shown here:

As you can see, previous_ptr does not actually point to the node that we are
deleting (the 42); instead it points to the node that is just before the condemned
node. This is because the link field of the previous node must be reassigned,
hence we need a pointer to this previous node. The removal function’s prototype,
using previous_ptr, is shown next.

void list_remove(node* previous_ptr);
list_remove// Precondition: previous_ptr points to a node in a linked list,

// and this is not the tail node of the list.
// Postcondition: The node after previous_ptr has been removed
// from the linked list.

The steps required by list_remove are similar to removing at the head of a
list. Here is the pseudocode:

10 20 30

NULL

head_ptr

previous_ptr

42
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1. Set a pointer named remove_ptr to point to the condemned node. (This is
the node after the one pointed to by previous_ptr.)

2. Reset the link field of previous_ptr so that it points to the node after
the condemned node (or NULL if the condemned node is the tail node).

3. delete remove_ptr. (This returns the condemned node to the heap.)

As an example, let’s remove the node 42 from the list that we just saw. The
previous_ptr is set to point to the previous node, and then Step 1 of the
removal pseudocode is executed. After Step 1, the pointers look like this:

Step 2 of the pseudocode needs to make the previous node’s link point to the
node that’s after the node we are removing. This step changes the shaded pointer
in the drawing shown here:

At this point, the node containing 42 is no longer part of the linked list. The
list’s first node contains 10, the next node has 20, and following the pointers we
arrive at the third and last node, containing 30. All that remains is Step 3,

, which returns the deleted node to the heap.
The complete implementation is shown in the middle part of Figure 5.9. You

should check that the function works properly, even if the removed node is the
last node of the list. In this case, the link of the previous node should be set to
NULL, which occurs with no need for special code.

Clearing a Linked List
list_clear Our final function removes all the nodes from a linked list, returning them to the

heap. The implementation (list_clear in Figure 5.9) is a loop that repeatedly
calls list_head_remove until all the nodes are gone. Notice that when the final
node of the list is removed, the head pointer will be null, and this stops the loop.
Also, the head pointer is a reference parameter, so that when the function
returns, the actual head pointer in the calling program will be null.

10 20 30

NULL

head_ptr

previous_ptr

42

remove_ptr

10 20 30

NULL

head_ptr

previous_ptr

42

remove_ptr
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Linked-List Toolkit—Putting the Pieces Together
The functions of the toolkit are complete. Figure 5.10 on page 254 shows a
header file for the toolkit, called node1.h. In addition to the documentation, the
header file provides the class definition for the node, plus prototypes for the
functions. In the file, we have defined the value_type to be a double, but as
the documentation indicates, value_type may be changed to another data type. 

Three Function Implementations

// Precondition: head_ptr is the head pointer of a linked list, with at least one node.
// Postcondition: The head node has been removed and returned to the heap;
// head_ptr is now the head pointer of the new, shorter linked list.
{

 node *remove_ptr;

remove_ptr = head_ptr;
head_ptr = head_ptr->link( );
delete remove_ptr;

}

// Precondition: previous_ptr points to a node in a linked list, and this is not the tail node of the list.
// Postcondition: The node after previous_ptr has been removed from the linked list.
{

 node *remove_ptr;

remove_ptr = previous_ptr->link( );
previous_ptr->set_link( remove_ptr->link( ) );
delete remove_ptr;

}

// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: All nodes of the list have been deleted, and head_ptr is now NULL.
// Library facilities used: cstdlib
{

while (head_ptr != NULL)
list_head_remove(head_ptr);

}

 FIGURE  5.9 Functions for Removing Nodes from a Linked List

void list_head_remove(node*& head_ptr)

This statement
causes head_ptr
to point to the
second node (or it
becomes NULL if there
is no second node).

void list_remove(node* previous_ptr)

void list_clear(node*& head_ptr)

www.cs.colorado.edu/~main/chapter5/node1.cxx WWW
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The implementations of the functions should be placed in a separate imple-
mentation file called node1.cxx. We do not provide a listing of this file, but you
can build it with the implementations from Figures 5.5 through 5.9.

Using the Linked-List Toolkit
The purpose of the node class and its functions is to allow a container class to
store elements on a basic linked list with the simplicity and clarity of using an
array. In addition, having the functions written and thoroughly tested once will
allow us to use the functions to implement many different container classes with
high confidence in their reliability.

So, any programmer can use our node and the toolkit. The programmer
defines the value_type according to his or her need and places the include
directive in the program:

#include "node1.h"

The node class and all the functions (which are in the namespace
main_savitch_5) can then be used to build and manipulate linked lists. This is
what we will do in the rest of the chapter, providing two classes that use the
linked-list toolkit.

Finally, keep in mind that the programmer who uses a class that was built with
the linked-list toolkit does not need to know about the underlying linked lists. 

A Header File
// FILE: node1.h (part of the namespace main_savitch_5)
// PROVIDES: A class for a node in a linked list and a collection of functions for 
// manipulating linked lists
//
// TYPEDEF for the node class:
// Each node of the list contains a piece of data and a pointer to the next node. The 
// type of the data is defined as node::value_type in a typedef statement. The value_type
// may be any of the C++ built-in types (int, char, etc.), or a class with a default constructor,
// a copy constructor, an assignment operator, and a test for equality.
//
// CONSTRUCTOR for the node class:
//
// Postcondition: The node contains the specified data and link.
// NOTE: The init_data parameter has a default value that is obtained from the default
// constructor of the value_type. In the ANSI/ISO Standard, this notation is also allowed
// for the built-in types, providing a default value of zero. The init_link has a default
// value of NULL. (continued)

 FIGURE  5.10 Header File for the Node Class and the Linked-List Toolkit

node(const value_type& init_data, node* init_link)
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 (FIGURE  5.10 continued)

// NOTE:
// Some of the functions have a return value that is a pointer to a node. Each of these 
// functions comes in two versions: a non-const version (where the return value is )
// and a const version (where the return value is ).
// EXAMPLES:
// const node *c;
// c->link( ) activates the const version of link
// list_search(c, ... calls the const version of list_search
// node *p;
// p->link( ) activates the non-const version of link
// list_search(p, ... calls the non-const version of list_search
//
// MEMBER FUNCTIONS for the node class:
//
// Postcondition: The node now contains the specified new data.
//
//
// Postcondition: The node now contains the specified new link.
//
//
// Postcondition: The return value is the data from this node.
//
// <----- const version
// and
//  <----- non-const version
// See the previous note about the const version and non-const versions.
// Postcondition: The return value is the link from this node.
//
// FUNCTIONS in the linked-list toolkit:
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The value returned is the number of nodes in the linked list. 
//
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: A new node containing the given entry has been added at the head of
// the linked list; head_ptr now points to the head of the new, longer linked list.
//
//
// Precondition: previous_ptr points to a node in a linked list.
// Postcondition: A new node containing the given entry has been added after the node
// that previous_ptr points to.
//

(continued)

node*
const node*

void set_data(const value_type& new_data)

void set_link(node* new_link)

value_type data( ) const

const node* link( ) const

node* link( )

size_t list_length(const node* head_ptr)

void list_head_insert(node*& head_ptr, const node::value_type& entry) 

void list_insert(node* previous_ptr, const node::value_type& entry) 
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 (FIGURE  5.10 continued)

//
//
// and
//
// See the previous note about the const version and non-const versions.
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The pointer returned points to the first node containing the specified
// target in its data field. If there is no such node, the null pointer is returned. 
//
//
// and
//
// See the previous note about the const version and non-const versions.
// Precondition: head_ptr is the head pointer of a linked list, and position > 0.
// Postcondition: The pointer returned points to the node at the specified position in the
// list. (The head node is position 1, the next node is position 2, and so on.) If there is no
// such position, then the null pointer is returned.
//
//
// Precondition: head_ptr is the head pointer of a linked list, with at least one node.
// Postcondition: The head node has been removed and returned to the heap;
// head_ptr is now the head pointer of the new, shorter linked list.
//
//
// Precondition: previous_ptr points to a node in a linked list, and this is not the tail node of 
// the list.
// Postcondition: The node after previous_ptr has been removed from the linked list.
//
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: All nodes of the list have been returned to the heap, and the head_ptr is 
// now NULL.
//
//
// Precondition: source_ptr is the head pointer of a linked list.
// Postcondition: head_ptr and tail_ptr are the head and tail pointers for a new list that
// contains the same items as the list pointed to by source_ptr. 
//
// DYNAMIC MEMORY usage by the functions: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc: 
// the node constructor, list_head_insert, list_insert, list_copy.

(continued)

const node* list_search
(const node* head_ptr, const node::value_type& target) 

node* list_search(node* head_ptr, const node::value_type& target) 

const node* list_locate(const node* head_ptr, size_t position) 

node* list_locate(node* head_ptr, size_t position) 

void list_head_remove(node*& head_ptr) 

void list_remove(node* previous_ptr) 

void list_clear(node*& head_ptr)

void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr) 
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 (FIGURE  5.10 continued)

#ifndef MAIN_SAVITCH_NODE1_H
#define MAIN_SAVITCH_NODE1_H
#include <cstdlib> // Provides size_t and NULL

namespace main_savitch_5
{

class node
{
public:

// TYPEDEF
typedef double value_type;
// CONSTRUCTOR
node(const value_type& init_data=value_type( ), node* init_link=NULL)

{ data_field = init_data; link_field = init_link; }
// MODIFICATION MEMBER FUNCTIONS
node* link( ) { return link_field; }
void set_data(const value_type& new_data) { data_field = new_data; }
void set_link(node* new_link) { link_field = new_link; }
// CONST MEMBER FUNCTIONS
value_type data( ) const { return data_field; }
const node* link( ) const { return link_field; }

private:
value_type data_field;
node *link_field;

};

// FUNCTIONS for the linked-list toolkit
std::size_t list_length(const node* head_ptr);
void list_head_insert(node*& head_ptr, const node::value_type& entry); 
void list_insert(node* previous_ptr, const node::value_type& entry);
node* list_search(node* head_ptr, const node::value_type& target);
const node* list_search

(const node* head_ptr, const node::value_type& target);
node* list_locate(node* head_ptr, std::size_t position);
const node* list_locate(const node* head_ptr, std::size_t position);
void list_head_remove(node*& head_ptr);
void list_remove(node* previous_ptr);
void list_clear(node*& head_ptr);
void list_copy(const node* source_ptr, node*& head_ptr, node*& tail_ptr);

}

#endif
www.cs.colorado.edu/~main/chapter5/node1.h WWW



258 Chapter 5 / Linked Lists

Self-Test Exercises for Section 5.2

13. Suppose you want to use a linked list where the items are strings from
the Standard Library string class. How would you need to change the
node1.h header file?

14. Write the pattern for a loop that traverses the nodes of a linked list.
15. When should a node pointer be a value parameter in a function’s param-

eter list?
16. Suppose that locate_ptr is a pointer to a node in a linked list (and it is

not the null pointer). Write a statement that will make locate_ptr move
to the next node in the list. What does your statement do if locate_ptr was
already pointing to the last node in the list?

17. Suppose that head_ptr is a head pointer for a linked list of numbers.
Write a few lines of code that will insert the number 42 as the second
item of the list. (If the list was originally empty, then 42 should be added
as the first node instead of the second.)

18. Write a statement to correctly set the tail pointer of a list when a new first
node has been added to the list. Assume that head_ptr points to the new
first node.

19. Which of the toolkit functions use new to allocate a new node? Which
use delete to return a node to the heap?

20. What is the general rule to follow when using the delete operator with
node pointers?

21. Suppose that head_ptr is a head pointer for a linked list of numbers.
Write a few lines of code that will remove the second item of the list. (If
the list originally had only one item, then remove that item instead; if it
had no items, then leave the list empty.)

22. Suppose that head_ptr is a head pointer for a linked list with just one
node. What will head_ptr be after list_head_remove(head_ptr)?

23. Rewrite the list_insert with just one line of code in the implementation.
24. Implement this function:

void list_piece(
const node* start_ptr, const node* end_ptr, 
node*& head_ptr, node*& tail_ptr
)

// Precondition: start_ptr and end_ptr are pointers to nodes on the same
// linked list, with the start_ptr node at or before the end_ptr node.
// Postcondition: head_ptr and tail_ptr are the head and tail pointers
// for a new list that contains the items from start_ptr up to but not
// including end_ptr. The end_ptr may also be NULL, in which case the
// new list contains elements from start_ptr to the end of the list.

25. Implement two versions of the list_locate function (one where the
parameter is  and a second version using ).node* const node*
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5.3 THE BAG CLASS WITH A LINKED LIST

We’re ready to write a container class that is implemented with a linked list.
We’ll start with the familiar bag class, which we have previously implemented
with an array (Section 3.1) and a dynamic array (Section 4.3). So this is our
third bag implementation. At the end of this chapter we’ll compare the advan-
tages and disadvantages of these different implementations. But first, let’s see
how a linked list is used in our third bag implementation.

Our Third Bag—Specification
The advantage of using a familiar class is that you already know the specifica-
tion. The documentation for the header file is nearly identical to our previous
bag. The major difference is that our new bag has no worries about capacity:
There is no default capacity and no need for a reserve function that reserves a
specified capacity. This is because our planned implementation—storing the
bag’s items in a linked list—can easily grow and shrink by adding and removing
nodes from the linked list. Of course, the programmer who uses the new bag
class does not need to know about linked lists, and the documentation of our
new header file will make no mention of linked lists.

The new bag will also have one other minor change. Just for fun, we’ll add a
new member function called grab, which returns a randomly selected item from
a bag. In Programming Project 1 on page 287 we’ll use the grab function in a
program that generates some silly sentences.

Our Third Bag—Class Definition
Our plan has been laid. We will implement the new bag by storing the items in a
linked list. The class will have two private member variables: (1) a head pointer
that points to the head of a linked list that contains the items of the bag; and (2)
a variable that keeps track of the length of the list. The second member variable
isn’t really needed since we could call list_length to determine the length of
the list. But when we keep the length in a member variable, then the length can
be quickly determined by examining the variable (a constant time operation).
This is in contrast to actually counting the length by traversing the list (a linear
time operation). In any case, the private members of our class are shown here:

class bag
{
public:

typedef std::size_t size_type;
...

private:
// List head pointer

 // Number of nodes on the list
};

node *head_ptr;
size_type many_nodes;
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Keep in mind that our design is not the only way to implement a bag. In fact, we
have already seen two other implementations. To avoid confusion over how we
are using our linked list, we now make an explicit statement of the invariant for
our third design of the bag class:

Having decided on our class definition, we can write the header file for the
third bag. (See Figure 5.11.) In this header file, we use the node data type from
the previous section. Therefore, before the bag’s class definition we need the
include directive . This allows us to use the node type
within our bag class definition. When we use this node class, we may use the
name node by itself (since the bag and node are both in the same
main_savitch_5 namespace). But if the bag were not in this same namespace,
then the full name, main_savitch_5::node, would be required.

How to Make the Bag value_type Match the Node value_type

The bag’s class definition also depends on the data type of the items in the bag.
This data type, called node::value_type, is already defined in node1.h, so
there is no absolute need for a second definition of value_type in the bag’s
class definition. However, the programmers who use our bag don’t know about
nodes, so for their benefit it’s reasonable to go ahead and define value_type as
part of the bag, too. The beginning of the bag’s definition looks this way:

#include "node1.h" // Provides node class
...
class bag
{
public:

...

The definition makes bag::value_type the same as node::value_type, so
that a programmer who uses the bag can write bag::value_type without hav-
ing to know about the implementation details of nodes and linked lists.

Invariant for the Third Bag Class

1. The items in the bag are stored in a linked list.
2. The head pointer of the list is stored in the member vari-

able head_ptr.
3. The total number of items in the list is stored in the mem-

ber variable many_nodes.

#include "node1.h"

typedef node::value_type value_type;
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A Header File
// FILE: bag3.h (part of the namespace main_savitch_5)
// CLASS PROVIDED: bag (a collection of items, where each item may appear multiple times)
//
// TYPEDEFS for the bag class:
//
// bag::value_type is the data type of the items in the bag. It may be any of the C++
// built-in types (int, char, etc.), or a class with a default constructor, a copy constructor, 
// an assignment operator, and a test for equality (x == y).
//
//
// bag::size_type is the data type of any variable that keeps track of how many items are
// in a bag.
//
// CONSTRUCTOR for the bag class:
//
// Postcondition: The bag is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the bag class:
//
// Postcondition: All copies of target have been removed from the bag. The return value
// is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy of target has been removed from
// the bag; otherwise the bag is unchanged. A true return value indicates that one copy
// was removed; false indicates that nothing was removed.
//
//
// Postcondition: A new copy of entry has been inserted into the bag.
//
//
// Postcondition: Each item in addend has been added to the bag.
//
// CONSTANT MEMBER FUNCTIONS for the bag class:
//
// Postcondition: The return value is the total number of items in the bag.
//
//
// Postcondition: The return value is the number of times target is in the bag.
//
//
// Precondition: size( ) > 0.
// Postcondition: The return value is a randomly selected item from the bag. (continued)

 FIGURE  5.11 Header File for Our Third Bag Class

typedef _____ value_type

typedef _____ size_type

bag( )

size_type erase(const value_type& target)

bool erase_one(const value_type& target)

void insert(const value_type& entry) 

void operator +=(const bag& addend)

size_type size( ) const

size_type count(const value_type& target) const

value_type grab( ) const
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 (FIGURE  5.11 continued)

// NONMEMBER FUNCTIONS for the bag class:
//
// Postcondition: The bag returned is the union of b1 and b2.
// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.
// DYNAMIC MEMORY USAGE by the bag: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// The constructors, insert, operator +=, operator +, and the assignment operator.

#ifndef MAIN_SAVITCH_BAG3_H
#define MAIN_SAVITCH_BAG3_H
#include <cstdlib> // Provides size_t and NULL
#include "node1.h" // Provides node class
namespace main_savitch_5
{

class bag
{
public:

// TYPEDEFS
typedef std::size_t size_type;
typedef node::value_type value_type;
// CONSTRUCTORS and DESTRUCTOR
bag( );

// MODIFICATION MEMBER FUNCTIONS
size_type erase(const value_type& target);
bool erase_one(const value_type& target);
void insert(const value_type& entry);
void operator +=(const bag& addend);

// CONSTANT MEMBER FUNCTIONS
size_type size( ) const { return many_nodes; }
size_type count(const value_type& target) const;
value_type grab( ) const;

private:
node *head_ptr; // List head pointer 
size_type many_nodes; // Number of nodes on the list

};

// NONMEMBER FUNCTIONS for the bag class:
bag operator +(const bag& b1, const bag& b2);

}
#endif

bag operator +(const bag& b1, const bag& b2) 

Prototype for the destructor 

Prototype for the overloaded 
operator =

Prototype for the copy 
constructor

bag(const bag& source); 
~bag( ); 

void operator =(const bag& source); 

www.cs.colorado.edu/~main/chapter5/bag3.h WWW
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If we need a different type of item, we can change node::value_type to the
required new type and recompile. The bag::value_type will then match the
new node::value_type. For example, suppose we want a bag of strings using
the Standard Library string class (from <string>). In order to obtain the bag of
strings, the start of our node definition will be:

#include <string>
class node
{
public:

typedef std::string value_type;
...

In this case, the node::value_type is defined as the string class, so that
bag::value_type will also be a string. By the way, when we get to the imple-
mentation details, we will use examples where the items are strings; keep in
mind, however, that the underlying item type could easily be changed.

Following the Rules for Dynamic Memory Usage in a Class

Our new bag is a class that uses dynamic memory, therefore it must follow the
four rules that we outlined in “Prescription for a Dynamic Class” on page 195.
Let’s review these rules:

1. Some of the member variables of the class are pointers. In particular, our
new bag has a member variable, head_ptr, that is a head pointer of a
linked list.

2. Member functions allocate and release dynamic memory as needed. We
will see this when the bag’s member functions are implemented. For
example, the bag’s insert function will allocate a new node.

3. The automatic value semantics of the class is overridden. In other words,
the class must implement a copy constructor and an assignment operator
that correctly copy one bag to another. You can see that the bag’s class
definition in Figure 5.11 on page 262 accounts for this by including the
prototypes for the copy constructor and the assignment operator.

4. The class has a destructor. Again, the bag’s class definition in Figure 5.11
provides for this with the destructor’s prototype.

Also notice that the bag’s documentation does not list a destructor, since the
programmer who uses the class does not normally make explicit calls to the
destructor. But our planned implementation uses dynamic memory, so a destruc-
tor will be part of the class.



264 Chapter 5 / Linked Lists

The Third Bag Class—Implementation

With our design in mind, we can implement each of the member functions, start-
ing with the constructors. The key to simple implementations is to use the
linked-list functions whenever possible.

Constructors. The default constructor sets head_ptr to be the null pointer
(indicating the empty list) and sets many_nodes to zero. The copy constructor
uses list_copy to make a separate copy of the source list, and many_nodes is
then copied from the source to the newly constructed bag. Only a few state-
ments are needed for the copy constructor, as shown here:

bag::bag(const bag& source)
constructors // Library facilities used: node1.h

{
node *tail_ptr; // Needed for argument to list_copy

list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

}

Overloading the assignment operator. The overloaded assignment operator
needs to change an existing bag so that it is the same as some other bag. The main
difference between this and the copy constructor is that we must remember that
when the assignment operator begins, the bag already has a linked list, and this
linked list must be returned to the heap. With this in mind, you might write the
implementation shown here, with the highlighted statement returning the exist-
ing linked list to the heap:

void bag::operator =(const bag& source)
// Library facilities used: node1.h
{

node *tail_ptr; // Needed for argument to list_copy

many_nodes = 0;

list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

}

In fact, we actually did write this implementation for our first attempt on the
assignment operator. Then we remembered the programming tip from Chapter
4: “How to Check for Self-Assignment” on page 188. For a bag b, it is possible
for a programmer to write . Perhaps you think this is a pointless assign-
ment statement, but nevertheless the operator should work correctly, assigning
b to be equal to its current value—that is, leave the bag unchanged. But instead,
when the buggy assignment operator is activated with , the first thing that

list_clear(head_ptr);

WARNING!
Can you find
the bug?

b = b

b = b
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happens is that the bag b (which activated the operator) is cleared. Once that list
is cleared, there is no hope of leaving the bag unchanged.

The solution is to check for this special “self-assignment” at the start of the
operator. If we find that an assignment such as  is occurring, then we
will return immediately. We can check for this condition with the test

, described on page 188. This is done in the highlighted state-
ment in this correct implementation:

void bag::operator =(const bag& source)
the correct 
assignment
operator

// Library facilities used: node1.h
{

node *tail_ptr; // Needed for argument to list_copy

list_clear(head_ptr);
many_nodes = 0;

list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

}

One other point about the implementation: After we clear the linked list, we also
set many_nodes to zero. The reason for this is that we want the bag to be valid
before calling list_copy. In general, we will ensure that the bag is valid before
calling any function that allocates dynamic memory; otherwise debugging is
difficult (see “How to Allocate Memory in a Member Function” on page 191).

THE ASSIGNMENT OPERATOR CAUSES TROUBLE WITH LINKED LISTS

When a class uses a linked list, you must take care with the assignment operator.
Part of the care is checking for the special situation of “self-assignment” such as

. The easiest way to handle self-assignment is to check for it at the start of
the assignment operator and simply return with no work if self-assignment is
discovered.

Care is also needed before allocating dynamic memory. Before calling a function
that allocates dynamic memory, make sure that the invariant of your class is valid.

The destructor. Our documentation, which is meant for other programmers,
never mentioned a destructor, but a destructor is needed because our particular
implementation uses dynamic memory. The destructor is responsible for
returning all dynamic memory to the heap. The job is accomplished by
list_clear, shown next.

b = b

this == &source

if (this == &source)
return;

PITFALL ��  

b = b
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bag::~bag( )
destructor // Library facilities used: node1.h

{
list_clear(head_ptr);
many_nodes = 0;

}

There is no absolute need for the second statement, , since the
bag is not supposed to be used after the destructor has been called. But setting
many_nodes to zero does no harm and in some ways makes it clear that we are
“zeroing out the list.”

The erase_one member function. There are two approaches to implementing
the erase_one function. The first approach uses the toolkit’s removal func-
tions—using list_head_remove if the removed item is at the head of the list,
and using the ordinary list_remove to remove an item that is farther down the
line. This first approach is fine, although it does require a bit of thought because
list_remove requires a pointer to the node that is just before the item that you
want to remove. We could certainly find this “before” node, but not by using the
toolkit’s list_search function.

The second approach actually uses list_search to obtain a pointer to the
node that contains the item to be deleted. For example, suppose our target is the
string mynie in the bag shown here:

Our approach begins by setting a local variable named target_ptr to point to
the node that contains our target. This is accomplished with the function call

. After the function call,
the target_ptr is set this way:

Now we can remove the target from the list with two more steps: (1) Copy
the data from the head node to the target node, as shown here:

This returns all 
nodes to the heap
and sets head_ptr
to NULL.

many_nodes = 0

moe

NULL

head_ptr
myniemeenieeenie

targetmany_nodes

4 mynie

target_ptr = list_search(head_ptr, target)

moe

NULL

head_ptr myniemeenieeenie

target target_ptrmany_nodes

4 mynie
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After this step, we have certainly removed the target, but we are left with two
eenies. So, we proceed to a second step: (2) Use list_head_remove to remove
the head node (that is, one of the copies of eenie). These steps are all imple-
mented in the erase_one function shown in Figure 5.12. The only other steps in
the implementation are performing a test to ensure that the target is actually in
the bag and subtracting one from many_nodes.

HOW TO CHOOSE BETWEEN APPROACHES

We had two possible approaches for the erase_one function. How do we select
the best approach? Normally, when two approaches have equal efficiency, we will
choose the approach that makes the best use of the toolkit. This saves us work and
also reduces the chance of new errors from writing new code to do an old job. In
the case of erase_one we chose the second approach because it made better use
of list_search.

moe

NULL

head_ptr

eeniemeenieeenie

target target_ptrmany_nodes

4 mynie

Copy an item

A Function Implementation

// Library facilities used: cstdlib, node1.h
{

node *target_ptr;
target_ptr = list_search(head_ptr, target);
if (target_ptr == NULL)

return false; // target isn’t in the bag, so no work to do
target_ptr->set_data( head_ptr->data( ) );
list_head_remove(head_ptr);
--many_nodes;
return true;

}

 FIGURE  5.12 A Function to Remove an Item from a Bag

bool bag::erase_one(const value_type& target) 

www.cs.colorado.edu/~main/chapter5/bag3.cxx WWW

PROGRAMMING TIP ��  
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The count member function. Two possible approaches come to mind for the
count member function. One of the approaches simply steps through the linked
list one node at a time, checking each piece of data to see whether it is the sought-
after target. We count the occurrences of the target and return the answer. The
second approach uses list_search to find the first occurrence of the target, then
uses list_search again to find the next occurrence, and so on until we have
found all occurrences of the target. Our second approach for count makes better
use of the toolkit, so that is the approach we will take.

As an example of the second approach to the count function, suppose we
want to count the number of occurrences of meenie in this bag:

We’ll use two local variables: answer, which keeps track of the number of
occurrences that we have seen so far, and cursor, which is a pointer to a node in
the list. We initialize answer to zero, and we use list_search to make cursor
point to the first occurrence of the target (or to be NULL if there are no occur-
rences). After this initialization, we have this situation:

Next, we enter a loop. The loop stops when cursor becomes NULL, indicat-
ing that there are no more occurrences of the target. Each time through the loop
we do two steps: (1) Add one to answer, and (2) move cursor to point to the
next occurrence of the target (or to be NULL if there are no more occurrences).
Can we use the toolkit to execute Step 2? At first, it might seem that the toolkit
is of no use, since list_search finds the first occurrence of a given target. But
there is an approach that will use list_search together with the cursor to find
the next occurrence of the target. The approach begins by moving cursor to the
next node in the list, using the statement . In our
example, this results in the following situation:

meenie

NULL

head_ptr

myniemeenieeenie

targetmany_nodes

4 meenie

meenie

NULL

head_ptr

myniemeenieeenie

target cursormany_nodes

4 meenie

answer

0

cursor = cursor->link( )
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As you can see, cursor now points to a node in the middle of a linked list. But
any time that a pointer points to a node in the middle of a linked list, we can pre-
tend that the pointer is a head pointer for a smaller linked list. In our example,
cursor is a head pointer for a two-item list containing the strings mynie and
meenie. Therefore, we can use cursor as an argument to list_search in the
assignment statement . This as-
signment moves cursor to the next occurrence of the target. This occurrence
could be at the cursor’s current spot, or it could be farther down the line. In our
example, the next occurrence of meenie is farther down the line, so cursor is
moved as shown here:

Eventually there will be no more occurrences of the target and cursor be-
comes NULL, ending the loop. At that point the function returns answer. The
complete implementation of count is shown at the top of Figure 5.13 on
page 270.

Finding the Next Occurrence of an Item

The situation: A pointer named cursor points to a node in
a linked list that contains a particular item called target.

The task: Make cursor point to the next occurrence of
target (or NULL if there are no more occurrences).

The solution:
cursor = cursor->link( );
cursor = list_search(cursor, target);

meenie

NULL

head_ptr

myniemeenieeenie

target cursormany_nodes

4 meenie

answer

1

cursor = list_search(cursor, target)

meenie

NULL

head_ptr

myniemeenieeenie

target cursormany_nodes

4 meenie

answer

1
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The grab member function. The bag has a new grab function, specified here:

value_type grab( ) const;
// Precondition: size( ) > 0.
// Postcondition: The return value is a randomly selected item from the bag.

The implementation starts by generating a random integer between 1 and the
size of the bag. The random integer can then be used to select a node from the
bag, and we’ll return the data from the selected node. So, the body of the func-
tion will look something like this:

Two Function Implementations

// Library facilities used: cstdlib, node1.h
{

size_type answer;
const node *cursor; // This is const node* because it won’t change the list’s nodes.

answer = 0;
cursor = list_search(head_ptr, target);
while (cursor != NULL)
{

// Each time that cursor is not NULL, we have another occurrence of target, so we
// add one to answer and then move cursor to the next occurrence of the target.
++answer;
cursor = cursor->link( );
cursor = list_search(cursor, target);

}
return answer;

}

// Library facilities used: cassert, cstdlib, node1.h
{

size_type i;
const node *cursor; // This is const node* because it won’t change the list’s nodes.

 assert(size( ) > 0);
i = (rand( ) % size( )) + 1;
cursor = list_locate(head_ptr, i);
return cursor->data( );

}

 FIGURE  5.13 Implementations of Two Bag Member Functions

bag::size_type bag::count(const value_type& target) const

bag::value_type bag::grab( ) const

www.cs.colorado.edu/~main/chapter5/bag3.cxx WWW
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i = some random integer between 1 and the size of the bag;
cursor = list_locate(head_ptr, i);
return cursor->data( );

Of course the trick is to generate “some random integer between 1 and the size
of the bag.” The rand function from the C++ Standard Library can help:

int rand( );
// Postcondition: The return value is a non-negative pseudorandom integer.

the rand functionThe values returned by rand are not truly random. They are generated by a simple
rule (which is discussed in Chapter 2, Programming Project 11, on page 93). But
the numbers appear random and so the function is referred to as a pseudo-
random number generator. For most applications, a pseudorandom number
generator is a close enough approximation to a true random number generator.
In fact, a pseudorandom number generator has one advantage over a true ran-
dom number generator: The sequence of numbers it produces is repeatable. If
run twice with the same initial conditions, a pseudorandom number generator
will produce exactly the same sequence of numbers. This is handy when you are
debugging programs that use these sequences. When an error is discovered, the
corrected program can be tested with the same sequence of pseudorandom num-
bers that produced the original error.

But at this point we don’t need a complete memoir on pseudorandom num-
bers. All we need is a way to use the rand function to generate a number between
1 and the size of the bag. The following assignment statement does the trick:

i = (rand( ) % size( )) + 1; // Set i to a random number from
 // 1 to the size of the bag.

the % operatorLet’s look at how the expression works. When x >= 0 and y > 0 are integers,
then x % y is the remainder when x is divided by y. The remainder could be as
small as 0 or as large as y - 1. Therefore, the expression 
lies somewhere in the range from 0 to size( ) - 1. Since we want a number
from 1 to size( ), we add one, resulting in .
This assignment statement is used in the complete grab implementation shown at
the bottom part of Figure 5.13.

The Third Bag Class—Putting the Pieces Together
The remaining member functions are straightforward. For example, the size
function just returns many_nodes; this is implemented as an inline member
function in the header file of Figure 5.11 on page 261. The other bag functions
all are implemented in the complete implementation file of Figure 5.14.

Take particular notice of how the bag’s += operator is implemented. The
implementation makes a copy of the linked list of the addend. This copy is then
attached at the front of the linked list for the bag that’s being added to. The bag’s
+ operator is implemented by way of the += operator.

rand( ) % size( )

i = (rand( ) % size( )) + 1
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Self-Test Exercises for Section 5.3

26. In a linked-list implementation of a bag, why is it a good idea to typedef
node::value_type as value_type in the bag’s definition?

27. Suppose you want to use a bag where the items are strings from the Stan-
dard Library string class. How would you do this?

28. Write a few lines of code to declare a bag of strings and place the strings
squash and handball in the bag. Then grab and print a random string
from the bag. Finally, print the number of items in the bag.

29. Which is preferable: an implementation that uses previously defined
linked-list functions, or manipulating a linked list directly? 

30. Suppose that p is a pointer to a node in a linked list and that p->data( )
has a copy of an item called d. Write two lines of code that will move p
to the next node that contains a copy of d (or set p to NULL if there is no
such node). How can you combine your two statements into just one?

31. Describe the steps taken by count if the target is not in the bag.
32. Examine our erase function on page 273. What goes wrong if we move

the list_head_remove function call two lines earlier?
33. What C++ function generates a pseudorandom integer?  How might this

be advantageous to a true random number generator?
34. Write an expression that will give a random integer between -10 and 10.
35. Do big-O time analyses of the bag’s functions.

An Implementation File
// FILE: bag3.cxx
// CLASS implemented: bag (See bag3.h for documentation.)
// INVARIANT for the bag class:
// 1. The items in the bag are stored in a linked list.
// 2. The head pointer of the list is stored in the member variable head_ptr.
// 3. The total number of items in the list is stored in the member variable many_nodes.

#include <cassert> // Provides assert
#include <cstdlib> // Provides NULL, rand, size_t
#include "node1.h" // Provides node and the linked-list functions
#include "bag3.h"
using namespace std;

namespace main_savitch_5
{ (continued)

 FIGURE  5.14 Implementation File for Our Third Bag Class
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 (FIGURE  5.14 continued)

// Library facilities used: cstdlib
{

 head_ptr = NULL;
many_nodes = 0;

}

// Library facilities used: node1.h
{

node *tail_ptr; // Needed for argument of list_copy
list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

}

// Library facilities used: node1.h
{

list_clear(head_ptr);
many_nodes = 0;

}

// Library facilities used: cstdlib, node1.h
{

size_type answer = 0;
node *target_ptr;

target_ptr = list_search(head_ptr, target);
while (target_ptr != NULL)
{

// Each time that target_ptr is not NULL, we have another occurrence of target.
// We remove this target using the same technique that was used in erase_one.
target_ptr->set_data( head_ptr->data( ) );
target_ptr = target_ptr->link( );
target_ptr = list_search(target_ptr, target);
list_head_remove(head_ptr);
--many_nodes;
++answer;

}
return answer;

}

(continued)

bag::bag( )

bag::bag(const bag& source)

bag::~bag( )

bag::size_type bag::count(const value_type& target) const
See the implementation in Figure 5.13 on page 270.

bag::size_type bag::erase(const value_type& target) 

bool bag::erase_one(const value_type& target) 
See the implementation in Figure 5.12 on page 267.
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 (FIGURE  5.14 continued)

// Library facilities used: node1.h
{

list_head_insert(head_ptr, entry);
++many_nodes;

}

// Library facilities used: cstdlib, node1.h
{

node *copy_head_ptr;
node *copy_tail_ptr;

if (addend.many_nodes > 0)
{

list_copy(addend.head_ptr, copy_head_ptr, copy_tail_ptr);
copy_tail_ptr->set_link(head_ptr);
head_ptr = copy_head_ptr;
many_nodes += addend.many_nodes;

}
}

// Library facilities used: node1.h
{

node *tail_ptr; // Needed for argument to list_copy

if (this == &source)
return;

list_clear(head_ptr);
many_nodes = 0;
list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

}

{
bag answer;

answer += b1;
answer += b2;
return answer;

}
}

bag::value_type bag::grab( ) const
See the implementation in Figure 5.13 on page 270.

void bag::insert(const value_type& entry)

void bag::operator +=(const bag& addend)

void bag::operator =(const bag& source)

bag operator +(const bag& b1, const bag& b2)

www.cs.colorado.edu/~main/chapter5/bag3.cxx WWW
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5.4 PROGRAMMING PROJECT: 
THE SEQUENCE CLASS WITH A LINKED LIST

In Section 3.2 on page 124 we gave a specification for a sequence class that was
implemented using an array. Now you can reimplement this class using a linked
list as the data structure rather than an array. Start by rereading the class’s speci-
fication on page 124, then return here for some implementation suggestions.

The Revised Sequence Class—Design Suggestions

Using a linked list to implement the sequence class seems natural. We’ll keep
the items stored in a linked list, in their sequence order. The “current” item on
the list can be maintained by a member variable that points to the node that con-
tains the current item. When the start function is activated, we set this “current
pointer” to point to the first node of the linked list. When advance is activated,
we move the “current pointer” to the next node on the linked list.

With this in mind, we propose five private member variables for the new
sequence class. The first variable, many_nodes, keeps track of the number of
nodes in the list. The other four member variables are node pointers:

• head_ptr and tail_ptr—the head and tail pointers of the linked list. If
the sequence has no items, then these pointers are both NULL. The reason
for the tail pointer is the attach function. Normally this function adds a
new item immediately after the current node. But if there is no current
node, then attach places its new item at the tail of the list, so it makes
sense to keep a tail pointer around.

• cursor—points to the node with the current item (or NULL if there is no
current item).

• precursor—points to the node before current item (or NULL if there is no
current item or if the current item is the first node). Can you figure out
why we propose a precursor? The answer is the insert function, which
normally adds a new item immediately before the current node. But the
linked-list functions have no way of inserting a new node before a speci-
fied node. We can only add new nodes after a specified node. Therefore,
the insert function will work by adding the new item after the precursor
node—which is also just before the cursor node.

For example, suppose that a list contains four strings, with the current item at
the third location. The member variables of the object might appear as shown in
the following drawing.
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Notice that cursor and precursor are pointers to nodes rather than actual
nodes.

what is the 
invariant of the 
new sequence 
class?

Start your implementation by writing the header file and the invariant for the
new sequence class. You might even write the invariant in large letters on a sheet
of paper and pin it up in front of you as you work. Each of the member functions
count on that invariant being true when the function begins. And each function
is responsible for ensuring that the invariant is true when the function finishes.

Keep in mind the four rules for a class that uses dynamic memory:

1. Some of your member variables are pointers. In fact, for your sequence
class, four member variables are pointers.

2. Member functions allocate and release memory as needed. Don’t forget
to write documentation indicating which member functions allocate
dynamic memory so that experienced programmers can deal with failures.

3. You must override the automatic copy constructor and the automatic
assignment operator. Otherwise two different sequences end up with
pointers to the same linked list. Some hints on these implementations are
given in the following “value semantics” section.

4. The class requires a destructor, which is responsible for returning all
dynamic memory to the heap.

The Revised Sequence Class—Value Semantics

The value semantics of your new sequence class consists of a copy constructor
and an assignment operator. The primary job of both these functions is to make
one sequence equal to a new copy of another. The sequence that you are copying
is called the “source,” and we suggest that you handle the copying in these
cases:

1. If the source sequence has no current item, then simply copy the source’s
linked list with list_copy. Then set both precursor and cursor to the
null pointer.

2. If the current item of the source sequence is its first item, then copy the
source’s linked list with list_copy. Then set precursor to null, and set
cursor to point to the head node of the newly created linked list.

moe

NULL

head_ptr

myniemeenieeenie

precursor cursormany_nodes

4

tail_ptr
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3. If the current item of the source sequence is after its first item, then copy
the source’s linked list in two pieces using list_piece from Self-Test
Exercise 24 on page 258. The first piece that you copy goes from the head
pointer to the precursor; the second piece goes from the cursor to the tail
pointer. Put these two pieces together by making the link field of the pre-
cursor node point to the cursor node. The reason for copying in two sepa-
rate pieces is to easily set the precursor and cursor.

After copying the linked list, be sure to set many_nodes to equal the number of
nodes in the source. Also, beware of the potential pitfalls that accompany the
implementation of your assignment operator (see “The Assignment Operator
Causes Trouble with Linked Lists” on page 265).

To test the new sequence class, you can use the same interactive test program
that you used to test your original sequence (see “Interactive Test Programs” on
page 133).

Self-Test Exercises for Section 5.4
36. Why is a precursor node pointer necessary in the linked-list implementa-

tion of a sequence class? 
37. Suppose a sequence contains your three favorite strings, and the current

item is the first item in the sequence. Draw the member variables of this
sequence using our suggested implementation.

38. Write a new member function to remove a specified item from a
sequence. The function has one parameter (the item to remove). After the
removal, the current item is the item after the removed item (if there is
one). You may assume that value_type has == and != operators
defined.

39. Which of the sequence member functions allocate dynamic memory? 
40. Which of the sequence functions might use list_piece from Self-Test

Exercise 24?

5.5 DYNAMIC ARRAYS VS. LINKED LISTS VS. 
DOUBLY LINKED LISTS

Many classes can be implemented with either dynamic arrays or linked lists.
Certainly the bag, the string, and the sequence classes could each be imple-
mented with either approach.

Which approach is better?
There is no absolute answer. But there are certain operations that are better

performed by dynamic arrays and others where linked lists are preferable. Here
are some guidelines:
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Arrays are better at random access. The term random access refers to
examining or changing an arbitrary element that is specified by its position in a
list. For example: What is the 42nd item in the list? Or another example: Change
the item at position 1066 to a 7. These are constant time operations for an array
(or dynamic array). But, in a linked list, a search for item i must begin at the
head and will take O(i) time. Sometimes there are ways to speed up the process,
but even improvements remain in linear time.

If a class makes significant use of random access operations, then a dynamic
array is better than a linked list.

Linked lists are better at insertions/deletions at a cursor. Our sequence class
maintains a cursor that points to a “current element.” Typically, a cursor moves
through a list one item at a time without jumping around to random locations. If
all operations occur at the cursor, then a linked list is preferable to an array. In
particular, insertions and deletions at a cursor are generally linear time for an
array (since items that are after the cursor must all be shifted up or back to a new
index in the array). But these operations are constant time operations for a linked
list. Also remember that effective insertions and deletions in a linked list gener-
ally require maintaining both a cursor and a precursor (which points to the node
before the cursor).

If class operations take place at a cursor, then a linked list is better than a
dynamic array.

Doubly linked lists are better for a two-way cursor. Sometimes list operations
require a cursor that can move forward and backward through a list—a kind of
two-way cursor. This situation calls for a doubly linked list, which is like a
simple linked list, except that each node contains two pointers: one pointing to
the next node and one pointing to the previous node. An example of a doubly
linked list of integers is shown in Figure 5.15. A possible set of definitions for a
doubly linked list of items is the following:

class dnode
{
public:

typedef _____ value_type;
...

private:
value_type data_field;
dnode *link_fore;
dnode *link_back;

};

The link_back field points to the previous node, and the link_fore points to
the next node in the list.

If class operations take place at a two-way cursor, then a doubly linked list is
the best implementation.

7

10

NULL

head_ptr

3

2

NULL

FIGURE  5.15
Doubly Linked 
List

Fill in the value_type
however you like.
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Resizing can be inefficient for a dynamic array. A container class that uses a
dynamic array generally provides a resize function to allow a programmer to
adjust the capacity as needed. But resizing an array can be inefficient. The new
memory must be allocated; the items are then copied from the old memory to the
new memory, and then the old memory is deleted. If a program can predict
the necessary capacity ahead of time, then resizing is not a big problem, since the
object can be given sufficient capacity from the outset. But sometimes the even-
tual capacity is unknown and a program must continually adjust the capacity. In
this situation, a linked list has advantages. When a linked list grows, it grows one
node at a time, and there is no need to copy items from old memory to new larger
memory.

If a class is frequently adjusting its size, then a linked list may be better than
a dynamic array.

Making the Decision
Your decision on what kind of implementation to use is based on your knowl-
edge of which operations occur in the class, which operations you expect to be
performed most often, and whether you expect your containers to require fre-
quent resizing. Figure 5.16 summarizes these considerations.

Self-Test Exercises for Section 5.5
41. What underlying data structure is quickest for random access?
42. What underlying data structure is quickest for insertions/deletions at a

cursor?
43. What underlying data structure is best if a cursor must move both for-

ward and backward?
44. What is the typical worst-case time analysis for a resizing operation on a

container class that is implemented with a dynamic array?
45. Implement a complete class for nodes of a doubly linked list. All mem-

ber functions should be inline functions.
46. For your dnode class in the previous exercise, write a function that adds

a new item at the head of a doubly linked list. 

FIGURE  5.16 Guidelines for Choosing Between a Dynamic Array and a Linked List

Frequent random access operations Use a dynamic array

Operations occur at a cursor Use a linked list

Operations occur at a two-way cursor Use a doubly linked list

Frequent resizing may be needed A linked list avoids resizing inefficiency
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5.6 STL VECTORS VS. STL LISTS VS. STL DEQUES

The designers of the Standard Template Library included three similar container
classes—the vector, the list, and the deque (pronounced “deck”)—that differ
primarily in their storage mechanism. Vectors use a dynamic array; lists use a
doubly linked list; and deques use a third mechanism that we’ll see in Chapter 8.
The specifications for the three classes are similar enough that we can provide it
in a combined form (Figure 5.17).

With your knowledge of dynamic arrays and linked lists, you can figure out
why there are certain differences between the vector and the list classes. For

Partial List of Members for Three Template Classes: vector<Item> (from #include <vector>), 
list<Item> (from #include <list>), and deque<Item> (from #include <deque>)

// TYPEDEFS for these classes:
//
// When a vector or list is declared, the data type of the elements must be specified. For 
// example, to declare a list that contains integers: list<int> scores; 
//
// The size_type is the data type for specifying the number of elements in a vector or list. 
// Most often, it is an unsigned integer type (negative numbers are forbidden).
//
// DEFAULT CONSTRUCTOR for value_type of T:
//  and  and
// Postcondition: The container (which may contain T objects) is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the vector or list class:
//
// Postcondition: All elements have been removed from the container.
//
// Postcondition: The size of the container has been increased by one, and the new value
// (at the right end) comes from the entry parameter.
//
// Procondition: size( ) > 0.
// Postcondition: The rightmost entry of the container has been removed.
//  and
// For lists and deques only, these add or remove an element at the left end of the list.
//
// This function, only for the vector, allows the programmer to control efficiency. Calling 
// reserve(amount) guarantees that the vector will not need any additional dynamic
// memory until the size exceeds the requested amount.

(continued)

 FIGURE  5.17 Documentation for the STL Vector, List, and Deque Classes

value_type

size_type

vector<T>( ) list<T>( ) deque<T>( )

void clear( )

void push_back(const value_type& entry)

void pop_back( )

void push_front(const value_type& entry) void pop_front( )

void reserve(size_type amount)
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 (FIGURE  5.17 continued)

//
// This function changes the number of elements in the container to the specified
// amount. If this new size is smaller than the current size, then removed elements are
// taken from the right end; if the new size is larger, then new elements have the value of
// the entry parameter. If the entry is omitted from the function call, then new elements
// are initialized by the default constructor of the value_type.
// ACCESSING ELEMENTS DIRECTLY:
// Two functions,  and , can be used to access the rightmost and
// leftmost elements of a container. Both have the precondition that size( ) > 0:
// cout << v.back( ); // Print the rightmost element of v
// v.front( ) = 42; // Change the leftmost element of v to 42.
// ADDITIONAL VECTOR and DEQUE ACCESS METHODS
// The vector and deque have two methods of accessing individual elements by their index
// (starting with index zero on the left). These are the  operator and the  member
// function. Both have a precondition that the requested index is less than size( ). If the
// precondition is violated, then the at function immediately has an error; but an
// immediate error is not guaranteed for the [ ] operator. Some examples for a vector v:
// cout << v[3]; // Print element at index 3
// cout << v.at[3]; // Same as above, but first verify that size( ) > 3.
// v[3] = 42; // Change element at index 3 to 42
// v.at(3) = 42; // Same as above, but first verify that size( ) > 3.
//
// ITERATOR FUNCTIONS for the these classes:
// See page 140 for a discussion of iterators in a collection class. These classes have four 
// member functions that provide iterators as their return value. The reverse iterators run
// backward, so that ++i will move a reverse iterator i back to the previous element.
// returns an iterator to the first element of the collection
// returns an iterator to the first element beyond the collection’s end
// returns reverse iterator to the last element of the collection
// returns an iterator to the first element before the collection’s start
// Once you have an iterator you may perform various actions at that location:
//
// Postcondition: The element at the iterator has been removed. The return value is a new
// iterator that’s positioned after the erased element.
//
// Postcondition: All elements starting at it1 and going up to (but not including) it2 have
// been removed. The return value is a new iterator that’s positioned after the last
// of the erased elements.
//
// Postcondition: A new entry has been inserted immediately after the iterator. The
// return value is a new iterator that’s positioned at the new entry.
//
// Postcondition: All elements starting at it1 and going up to (but not including) it2 have
// been removed. The return value is a new iterator that’s positioned after the last
// of the erased elements.
//
// VALUE SEMANTICS:
// Assignments and the copy constructor may be used with these objects.

void resize(size_type amount, const value_type& entry)

back front

[ ] at

iterator begin( )
iterator end( )
iterator rbegin( )
iterator rend( )

iterator erase(iterator it)

iterator erase(iterator it1, iterator it2)

iterator insert(iterator it, const value_type& entry)

iterator erase(iterator it1, iterator it2)
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example, the list class has versions of push and pop that work at the front of the
linked list. It’s easy to add or remove an item from the front of a linked list, but
not so easy for a vector, so pop_front and push_front are not even part of the
vector class. On the other hand, accessing an element by its index is easy for a
dynamic array, but not for a linked list; therefore the index access functions are
provided only for the vector. Some functions, such as insert, are provided for
both containers, but one version will be more efficient than the other. (Which do
you think is more efficient for insertions?)

As an example of using the list class, consider a program that allows a user to
create and manipulate a list of strings. The strings might contain movie titles or
a list of to-do tasks—it doesn’t matter. We’ll leave the writing of the main pro-
gram to you, but we will go through one function that the main program might
call. Notice that the function uses the data type list<string>, in which
<string> indicates the type of item in the list. Here’s the function we have in
mind to move an item from position i to the front of the list:

void move_to_top
(list<string>& data, list<string>::size_type index)
// Precondition: 0 < index <= data.size( ).
// The item at position index (starting with 1 at the list front) has been
// removed from that spot and reinserted at the front of the list.
{
    assert(0 <= index && index <= data.size( ));
    list<string>::iterator it;
    list<string>::size_type i;
    string item;

    it = data.begin( );
    for (i = 1; i < index; ++i)
    {

++it;
    }
    item = *it;
    data.erase(it);
    data.push_front(item);
}

The primary programming technique is a loop that moves an iterator forward
until it gets to the right spot in the list. At that point, we make a copy of the item,
erase the item, and then reinsert the item at the list front.

Self-Test Exercises for Section 5.6
47. Rewrite the move_to_top function for a vector instead of a list (which

does not have a push_front member function).
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CHAPTER SUMMARY

• A linked list consists of nodes; each node contains some data and a
pointer to the next node in the list. The pointer field of the final node con-
tains the null pointer.

• Typically, a linked list is accessed through a head pointer that points to
the head node (i.e., the first node). Sometimes a linked list is accessed
elsewhere, such as through the tail pointer that points to the last node.

• You should be familiar with our functions to manipulate a linked list.
These functions follow basic patterns that every programmer uses. Such
functions are not node member functions (so that they can handle empty
lists with no nodes).

• Linked lists can be used to implement a class. Such a class has one or
more private member variables that are pointers to nodes in a linked list.
The member functions of the class use the linked-list functions to manip-
ulate the linked list, which is accessed through private member variables.

• You have seen two classes implemented with the linked-list toolkit: a bag
and a list. You will see more in the chapters that follow.

• A doubly linked list has nodes with two pointers: one to the next node and
one to the previous node. Doubly linked lists are a good choice for sup-
porting a cursor that moves forward and backward.

• Classes can often be implemented in many different ways, such as by
using a dynamic array or using a linked list. In general, arrays are better at
random access; linked lists are better at insertions/removals at a cursor. In
the STL, the vector uses a dynamic array and the list uses a linked list. A
third choice, the STL deque, uses a mechanism that we’ll see later.

SOLUTIONS TO SELF-TEST EXERCISES ?Solutions to Self-Test Exercises

1. See the class definition on page 226.

2. The null pointer is a special value that can be
used for any pointer that does not point any-
where. The cstdlib library should be
included to use NULL, but because NULL is not
part of the std namespace, it can be written
without a preceding std::.

3. The null pointer is used for the link field of the
final node of a linked list; it is also used for
the head and tail pointers of a list that doesn’t
yet have any nodes.

4. Numbers are given a default value of 0, and
bools are given a default value of false.

5. head_ptr is a pointer to a node. On the other
hand, *head_ptr is a node, and the type of
head_ptr->data( ) is node::value_type.

6. if (head_ptr->data( ) == 0)
cout << "zero";

7. The operation of accessing a data member has
higher precedence than the dereferencing
asterisk. Therefore, head_ptr.data( ) will
cause a syntax error because the call to data( )
is attempted before deferencing head_ptr.
The alternative syntax is head_ptr-
>data( );

8. cout << b_ptr->size( );
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9. The portions of the operating system that are
currently in memory can be overwritten.

10. The implementation will compile correctly.
But since the return value is a pointer to a
node in the list, a programmer could use the
return value to change the linked list. In gen-
eral, the return value from a constant member
function should never allow the underlying
linked list to be changed.

11. Change the return type to const node*, and
provide a second non-const function that
returns the link as an ordinary node*.

12. We need only one function to access the data
field because this function returns a copy of
the data (and it is not possible to change the
underlying linked list by having merely a copy
of the data from a node).

13. The #include <string> directive must be
added to the other include directives in the
toolkit’s header file. Then we can change the
typedef statement to: 

typedef string value_type;

14. for (
cursor = head_ptr; 
cursor != NULL;

        cursor = cursor -> link( )
)

   {...}

15. A node pointer should be a value parameter
when the function accesses and possibly mod-
ifies a linked list, but does not need to make
the pointer point to a new node.

16. locate_ptr = locate_ptr->link( );
If locate_ptr is already pointing to the last
node before this assignment statement, then
the assignment will set locate_ptr to the
null pointer.

17. Using functions from Section 5.2:
if (head_ptr == NULL)

list_head_insert(head_ptr, 42);
else

list_insert(head_ptr, 42);

18. if (head_ptr->link( )==NULL)
tail_ptr = head_ptr;

19. The new operator is used in the functions
list_insert, list_copy, list_piece (if

you implement it from Exercise 24), and
list_head_insert. The delete operator is
used in the functions list_head_remove,
list_remove, and list_clear.

20. Never call delete unless you are actually
reducing the number of nodes.

21. Using functions from Section 5.2:
if (head_ptr != NULL)
{

if (head_ptr->link() == NULL)
list_head_remove(head_ptr);

else
list_remove(head_ptr);

}

22. It will be the null pointer.

23. The one line will be:
previous_ptr->set_link

(new node
(entry, previous_ptr->link())

);

24. The implementation is nearly the same as
list_copy, but the copying must stop when
the end node has been copied.

25. Here is the const version:
const node* list_locate(

const node* head_ptr, 
size_t position

)
// Library facilities used: cassert, cstdlib
{

const node *cursor;
size_t i;
assert(0 < position);
cursor = head_ptr;
for (

i = 1; 
(i < position) 
&&
(cursor != NULL); 
++i

)
 cursor = cursor->link();
return cursor;

}

26. The definition makes bag::value_type the
same as node::value_type, so that a pro-
grammer can use bag::value_type without
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having to know the details of the linked-list
implementation.

27. The value_type in the node class would need
to be changed to string (as in the answer to
Self-Test Exercise 13).

28. Assuming that we have set the bag’s
value_type to a string, we would write this
code:

bag exercise;
exercise.insert("squash");
exercise.insert("handball");
cout << exercise.grab( ) << endl;
cout << exercise.size( ) << endl;

29. Generally we will choose the approach that
makes the best use of the previously written
functions. This saves us work and also reduces
the chance of new errors from writing new
code to do an old job. The preference would
change if writing new functions offered bet-
ter efficiency.

30. The two lines of code that we have in mind
are:

p = p->link( );
p = list_search(p, d);

These two lines are the same as the single line:
p = list_search(p->link( ), d);

31. When the target is not in the bag, the first
assignment statement to cursor will set it to
the null pointer. This means that the body of
the loop will not execute at all, and the func-
tion returns the answer zero.

32. The problem occurs when the target is the first
item on the linked list. In this case, the target
pointer is at the head of the list, so it would be
a mistake to remove the head node before
moving the target pointer forward.

33. The rand function from csdtlib generates a
non-negative pseudorandom integer.  A pseu-
dorandom generator is advantageous for
debugging a program because if the program
is run again with the same initial conditions,
the generator will produce exactly the same
sequence of numbers.

34. (rand( ) % 21) - 10;

35. All the functions are constant time except for
remove, grab, and count (which all are lin-
ear); the copy constructor and operator =
(which are O(n), where n is the size of the bag
being copied); the operator += (which is O(n),
where n is the size of the addend); and the
operator + (which is O(m+n), where m and n
are the sizes of the two bags).

36. A precursor node pointer is necessary in the
sequence class because its insert function
adds a new item immediately before the cur-
rent node. Because the linked-list toolkit’s
insert function adds an item after a specified
node, the precursor node is designated as that
node.

37. many_nodes is 3, and these are the other
member variables:

38. First check that the item occurs somewhere in
the list. If it doesn’t, then return with no work.
If the item is in the list, then set the current
item to be equal to this item, and call the ordi-
nary erase_one function.

39. The insert and attach functions both allo-
cate dynamic memory, as do the copy con-
structor and assignment operator.

40. The copy constructor and assignment operator
might use list_piece.

41. Arrays are quickest for random access.

42. Linked lists are quickest for insertions/dele-
tions at a cursor.

43. A doubly linked list is best.

44. O(n), where n is the size of the array prior to
resizing

45. See Figure 5.18 on page 286.
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A Class Definition
class dnode
{
public:

// TYPEDEF
typedef double value_type;

// CONSTRUCTOR
dnode(

const value_type& init_data = value_type( ),
 dnode* init_fore = NULL,
 dnode* init_back = NULL

)
{ data_field = init_data; link_fore = init_fore; link_back = init_back;}

// Member functions to set the data and link fields:
void set_data(const value_type& new_data) { data_field = new_data; }
void set_fore(dnode* new_fore) { link_fore = new_fore; }
void set_back(dnode* new_back) { link_back = new_back; }

// Const member function to retrieve the current data:
value_type data( ) const { return data_field; }

// Two slightly different member functions to retrieve each current link:
const dnode* fore( ) const { return link_fore; }
dnode* fore( ) { return link_fore; }
const dnode* back( ) const { return link_back; }
dnode* back( ) { return link_back; }

private:
value_type data_field;
dnode *link_fore;
dnode *link_back;

};

 FIGURE  5.18 Class Definition for a Node of Doubly Linked List

www.cs.colorado.edu/~main/chapter5/dnode.cxx WWW

46. Here is one solution:
void dlist_head_insert(

dnode*& head_ptr,
const dnode::value_type& entry

)
{
dnode *insert_ptr;
insert_ptr = 

new dnode(entry, head_ptr);
if (head_ptr != NULL)

head_ptr->set_back(insert_ptr);
head_ptr = insert_ptr;

}

47.
void move_to_front(

vector<string>& data, 
vector<string>::size_type index

)
{

assert(index > 0);
assert(index <= data.size( ));
vector<string>::size_type i;
string item;
item = data[index]; // Save a copy
for (i = index; i > 0; --i)
{

data[i] = data[i-1];
}
// Put the copy at the front of the vector:
data[0] = item;

}
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

For this project, you will use the bag class
with the value_type being a string from
the <string> facility. The bag class should

include the grab function from Figure 5.13 on
page 270. Use this class in a program that does the
following:

1. Asks the user for a list of 10 nouns.
2. Asks the user for a list of 10 verbs.
3. Prints some random sentences using the

provided nouns and verbs.

For example, if two of the nouns were “monkey”
and “piano,” and two of the verbs were “eats” and
“plays,” then we can expect any of these sentences:

The monkey eats the piano.
The monkey plays the piano.
The piano eats the monkey.
The piano plays the monkey.

Needless to say, the sentences are not entirely sensi-
ble. Your program will need to declare two bag vari-
ables: one to store the nouns and one to store the
verbs. Use an appropriate top-down design.

Write a function that takes a linked list of
items and deletes all repetitions from the list.
In your implementation, assume that items

can be compared for equality using ==.

Write a function with three parameters. The
first parameter is a head pointer for a linked
list of items, and the next two parameters are

items x and y. The function should write to the
screen all items in the list that are between the first
occurrence of x and the first occurrence of y. You
may assume that items can be compared for equality
using ==.

Write a function with one parameter that is a
head pointer for a linked list of items. The
function reverses the order of the nodes so

1

2

3

4

that the last node is first, the first node is last, and so
forth. The head pointer is a reference parameter, so
that after the function completes, this same pointer
variable is pointing to the head of the reversed list.

Write a function that has two linked-list
head pointers as parameters. Assume that the
linked list’s items are ordered by the < operator.

On each list, every item is less than the next item on
the same list. The function should create a new
linked list that contains all the items on both lists,
and the new linked list should also be ordered (so
that every item is less than the next item on the list).
The new linked list should also eliminate duplicate
items (i.e., if the same item appears on both input
lists, then only one copy is placed in the newly con-
structed linked list). To eliminate duplicate items,
you may assume that two items can be compared for
equality using ==. The function should return a head
pointer for the newly constructed linked list.

Write a function that starts with a single
linked list of items and a special value called
the splitting value. Two item values can be

compared using the < operator—but the items of the
original linked list are in no particular order. The
procedure divides the nodes into two linked lists:
one containing all the nodes that contain an item less
than the splitting value, and one that contains all the
other nodes. If the original linked list had any re-
peated integers (i.e., any two or more nodes with the
same item in them) then the new linked list that has
this item should have the same number of nodes that
repeat this item. It does not matter whether you pre-
serve the original linked list or destroy it in the pro-
cess of building the two new lists, but your
comments should document what happens to the
original linked list.

Write a function that takes a linked list of
integers and rearranges the nodes so that the
integers stored are sorted into the order

5

6

7
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smallest to largest, with the smallest integer in the
node at the head of the list. If the original list had any
integers occurring more than once, then the changed
list will have the same number of each integer. For
concreteness you will use lists of integers, but your
function should still work if you replace the integer
type with any other type for which the less-than op-
eration is part of a total order semantics. Use the fol-
lowing function prototype and specification:

void sort_list(node*& head_ptr);
// Precondition: head_ptr is a head pointer of 
// a linked list of items, and these items can be 
// compared with a less-than operator.
// Postcondition: head_ptr points to the head 
// of a linked list with exactly the same entries 
// (including repetitions if any), but the entries 
// in this list are sorted from smallest to
// largest. The original linked list is no longer
// available.

Your procedure will implement the following algo-
rithm (which is often called selection sort): The al-
gorithm removes nodes one at a time from the
original list and adds the nodes to a second list until
all the nodes have been moved to the second list.
The second list will then be sorted.

// Pseudocode for selection sort
while (the first list still has some nodes)
{

1. Find the node with the largest item of all
the nodes in the first list.

2. Remove this node from the first list.
3. Insert this node at the head of the second 

list.
}

After all the nodes are moved to the second list, the
pointer, head_ptr, can be moved to point to the
head of the second list. Note that your function will
move entire nodes, not just items, to the second list.
Thus, the first list will get shorter and shorter until it
is an empty list. Your function should not need to
call the new operator since it is just moving nodes
from one list to another (not creating new nodes).

Write a program for keeping a course list for
each student in a college. The information
about each student should be kept in an

object that contains the student’s name and a list of

8

courses completed by the student. The courses taken
by a student are stored as a linked list in which each
node contains the name of a course, the number of
units for the course, and the course grade. The pro-
gram gives a menu with choices that include adding
a student’s record, deleting a student’s record, add-
ing a single course record to a student’s record,
deleting a single course record from a student’s
record, and printing a student’s record to the screen.
The program input should accept the student’s name
in any combination of upper- and lowercase letters.
A student’s record should include the student’s GPA
(grade point average) when displayed on the screen.
When the user is through with the program, the pro-
gram should store the records in a file. The next time
the program is run, the records should be read back
out of the file and the list should be reconstructed.
(Ask your instructor if there are any rules about what
type of file you should use.)

Implement operators for - and -= for the
bag class from Section 5.3. See Chapter 3,
Programming Project 2, on page 149 for

details about how the operations work with a bag.

Implement operators for + and += for your
sequence class from Section 5.4. For two
lists x and y, the list x+y contains all the

items of x, followed by all the items of y. The state-
ment x += y appends all of the items of y to the end
of what’s already in x.

You can represent an integer with any num-
ber of digits by storing the integer as a
linked list of digits. A more efficient repre-

sentation will store a larger integer in each node.
Design and implement a class for whole number
arithmetic in which a number is implemented as a
linked list of integers. Each node will hold an integer
less than or equal to 999. The number represented is
the concatenation of the numbers in the nodes. For
example, if there are four nodes with the four inte-
gers 23, 7, 999, and 0, then this represents the num-
ber 23,007,999,000. Note that the number in a node
is always considered to be three digits long. If it is
not three digits long, then leading zeros are added to
make it three digits long. Overload all the usual in-
teger operators to work with your new class.

9

10

11
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Revise one of the container classes from
Chapter 3 or 4 so that it uses a linked list.
Some choices are (a) the string from Section

4.5; (b) the set (Project 5 on page 149); (c) the sorted
list (Project 6 on page 150); (d) the bag with receipts
(Project 7 on page 150); (e) the keyed bag (Project 8
on page 150).

Revise the polynomial class from Section
4.6, so that the coefficients are stored in a
linked list. The nodes should be stored in 

order from smallest to largest exponent. Also, there
should never be two separate nodes with the same
exponent.

Include an operation to allow you to multiply
two polynomials in the usual way. For example:

With this approach, many operations will be ineffi-
cient because each time a coefficient is needed, the
search for that coefficient begins at the start of the
linked list. A solution for this problem is discussed
at www.cs.colorado.edu/~main/polynomial.html.

Implement the sequence class from Sec-
tion 5.4 without a precursor. One problem
caused by the missing precursor is the insert

function is difficult to implement efficiently. One
idea to overcome this problem is, when inserting a
new item, to create a new node after the current
node, copy the current data into the new node, and
put the new entry into the current node.

Use a doubly linked list to implement the
sequence class from Section 5.4. With a
doubly linked list, there is no need to main-

tain a precursor. Your implementation should in-
clude a retreat member function that moves the
cursor backward to the previous element.

Modify the card and deck classes from
Chapter 2 (Project 4) and Chapter 3 (Project
15), so that they will be useful in a program

to shuffle a deck of cards, deal all the cards to four
players, and display each player’s hand. For the

12
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shuffle function, generate a random number k for
each card index whose value is from 0 to index.
Then define a swap function to exchange the values
for card[index] and card[k], using a swap func-
tion that you define.

In this project, you will implement a varia-
tion of the linked list called a circular linked
list.  The link field of the final node of a cir-

cular linked list is not NULL; instead the link member
of the tail pointer points back to the first node. In this
project, an external pointer is used to point to the be-
ginning of the list; this pointer will be NULL if the list
is empty (see Programming Project 6 in Chapter 8
for another variation of a circular linked list).  Re-
vise the third bag class developed in this chapter to
use a circular linked-list implementation.

Use a circular linked list to run a simple sim-
ulation of a card game. Use the card and
deck classes, and shuffle and deal functions

from previous Programming Projects. Create a play-
er class to hold a hand of dealt cards. During each
turn, a player will discard a card. Use rand( ) to de-
termine who gets the first turn in each hand, and
make sure each person has a turn during every hand.
The program ends when all cards have been played.

Reimplement the bag class from Figure
5.11 so that the items of the bag are stored
with a new technique. Here’s the idea: Each

node of the new linked list contains a
pair<size_t,double> as its data. (See Section 2.6
for the pair class.) For example, if a node has a pair
(6, 10.9), then this means that the bag has six copies
of the number 10.9. 

The nodes of the linked list should be kept in or-
der from smallest double number (at the head of the
list) to largest (at the tail of the list). You should nev-
er have two different nodes with the same double
number, and if the count in a node drops to zero
(meaning there are no copies of that node’s double
number), then the node should be removed from the
linked list.

The public member functions of your new class
should be identical to those in Figure 5.11.

17
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L EARN ING  OB J EC T I V ES
When you complete Chapter 6, you will be able to...

• recognize situations in which template functions and template classes are
appropriate.

• design and implement template functions and template classes.
• use the standard template classes for sets, multisets, and lists.
• use iterators to step through all the elements of an object for any of the standard

template classes.
• manipulate objects of the standard template classes using functions from the

<algorithms> library facility.
• implement simple forward iterators for our own classes, such as the bag class.

CHAPTER  CONTENTS

6.1 Template Functions
6.2 Template Classes
6.3 The STL’s Algorithms and Use of Iterators
6.4 The Node Template Class
6.5 An Iterator for Linked Lists
6.6 Linked�List Version of the Bag Template Class with an Iterator

Chapter Summary and Summary of the Five Bags
Solutions to Self�Test Exercises
Programming Projects

The goal of software reuse is to build systems of systems by
putting together independently developed software components.

JEANNETTE WING
Address to the 12th MFPS Workshop, June 1996
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 programmers try to write functions and classes that
have general applicability in many settings. To some extent, our classes do this
already. Certainly, the bag, sequence, and node classes can be used in many dif-
ferent settings. However, these classes suffer from the fact that they require the
underlying value_type to be fixed. A program cannot easily use both a bag of
integers and a bag of strings.

This chapter provides a better approach to writing code that is meant to be
reused in a variety of settings. The approach, called templates, is applicable to
individual functions and to classes. By the end of the chapter you will know how
to write template functions and template classes that can easily be used in a
variety of settings. You will also learn how to provide iterators for your own
container classes, allowing a programmer to step through all the items of a con-
tainer in a standard manner. By following a standard approach that uses both
templates and iterators, you will write classes that are easier for others to use and
you yourself will be able to take advantage of certain components of the C++
Standard Template Library (STL).

6.1 TEMPLATE FUNCTIONS
Sometimes it seems that programmers intentionally make extra work for them-
selves. For example, suppose we write this function:

int maximal(int a, int b)
// Postcondition: The return value is the larger of a and b.
{

if (a > b)
return a;

else
return b;

}

This is a fine function, reliably returning the larger of two integers. But suppose
that tomorrow you have another program that needs to compute the larger of
two double numbers. Then you’ll write a new function:

double maximal(double a, double b)
// Postcondition: The return value is the larger of a and b.
{

if (a > b)
return a;

else
return b;

}

Professional
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The next day, you need a third function that returns the larger of two strings,
(using the > relationship from the Standard Library string class). You’ll write a
third function:

string maximal(string a, string b)
// Postcondition: The return value is the larger of a and b.
{

if (a > b)
return a;

else
return b;

}

In fact, a single program can use all three of the maximal functions. When
one of the functions is used, the compiler looks at the type of the arguments and
selects the appropriate version of the maximal function. But with this approach,
you do need to write a new function for each type of value that you want to
compare.

Of course, you could write just one function, along with a typedef statement,
like this:

typedef ______ item;
item maximal(item a, item b)
// Postcondition: The return value is the larger of a and b.
{

if (a > b)
return a;

else
return b;

}

Now, a programmer can fill in the typedef statement with any data type that
has the > operator defined and that has a copy constructor. The copy constructor
is needed because the function has two value parameters and returns an item,
both of which use the copy constructor (see “Returning an object from a
function” on page 196).

But the typedef approach has a problem. Suppose that a single program needs
to use several different versions of the maximal function. The typedef approach
does not allow this, since the program can define only one data type for the item.

The solution is a more flexible mechanism called a template function, which
is similar to an ordinary function with one important difference: The definition
of a template function can depend on an underlying data type. The underlying
data type is given a name—such as Item—but Item is not pinned down to a spe-
cific type anywhere in the function’s implementation. When a template function
is used, the compiler examines the types of the arguments and at that point the
compiler automatically determines the data type of Item. Moreover, in a single
program, several different usages of a template function can result in several dif-
ferent underlying data types.
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We avoided introducing template functions right away because the typedef
has a simpler syntax. Also, extra pitfalls and cryptic compilation errors can arise
from templates. Nevertheless, the advantages of templates make it worthwhile to
use them. So, let’s dive into the cumbersome syntax that we’ve been avoiding.

Syntax for a Template Function

As an example of a template function, we will alter the maximal function. The
template function requires one change from the typedef approach, as shown
next.

With the typedef approach on the left, the maximal function compares two inte-
gers. Of course, we can change the underlying type of the compared elements
by changing the typedef statement. On the other hand, the single definition of
the template function allows a program to use the maximal function with two
integers, or with two doubles, or with two strings—with any data type that has
the > operator and a copy constructor.

The expression  is called the template prefix. It
warns the compiler that the following definition will use an unspecified data type
called Item. The template prefix always precedes the template function’s defini-
tion. In effect, the template prefix says, “Item is a data type that will be filled in
later; don’t worry about it for now, just use it inside the function definition!” The
“unspecified type” is called the template parameter.

CAPITALIZE THE NAME OF A TEMPLATE PARAMETER

A common programming style capitalizes the name of template parameters to
make it easy to recognize that these names are not specific types. Thus, the
template function uses the name Item rather than item.

Notice that the template parameter is preceded by the keyword class and is sur-
rounded by angle brackets (which are the same as the less-than and greater-than
signs). An alternative is to use the keyword typename instead of class, but
older compilers do not support this alternative.

Using a Typedef Statement:
typedef int item;
item maximal(item a, item b)
{

if (a > b)
return a;

else
return b;

}

Defining a Template Function:

Item maximal(Item a, Item b)
{

if (a > b)
return a;

else
return b;

}

template <class Item>

template <class Item>

PROGRAMMING TIP ��  
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Using a Template Function
A program can use a template function with any Item type that has the neces-
sary features. In the case of the maximal function, the Item type can be any of
the C++ built-in types (such as int or char), or it may be a class with the >
operator and a copy constructor. For example, a program with the maximal tem-
plate function can have the statement:

cout << maximal(1000, 2000);

When the compiler sees this function call, it determines that the type of Item
must be int, and it automatically uses the maximal function with Item defined
as int. A C++ programmer says, “The maximal function has been instantiated
with Item equal to int.” The same program can use the template function to
compare two strings, as shown here:

string s1("frijoles");
string s2("beans");
cout << maximal(s1, s2); 

A demonstration program using the maximal template function is shown in
Figure 6.1. This program begins with the maximal template function. We
placed the function at the start of the file because some compilers require that
the entire template function appears before its use (rather than just a prototype).
The maximal function itself is used twice in the main program—once to com-
pare two strings and once to compare two integers.

Keep in mind that the compiler does not actually compile anything when it
sees the implementation of the template function. It is only when the function is
instantiated by using it in the main program (or elsewhere) that the compiler
takes action to compile a certain version of the template function, using the spec-
ified type for the template parameter. In the case of our maximal function, the
program in Figure 6.1 has one implementation of the maximal template function,
and the one implementation is instantiated in two different ways (that is, with
string class as the item type and with int as the item type).

FAILED UNIFICATION ERRORS

There is a rule for template functions: The template parameter must appear in the
parameter list of the template function. For example, Item appears twice in the
parameter list maximal(Item a, Item b). Without this rule, the compiler cannot
figure out how to instantiate the template function when it is used. Violating this rule
will likely result in cryptic error messages such as “Failed unification.” Unification
is the compiler’s term for determining how to instantiate a template function.

Print the larger integer.

Print the string that
is lexicographically
larger.

PITFALL ��  
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A Program
// FILE: maximal.cxx
// A demonstration program for a template function called maximal.

#include <cstdlib> // Provides EXIT_SUCCESS
#include <iostream> // Provides cout
#include <string> // Provides string class
using namespace std;

// TEMPLATE FUNCTION used in this demonstration program:
// Note that some compilers require the entire function definition to appear before its use
// (rather than a mere prototype). This maximal function is similar to max from <algorithm>.

// Postcondition: Returns the larger of a and b.
// Note: Item may be any of the C++ built-in types (int, char, etc.), or a class with
// the > operator and a copy constructor.
{

if (a > b)
return a;

else
return b;

}

{
    string s1("frijoles");
    string s2("beans");

    cout << "Larger of frijoles and beans: " << maximal(s1, s2) << endl;
cout << "Larger of 10 and 20 : " << maximal(10, 20) << endl;
cout << "It’s a large world." << endl;

return EXIT_SUCCESS;
}

A Sample Dialogue
Larger of frijoles and beans: frijoles
Larger of 10 and 20: 20
It’s a large world.

 FIGURE  6.1 Demonstration Program for Template Functions

template <class Item>
Item maximal(Item a, Item b)

int main( )

The main program has
two different uses of the
maximal template function.

www.cs.colorado.edu/~main/chapter6/maximal.cxx WWW
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A Template Function to Swap Two Values

Here is a definition of another template function. The function swaps the values
of two variables, as shown here:

template <class Item>
void swap(Item& x, Item& y);
// Postcondition: The values of x and y have been interchanged, so that y
// now has the original value of x and vice versa. NOTE: Item may be any 
// of the C++ built-in types (int, char, etc.), or a class with an assignment
// operator and a copy constructor.
{

Item temp = x;
x = y;
y = temp;

}

In this example, the values of x and y are interchanged by the usual three assign-
ment statements that use an intermediary temporary variable (temp). The exam-
ple shows two new features. First, notice that the function uses a local variable,
temp, whose type is Item. This is fine, so long as the Item type has the neces-
sary constructor (we have indicated this requirement in the documentation).

The second feature of the function is that the underlying data type, Item, is
used as a reference parameter. Thus, when swap is called, the actual parameters
will have their values interchanged, as shown in this string example:

string name1("Castor");
string name2("Pollux");
swap(name1, name2);
cout << name1;

SWAP, MAX, AND MIN FUNCTIONS

The <algorithm> facility in the C++ Standard Library contains the swap function,
a max function that is similar to our maximal, and a min function that returns the
smaller of two items. 

Parameter Matching for Template Functions

Our next template function searches an array for the biggest item and returns the
index of that item. For example, the array could be an array of six integers,
shown here:

The two values are
interchanged so that
“Pollux” is printed.

C++ FEATURE++

[2] [3] [4] [5][0] [1]

10 20 30 1 2 3
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The biggest value, 30, appears at location [2], so with this array as the argument,
our function returns 2. Here is the template function’s complete specification:

template <class Item>
size_t index_of_maximal(const Item data[ ], size_t n);
// Precondition: data is an array with at least n items, and n > 0.
// Postcondition: The return value is the index of a maximal item from
// data[0] . . . data[n - 1]. Note: Item may be any of the C++ built-in types
// (int, char, etc.), or any class with the > operator defined.

Actually, this specification is not exactly what we want. To explain the problem,
we need to know a bit more about how the compiler uses template functions.

When a template function is instantiated, the compiler tries to select the
underlying data type so that the type of each argument results in an exact match
with the type of the corresponding formal parameter. For example, suppose that
d is a double variable. You cannot write , since there is no way
for the compiler to have Item be an exact match with the type of the first
argument (double) and also be an exact match with the type of the second argu-
ment (int). The compiler does not convert arguments for a template function.
The arguments must have an exact match, with no type conversion.

The requirement of an exact match applies to all parameters of a template
function. For example, consider the index_of_maximal prototype:

template <class Item>
size_t index_of_maximal(const Item data[ ], size_t n);

When we call the function, the second argument must be a size_t value. Many
compilers won’t accept any deviation: not an int, not a const size_t, only a
size_t value. On such a strict compiler, the following will fail:

const size_t SIZE = 5;
double data[SIZE];
...
cout << index_of_maximal(data, SIZE);
cout << index_of_maximal(data, 5);

The first function call, with SIZE as the second argument, fails on many compil-
ers because SIZE is declared as  rather than a mere . The
second function call, with 5 as the second argument, fails because the compiler
takes 5 to be an  rather than a  value.

A Template Function to Find the Biggest Item in an Array

For the index_of_maximal function, we can deal with the problem by slightly
changing the specification. The new specification uses two template parameters,
one for the data type of the array’s components, and a second for the data type
of the size of the array, as shown here:

maximal(d, 1)

These won’t work
with many
compilers.

const size_t size_t

int size_t
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template <class Item, class SizeType>
size_t index_of_maximal(const Item data[ ], SizeType n);
// Precondition: data is an array with at least n items, and n > 0.
// Postcondition: The return value is the index of a maximal item from
// data[0] . . . data[n - 1]. Note: Item may be any of the C++ built-in types
// (int, char, etc.), or any class with the > operator defined.
// SizeType may be any of the integer or const integer types.

With this template function, we have more flexibility. Both of these are okay:

const size_t SIZE = 5;
double data[SIZE];
...
cout << index_of_maximal(data, SIZE);
cout << index_of_maximal(data, 5);

Now we can implement the template function. The function uses a local vari-
able, answer, to keep track of the index of the biggest item that has been seen so
far. Initially, answer is set to 0, meaning that the biggest item seen so far is at
data[0]. Then we step through the rest of the array: data[1], data[2], and so
on. If we spot an item that is bigger than data[answer], then we change
answer to the index of that bigger item. Notice that it’s okay to use size_t for
the return type or for a local variable (or, to be more accurate, we have used
std::size_t in case this function is not under the control of a directive to use
the namespace std):

template <class Item, class SizeType>
std::size_t index_of_maximal(const Item data[ ], SizeType n)
// Library facilities used: cassert, cstdlib
{

std::size_t answer;
std::size_t i;

assert(n > 0);
answer = 0;

for (i = 1; i < n; ++i)
{

if (data[answer] < data[i])
answer = i;

// data[answer] is now biggest from data[0]...data[i]
}

return answer;
}

SizeType will be
const size_t.

SizeType will
be int.
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MISMATCHES FOR TEMPLATE FUNCTION ARGUMENTS

Each argument to a template function must be an exact match to the data type of
the formal parameter, with no type conversions. C++ compilers provide a little
leeway on the meaning of “exact match.” For example, with an int argument the
formal parameter may be any of the following:

int (a value parameter)
int& (a reference parameter)
const int& (a const reference parameter)

But for many compilers, an int argument does not provide an exact match to
size_t. With this in mind, we generally will use an extra template parameter for
the data type of an integer or size_t argument. For example:

template <class Item, class SizeType>
std::size_t index_of_maximal(const Item data[ ], SizeType n);

A Template Function to Insert an Item into a Sorted Array

Our next example defines a template function to insert a new entry into an array
that is already sorted from small to large. The insertion must keep all the items
in order from small to large. Here is the function’s specification:

template <class Item, class SizeType>
void ordered_insert(Item data[ ], SizeType n, Item entry);
// Precondition: data is a partially filled array containing n items sorted from
// small to large. The array is large enough to hold at least one more item.
// Postcondition: data is a partially filled array containing the n original items
// plus the new entry. These items are still sorted from small to large.
// NOTE: Item may be any of the C++ built-in types (int, char, etc.), or a
// class with the < operator, an assignment operator, and a copy
// constructor. SizeType may be any of the integer or const integer types.

For example, suppose that data is this partially filled array of integers,
sorted from small to large:

We can use the ordered_insert function to insert a new number, as shown
here:

ordered_insert(data, 3, 15);

PITFALL ��  

[2] [3] [4] [5][0] [1]

10 20 30
data

. . .
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The compiler will call ordered_insert, with both Item and SizeType instan-
tiated as int. After the insertion, the partially filled array contains four items,
which are still sorted from small to large:

The function must take care to insert the new entry at the correct position so
that everything stays sorted. We suggest that you shift items at the end of the
array rightward one position each until you find the correct position for the new
entry.

For example, suppose you are inserting 3 in this partially filled, sorted array:

You would begin by shifting the 11 rightward from data[3] to data[4]; then
move the 9 from data[2] to data[3]; then move the 6  from data[1] to
data[2]. At this point, the array looks like this:

Of course, data[1] actually still contains a 6 since we just copied the 6 from
data[1] to data[2]. But we have drawn data[1] as an empty box to indicate
that data[1] is now available to hold the new entry (i.e., the 3 that we’re insert-
ing). At this point we can place the 3 in data[1], as shown here:

The pseudocode for shifting the items rightward uses a for-loop. Each itera-
tion of the loop shifts one item, as shown here:

for (i = n; ; --i)
data[i] = data[i-1];

[2] [3] [4] [5][0] [1]

10 15 20
data

30 . . .

data

1 6 9 11entry
3

[2][0] [3] [4] [5][1]

. . .n
4

data

1 6 9

[2][0] [3] [4] [5][1]

. . .11entry
3

n
4

entry
3

n
4

data

1 3 6 9

[2][0] [3] [4] [5][1]

. . .11

data[i] is the wrong spot for entry
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The key to the loop is the test “ .” A posi-
tion is wrong if (i > 0) and the item at data[i-1] is greater than the new entry.
We know that such a position must be wrong because placing the new entry at
this position would end up with data[i-1] > data[i]. Can you now write the
loop’s test in C++? (See the answer to Self-Test Exercise 7.)

Self-Test Exercises for Section 6.1

1. Describe the main purpose of a template function.
2. What is the disadvantage of the typedef approach of generalizing a data

type compared to the template approach?  Is there any advantage to the
typedef approach?

3. What is the template prefix, and where is it used in a template function?
4. What is meant by unification?
5. Which data types are allowed for the template Item parameter in the

maximal function?
6. Write a template function that compares two items. If the items are

equal, then the message “Those are the same” is printed. Otherwise the
message “Those are different” is printed. The function has two parame-
ters. The parameter type may be any type that has a copy constructor and
has the == operator defined.

7. Write an implementation of the ordered_insert template function.
8. Why is it a bad idea to have a size_t parameter for a template function?

6.2 TEMPLATE CLASSES

A template function is a function that depends on an underlying data type. In a
similar way, when a class depends on an underlying data type, the class can be
implemented as a template class, resulting in the same advantages that you
have seen for template functions. For example, with the bag as a template class,
a single program can use a bag of integers, and a bag of characters, and a bag of
strings, and so on. Our first example will implement a bag as a template class.

Syntax for a Template Class
Our original approach to the bag used a typedef statement to define the underly-
ing data type. Implementing a bag as a template class requires three changes
from this original approach. The changes are outlined below.

1. Change the template class definition. The first change is to the class defi-
nition. We put the template prefix  immediately
before the bag’s class definition, and define the bag’s value_type to be equal to

data[i] is the wrong spot for entry

template <class Item>
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this unspecified Item. This template syntax is compared to the typedef approach
here:

The expression  is the template prefix. It warns the
compiler that the following definition will use an unspecified data type called
Item. We are telling the compiler “Item is a data type that will be filled in later;
don’t worry about it now, just use it inside the bag class!”

2. Implement functions for the template class. The bag’s value_type is
now dependent on the Item type. If Item is int, then we have a bag of integers;
if Item is double, then we have a bag of doubles; if Item is a frijole (whatever
that is!), then we have bags of frijoles.

Within the template class definition, the compiler already knows about the
dependency on the Item data type, so that we may write the name of the data type
bag, just as we always have. But, outside of the template class definition (that
is, after the closing semicolon of the definition), some rules are required to tell
the compiler about the dependency on the Item data type:

• The template prefix  is placed immediately before
each function prototype and definition. This occurs for member definitions and
other functions that manipulate bags. In other words, each of these func-
tions is now a template function, dependent on the data type of the items.

• Outside of the template class definition, each use of the class name (such
as bag) is changed to the template class name (such as bag<Item>). This
tells the compiler that the class is a template class, rather than an ordinary
class. One warning: The name  is changed to only when
it is used as a class name. In particular, the name bag is also used as the
name of the bag’s constructor, and that usage remains simply bag.

use Item instead 
of value_type

• Within a class definition or within a member function, we can still use the
bag’s type names, such as size_type or value_type. However, we will
typically use Item instead of value_type because it reminds us that the
class is a template class. 

the need for the 
typename
keyword

• Outside of a member function, to use a type such as bag<Item>::
size_type, we must add a new keyword, typename, writing the expres-
sion typename bag<Item>::size_type. This uses the new typename
keyword to tell the compiler that the expression is the name of a data type. 

• Some compilers require that any default argument is placed in both the
prototype and the function implementation (though we followed the more
usual standard of listing it only in the prototype).

Some examples can illustrate how these rules are applied. As a first example,

Using a Typedef Statement:

class bag
{
public:

typedef int value_type;
. . .

Using a Template Class:

class bag
{
public:

typedef Item value_type;
. . .

template <class Item>

template <class Item>

template <class Item>

bag bag<Item>
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recall that the bag has overloaded the + operator as a nonmember function. For
our original bag class, the function’s implementation began this way:

bag operator +(const bag& b1, const bag& b2)...

For the template class, the start of the implementation is shown here:

operator +(const & b1, const & b2)...

As another example of these rules, consider the beginning of the count func-
tion in the original bag:

bag::size_type bag::count(const value_type& target) const ...

The function’s return type is specified as bag::size_type. But this return type
is specified before the compiler realizes that this is a bag member function. So
we must put the keyword typename before bag<Item>::size_type. We also
use Item instead of value_type:

::count
(const & target) const ...

USE THE NAME ITEM AND THE TYPENAME KEYWORD

To us, it is clear that an expression such as bag<Item>::value_type is the name
of a data type. But many compilers will not recognize that it is a data type. To help
the compiler, use Item instead of value_type. Also, outside of a member
function, you must put the keyword typename in front of any member of a template
class that is the name of a data type (for example, typename bag<Item>::
size_type). This is required only when the Item is still unspecified; for example, it
is not needed if a program uses a particular item such as bag<int>::size_type.

Examples:

3. Make the implementation visible. The third change to create a template
class is an annoying requirement: In the header file, you place the documenta-
tion and the prototypes of the functions—then you must include the actual
implementations of all the functions. This is annoying because we try to avoid

template <class Item>
bag<Item> bag<Item> bag<Item>

template <class Item>
typename bag<Item>::size_type bag<Item>

Item

PROGRAMMING TIP ��  

In the Original Bag In the Template Bag Class
value_type Item

size_type
(inside a member function)

size_type

size_type
(outside a member function)

typename bag<Item>::size_type
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revealing our implementations, and suddenly all is revealed! The reason for the
requirement is to make the compiler’s job simpler. We recommend that you meet
the requirement in a backdoor manner: Keep the implementations in a separate
implementation file, but place an include directive at the bottom of the header file
to pick up these implementations, as shown at the bottom of our new bag’s header
file (bag4.h) shown in Figure 6.2. Near the end of the header file, on page 306,
we have the following line, which causes the inclusion of the implementation file:

DO NOT PLACE USING DIRECTIVES IN A TEMPLATE IMPLEMENTATION

Because a template class has its implementation included in the header file, we
must not place any using directives in the implementation (otherwise, every pro-
gram that uses our template class will inadvertently pick up our using directives).

More About the Template Implementation File
Figure 6.2 shows the new bag header file (bag4.h) and implementation file
(bag4.template). The name of the implementation file is bag4.template
(rather than bag4.cxx), reminding us that the implementations cannot be com-
piled on their own. In the implementation, we could have used any of the previ-
ous bag techniques: a static array, a dynamic array, or a linked list. The actual
approach that we used in the new template class is an implementation with a
dynamic array.

#include "bag4.template" // Include the implementation.

PITFALL ��  

Summary
How to Convert a Container Class to a Template

1. The template prefix precedes each function prototype or implementation.
2. Outside the class definition, place the word <Item> with the class name,

such as bag<Item>.
3. Use the name Item instead of value_type.
4. Outside of member functions and the class definition itself, add the key-

word typename before any use of one of the class’s type names. For
example:

typename bag<Item>::size_type

5. The implementation file name now ends with .template (instead of
.cxx), and it is included in the header by an include directive. 

6. Eliminate any using directives in the implementation file. Therefore, we
must then write std:: in front of any Standard Library function such as
std::copy.

7. Some compilers require any default argument to be in both the prototype
and the function implementation.
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A Header File
// FILE: bag4.h (part of the namespace main_savitch_6A)
// TEMPLATE CLASS PROVIDED: bag<Item>
//
// TEMPLATE PARAMETER, TYPEDEFS, and MEMBER CONSTANTS for the bag<Item> class:
// The template parameter, Item, is the data type of the items in the bag, also defined as
// bag::value_type. It may be any of the C++ built-in types (int, char, etc.), or a class with a
// default constructor, a copy constructor, an assignment operator, and operators to test
// for equality (x == y) and non-equality (x != y). The definition bag::size_type is the data
// type of any variable that keeps track of how many items are in a bag. The static const
// DEFAULT_CAPACITY is the initial capacity of a bag created by the default constructor.
//
// CONSTRUCTOR for the bag<Item> template class:
//
// Postcondition: The bag is empty with the specified initial capacity. The insert 
// function works efficiently (without allocating new memory) until this capacity is reached.
//
// MODIFICATION MEMBER FUNCTIONS for the bag<Item> template class:
//
// Postcondition: All copies of target have been removed from the bag.
// The return value is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy has been removed;
// otherwise the bag is unchanged. A true return value indicates that one
// copy was removed; false indicates that nothing was removed.
//
//
// Postcondition: A new copy of entry has been inserted into the bag.
//
//
// Postcondition: Each item in addend has been added to this bag.
//
//
// Postcondition: The bag’s current capacity is changed to the new_capacity (but not less
// than the number of items already in the bag). The insert function will work efficiently
// (without allocating new memory) until the new capacity is reached.
//
// CONSTANT MEMBER FUNCTIONS for the bag<Item> template class:
//
// Postcondition: Return value is the number of times target is in the bag.
//
//
// Precondition: size( ) > 0.
// Postcondition: The return value is a randomly selected item from the bag.
//
//
// Postcondition: The return value is the total number of items in the bag. (continued)

 FIGURE  6.2 Header File and Implementation File for the Bag Template Class

bag(size_type initial_capacity = DEFAULT_CAPACITY)

size_type erase(const Item& target)

bool erase_one(const Item& target)

void insert(const Item& entry)

void operator +=(const bag& addend)

void reserve(size_type new_capacity)

size_type count(const Item& target) const

Item grab( ) const

size_type size( ) const
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// NONMEMBER FUNCTIONS for the bag<Item> template class:
//
// Postcondition: The bag returned is the union of b1 and b2.
// VALUE SEMANTICS: Assignments and the copy constructor may be used with bag objects.
// DYNAMIC MEMORY USAGE by the bag<Item> template class: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// the constructors, reserve, insert, operator += , operator +, and the assignment operator.

#ifndef MAIN_SAVITCH_BAG4_H
#define MAIN_SAVITCH_BAG4_H
#include <cstdlib> // Provides size_t

namespace main_savitch_6A
{

class bag
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef Item value_type;
typedef std::size_t size_type;
static const size_type DEFAULT_CAPACITY = 30;
// CONSTRUCTORS and DESTRUCTOR
bag(size_type initial_capacity = DEFAULT_CAPACITY);
bag(const bag& source);
~bag( );
// MODIFICATION MEMBER FUNCTIONS
size_type erase(const Item& target);
bool erase_one(const Item& target);
void insert(const Item& entry);
void operator =(const bag& source);
void operator +=(const bag& addend);
void reserve(size_type capacity);
// CONSTANT MEMBER FUNCTIONS
size_type count(const Item& target) const;
Item grab( ) const;
size_type size( ) const { return used; }

private:
Item *data; // Pointer to partially filled dynamic array
size_type used; // How much of array is being used
size_type capacity; // Current capacity of the bag

};

// NONMEMBER FUNCTION

 operator +(const & b1, const & b2);
}

#endif (continued)

bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2)

template <class Item>
the template prefix

template <class Item>
bag<Item> bag<Item> bag<Item>

#include "bag4.template" // Include the implementation.

Most compilers
require the implementation file to
be included in the header file for 
a template class.
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 (FIGURE  6.2 continued)

An Implementation File
//
//
//
//
//
// INVARIANT for the bag class:
// 1. The number of items in the bag is in the member variable used.
// 2. The actual items of the bag are stored in a partially filled array.
// The array is a dynamic array, pointed to by the member variable data.
// 3. The size of the dynamic array is in the member variable capacity.
#include <algorithm> // Provides copy
#include <cassert> // Provides assert
#include <cstdlib> // Provides rand

namespace main_savitch_6A
{

const typename bag<Item>::size_type bag<Item>::DEFAULT_CAPACITY;

{
 data = new Item[initial_capacity];

capacity = initial_capacity;
used = 0;

}

// Library facilities used: algorithm
{

data = new Item[source.capacity];
capacity = source.capacity;
used = source.used;
std::copy(source.data, source.data + used, data);

}

{
delete [ ] data;

}
(continued)

FILE: bag4.template
TEMPLATE CLASS IMPLEMENTED: bag<Item> (see bag4.h for documentation)
This file should be included in the header file and not compiled separately.
Because of this, we must not have any using directives in the implementation.

Outside of the
class definition, each
definition is
preceded by the
template prefix.

template <class Item>

template <class Item>
bag<Item>::bag(size_type initial_capacity)

Outside of
the class definition, the
use of bag as a type name
is changed to bag<Item>.
Also, the keyword
typename must
precede any use of
bag<Item>::size_type
and the value_type is
written as Item.

Within the implementation file,
we don’t put any using
directives, so we must
write std::copy rather
than simply copy.

template <class Item>
bag<Item>::bag(const bag<Item>& source)

template <class Item>
bag<Item>::~bag( )
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 (FIGURE  6.2 continued)

{
size_type i;

assert(size( ) > 0);
i = (std::rand( ) % size( )); // i is in the range of 0 to size( ) - 1.
return data[i];

}

}

template <class Item>
typename bag<Item>::size_type bag<Item>::erase(const Item& target) 

No change from the original bag: See the solution to Self-Test Exercise 12 on page 147.

template <class Item>
bool bag<Item>::erase_one(const Item& target) 

No change from the original bag: See the implementation in Figure 3.3 on page 114.

template <class Item>
void bag<Item>::insert(const Item& entry) 

No change from the Chapter 4 bag: See the implementation in Figure 4.11 on page 192.

template <class Item>
void bag<Item>::operator =(const bag<Item>& source) 

This uses std::copy (instead of copy); otherwise the same as Figure 4.10 on page 190.

template <class Item>
void bag<Item>::operator +=(const bag<Item>& addend). 

This uses std::copy (instead of copy); otherwise the same as Figure 4.11 on page 192.

template <class Item>
void bag<Item>::reserve(size_type new_capacity)

This uses std::copy (instead of copy); otherwise the same as Figure 4.11 on page 192.

template <class Item>
typename bag<Item>::size_type bag<Item>::count(const Item& target) const

No change from the original bag: See the implementation in Figure 3.6 on page 119.

template <class Item>
Item bag<Item>::grab( ) const

template <class Item>
bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2) 

This uses bag<Item> (for the answer); otherwise the same as Figure 4.11 on page 192.

www.cs.colorado.edu/~main/chapter6/bag4.h and bag4.template WWW
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Parameter Matching for Member Functions of Template Classes

In the implementation of a template function, we are careful to help the com-
piler by providing a template parameter for each of the function’s parameters.
(See “Mismatches for Template Function Arguments” on page 299.) However,
this help is not needed for member functions of a template class. For example,
we can use a simple size_type parameter for the bag’s reserve function.
Unlike an ordinary template function, the compiler is able to match a
size_type parameter of a member function with any of the usual integer argu-
ments (such as int or const int). If b is a bag object of our new template class,
then we may call b.reserve(42), with the actual argument being the integer
42. The compiler will convert this integer to the equivalent size_type value.

Using the Template Class

Using the bag template class is easy. A program includes the bag4.h header
file, and then any kind of bag can be declared. To declare a bag, you write the
class name, bag, followed by the name of the data type for the template parame-
ter (in angle brackets). For example, if a program needs one bag of characters
and one bag of double numbers, then the program uses these two declarations:

bag<char> letters;
bag<double> scores;

When an actual bag is declared, as in these examples, the template parameter is
said to be instantiated. In the letters bag, the template parameter is instanti-
ated as a character; in the scores bag, the template parameter is instantiated as
a double number. A program that includes the <string> header file can even
create a bag of strings, as shown here:

bag<string> verbs;

Figure 6.3 on page 310 shows a program that uses a bag of integers and two
bags of strings. The program asks the user to type several adjectives, numbers,
and names. These items are placed in the bags, and then items are grabbed out
of the bags in order for the program to write a silly story called “Life.”

The bags are declared in the demonstration program as you would expect:

bag<string> adjectives; // Contains adjectives typed by user
bag<int>    ages; // Contains ages in the teens
bag<string> names; // Contains names typed by user

After these declarations, the program can use the bags adjectives and names
just like any other bag of strings, whereas ages can be used just like any other
bag of integers. Let’s discuss the details of the story-writing program.
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A Program
// FILE: author.cxx
// The program reads some words into bags of strings, and some numbers into
// a bag of integers. Then a silly story is written using these words.

#include <cstdlib> // Provides EXIT_SUCCESS
#include <iostream> // Provides cout and cin
#include <string> // Provides string class
#include "bag4.h" // Provides the bag template class
using namespace std;
using namespace main_savitch_6A;

const int ITEMS_PER_BAG = 4;  // Number of items to put into each bag
const int MANY_SENTENCES = 3; // Number of sentences in the silly story

// Postcondition: The description has been written as a prompt to the
// screen. Then n items have been read from cin and added to the collection.
// Library facilities used: bag4.h, iostream
{
    Item user_input; // An item typed by the program’s user
    SizeType i;

    cout << "Please type " << n << " " << description;
    cout << ", separated by spaces.\n";
    cout << "Press the <return> key after the final entry:\n";

for (i = 1; i <= n; ++i)
    {
        cin >> user_input;
        collection.insert(user_input);
    }
    cout << endl;
}

(continued)

 FIGURE  6.3 Demonstration Program for the Bag Template Class

template <class Item, class SizeType, class MessageType>
void get_items(bag<Item>& collection, SizeType n, MessageType description)
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{

int line_number; // Number of the output line

    // Fill the three bags with items typed by the program’s user.
    cout << "Help me write a story.\n";
    get_items(adjectives, ITEMS_PER_BAG, "adjectives that describe a mood");
    get_items(ages,       ITEMS_PER_BAG, "integers in the teens");
    get_items(names,      ITEMS_PER_BAG, "first names");
    cout << "Thank you for your kind assistance.\n\n";

    // Use the items to write a silly story.
    cout << "LIFE\n";
    cout << "by A. Computer\n";

for (line_number = 1; line_number <= MANY_SENTENCES; ++line_number)
        cout << names.grab( ) << " was only "

<< ages.grab( ) << " years old, but he/she was "
             << adjectives.grab( ) << ".\n";
    cout << "Life is " << adjectives.grab( ) << ".\n";
    cout << "The (" << adjectives.grab( ) << ") end\n";

return EXIT_SUCCESS;
}

A Sample Dialogue
Help me write a story.
Please type 4 adjectives that describe a mood, separated by spaces.
Press the <return> key after the final entry:
joyous happy sad glum

Please type 4 integers in the teens, separated by spaces.
Press the <return> key after the final entry:
19 16 13 16

Please type 4 first names, separated by spaces.
Press the <return> key after the final entry:
Mike Walt Cathy Harry

Thank you for your kind assistance.

LIFE
by A. Computer
Cathy was only 13 years old, but he/she was happy.
Walt was only 19 years old, but he/she was happy.
Mike was only 16 years old, but he/she was joyous.
Life is glum.
The (sad) end

.

int main( )

bag<string> adjectives; // Contains adjectives typed by user
bag<int>    ages; // Contains ages in the teens typed by user
bag<string> names; // Contains names typed by user

www.cs.colorado.edu/~main/chapter6/author.cxx WWW
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Details of the Story-Writing Program

The story-writing program uses a function, get_items, which is actually a tem-
plate function with this specification:

// Postcondition: The description has been written as a prompt to the
// screen. Then n items have been read from cin and added to the collection.

The function uses the third parameter, description, as part of a prompt that
asks the user to type n items. For example, if description is the string constant
"first names" and n is 4, then the get_items function writes this prompt:

Please type 4 first names, separated by spaces.
Press the <return> key after the final entry:

The function then reads n items and places them in the bag with the insert
member function. Because the function is a template function that depends on
the Item data type, we can use the function with any kind of bag—with a bag of
strings, or a bag of integers, or even some other kind of bag. In fact, the template
prefix indicates that the function depends on three classes:

• class Item: This is the type of the item in the bag.
• class SizeType: This is the type of the second parameter, n. It may be

any integer data type such as int or size_t.
• class MessageType: This may be any printable data type such as a string

constant or even a string variable.

The literary merit of the program’s story is debatable, but the ability to use sev-
eral different kinds of bags in the same program is clearly important.

Self-Test Exercises for Section 6.2
9. When you implement a template class, the entire implementation file is

included in the header file. Why is this needed?
10. When you write a template class, where does the template prefix occur?
11. Why should the using directive be avoided in an implementation file of a

template class?
12. When does instantiation of a template parameter occur?
13. Name two places in the bag template class where the name bag is not

changed to bag<Item>.
14. Describe the purpose of the C++ keyword typename as used in this

section.

template <class Item, class SizeType, class MessageType>
void get_items(bag<Item>& collection, SizeType n, MessageType description);
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15. The bag implementation uses the copy function from the <algorithm>
facility. Why do we need to write the full name std::copy in the imple-
mentation of the bag template, but we write the shorter version, copy, in
the implementation of the ordinary class?

16. Write declarations for three bags with three different item types. Can you
use all three bags in a single program?

6.3 THE STL’S ALGORITHMS AND USE OF ITERATORS

STL Algorithms

Now that you know how to write your own template classes, we can examine
more details of the Standard Template Library. The STL contains a group of
functions in the <algorithm> facility that can manipulate containers including
the multiset (see page 139), the set (which is like the multiset but with no
repeated items), and the map and multimap classes (both discussed in Chapter
12). We have already seen one example of an STL function: the copy function
on page 116. Another example is the set_union function:

iterator set_union (iterator1 first1, iterator1 last1,
 iterator2 first2, iterator2 last2,
 iterator3 result); 

This function can be used to create a union of two sets. In other words, it can
create a new set that includes copies of all the elements from two other contain-
ers. The five parameters, which are all iterators (see page 140), need some
explanation.

The first two parameters, first1 and last1, are iterators in a set. All the
elements in the range [first1...last1) will be copied to the result. Notice that
this range is a left-inclusive pattern using one square bracket and one parenthesis,
so that the current element of the first1 iterator is included, but the range ends
just before the last1 iterator. The first2 and last2 parameters define a second
left-inclusive range [first2...last2), which is also copied to the result. 

some of the STL 
algorithms use 
output iterators 
to add new items 
to a container

The location for the result is determined by the fifth parameter. This parame-
ter, called result, must be an output iterator, which is a kind of iterator that
provides an alternative way to insert new elements into a container. Programmers
don’t usually use output iterators directly, but they often use them as an argument
to one of the STL algorithms. One way to create an output iterator for a container
class called c is with the expression .

The following code creates two sets, uses the STL set_union function to cre-
ate a union of the sets, and iterates through the result. 

inserter(c, c.begin( ))
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   set<string> actors1;
   set<string> actors2;
   set<string> result; 
   set<string>::iterator role;

actors1.insert("moe");
   actors1.insert("curly");

actors2.insert("larry");
   actors2.insert("curly");

   // Notice how we create the output iterator for the fifth argument:
   set_union(actors1.begin( ), actors1.end( ),
             actors2.begin( ), actors2.end( ),
             inserter(result,result.begin( )));

for (role = result.begin( ); role != result.end( ); ++role)
   {

cout << *role << " ";
   } 
   cout<< endl;

The output shows all three actors in the union, with only one copy of the dupli-
cate curly:

curly larry moe

By the way, each iterator in the STL actually has an ordinary version and a const
version. The const version can be used when a program needs to access the ele-
ments of a container without changing them. For example, the role iterator
shown above could have been a set<string>::const_iterator.

Standard Categories of Iterators

The C++ Standard specifies five significant categories of iterators, based on
their abilities. In order to use some of the built-in algorithms provided by the
C++ Standard, a programmer must know which category is provided by a con-
tainer class. The first two categories—an input iterator and an output iterator—
are specialized iterators for retrieving and inserting elements. The other three
categories are the forward iterator, the bidirectional iterator, and the random
access iterator. Each of these categories has increasingly stronger abilities. 

We’ll finish this section with a list of each category’s abilities.

Output iterator. We’ve already seen one example of an output iterator, as the
final parameter for the set_union function on page 313. The current element of
an output iterator can be assigned to, such as  for an output oper-
ator called p. The ++ increment operator moves the iterator forward to another
item. The intention is that an algorithm that uses an output iterator will do an
assignment followed by an increment (++), over and over again. However, the
output operator itself cannot be used to retrieve those elements, so the output iter-

*p = "shemp";
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ator’s usefulness is limited to the situation where some algorithm needs to put a
sequence of elements in a container or other object with an output iterator.

Input iterator. An input iterator is designed to provide a sequence of values.
The current element of an input operator can be retrieved by using the derefer-
encing * operator such as  for an input operator called p. The ++ incre-
ment operator moves the iterator forward to another item. The intention is that an
algorithm that uses an input iterator will retrieve an element (with the dereferenc-
ing *) followed by an increment (++), over and over again. The end of an input
iterator’s elements is usually detected by comparing the input iterator with
another iterator that is known to be just beyond the end of the input range.

Forward iterator. A forward iterator p is an object that provides these items:
• Iterators have a default constructor (to create an iterator that is not yet ini-

tialized), a copy constructor, and an assignment operator.
• The * operator accesses the iterator’s current item. In some cases, the item

is assignable (meaning it can be directly changed with an assignment such
as ); in other cases, direct changes of the item are
forbidden.

• The ++ operator moves the iterator forward to the next item. The operator
can be used in prefix notation (such as ++p) or postfix notation (such as
p++). Both versions move the iterator forward, and both versions are actu-
ally function calls that return an iterator (which can be used as part of a
larger expression). In particular, ++p returns the iterator after it has moved
forward, whereas p++ returns a copy of the iterator before it moved. 

• Iterators can be tested for equality (p == q) and inequality (p != q).
Two iterators over the same container are equal if their current items are
in the same position, or if they are both past the end of the container. Iter-
ators from different containers should not be compared with each other.

Bidirectional iterator. A bidirectional iterator has all the abilities of a forward
iterator, plus it can move backward with the -- operator. The --p operator
moves the iterator p backward one position (and returns the iterator after it has
moved backward). The p-- operator also moves the iterator backward one posi-
tion (and returns a copy of the iterator before it moved).

As an example, the multiset::const_iterator is a bidirectional iterator.

Random access iterator. The term random access refers to the ability to
quickly access any randomly selected location in a container. A random access
iterator allows this quick access by providing six new operations in addition to
those of the bidirectional iterator. Appendix H covers these six operations in
detail. For now, you should know that a random access iterator p can use the
notation  to provides access to the item that is n steps in front of the current
item. For example, p[0] is the current item, p[1] is the next item, and so on. In
addition, a random access iterator can always be used as if it were any of the other
types of iterators because it has all of the same operations.

x = *p;

*p = "shemp";

p[n]



316  Chapter 6 / Software Development with Templates, Iterators, and the STL

Iterators for Arrays

A random access iterator looks a lot like an array. In fact, the opposite is also
true: C++ will allow any pointer to an element in an array to be used as if it were
a random access iterator. The “current item” of such a pointer is the array ele-
ment that it points to. The ++ and -- operators move the pointer forward or
backward one spot. And for a pointer p, the notation p[i] refers to the item that
is i steps ahead of the current item.

Since a pointer to an array is a random access iterator, we can use these point-
ers in Standard Library functions that expect an iterator. For example, the copy
function from <algorithm> is a template function with this prototype:

template <class SourceIterator, class DestinationIterator>
DestinationIterator copy(

SourceIterator source_begin,
SourceIterator source_end,
DestinationIterator destination_begin

);

the [...) pattern 
occurs again

Both source_begin and source_end are iterators over the same object. The
function copies elements from the source to the destination. The first element
that is copied comes from source_begin, and the copying continues up to (but
not including) source_end. Notice that this is another example of the left-
inclusive pattern [...) that we have seen before. The return value is an iterator
that is one position beyond the last copied element in the destination.

Anyway, we wanted to show you how an array can be used as an iterator in
the arguments of the copy function. Here are some typical examples:

int numbers[7] = { 0, 10, 20, 30, 40, 50, 60 };
int small[3];
int *p = numbers + 2; // An iterator that starts at numbers[2]
int *mid = numbers + 5; // An iterator that starts at numbers[5]
int *small_front = small; // An iterator that starts at small[0]

// p, mid, and small can all be used as iterators in the copy function.
// This will copy numbers[2]...numbers[4] into small:
copy(p, mid, small_front);

// The name of an array itself can also be used as the argument for an
// iterator (either by itself or with an offset such as numbers + 6).
// This statement copies the last three elements of numbers into small.
// Notice that numbers + 7 is one step beyond the end of the numbers 
// array.
copy(numbers + 4, numbers + 7, small);
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Self-Test Exercises for Section 6.3

17. You have computed the set union of two sets with sizes 10 and 40, but
the answer has only 42 items. How can this be?

18. How could you use the set_union function to determine whether all the
elements of one set are also included in another (i.e., one set is a subset
of another)?

19. Which of the const iterator categories is provided by a multiset?
20. How does a random access iterator provide access to an item that is n

steps in front of the current item?
21. Write a function that has one parameter: a non-empty const multiset of

strings. The return value is a copy of the longest string in the multiset. If
there are several strings of equally long length, then return the one that is
found earliest by an iterator.

22. Suppose you have two iterators, s and t, over the same container, and
both *s and *t are 42. Will (s==t) always be true?

6.4 THE NODE TEMPLATE CLASS

In Sections 5.1 and 5.2, we implemented a node class for manipulating linked
lists. As you might guess, the node will be more useful if we implement the
node as a template class that depends on the underlying item data type. Each of
the node’s functions can then be implemented as a template function that also
depends on the item.

Here is a comparison of the original toolkit’s node definition to our new plan:

With the new definition, the node is now a template class. Each of the node
functions can be changed to a template function by making the same changes that
we saw in Section 6.2.

For example, here is the original prototype for the list_insert function:

void list_insert
(node* previous_ptr, const node::value_type& entry);

The new prototype for the list_insert template function is preceded by the
template prefix and uses Item within its parameter list, as shown here:

Original Node Class:

class node
{
public:

typedef double value_type;
...

New Template Node Class:

class node
{
public:

typedef  value_type;
...

template <class Item>

Item
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void list_insert
( * previous_ptr, const & entry);

One of the toolkit’s functions, list_locate, needs some extra care. Our
original node had a const and a non-const version, both of which have a size_t
parameter, as shown here:

node* list_locate(node* head_ptr, size_t position);

const node* list_locate
(const node* head_ptr, size_t position);

As we explained in the pitfall “Mismatches for Template Function Arguments”
on page 299, the presence of the size_t parameter can cause mismatches for an
argument type. The solution is the same approach that we used before: Add a
second template parameter. In addition, we can actually combine the two func-
tions into a single function by using a template parameter called NodePtr, as
shown in this new prototype:

template <class NodePtr, class SizeType>
NodePtr list_locate(NodePtr head_ptr, SizeType position);

When a program calls list_locate, the head pointer may be either an ordinary
pointer to a node or it may be a pointer declared with the const keyword. The
return type will always match the type of the head pointer.

Functions That Return a Reference Type

We have one other change that will simplify later usages of the node. The
change involves the data member function, which retrieves a copy of the
node’s data field. A reasonable thought for the implementation is shown here:

Item data( ) const { return data_field; }

This is a const member function, so it cannot be used to actually change a node
(it returns only a copy of the data field).

The change that we have planned is to add the symbol & to the return type, and
alter the function so that it is no longer a const function, as shown here:

Item& data( ) { return data_field; }

The & symbol changes the return value to a reference type. Reference types
have several uses in C++, but we have only a narrow use in mind: the use of a
reference type as a return value of a function, as described next.

template <class Item>

node<Item> Item
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Let’s look at an example to see how the new data function can be used to
change the data field of a node. Suppose that cursor is pointing to the second
node of this linked list of strings:

Let’s examine some statements to see how cursor->data( ) can be used to
directly manipulate the data field of the second node:

cursor->data( ) = "mynie";

This is simply an assignment statement, but the left side of the assignment is a
reference to the actual data field of the cursor’s node, so this data will change to
the string “mynie”, as shown here:

An assignment to a node’s data field is not too exciting; we could have accom-
plished the same thing with cursor->set_data("mynie"). A better example
shows how we can change a node’s data by activating one of its member func-
tions. For example, consider this statement for the preceding linked list:

head_ptr->data( ).erase(0,2);

The string’s erase(0,2) member function erases two characters starting at the
front of the string, changing “eenie” to “nie” and resulting in the linked list
shown here:

Reference Type as a Return Value
A function can use a reference type as a return value by
placing the symbol & after the return type name. The use of a
reference type has these effects:

1. The return value must be a variable or object that will still
exist after the function returns. In particular, the return
value must not be a local variable.

2. The function returns this actual variable or object (not a
copy of the object).

moe

NULL

head_ptr
meenieeenie cursor

moe

NULL

head_ptr
mynieeenie cursor
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What Happens When a Reference Return Value Is Copied Elsewhere
It’s easy to be confused about what happens when a reference return value is
copied to another variable. For example, consider the final linked list shown
earlier, where the cursor’s data is “mynie”. Can you figure out what will happen
with these two statements?

string exclamation = cursor->data( );
exclamation = “drat!”;

The exclamation variable is completely separate from the cursor’s data. The
first statement puts a copy of the cursor’s data into exclamation. The second
statement changes exclamation to “drat!” but does not alter the cursor’s data. 

In general, cursor->data( ) can be used to change the cursor’s data only by
an assignment to cursor->data( ) or by activating one of cursor->data( )’s
member functions.

The Data Member Function Now Requires Two Versions
Changing the data return value to a reference type has a drawback: This version
of the data function can no longer be used as a constant member function. The
solution is similar to the idea that we have already used for the link member
function: Provide a second constant version of the data function, as shown here:

const Item& data( ) const { return data_field; }

This version has two changes from our other version:
• The return value is a reference to a const value. Since it is a reference

type, it will still refer directly to the node’s data field. But because of the
keyword const, it cannot be used to change that data field.

• Since the return value cannot be used to change the node, the function can
be declared as a constant member function of the node class.

The approach of having two data member functions has the same motivation
that we used on page 228 to provide two separate link member functions. Also,
the compiler is able to determine which function to call in any situation. If a

The data( ) Function with a Reference Return Type
Any use of the data( ) function will now refer directly to the
node’s data field. When data( ) is used in an expression,
changes can be made directly to the node’s data field.

moe

NULL

head_ptr
mynienie cursor
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pointer p is a pointer to a const node, then p->data( ) will activate the const
version of data; otherwise the non-const version is used.

Header and Implementation Files for the New Node

The header file (node2.h) and implementation file (node2.template) for the
new node are given in Figure 6.4. We have also updated the documentation to
indicate the effect of the two versions of the data member function. For your
reference, you might want to flip back to the complete list of changes that are
needed to convert a container class to a template class (page 304).

Self-Test Exercises for Section 6.4

23. Suppose that a function from Chapter 5 has a local variable called
insert_ptr, which is a pointer to a node. How will you declare this
variable in a template version of the function?

24. Write the implementation of the template version of list_head_remove.
25. Suppose that p is a pointer to a node in a linked list of strings, and the

data of that node is the string “help”. What is the value of that data after
these two statements: p->data( ).erase(3,1);

p->data( ).append("lo");

26. Suppose that p is a pointer to a const node in the previous exercise.
Would those two statements be allowed?

27. In the node template class, how does the compiler determine which
data( ) member function to call in any situation?

A Header File
// FILE: node2.h (part of the namespace main_savitch_6B)
// PROVIDES: A template class for a node in a linked list and functions for 
// manipulating linked lists. The template parameter is the type of data in each node.
//
// TYPEDEF for the node<Item> template class:
// Each node of the list contains a piece of data and a pointer to the next node. The 
// type of the data (node<Item>::value_type) is the Item type from the template parameter.
// The type may be any of the C++ built-in types (int, char, etc.), or a class with a default 
// constructor, an assignment operator, and a test for equality.
//
// CONSTRUCTOR for the node<Item> class:
//
// Postcondition: The node contains the specified data and link.
// NOTE: The init_data parameter has a default value that is obtained from the default
// constructor of the Item type. In the ANSI/ISO standard, this notation is also allowed
// for the built-in types, providing a default value of zero. The init_link has a default
// value of NULL.

(continued)

 FIGURE  6.4 Header File and Implementation for the Node Template Class

node(const Item& init_data, node* init_link)



322  Chapter 6 / Software Development with Templates, Iterators, and the STL

 (FIGURE  6.4 continued)

// NOTE about const and non-const versions of the data and link member functions:
// The data function returns a reference to the data field of a node, and the link function 
// returns a copy of the link field of a node. Each of these functions comes in two versions: a
// const version and a non-const version. If the function is activated by a const node, then
// the compiler chooses the const version (and the return value is const). If the function is
// activated by a non-const node, then the compiler chooses the non-const version (and the
// return value will be non-const).
// EXAMPLES:
// const node<int> *c;
//    c->link( ) activates the const version of link returning const node<int>*
//    c->data( ) activates the const version of data returning const Item&
// c->data( ) = 42; ... is forbidden
//    node<int> *p;
//    p->link( ) activates the non-const version of link returning node<int>*
//    p->data( ) activates the non-const version of data returning Item&
//    p->data( ) = 42; ... actually changes the data in p's node
//
// MEMBER FUNCTIONS for the node<Item> class:
// <----- const version
// and
// <----- non-const version
// See the note (above) about the const version and non-const version.
// Postcondition: The return value is a reference to the data from this node.
//
// <----- const version
// and
//  <----- non-const version
// See the note (above) about the const version and non-const version.
// Postcondition: The return value is the link from this node.
//
//
// Postcondition: The node now contains the specified new data.
//
//
// Postcondition: The node now contains the specified new link.
//
// NONMEMBER FUNCTIONS to manipulate nodes:
//
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: All nodes of the list have been returned to the heap, and the head_ptr is 
// now NULL.

(continued)

const Item& data( ) const

Item& data( )

const node* link( ) const

node* link( )

void set_data(const Item& new_data)

void set_link(node* new_link)

template <class Item>
void list_clear(node<Item>*& head_ptr)
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 (FIGURE  6.4 continued)

//
//
//
// Precondition: source_ptr is the head pointer of a linked list.
// Postcondition: head_ptr and tail_ptr are the head and tail pointers for a new list that
// contains the same items as the list pointed to by source_ptr. 
//
//
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: A new node containing the given entry has been added at the head of
// the linked list; head_ptr now points to the head of the new, longer linked list.
//
//
//
// Precondition: head_ptr is the head pointer of a linked list, with at least one node.
// Postcondition: The head node has been removed and returned to the heap;
// head_ptr is now the head pointer of the new, shorter linked list.
//
//
//
// Precondition: previous_ptr points to a node in a linked list.
// Postcondition: A new node containing the given entry has been added after the node
// that previous_ptr points to.
//
//
//
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The value returned is the number of nodes in the linked list. The list
// itself is unaltered.
//
//
//
// NOTE: NodePtr may be either node<Item>* or const node<Item>*
// Precondition: head_ptr is the head pointer of a linked list, and position > 0.
// Postcondition: The return value is a pointer that points to the node at the specified 
// position in the list. (The head node is position 1, the next node is position 2, and so on.) 
// If there is no such position, then the null pointer is returned. The list itself is unaltered.
//
//
//
// Precondition: previous_ptr points to a node in a linked list, and this is not the tail node of 
// the list.
// Postcondition: The node after previous_ptr has been removed from the linked list.

(continued)

template <class Item>
void list_copy
(const node<Item>* source_ptr, node<Item>*& head_ptr, node<Item>*& tail_ptr) 

template <class Item>
void list_head_insert(node<Item>*& head_ptr, const Item& entry) 

template <class Item>
void list_head_remove(node<Item>*& head_ptr) 

template <class Item>
void list_insert(node<Item>* previous_ptr, const Item& entry) 

template <class Item>
size_t list_length(const node<Item>* head_ptr)

template <class NodePtr, class SizeType>
NodePtr list_locate(NodePtr head_ptr, SizeType position) 

template <class Item>
void list_remove(node<Item>* previous_ptr) 
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 (FIGURE  6.4 continued)

//
//
// NOTE: NodePtr may be either node<Item>* or const node<Item>*
// Precondition: head_ptr is the head pointer of a linked list.
// Postcondition: The return value is a pointer that points to the first node containing the
// specified target in its data field. If there is no such node, the null pointer is returned. 
//
// DYNAMIC MEMORY usage by the toolkit: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc: 
// the node constructor, list_copy, list_head_insert, list_insert.

#ifndef MAIN_SAVITCH_NODE2_H
#define MAIN_SAVITCH_NODE2_H
#include <cstdlib> // Provides NULL and size_t
#include <iterator> // Will be used for the node_iterator in Section 6.5

namespace main_savitch_6B
{

template <class Item>
class node
{
public:

// TYPEDEF
typedef Item value_type;
// CONSTRUCTOR
node(const Item& init_data=Item( ), node* init_link=NULL)

{ data_field = init_data; link_field = init_link; }
// MODIFICATION MEMBER FUNCTIONS
Item& data( ) { return data_field; }
node* link( ) { return link_field; }
void set_data(const Item& new_data) { data_field = new_data; }
void set_link(node* new_link) { link_field = new_link; }
// CONST MEMBER FUNCTIONS
const Item& data( ) const { return data_field; }
const node* link( ) const { return link_field; }

private:
Item data_field;
node *link_field;

};

// FUNCTIONS to manipulate a linked list:
template <class Item>
void list_clear(node<Item>*& head_ptr);

(continued)

template <class NodePtr, class Item>
NodePtr list_search(NodePtr head_ptr, const Item& target)
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 (FIGURE  6.4 continued)
template <class Item>
void list_copy

(const node<Item>* source_ptr, node<Item>*& head_ptr, node<Item>*& tail_ptr);

template <class Item>
void list_head_insert(node<Item>*& head_ptr, const Item& entry);

template <class Item>
void list_head_remove(node<Item>*& head_ptr);

template <class Item>
void list_insert(node<Item>* previous_ptr, const Item& entry);

template <class Item>
std::size_t list_length(const node<Item>* head_ptr);
template <class NodePtr, class SizeType>
NodePtr list_locate(NodePtr head_ptr, SizeType position);

template <class Item>
void list_remove(node<Item>* previous_ptr);

template <class NodePtr, class Item>
NodePtr list_search(NodePtr head_ptr, const Item& target);

}

#include "node2.template"
#endif

An Implementation File
// FILE: node2.template
// IMPLEMENTS: The functions of the node template class (see node2.h for documentation)
//
// NOTE:
// Since node is a template class, this file is included in node2.h.
// Therefore, we should not put any using directives in this file.
//
// INVARIANT for the node class:
// The data of a node is stored in data_field, and the link in link_field.

#include <cassert>    // Provides assert
#include <cstdlib>    // Provides NULL and size_t

(continued)

A definition for a node iterator class will be placed here in Section 6.5.
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 (FIGURE  6.4 continued)

namespace main_savitch_6B
{

    // Library facilities used: cstdlib
    {

while (head_ptr != NULL)
 list_head_remove(head_ptr);

    }

// Library facilities used: cstdlib
    {

head_ptr = NULL;
tail_ptr = NULL;

// Handle the case of the empty list.
if (source_ptr == NULL)

return;

// Make the head node for the newly created list, and put data in it.
list_head_insert(head_ptr, source_ptr->data( ));
tail_ptr = head_ptr; 

// Copy the rest of the nodes one at a time, adding at the tail of new list.
source_ptr = source_ptr->link( ); 
while (source_ptr != NULL) 
{

 list_insert(tail_ptr, source_ptr->data( ));
 tail_ptr = tail_ptr->link( );

source_ptr = source_ptr->link( );
}

    }

{
head_ptr = new node<Item>(entry, head_ptr);

}

(continued)

template <class Item>
void list_clear(node<Item>*& head_ptr)

template <class Item>
void list_copy

(const node<Item>* source_ptr, node<Item>*& head_ptr, node<Item>*& tail_ptr)

template <class Item>
void list_head_insert(node<Item>*& head_ptr, const Item& entry)
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 (FIGURE  6.4 continued)

    {
node<Item> *remove_ptr;

remove_ptr = head_ptr;
head_ptr = head_ptr->link( );
delete remove_ptr;

    }

    {
node<Item> *insert_ptr;

insert_ptr = new node<Item>(entry, previous_ptr->link( ));
previous_ptr->set_link(insert_ptr);

    }

    // Library facilities used: cstdlib
    {

const node<Item> *cursor;
std::size_t answer;

answer = 0;
for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))

 ++answer;
return answer;

    }

// Library facilities used: cassert, cstdlib
    {

NodePtr cursor;
std::size_t i;

assert(0 < position);
cursor = head_ptr;
for (i = 1; (i < position) && (cursor != NULL); ++i)

 cursor = cursor->link( );
return cursor;

    }

(continued)

template <class Item>
void list_head_remove(node<Item>*& head_ptr)

template <class Item>
void list_insert(node<Item>* previous_ptr, const Item& entry)

template <class Item>
std::size_t list_length(const node<Item>* head_ptr)

template <class NodePtr, class SizeType>
NodePtr list_locate(NodePtr head_ptr, SizeType position)
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6.5 AN ITERATOR FOR LINKED LISTS

We’ll use the node template class to build various container classes. It will be
useful if we have a simple way for each of these containers to build its own iter-
ators. The best approach is to start by defining iterators that can step through the
nodes of a linked list. We can put this node iterator into node2.h, so that any
container class that uses a node can also use the node iterator.

The Node Iterator
The node iterator has two constructors: (1) a constructor that attaches the itera-
tor to a specified node in a linked list, and (2) a default constructor that creates a
special iterator that marks the position that is beyond the end of a linked list. 

We’ll be able to use our iterator to step through a linked list following the
usual [...) left-inclusive pattern. For example, suppose that head_ptr is the
head pointer for a list of integers. The following loop will step through the list,
changing to zero any number that is odd:

node_iterator<int> start(head_ptr); // start is at the first node
node_iterator<int> finish; // finish is beyond the end
node_iterator<int> position; // position moves through list

 (FIGURE  6.4 continued)

{
node<Item> *remove_ptr;

remove_ptr = previous_ptr->link( );
previous_ptr->set_link(remove_ptr->link( ));
delete remove_ptr;

    }

// Library facilities used: cstdlib
    {

NodePtr cursor;

for (cursor = head_ptr; cursor != NULL; cursor = cursor->link( ))
if (target == cursor->data( ))

return cursor;
return NULL;

    }
}

template <class Item>
void list_remove(node<Item>* previous_ptr)

template <class NodePtr, class Item>
NodePtr list_search(NodePtr head_ptr, const Item& target)

www.cs.colorado.edu/~main/chapter6/node2.h and /node2.template WWW
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for (position = start; position != finish; ++position)
{

if ((*position % 2) == 1) // The number is odd.
*position = 0; // Change the odd number to zero.

}

In this code, suppose that the list contains the three numbers 42, 13, 67. After
the statement , the position iterator will be at the first ele-
ment of the list, which we can draw in this way:

This drawing indicates that the position iterator is currently at the number 42
in the list. We enter the loop body, and the test ((*position % 2) == 1)
checks whether *position is an odd number. Since 42 is not odd, we skip the
if-statement and proceed to ++position. The ++position statement moves the
iterator forward one spot, like this:

Now we enter the loop and 13 is odd, so the assignment  is exe-
cuted, changing the 13 to 0, as shown here:

Next, position is moved forward again, and the body of the loop is entered,
looking like this:

Since 67 is odd, it is changed to 0 and position is advanced right off the end of
the list:

At this point, position is equal to the finish iterator, so the loop stops.
The node_iterator class definition is given in Figure 6.5. This definition

can be placed at the end of node2.h. The definition is short, but it does have sev-
eral features that need explanation.

position = start

position

42 13 67

position

42 13 67

*position = 0

position

42 0 67

position

42 0 67

position

42 0 0
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The Node Iterator Is Derived from std::iterator

At the front of our iterator definition, before the opening bracket, we have the
line:

: public std::iterator<std::forward_iterator_tag, Item>

We will see the full meaning of this line when we study inheritance in Chapter
14. For now, it is enough to know that this line should be placed with any itera-
tor that we create. It allows our iterator to pick up some features of the Standard
Library iterators. In the angle brackets, we place one of three Standard Library
“iterator tags.” In our case, we plan to create a forward iterator (as described on

Definition of a Template Class
template <class Item>
class node_iterator
: public std::iterator<std::forward_iterator_tag, Item>
{
public:

node_iterator(node<Item>* initial = NULL)
 { current = initial; }
Item& operator *( ) const

 { return current->data( ); }
node_iterator& operator ++( ) // Prefix ++

 {
current = current->link( );
return *this;

 }
node_iterator operator ++(int) // Postfix ++

 {
node_iterator original(current);
current = current->link( );
return original;

}
bool operator ==(const node_iterator other) const

 { return current == other.current; }
bool operator !=(const node_iterator other) const

 { return current != other.current; }
private:

node<Item>* current;
};

 FIGURE  6.5 Definition of the Iterator for the Node Template Class

Part of www.cs.colorado.edu/~main/chapter6/node2.h WWW
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page 315), so we use the tag std::forward_iterator_tag. This will allow
Standard Library algorithms (such as copy) to determine which operations our
iterator has. Also, inside the angle brackets, we indicate the data type of the
items that our iterator will refer to. This is the name Item (from the template
parameter).

STD::ITERATOR MIGHT NOT EXIST

The iterator class is defined in the <iterator> facility, but it was one of the last
items to be added. Therefore, many compilers don’t support the line:

: public std::iterator<std::forward_iterator_tag, Item>
Some alternatives are discussed in Appendix E.

The Node Iterator’s Private Member Variable
Our iterator has one private member variable, current, which is a pointer to the
node that contains its current item. If the iterator has moved beyond the end of a
list, then current will be null.

Node Iterator—Constructor
The node iterator has one constructor with one parameter. The parameter is a
pointer to a node where the iterator will start. The parameter might also be null,
indicating that the iterator will be off the end of the list. It’s useful to have a way
to create an iterator that is off the list so that other iterators can be tested to see
whether they have moved off the list.

The constructor’s parameter has a default argument, which is null. Therefore,
the constructor can be called with no arguments (a default constructor) and the
result will be an iterator that’s off the end of the list.

Node Iterator—the * Operator
The node iterator implements the * operation in this way:

Item& operator *( )
 { return current->data( ); }

For a node iterator p, this operator allows us to use the notation *p to access p’s
current item. The return value comes from activating current->data( ), and
the data function returns a reference to the actual item in the node. The return
type of the * operator is also a reference to the item (indicated by the symbol &
in the return type of Item&). Having a return value that is a reference was fully
discussed on page 318, but in this case, all we need to know is that the return
value from *p allows us to both access and change p’s current item. For
example, when the item type is an int:

PITFALL ��  
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cout << *p << endl; // Prints the value of p’s item
*p = 42; // Changes the value of p’s item to 42

Node Iterator—Two Versions of the ++ Operator
The node iterator has two versions of the ++ operator. These versions allow us to
write either ++p or p++. Let’s examine the versions to see their differences.

The prefix version. The prefix version begins this way:

node_iterator& operator ++( ) // Prefix ++
...

For a node iterator, p, this function allows us to write ++p, with the ++ in front of
p. Most often, we write the expression ++p on its own. In this case, the ++
function is activated by the iterator p, and p moves forward to the next item.

The expression ++p can also be used as part of a larger expression. When ++p
is used as part of a larger expression, it is important to know that the return value
of ++p is the iterator p itself after it has already been moved forward. As an exam-
ple, suppose that p is currently at the first item in this list:

We can write the statement . In this statement, the expression
++p moves p forward to the second item and returns the iterator p to be used in
the cout statement. The * operator is applied to p after it has moved forward, so
the result of the cout statement is to print the second item (13) of the list.

You may have noticed that the return type of this operator is a reference type
(node_iterator& rather than merely node_iterator). This means that the
return value of ++p is actually p itself (after the move), rather than a copy of p.
Let’s see how this is done in the complete implementation, shown here:

node_iterator& operator ++( ) // Prefix ++
{

current = current->link( );
return *this;

}

When ++p is activated, the first statement moves p’s current pointer forward one
node. The second statement is: . The statement uses the key-
word this, which is always a pointer to the object that activated the function
(see page 188). Therefore, *this is always the object that activated the member
function, and  is the common way to cause the function to
return the object that actually activated the function in the first place.

p

42 13 67

cout << *(++p); 

return *this;

return *this;
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The postfix version. The postfix version begins this way:

node_iterator operator ++(int) // Postfix ++
...

the meaning of 
(int)

This notation does seem strange! It looks as if this version of the ++ operator has
an int parameter. But, in fact that’s not the case. Instead, using the keyword int
(where the parameters usually go) serves to say “this is the postfix version of the
++ operator.” It would make more sense to use a more meaningful keyword, or
perhaps two keywords such as “prefix” and “postfix.” But we’re stuck with the
original C++ requirement of (int) to indicate that we’re implementing the
postfix version.

In any case, this function allows us to write p++, with the ++ following p.
When written on its own (not part of a larger expression), p++ has the same
meaning as ++p, moving p forward to the next item. However, in a larger expres-
sion, the return value of p++ differs from ++p. In particular, the return value of
p++ is a copy of p before it was changed. For example, suppose that p is currently
at the first item in this list:

We can write the statement . In this statement, the expression
p++ moves p forward to the second item, but the return value is a copy of p
before the move. The * operator is applied to this copy, so the result of the cout
statement is to print the first item (42) of the list.

Since the return value of the postfix operator is a copy of the original value of
p, the return type is not a reference type (it is node_iterator rather than
node_iterator&). In general, do not use a reference return type if you want to
return a copy of an object. Let’s see how the copy is made in the complete imple-
mentation, shown here:

node_iterator operator ++(int) // Postfix ++
{

node_iterator original(current);
current = current->link( );
return original;

}

The copy is made at the start of the function, and stored in the local variable
original. The current pointer is then moved forward, and the return statement
returns a copy of the original iterator.

p

42 13 67

cout << *(p++); 
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++P IS MORE EFFICIENT THAN P++

When you are moving p forward on its own (not part of a larger expression), it is
more efficient to write ++p rather than p++. The reason is that each activation of
p++ makes a copy of p before the change, even if the return value is never used.

Node iterator—comparisons for equality and inequality. The last two mem-
ber functions of the node iterator are comparison functions to allow us to write
tests for equality and inequality. The functions simply compare the iterator’s cur-
rent pointers to see whether they are pointing to the same location.

Iterators for Constant Collections

As we’ve seen before, we must take care when a pointer is declared with the
const keyword, because we must forbid any change to the associated linked
list. For example, consider this function, which is supposed to traverse a linked
list of integers, adding up the value of all the integers: 

int add_values(const node<int>* head_ptr)
{

node_iterator<int> start(head_ptr); // start is at the first node
node_iterator<int> finish; // finish is beyond the end
node_iterator<int> position; // position moves through list
int sum = 0; 

for (position = start; position != finish; ++position)
{

sum += *position;
}

return sum;
}

The problem is that head_ptr is declared as , and therefore
it cannot be used as the argument to the constructor of the node iterator. That
constructor has the following prototype, which requires an ordinary pointer to a
node:

node_iterator(node<Item>* initial);

The solution is to provide another iterator—a const_node_iterator—that can
be used with a const node. We have seen this kind of const iterator for the multi-
set (see page 144); it can move through the container, but it cannot change the
container in any way.

PROGRAMMING TIP��  

WARNING!
This add_values 
implementation has 
a bug!

const node<int>*
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Figure 6.6 shows our implementation of a const iterator for the node class.
The name of our iterator is const_node_iterator (which is just one name,
not two or more separate words). In addition to the name change, the
const_node_iterator also differs from the ordinary node_iterator in one
other way: Each use of the data type  or  is now written as

 or .

Definition of a Template Class
template <class Item>
class const_node_iterator
: public std::iterator<std::forward_iterator_tag, const Item>
{
public:

const_node_iterator(const node<Item>* initial = NULL)
 { current = initial; }
const Item& operator *( ) const

 { return current->data( ); }
const_node_iterator& operator ++( ) // Prefix ++

 {
current = current->link( );
return *this;

 }
const_node_iterator operator ++(int) // Postfix ++

    {
const_node_iterator original(current);
current = current->link( );
return original;

    }
bool operator ==(const const_node_iterator other) const

 { return current == other.current; }
bool operator !=(const const_node_iterator other) const

 { return current != other.current; }
private:

const node<Item>* current;
};

 FIGURE  6.6 Definition of a Const Iterator for the Node Template Class

Part of www.cs.colorado.edu/~main/chapter6/node2.h WWW

Item node<Item>*
const Item const node<Item>*
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Using the const_node_iterator, we can write a correct add_values func-
tion, as shown here:

int add_values(const node<int>* head_ptr)
{

const_node_iterator<int> start(head_ptr);
const_node_iterator<int> finish;
const_node_iterator<int> position;
int sum = 0; 

for (position = start; position != finish; ++position)
{

sum += *position;
}

return sum;
}

WHEN TO USE A CONST ITERATOR

Use a const iterator to move through a container of constant items. The iterator
itself is not constant; it can move through the container, but it cannot change any of
the container in any way.

Self-Test Exercises for Section 6.5

28. Write a function that steps through a linked list of nodes with integer val-
ues, changing every other item to zero. The function’s parameter should
be a pointer to a node, and it should have a local variable that is a node
iterator.

29. Why is the node_iterator class in this chapter derived from an STL
iterator?

30. Write a function that steps through a linked list of nodes with integer val-
ues, counting the number of occurrences of zero. The function’s parame-
ter should be a pointer to a const node, and it should have a local variable
that is a const_node_iterator.

31. How does the node iterator’s implementation differentiate between the
prefix and postfix versions of the ++ operator?

32. Which version of ++ is generally more efficient? Why?

PROGRAMMING TIP��  



Linked-List Version of the Bag Template Class with an Iterator 337

6.6 LINKED-LIST VERSION OF THE BAG TEMPLATE
CLASS WITH AN ITERATOR

We can use the template version of the node class to implement another bag
template class. This new version of the bag template class will store the items
on a linked list, just like the bag class in Section 5.3. But our new version will
be a template class, making use of the template version of the linked-list toolkit.
Here is part of the declaration of the new bag template class, which stores its
items on a linked list:

template <class Item>
class bag
{
public:

...
private:

node<Item> *head_ptr; // Head pointer for the list
size_type many_nodes; // Number of nodes on the list

};

Within the bag’s class definition we can refer to the class bag on its own, with
no need to specify bag<Item>. However, when we use the node class in the def-
inition , we must use the full name node<Item>. This
indicates that we are using a node, and that the data in the node is the same data
type as the bag’s items. For example, consider this declaration:

bag<char> vowels;

This declares a bag with the item instantiated as a char. This bag has a private
member variable, head_ptr, which is a pointer to a node<char>.

Most of the implementation of this new bag will be a straightforward transla-
tion of the Chapter 5 bag that used an ordinary linked list. However, we will add
one new feature: Our new bag will have an iterator, similar to the multiset’s iter-
ator from Section 6.3. The bag’s iterator will be easy to implement because we
can use the node_iterator and const_node_iterator from Section 6.5.

How to Provide an Iterator for a Container Class That You Write

To provide an iterator for a class that you write, you must generally provide
these items in the public section of the class definition:

• There is a definition for a small class, usually called iterator. This class
has a few member functions such as the * operator and ++, which all iter-
ators must have. In the case of the bag, the iterator will be defined as a
node_iterator from Section 6.5.

node<Item> *head_ptr
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• The container also needs a definition for a second small class, usually
called const_iterator (written as one word with an underscore between
“const” and “iterator”). This is the same as an ordinary iterator, except its
member functions must not change the container in any way. Our bag will
use a const_node_iterator for its const_iterator.

• The container needs a begin member function, which creates and returns
an iterator that refers to the container’s first item. For the bag, this iterator
will be positioned at the head element of the linked list. Actually, we’ll
need two versions of the begin function: an ordinary version that returns
a bag iterator, and a constant member function that returns a bag
const_iterator.

• The container needs two end member functions (one of which is a con-
stant member function), which return an iterator (or a const_iterator),
indicating a position that is beyond the end of the container.

The Bag Iterator

For our bag, the begin and end functions are simple enough that they can go
inside the bag’s class definition, like this:

template <class Item>
class bag
{
public:

 // TYPEDEFS
typedef node_iterator<Item> iterator;
typedef const_node_iterator<Item> const_iterator;
...

// FUNCTIONS TO PROVIDE ITERATORS
iterator begin( )

{ return iterator(head_ptr); }
const_iterator begin( ) const

{ return const_iterator(head_ptr); }
iterator end( ) // Using the iterator’s default constructor

{ return iterator( ); }
const_iterator end( ) const // Using the default constructor

{ return const_iterator( ); }

private:
node<Item> *head_ptr; // Head pointer for the list
size_type many_nodes; // Number of nodes on the list

};
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The return statements in the begin and end functions may be new to you.
When the name of a data type is used as part of an expression, the programmer
is requesting a type conversion. For example:

return iterator(head_ptr);

This expression requests a type conversion from the type of head_ptr (which is
a pointer to a node) to an iterator. The conversion is carried out by selecting
the appropriate iterator constructor (the one that has an argument that is a
pointer to a node). The return statement will create a temporary iterator
object, using the head_ptr as the argument to the iterator constructor. A
copy of this temporary object is returned by the begin member function. In a
similar manner, the end function returns a copy of the iterator that is created
with the iterator’s default function, by using this return statement:

return iterator( ); // Uses the iterator’s default constructor

Why the Iterator Is Defined Inside the Bag

By putting the iterator class definition inside the definition of the bag tem-
plate class, the iterator becomes a member of the bag class. To use this iterator, a
program specifies the bag, followed by ::iterator. For example:

bag<int>::iterator position; // Declare an iterator for a bag<int>

This is our fifth approach to the bag, so we’ll use the names bag5.h and
bag5.template for the files. These two files are shown in Figures 6.7 and 6.8.

Self-Test Exercises for Section 6.6

33. Within the definition of the bag template class, can we write bag on its
own, or do we need bag<Item>? Can we write node on its own, or do we
need node<Item>?

34. What is the primary difference between the bag template class suggested
in this section, and the bag template class from Section 6.2?

35. What is the primary difference between the bag template class suggested
in this section, and the bag class from Chapter 5?

36. Write a function with one parameter, a const bag of integers. The func-
tion steps through the bag, counting how many items are less than a
specified target.
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A Header File
// FILE: bag5.h (part of the namespace main_savitch_6B)
// CLASS PROVIDED: bag<Item> (a collection of items; each item may appear multiple times)
//
// TYPEDEFS for the bag<Item> class:
//
// bag<Item>::value_type is the data type of the items in the bag. It may be any of the
// C++ built-in types (int, char, etc.), or a class with a default constructor, a copy 
// constructor, an assignment operator, and a test for equality (x == y).
//
//
// bag<Item>::size_type is the data type of any variable that keeps track of how many
// items are in a bag.
//
// and
// Forward iterators for a bag and a const bag.
//
// CONSTRUCTOR for the bag<Item> class:
//
// Postcondition: The bag is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the bag<Item> class:
//
// Postcondition: All copies of target have been removed from the bag. The return value
// is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy of target has been removed from
// the bag; otherwise the bag is unchanged. A true return value indicates that one copy
// was removed; false indicates that nothing was removed.
//
//
// Postcondition: A new copy of entry has been inserted into the bag.
//
//
// Postcondition: Each item in addend has been added to this bag.
//

(continued)

 FIGURE  6.7 Header File for the Fifth Bag Template Class

bag<Item>::value_type

bag<Item>::size_type

bag<Item>::iterator bag<Item>::const_iterator

bag( )

size_type erase(const Item& target)

bool erase_one(const Item& target)

void insert(const Item& entry) 

void operator +=(const bag& addend)
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 (FIGURE  6.7 continued)

// CONSTANT MEMBER FUNCTIONS for the bag<Item> class:
//
// Postcondition: Return value is the number of times target is in the bag.
//
//
// Precondition: size( ) > 0.
// Postcondition: The return value is a randomly selected item from the bag.
//
//
// Postcondition: Return value is the total number of items in the bag.
//
// STANDARD ITERATOR MEMBER FUNCTIONS (provide a forward iterator):
//
//
//
//
//
// NONMEMBER FUNCTIONS for the bag<Item> class:
//
//
// Postcondition: The bag returned is the union of b1 and b2.
//
// VALUE SEMANTICS for the bag<Item> class:
// Assignments and the copy constructor may be used with bag objects.
//
// DYNAMIC MEMORY USAGE by the bag<Item>: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// the constructors, insert, operator +=, operator +, and the assignment operator.

#ifndef MAIN_SAVITCH_BAG5_H
#define MAIN_SAVITCH_BAG5_H
#include <cstdlib> // Provides NULL and size_t and NULL
#include "node2.h" // Provides node class

namespace main_savitch_6B
{

template <class Item>
class bag

    {
public:

// TYPEDEFS
typedef std::size_t size_type;
typedef Item value_type;
typedef node_iterator<Item> iterator;
typedef const_node_iterator<Item> const_iterator; (continued)

size_type count(const Item& target) const

Item grab( ) const

size_type size( ) const

iterator begin( )
const_iterator begin( ) const
iterator end( )
const iterator end( ) const

template <class Item>
bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2) 
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 (FIGURE  6.7 continued)

        // CONSTRUCTORS and DESTRUCTOR
        bag( );
        bag(const bag& source);
        ~bag( );

        // MODIFICATION MEMBER FUNCTIONS
        size_type erase(const Item& target);

bool erase_one(const Item& target);
void insert(const Item& entry);
void operator +=(const bag& addend);
void operator =(const bag& source);

        // CONST MEMBER FUNCTIONS
        size_type count(const Item& target) const;
        Item grab( ) const;

size_type size( ) const { return many_nodes; }

// FUNCTIONS TO PROVIDE ITERATORS
iterator begin( )

 { return iterator(head_ptr); }
const_iterator begin( ) const

 { return const_iterator(head_ptr); }
iterator end( )

 { return iterator( ); } // Uses default constructor
const_iterator end( ) const

 { return const_iterator( ); } // Uses default constructor

private:
        node<Item> *head_ptr; // Head pointer for the list of items
        size_type many_nodes;        // Number of nodes on the list
    };

    // NONMEMBER FUNCTIONS for the bag<Item> template class
template <class Item>

    bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2);
}

// The implementation of a template class must be included in its header file:
#include "bag5.template"

#endif
www.cs.colorado.edu/~main/chapter6/bag5.h WWW
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An Implementation File
// FILE: bag5.template
// CLASS implemented: bag (see bag5.h for documentation)
// NOTE:
// Since bag is a template class, this file is included in node2.h.
// INVARIANT for the bag class:
//   1. The items in the bag are stored on a linked list;
//   2. The head pointer of the list is stored in the member variable head_ptr;
//   3. The total number of items in the list is stored in the member variable many_nodes.

#include <cassert>  // Provides assert
#include <cstdlib>  // Provides NULL, rand
#include "node2.h"  // Provides node 

namespace main_savitch_6B
{

// Library facilities used: cstdlib
    {

head_ptr = NULL;
many_nodes = 0;

    }

    // Library facilities used: node2.h
    {

node<Item> *tail_ptr;  // Needed for argument of list_copy

list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

    }

    // Library facilities used: node2.h
    {

list_clear(head_ptr);
many_nodes = 0;

    }
(continued)

 FIGURE  6.8 Implementation File for the Fifth Bag Template Class

template <class Item>
bag<Item>::bag( )

template <class Item>
bag<Item>::bag(const bag<Item>& source)

template <class Item>
bag<Item>::~bag( )
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 (FIGURE  6.8 continued)

// Library facilities used: cstdlib, node2.h
    {

size_type answer;
const node<Item> *cursor;

answer = 0;
cursor = list_search(head_ptr, target);
while (cursor != NULL)
{ // Each time that cursor is not NULL, we have another occurrence of target, so

// we add one to answer, and move cursor to the next occurrence of the target.
 ++answer;
 cursor = cursor->link( );
 cursor = list_search(cursor, target);

}

return answer;
    }

// Library facilities used: cstdlib, node2.h
    {
        size_type answer = 0;
        node<Item> *target_ptr;

        target_ptr = list_search(head_ptr, target);
while (target_ptr != NULL)

        {
            // Each time that target_ptr is not NULL, we have another occurrence of target.

 // We remove this target using the same technique that was used in erase_one.
            ++answer;

--many_nodes;
            target_ptr->set_data( head_ptr->data( ) );
            target_ptr = target_ptr->link( );
            target_ptr = list_search(target_ptr, target);

list_head_remove(head_ptr);
        }

return answer;
    }

(continued)

template <class Item>
typename bag<Item>::size_type bag<Item>::count(const Item& target) const

template <class Item>
typename bag<Item>::size_type bag<Item>::erase(const Item& target) 
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 (FIGURE  6.8 continued)

// Library facilities used: cstdlib, node2.h
    {

node<Item> *target_ptr;

target_ptr = list_search(head_ptr, target);
if (target_ptr == NULL)

return false; // target isn’t in the bag, so no work to do
target_ptr->set_data( head_ptr->data( ) );
list_head_remove(head_ptr);
--many_nodes;
return true;

    }

 // Library facilities used: cassert, cstdlib, node2.h
    {

size_type i;
const node<Item> *cursor;

assert(size( ) > 0);
i = (std::rand( ) % size( )) + 1;
cursor = list_locate(head_ptr, i);
return cursor->data( );

    }

// Library facilities used: node2.h
    {

list_head_insert(head_ptr, entry);
++many_nodes;

    }

(continued)

template <class Item>
bool bag<Item>::erase_one(const Item& target) 

template <class Item>
Item bag<Item>::grab( ) const

template <class Item>
void bag<Item>::insert(const Item& entry) 
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 (FIGURE  6.8 continued)

// Library facilities used: node2.h
    {

node<Item> *copy_head_ptr;
node<Item> *copy_tail_ptr;

if (addend.many_nodes > 0)
{

 list_copy(addend.head_ptr, copy_head_ptr, copy_tail_ptr);
    copy_tail_ptr->set_link( head_ptr ); 

 head_ptr = copy_head_ptr;
    many_nodes += addend.many_nodes;
}

    }

// Library facilities used: node2.h
    {

node<Item> *tail_ptr; // Needed for argument to list_copy

if (this == &source)
return;

list_clear(head_ptr);
many_nodes = 0;
list_copy(source.head_ptr, head_ptr, tail_ptr);
many_nodes = source.many_nodes;

    }

{
bag<Item> answer;

answer += b1; 
answer += b2;
return answer;

    }
}

template <class Item>
void bag<Item>::operator +=(const bag& addend) 

template <class Item>
void bag<Item>::operator =(const bag& source) 

template <class Item>
bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2) 

www.cs.colorado.edu/~main/chapter6/bag5.template WWW
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CHAPTER SUMMARY AND SUMMARY OF THE FIVE BAGS

• Summary of the five bag implementations. If nothing else, you should
now know how to program your way out of a paper bag, using one of the
five bag classes of Figure 6.9. The bag class is a good example, showing
different approaches to implementing a simple container class, but keep in
mind that the same approaches can be used for any container class.

• A template function is similar to an ordinary function with one important
difference: The definition of a template function can depend on an under-
lying data type. The underlying data type is given a name—such as
Item—but Item is not pinned down to a specific type anywhere in the
function’s implementation. 

• When a template function is used, the compiler examines the types of the
arguments. At that point, the compiler determines the data type of Item.
This is called the instantiation of the template.

• In a single program, several different usages of a template function can
result in several different instantiations.

• When a class depends on an underlying data type, the class can be imple-
mented as a template class.

FIGURE  6.9 Our Five Bag Classes (with Template Classes Shaded)

Approach Define item with... Files

Store the items in an array with a fixed 
size.

typedef bag1.h and bag1.cxx 
in Section 3.1

Store the items in a dynamic array. typedef bag2.h and bag2.cxx 
in Section 4.3

Store the items in a linked list, using the 
node class.

typedef bag3.h and bag3.cxx 
in Section 5.3

Store items in a dynamic array. template
parameter

bag4.h and 
bag4.template in 
Section 6.2

Store items in a linked list, using the tem-
plate version of the node class. This 
implementation also has an iterator.

template
parameter

bag5.h and 
bag5.template in 
Section 6.6
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• Our node class can be implemented as a template class, providing more
flexibility to implement other container classes (such as our bag).

• An iterator allows a programmer to easily step through the items of a
container class. The C++ Standard Library container classes are all pro-
vided with iterators. We can also implement iterators for our own classes
in a way that matches the STL iterators.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

6. Here is one implementation:
template <class Item>
void compare
(const Item& a, const Item& b)
// Postcondition: A message has
// been printed indicating whether
// a and b are different or the same.
// Note: The Item type must have the
// == operator defined.
// Library facilities used: iostream
{

if (a == b)
cout << "Those are the same";

else
cout << "Those are different";

}

7. Here is one solution:
template <class Item, class SizeType>
void ordered_insert(

Item data[ ],
SizeType n,
Item entry

)
{

size_t i;
i = n;

while (i > 0 && data[i-1] > entry)
{
data[i] = data[i-1];
--i;

}
data[i] = entry;

}

8. See “Mismatches for Template Function
Arguments” on page 299.

1. A single template function serves to imple-
ment many functions that are identical except
for a different underlying data type.

2. A typedef approach allows only one data type
to be defined for the data item within a pro-
gram, whereas a template function allows sev-
eral different usages in a single program
because the compiler determines the data type
when the template function is used.  The type-
def approach has a simpler syntax, which
makes for easier debugging.

3. The template prefix defines the list of underly-
ing data types that a template function
depends upon, for example: 
template <class Item>

It appears immediately before the prototype
and immediately before the implementation of
the template function.

4. Unification is the compiler’s term for deter-
mining how to instantiate a template function
through the template parameter.  If a template
parameter does not appear in the parameter
list of a template function, the compiler will
generate the message “Failed unification.”

5. Item may be any of the C++ built-in types, or
a class with an assignment operator and a
copy constructor.
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9. In a header file for a template class, there is
an include statement to include the implemen-
tation file. This makes the compiler’s job
simpler.

10. For a template class, the template prefix oc-
curs before the template class definition and
before each member function implementation.
It also must appear before the prototype and
implementation of any other template func-
tions that manipulate the template class.

11. A program using the template class will inad-
vertently pick up using directives in the tem-
plate header file, because a template class has
its implementation included in the header file.

12. Instantiation of a template parameter occurs
when an actual variable of the template class
is declared.

13. Within the class definition, bag is not changed
to bag<Item>. Also, the name of the construc-
tor is simply bag (not bag<Item>), and the
name of the destructor is simply ~bag.

14. See the discussion on page 302.

15. The implementation file is included in the
header file, and you should never put a using
directive in a header file. Therefore, our new
bag implementation file does not have a using
directive for std, and we must write the full
name std::copy.

16. All three of these definitions can appear in the
same program:
bag<char> vowel;
bag<int> ages;
bag<double> weights;

17. The two sets must have had eight items in
common.

18. Start by computing their union. If the size of
the union of A and B is the same as the size of
B, then A is a subset of B; otherwise, it is not.

19. The multiset<T>::const_iterator is a 
bidirectional iterator.

20. A random access iterator p can use the nota-
tion p[n] to provide access to the item n steps
in front of the current item.

21. Here is one solution. We assume that <set>
and <string> have been included, and that
we are using the std namespace. Our solution
is simplified because of an item that you
might not have seen: When *p is an object
(such as a string), we can use the member
selector operator (such as p->length( )).
string
longest(const multiset<string>& m)
{

multiset<string>::const_iterator
p, long_spot;

string::size_type
p_length, long_length;

assert(m.size( ) > 0);
long_spot = m.begin( );
long_length = long_spot->length( );

p = ++(m.begin( ));
while (p != m.end( ))
{

if (p->length( ) > long_length)
{

long_spot = p;
long_length = p->length( );

}
++p;

}
return *long_spot;

}

22. Not necessarily. In order for (s==t) the two
iterators must be in the exact same spot in the
container.

23. In a template function the declaration is:
node<Item> *insert_ptr;

24. See the solution on page 327.

25. hello

26. If p is a pointer to a const node, then the acti-
vation of p->data( ) will use the const ver-
sion of data, and the erase or append
functions will not be allowed.

27. If a pointer p is a pointer to a const node, then
p->data() will activate the const version of
data(); otherwise the non-const version is
used.
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PROGRAMMING PROJECTSPROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

28. The body looks like this (with parameter ptr):
node_iterator spot(ptr);

node_iterator done; // Default const.

while (spot != done)

{

*spot = 0;

if (++spot != done)

++spot;

}

29. Deriving the node_iterator from an STL
iterator allows the node_iterator to use fea-
tures of the STL iterators.

30. Only a hint here: The local variable must be a
const_node_iterator rather than an ordi-
nary node_iterator.

31. The postfix version puts the keyword int in
its parameter list, whereas the prefix version
leaves its parameter list empty. This is an
artificial use of int; there is no actual int
parameter.

32. The prefix version is more efficient because it
doesn’t have to make a copy of the iterator.

33. Within the bag’s template class, bag is correct
on its own, but the type node cannot be used
on its own: node<Item> is required.

34. In Section 6.2 we used a dynamic array; now
we are using a linked list. Also, the latest ver-
sion includes an iterator.

35. In Chapter 5, we used a typedef to define the
item; now we are using a template parameter.

36. Here is one solution:
template <class Item>
typename bag<Item>::size_type 
less_than(

const bag<Item>& b,
const Item& target

)
{

bag<Item>::const_iterator spot;
bag<Item>::size_type count = 0;

p = b.begin( ); 
while (p != b.end( ))
{

if (*p < target)
++count;

++p;
}
return count;

}

Rewrite the selection sort (Programming
Project 7 on page 287) so that it is a template
function, with the template parameter speci-

fying the type of data in each node. Your new selec-
tion sort function will use the template version of the
node.

Revise one of the container classes from
Chapter 3, 4, or 5, so that it becomes a tem-
plate class. Some choices are (a) the set

1

2

(Project 5 on page 149); (b) one of the sequence
classes (Section 3.2 or Section 5.4); (c) the sorted se-
quence (Project 6 on page 150); (d) the bag with re-
ceipts (Project 7 on page 150); (e) the keyed bag
(Project 8 on page 150).

Add begin and end member functions to the
bag from Section 6.2. This project is easier
than it sounds—you just have to think of the

right kind of iterator to use. Hint: Read the section
about “Iterators for Arrays” on page 316.

3
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This project starts with the keyed bag
(Project 8 on page 150). Implement this
class using a dynamic array of pairs. These

pairs are from the C++ pair template class, which is
part of <utility>.

For example, pair<string,int> is a data type,
where the first component is a string and the second
component is an integer. The pair class has a default
constructor (which uses the default constructors of
each component) and it also has a constructor that
creates a pair from two explicit values. Once a pair
p is created, a program can access the two compo-
nents directly with the two public member variables
p.first and p.second.

Your implementation of this new keyed bag
should be a template class that depends on the data
types of the keys and the data type of the underlying
data.

Your class should include begin and end func-
tions for a const iterator (which can be used to exam-
ine items in the keyed bag, but not to change them).
The return type of the * operator of the const iterator
should be a pair consisting of a key and its associat-
ed data value.

Add an iterator to your solution for the pre-
vious project. The data type of *it should
be a pair<string,int>.

Rewrite the polynomial class of Section 4.6
so that the data type of the coefficients is a
template parameter. This data type can be any

type that has operators for addition, subtraction,
multiplication, and assignment. The class should
also have a default constructor, which results in a
zero value. For example, our template class would
allow us to build polynomials where coefficients are
complex numbers (using the complex<double>
type from <complex>).

Revise the shuffle function (Programming
Project 16 from Chapter 5) as a template
function, so that it shuffles the contents of a

sequence, regardless of the type of item the se-
quence holds.  Note that the copy constructor and as-
signment operators must be defined for the item. 

4

5

6

7

Design and implement a class that stores a
gift list for your friends and relatives. You
will need a container of containers to hold a

list of persons, each of which has a list of possible
gift ideas. Choose the optimal container for this
project, noting that no duplicates should be permit-
ted. Feel free to use STL classes. Develop a test pro-
gram, which allows options to add, remove, and list
persons and their gift list.

Revise the doubly linked-list implementa-
tion developed in Programming Project 15
in Chapter 5 to be a template class and use a

bidirectional iterator.  You will need to provide the
decrement (--) operator to move backward through
the list.

Write a group of template functions for
examining and manipulating a collection of
items via the collection’s forward iterator.

For example, one of the functions might have
this prototype:

template <class Iterator, class T>
Iterator find(

Iterator begin,
Iterator end,
const T& target
);

The find function searches the range starting at
*begin and going up to (but not including) *end. If
one of these elements is equal to the target, then the
iterator for that element is returned; if the target is
never found in the range, then the end iterator is
returned.

Discuss and design other functions for your tool-
kit that manipulates a collection. As a starting point,
please use the linked-list toolkit from the previous
chapter.

Revise the previous project assuming that
the iterator is a random access iterator
instead of a forward iterator.

8

9

10

11
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L EARN ING  OB J EC T I V ES
When you complete Chapter 7, you will be able to...

• follow and explain stack�based algorithms using the usual computer science 
terminology of push, pop, top, and peek.

• use the STL stack class to implement stack�based algorithms such as the evaluation 
of arithmetic expressions.

• implement a stack class of your own using either an array or a linked�list data 
structure.

CHAPTER  CONTENTS

7.1 The STL Stack Class
7.2 Stack Applications
7.3 Implementations of the Stack Class
7.4 More Complex Stack Applications

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

The pushdown store is a “first in-last out” list. That is, symbols
may be entered or removed only at the top of the list.

JOHN E. HOPCROFT AND JEFFREY D. ULLMAN
Formal Languages and Their Relation to Automata
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Stacks

This chapter introduces a data structure known as a stack, or as
it is sometimes called, a pushdown store. It is a simple structure, even simpler
than a list. Yet it turns out to be one of the most useful data structures known to
computer science.

7.1 THE STL STACK CLASS

The drawings in the margin depict some stacks. There is a stack of pancakes,
some stacks of coins, and a stack of books. A stack is an ordered collection of
entries that can be accessed at only one end. That may not sound like what you
see in these drawings, but think for a moment. Each of the stacks is ordered
from top to bottom; you can identify any item in a stack by saying it is the top
item, second from the top, third from the top, and so on. Unless you mess up one
of the neat stacks, you can access only the top item. To remove the bottom book
from the stack, you must first remove the two books that are on top of it. The
abstract definition of a stack reflects this intuition.

When we say that the entries in a stack are ordered, all we mean is that there is
one that can be accessed first (the one on top), one that can be accessed second
(just below the top), a third one, and so forth. We do not require that the entries
can be compared using the < operator. The entries may be of any type.

Stack entries must be removed in the reverse order to that in which they are
placed on the stack. For example, you can create a stack of books by first placing
a dictionary, placing a thesaurus on top of the dictionary, and placing a novel on
top of those, so the stack has the novel on top. When the books are removed, the
novel must come off first (since it is on top), and then the thesaurus, and finally
the dictionary. Because of this property, a stack is called a Last-In/First-Out data
structure (abbreviated LIFO).

Stack Definition
A stack is a data structure of ordered entries such that
entries can be inserted and removed at only one end (called
the top).

LIFO
A stack is a Last-In/First-Out data structure. Entries are taken
out of the stack in the reverse order of their insertion.

Dictionary
Thesaurus

NOVEL

The STL Stack Class 353
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Of course, in a program a stack stores information rather than physical entries,
such as books or pancakes. Therefore, it may help to visualize a stack as a pile of
papers on which information is written. In order to place some information on the
stack, you write the information on a new sheet of paper and place this sheet of
paper on top of the stack. Getting information out of the stack is also accom-
plished by a simple operation, since the top sheet of paper can be removed and
read. There is just one restriction: Only the top sheet of paper is accessible. In
order to read the third sheet from the top, for example, the top two sheets must
be removed from the stack.

A stack is analogous to a mechanism that is used in a popular candy holder
called a  dispenser, shown in the margin. The dispenser stores candy in a
slot underneath an animal head figurine. Candy is loaded into the dispenser by
pushing each piece into the hole. There is a spring under the candy with the ten-
sion adjusted so that when the animal head is tipped backward, one piece of
candy pops out. If this sort of mechanism were used as a stack data structure, then
the data would be written on the candy (which may violate some health laws, but
it still makes a good analogy). Using this analogy, you can understand why add-
ing an entry to a stack is called a push operation, and removing an entry from a
stack is called a pop operation.

The Standard Library Stack Class

The C++ Standard Template Library (STL) has a stack class, part of which is
specified in in Figure 7.1. As usual for a container class, the stack is specified as

Pez®

pushing

popping

Partial List of Members for the stack<Item> Class from <stack>
// TYPEDEFS
// value_type: The data type of the items in the stack from the Item parameter
// size_type: The data type for a variable that keeps track of how many items are in a stack
//
// CONSTRUCTOR
// Default constructor: Creates an empty stack
//
// VOID FUNCTIONS TO INSERT AND REMOVE ITEMS:
// pop( ): Pop is a void function that pops (removes) the top item of the stack
// push(const Item& entry): Pushes the item onto the top of the stack
//
// FUNCTIONS TO EXAMINE THE STACK AND ITS ITEMS:
// empty( ) const: Returns true if the stack is empty (otherwise returns false)
// size( ) const: Returns the number of items in the stack
// top( ): Returns a reference to the top item on the stack (without removing it)
//
// VALUE SEMANTICS:
// Assignments and the copy constructor may be used with stack<Item> objects.

 FIGURE  7.1 The Standard Library Stack Class
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a template class, allowing us to have stacks of integers, or stacks of strings, or
stacks of whatever. As a learning experience, we will later implement this tem-
plate class ourselves in several different ways, first using a fixed-size array to
hold the items of the stack, and later using dynamic memory instead.

The stack specification lists a stack constructor and five member functions.
The most important member functions are push (to add an entry at the top of the
stack), pop (to remove the top entry), and top (to get the item at the top of the
stack without removing it). There are no functions that allow a program to access
entries other than the top entry. To access any entry other than the top one, the
program must remove entries one at a time from the top until the desired entry is
reached.

If a program attempts to pop an item off an empty stack, then it is asking for
the impossible; this error is called stack underflow. To help you avoid a stack
underflow, the class provides a member function to test whether a stack is empty.
Some stacks may have a limited capacity, and if a program attempts to push an
item onto a full stack, the result is an error called stack overflow.

We could have other operations, but this first version is enough to teach you
about stacks.

uses for stacksStacks are very intuitive—even cute—but are they good for anything besides
toy problems? Surprisingly, they have many applications. Most compilers use
stacks to analyze the syntax of a program. Stacks are used to keep track of local
variables when a program is run. Stacks can be used to search a maze or a family
tree or other types of branching structures. In this book, we will discuss examples
related to each of these applications. But before we present any complicated
applications of the stack class, let us first practice with a simple “toy” problem,
so that we can see how a stack is used.

PROGRAMMING EXAMPLE: Reversing a Word

Suppose you want a program to read in a word and then write it out backward. If
the program reads in NAT, then it will output TAN. If it reads in TAPS it will out-
put SPAT. The author Roald Dahl wrote a book called ESIOTROT, which our pro-
gram converts to TORTOISE. One way to accomplish this task is to read the input
one letter at a time and place each letter in a stack. After the word is read, the
letters in the stack are written out, but because of the way a stack works, they
are written out in reverse order. The pseudocode is shown on the next page.

Stack Errors
Stack Underflow: The condition resulting from trying to
access an item from an empty stack.

Stack Overflow: The condition resulting from trying to push
an item onto (add an item to) a full stack.
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// Reversing the spelling of a word

Declare a stack of characters;

while (there are more characters of the word to read)
Read a character, and push the character onto the stack.

while (the stack is not empty)
Write the top character to the screen, and pop it off the stack.

This computation is illustrated in Figure 7.2. At all times in the computation, the
only available entry is the entry on “top.” Figure 7.2 suggests another intuition
for thinking about a stack. You can view a stack as a hole in the ground and
view the data entries as being placed in the hole one on top of the other. To
retrieve a data entry, you must first remove the entries on top of it. 

Self-Test Exercises for Section 7.1

1. What is the meaning of the acronym LIFO?
2. Give an example of a real-world application in which a stack is used.
3. What is the difference between the top and pop operations of a stack?
4. Suppose a program uses a stack of characters to read in a word and then

write the word out backward, as described in this section. Now suppose
the input word is DAHL. List all the activations of the push, top, and pop
functions. List them in the order in which they will be executed, and
indicate the character that is pushed or popped. What is the output?

5. Consider the stack class given in Figure 7.1 on page 354. Describe how
you can define a new member function that returns the second entry
from the top of the stack without changing the stack. Your description
will be in terms of top, pop, and push. Give your solution in
pseudocode, not in C++.

FIGURE  7.2 Using a Stack to Reverse Spelling

N N
A

N
A
T

Push N Push A Push T

Input: NAT

N N
A

Write the Write the Write the

Output: TAN

top (T)
and pop 

top (A)
and pop

top (N)
and pop
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7.2 STACK APPLICATIONS

The STL stack class can be used by any program by including the <stack>
header file. The example stack applications in this section use only the stack
features shown in Figure 7.1 on page 354.

PROGRAMMING EXAMPLE: Balanced Parentheses
Later in this chapter we will describe how stacks can be used to evaluate arith-
metic expressions. At the moment, we will describe a short function that does a
much simpler but closely related task. The function, called is_balanced,
appears in Figure 7.3, and checks expressions to see if the parentheses match
correctly. It checks nothing else. Any symbol other than a right or left parenthe-
sis is simply ignored.

A Function Implementation

// Postcondition: A true return value indicates that the parentheses in the given expression
// are balanced. Otherwise the return value is false.
// Library facilities used: stack, string (and using namespace std)
{

// Meaningful names for constants
const char LEFT_PARENTHESIS = '(';
const char RIGHT_PARENTHESIS = ')';

stack<char> store; // Stack to store the left parentheses as they occur
string::size_type i; // An index into the string
char next; // The next character from the string
bool failed = false; // Becomes true if a needed parenthesis is not found

for (i = 0; !failed && (i < expression.length( )); ++i)
{

next = expression[i];
if (next == LEFT_PARENTHESIS)

store.push(next);
else if ((next == RIGHT_PARENTHESIS) && (!store.empty( )))

store.pop( ); // Pops the corresponding left parenthesis
else if ((next == RIGHT_PARENTHESIS) && (store.empty( )))

failed = true;
}

return (store.empty( ) && !failed);
}

 FIGURE  7.3 A Function to Check for Balanced Parentheses

bool is_balanced(const string& expression)

www.cs.colorado.edu/~main/chapter7/parens.cxx WWW
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For example, consider the string "((X + Y*(Z + 7))*(A + B))". Each of the
left parentheses has a corresponding right parenthesis. Also, as the string is read
from left to right, there is never an occurrence of a right parenthesis that cannot
be matched with a corresponding left parenthesis. Therefore the function call
is_balanced("((X + Y*(Z + 7))*(A + B))") returns true.

On the other hand, consider the string "((X + Y*(Z + 7)*(A + B))". The
parentheses around the subexpression Z + 7 match each other, as do the parenthe-
ses around A + B. The second left parenthesis in the expression matches the final
right parenthesis, but the first left parenthesis has no matching right parenthesis.
Hence, is_balanced("((X + Y*(Z + 7)*(A + B))") returns false.

The algorithm used by is_balanced is simple: The function scans the char-
acters of the string from left to right. Every time the function sees a left parenthe-
sis, it is pushed onto the stack. Every time the program reads a right parenthesis,
the program pops a matching left parenthesis off the stack. All symbols other
than parentheses are ignored. If all goes smoothly and the stack is empty at the
end of the expression, then the parentheses match. If the stack is empty when
the algorithm needs to pop a symbol, or if symbols are still in the stack after
all the input has been read, then the parentheses do not match. Now let us see why
the algorithm works.

Let us start with some examples. Since no symbols other than parentheses can
affect the results, we will use expressions of just parentheses symbols. All of the
following are balanced (shading and arrows help find matching parentheses):

If you think about these examples, you can begin to understand the algorithm. In
the first example, the parentheses match because they have the same number of
left and right parentheses, but the algorithm does more than just count parenthe-
ses. The algorithm actually matches parentheses. Every time it encounters a
')', the symbol it pops off the stack is the matching '('. The parenthesis
popped is not just any '(', but the one that matches.

The middle example is the same as the first example followed by another pair
of matching parentheses. Since the two subexpressions match by themselves, the
combination still matches. 

The third example is even more revealing. The complete sequence of stack
configurations from an execution of the function, using the input "(( )( ))", is
shown in Figure 7.4. The stacks shown in the figure show the configuration after
processing each character of the expression.

In general the stack works by keeping a stack of the unmatched left parenthe-
ses. Every time the program encounters a right parenthesis, the corresponding
left parenthesis is deleted (popped) from the stack. If the parentheses in the input
match correctly, things work out perfectly, and the stack is empty at the end of
the input line.

( ( ) ) ( ( ) ) ( ) ( ( ) ( ) )
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different kinds of 
parentheses

Our function assumes the input has only one kind of parentheses, but the same
technique can be used to check expressions with different kinds of parentheses,
such as ( ), [ ], and { }. With different kinds of parentheses, the symbol on top
of the stack must match the symbol in the input. For example, when the program
encounters a ']' as the next symbol, there must be a '[' on top of the stack. We
leave this more general problem as an exercise.

PROGRAMMING EXAMPLE: Evaluating Arithmetic Expressions

In this programming example we will design and write a calculator program.
This will be an example of a program that uses two stacks—one is a stack of
characters, and the other is a stack of double numbers.

Evaluating Arithmetic Expressions—Specification
input to the 
calculator
program

The program takes as input a fully parenthesized numeric expression such as the
following:

((((12 + 9)/3) + 7.2)*((6 - 4)/8))

The expression consists of integers or double numbers, together with the opera-
tors +, -, *, and /. To focus on the use of the stack (rather than on input details),
we require that each input number is non-negative (otherwise it is hard to distin-
guish the subtraction operator from a minus sign that is part of a negative num-
ber). We will assume that the expression is formed correctly so that each
operation has two arguments. Finally, we will also assume that the expression is
fully parenthesized, meaning that each operation has a pair of matched paren-
theses surrounding its arguments. We can later enhance our program so that
these assumptions are no longer needed.

output of the 
calculator
program

The output will simply be the value of the arithmetic expression. 

FIGURE  7.4 Stack Configurations for a Call to is_balanced
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Evaluating Arithmetic Expressions—Design

Most of the program’s work will be carried out by a function that reads one line
of input and evaluates that line as an arithmetic expression. To get a feel for the
problem, let’s start by doing a simple example by hand. 

do an example 
by hand

Consider the following expression:

(((6 + 9)/3)*(6 - 4))

If we evaluate this expression by hand, we might first evaluate the innermost
expressions, (6 + 9) and (6 - 4), to produce the smaller expression:

((15/3)*2)

Next we would evaluate the expression (15/3) and replace this expression with
its value of 5. That would leave us with the expression (5*2). Finally, we would
evaluate this last operation to get the final answer of 10.

To convert this intuitive approach into a fully specified algorithm that can be
implemented, we need to do things in a more systematic way: We need a specific
way to find the expression to be evaluated next and a way to remember the results
of our intermediate calculations.

First let us find a systematic way of choosing the next expression to be eval-
uated. (After that, we can worry about how we will keep track of the intermediate
results.) We know that the expression to be evaluated first must be one of the
innermost expressions—which is a subexpression that has just one operation.
Let’s decide to evaluate the leftmost of these innermost expressions. For
instance, in our example of

(((6 + 9)/3)*(6 - 4))

the innermost expressions are (6 + 9) and (6 - 4), and the leftmost one of these
is (6 + 9). If we evaluate this leftmost of the innermost expressions, we obtain

((15/3)*(6 - 4))

We could now go back and evaluate the other innermost expression (6 - 4), but
why bother? There is a simpler approach that spares us the trouble of remember-
ing any other expressions. After we evaluate the leftmost of the innermost
expressions, we are left with another simpler arithmetic expression, namely
((15/3)*(6 - 4)), so we can simply repeat the process with this simpler
expression: We again evaluate the leftmost of the innermost expressions of our
new simpler expression. The entire process will look like the following:

1. Evaluate the leftmost of the innermost expressions in 

(( /3)*(6 - 4))

to produce the simpler expression (( /3)*(6 - 4)).

(6 + 9)

15
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2. Evaluate the leftmost of the innermost expressions in 
( *(6 - 4))

to produce the simpler expression ( *(6 - 4)).

3. Evaluate the leftmost of the innermost expressions in
(5* )

to produce the simpler expression (5* ).

4. Evaluate the leftmost of the innermost expressions in 

to obtain the final answer of 10.
translating the 
hand method to 
an algorithm

This method works fine with pencil and paper, but the function must read the
input one character at a time from left to right. How does the function find the
leftmost of the innermost expressions? Look at the example on page 360. The
end of the expression to be evaluated is always a right parenthesis, ')', and
moreover, it is always the first right parenthesis. After evaluating one of these
innermost expressions, there is no need to back up; to find the next right paren-
thesis we can just keep reading left to right from where we left off. The next
right parenthesis will indicate the end of the next expression to be evaluated.

Now we know how to find the expression to be evaluated next, but how do we
keep track of our intermediate values? For this we use two stacks. One stack will
contain numbers; there will be numbers from the input as well as numbers that
were computed when subexpressions were evaluated. The other stack will hold
symbols for the operations that still need to be evaluated. Because a stack pro-
cesses data in a Last-In/First-Out manner, it will turn out that the correct two
numbers are on the top of the numbers stack at the same time that the appropriate
operation is at the top of the stack of operations. To better understand how the
process works, let’s evaluate our sample expression one more time, this time
using the two stacks.

We begin by reading up to the first right parenthesis; the numbers we encoun-
ter along the way are pushed onto the numbers stack, and the operations we
encounter along the way are pushed onto the operations stack. When we reach
the first right parenthesis, our two stacks look like this:

(15/3)

5

(6 - 4)

2

(5*2)

(((6 + 9) / 3) * (6 - 4))

6

Characters read so far (shaded):

9

Numbers

+

Operations
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Whenever we reach a right parenthesis, we combine the top two numbers (on
the numbers stack) using the topmost operation (on the characters stack). In our
example, we compute 6 + 9, yielding 15, and this number 15 is pushed back
onto the numbers stack:

Notice that the leftmost operand (6 in this example) is the second number
popped off the stack. For addition, this does not matter—who cares whether we
have added 6 + 9 or 9 + 6? But the order of the operands does matter for subtrac-
tion and division.

Next we simply continue the process: reading up to the next right parenthesis,
pushing the numbers we encounter onto the numbers stack and pushing the oper-
ations we encounter onto the operations stack. When we reach the next right
parenthesis, we combine the top two numbers using the topmost operation.
Here’s what happens in our example when we reach the second right parenthesis:

Again, the leftmost operand (15) is the second number popped off the stack, so
the correct evaluation is 15/3, not 3/15. Continuing the process, we obtain:

6

Characters read so far (shaded):

9
+ 15

6 + 9 is 15

Before computing 6 + 9 After computing 6 + 9

Numbers Operations Numbers Operations

(((6 + 9) / 3) * (6 - 4))

(((6 + 9) / 3) * (6 - 4))

15

Characters read so far (shaded):

3
/ 5

15 / 3 is 5

Before computing 15/3 After computing 15/3

Numbers Operations Numbers Operations

(((6 + 9) / 3) * (6 - 4))

5

Characters read so far (shaded):

6
*

6 - 4 is 2

Before computing 6 - 4

4
–

5
2

*

After computing 6 - 4

Numbers Operations Numbers Operations
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Finally, continuing the process one more time does not add anything to the
stacks, but it does read the last right parenthesis and does combine two numbers
from the numbers stack with an operation from the operations stack:

At this point there is no more input, and there is exactly one number in the num-
bers stack, namely 10. That number is the answer. Notice that when we used the
two stacks we performed the exact same evaluations as we did when we first
evaluated this expression in a simple pencil-and-paper fashion.

cases for 
evaluating an 
arithmetic
expression

To evaluate our expression we only need to repeatedly handle each input item
according to the following cases:

Numbers. When a number is encountered in the input, the number is read and
pushed onto the numbers stack.

Operation characters. When one of the four operation characters is encoun-
tered in the input, the character is read and pushed onto the operations stack.

Right parenthesis. When a right parenthesis is read from the input, an “evalu-
ation step” takes place. The step takes the top two numbers from the numbers
stack and the top operation from the operations stack. These items are removed
from their stacks and the two numbers are combined using the operation (with
the second number popped as the left operand). The result of the operation is
pushed back onto the numbers stack.

Left parenthesis or blank. The only other characters that appear in the input
are left parentheses and blanks. These are read and thrown away, not affecting
the computation. A more complete algorithm would need to process the left
parentheses in some way to ensure that each left parenthesis is balanced by a
right parenthesis, but for now we are assuming that the input is completely
parenthesized in a proper manner.

The processing of input items halts when the end of the input line occurs, indi-
cated by '\n' in the input. At this point, the answer is the single number that
remains in the numbers stack.

(((6 + 9) / 3) * (6 - 4))

5

Characters read so far (shaded):

2
*

5 * 2 is 10 

Before computing 5 * 2

10

After computing 5 * 2

Numbers Operations Numbers Operations
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We now have our algorithm, which we plan to implement as a function meet-
ing this specification:

double read_and_evaluate(istream& ins);
// Precondition: The next line of characters in the istream ins is a fully
// parenthesized arithmetic expression formed from non-negative
// numbers and the four operations +, -, *, and /.
// Postcondition: A line has been read from the istream ins, and this line
// has been evaluated as an arithmetic expression. The value of the
// expression has been returned by the function.

The implementation of this function appears as part of a complete program in
Figure 7.5. 

A Program
// FILE: calc.cxx
// Basic calculator program to evaluate a fully parenthesized arithmetic expression.
// The purpose is to illustrate a fundamental use of stacks.

#include <cctype> // Provides isdigit
#include <cstdlib>   // Provides EXIT_SUCCESS
#include <cstring> // Provides strchr
#include <iostream> // Provides cout, cin, peek, ignore
#include <stack> // Provides the stack template class
using namespace std;

// PROTOTYPES for functions used by this demonstration program:

// Precondition: The next line of characters in the istream ins is a fully parenthesized
// expression formed from non-negative numbers and the four operations +, -, *, and /.
// Postcondition: A line has been read from the istream ins, and this line has been evaluated
// as an arithmetic expression. The value of the expression has been returned by the function.

// Precondition: The top of the operations stack contains +, -, *, or /, and the numbers stack
// contains at least two numbers.
// Postcondition: The top two numbers have been popped from the numbers stack, and the top
// operation has been popped from the operations stack. The two numbers have been
// combined using the operation (with the second number popped as the left operand). The
// result of the operation has then been pushed back onto the numbers stack.

(continued)

 FIGURE  7.5 Basic Calculator Program

double read_and_evaluate(istream& ins);

void evaluate_stack_tops(stack<double>& numbers, stack<char>& operations);
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 (FIGURE  7.5 continued)

{
double answer;

    cout << "Type a fully parenthesized arithmetic expression:" << endl;
    answer = read_and_evaluate(cin);
    cout << "That evaluates to " << answer << endl;

return EXIT_SUCCESS;
}

// Library facilities used: cstring, iostream, stack
{

const char DECIMAL = '.';
const char RIGHT_PARENTHESIS = ')';

    stack<double> numbers;
    stack<char> operations;

double number;
char symbol;

// Loop continues while istream is not “bad” (tested by ins) and next character isn’t newline.
while (ins && ins.peek( ) != '\n')

    {
if (isdigit(ins.peek( )) || (ins.peek( ) == DECIMAL))

        {
            ins >> number;
            numbers.push(number);
        }

else if (strchr("+-*/", ins.peek( )) != NULL)
        {
            ins >> symbol;
            operations.push(symbol);
        }

else if (ins.peek( ) == RIGHT_PARENTHESIS)
        {

ins.ignore( );
            evaluate_stack_tops(numbers, operations);
        }

else
ins.ignore( );

    }

return numbers.top( );
}

(continued)

int main( )

double read_and_evaluate(istream& ins)
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Evaluating Arithmetic Expressions—Implementation

The implementation of read_and_evaluate in Figure 7.5 benefits from three
of the istream functions: 

• The name of the istream, ins, is used as part of the boolean expression
that controls the loop. As we have seen before, the expression ins re-
mains true so long as ins has not encountered bad input (such as the end
of the file).

• The function call ins.peek( ) returns the next character of the ins input
stream (without actually reading it).

• The function call ins.ignore( ) reads and discards the next character
from the ins input stream.

Our implementation also uses three other functions, which we discuss next.

 (FIGURE  7.5 continued)

// Library facilities used: stack
{

double operand1, operand2;

    operand2 = numbers.top( );
numbers.pop( );

    operand1 = numbers.top( );
numbers.pop( );
switch (operations.top( ))

    {
case '+': numbers.push(operand1 + operand2);

break;
case '-': numbers.push(operand1 - operand2);

break;
case '*': numbers.push(operand1 * operand2);

break;
case '/': numbers.push(operand1 / operand2);

break;
    }

operations.pop( );
}

A Sample Dialogue
Type a fully parenthesized arithmetic expression:
( ( (60 + 40)/50) * (16 – 4) )
That evaluates to 24

void evaluate_stack_tops(stack<double>& numbers, stack<char>& operations)

www.cs.colorado.edu/~main/chapter7/calc.cxx WWW
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Functions Used in the Calculator Program
The other three functions used in our implementation are listed here:

• The isdigit function (from the facility <cctype>) with the prototype:
bool isdigit(char c);

The function returns true if its argument is one of the digits '0' through
'9'. Otherwise it returns false.

• The strchr function (from <cstring>) with the prototype:
char* strchr(const char s[ ], char c);

The function scans the string s for an occurrence of the character c. If the
character c is found, then the function returns a pointer to the first occur-
rence of the character in s. Otherwise, the null pointer is returned.

• A function called evaluate_stack_tops appears as part of Figure 7.5 on
page 366. The function pops two numbers off the numbers stack, com-
bines them with an operation from the operations stack, and pushes the
result back on the numbers stack.

Evaluating Arithmetic Expressions—Testing and Analysis
testingAs usual, you should test your program on boundary values that are most likely

to cause problems. For this program, one kind of boundary value consists of a
single number with no operations. The next simplest kind of expressions are
those that combine only two numbers. To test that operations are performed cor-
rectly, you should test simple expressions for each of the operations +, –, *, and
/. These simple expressions should have only one operation. Be sure to test the
division and subtraction operations carefully to ensure that the operations are
performed in the correct order. After all, 3/15 is not the same as 15/3, and
3 – 15 is not the same as 15 — 3. These are perhaps the only boundary values.
But it is important to also test some cases with nested parentheses. And you can
test an illegal division such as 15/0. What does the program do? It probably
crashes with a division by zero error. Can you place an assertion in the program
that will catch this error, rather than allowing the division by zero to take place?

time analysisLet’s estimate the number of operations that our program will use on an input
of length n. We will count each of the following as one program operation: read-
ing or peeking at a symbol, performing one of the arithmetic operations (+, –, *,
or /), pushing an entry onto one of the stacks, and examining or popping an entry
off of one of the stacks. We consider each kind of operation separately.

Time spent reading characters. There are only n symbols in the input, so the
program can read at most n symbols. No character is “peeked” at more than once,
either, so this part of the program has no more than 2n operations.

Time spent evaluating arithmetic operations. Each arithmetic operation per-
formed by the program is the evaluation of an operation symbol in the input.
Because there are no more than n arithmetic operations in the input, there are at
most n arithmetic operations performed. In actual fact, there are far fewer than n
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operations, since many of the input symbols are digits or parentheses. But there
are certainly no more than n arithmetic operation symbols, so it is safe to say that
there are no more than n arithmetic operations performed.

Number of push operations. Since there are at most n arithmetic operation
symbols, we know that there are at most n operation symbols pushed onto the
operations stack. The numbers stack may contain input numbers and numbers
obtained from evaluating arithmetic expressions. Again, an upper bound will suf-
fice: There are at most n input numbers and at most n arithmetic operations eval-
uated. Thus, at most, 2n numbers are pushed onto the numbers stack. This gives
an upper bound of 3n total push operations onto the stacks.

Number of top and pop operations. Once we know the total number of
entries that are pushed onto the two stacks, we have a bound on how many things
can be popped off of the two stacks. After all, you cannot pop off an entry unless
it was first pushed onto the stack. Also, our algorithm uses top for each item no
more than once. Thus, there is an upper bound of 6n total top and pop operations
from the stacks.

Total number of operations. Now, let’s total things up. The total number of
operations is no more than 2n reads/peeks, plus n arithmetic operations per-
formed, plus 9n calls to push, top, and pop—for a grand total of 12n. The actual
number of operations will be less than this because we have used generous upper
bounds in several estimates, but 12n is enough to let us conclude that the algo-
rithm for this program is O(n); this is a linear algorithm.

Evaluating Arithmetic Expressions—Enhancements
The program in Figure 7.5 on page 364 is a fine example of how to use stacks.
As a computer scientist, you will find yourself using stacks in this manner in
many different situations. However, the program is not a fine example of a fin-
ished program. Before we can consider it to be a finished product, we need to
add a number of enhancements to make the program more robust and friendly.

Some enhancements are easy. It is useful (and easy) to add a loop to the main
program that will let the user evaluate more expressions until there is an indica-
tion that the user is finished with the calculator. Other enhancements are a bit
harder. One nice enhancement would be to permit expressions that are not fully
parenthesized, and to use the C++ precedence rules to decide the order of opera-
tions when parentheses are missing. We will discuss topics related to this
enhancement in Section 7.4, where (surprise!) we’ll see that a stack is useful for
this purpose, too.

Self-Test Exercises for Section 7.2
6. In the calculator program, what items do the two stacks hold?
7. How would you modify the calculator program in Figure 7.5 on

page 364 to allow the symbol ^ to be used for exponentiation? Describe
the changes; do not write out the code.
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8. Describe how to modify the calculator program in Figure 7.5 on
page 364 to allow for comments in the calculator input. Comments
appear at the end of the expression, starting with a double slash // and
continuing to the end of the line. 

9. What possible errors could cause a stack underflow in the calculator pro-
gram in Figure 7.5 on page 364?

10. Do an analysis to determine what kind of expressions cause the stack to
grow large in the calculator program in Figure 7.5 on page 364.

11. How are the istream functions peek and ignore similar to the top and
pop operations of a stack?  How are they different? 

12. What is the time analysis, in big-O notation, of the arithmetic expres-
sions evaluation algorithm?  Explain your reasoning.

7.3 IMPLEMENTATIONS OF THE STACK CLASS

As a programmer, you can use the STL stack without knowing how it works. As
a student of computer science, studying the implementations of a stack is good
experience for your other programming. We will give two implementations of
our stack class: a static implementation using a fixed-sized array, and a dynamic
implementation using a linked list. Typical stack implementations in the Stan-
dard Library use a third approach (dynamic arrays).

Array Implementation of a Stack

Figure 7.6 gives the header file for a stack template class that is similar to the
STL stack. The class definition uses two private member variables for the stack:

1. An array, called data, that can hold up to CAPACITY items (where
CAPACITY is a static constant of the stack class). This is a partially filled
array, holding the stack’s items in locations data[0], data[1], and so on.

2. A single member variable, used, that indicates how much of the partially
filled array is currently being used. The entry at data[0] is at “the
bottom” of the stack. The entry at data[used-1] is at “the top” of the
stack. If the value of used is zero, this will indicate an empty stack.

the stack entries 
are stored in a 
partially filled 
array

In other words, our stack implementation is simply a partially filled array imple-
mented in the usual way: an array and a variable to indicate the index of the last
array position used. This description is the invariant of our class, so that each
member function (except the constructor) may assume that the stack is repre-
sented in this way when the operation is activated. Each operation has the
responsibility of ensuring that the stack is still represented in this manner when
the operation finishes.
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A Header File
// FILE: stack1.h (part of the namespace main_savitch_7A)
// TEMPLATE CLASS PROVIDED: stack<Item>
//
// TEMPLATE PARAMETER, TYPEDEFS, and MEMBER CONSTANTS for the stack<Item> class:
// The template parameter, Item, is the data type of the items in the stack, also defined
// as stack<Item>::value_type. It may be any of the C++ built-in types (int, char, etc.), or a 
// class with a default constructor, a copy constructor, and an assignment operator.
// The definition stack<Item>::size_type is the data type of any variable that keeps track of
// how many items are in a stack. For this implementation, stack<Item>::CAPACITY
// is the maximum capacity of any stack (once CAPACITY is reached, further pushes
// are forbidden).
//
// CONSTRUCTOR for the stack<Item> template class:
//
// Postcondition: The stack has been initialized as an empty stack.
//
// MODIFICATION MEMBER FUNCTIONS for the stack<Item> template class:
//
// Precondition: size( ) < CAPACITY.
// Postcondition: A new copy of entry has been pushed onto the stack.
//
//
// Precondition: size( ) > 0.
// Postcondition: The top item of the stack has been removed.
//
// CONSTANT MEMBER FUNCTIONS for the stack<Item> template class:
//
// Precondition: size( ) > 0.
// Postcondition: The return value is the top item of the stack, but the stack is
// unchanged. This differs slightly from the STL stack (where the top function returns a
// reference to the item on top of the stack).
//
//
// Postcondition: The return value is the total number of items in the stack.
//
//
// Postcondition: The return value is true if the stack is empty, and false otherwise.
//
// VALUE SEMANTICS for the stack<Item> template class:
// Assignments and the copy constructor may be used with stack<Item> objects.

(continued)

 FIGURE  7.6 Header File for the Array Version of the Stack Template Class

stack( )

void push(const Item& entry)

void pop( )

Item top( ) const

size_type size( ) const

bool empty( ) const
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 (FIGURE  7.6 continued)

#ifndef MAIN_SAVITCH_STACK1_H
#define MAIN_SAVITCH_STACK1_H
#include <cstdlib> // Provides size_t

namespace main_savitch_7A
{

template <class Item>
class stack

    {
public:

        // TYPEDEFS AND MEMBER CONSTANT -- See Appendix E if this fails to compile.
typedef std::size_t size_type;
typedef Item value_type;
static const size_type CAPACITY = 30;

        // CONSTRUCTOR
        stack( ) { used = 0; }
        // MODIFICATION MEMBER FUNCTIONS

void push(const Item& entry);
void pop( );

        // CONSTANT MEMBER FUNCTIONS
bool empty( ) const { return (used == 0); }

        size_type size( ) const { return used; }
        Item top( ) const;

private:
        Item data[CAPACITY];  // Partially filled array
        size_type used;  // How much of array is being used
    };
}

#include "stack1.template" // Include the implementation.
#endif

www.cs.colorado.edu/~main/chapter7/stack1.h WWW

Invariant of the Stack Class (Array Version)

1. The number of items in the stack is stored in the member
variable used.

2. The items in the stack are stored in a partially filled array
called data, with the bottom of the stack at data[0], the
next entry at data[1], and so on to the top of the stack
at data[used-1].
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An Implementation File
// FILE: stack1.template
// TEMPLATE CLASS IMPLEMENTED: stack<Item> (see stack1.h for documentation)
// This file is included in the header file and not compiled separately.
// INVARIANT for the stack class:
// 1. The number of items in the stack is in the member variable used.
// 2. The items in the stack are stored in a partially filled array called
// 2. data, with the bottom of the stack at data[0], the next entry at 
// 2. data[1], and so on, to the top of the stack at data[used - 1].

#include <cassert>  // Provides assert

namespace main_savitch_7A
{

// Library facilities used: cassert
{

 assert(size( ) < CAPACITY);
 data[used] = entry;
 ++used;

}

// Library facilities used: cassert
{

 assert(!empty( ));
 --used;
}

// Library facilities used: cassert
{

 assert(!empty( ));
return data[used-1];

}
}

 FIGURE  7.7 Implementation File for the Array Version of the Stack Template Class

template <class Item>
const typename stack<Item>::size_type stack<Item>::CAPACITY;

template <class Item> 
void stack<Item>::push(const Item& entry) 

template <class Item> 
void stack<Item>::pop( ) 

template <class Item> 
Item stack<Item>::top( ) const

www.cs.colorado.edu/~main/chapter7/stack1.template WWW
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implementing
the stack 
operations

The member functions that operate on our stack are now straightforward. To
initialize the stack, set the private member variable used to zero, indicating an
empty array and hence an empty stack. To add an entry to the stack (in the push
function), we store the new entry in data[used], and then we increment used
by one. To look at the top entry in the stack (function top), we simply look at the
entry in array position data[used-1]. To remove an entry from the stack (in
the pop function), we decrement used. The member functions to test for emp-
tiness and to return the size are simple inline implementations that examine the
value of used.

The implementation file for our stack is given in Figure 7.7 on page 372.

Linked-List Implementation of a Stack

A linked list is a natural way to implement a stack as a dynamic structure whose
size can grow and shrink during execution, without a predefined limit that is
determined at compilation. The head of the linked list serves as the top of the
stack. Figure 7.8 on page 375 contains the header file for a stack template class
that is implemented with a linked list. Here is a precise statement of the invari-
ant of this version of the new stack class:

As usual, all member functions (except the constructors) assume that the stack is
represented in this way when the function is activated, and all functions ensure
that the stack continues to be represented in this way when the function finishes.

Because we are using a linked list, there is no predetermined limit to the num-
ber of items we can place in our stack. Thus, in the header file we have omitted
the constant CAPACITY, but we have added documentation indicating that some
of the functions allocate dynamic memory and will throw bad_alloc when
dynamic memory is exhausted.

As a further consequence of using a linked list, it makes sense to utilize the
node template class from Section 0.4. Thus, in Figure 7.8 you will find this
include directive:

#include "node2.h"  // Node template class

By using the toolkit, many of the stack member functions can be implemented
with just a line or two of code, as shown in Figure 7.9 on page 376.

Invariant of the Stack Class (Linked-List Version)

1. The items in the stack are stored in a linked list, with the
top of the stack stored at the head node, down to the bot-
tom of the stack at the tail node.

2. The member variable top_ptr is the head pointer of the
linked list of items.
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The default constructor, the destructor, size, and empty are all simple enough
to implement as inline member functions in Figure 7.8 on page 375. Since the
first node of the list is the top of the stack, the implementation of top is easy: top
just returns the data from the first node. The operations push and pop work by
inserting and deleting nodes, always working at the head of the linked list. Insert-
ing and deleting nodes at the head of the linked list is a straightforward use of
list_head_insert and list_head_remove from the linked-list toolkit. Both
the copy constructor and the assignment operator make use of list_copy to
copy the source stack to the stack that activates the member function. The assign-
ment operator must check for the potential of a self-assignment (such as s = s),
and the assignment operator is also responsible for calling list_clear to release
the memory that is currently used by the stack.

The Koenig Lookup
Some functions in the linked-list implementation require a local node variable,
such as this:

main_savitch_6B::node<Item> *tail_ptr;

Since we are inside a template class, we must not have any using directives, and
therefore we have the full name main_savitch_6B::node<Item> rather than
just node<Item> (see page 308). However, when we use a node function such
as list_copy, we do not always need to write the full name
main_savitch_6B::list_copy. The reason for this is that compilers can
sometimes tell which list_copy function is intended since some of its argu-
ments’ types are defined in the same main_savitch_6B namespace. This use of
arguments to determine which function to use is called the Koenig lookup.

However, some compilers do not allow the Koenig lookup within template
functions, so we have written full names for each of the list functions.

Self-Test Exercises for Section 7.3
13. What is the typical implementation of an STL stack?
14. For the array version of the stack, write a new member function that

returns the maximum number of items that can be added to the stack
without stack overflow.

15. Describe a simple way to reimplement the array version of the stack
without the need for a CAPACITY constant.

16. Give the full implementation of a constant member function that returns
the second element from the top of the stack without actually changing
the stack. Write separate solutions for the two different stack versions.

17. Which functions from the node template class should not be used in the
linked-list implementation of a stack?  Why?

18. Do a time analysis of the size function for the linked-list version of the
stack. If the function is not constant time, then can you think of a differ-
ent approach that is constant time?

19. In the linked-list implementation of the stack, why do some compilers
allow list_copy without specifying main_savitch_6B::list_copy?
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A Header File
// FILE: stack2.h (part of the namespace main_savitch_7B)

// DYNAMIC MEMORY USAGE by the stack<Item> template class:
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// the copy constructor, push, and the assignment operator.

#ifndef MAIN_SAVITCH_STACK2_H
#define MAIN_SAVITCH_STACK2_H
#include <cstdlib> // Provides NULL and size_t
#include "node2.h"  // Node template class from Figure 0.4 on page 326

namespace main_savitch_7B
{

template <class Item>
class stack

    {
public:

// TYPEDEFS
typedef std::size_t size_type;
typedef Item value_type;
// CONSTRUCTORS and DESTRUCTOR

        stack( ) { top_ptr = NULL; }
stack(const stack& source);
~stack( ) { main_savitch_6B::list_clear(top_ptr); }

        // MODIFICATION MEMBER FUNCTIONS
void push(const Item& entry);
void pop( );
void operator =(const stack& source);

        // CONSTANT MEMBER FUNCTIONS
        size_type size( ) const

{ return main_savitch_6B::list_length(top_ptr); }
bool empty( ) const { return (top_ptr == NULL); }

        Item top( ) const;
private:

        main_savitch_6B::node<Item> *top_ptr; // Points to top of stack
    };
}

#include "stack2.template" // Include the implementation
#endif

 FIGURE  7.8 Header File for the Linked-List Version of the Stack Template Class

See Figure 7.6 on page 370 for the other documentation that goes here. 
The only difference is that there is no CAPACITY constant.

www.cs.colorado.edu/~main/chapter7/stack2.h WWW
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An Implementation File
// FILE: stack2.template
// TEMPLATE CLASS IMPLEMENTED: stack<Item> (see stack2.h for documentation)
// This file is included in the header file and not compiled separately.
// INVARIANT for the stack class:
// 1. The items in the stack are stored in a linked list, with the top of the stack stored at the
// 1. head node, down to the bottom of the stack at the final node.
// 2. The member variable top_ptr is the head pointer of the linked list.

#include <cassert> // Provides assert
#include "node2.h"  // Node template class from Figure 0.4 on page 326

namespace main_savitch_7B
{

// Library facilities used: node2.h
{

main_savitch_6B::node<Item> *tail_ptr; // Needed for argument of list_copy

main_savitch_6B::list_copy(source.top_ptr, top_ptr, tail_ptr);
}

// Library facilities used: node2.h
{

main_savitch_6B::list_head_insert(top_ptr, entry);
}

// Library facilities used: cassert, node2.h
{

 assert(!empty( ));
main_savitch_6B::list_head_remove(top_ptr);

}
(continued)

 FIGURE  7.9 Implementation File for the Linked-List Version of the Stack Template Class

template <class Item>
stack<Item>::stack(const stack<Item>& source) 

template <class Item> 
void stack<Item>::push(const Item& entry) 

template <class Item> 
void stack<Item>::pop( ) 
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7.4 MORE COMPLEX STACK APPLICATIONS

Evaluating Postfix Expressions
infix versus 
prefix notation

We normally write an arithmetic operation between its two arguments, for
example, the + operation occurs between the 2 and the 3 in the arithmetic
expression 2 + 3. This is called infix notation. There is another way of writing
arithmetic operations that places the operation in front of the two arguments, for
example + 2 3 evaluates to 5. This is called Polish prefix notation or simply
prefix notation.

the origin of the 
notation

A prefix is something attached to the front of an expression. You may have
heard about similar prefixes for words, such as the prefix un in unbelievable.
Thus, it makes sense to call this notation prefix notation. But why Polish?
It is called Polish because it was devised by the Polish mathematician
Jan ukasiewicz. It would be more proper to call it ukasiewicz notation, but
apparently non-Polish-speaking people have trouble pronouncing ukasiewicz
(lü-kä-sha-v ch).

 (FIGURE  7.9 continued)

// Library facilities used: node2.h
{
 main_savitch_6B::node<Item> *tail_ptr; // Needed for argument of list_copy

if (this == &source) // Handle self-assignment
return;

main_savitch_6B::list_clear(top_ptr);
main_savitch_6B::list_copy(source.top_ptr, top_ptr, tail_ptr);

}

// Library facilities used: cassert
{

 assert(!empty( ));
return top_ptr->data( );

}

}

template <class Item>
void stack<Item>::operator =(const stack<Item>& source) 

template <class Item> 
Item stack<Item>::top( ) const

www.cs.colorado.edu/~main/chapter7/stack2.template WWW

L L
L

e
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Using prefix notation, parentheses are completely avoided. For example, the
expression (2 + 3) * 7, when written in this Polish prefix notation, is:

The curved lines under the expression indicate groupings of subexpressions (but
the lines are not actually part of the prefix notation).

postfix notation If we prefer, we can write the operations after the two numbers being com-
bined. This is called Polish postfix notation, or more simply postfix notation
(or sometimes reverse Polish notation). For example, the expression (2 + 3) * 7
when written in Polish postfix notation is:

Once again, the curves merely clarify the groupings of subexpressions, and
these curves are not actually part of the postfix notation.

Here’s a longer example. The postfix expression 7 3 5 * + 4 - is equivalent to
the infix expression (7 + (3*5)) - 4.

Do not intermix prefix and postfix notation. You should consistently use one
or the other and not mix them together in a single expression.

our goal: 
evaluation of 
postfix
expressions

Postfix notation is handy because it does not require parentheses and because
it is particularly easy to evaluate (once you learn to use the notation). In fact,
postfix notation often is used internally for computers because of the ease of
expression evaluation. We will describe an algorithm to evaluate a postfix
expression. When converted to a C++ program, the postfix evaluation is similar
to the calculator program (Figure 7.5 on page 364)—although, from our com-
ments you might guess that the postfix evaluation is actually simpler than the
infix evaluation required in the calculator program.

There are two input format issues that we must handle. When entering postfix
notation we will require a space between two consecutive numbers so that you
can tell where one number ends and another begins. For example, the input

35 6

consists of two numbers, 35 and 6, with a space in between. This is different
from the input

356

which is just a single number, 356. A second input issue: You probably want to
restrict the input to non-negative numbers in order to avoid the complication of
distinguishing the negative sign of a number from a binary subtraction opera-
tion.

postfix
evaluation
algorithm

Our algorithm for evaluating a postfix expression uses only one stack, which
is a stack of numbers. There is no need for a second stack of operation symbols,
because each operation is used as soon as it is read. In fact, the reason why

* + 2 3 7

2 3 + 7 *
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postfix evaluation is easy is precisely because each operation symbol is
immediately used as soon as it is read. In the algorithm we assume that each input
entry is either a number or an operation. For simplicity, we will assume that all
the operations take two arguments. The complete evaluation algorithm is given
in Figure 7.10, along with an example computation.

Let’s study the example to see how the algorithm works. Each time an oper-
ation appears in the input, the operands for the operation are the two most
recently seen numbers. For example, in Figure 7.10(c), we are about to read the
* symbol. Since we have just pushed 3 and 2 onto the stack, the * causes a mul-
tiplication of 3*2, resulting in 6. The result of 6 is then pushed onto the stack, as
shown in Figure 7.10(d).

Sometimes the “most recently seen number” is not actually an input number,
but instead it is a number that we computed and pushed back onto the stack. For
example, in Figure 7.10(d), we are about to read the first +. At this point, 6 is on
top of the stack (as a result of multiplying 3*2). Below the 6 is the number 5. So,
the “two most recently seen numbers” are the 6 (that we computed) and the 5
(underneath the 6). We add these two numbers, resulting in 11 (which we push
onto the stack, as shown in 7.10(e)).

And so the process continues: Each time we encounter an operation, the oper-
ation is immediately applied to the two most recently seen numbers, which
always reside in the top two positions of the stack. When the input is exhausted,
the number remaining in the stack is the value of the entire expression.

Translating Infix to Postfix Notation

Because it is so easy to evaluate a postfix expression, one strategy for evaluating
an ordinary infix expression is to first convert it to postfix notation and then
evaluate the postfix expression. This is what compilers often do. In this section,
we will present an algorithm to translate an infix expression to a postfix expres-
sion. The algorithm’s input is an expression in infix notation, and the output is
an equivalent expression in postfix notation. We will develop the algorithm as
pseudocode and will not specify any precise form of input or output.

Until now we have assumed that the operands in our arithmetic expressions
were all numbers. That need not be true. For example, an arithmetic expression
may also contain variables. In this example, we will assume that the arithmetic
expression can also contain variables. In fact, the operands may be anything at
all, so long as we have a way of recognizing an operand when our algorithm
encounters one. However, in our examples we will assume that the operands are
either numbers or variables. We will also assume that all the operations are
binary operations (which have two operands), such as addition and subtraction.
There will be no unary operations (which have only one operand), such as sqrt
for the square root function. We will present two algorithms, one for fully paren-
thesized expressions and one for more realistic expressions that omit some paren-
theses. Our algorithms apply to any sort of operations working on any sort of
operands; so, in particular, our algorithms work on boolean expressions as well

infix expression

postfix expression
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Pseudocode

1. Initialize a stack of double numbers.
2. do

if (the next input is a number)
Read the next input and push it onto the stack.

else
{

Read the next character, which is an operation symbol.
Use top and pop to get the two numbers off the stack.
Combine these two numbers with the operation (using the second number
popped as the left operand), and push the result onto the stack.

}
while (there is more of the expression to read);

3. At this point, the stack contains one number, which is the value of the expression.

 FIGURE  7.10 Evaluating a Postfix Expression

The result of the 
computation is 
12.

5 3 2 * + 4 – 5 +

5 3 2 * + 4 – 5 + 5 3 2 * + 4 – 5 +

5 3 2 * + 4 – 5 +

5 3 2 * + 4 – 5 +

5 3 2 * + 4 – 5 +

5 3 2 * + 4 – 5 +

5

(a) Input so far (shaded):

Example

Evaluate the postfix expression
5 3 2 * + 4 – 5 +

7

(g) Input so far (shaded):

7

(h) Input so far (shaded):

5

11

(e) Input so far (shaded):

5

(c) Input so far (shaded):

3

2

12

(i) Input so far (shaded):

11

(f) Input so far (shaded):

4

5 3 2 * + 4 – 5 +

5

(d) Input so far (shaded):

6

5 3 2 * + 4 – 5 +

5

(b) Input so far (shaded):

3
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as arithmetic expressions. However, in order to keep matters uncluttered, we will
consider only arithmetic expressions in our examples.

If the infix expression is fully parenthesized, the algorithm is simple. All
that’s needed to convert from infix to postfix notation is to move each operation
symbol to the location of the right parenthesis corresponding to that operation
and then remove all parentheses. For example, the following infix expression
will have its operation symbols moved to the location indicated by the arrows:

The result is the postfix expression:

A 7 + B C / * 2 D * -

This process of moving each operation to the location of its corresponding
right parenthesis is more of an idea than a complete algorithm. A complete
algorithm should read the expression from left to right and must somehow
remember the operations and then determine when the corresponding right
parenthesis has been found. We have some work to do before this idea becomes
an algorithm.

First, observe that the operands (that is, the numbers and variables) in the
equivalent postfix expression are in the same order as the operands in the corre-
sponding infix expression that we start out with. So our algorithm can simply
copy the infix expression operands, omitting parentheses and inserting the oper-
ations, such as +, *, and so forth, at the correct locations. The problem is finding
the location for inserting the operations in the postfix expression. How do we
save the operations, and how do we know when to insert them? Look back at our
example. If we push the operations onto a stack, then the operations we need will
always be on top of the stack. When do we insert an operation? We insert an
operation into the output whenever we encounter a right parenthesis in the input.
Hence, the heart of the algorithm is to push the operations onto a stack and to pop
an operation every time we encounter a right parenthesis. The algorithm is given
in Figure 7.11. The algorithm does some checking to ensure that the input expres-
sion is fully parenthesized with balanced parentheses, although there is no check-
ing to ensure that each operation appears between its operands (rather than before
or after its operands).

Using Precedence Rules in the Infix Expression

So far we have been assuming that our infix expression is fully parenthesized.
However, in practice, infix expressions are usually not fully parenthesized, and
the computer must rely on precedence rules to determine the order of operations
for the missing parentheses. This adds a significant complication.

algorithm for 
fully
parenthesized
expressions

( ( ( A + 7 ) * ( B / C ) ) - ( 2 * D ) )
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Let’s start with an example. We will use the usual C++ precedence rules in
our example. Consider the following expression:

2 * (A - B) + 3 + C 

In this case the subtraction is performed first, then the multiplication, and finally
the two additions are performed from left to right. The subtraction is first because
the parentheses indicate that (A - B) must be evaluated before combining the
result with any other operands. The multiplication is performed next—before
the additions—because multiplication has higher precedence than addition. The
two additions are of equal precedence and there are no parentheses to tell us
which addition to perform first. The operations (+, -, *, and /) of equal
precedence are performed left to right (when parentheses do not indicate
otherwise). Thus, the left-hand addition occurs before the right-hand addition.
This order of evaluation means the expression is the same as this fully
parenthesized expression:

(((2 * (A - B)) + 3) + C) 

Pseudocode

1. Initialize a stack of characters to hold the operation symbols and parentheses.
2. do

if (the next input is a left parenthesis)
Read the left parenthesis and push it onto the stack.

else if (the next input is a number or other operand)
Read the operand and write it to the output.

else if (the next input is one of the operation symbols)
Read the operation symbol and push it onto the stack.

else
{

Read and discard the next input symbol (which should be a right parenthesis).
There should be an operation symbol on top of the stack, so write this symbol
to the output and pop it from the stack. (If there is no such symbol, then print an
error message indicating that there were too few operations in the infix expression,
and halt.) After popping the operation symbol, there should be a left parenthesis on
the top of the stack, so pop and discard this left parenthesis.
(If there was no left parenthesis, then the input did not have balanced
parentheses, so print an error message and halt.)

}
while (there is more of the expression to read);

3. At this point, the stack should be empty. Otherwise print an error message indicating that the
expression was not fully parenthesized.

 FIGURE  7.11 Converting a Fully Parenthesized Infix Expression to a Postfix Expression
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To help determine the order of evaluation for arithmetic expressions, we
have been referring to the precedence of operations, such as +, -, and *. A
precedence is just an ordering from high to low for the operations. Operations
with a higher precedence are evaluated before operations with a lower prece-
dence. Sometimes, two different operations, such as + and -, have equal prece-
dence, in which case we must specify whether the operations are to be evaluated
left-to-right or right-to-left. For example, in C++, * and / have equal prece-
dence (with left-to-right evaluation); + and - also have equal precedence (with
left-to-right evaluation), but * and / have higher precedence than + and -. That
is why we perform multiplication before addition (when there are no parenthe-
ses indicating otherwise).

rules for using 
precedence

Just to make sure they are fresh in our minds, let us review the C++ rules for
evaluating arithmetic expressions that are not fully parenthesized:

1. Parentheses, when they are present, determine the order of operations.
Everything inside a pair of matching parentheses is evaluated, and that
value is then combined with things outside the parentheses.

2. If the order is not indicated by parentheses, operations of higher prece-
dence are performed before operations of lower precedence.

3. Arithmetic operations of equal precedence are performed in left-to-right
order, unless parentheses indicate otherwise.

In Figure 7.11 we gave an algorithm to convert a fully parenthesized infix
expression to an equivalent postfix expression. Now we can make our algorithm
more general. The new version (Figure 7.12 on page 385) does not require full
parentheses for the input; the algorithm uses precedence to decide which opera-
tion to perform first. In other words, the expressions can be written as we nor-
mally write them with parentheses omitted in some cases. Figure 7.13 on
page 386 contains an example computation of our algorithm as it translates an
infix expression into the corresponding postfix expression. Study the example
now, then return here to read the details of the algorithm.

Correctness of the Conversion from Infix to Postfix

For the conversion algorithm to be correct, we must check these items:

1. The postfix expression contains the correct operands in the correct order.
2. The postfix expression evaluates subexpressions in the way indicated by

the parentheses in the infix expression.
3. The postfix expression handles operations of differing precedence accord-

ing to the precedence rules.
4. A string of operations of equal precedence in the infix expression is han-

dled correctly when translated into the postfix expression.
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1. The operands 
are in the right 
order

Let’s consider each of these four issues. First we need to know that the oper-
ands (the numbers and variables) in the postfix expression are in the same order
as they were in the input infix expression, but this is easy to see. Because oper-
ands are written out as soon as they are read in, they are clearly in the same
order as in the input infix expression.

2. The 
parentheses are 
done correctly

Parentheses are a way of grouping subexpressions. Everything inside a pair of
matching parentheses is treated as a single unit by anything outside the parenthe-
ses. The parentheses give the following message to the operations outside of the
parentheses: Don’t look inside these parentheses. We will work things out among
ourselves and deliver a single value for you to combine with other operands. This
means that all operations between a set of matching parentheses in the infix
expression should form a subexpression of the postfix expression, and with this
algorithm they do just that. To see that they do form a subexpression, we will
show the following:

Once we show that this claim is true, we will know that all the operations
between a pair of matching parentheses in the infix expression will be together
in a group within the output postfix notation, and so they will form a subexpres-
sion of the postfix expression. So, let’s see exactly why the claim is valid.

The algorithm keeps track of expressions within matching parentheses by
using the stack. When the algorithm encounters an opening parenthesis, that is,
a '(', it pushes this parenthesis onto the stack. Now consider what happens
between pushing the opening parenthesis and encountering the matching closing
parenthesis, that is, the matching ')'. The algorithm will never output an opera-
tion from the stack that is below the opening parenthesis, '('. Thus, it only out-
puts operations that are within the pair of matching parentheses in the input
(infix) expression. Moreover, it outputs all of these operations. When it encoun-
ters the matching closing parenthesis, it outputs all the remaining operations on
the stack all the way down to that matching opening parenthesis.

3. The 
precedence is 
handled
correctly

When the infix expression contains an operation with low precedence fol-
lowed by an operation with a higher precedence, then the algorithm should out-
put these operations in reverse order. In other words, the higher precedence
operation must be written first. A check of the algorithm will show that the oper-
ations are indeed output in reverse order.

How the Infix-to-Postfix Algorithm
Translates Subexpressions

Claim: All of the operations between a pair of matching
parentheses (and no other operations) are output between
the time the algorithm reads the opening parenthesis and the
time that it reads the closing parenthesis.
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4. Operations of 
equal
precedence are 
handled
correctly

When the infix expression contains a sequence of operations of equal prece-
dence, they represent an evaluation that goes from left to right. That means the
operations should be output from left to right. If you check the algorithm, you
will see that this is true. Operations are pushed onto the stack, but when the next
operation of equal precedence is encountered, the operation in the stack is output
and the new operation is pushed onto the stack. To confirm this, first check the
algorithm in the case where the stack is empty at the time that the operations are
encountered. That is the easiest case to see. After that, the other cases will be
clearer, because they are similar.

Pseudocode

1. Initialize a stack of characters to hold the operation symbols and parentheses.
2. do

if (the next input is a left parenthesis)
Read the left parenthesis and push it onto the stack.

else if (the next input is a number or other operand)
Read the operand and write it to the output.

else if (the next input is one of the operation symbols)
{

do
Print the top operation and pop it.

while none of these three conditions are true:
(1) The stack becomes empty, or 
(2) The next symbol on the stack is a left parenthesis, or 
(3) The next symbol on the stack is an operation with lower

precedence than the next input symbol.

Read the next input symbol, and push this symbol onto the stack.
}
else
{

Read and discard the next input symbol (which should be a right parenthesis).
Print the top operation and pop it; keep printing and popping until the next 
symbol on the stack is a left parenthesis. (If no left parenthesis is encountered, then 
print an error message indicating unbalanced parentheses, and halt.) Finally, pop
the left parenthesis.

}
while (there is more of the expression to read);

3. Print and pop any remaining operations on the stack. (There should be no remaining left
parentheses; if there are, the input expression did not have balanced parentheses.)

 FIGURE  7.12 Converting an Infix Expression to a Postfix Expression (General Case)
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 FIGURE  7.13 Example Computation for the Algorithm of Figure 7.12

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z
(a) Input so far (shaded):

Example

Convert the infix expression:
3 * X + (Y - 12) - Z

+

(i) Input so far (shaded):

+

(e) Input so far (shaded):

(

The operand 3 is printed.

Output so far:
3

Push the parenthesis.

Output so far:
3 X *

Pop until left parenthesis.

Output so far:
3 X * Y 12 -

(c) Input so far (shaded):

–

(k) Input so far (shaded):

+

(g) Input so far (shaded):

(

The operand X is printed.

Output so far:
3 X

The – is pushed.

Output so far:
3 X * Y

*

–

The operand Z is printed.

Output so far:
3 X * Y 12 - + Z

(d) Input so far (shaded):

(l) Input so far (shaded):

+

(h) Input so far (shaded):

(

Pop and print the * since it

Output so far:
3 X *

The operand 12 is printed.

Output so far:
3 X * Y 12

Pop any remaining operations.

Output so far:
3 X * Y 12 - + Z -

has higher precedence than

+

the +; then push the +.

–

3 X * Y 12 - +

3 X * Y

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z

3 * X + ( Y - 12 ) - Z
(b) Input so far (shaded):

–

(j) Input so far (shaded):

+

(f) Input so far (shaded):

(

The * is pushed.

Output so far:
3

The operand Y is printed.

Output so far:

*

Pop and print the + since it
has precedence equal to
the –; then push the –.

Output so far:
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Self-Test Exercises for Section 7.4

20. Evaluate the postfix expression 2 3 - 43 +.
21. Why does a postfix evaluation algorithm only need one stack?
22. Write the following expression in both prefix and postfix notation:

((7+3) * 2)

23. Trace the algorithm from Figure 7.10 on page 380 to evaluate the postfix
expression 15 9 6 * + 12 - 15 +. Draw the stack after each push or
pop.

24. Trace the algorithm from Figure 7.12 on page 385 to create a postfix
expression from 3 / A + (B + 12) - C.

CHAPTER SUMMARY

• A stack is a Last-In/First-Out data structure.
• The accessible end of the stack is called the top. Adding an entry to a

stack is called a push operation. Removing an entry from a stack is called
a pop operation.

• Attempting to push an entry onto a full stack is an error known as a stack
overflow. Attempting to pop an entry off an empty stack is an error known
as a stack underflow.

• A stack can be implemented as a partially filled array.
• A stack can be implemented as a linked list.
• An advantage of a linked-list implementation of a stack over an array

implementation is that with the linked list there is no preset limit on the
number of entries you can add to the stack. A similar advantage can be
obtained by using a dynamic array.

• Stacks have many uses in computer science. The evaluation and transla-
tion of arithmetic expressions are two common uses.

SOLUTIONS TO SELF-TEST EXERCISES
?Solutions to Self-Test Exercises

1. LIFO refers to a Last-In/First-Out data struc-
ture, in which items are taken out in the
reverse order of their insertion.

2. Most compilers use stacks to analyze the syn-
tax of a program.  Stacks are also used to keep
track of local variables when a program is run.

3. The pop operation removes the top item of the
stack. The top operation returns a reference to
the top item on the stack without removing it.

4. Push a 'D'; push an 'A'; push an 'H'; push an
'L'; top and pop for 'L'; top and pop for 'H';
top and pop for 'A'; top and pop for 'D'. The
output is LHAD.
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5. Store the top item in a local variable called t,
then pop it. Look at the next item, storing it in
another local variable called result. Push the
t back on the stack, and return the result.

6. One stack holds the numbers, and the other
stack holds the operations.

7. Within read_and_evaluate, there is a call to
strchr to determine whether the next charac-
ter is one of the operators. This call should add
the symbol '^' to its list of operators. Also,
add a new case to the switch statement within
the function evaluate_stack_tops. The new
case is for the exponentiation operator. This
calculates operand1 raised to the power of
operand2 and pushes the result back onto the
numbers stack. (Use the pow function from
<cmath> to compute the value of a number
raised to a power).

8. The modification is most easily accomplished
in the function read_and_evaluate. Within
this function, you can add a bit of code after
the line ins >> symbol;. This is the line that
reads an operator symbol. After reading such a
symbol, check whether the symbol is a slash
('/'), and peek ahead to see whether the next
symbol is also a slash. If so, then read and dis-
card the rest of the line (instead of pushing the
operator onto the stack).

9. Any top or pop operation has the potential for
a stack underflow. In the evaluation algorithm,
these occur in evaluate_stack_tops, which
is called whenever a right parenthesis is
encountered. If the input expression is cor-
rectly formed, then at the point of the right
parenthesis there will always be at least one
operation on the characters stack and at least
two operands on the numbers stack—and
therefore there can be no stack underflow. But
if one of the operations is omitted from the
input expression, then when the right paren-
thesis occurs, there can be a stack underflow
on the characters stack. And if one of the oper-
ands is omitted from the input expression,
then when the right parenthesis occurs, there
can be a stack underflow on the numbers
stack.

10. The numbers stack grows large if the input
expression has parentheses that are nested
deeply. For example, consider the input
expression (1 + (2 + (3 + (4 + 5)))). By
the time the 5 is read and pushed on the stack,
the 1, 2, 3, and 4 are already on the numbers
stack. In this example, there are four nested
subexpressions, and we need to push five
numbers onto the numbers stack. So, the gen-
eral stack size will be one more than the depth
of the nesting.

11. The istream peek operation is similar to the
top operation, in that it returns the next char-
acter of the input stream without actually
reading it.  The ignore operation is similar to
the pop operation, in that it reads and discards
the next character from the input stream.
However, an istream processes characters in
the order they are received, rather than in the
LIFO fashion of a stack.

12. The arithmetic expressions evaluation algo-
rithm is a linear algorithm. If n is the length of
the input expression, then there are at most n
symbols read, n symbols to peek, n arithmetic
operations, n pushes onto the numbers stack
(once for each input number and once for each
evaluation of an operation), n pushes onto the
operations stack, and 4n top and pop opera-
tions (twice the number of pushes). Ignoring
the constants gives O(n).

13. The STL stack is typically implemented using
a dynamic array.

14. The function should return CAPACITY minus
used.

15. Use a dynamic array.

16. Here is the solution for the linked-list version.
You can write the array version yourself.
template <class Item>
Item stack<Item>::second( ) const
// Libraries used: cassert
{

assert(size( ) >= 2);
return top_ptr->link( )->data( );

}
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

In our first case study on evaluating arith-
metic expressions we used two stacks that
held different types of data. In some other

applications, we might need two stacks with the
same type of data. If we implement the stacks as ar-
rays, there is a chance that one array (and hence one
stack) becomes filled, causing our computation to
end prematurely. This might be a shame, since the
other array (stack) might have plenty of room. One
way around this problem is to implement two stacks
as one large array rather than two smaller arrays.
Write a class for a pair of stacks. A pair of stacks is
simply an object with two stacks. Call these stacks
StackA and StackB. There should be separate opera-
tions for each stack, for example, pop_a and pop_b.
Implement the stack pair as a single array. The two
stacks grow from the two ends of the array, so for
example, one stack could fill up one quarter of the
array while the other fills up three quarters.

The top member function of the STL stack
returns a reference to the top item. This is
similar to the way that our node class from 

Chapter 6 has a data function that returns a refer-
ence to the item in the node (see page 323). For this
project, modify both of the stack implementations

1

2

from Section 7.3 so that the top function returns a
reference to the top item. With this modification, the
prototype of the top function changes:

Item& top( );

Note that top is no longer a const function because
its return value can now be used to change the top
item on a stack. For example, if s is a non-empty
stack of integers, we can change the top item to 42
by the assignment:

s.top( ) = 42;

In the case of the Chapter 6 node class, we fixed this
problem by adding a second version of the data
function, and this second version is a const member
function (see page 325). Your solutions for this
project should do a similar thing for the stack imple-
mentations, also providing a const version of the top
function with this prototype:

const Item& top( ) const;

This prototype indicates that the return value is a ref-
erence to a constant item (and therefore it cannot be
used to change the stack). Since the stack cannot be
changed, this version of the top function is now a
const member function.

17. set_data, set_link, list_insert, list_
locate, list_remove, and list_search
functions should not be used in the stack class,
because only the top item of the stack can be
accessed.

18. Our size implementation calls list_size,
which is linear time. For a constant time
implementation, you could maintain another
private member variable to continually keep
track of the list length. This variable would be
updated each time an item is pushed or
popped, and the size function can simply
return the current value of this variable.

19. See the discussion of the Koenig lookup on
page 374.

20. 42

21. There is no need for a second stack of opera-
tion symbols, because each operation is used
as soon as it is read.

22. Prefix: * + 7 3 2 Postfix: 7 3 + 2 * 

23. The trace is the same as the computation at the
bottom of Figure 7.10 on page 380, except
that the numbers are three times as large.

24. The trace is much the same as the computation
in Figure 7.13 on page 386, except that the
operations are different.
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Choose one of the stack implementations
from the previous project and implement an
iterator that is similar to our bag iterator in
Section 6.6.

Choose one of the stack implementations
and implement a seek member function
with this specification:

Item seek(size_type n = 1);
// Precondition: n < size( ).
// Postcondition: The return value is the 
// item that is n from the top (with the top at 
// n = 0, the next at n = 1, and so on). The 
// stack is not changed.

In this exercise you will need the seek mem-
ber function from Project 4 or the iterator from
Project 3. You could also use the Standard Lib-

rary stack class (which has an iterator). Write a pro-
gram that prints all strings with at most n letters,
where the letters are chosen from a range
first...last, which is a subrange of the type char.
Here is an outline for an algorithm to do this using a
stack:

// Writing all strings of 1 to n letters:
Push first onto the stack.
while (the stack is not empty)
{

Print the contents of the stack.
if (the stack contains fewer than n letters)

Push first onto the stack.
else
{

Pop characters off the stack, until the
stack is empty, or there is a character
other than last on the top. (Note: If the
top character is not last, then nothing is
popped off the stack.)
if (the stack is not empty)

Pop a character c off the stack, and
push c+1 (i.e., the next letter) onto
the stack.

}
}

3

4

5

Enhance the calculator program given in
Figure 7.5 on page 364 so that it has all of
the following features: After one expression

is evaluated, the user is asked if he or she wants to
evaluate another expression and is allowed to
choose between evaluating another expression and
quitting the program. Expressions need not be fully
parenthesized, and when parentheses are missing,
the usual C++ precedence rules are followed. If the
arithmetic expression entered is not well formed,
then the user is told it is not well formed and asked
to reenter the expression.

In Figure 7.5 on page 364 we presented a
program to evaluate arithmetic expressions.
In this exercise you will write a similar pro-

gram to evaluate boolean expressions. Rather than
arithmetic operations, the input expressions for this
program will use the operations && (the “and” oper-
ation), ||(the “or” operation), and !(the “not” oper-
ation). Rather than combining numbers, the input
expression will combine simple boolean compari-
sons of numbers such as (1 < 2) and (6 < 3). As-
sume all the numbers in these simple comparisons
are integers. Allow the following comparison oper-
ations: <, >, <=, >=, ==, and !=. At first assume that
all boolean expressions are fully parenthesized and
well formed. Be sure to note that “not” is a unary op-
eration. You can assume that the argument to “not”
(which follows the !) is enclosed in parentheses.
Your program should allow the user to evaluate ad-
ditional expressions until the user says he/she wish-
es to end the program.

For a more difficult assignment, enhance your
program by adding any or all of the following fea-
tures: (a) The numbers need not be integers; (b) the
expression need not be fully parenthesized—if
parentheses are missing, then the C++ precedence
rules apply (note that innermost expressions such as
(1 < 2) are still assumed to be in parentheses);
(c) the expression need not be well formed—if it is
not, then the user is asked to reenter the expression. 

Write a program that evaluates an arithmetic
expression in postfix notation. The basic
algorithm is contained in “Evaluating Post-

fix Expressions” on page 377. Assume the input

6

7

8
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contains numbers (but no variables) as well as the
arithmetic operations +, -, *, and /. Your program
should allow the user to evaluate additional expres-
sions until the user wants to end the program. You
might also enhance your program so that the expres-
sion need not be well formed; if it is not well formed,
then the user must reenter the expression. 

Write a program that takes as input an infix
expression and outputs the equivalent post-
fix expression. The basic algorithm is con-

tained in “Translating Infix to Postfix Notation” on
page 379. Assume that the input may contain num-
bers; variables; arithmetic operations +, -, *, and /;
as well as parentheses. However, the expression
need not be fully parenthesized, and when parenthe-
ses are missing, the usual C++ precedence rules are
used to determine the order of evaluation. Your pro-
gram should allow the user to enter additional ex-
pressions until the user says he or she wishes to end
the program. For a more difficult assignment, en-
hance your program so that the expression need not
be well formed; if it is not well formed, then the user
is asked to reenter the expression. 

Redo the calculator program given in
Figure 7.5 on page 364, but this time imple-
ment it in a different way. To evaluate the

arithmetic expression, your program will first con-
vert the expression to postfix notation. After that, it
will evaluate the postfix expression. Pseudocode for
both of these subtasks is given in this chapter. For
this exercise, you should not assume that expres-
sions are fully parenthesized. When parentheses are
missing, the usual C++ precedence rules are used to
determine the order of evaluation. Your program
should allow the user to evaluate additional expres-
sions until the user wants to end the program.

Suppose that you have n queens from a
chessboard. Is it possible to place all n

queens on the board so that no two queens are in the
same row, no two queens are in the same column,
and no two queens are on the same diagonal? For ex-
ample, a solution with n = 5 is shown here:

This problem is called the n-queens problem. For

9

10

11

this project, you are to write a function that has one
integer parameter, n, and determines whether there
is a solution to the n-queens problem. If a solution is
found, then the procedure prints the row and column
of each queen. Your program should solve the prob-
lem by making a sequence of choices, such as “Try
placing the row 1 queen in column 1,” or “Try
placing the row 7 queen in column 3.” Each time a
choice is made, the choice is pushed onto a stack that
already contains all the previously made choices.
The purpose of the stack is to make it easy to fix
incorrect choices, using the following pseudocode,
with a stack, s, and a boolean variable, success:

Push information onto the stack indicating the
first choice is a queen in row 1, column 1.
success = false;

while (!success && !s.empty( ))
{

Check whether the most recent choice (on
top of the stack) is in the same row, same col-
umn, or same diagonal as any other choices
(below the top). If so, then we say there is a
conflict; otherwise there is no conflict.
if (there is a conflict)

Pop elements off the stack until the stack
becomes empty, or the top of the stack is
a choice that is not in column n. If the
stack is now not empty, then increase the
column number of the top choice by 1.

else if (no conflict, and the stack size is n)
Set success to true because we have
found a solution to the n-queens problem.

else
Push information onto the stack, indicat-
ing that the next choice is to place a
queen at row number s.size( )+1, and
column number 1.

}

Solution to the
5-queens problem



392 Chapter 7 / Stacks

This technique is called backtracking since we
keep our choices on a stack and back up to correct
any mistakes that are made. Notice that when you
check for a conflict, you will need access to the en-
tire stack (not just the top), so that you should use the
seek function from Programming Project 4 or an it-
erator from Programming Project 3. You could also
use the Standard Library stack class (which has an
iterator).

Choose one of your stack implementations
and write a friend function to display the
contents of a stack from top to bottom. Then, 

implement a friend function to display the stack bot-
tom to top.

Write a function that compares two stacks for
equality. The function takes two stacks as
parameters and returns true if they are ident- 

ical.  The stacks should remain unchanged after the
function returns to the calling program. Hint: Either
write a friend function that can examine the ele-
ments directly, or pop the stacks and save the
popped elements so that the stacks can be restored.
In this second case, the stack parameters will not be
const reference parameters because they are tempo-
rarily changed before being restored.

As an alternative, the parameters could be value
parameters (so that changing them does not affect
the actual arguments). 

Which of the three approaches (friend function,
reference parameters, or value parameters) will be
most efficient?

In this project, you will use stacks to recog-
nize palindromes. Palindromes are strings
that read the same backward as forward (for

example, “madam”). Write a program to read a line
and print whether or not it is a palindrome. Hint:
You will need three stacks to implement the pro-
gram. (In Chapter 8, you will utilize a stack and a
queue to implement the palindrome program more
efficiently.)

12

13

14

For any of your stack implementations,
please write a new member function called
swap with one reference parameter that is also

a stack. After calling x.swap(y), the value of x
should equal the original value of y and vice versa.

For any of your stack implementations,
please write a new member function called
flip with no parameters. After a stack x

activates flip, x should contain the same items, but
the order of those items has been reversed.

Here’s a new idea for implementing the se-
quence class from Section 3.2. Instead of the
items being stored on a linked list, they will be

stored using two stacks as private member variables
with the following:

1. The bottom of the first stack is the beginning
of the sequence.

2. The elements of the sequence continue up to
the top of the first stack.

3. The next element of the sequence is then the
top of the second stack.

4. And the elements of the sequence then contin-
ue down to the bottom of the second sequence
(which is the end of the sequence).

5. If there is a current element, then that element
is at the top of the first stack.

You should delete the CAPACITY constant, but
don’t change any of the prototypes for any of the
public member functions.

All of the public member functions should take
constant time with one exception. Which one takes
linear time?

Note: If you use a correctly written stack class
for your two private member variables, then you do
not need to write your own assignment operator,
copy constructor, or destructor. The reason for this
is that C++ provides automatic versions of all three
of these items, and the automatic versions call the
respective functions for each of the member vari-
ables of the new class.

15

16

17
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L EARN ING  OB J EC T I V ES
When you complete Chapter 8, you will be able to...

• follow and explain queue�based algorithms using the usual computer science 
terminology of enqueue and de-queue (or the unusual C++ queue terms of push 
and pop).

• use the STL queue class to implement queue�based algorithms such as scheduling 
first�come, first�served tasks.

• use the STL double�ended queue classes in applications
• implement the queue and double�ended queue classes on your own using either an 

array or a linked�list data structure.
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Programming Projects
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Queues

A queue is a First-In/First-Out data structure similar to a line
of people at a ticket window. It can be used whenever you need a data structure
that allows entries to “wait their turn.” In this chapter we discuss applications of
the queue data structure, give two implementations of a queue class, and discuss
the differences between queues and stacks. We also discuss a double-ended
queue (or deque) and (in the projects) show a more flexible kind of queue called
a priority queue.

8.1 THE STL QUEUE

The word queue is pronounced as if you were saying the letter Q; the word
queue means the same thing as the word line when used in phrases like “waiting
in a line.” Every time you get in line at a supermarket or in a bank or at a ticket
window, you are adding yourself to a queue. If everybody is polite, then people
add themselves to the rear of the queue (the rear of the line), and the person at
the front of the queue is always the person who is served first. The queue data
structure works in exactly the same way, and the abstract definition of a queue
reflects this intuition.

When we say that the entries in a queue are ordered, all we mean is that there is
a first one (the front one), a second one, a third one, and so forth. We do not
require that the entries can be compared using the < operator. The entries may
be of any type. In this regard, the situation is the same as it was for a stack.

Because entries must be removed in exactly the same order that they were
added to the queue, a queue is called a First-In/First-Out data structure (abbre-
viated FIFO). This differs from a stack, which is a Last-In/First-Out data struc-
ture, but apart from this difference, a stack and a queue are very similar data
structures. They differ only in the rule that determines which entry is removed
from the list first. The contrast between stacks and queues is illustrated in Figure
8.1. In either structure the entries depicted are entered in the order A, B, C, and
D. With a queue, they are removed in the same order: A, B, C, D. With a stack,
they are removed in the reverse order: D, C, B, A.

Queue Definition
A queue is a data structure of ordered entries such that
entries can only be inserted at one end (called the rear) and
removed at the other end (called the front). The entry at the
front end of the queue is called the first entry.

394 Chapter 8 / Queues

stacks versus 
queues
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The Standard Library Queue Class

The C++ Standard Library has a queue template class, part of which is specified
in Figure 8.2. The queue’s member functions include operations to remove the
entry from the front of the queue, to add an entry to the rear of the queue, and so
on. The standard queue class has additional operations (not shown in the figure)
such as getting a copy of the rear element, but the more traditional operations
will satisfy our needs. Later we will discuss the queue implementation.

queue overflow 
and queue 
underflow

If a program attempts to add an entry to a queue that is already at its capacity,
this is, of course, an error. This error is called queue overflow. If a program
attempts to remove an entry from an empty queue, that is another kind of error,
called queue underflow. To help you avoid these errors, the abstract data type
provides a boolean function to test for an empty queue and a second function to
return the current number of items in the queue. (The function empty is redun-
dant, since the function size can be used to test for an empty queue. However,
using the function empty can make the meaning of your code clearer.)

Uses for Queues

Uses for queues are easy to find—we often use queues in our everyday affairs,
such as when we wait in line at a bank. To get a feel for using a queue in an
algorithm we will first consider a simple example.

copying a wordSuppose you want a program to read a word and then write the word. This is
so simple that you may wonder why we bother to consider this task, but it is best
to start with a simple example. One way to accomplish this task is to read the
input one letter at a time and place each letter in a queue. After the word is read,

FIFO
A queue is a First-In/First-Out data structure. Items are taken
out of the queue in the same order that they were put into the
queue.

FIGURE  8.1 Contrasting a Stack and a Queue
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the letters in the queue are written out. Because a queue is a First-In/First-Out
data structure, the letters are written in the same order in which they were read.

The pseudocode for this approach to copying a word is as follows:

// Echoing a word 
1. Declare a queue of characters.
2. while (there are more characters of the word to read)

{
Read a character.
Push the character into the queue.

}

3. while (the queue is not empty)
{

Write the front character to the screen.
Remove the front character from the queue.

}

Partial List of Members for the queue<Item> Class from <queue>
// TYPEDEFS
// value_type: The data type of the items in the queue from the Item parameter
// size_type: The data type for a variable that keeps track of how many items
// are in a queue
//
// CONSTRUCTOR
// Default constructor: Creates an empty queue
//
// VOID FUNCTIONS TO INSERT AND REMOVE ITEMS:
// pop( ): Removes the front item of the queue (see note*)
// push(const Item& entry): Adds an item to the rear of the queue (see note*)
//
// FUNCTIONS TO EXAMINE THE QUEUE AND ITS ITEMS:
// empty( ) const: Returns true if the queue is empty (otherwise returns false)
// size( ) const: Returns the number of items in the queue
// front( ): Returns the front item of the queue (without removing it)
//
// VALUE SEMANTICS:
// Assignments and the copy constructor may be used with queue<Item> objects.

 FIGURE  8.2 The Standard Library Queue Class

* Traditionally, the names pop and push have been used only with stacks. Other names, such as 
enqueue (“enter queue”) and de-queue (“delete from queue”) were used for queues. However, 
the new C++ Standard Library uses the names pop and push for both stacks and queues.
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simulation
programs

Because queues occur so frequently in real-life situations, they are frequently
used in simulation programs. For example, a program to simulate the traffic at an
intersection might use a software queue to simulate the real-life situation of a
growing line of automobiles waiting for a traffic light to change from red to
green.

input/output
buffering

Queues also appear in computer system software, such as the operating sys-
tem that runs on your PC. For example, consider a program that reads input from
the keyboard. We think of a program as directly reading its input from the key-
board. However, if you think of what actually happens when you give a line of
input to a program, you will realize that the program does not necessarily read a
character when the corresponding keyboard key is pressed. This allows you to
type input to the program, and that input is saved in a queue by software that is
part of the operating system. When the program asks for input, the operating sys-
tem provides characters from the front of its queue. This is called buffering the
input, and is controlled by the PC’s operating system software. In reality, a more
sophisticated data structure is used rather than a queue, allowing you to back up
and retype part of the line. Also, this form of buffering data in a queue is often
used when one computer component is receiving data from another, faster com-
puter component. For example, if your fast CPU (central processing unit) is send-
ing data to your printer, which is slow by comparison, then the data is buffered
in a queue. By using the queue in this way, the CPU need not wait for the printer
to finish printing the first character before the CPU sends the next character.

In a computer system in which more than one process or component uses a
single resource, a queue is often used so that the processes or components wait
in line and are served on a “first-come, first-served” basis, just like customers in
a bank line. For example, if several computers are networked so that they all use
the same printer, then a queue would be used to let them “wait in line” whenever
more than one computer wants to use the printer at the same time.

Self-Test Exercises for Section 8.1
1. What is the meaning of FIFO?
2. What are the traditional names for the queue operations that add an item

and remove an item from a queue?
3. What queue functions are used to avoid queue overflow and queue

underflow?
4. Suppose a program uses a queue of characters to read in a word and then

echo it to the screen, as described in the pseudocode on page 396. Now
suppose the input word is LINE. Trace the algorithm, giving all the calls
to the operations push, front, and pop.

5. Name some common situations where a PC’s operating system uses
some kind of a queue.

6. Write pseudocode for an algorithm that reads an even number of charac-
ters. The algorithm then prints the first character, third character, fifth
character, and so on. On a second output line, the algorithm prints the
second character, fourth character, sixth character, and so on. Use two
queues to store the characters.
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8.2 QUEUE APPLICATIONS

Before we actually implement the queue class, we’ll show two applications that
use the Standard Library queue specified in Figure 8.2 on page 396. Since the
queue is a template class, our two applications can use different kinds of queues.
The first application uses a queue of characters, and the second uses a queue of
integers.

PROGRAMMING EXAMPLE: Recognizing Palindromes

A palindrome is a string that reads the same forward and backward; that is, the
letters are the same whether you read them from right to left or from left to
right. For example, the one-word string “radar” is a palindrome. A more compli-
cated example of a palindrome is the following sentence:

Able was I ere I saw Elba

Palindromes are fun to make up, and they even have applications in at least one
area—the analysis of genetic material.

Suppose we want a program to read a line of text and tell us if the line is a
palindrome. We can do this by using both a stack and a queue. We will read the
line of text into both a stack and a queue, and then write out the contents of the
stack and the contents of the queue. The line that is written using the queue is
written forward, and the line that is written using the stack is written backward.
Now, if those two output lines are the same, then the input string must be a pal-
indrome. Of course, the program need not actually write out the contents of the
stack and the queue. The program can simply compare the contents of the stack
and the queue character-by-character to see if they would produce the same
string of characters.

A program that checks for palindromes in the way we just outlined is given in
Figure 8.3. This program uses the Standard Library queue class as well as the
stack class. In this program we treat both the upper- and lowercase versions of a
letter as being the same character. This is because we want to consider a sentence
as reading the same forward and backward even though it might start with an
uppercase letter and end with a lowercase letter. For example, the string “Able
was I ere I saw Elba” when written backwards reads “ablE was I ere I saw elbA”.
The two strings match, provided we agree to consider upper- and lowercase
versions of a letter as being equal. The treatment of the letters’ cases is accom-
plished with a useful function called toupper, from the <cctype> library facil-
ity. This function has one character as an argument. If this character is a
lowercase letter, then the function converts it to the corresponding uppercase
letter and returns this value. Otherwise, the function returns the character
unchanged.

the toupper 
function
converts
lowercase
letters to 
uppercase
letters



Queue Applications 399

A Program
// FILE: pal.cxx
// A program to test whether an input line is a palindrome. The program ignores spaces,
// punctuation, and the difference between upper- and lowercase letters.

#include <cassert> // Provides assert
#include <cctype> // Provides isalpha, toupper
#include <cstdlib> // Provides EXIT_SUCCESS
#include <iostream> // Provides cout, cin, peek
#include <queue> // Provides the queue template class
#include <stack> // Provides the stack template class
using namespace std;

{
queue<char> q;
stack<char> s;
char letter;
queue<char>::size_type mismatches = 0; // Mismatches between queue and stack
cout << "Enter a line and I will see if it's a palindrome:" << endl;

while (cin.peek( ) != '\n')
{

cin >> letter;
if (isalpha(letter))
{

q.push(toupper(letter));
s.push(toupper(letter));

}
}

while ((!q.empty( )) && (!s.empty( )))
{

if (q.front( ) != s.top( ))
++mismatches;

q.pop( );
s.pop( );

}

if (mismatches == 0)
cout << "That is a palindrome." << endl;

else
cout << "That is not a palindrome." << endl;

return EXIT_SUCCESS;
}

 FIGURE  8.3 A Program to Recognize Palindromes

int main( )

www.cs.colorado.edu/~main/chapter8/pal.cxx WWW
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Our program also ignores spaces and punctuation, requiring only that the
letters on the line read the same forward and backward. This way we can find
more palindromes. If we look only at letters, discarding both spaces and punctu-
ation, then there are many more palindromes. However, they are not always easy
to spot. For example, you might not immediately recognize the following as a
palindrome:

Straw? No, too stupid a fad. I put soot on warts.

the isalpha 
function
determines
which characters 
are letters

Depending on your current frame of mind, you may think that discovering
such sentences is also a stupid fad. Nevertheless, our program ignores blanks and
punctuation, so, according to our program, the above is a palindrome. The deter-
mination of whether a character is a letter is accomplished with another function
from <cctype>. The function, called isalpha, returns true if its single argument
is one of the alphabetic characters.

Two sample dialogues from the palindrome program are shown in Figure 8.4.
As we often do, we have presented a minimal program to concentrate on the new
material being presented. Before the program is released to users, it should be
enhanced in a number of ways to make it more friendly (such as allowing more
than one sentence to be entered).

Self-Test Exercises for Middle of Section 8.2

7. What C++ function determines if a character is alphabetic?  What header
provides this function?

8. How would you modify the palindromes program so that it indicates the
first position in the input string that violates the palindrome property?

First Sample Dialogue
Enter a line and I will see if it's a palindrome:
Straw? No, too stupid a fad. I put soot on warts.
That is a palindrome.

Second Sample Dialogue
Enter a line and I will see if it's a palindrome:
Able were you ere you saw Elba.
That is not a palindrome.

 FIGURE  8.4 Sample Dialogues from the Palindrome Program
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For example, consider the input “Able were you ere you saw Elba.” This
looks like a palindrome until you see the first “e” in “were,” so a suitable
output would be

That is not a palindrome.
Mismatch discovered at: Able we

9. How would you modify the palindromes program so that upper- and
lowercase versions of letters are considered different? In the modified
program the string “able was I ere I saw elba” would still be considered a
palindrome, but the string “Able was I ere I saw Elba” would no longer
be considered a palindrome, since, among other things, the first and last
letters, “A” and “a,” are not the same under these changed rules.

PROGRAMMING EXAMPLE: Car Wash Simulation

The Handy-Dandy Hand Car Wash Company has decided to modernize and
change its image. It has installed a fast, fully automated car-washing mechanism
that can wash a car in one to ten minutes. It will soon reopen under its new name
The Automatic Autowash Emporium. The company wants to know the most effi-
cient way to use its new car-washing mechanism. If the mechanism is used on
the fast setting, it can wash a car in one minute, but because of the high pressure
required to operate at such speed, the mechanism uses a great deal of water and
soap at this setting. At slower settings, it takes longer to wash a car but uses less
soap and water. The company wants to know how many customers will be
served and how long customers will have to wait in line when the washing
mechanism is used at one of the slower speeds. The company also wants to
know whether its new motto, “You Ought to Autowash your Auto,” will be
effective. We respectfully refuse comment on the motto, but we agree to write a
program that will simulate automobiles waiting in line for a car wash. This way
the manager of the car wash can see how the speed of the car wash, the length of
the line, and various other factors interact.

Car Wash Simulation—Specification

The precise program specifications are given by the following input/output
descriptions:

Input. The program has three input items: (1) the amount of time needed to
wash one car (in total seconds); (2) the probability that a new customer arrives
during any given second (we assume that, at most, one customer arrives in a
second); and (3) the total length of time to be simulated (in seconds). 

Output. The program produces two pieces of output information: (1) the num-
ber of customers serviced in the simulated time; and (2) the average time that a
customer spent in line during the simulation (in seconds).
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Car Wash Simulation—Design
We will carry out a design of the program in a way that is common for many
simulation tasks. The approach is to propose a collection of related object types
that correspond to real-world objects in the situation that we are simulating.
There are many possibilities—our particular approach focuses on the use of our
queue class, which will be used to simulate a line of customers waiting to have
their cars washed. We first discuss the queue and then propose the other objects
needed for the simulation.

the queue We need to simulate a queue of customers, but we do not have real live cus-
tomers, so we must decide how we will represent them. There are many ways to
represent customers: We could use their names and place them in a queue of
names; we could assign an arbitrary number to each customer and store that num-
ber in a queue of numbers; we could represent each customer by the make and
year of the customer’s automobile, or even by how dirty the automobile is. How-
ever, none of those representations has any relevance to the specified simulation.
For this simulation, all we need to know about a customer is how long the cus-
tomer waits in the queue. Hence, a good way to represent a customer is to use a
number that represents the time that the customer entered the queue. Thus, our
queue will be a queue of numbers. In a more complex simulation, it would be
appropriate to implement the customers as objects, and one of the customer’s
member functions would be a function that returns the customer’s arrival time.

The numbers that record the arrival times are called time stamps. Our simu-
lation works in seconds, so a time stamp is just the number of simulated seconds
that have passed since the start of the simulation. When the customer (repre-
sented by the time stamp) is removed from the queue, we can easily calculate the
time the customer spent waiting: The time spent waiting is the total number of
seconds simulated so far minus the time stamp. 

propose a list of 
related object 
types

Figure 8.5 proposes pseudocode for the complete simulation algorithm. In
addition to the queue, the pseudocode proposes three other object types: washer,
bool_source, and averager. We’ll discuss these types one at a time.

Washer. A washer is an object that simulates the automatic car-washing mech-
anism. The simulation program requires one washer object. This washer is ini-
tialized with its constructor, and each time another second passes, the simulation
program indicates the passage of one second for the washer. This suggests the
following constructor and member function:

washer::washer(unsigned int s);
// Precondition: The value of s is the number of seconds needed to
// complete one wash cycle.
// Postcondition: The washer has been initialized so that all other member 
// functions may be used. 

void washer::one_second( );
// Postcondition: The washer has recorded (and simulated) the passage of
// one more second of time.

Determine
which
properties of a 
real-world
object are 
relevant to the 
problem at 
hand.

Key Design 
Concept
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Notice that the constructor argument is an unsigned integer, which is a data type
that forbids negative values. Throughout our simulation, we will use unsigned
integers for time values that cannot be negative. As usual, we should provide a
default value for this argument (perhaps 60 seconds), so that the constructor can
be used as a default constructor.

The other two responsibilities of a washer are to tell the simulation program
whether the washing mechanism is currently available and to begin the washing
of a new car. These responsibilities are accomplished with two additional mem-
ber functions:

Pseudocode

1. Declare a queue of unsigned integers, which will be used to keep track of arrival times of cus-
tomers who are waiting to wash their cars. Unsigned integers are the data type used in C++
for numbers that can never be negative. We also declare the following objects:
(a) A washer: The washer’s constructor has an argument indicating the amount of time (in

seconds) needed by the washer to wash one car.
(b) A bool_source: The constructor has an argument that specifies how frequently the

bool_source returns true (indicating how often customers arrive).
(c) An averager.

2. for (current_second = 1; current_second <= the simulation length; ++current_second)
{

Each iteration of this loop simulates the passage of one second of time, as follows:
Ask the bool_source whether a new customer arrives during this second, and
if so, enter the current_second into the queue.
if (the washer is not busy and the queue is not empty)
{

Remove the next integer from the queue, and call this integer next.
This integer is the arrival time of the customer whose car we will now wash.
So, compute how long the customer had to wait (current_second - next),
and send this value to the averager. Also, tell the washer that it should
start washing another car.

}
Indicate to the washer that another simulated second has passed. This allows the
washer to correctly determine whether it is still busy.

}

3. At this point, the simulation is completed. So we can get and print two items of information
from the averager: (1) how many numbers the averager was given (i.e., the number of cus-
tomers whose cars were washed); and (2) the average of all the numbers that it was given
(i.e., the average waiting time for the customers, expressed in seconds).

 FIGURE  8.5 The Car Wash Simulation
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bool washer::is_busy( ) const;
// Postcondition: The return value is true if the washer is busy (in a wash
// cycle); otherwise the return value is false.

void washer::start_washing( );
// Precondition: The washer is not busy.
// Postcondition: The washer has started simulating one wash cycle. 
// Therefore, is_busy( ) will return true until the required number of
// simulated seconds has passed.

Bool_source. An object of the bool_source class provides a sequence of bool-
ean values. Some of the elements in the sequence are true, and some are false.
During the simulation, we will have one bool_source object that we query once
per simulated second. If the query returns true as its response, this indicates that
a new customer has arrived during the simulated second; a false return value indi-
cates that no customer has arrived during the simulated second. With this in
mind, we propose two functions, described next.

The first function is a constructor for the bool_source. This constructor has
one argument, which is the probability that the bool_source returns true to a
query. The probability is expressed as a decimal value between 0 and 1. For
example, suppose that our program uses the name arrival for its bool_
source, and we want to simulate the situation where a new customer arrives dur-
ing 1% of the simulated seconds. Then our program would have the declaration:

bool_source arrival(0.01);

The argument to this constructor should have a default argument, perhaps 0.5,
so that the constructor can also be used as a default constructor.

There is another member function that can be called to obtain the next value
in the bool_source’s sequence of values. Here is the prototype:

bool bool_source::query( ) const;
// Postcondition: The return value is either true or false, with the probability
// of a true value being determined by the argument to the constructor.

There are several ways of generating random boolean values, but at this stage
we don’t need to worry about such implementation details.

Averager. An averager computes the average of a sequence of numbers. For
example, we might send the following four numbers into an averager: 10, 20, 2,
and 12. The averager could then tell us that the average of these numbers is 11.0.
The averager can also tell us how many numbers it has processed—in our
example the averager processed four numbers. We’ll use an averager to keep
track of the average waiting time and the total number of cars washed.

The averager has a default constructor that resets the averager so that it is
ready to accept a sequence of numbers. The sequence will be given to the aver-
ager one number at a time through a member function called next_number. For
example, suppose that our averager is named wait_times, and the next number in
the sequence is 10. Then we will activate wait_times.next_number(10);. The
averager also has two member functions to retrieve its results: One function
returns the average of all the numbers that have been given to the averager, and
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the other function returns the count of how many numbers the averager has been
given. Here are the four prototypes:

averager::averager( );
// Postcondition: The averager has been initialized so that it is ready to
// accept a sequence of numbers to average.

void averager::next_number(double value);
// Postcondition: The averager has accepted the value as the next number
// in the sequence of numbers that it is averaging.

size_t averager::how_many_numbers( ) const;
// Postcondition: The return value is a count of how many times
// next_number has been activated.

double averager::average( ) const;
// Precondition: how_many_numbers( ) > 0.
// Postcondition: The return value is the average of all the numbers that
// have been given to the averager.

Notice that the argument to next_number is actually a double number rather
than an integer. This will allow us to use the averager in situations where the
sequence is more than just whole numbers.

Car Wash Simulation—Implementing the Car Wash Classes
We have completed a specification for the three new classes that will be used in
the car wash simulation. We’ll define these three types with a header file called
washing.h (Figure 8.6) and an implementation file called washing.cxx (Fig-
ure 8.7, starting on page 408). The implementations are straightforward, but
we’ll provide a little discussion on page 409.

A Header File
// FILE: washing.h (part of the namespace main_savitch_8A)
// CLASSES PROVIDED: bool_source, averager, washer
//
// CONSTRUCTOR for the bool_source class:
//
// Precondition: 0 <= p <= 1.
// Postcondition: The bool_source has been initialized so that p is the approximate
// probability of returning true in any subsequent activation of the query member function.
//
// CONSTANT MEMBER FUNCTION for the bool_source class:
//
// Postcondition: The return value is either true or false, with the probability of a true
// value being approximately p (from the constructor). (continued)

 FIGURE  8.6 Header File for the Car Wash Classes

bool_source(double p = 0.5)

bool query( ) const
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 (FIGURE  8.6 continued)

// CONSTRUCTOR for the averager class:
//
// Postcondition: The averager has been initialized so that it is ready to accept a
// sequence of numbers to average.
// MODIFICATION MEMBER FUNCTION for the averager class:
//
// Postcondition: The averager has accepted the value as the next number in the 
// sequence of numbers that it is averaging.
//
// CONSTANT MEMBER FUNCTIONS for the averager class:
//
// Postcondition: The return value is a count of how many times next_number has been
// activated.
//
//
// Precondition: how_many_numbers > 0.
// Postcondition: The return value is the average of all the numbers that have been
// given to the averager.
//
// CONSTRUCTOR for the washer class:
//
// Precondition: The value of s is the number of seconds needed for the completion of one
// wash cycle.
// Postcondition: The washer has been initialized so that all other member functions may
// be used. 
//
// MODIFICATION MEMBER FUNCTIONS for the washer class:
//
// Postcondition: The washer has recorded (and simulated) the passage of one more
// second of time.
//
//
// Precondition: The washer is not busy.
// Postcondition: The washer has started simulating one wash cycle. Therefore, is_busy( )
// will return true until the required number of simulated seconds has passed.
//
// CONSTANT MEMBER FUNCTIONS for the washer class:
//
// Postcondition: The return value is true if the washer is busy (in a wash cycle);
// otherwise the return value is false.
//
// VALUE SEMANTICS for the bool_source, averager, and washer classes:
// Assignments and the copy constructor may be used with objects of the three classes.

(continued)

averager( )

void next_number(double value)

size_t how_many_numbers( ) const

double average( ) const

washer(unsigned int s = 60)

void one_second( )

void start_washing( )

bool is_busy( ) const
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 (FIGURE  8.6 continued)

#ifndef MAIN_SAVITCH_WASHING_H
#define MAIN_SAVITCH_WASHING_H
#include <cstdlib> // Provides std::size_t
namespace main_savitch_8A
{

class bool_source
{
public:

// CONSTRUCTOR
bool_source(double p = 0.5);
// CONSTANT MEMBER FUNCTION
bool query( ) const;

private:
double probability; // Probability of query( ) returning true

};

class averager
{
public:

// CONSTRUCTOR
averager( );
// MODIFICATION MEMBER FUNCTION
void next_number(double value);
// CONSTANT MEMBER FUNCTIONS
std::size_t how_many_numbers( ) const { return count; }
double average( ) const;

private:
std::size_t count; // How many numbers have been given to the averager
double sum; // Sum of all the numbers given to the averager

};

class washer
{
public:

// CONSTRUCTOR
washer(unsigned int s = 60);
// MODIFICATION MEMBER FUNCTIONS
void one_second( );
void start_washing( );
// CONSTANT MEMBER FUNCTION
bool is_busy( ) const { return (wash_time_left > 0); }

private:
unsigned int seconds_for_wash; // Seconds for a single wash
unsigned int wash_time_left; // Seconds until the washer is no longer busy

};
}

#endif
www.cs.colorado.edu/~main/chapter8/washing.h WWW
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An Implementation File
// FILE: washing.cxx
// CLASSES implemented: bool_source, averager, washer
//
// INVARIANT for the bool_source class:
// 1. The member variable probability is the approximate probability that query( ) returns
// 1. true.
//
// INVARIANT for the averager class:
// 1. The member variable count indicates how many numbers the averager has been given.
// 2. The member variable sum is the sum of all the numbers that the averager has been
// 2. given.
//
// INVARIANT for the washer class:
// 1. The member variable seconds_for_wash is the number of seconds required for one wash.
// 2. The member variable wash_time_left is 0 if the washer is not busy;
// 2. otherwise it is the number of seconds until the washer is free.

#include <cassert> // Provides assert
#include <cstdlib> // Provides rand, RAND_MAX, size_t
#include "washing.h" // Provides bool_source, averager, washer definitions
using namespace std;

namespace main_savitch_8A
{

// Library facilities used: cassert
{

 assert(p >= 0);
assert(p <= 1);
probability = p;

}

// Library facilities used: cstdlib
{

return (rand( ) < probability * RAND_MAX);
}

{
count = 0;
sum = 0;

} (continued)

 FIGURE  8.7 Implementation File for the Car Wash Classes

bool_source::bool_source(double p). 

bool bool_source::query( ) const

averager::averager( )
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Implementation of the bool_source. The bool_source class has one member
variable, probability, which stores the probability that an activation of query
will return true. The implementation of the query member function first uses the
rand function to generate a random number between 0 and RAND_MAX (including
the endpoints), where RAND_MAX is a constant defined in <cstdlib>. (See the
discussion of rand on page 271.) Hence, if the member variable probability is
the desired probability of returning true, then query should return true provided
the following relationship holds:

rand( ) < probability * RAND_MAX

 (FIGURE  8.7 continued)

{
++count;
sum += value;

}

// Library facilities used: cassert
{

assert(how_many_numbers( ) > 0);
return sum/count;

}

{
seconds_for_wash = s;
wash_time_left = 0;

}

{
if (is_busy( ))

--wash_time_left;
}

// Library facilities used: cassert
{

assert(!is_busy( ));
wash_time_left = seconds_for_wash;

}
}

void averager::next_number(double value)

double averager::average( ) const

washer::washer(unsigned int s)

void washer::one_second( )

void washer::start_washing( )

www.cs.colorado.edu/~main/chapter8/washing.cxx WWW
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For example, suppose we want a 10% chance that query returns true, so that
probability is 0.1. If rand returns a value less than 0.1*RAND_MAX, then
query will return true. The chance that rand returns a value less than
0.1*RAND_MAX is approximately 10%, since 0.1*RAND_MAX marks a point that
is approximately 10% of the way through rand’s output range. Therefore, there
is about a 10% chance that the expression  will be
true. It is this boolean expression that is used in the return statement of query.

Implementation of the averager. The implementation of the averager is a
direct implementation of the definition of “average” and some straightforward
details. The class has two member variables: one to keep track of how many
numbers the averager has been given, and another to keep track of the sum of all
those numbers. When the average member function is activated, the function
returns the average calculated as the sum of all the numbers divided by the count
of how many numbers the averager was given. 

Notice that the averager does not need to keep track of all the numbers indi-
vidually. It is sufficient to keep track of the sum of the numbers and the count of
how many numbers there were.

Implementation of the washer. The washer class has two member variables.
The first member variable, seconds_for_wash, is the number of seconds needed
for one complete wash cycle. This variable is set by the constructor and remains
constant thereafter. The second member variable, wash_time_left, keeps track
of how many seconds until the current wash is completed. This value can be zero
if the washer is not currently busy.

The washer’s one_second member function simulates one second of washing
time. In our simulation, the only piece of information that might be altered by the
one_second function is the number of seconds until the washer is no longer
busy. So, the one_second function checks whether a car is currently being
washed. And if there is a car being washed, then the function subtracts one from
wash_time_left.

The washer’s is_busy function simply checks whether wash_time_left is
greater than zero. If so, then there is a car in the washing mechanism. Otherwise,
the washing mechanism is ready for another car.

When the car-washing mechanism is not busy, the start_washing member
function may be activated to start another car through the washer. The function
starts the wash by setting wash_time_left equal to seconds_for_wash.

Car Wash Simulation—Implementing the Simulation Function
We can now implement the simulation pseudocode from Figure 8.5 on
page 403. The implementation is shown as a function in Figure 8.8. The func-
tion has three parameters, taken from our original specification: (1) an unsigned
integer, wash_time, which is the amount of time needed to wash one car; (2) a
double number, arrival_prob, which is the probability that a customer arrives
during any particular second; and (3) another unsigned integer, total_time,
which is the total number of seconds to be simulated. The function writes a copy
of its parameters to the screen and then runs the simulation.

rand( ) < 0.1 * RAND_MAX
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Most of the simulation work is carried out in the large for-loop, where the
local variable current_second runs from 1 to total_time. This loop parallels
the large loop from the original pseudocode (Step 2 in Figure 8.5 on page 403).

After the loop finishes, the simulation function obtains two pieces of informa-
tion from the averager and writes these items to cout.

Self-Test Exercises for End of Section 8.2
10. Can a single program use both a stack and a queue?
11. How are time stamps used in simulations?
12. What C++ data type should be used for numbers that can never be

negative?
13. Describe at least one assumption we made about the real-world car wash

in order to make the simulation more manageable.
14. Use short sentences to describe the three main actions that occur during

each second of simulated time in the car wash simulation.
15. What is RAND_MAX? Where is it defined?
16. When the car wash simulation finishes, there could still be some num-

bers in the queue. What do these numbers represent from the real world?
(For a method of handling these leftover numbers, see Programming
Project 8 on page 434.)

A Function Implementation

// Precondition: 0 <= arrival_prob <= 1.
// Postcondition: The function has simulated a car wash where wash_time is the number of
// seconds needed to wash one car, arrival_prob is the probability of a customer arriving in
// any second, and total_time is the total number of seconds for the simulation. Before the
// simulation, the function has written its three parameters to cout. After the simulation, the
// function has written two pieces of information to cout: (1) the number of cars washed and
// (2) the average waiting time of a customer.
// Library facilities: iostream, queue, washing.h (using namespace std and main_savitch_8A)
{

queue<unsigned int> arrival_times; // Time stamps of the waiting customers
unsigned int next; // A value taken from the queue
bool_source arrival(arrival_prob);
washer machine(wash_time);
averager wait_times;
unsigned int current_second;

(continued)

 FIGURE  8.8 Implementation of the Car Wash Function

void car_wash_simulate
(unsigned int wash_time, double arrival_prob, unsigned int total_time)
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 (FIGURE  8.8 continued)

// Write the parameters to cout.
cout << "Seconds to wash one car: " << wash_time << endl;
cout << "Probability of customer arrival during a second: ";
cout << arrival_prob << endl;
cout << "Total simulation seconds: " << total_time << endl;

for (current_second = 1; current_second <= total_time; ++current_second)
{ // Simulate the passage of one second of time.

// Check whether a new customer has arrived.
if (arrival.query( ))

arrival_times.push(current_second);

// Check whether we can start washing another car.
if ((!machine.is_busy( )) && (!arrival_times.empty( )))
{

next = arrival_times.front( );
arrival_times.pop( );
wait_times.next_number(current_second - next);
machine.start_washing( );

}

// Tell the washer to simulate the passage of one second.
machine.one_second( );

}

// Write the summary information about the simulation.
cout << "Customers served: " << wait_times.how_many_numbers( ) << endl;
if (wait_times.how_many_numbers( ) > 0)

        cout << "Average wait: " << wait_times.average( ) << " sec" << endl;
}

Sample Output from the Car Wash Simulation Function
Seconds to wash one car: 240
Probability of customer arrival during a second: 0.0025
Total simulation seconds: 6000
Customers served: 19
Average wait: 110.211 sec

www.cs.colorado.edu/~main/chapter8/carwash.cxx WWW
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8.3 IMPLEMENTATIONS OF THE QUEUE CLASS

A queue seems conceptually simpler than a stack because we notice queues in
everyday life. However, the implementation of a queue, though similar to that of
a stack, is more complicated. As was the case with the stack class, we will give
two implementations of our queue class: a static implementation using a fixed-
sized array, and a dynamic implementation using a linked list. As usual, our
application programs will run with either implementation (although the static
version imposes a predetermined capacity on the size of the queue).

Array Implementation of a Queue

As we did with the stack class, we will implement the queue class as a partially
filled array. With a queue, we add entries at one end of the array and remove
them from the other end. Hence, we will be accessing the used portion of the
array at both ends, increasing the size of the used portion at one end and
decreasing the size of the used portion at the other end. This differs from our use
of a partially filled array for a stack, in that the stack accessed just one end of
the partially filled array.

keeping track of 
both ends of the 
partially filled 
array

Because we now need to keep track of both ends of the used portion of the
array, we will have two variables to keep track of how much of the array is used:
One variable, called first, indicates the first index currently in use, and one
variable, called last, indicates the last index currently in use. If data is the array
name, then the queue entries will be in the array components:

data[first], data[first + 1], ... data[last].

To add an entry we increment last by one, and then store the new entry in the
component data[last], where last is now one larger than it was before. To
get the next entry from the queue, we retrieve data[first] and then increment
first by one, so that data[first] is then the entry that used to be second.

There is one problem with this plan. The variable last is incremented but
never decremented. Hence, it will quickly reach the end of the array. At that
point, we will not be able to add any more entries to the queue. Yet, there is likely
to be room in the array. In a normal application, the variable front would also
be incremented from time to time (when entries are removed from the queue).
This will free up the array locations with index values less than first. There are
several ways to reuse these freed locations.

One straightforward approach for using the freed array locations is to main-
tain all the queue entries so that first is always equal to 0 (the first index of the
array). When data[0] is removed, we move all the entries in the array down one
location so the value of data[1] is moved to data[0], and then all other entries
are also moved down one. This approach will work, but it is inefficient. Every
time we remove an entry from the queue, we must move every entry in the queue.
Fortunately, there is a better approach.



414 Chapter 8 / Queues

circular array We do not need to move all the array elements. When the rear index reaches
the end of the array, we can simply start reusing the available locations at the
front of the array. Think of this arrangement as if the array were bent into a circle
with the first component of the array immediately after the last component. In
this way, the successor of the final array index is array index [0]. In this circular
arrangement, the free index positions are always “right after” data[last].

For example, suppose that we have a queue of characters with a capacity of
five, and the queue currently contains three entries, 'A', 'B', and 'C'. Perhaps
these values are stored with first equal to 0 and last equal to 2, as shown here:

The question marks indicate unused spots in the array.
Let’s remove two entries (the 'A' and 'B'), and add two more entries to the

rear of this queue, perhaps the characters 'D' and 'E'. The result is shown here:

At this point, first is 2, last is 4, and the queue elements range from data[2]
to data[4]. Suppose that now we add another character, 'F', to the queue. The new
entry cannot go after last, since we have hit the end of the array. Instead, we go
to the front of the array, adding the new 'F' at location data[0], as shown here:

data
'A' 'B' 'C' ?

last
2

first
0

[1] [3]

?

[4][0] [2]

data
? ? 'C' 'D'

last
4

first
2

[1][0] [2] [3]

'E'

[4]

data
'F' ? 'C' 'D'

last
0

first
2

[1] [2] [3]

'E'

[4][0]
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This may look peculiar, with the last index of 0 being before the first index
of 2. But keep in mind the circular view of the array. With this view, the queue’s
entries start at data[first] and continue forward. If you reach the end of the
array, you come back to data[0] and keep going until you find the rear. It may
help to actually view the array as bent into a circle, with the final array element
attached back to the beginning, as shown here:

An array used in this way is called a circular array.
We now turn to a detailed implementation of our queue using the idea of a cir-

cular array. The header file for our queue is given in Figure 8.9. The queue’s
entries are held in the array, data, which is a private member variable. The pri-
vate member variables first and last hold the indexes for the front and the rear
of the queue, as we have discussed. Whenever the queue is non-empty, the
entries begin at the location data[first], continuing forward in the array. If the
entries reach the end of the array, then they continue at the first location,
data[0]. In any case, data[last] is the last entry in the queue. One other pri-
vate member variable, count, records the number of items that are in the queue.
We will use count to check whether the queue is empty or full, and also to pro-
duce the value returned by the size member function.

The queue class definition also has a new feature: a private member function
called next_index. This is a function that we think will be useful for the imple-
mentation, but it is not part of the public interface. We don’t want other program-
mers to use this function; it is just for our own use in implementing a specific
kind of queue. A private function such as this is called a helper function.

The next_index helper function allows us to step easily through the array,
one index after another, with wraparound at the end. The function call
next_index(i) usually returns i+1, with one exception. When i is equal to the
last index of the array, next_index(i) returns the first index of the array (0). By
the way, you may be wondering, why bother defining next_index at all? After

data

'F'

?

'C''D'

last
0

first
2

[1]

[2][3]

'E'[4]

[0]
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all, we could simply use the formula “(i+1) % CAPACITY” directly instead of
calling next_index. The reason for declaring next_index is to make the other
implementations easier to read. The name next_index suggests the purpose it
serves, which is to “move to the next index.” On the other hand, the formula on
its own requires some thought as to its purpose.

USE SMALL HELPER FUNCTIONS TO IMPROVE CLARITY

When a class requires some small operation that is implemented as a formula, con-
sider implementing the formula with a helper function (that is, a private member
function). This will improve the clarity of your other code.

A Header File
// FILE: queue1.h (part of the namespace main_savitch_8B)
// TEMPLATE CLASS PROVIDED: queue<Item> (a queue of items)
//
// TEMPLATE PARAMETER, TYPEDEFS, and MEMBER CONSTANTS for the queue<Item> class:
// The template parameter, Item, is the data type of the items in the queue, also defined
// as queue<Item>::value_type. It may be any of the C++ built-in types (int, char, etc.), or a
// class with a default constructor, a copy constructor, and an assignment operator. The
// definition queue<Item>::size_type is the data type of any variable that keeps track of how
// many items are in a queue. The static const CAPACITY is the maximum capacity of a
// queue for this first queue implementation.
//
// CONSTRUCTOR for the queue<Item> template class:
//
// Postcondition: The queue has been initialized as an empty queue.
//
// MODIFICATION MEMBER FUNCTIONS for the queue<Item> template class:
//
// Precondition: size( ) > 0.
// Postcondition: The top item of the queue has been removed.
//
//
// Postcondition: A new copy of entry has been inserted at the rear of the queue.
//
// CONSTANT MEMBER FUNCTIONS for the queue<Item> template class:
//
// Postcondition: The return value is true if the queue is empty.

(continued)

 FIGURE  8.9 Header File for the Array Version of the Queue Template Class

queue( )

void pop( )

void push(const Item& entry)

bool empty( ) const

PROGRAMMING TIP��  
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 (FIGURE  8.9 continued)

//
// Precondition: size( ) > 0.
// Postcondition: The return value is the front item of the queue (but this item is not
// removed from the queue). 
//
//
// Postcondition: The return value is the total number of items in the queue.

#ifndef MAIN_SAVITCH_QUEUE1_H
#define MAIN_SAVITCH_QUEUE1_H
#include <cstdlib> // Provides size_t

namespace main_savitch_8B
{

template <class Item>
class queue

    {
public:

// TYPEDEFS and MEMBER CONSTANTS -- See Appendix E if this fails to compile.
typedef std::size_t size_type;
typedef Item value_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR

        queue( );
        // MODIFICATION MEMBER FUNCTIONS

void pop( );
void push(const Item& entry);
// CONSTANT MEMBER FUNCTIONS
bool empty( ) const { return (count == 0); }
Item front( ) const;
size_type size( ) const { return count; }

private:
        Item data[CAPACITY]; // Circular array
        size_type first; // Index of item at the front of the queue
        size_type last;  // Index of item at the rear of the queue
        size_type count; // Total number of items in the queue

// HELPER MEMBER FUNCTION
size_type next_index(size_type i) const { return (i+1) % CAPACITY; }

    };
}

#include "queue1.template" // Include the implementation.
#endif

Item front( ) const

size_type size( ) const

www.cs.colorado.edu/~main/chapter8/queue1.h WWW
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Discussion of the Circular Array Implementation of a Queue

Figure 8.10 shows the implementation file for the queue class. Once you under-
stand the next_index function, it is easy to see that the push and pop imple-
mentations add and remove items in the usual way for a circular array.

One point that may seem counterintuitive is the implementation of the
queue’s constructor. It initializes last to the final index of the array (that is,
CAPACITY - 1). This may seem peculiar, but the reason relates to a requirement
in the invariant:

Part of the invariant states: For an empty queue, last is some valid index, and
first is always equal to next_index(last). The queue constructor ensures that
this requirement is met by setting last to the final index of the array and setting
front to the first index of the array.

Of course, you may also wonder why we imposed this requirement on an
empty queue. The answer involves how the insert function works on an empty
array. When the first item is inserted into the queue for an empty array, the insert
function moves the last value to the next available index with the assignment
statement . After this assignment, the new item is
placed at data[last]. Therefore, by requiring an empty queue to have first
equal to next_index(last), we have ensured that the first item placed in the
queue will reside at data[first].

Invariant of the Queue Class (Array Version)

1. The number of items in the queue is in count.
2. For a non-empty queue, the items are stored in a circular

array beginning at data[first] and continuing through
data[last]. The total capacity of the array is CAPACITY.

3. For an empty queue, last is some valid index, and
first is always equal to next_index(last).

An Implementation File
// FILE: queue1.template
// TEMPLATE CLASS IMPLEMENTED: queue<Item> (see queue1.h for documentation)
// This file is included in the header file and not compiled separately.
// INVARIANT for the queue class:
// 1. The number of items in the queue is in the member variable count.
// 2. For a non-empty queue, the items are stored in a circular array beginning at data[front]
// and continuing through data[last]. The total capacity of the array is CAPACITY.
// 3. For an empty array, last is some valid index, and first is always equal to
// to next_index(last). (continued)

 FIGURE  8.10 Implementation File for the Array Version of the Queue Template Class

last = next_index(last)
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 (FIGURE  8.10 continued)

#include <cassert> // Provides assert

namespace main_savitch_8B
{

{
        count = 0;
        first = 0;
        last = CAPACITY - 1;
    }

// Library facilities used: cassert
    {
        assert(!empty( ));

return data[first];
    }

// Library facilities used: assert
    {
        assert(!empty( ));
        first = next_index(first);
        --count;
    }

// Library facilities used: cassert
    {
        assert(size( ) < CAPACITY);
        last = next_index(last);
        data[last] = entry;
        ++count;
    }

}

template <class Item>
const typename queue<Item>::size_type queue<Item>::CAPACITY;

template <class Item> 
queue<Item>::queue( )

template <class Item>
Item queue<Item>::front( ) const

template <class Item>
void queue<Item>::pop( )

template <class Item>
void queue<Item>::push(const Item& entry)

www.cs.colorado.edu/~main/chapter8/queue1.template WWW
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Linked-List Implementation of a Queue

A queue can also be implemented as a linked list. One end of the linked list is
the front, and the other end is the rear of the queue. The approach uses two
pointers: One points to the first node (front_ptr), and the other points to the
last node (rear_ptr), as diagrammed here for a queue with three items:

Here is a class definition for a queue template class, which would be part of the
queue2.h header file:

#include <cstdlib>   // Provides size_t
#include "node2.h" // Node template class

namespace main_savitch_8C
{

template <class Item>
class queue
{
public:

// TYPEDEFS
typedef std::size_t size_type;
typedef Item value_type;
// CONSTRUCTORS and DESTRUCTOR
queue( );
queue(const queue<Item>& source);
~queue( );
// MODIFICATION MEMBER FUNCTIONS
void pop( );
void push(const Item& entry);
void operator =(const queue<Item>& source);
// CONSTANT MEMBER FUNCTIONS
bool empty( ) const { return (count == 0); }
Item front( ) const;
size_type size( ) const { return count; }

private:
main_savitch_6B::node<Item> *front_ptr;
main_savitch_6B::node<Item> *rear_ptr;
size_type count;  // Total number of items in the queue

};
}

Third
item

Front

NULL

item
Second

item

rear_ptrfront_ptr
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The linked-list version has no CAPACITY constant, but otherwise the specifi-
cation is the same as the array version. Our proposed invariant for the new
queue class is shown here:

Implementation Details

Each of the queue member functions (except the constructors) may assume that
the invariant is valid when the member function is activated, and each member
function (except the destructor) must ensure that the invariant is valid when the
member function finishes its work. Notice that the invariant includes a member
variable called count to keep track of the total number of items in the queue.
We could get by without count, but its presence makes the size function
quicker.

Most of the member functions’ work will be accomplished with the functions
of the node template class from Figure 6.4 on page 321. We’ll look at the imple-
mentations of two functions—push and pop—in some detail.

The queue push member function. The push operation adds a node at the
rear of the queue. For example, suppose we start with three items, shown here:

Invariant of the Queue Class (Linked-List Version)

1. The number of items in the queue is stored in the mem-
ber variable count.

2. The items in the queue are stored in a linked list, with the
front of the queue stored at the head node, and the rear
of the queue stored at the final node.

3. The member variable front_ptr is the head pointer of
the linked list of items. For a non-empty queue, the mem-
ber variable rear_ptr is the tail pointer of the linked list;
for an empty list, we don’t care what’s stored in rear_ptr.

Third
item

Front

NULL

item
Second

item

rear_ptr

front_ptr



422 Chapter 8 / Queues

After adding a fourth item, the list would look like this:

The item for the new fourth entry is placed in a newly created node at the end of
the list. Normally, this is accomplished by a function call and an assignment:

list_insert(rear_ptr, entry);
rear_ptr = rear_ptr->link( );

To add the first item, we need a slightly different approach because the empty
list has no rear pointer. In this case we should add the new entry at the head of
the list, and then assign rear_ptr to also point to the new node, as shown in
this segment of code:

if (empty( ))
{ // Insert first entry.

main_savitch_6B::list_head_insert(front_ptr, entry);
rear_ptr = front_ptr;

}
else
{ // Insert an entry that is not the first.

main_savitch_6B::list_insert(rear_ptr, entry);
rear_ptr = rear_ptr->link( );

}

In fact, this code is most of the insert function. The only other work is to add
one to the count member variable.

The queue pop member function. The pop operation removes a node from
the front of the queue. For example, suppose we start with this queue:

In this example, the pop function will remove the item that is labeled “Item A.”
When pop returns, the list will have only three items, shown here:
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The implementation of pop uses list_head_remove. This implementation is
part of the complete queue implementation file in Figure 8.11.

MAKE NOTE OF “DON’T CARE” SITUATIONS

There are often special situations in which we don’t care about the value of a mem-
ber variable. For example, in the special situation of an empty queue, the rear
pointer is not used. With some compilers, you may get better error messages if you
set such a pointer to NULL. (These compilers provide a message such as “Null
pointer access” if you accidentally try to dereference the null pointer.) But in any
case—whether you decide to set the rear pointer to NULL or not—you should docu-
ment the fact that your implementation doesn’t care about the value of the rear
pointer for an empty queue. In particular, the invariant of the class should include
an explicit statement of the “don’t care” attitude—otherwise we might inadvertently
assume that the rear pointer has some valid value for an empty queue.

WHICH END IS WHICH

We implemented our queue with the front of the queue at the head of the list and
the rear of the queue at the tail of the list. As it turns out, this was not an arbitrary
choice. Can you see why? What would happen if we had tried to do things the other
way around, as shown in this wrong diagram?

With this wrong arrangement of the queue’s front and rear, we can still implement
the push operation, adding a new node at the rear of the queue. We also have easy
access to the front item. But it will be difficult to actually remove the front item. After
the removal, the front_ptr must be positioned so that it points to the next node in
the queue, and there is no easy way to accomplish that (without starting at the rear
and moving through the whole list). 

So, keep in mind that it’s easy to insert and remove at the head of a linked list,
but insertion is the only easy operation at the tail.
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An Implementation File
// FILE: queue2.template
// TEMPLATE CLASS IMPLEMENTED: queue<Item> (see queue2.h for documentation)
// This file is included in the header file and not compiled separately.
// INVARIANT for the queue class:
// 1. The number of items in the queue is stored in the member variable count.
// 2. The items in the queue are stored in a linked list, with the front of the queue stored at
// the head node and the rear of the queue stored at the final node.
// 3. The member variable front_ptr is the head pointer of the linked list of items. For a
// non-empty queue, the member variable rear_ptr is the tail pointer of the linked list;
// for an empty list, we don’t care what’s stored in rear_ptr.

#include <cassert> // Provides assert
#include "node2.h"  // main_savitch_6B::node from Figure 6.4 on page 321

namespace main_savitch_8C
{

{
count = 0;
front_ptr = NULL;

}

// Library facilities used: node2.h
{

count = source.count;
main_savitch_6B::list_copy(source.front_ptr, front_ptr, rear_ptr);

}

// Library facilities used: node2.h
{

main_savitch_6B::list_clear(front_ptr);
}

(continued)

 FIGURE  8.11 Implementation File for the Linked-List Version of the Queue Template Class

template <class Item> 
queue<Item>::queue( )

template <class Item>
queue<Item>::queue(const queue<Item>& source)

template <class Item>
queue<Item>::~queue( )



Implementations of the Queue Class 425

 (FIGURE  8.11 continued)

// Library facilities used: node2.h
{

if (this == &source) // Handle self-assignment
return;

main_savitch_6B::list_clear(front_ptr);
main_savitch_6B::list_copy(source.front_ptr, front_ptr, rear_ptr);
count = source.count;

}

// Library facilities used: cassert
{

assert(!empty( ));
return front_ptr->data( );

}

// Library facilities used: cassert, node2.h
{

assert(!empty( ));
main_savitch_6B::list_head_remove(front_ptr);
--count;

}

// Library facilities used: node2.h
{

if (empty( ))
{ // Insert the first entry.

main_savitch_6B::list_head_insert(front_ptr, entry);
rear_ptr = front_ptr;

}
else
{ // Insert an entry that is not the first.

main_savitch_6B::list_insert(rear_ptr, entry);
rear_ptr = rear_ptr->link( );

}
++count;

}
}

template <class Item>
void queue<Item>::operator =(const queue<Item>& source)

template <class Item>
Item queue<Item>::front( ) const

template <class Item>
void queue<Item>::pop( )

template <class Item>
void queue<Item>::push(const Item& entry)

www.cs.colorado.edu/~main/chapter8/queue2.template WWW
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Self-Test Exercises for Section 8.3
17. Under what circumstances is a helper function useful?
18. Write a new constant member function that returns a copy of the item at

the rear of the queue. Use the array version of the queue.
19. In a circular array implementation of a queue, why does the constructor

set last to the final index of the array?
20. A programmer who sees our array implementation of a queue shown in

Figure 8.10 on page 418 gives us the following suggestion: “Why not
eliminate the count member variable, since the number of elements in
the queue can be determined from the values of front and rear?” Is
there a problem with the suggestion?

21. Write a new constant member function that returns a copy of the item at
the rear of the queue. Use the linked-list version of the queue.

22. For our implementation, what is the value of the rear_ptr in an empty
queue?

23. For our implementation, the front_ptr must be NULL for an empty
queue. Which member functions rely on this requirement?

24. What goes wrong if we try to put the front of the queue at the tail of the
linked list?

8.4 IMPLEMENTING THE STL DEQUE CLASS

One variation on the queue is a double-ended queue, also called a deque (pro-
nounced like the word “deck”). The key property of a deque is that entries can
be quickly inserted and removed at both ends. This differs from a stack (which
uses only one end) and an ordinary queue (in which things enter at one end and
leave at the other). The names of the ends of the deque are called “front” and
“back,” but these designations are arbitrary since the same operations can occur
at both ends.

We’ve already seen most of the member functions for the STL deque class,
back in Figure 5.17 on page 280. The class was described at that point because
of its similarity to the vector and list classes.

The most straightforward implementations of a deque are similar to the queue
implementations that we have seen using a circular array or linked list—but a
special technique must be used for a linked list. See if you can guess that special
technique before looking at the answers to the Self-Test Exercises.

The STL uses a more complicated deque implementation in which a dynamic
array of a fixed size is initially allocated to hold the elements. This dynamic array
is called a block, and if more space is needed, the block is not resized. Instead, a
second block of the same fixed size is allocated. More and more blocks are allo-
cated as needed, and pointers to all these blocks are kept together in a separate
array of pointers. Figure 8.12 shows one possible declaration of the deque private
member variables that fits this scheme.
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This deque has three blocks of value_type items (each marked by an X). Each block is a dynamic
array containing a constant number of items (five in our example, although a real implementation
would have a larger block size). The shaded array locations at the start of the first block and the end
of the last block are not currently being used—so the deque now has only nine entries.

The dynamic array on the left is an array of pointers to the blocks. It is currently capable of holding
up to 12 pointers, although only 3 are being used now. If more than 12 blocks are needed, then that
array of pointers can be expanded. 

The entire data structure has six other pointers. More member variables could be added (such as an
integer for the current size of the deque), but the things shown here are sufficient for a good imple-
mentation.

 FIGURE  8.12 A Possible Data Structure for the STL Deque Class

block_pointers
A pointer to the 
dynamic array of 
block pointers

first_bp
A pointer to the 
first block 
pointer that is 
now being 
used

last_bp
A pointer to the 
last block 
pointer that is 
now being 
used

block_pointers_end
A pointer to the final 
entry in the array of 
block pointers

front_ptr
A pointer to 
the front ele-
ment of the 
whole deque

back_ptr
A pointer to 
the back ele-
ment of the 
whole deque

The private member pointers might be declared in this way:

static const size_t block_size = 5; // Number of value_type items in each block
typedef int value_type; // The elements in the deque
typedef value_type* vtp; // A pointer to a dynamic array of value_type items
vtp* block_pointers; // A pointer to the dynamic array of block pointers
vtp* first_bp; // A pointer to the first block pointer that’s now being used
vtp* last_bp; // A pointer to the last block pointer that’s now being used
vtp* block_pointers_end; // A pointer to the final entry in the array of block pointers
vtp front_ptr; // A pointer to the front element of the whole deque
vtp back_ptr; // A pointer to the back element of the whole deque

X
X

X

X
X
X
X
X

X



428 Chapter 8 / Queues

Figure 8.12 uses several features that you haven’t seen before. For example,
the four pointers on the left side all have the data type vtp*. This is a pointer to
a vtp variable. But notice that a vtp variable is itself a pointer to a value_type
variable. In other words, vtp* is a pointer to a pointer, and you can see that in
the diagram.

If you decide to implement this class, then you will need one other piece of
information:

As an example of using pointer arithmetic, Figure 8.13 shows one possible
implementation of the deque’s pop_back function using the data structure from
Figure 8.12. The function is designed with three cases:

1. If the deque has only one element, then the front_ptr and the back_ptr
are both pointing to that one spot. In this case, we just call the clear
member function that removes that one element (and perhaps does other
clean-up work that’s needed when the deque becomes empty).

2. In the second case the element that we’re removing is the first element in
the last block. This is the case in Figure 8.12 where two different pointers
point to that ninth X in the bottom right corner. What are those two point-
ers? One is back_ptr, and the other is *last_bp. Notice that we wrote
*last_bp rather than just last_bp. Can you see why? (See the Self-Test
Exercises.) Once we detect that these two pointers are the same, the
work involves three substeps: (a) Remove the entire last block; (b) use
--last_bp to move last_bp backward in the array of pointers; and (c)
use pointer arithmetic to reset back_ptr to the final element in the new
last block.

3. In the only remaining case, the element we’re removing cannot be at the
top of its block, so we just move the back_ptr backward one spot.

Pointer Arithmetic

If p is a pointer into an array and n is an integer, then the
expression p+n gives a new pointer that is n elements
beyond *p.

In this case, the expression ++p changes p so that it
points to the next element in the array, and --p changes p so
that it points to the previous element.

If p and q are both pointers into the same array, then the
expression q–p gives an integer that indicates the distance
between q and p. For example, if *q is the element after *p,
then q–p is 1.
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Calling the Destructor and Constructor for the Deque’s value_type Items

There are considerations for real-world implementations of a container class
that we haven’t yet addressed. For example, our deque implementation uses
small dynamic arrays (the “blocks”) of value_type objects. When are the con-
structors and destructors called for those objects? In Figure 8.13, it looks like
the destructor is called only when the entire block is deleted (Step 2a). An alter-
native is to call the destructor once each time an item is popped, which would
also require the constructor to be called for each push. We haven’t yet seen how
to make explicit individual calls of the destructor and constructor, so we didn’t
take that approach in Figure 8.13.

Member Function Implementation
void mydeque::pop_back( )
{

// An empty deque has a NULL back_ptr:
    assert (back_ptr != NULL);

if (back_bp == front_bp)
    {   // Case 1: There is just one block with just one element,

// so delete it, and reset things back to the start.
clear( );

    } 
else if (back_bp == *last_bp)

    {   // Case 2: back_ptr is pointing to the first element of the last block in the deque.

// a. Remove the entire last block. Note that this will
// call the destructor for each item in the block:
delete [] back_ptr;

// b. The last block pointer that we are using is now
// one spot earlier in the array of block pointers:
--last_bp;

// c. The new back element is now the last element in the last block:
back_ptr = (*last_bp) + (BLOCK_SIZE-1);

    }
else

    {   // Case 3: The element we are removing is not the only element
// in its block, so we just move the back_ptr backward:
--back_ptr;

    }
}

 FIGURE  8.13 Possible Implementation of the Deque’s pop_back Function
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Other Variations on Stacks and Queues

There are other variations on stacks and queues that can be implemented with
arrays, linked lists, or other mechanisms. For example, in Chapter 11 we’ll use a
new data structure to implement a kind of queue in which each entry has a prior-
ity number (see also Project 5 on page 433).

Self-Test Exercises for Section 8.4

25. Suppose you are storing the items of a deque in an array. Why do you
need to use a circular array rather than putting all the items at the front?

26. Suppose you are using a linked list to implement a deque. What kind of
linked list would be best?

27. Why does the test for Case 2 of Figure 8.13 use *last_bp rather than
last_bp?

8.5 REFERENCE RETURN VALUES FOR THE STACK, 
QUEUE, AND OTHER CLASSES

Details about the Standard Library stack, queue, and other classes are listed in
Appendix H. We want to point out one difference from our implementations: In
the Standard Library, the top and front functions have reference return values.
As discussed on page 318 in Chapter 6, this means that the top and front func-
tions can sometimes be used in a context that allows the actual item in the con-
tainer to be changed. For example, if s is a stack of integers, then this statement
changes the top item to 42:

s.top( ) = 42;

Figure 8.14 shows complete information for the Standard Library top and
front functions. We did not implement return values that are references in our
stacks and queues because none of our applications needed it, and some students
may read these chapters before Chapter 6. However, it is quick to add the fea-
ture yourself (or see stack3 or stack4 in www.cs.colorado.edu/~main/
chapter7/, and queue3 or queue4 in the chapter8 directory).

CHAPTER SUMMARY

• A queue is a First-In/First-Out data structure.
• A queue can be used to buffer data that is being sent from a fast computer

component to a slower component. Queues also have many other applica-
tions: in simulation programs, operating systems, and elsewhere.

• A queue can be implemented as a partially filled circular array.
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• A queue can be implemented as a linked list.
• When implementing a stack, you need only keep track of one end of the

list of entries, but when implementing a queue, you need to keep track of
both ends of the list.

• A deque (or “double-ended queue”) allows quick removal and insertion of
elements from both ends. It can be implemented with a circular array, a
doubly linked list or more complex structures of pointers.

For the stack<Item> Template Class
stack<Item> b; 
const stack<Item> c; 

// For these declarations, the return value of b.top( ) is Item& (a reference to an
// Item), so that b.top( ) can be used to change the top item (such as the
// assignment statement: b.top( ) = 42;
// But the return value of c.top( ) is const Item& (a reference to a constant
// Item), which cannot be used to change the item in the stack.

For the queue<Item> Template Class
queue<Item> b; 
const queue<Item> c; 

// For these declarations, the return value of b.front( ) is Item& (a reference to an
// Item), so that b.front( ) can be used to change the front item (such as the
// assignment statement: b.front( ) = 42;
// But the return value of c.front( ) is const Item& (a reference to a constant
// Item), which cannot be used to change the item in the queue.

For the priority_queue<Item> and deque<Item> Template Classes
priority_queue<Item> b; 
const priority_queue<Item> c; 
deque<Item> b;
deque<Item> c;

// The back(), front(), and top() member functions all return const references,
// which cannot be used to change the item.

 FIGURE  8.14 Reference Return Values from STL Member Functions
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SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. FIFO (First-In/First-Out) refers to a data
structure in which entries must be removed in
exactly the same order that they were added.

2. enqueue (“enter queue”) and de-queue
(“delete from queue”).

3. The size function tests for queue capacity,
and the empty function tests for an empty
queue.

4. The operations are insert 'L', insert 'I',
insert 'N', insert 'E', followed by four front
and pop operations for 'L', then 'I', then
'N', then 'E'.

5. Reading input from a keyboard, and sending
output to a printer.

6. Read the characters two at a time. Each pair of
characters has the first character placed in
queue number 1 and the second character
placed in queue number 2. After all the read-
ing is done, print all characters from queue
number 1 on one line, and print all characters
from queue number 2 on a second line.

7. The cctype library facility provides the
isalpha function, which returns true if its
single argument is one of the alphabetic
characters.

8. A straightforward approach is to use a second
queue, called line. As the input is being read,
each character is placed in the line queue (as
well as being placed in the original stack and
queue). During the comparison phase, we also
keep track of how many characters correctly
matched. If a mismatch occurs, we can then
print an appropriate amount of the line queue
as part of the error message.

9. Do not apply the toupper function.

10. Yes.

11. Time stamps are used to record arrival and
waiting times for the items in a simulation.
The time stamp is the number of simulated
seconds that have passed since the start of the
simulation.  The waiting time of an item is the

total number of seconds simulated so far,
minus the time stamp.

12. unsigned integer.

13. We assumed that no more than one customer
arrives during any particular second.

14. (a) Sometimes add a new customer to the
arrivals queue. (b) Sometimes start a new car
through the washer. (c) Tell the washer that
another second has passed.

15. RAND_MAX is a constant defined in cstdlib
that specifies the largest return value of rand.

16. These are cars that arrived during the simula-
tion, but they are still waiting in line at the end
of the simulation.

17. A helper function is a private member func-
tion that is useful when a class requires an
operation that should not be part of the public
interface.

18. The body of your function should assert that
size( ) > 0, and then return data[rear].

19. If last is initialized to the final index of the
array, then a new item is inserted correctly
into an empty queue.  Specifically, the state-
ment last = next_index(last) will place
the first item at data[first].

20. The main problem is that you cannot tell the
difference between an empty queue (which
has front equal to next_index(rear)) and a
full queue (which also has front equal to 
next_index(rear)).

21. The body of your function should assert
size( ) > 0, and then return with:

return rear_ptr->data;

22. It could be any value. Our implementation
does not care.

23. The push member function requires that
front_ptr is NULL for an empty queue. Oth-
erwise the call to list_head_insert does
not work. The destructor also requires a valid
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PROGRAMMING PROJECTS PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

In Figure 8.3 on page 399, we presented a
program that checks a string to see if the let-
ters in the string read the same forward and

backward. These strings are called palindromes.
Another kind of palindrome is one in which we look
at words, rather than letters. A word-by-word
palindrome is a string of words such that the words
read the same forward and backward. For example,
the quote “You can cage a swallow, can’t you, but
you can’t swallow a cage, can you?” is a word-by-
word palindrome. Write a program to test an input
string and tell whether or not it is a word-by-word
palindrome. Consider upper- and lowercase letters
to be the same letter. Define a word as any string
consisting of only letters or an apostrophe, and
bounded at each end with one of the following: a
space, a punctuation mark, the beginning of the line,
or the end of the line. Your program should have a
friendly interface and allow the user to check more
lines until the user says he or she wishes to quit the
program.

In Figure 8.3 on page 399, we presented a
program that checks a string to see if the let-
ters in the string read the same forward and

backward. The previous exercise performed a
similar check using words in place of letters. In this
exercise, you are to write a program that runs a
similar check using lines rather than words or letters.
Write a program that reads in several lines of text
and decides if the passage reads the same whether
you read the lines top-to-bottom or bottom-to-top;
this is yet another kind of palindrome. For example,
the following poem by J. A. Lindon reads the same
whether you read the lines from top to bottom or
from bottom to top:

1

2

As I was passing near the jail
I met a man, but hurried by.
His face was ghastly, grimly pale.
He had a gun. I wondered why.
He had. A gun? I wondered...why,
His face was ghastly! Grimly pale,
I met a man but hurried by,
As I was passing near the jail.

Consider upper- and lowercase versions of a letter to
be the same letter. Consider word boundaries to be
significant, so for example, the words in the first line
must read the same as the words in the last line in
order to pass the test (as opposed to just the letters
reading the same); however, consider all word
delimiters as being equivalent; that is, a punctuation,
any number of spaces, the beginning or end of a line,
or any combination of these are all considered to be
equivalent. The end of the passage should be marked
by a line containing only the word “end,” spelled
with any combination of upper- and lowercase let-
ters, and possibly with blanks before and/or after it.
Your program should have a friendly interface and
allow the user to check more passages until the user
says he or she wishes to quit the program. Note that
to test your program, you don’t need to use such
well-constructed poems. Your program will check
any passage, regardless of its literary merit.

Enhance the carwash simulation procedure
in Figure 8.8 on page 411 so that it has the
following additional property. There is an

additional parameter, which is a maximum length
for the queue. When the queue gets as long as this
maximum, any customer who arrives will leave
without entering the queue (because she or he does
not want to wait that long). There should also be one

3

NULL pointer for the empty queue (otherwise
list_clear does not work).

24. Removals will be hard to implement.

25. If all items were kept at the front of the array,
then it would be time-consuming to add or
remove at the front.

26. For inserting at both ends, an ordinary linked
list is fine; but for removing at both ends, a
doubly linked list is needed.

27. last_bp would be the third pointer on the left
side of Figure 8.13.
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additional simulation result that is printed. In addi-
tion to the output shown in Figure 8.8, the function
also prints the number of simulated customers who
left because the queue was too long. Embed the
function in a program that allows the user to repeat
simulations with different arguments until the user
says she or he wishes to quit the program.

Choose one of the queue implementations
and implement an iterator that is similar to
our bag iterator in Section 6.6.

In a priority queue, each item that enters the
queue has a number called its priority. The
items with the highest priority numbers exit 

the queue first. Use an array or a linked list to imple-
ment a priority queue.

In this chapter we gave a linked-list imple-
mentation of a queue. This implementation
used two named pointers called front_ptr

and rear_ptr to point to the front and the rear nodes
of the queue (linked list). A circular linked list is
similar to a regular linked list, except that the pointer
field in the “last node” points back to the “first
node.” (Of course, after this change it is no longer
clear which node, if any, is intrinsically “first.”) If
we use a circular linked list, then we need only one
pointer to implement a queue, since the front node
and the rear node are adjacent nodes, as shown by
the following diagram:

In the diagram we have called the single pointer
rear_ptr, because it points to the last node in the
queue. It turns out that this gives a more efficient im-
plementation than having it point to the first node in
the queue. Redo the queue class using a circular
linked list.

4

5

6

Fourth
item

Third
item

Front
item

Second
item

rear_ptr

A double-ended queue is a list that allows
the addition and removal of entries from
either end. One end is arbitrarily called the

front and the other the rear, but the two ends be-
have identically. Specify, design, and implement a
template class for a double-ended queue. Include
operations to check if it is empty or full. For each
end, include operations for adding and deleting en-
tries. Implement the double-ended queue as a dou-
bly linked list. Call your class deque (which is
pronounced “deck”). By the way, the C++ Standard
Library has a deque class.

Make improvements to the carwash simula-
tion program from Section 8.2. One particu-
lar improvement that you should make is to

handle the customers who are still in the queue at the
end of the simulation. These customers should have
their cars washed one after another, but no new cus-
tomers should be allowed to join the queue during
this time. The wait times of these leftover customers
should be counted along with all the other customers.

Write a simulation program for a small air-
port that has only one runway. There will
be a queue of planes waiting to land and a

queue of planes waiting to take off. However, only
one plane can use the runway at a time. So there can
be only one takeoff or one landing in progress at any
one time. Assume that all takeoffs take the same
amount of time. Assume that all landings take the
same amount of time, although this does not need to
be the same as the takeoff time. Assume that planes
arrive for landing at random times, but with a speci-
fied probability of a plane arriving during any given
minute. Similarly, assume that planes arrive at the
takeoff queue at random times, but with a (possibly
different) specified probability of a departure.
(Despite the fact that takeoffs and landings are
scheduled, delays make this a reasonable assump-
tion.) Since it is more expensive and more danger-
ous to keep a plane waiting to land than it is to keep
a plane waiting to take off, landings will have prior-
ity over takeoffs. Thus, as long as some plane is
waiting to land, no plane can take off. Use a clock
that is an unsigned integer variable that counts the
number of minutes simulated. Use the cstdlib ran-
dom number generator to simulate arrival and depar-

7

8

9
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ture times of airplanes.
This simulation can be used, among other things,

for deciding when the air traffic has become so
heavy that a second runway must be built. Hence,
the simulation will simulate conditions that would
be a disaster, in which planes crash because they run
out of fuel while waiting too long in the landing
queue. By examining the simulated situation, the
airport authority hopes to avoid the real tragedy. As-
sume all planes can remain in the queue the same
amount of time before they run out of fuel. If a plane
runs out of fuel, your simulation will not discover
this until the simulated plane is removed from the
queue; at that point, the fact that the plane crashed is
recorded, that plane is discarded, and the next plane
is processed. A crashed plane is not considered in
the calculation of waiting time. At the end of the
simulated time, the landing queue is examined to see
whether any of the planes in the simulated queue
have crashed. You can disregard the planes left in
the queue at the end of the simulation, other than
those that crashed for lack of sufficient fuel. Use the
following input and output specification:

Input: (1) The amount of time needed for one
plane to land; (2) the amount of time needed for one
plane to take off; (3) the average amount of time be-
tween arrival of planes to the landing queue; (4) the
average amount of time between arrival of planes to
the takeoff queue; (5) the maximum amount of time
that a plane can stay in the landing queue without
running out of fuel and crashing; (6) the total length
of time to be simulated.

Output: (1) The number of planes that took off
in the simulated time; (2) the number of planes that
landed in the simulated time; (3) the number of
planes that crashed because they ran out of fuel be-
fore they could land; (4) the average time that a
plane spent in the takeoff queue; (5) the average
time that a plane spent in the landing queue.

Do an airport simulation that is more com-
plex than the previous project. In this ver-
sion, planes arrive for landing with random

amounts of fuel, which determines how long they
can remain in the air. A plane will crash unless it
lands within the time assigned to it. Your simulation
will keep planes in a priority queue, where the prior-

10

ity of a plane is equal to the number of minutes be-
fore midnight that the plane will crash.

Write a simulation program of the lines at a
grocery store. The program will be similar to
the car wash simulation, except that there

are multiple queues instead of one.  You might use a
vector of queues to simulate the lines. Assume that
there are five cashier lines at the grocery store. Cus-
tomers enter randomly to check out, and then enter
the shortest line. If the lines are equal, then the first
available line is chosen. Each transaction takes a
random amount of time to complete.

For additional work, expand the grocery line pro-
gram to allow shoppers to:

• Avoid a line if all lines are a certain length
• Leave a line if they have waited beyond a cer-

tain time
• Check if another line is shorter at specified

time intervals
• Switch lines if another line is shorter

Redo Programming Project 5 in Chapter 4
using the STL priority queue, so that your
list of chores will be prioritized. Create a

class chore, which will store the chore as a string,
and its priority as an integer. Write a friend function
for the chore class that defines the < operator (or de-
fine a comparison function). After testing the pro-
gram, derive a solution to deal with cases in which
the priority values of chores are the same.  Hint:  Use
the comparison function to define an additional or-
dering when two priorities are equal. 

Use an array or a linked list to implement a
deque class.

Use the idea from Figure 8.12 to implement
a deque class.

11

12

13

14
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L EARN ING  OB J EC T I V ES
When you complete Chapter 9, you will be able to...

• recognize situations in which a subtask is nothing more than a simpler version of 
the larger problem and design recursive solutions for these problems.

• trace recursive calls by drawing pictures of the run�time stack.
• prove that a recursive function has no infinite recursion by finding a valid variant 

expression and threshold.
• use induction to prove that a recursive function meets its precondition/

postcondition contract.

CHAPTER  CONTENTS

9.1 Recursive Functions
9.2 Studies of Recursion: Fractals and Mazes
9.3 Reasoning About Recursion

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

“Well,” said Frog. “I don’t suppose anyone ever is
completely self-winding. That’s what friends are for.” He

RUSSELL HOBAN
The Mouse and His Child

reached for the father’s key to wind him up again.

9 Recursive Thinking9 Recursive Thinking
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Recurs ive Thinking

Often, during top-down design, you’ll meet a remarkable situ-
ation: One of the subtasks to be solved is nothing more than a simpler version of
the same problem you are trying to solve in the first place. In fact, this situation
occurs so frequently that experienced programmers start expecting to find
simpler versions of a large problem during the design process. This expectation
is called recursive thinking. Programming languages, such as C++, support
recursive thinking by permitting a function implementation to contain a call to
itself. In such cases, the function is said to use recursion.

In this chapter, we start encouraging you to recognize situations where recur-
sive thinking is appropriate. We also discuss recursion in C++, both how it is
used to implement recursive designs and the mechanisms that occur during the
execution of a recursive function.

9.1 RECURSIVE FUNCTIONS

A First Example of Recursive Thinking
We start with an example. Consider the task of writing a non-negative integer to
the screen with its decimal digits stacked vertically. For example, the number
1234 should be written as:

1
2
3
4

There is one version of this problem that is quite easy: If the integer has only
one digit, then we can just print that digit. But if the number has more than one
digit, the solution is not immediately obvious, so we might break the problem
into two subtasks: (1) First print all digits except the last digit, stacked verti-
cally. (2) Then print the last digit. For example, if the number is 1234, then the
first step will write:

1
2
3

and the second step will output the last digit, 4.
Several factors influenced our selection of these two steps. One factor is the

ease of providing the necessary data for these two steps. For example, with our
input number 1234, the first step needs the digits of 123, which is easily
expressed as 1234/10 (since dividing an integer by 10 results in the quotient,
with any remainder discarded). In general, if the integer is called number, and

Recursive Functions 437

one of the 
subtasks is a 
simpler version 
of the same 
problem you are 
trying to solve in 
the first place

a case with an
easy
solution...
and a case that
needs more work
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number has more than one digit, then the first step prints the digits of number/10,
stacked vertically. The second step is equally easy: It requires us to print the last
digit of number, which is easily expressed as number % 10 (this is the remainder
upon dividing number by 10). Simple expressions, such as number/10 and
number % 10, are not so easy to find for other ways of breaking down the problem
(such as printing only the first digit in the first step, then printing the rest of the
digits in the second step).

The pseudocode for our solution is as follows:

// Printing the digits of a non-negative number, stacked vertically
if (the number has only one digit)

Write that digit.
else
{

Write the single digit of number % 10.
}

one of the steps 
is a simpler 
instance of the 
same task

At this point, your recursive thinking cap should be glowing: One of the steps
—write the digits of number/10 stacked vertically—is a simpler instance of the
same task of writing a number’s digits vertically. It is simpler because number/10
has one fewer digit than number. This step can be implemented by making a
recursive call to the function that writes a number vertically. The implementa-
tion, with a recursive call, is shown in Figure 9.1. With this function we use the
data type unsigned int instead of an ordinary int. The difference is that an
unsigned int can never be negative, which is what we want for this function
that prints the digits of a non-negative integer.

In a moment we’ll look at the exact mechanism that occurs for a function call
such as write_vertical(1234), but first there are two notions to explain:

1. The stopping case. If the problem is simple enough, it is solved without
recursive calls. In write_vertical, this occurs when number has only one
digit. The case without any recursion is called the stopping case or base case.
In Figure 9.1, the stopping case of write_vertical is implemented with the
two lines:

if (number < 10)
cout << number << endl; // Write the one digit

2. The recursive call. In Figure 9.1, the function write_vertical makes a
recursive call. The recursive call is the highlighted statement here:

else
{

cout << number % 10 << endl; // Write the last digit.
}

This is an instance of the write_vertical function calling itself to solve the
simpler problem of writing all but the last digit.

Write the digits of number/10 stacked vertically.

write_vertical(number/10); // Write all but the last digit.
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Tracing Recursive Calls
During a function call, such as write_vertical(3), what actually occurs? The
first step is that the argument 3 is copied to the function’s formal parameter,
number. This is the way that all value parameters are handled in a function call:
The argument provides an initial value for the formal parameter.

Once the formal parameter has its initial value, the function’s code is exe-
cuted. Since 3 is less than 10, the boolean expression in the if-statement is true.
So in this case, it is easy to see that the function just prints 3 and does no more
work.

Next, let’s try an argument that causes the function to enter the else-part, such
as the function call:

write_vertical(37);

When the function is called, the value of number is set equal to 37, and the code
is executed. Since 37 is not less than 10, the two statements of the else-part are
executed. Here is the first statement:

write_vertical(number/10); // Write all but the last digit.

example of a
recursive call

In this statement, (number/10) is (37/10), which is 3. So, this function call is
write_vertical(3). We already know the action of write_vertical(3):

A Function Implementation

// Postcondition: The digits of the number have been written, stacked vertically.
// Library facilities used: iostream (using namespace std)
{

if (number < 10)
cout << number << endl; // Write the one digit

else
{

cout << number % 10 << endl; // Write the last digit
}

}

Sample Results of write_vertical(1234)

1
2
3
4

 FIGURE  9.1 The write_vertical Function

void write_vertical(unsigned int number)

write_vertical(number/10); // Write all but the last digit

www.cs.colorado.edu/~main/chapter9/vertical.cxx WWW
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Print 3 on a single line of output. After this call to write_vertical is com-
pletely finished, the second line in the else-part executes: 

cout << number % 10 << endl;

This just writes number % 10. In our example, number is 37, so the statement
prints the digit 7. The total output of the two lines in the else-part is:

3
7

The function write_vertical uses recursion. Yet we did nothing new or
different in evaluating the function call write_vertical(37). We treated it
just like any other function call. We simply substituted the actual argument for
number and then executed the code. When we reached the recursive call
write_vertical(3), we simply repeated this process one more time.

A Function Implementation

// Postcondition: The digits of the number have been written, stacked vertically.
// If a number is negative, then a negative sign appears on top.
// Library facilities used: iostream (using namespace std)
{

if (number < 0)
{

cout << '-' << endl; // Print a negative sign.
super_write_vertical(abs(number)); // abs computes absolute value.

}
else if (number < 10)

cout << number << endl; // Write the one digit.
else
{

super_write_vertical(number/10); // Write all but the last digit.

cout << number % 10 << endl; // Write the last digit.
}

}

Sample Results of super_write_vertical(-361)
-
3
6
1

 FIGURE  9.2 The super_write_vertical Function

void super_write_vertical(int number)

This is Spot #1 referred to in the text.

This is Spot #2 referred to in the text.

www.cs.colorado.edu/~main/chapter9/vertical.cxx WWW
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PROGRAMMING EXAMPLE: An Extension of write_vertical
Suppose we want to extend write_vertical to a more powerful function,
called super_write_vertical, which handles all integers including negative
integers. With a negative input, the new function prints the negative sign on the
first line of output, above any of the digits. For example, 

super_write_vertical(-361)

produces this output with a minus sign on the first line:

-
3
6
1

How do we handle a negative number? The first step seems clear enough: Print
the negative sign. After this, we must print the digits of number, which are
the same as the digits of abs(number). (The abs function is the “absolute
value” function from <cstdlib>. It leaves positive numbers unchanged and
removes the negative sign from negative numbers.) So, the pseudocode for
super_write_vertical is an extension of our original pseudocode:

if (the number is negative)
{

Write a negative sign.

}
else if (the number has only one digit)

Write that digit.
else
{

Write the single digit of number % 10.
}

If you think recursively, you will recognize that the step write the digits of
abs(number) stacked vertically is a simpler version of our original problem
(simpler because the negative sign does not need to be written). This suggests the
implementation in Figure 9.2 on page 440, with two recursive calls: one for the
new case that writes the digits of abs(number) and a second call for the original
case that writes the digits of number/10. We also have added some highlighted
comments, identifying two particular locations, Spot #1 and Spot #2, to aid in
taking a closer look at recursion.

Write the digits of abs(number) stacked vertically.

Write the digits of number/10 stacked vertically.
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A Closer Look at Recursion
The computer keeps track of function calls in the following way: When a func-
tion call is encountered, the first step is to save some information that will allow
the computation to return to the correct location after the function call is com-
pleted. The computer also provides memory for the called function’s formal
parameters and any local variables that the called function uses. Next, the actual
arguments are plugged in for the formal parameters, and the code of the called
function begins to execute.

If the execution should encounter another function call—recursive or other-
wise—then the first function’s computation is stopped temporarily. This is
because the second function call must be executed before the first function call
can continue. Information is saved that indicates precisely where the first func-
tion call should resume when the second call is completed. The second function
is given memory for its own parameters and local variables. The execution then
proceeds to the second function call. When the second function call is completed,
the execution returns to the correct location within the first function. And the first
function resumes its computation.

This mechanism is used for both recursive and nonrecursive function calls. As
an example of the function-call mechanism in a recursive function, let’s com-
pletely trace the function call super_write_vertical(-36). Initially, we call
super_write_vertical with number set to -36. The actual argument, -36, is
copied to the formal parameter, number, and we start executing the code with
number having the value -36. At the moment when the function’s execution
begins, all of the important information that the function needs to work is stored
in a special memory block called the function’s activation record. The activa-
tion record contains information as to where the function should return when it
is done with its computation, and it also contains the values of the function’s
local variables and parameters. For example, if our super_write_vertical
function was called from a main program, then the activation record might con-
tain this information:

The “return location” specified in a real activation record does not actually refer
to lines of code in the main function, but when you’re imagining an activation
record you can think of a return location in this manner.

how function 
calls are 
executed

Activation record for first call to 
super_write_vertical

Number: –36

When the function returns, the 
computation should continue at 
line 57 of the main function.
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With the activation record in place, the function starts executing. Because the
number is negative, the boolean test of the if-statement is true, and the negative
sign is printed. At this point, the computation is about to make a recursive call,
indicated here:

if (number < 0)
{

cout << '-' << endl;
super_write_vertical(abs(number));

}

This function call generates its own activation record with its own value of
number (which will be 36) and its own return location. The new activation
record is placed on top of the other activation record, like this:

In fact, the collection of activation records is stored in a stack data structure
called the run-time stack. Each function call pushes the next activation record
on top of the run-time stack.

In our example, the second call of super_write_vertical executes with its
own value of number equal to 36. The function’s code executes, taking the last
branch of the if-else control structure, arriving at another recursive call shown
here:

else
{

super_write_vertical(number/10);

cout << number % 10 << endl;
}

A recursive call is made in the
super_write_vertical function.

This is Spot #1 referred to in the text.

Activation record for first call to 
super_write_vertical

Number: –36

When the function returns, the 
computation should continue at 
line 57 of the main function.

Activation record for second call to 
super_write_vertical

Number: 36

When the function returns, the 
computation should continue at 
Spot #1 in Figure 9.2 on page 440.

Another recursive call is made in the
super_write_vertical function.

This is Spot #2 referred to in the text.
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To execute this recursive call, another activation record is created (with number
now set to 3), and this activation record is pushed onto the run-time stack:

The super_write_vertical function begins executing once more. With
number set to 3, the function enters the section to handle a one-digit number. At
this point, the digit 3 is printed, and no other work is done during this function
call.

When the third function call ends, its activation record is popped off the stack.
But just before it is popped, the activation record provides one last piece of infor-
mation—telling where the computation should continue. In our example, the
third activation record is popped off the stack, and the computation continues at
Spot #2 in Figure 9.2 on page 440. At this point we have the two remaining acti-
vation records shown here:

As we said, the computation is now at Spot #2 in Figure 9.2 on page 440. This
is the highlighted location shown here:

else
{

super_write_vertical(number/10);

cout << number % 10 << endl;
}

Activation record for first call to 
super_write_vertical

Number: –36

When the function returns, the 
computation should continue at 
line 57 of the main function.

Activation record for second call to 
super_write_vertical

Number: 36

When the function returns, the 
computation should continue at 
Spot #1 in Figure 9.2 on page 440.

Activation record for third call to 
super_write_vertical

Number: 3

When the function returns, the 
computation should continue at 
Spot #2 in Figure 9.2 on page 440.

Activation record for first call to 
super_write_vertical

Number: –36

When the function returns, the 
computation should continue at 
line 57 of the main function.

Activation record for second call to 
super_write_vertical

Number: 36

When the function returns, the 
computation should continue at 
Spot #1 in Figure 9.2 on page 440.

This is Spot #2 referred to in the text.



Recursive Functions 445

The next statement is an output statement. What does it print? From the activa-
tion record on top of the stack, we see that number is 36, so the statement prints
6 (which is 36 % 10). The second function call then finishes, returning to Spot #1
in Figure 9.2 on page 440. But there is no more work to do after Spot #1, so the
first function call also returns. The total effect of the original function call was
to print three characters: a minus sign, then 3, and finally 6. The tracing was all
accomplished with the usual function call mechanism—no special treatment
was needed to trace recursive calls. In the example there are two levels of recur-
sive calls:

1. super_write_vertical(-36) made a recursive call to 
super_write_vertical(36);

2. super_write_vertical(36) made a recursive call to 
super_write_vertical(3).

In general, function calls may be much deeper than this, but even at the deepest
levels the function call mechanism remains the same as the example that we
have traced.

General Form of a Successful Recursive Function
C++ places no restrictions on how recursive calls are used in function defini-
tions. However, in order for a recursive function definition to be useful, any call
of the function must ultimately terminate with some piece of code that does not
depend on recursion—in other words, there must be a stopping case. The func-
tion may call itself, and that recursive call may call the function again. The pro-
cess may be repeated any number of times. However, the process will not
terminate unless eventually one of the recursive calls does not itself make
a recursive call. The general outline of a recursive function definition is as
follows:

Often a series of if-else statements determines which of the cases will be exe-
cuted. A typical scenario is for the original function call to execute a case that
includes a recursive call. That recursive call may in turn execute a case that
requires another recursive call. For some number of times each recursive call
produces another recursive call, but eventually one of the stopping cases applies.

Recursive Thinking
Suppose that a problem has one or more cases in which
some of the subtasks are simpler versions of the same
problem you are trying to solve in the first place. These
subtasks are solved by recursive calls.

A function that makes recursive calls must also have one or
more cases in which the entire computation is accomplished
without recursion. These cases without recursion are called
stopping cases or base cases.

Find smaller 
versions of a 
problem
within the 
larger
problem
itself.

Key Design 
Concept
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Every call of the function must eventually lead to a stopping case or else the func-
tion call will never end because of an infinite sequence of recursive calls. (In
practice, a call that includes infinite recursion will terminate abnormally rather
than actually running forever because the computation no longer has enough
memory for the run-time stack of activation records.)

Self-Test Exercises for Section 9.1
1. What is the output produced by the function call exercise(3), for each

of the following three definitions?

void exercise(int n) void exercise(int n) void exercise(int n)
{ { {

cout << n << endl; if (n > 1) cout << n << endl;
if (n > 1) exercise(n-1); if (n > 1)

exercise(n-1); cout << n << endl; exercise(n-1);
} } cout << n << endl;

}

2. What information does an activation record contain? 
3. What type of data structure is used to store activation records?  Why?
4. What happens if a recursive function does not have a base case?
5. What is the output of the following function with an argument of 3?

void cheers(int n)
{

if (n <= 1)
cout << "Hurrah" << endl;

else
{

cout << "Hip" << endl;
cheers(n-1);

}
}

6. Modify the cheers function from the previous exercise so that it first
prints "Hurrah" followed by n-1 "Hip"s. Make a further modification
so that n-1 "Hip"s occur both before and after the "Hurrah". Make
another modification so that approximately half of the "Hip"s occur
before the "Hurrah", and half appear after.

7. Write a recursive function that has one parameter that is a non-negative
integer. The function writes out that number of asterisks ('*') to the
screen, followed by that number of exclamation points ('!'). Do not use
any loops or local variables.

8. Write a recursive function that takes a string as a parameter and prints its
reversal.  The base case is an empty string.
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9.2 STUDIES OF RECURSION: FRACTALS AND MAZES

Recursive thinking makes its biggest impact on problems in which one of the
subtasks is a simpler version of the same problem that you are working on. For
example, when we write the digits of a long number, our first step is to write the
digits of the smaller number, number/10. This section provides additional
examples of recursive thinking and the functions that recursion leads to.

FIGURE  9.3
The First Few Steps in Generating a Random Fractal

(c) The midpoints 
of the two line 
segments are 
moved up or 
down a random 
distance.

(a) The initial line 
segment.

(b) The midpoint of 
the line segment is 
moved up or down a 
random distance.

(d) The midpoints 
of the four line 
segments are 
moved up or
down a random 
distance.

PROGRAMMING EXAMPLE: Generat
ing Random FractalsGenerating Random Fractals

Fractals are one of the tools that
graphics programmers use to artifi-
cially produce remarkably natural
scenes of mountains, clouds, trees,
and other objects. We’ll explain
fractals in a simple setting and
develop a recursive function to pro-
duce a certain kind of fractal.

To understand fractals, think
about a short line segment, as shown
in Figure 9.3(a). Imagine grabbing
the middle of the line and moving it
vertically a random distance. The
two endpoints of the line stay fixed,
so the result might look like Figure
9.3(b). This movement has created
two smaller line segments: the left
half of the original segment and the
right half. For each of these smaller
line segments, we’ll grab the mid-
point and move it up or down a ran-
dom distance. Once again, the
endpoints of the line segments
remain fixed, so the result of this
second step might look like Figure
9.3(c). One more step might produce
Figure 9.3(d). The process continues
as long as you like, with each step
creating a slightly more jagged line. 
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After several more steps, the line could appear as shown here:

Perhaps you can imagine that this jagged line is the silhouette of a mountain
skyline.

The line that we’re generating has an interesting property. Suppose that we
carry out thousands of steps to create our line and then magnify a small portion
of the result, as shown here:

fractals, nature’s 
fractals, and 
random fractals

The magnified portion is not identical to the entire line, but there is a lot of sim-
ilarity. Fractal is the term coined by the mathematician Benoit Mandelbrot to
describe objects, such as our line, that exhibit some kind of similarity under
magnification. In fact, the first fractals studied were mathematically defined sets
that remain completely unchanged when magnified to certain powers. In nature,
objects don’t generally remain completely unchanged under magnification, but
magnified views commonly exhibit similarities with the larger object (such as
our line, or a cloud, or a fern). Also, in nature (and our line), the powers of mag-
nification where the similarities occur are limited, so nature’s fractals are really
rough approximations to the more formal mathematical fractals. Even so, the
term fractal is often applied to any object that exhibits similarities under some
magnification. The jagged line that we have described is called a random
fractal because of the randomness in its generation.

A Function for Generating Random Fractals—Specification
We wish to write a function that can draw or otherwise represent the random
fractal that we have described. The input to this function includes the height of

Status of the line 
after several more 
steps

Magnifying a 
portion of the line
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the two endpoints of the original line, measured from a fixed baseline, and the
horizontal width from the left endpoint to the right endpoint. For example,
consider the line segment shown here:

The height of the left endpoint is exactly at the baseline, and the height of the
right endpoint is 0.25 inches above the same baseline. The horizontal width of
the line is 2.0 inches. The heights of both endpoints and the width of the line
segment will be three of the parameters to the fractal-generating function. The
function also has a fourth parameter that we call epsilon. Once the width of the
line segment becomes less than or equal to epsilon, we will stop the process of
grabbing and moving midpoints. (We use the name epsilon because that is the
Greek letter that mathematicians use for a small positive quantity.)

We can now write the prototype of the fractal generator as shown here:

void random_fractal(
double left_height,
double right_height,
double width,
double epsilon

);

Now we must consider the function’s behavior. Let’s look at an example using
the initial line segment drawn earlier and an epsilon of 0.6 inches. Here is one
possible result of the process, which divides the total 2.0" line into four pieces,
each spanning a width of 0.5":

The process stops when the width of a line segment reaches 0.5", since 0.5" is
less than our specified epsilon of 0.6". The endpoints of each 0.5" segment have
heights above or below the baseline. Our function will be responsible for

Horizontal width 
of this line is 2.0".

baseline
Heights of the endpoints 
above the baseline are 
0.0" and 0.25".

0.0"

0.25"

½"
Horizontal width of each line 
segment is 0.5".

baseline
0.0"

0.25"0.5"
0.2"

–0.2"
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generating and displaying the height of the right endpoint of each tiny line
segment. So, in this example, we expect random_fractal to display the four
heights 0.5", 0.2", -0.2", and 0.25". For the moment we won’t pin down the
actual method of displaying these heights—a graphical program might display
the heights by actually drawing the random fractal, whereas a simpler program
might simply print each height as a double number.

Design and Implementation of the Fractal Function
Sometimes, generating a random fractal is simple. In particular, suppose that we
call random_fractal with the line segment’s width less than or equal to epsi-
lon. For example, we might use a 2.0" initial line segment, with epsilon set to
3.0", as in this function call:

random_fractal(0.0, 0.25, 2.0, 3.0);

This is simple because when width <= epsilon, we don’t continue dividing the
segment. Instead, we simply “display the heights of the right endpoints of each
segment.” Moreover, we have only one segment (which we won’t divide any-
more), and the height of the right endpoint of that one segment is just the param-
eter right_height. So, we have the first step of our algorithm:

if (width <= epsilon)
display right_height;

stopping case 
for the random 
fractal function

As with our previous recursive functions, this first step of the design is vital to
recursive thinking. You must be able to identify a stopping case of the problem
that can be solved with little or no work. In random_fractal, the stopping case
occurs when width is no more than epsilon.

Now for the larger problem. We must design an algorithm to handle a width
that is no larger than epsilon. Our first step is to find the current height of the
midpoint of the segment and move it up or down a random amount. We’ll call
the height of the displaced point the mid_height, as shown here:

The value of mid_height will be computed in two steps:

1. Compute the average of left_height and right_height with the
assignment:

mid_height = (left_height + right_height)/2;

The height of the displaced 
midpoint is in a variable called 
mid_height.

left_height

right_height

mid_height
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2. Add a random real number to mid_height, as shown here:
mid_height += random_real(-width, width);

the random_real 
function

The function random_real is one that we have written as part of a small toolkit of
useful functions. This toolkit does not have to do with recursion, so we have
placed it in an appendix (useful.h and useful.cxx in Appendix I) rather than
giving the details here. At the moment we just need to know the value returned by
the function call random_real(-width, width). The function returns a random
real number that lies in the range defined by its two arguments. In particular,
random_real(-width, width) provides a random value from the range
-width to width. We chose this particular range so that the random fractal does
not take huge jumps when the width gets smaller.

After computing the height of the displaced midpoint, we have two segments:
(a) from the left endpoint of the original segment to the displaced midpoint, and
(b) from the displaced midpoint to the right endpoint of the original segment. The
horizontal width of each smaller line segment is width/2. And what work do we
have left to do? We must generate a random fractal for each of these two smaller
line segments. This work can be accomplished with two recursive calls:

random_fractal(left_height, mid_height, width/2, epsilon);
random_fractal(mid_height, right_height, width/2, epsilon);

two recursive 
calls solve two 
smaller versions 
of the original 
problem

The first of these recursive calls generates a random fractal for the leftmost
smaller line segment. Let’s examine the arguments of the first recursive call:
The first two arguments are the heights of the endpoints of the leftmost segment
(left_height and mid_height), and the third argument is the horizontal width
of the leftmost segment (width/2). When we generate the random fractal for this
smaller segment, we use the same value of epsilon that we were given originally.
The second recursive call handles the rightmost line segment in a similar way.

The entire random_fractal function is implemented in Figure 9.4. Let’s dis-
cuss its method of displaying numbers.

How the Random Fractals Are Displayed

In the random_fractal function we have called a function named display to
display the actual numbers. The display function (also part of useful.h in
Appendix I) displays a number with a simple bar drawn out of stars. For exam-
ple, here are several sample function calls with their output:

display(8) prints: |********
display(-4) prints: ****|
display(-3) prints:  ***|
display(0) prints: |
display(2) prints:  |**
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As a general rule, each call of display(x) prints one line of output with a verti-
cal bar in the middle of the line. If x is positive, then approximately x stars are
printed to the right of the vertical bar. If x is negative, then approximately x stars
are printed to the left of the vertical bar.

Figure 9.5 on page 453 shows a complete sample output from the call:

random_fractal(10.0, 10.0, 16.0, 1.0);

If you tip your head right 90 degrees, you’ll see a nice random fractal
landscape.

A Function Implementation

// Precondition: width and epsilon are both positive.
// Postcondition: The function has generated a random fractal from a line segment. The
// parameters left_height and right_height are the heights of the line segment, and the
// parameter width is the segment’s width. The generation of the random fractal stops when
// the width of the line segments reaches epsilon or less.
// Method of displaying the output: The height of the right endpoint of each line segment in
// the random fractal is displayed by calling the function display(...).
// Library facilities used: cassert, useful.h (from Appendix I)
{

double mid_height; // Height of the midpoint of the line segment

assert(width > 0);
assert(epsilon > 0);

if (width <= epsilon)
display(right_height);

else
{

 mid_height = (left_height + right_height) / 2;
mid_height += random_real(-width, width);
random_fractal(left_height, mid_height,   width/2, epsilon);
random_fractal(mid_height,  right_height, width/2, epsilon);

}
}

 FIGURE  9.4 A Function to Generate a Random Fractal

void random_fractal(
double left_height,
double right_height,
double width,
double epsilon

)

www.cs.colorado.edu/~main/chapter9/fractal.cxx WWW
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PROGRAMMING EXAMPLE: Traversing a Maze

Suppose that your friend Jervis has a maze in his backyard. One day, Jervis
mentions two facts about the maze:

1. Somewhere in the maze is a magic tapestry that contains the secret of the
universe.

2. You may keep this tapestry (and its secret) if you can enter the maze, find
the tapestry, and return to the maze’s entrance. (So far, many have
entered, but none have returned.)

The maze is built on a rectangular grid. At each point of the grid, there are four
directions to move: north, east, south, or west. Some directions, however, may
be blocked by an impenetrable wall. You decide to accept Jervis’s challenge
and enter the maze—but only with the help of your portable computer and a
function that we’ll write to guide you into the maze, and back out.

Traversing a Maze—Specification
We plan to write a function, traverse_maze, that you can execute on a portable
computer that you carry through the maze. The function will give you directions
and ask you questions to take you to the magic tapestry and back out. The com-
plete specification appears at the top of the next page.

A Sample Result of random_fractal(10.0, 10.0, 16.0, 1.0)
|************
|**************
|**************
|**********
|*****
|***
|

***|
**|

*****|
****|

*|
|*
|***
|********
|**********

 FIGURE  9.5 Sample Output of the Random Fractal Function
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bool traverse_maze( );
// Precondition: The user of the program is facing an unblocked spot in the
// maze, and this spot has not previously been visited by the user.
// Postcondition: The function has asked a series of queries and provided
// various directions to the user. The queries and directions have led the
// user through the maze and back to the exact same position where the
// user started. The return value of the function is a true/false value
// indicating whether the user found a magic tapestry in the maze.

This recursive function will return a boolean value (rather than being a void
functon). A function that returns a value can be recursive in situations like this
where the answer to a smaller problem will help to solve the complete problem.
In this particular case, we’ll see that searching part of the maze can help us
determine whether the tapestry is present in the entire maze.

A Sample Dialogue
Step forward & write your name on the ground.
Have you found the tapestry? [Yes or No]
No
Please turn left 90 degrees.
Are you facing a wall? [Yes or No]
No
Is your name written ahead of you? [Yes or No]
No
Step forward & write your name on the ground.
Have you found the tapestry? [Yes or No]
No
Please turn left 90 degrees.
Are you facing a wall? [Yes or No]
Yes
Please turn right 90 degrees.
Are you facing a wall? [Yes or No]
No
Is your name written ahead of you? [Yes or No]
No
Step forward & write your name on the ground.
Have you found the tapestry? [Yes or No]
Yes
Pick up the tapestry, and take a step backward.
Please turn right 90 degrees.
Please turn right 90 degrees.
Please step forward, then turn 180 degrees.
Please turn right 90 degrees.
Please turn right 90 degrees.
Please turn right 90 degrees.
Please step forward, then turn 180 degrees.

 FIGURE  9.6 Script for the Maze Traversal Function

This dialogue supposes that the
user starts at the entrance to the
maze drawn below. The starting
point of the user is represented by
the arrow in a circle, with the
arrow pointing in the direction that
the user is facing. The large X is
the magic tapestry.
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Figure 9.6 shows a drawing of what the maze might look like, along with a
sample dialogue. A sample dialogue written at this point—before we’ve written
the function—is called a script, and it can help clarify a loose specification. As
you might suspect, Jervis’s actual maze is rather more complex than this script
might suggest, but simplicity often results in the best scripts.

Traversing a Maze—Design
The traverse_maze function appears to perform a pretty complex task. When
the function starts, all that’s known is that the user of the program is facing
some spot in the maze, and that spot has not been previously visited. The func-
tion must take the user into the maze, eventually leading the user back to the
exact starting spot. Hopefully, along the way the user will find the magic tapes-
try. Recursive thinking can make the task easier.

We’ll call the program’s user Judy. We’ll always start by asking Judy to take
a step forward onto the spot that she hasn’t visited before. We’ll also ask her to
write her name on the ground so later we can tell whether she’s been to this spot
before. After these two steps we will ask her whether she has found the tapestry at
this new spot and place her true-or-false answer in a local variable named found.

the stopping 
case

Now there is one easy case: If the tapestry is at this spot, we will have Judy
pick up the tapestry and ask her to take a step backward to her starting spot. This
is the stopping case. The function returns true to indicate that the tapestry was
found.

But what if Judy does not find the tapestry at this spot? In this case, there are
three possible directions for Judy to explore: going forward, leftward, or right-
ward. We won’t worry about exploring backward because that is the direction
that Judy just came from. Also, sometimes we do not need to explore all three
directions (forward, left, and right). A direction is a “dead end” if (a) there is a
wall blocking that direction, or (b) Judy’s name is written on the ground in that
direction (indicating she has already been there)—and there is no need to explore
dead ends. We also don’t need to explore a direction if Judy already found the
tapestry in one of the other directions.

This description suggests the following steps if the user has not found the tap-
estry at this spot:

1. Have the user face left (the first direction to explore).
2. for each of the three directions

{
if (!found && the direction that is now being faced isn’t a dead end)
{

}
Have the user turn 90 degrees to the right (the next direction).

}

3. The user is now facing the direction she came from, so ask her to step for-
ward and turn around (so that she is facing this spot, as she was before
this function was called).

Explore the direction that is now being faced, returning 
to this exact spot after the exploration and setting
found to true if the tapestry was found.
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Are you thinking recursively? The highlighted step “Explore the direction that
is now being faced...” is a simpler instance of the problem that we are trying to
solve. The instance is simpler because one spot in the maze has been eliminated
from consideration—namely, the spot that the user is at does not contain the tap-
estry. In our implementation, we’ll solve this simpler problem with a recursive
call.

Traversing a Maze—Implementation
Our implementation benefits from some functions to carry out various subtasks:

• dead_end: This function determines whether the direction in front of the
user is a dead end. Remember that dead ends are caused by a wall or by a
direction that the user has already explored. The function returns true (for
a dead end) or false (for no dead end).

• eat_line: This function (from useful.h in Appendix I) reads characters
from standard input until a newline character is encountered. 

• inquire: This function (from useful.h in Appendix I) asks the user a
yes/no question; it returns true if the user answers “yes,” and returns false
if the user answers “no.”

The implementation of dead_end (shown in Figure 9.7) makes two calls of the
inquire function and returns the “or” of the results (using the || operation).
When the “or” expression is evaluated, the inquire function is called to ask the
user “Are you facing a wall?” If the user answers “yes,” then the inquire func-
tion returns true and the rest of the “or” expression will not be executed. This
follows the general rule of short-circuit evaluation that we have seen before—
meaning that the evaluation of a logical expression stops when there is enough
information to determine whether the expression is true or false. On the other
hand, if the user answers “no” to the first query, then the inquire function
returns false, and the rest of the “or” expression will be executed (asking the
second question, “Is your name written in front of you?”). 

In all, the function returns true if the user answers “yes” to the first question, or
if the user first answers “no” to the first question (there is no wall) and then answers
“yes” to the second question (the user’s name is written in front of her).

A Function Implementation

// Postcondition: The return value is true if the direction directly in front is a dead end.
// Library facilities used: useful.h (from Appendix I)
{

return inquire("Are you facing a wall?")
 ||
 inquire("Is your name written in front of you?");

}

 FIGURE  9.7 The dead_end Function Used in the Maze Traversal

bool dead_end( )

www.cs.colorado.edu/~main/chapter9/maze.cxx WWW
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A Function Implementation

// Precondition: The user of the program is facing an unblocked spot in the maze that has not
// previously been visited by the user.
// Postcondition: The function has asked a series of questions and provided various directions
// to the user. The questions and directions have led the user through the maze and back to
// the exact same position where the user started. The return value of the function is a
// true/false value indicating whether the user found a magic tapestry in the maze.
// Library facilities used: iostream (using namespace std), useful.h (from Appendix I).
// Also uses dead_end from Figure 9.7 on page 456.
{

int direction;  // Counts 1, 2, 3 for the three directions to explore
bool found; // Will be set to true if we find the tapestry

cout << "Step forward & write your name on the ground." << endl;
found = inquire("Have you found the tapestry?");

if (found)
{   // Pick up the tapestry and step back from whence you came.

cout << "Pick up the tapestry and take a step backward." << endl;
}
else
{   // Explore the three directions (not counting the one that you just

// came from). Start with the direction on your left, and then
// turn through each of the other possible directions one at a time.

cout << "Please turn left 90 degrees." << endl;
for (direction = 1; direction <= 3; ++direction)
{

if ( !found && !dead_end( ) )
found = traverse_maze( );

cout << "Please turn right 90 degrees." << endl;
}

// You’re now facing the direction from whence you came, so step
// forward and turn around. This will put you in the exact
// spot that you were at when the function call began.
cout << "Please step forward, then turn 180 degrees." << endl;

}
return found;

}

 FIGURE  9.8 A Function to Traverse a Maze

bool traverse_maze( )

www.cs.colorado.edu/~main/chapter9/maze.cxx WWW
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The actual traverse_maze function is given in Figure 9.8 on page 457. It fol-
lows our pseudocode quite closely. You might enjoy knowing that the magic tap-
estry really does exist in a book called Castle Roogna (Ballantine Books) by
Piers Anthony. The hero of the book actually becomes part of the tapestry,
whereupon his quest leads him to a smaller version of the same tapestry.

The Recursive Pattern of Exhaustive Search with Backtracking

The traverse_maze function of Figure 9.8 follows a recursive pattern that you
may find useful elsewhere. The pattern is useful when a program is searching
for a goal within a space of individual points that have connections between
them. In the maze problem, the “points” are the individual squares of the maze,
and the “connections” are the possible steps that the explorer can take in the
four compass directions. Later you’ll run into many data structures that have the
form of “points and connections.”

The task of searching such a structure can often follow this pattern:

• Start by marking the current point in some way. In the maze, the mark was
obtained by asking the explorer to write her name on the ground. The pur-
pose of the mark is to ensure that we don’t mistakenly return to this point
and end up going around in circles, continually returning to this same
spot. This marking step is not always necessary; sometimes there are
other mechanisms to prevent unbounded repetitions of searching the same
direction.

• Check whether the current point satisfies the goal. If so, return some value
that indicates the success of the search.

• On the other hand, if the current point does not satisfy the goal, then one
by one examine the other points that are connected to the current point.
For each such point, check to see whether the point is marked; if so, we
can ignore the point because we have already been there. On the other
hand, if a connected point is not marked, then make a recursive call to
continue the search from the connected point onward. If the recursive call
finds the goal, then we won’t bother checking any other points, but if the
recursive call fails, then we will check each of the other unmarked con-
nected points by further recursive calls.

This pattern is called exhaustive search with backtracking. The term exhaus-
tive search means that all possibilities are tried. Backtracking is the process of a
recursive call returning without finding the goal. When such a recursive call
returns, we are back where we started, and we can explore other directions with
further recursive calls. 

Exhaustive search with backtracking is most useful when the known search
space doesn’t get too large. But even with huge search spaces, programmers
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often use variants that try to cut down the search space in an intelligent manner.
You’ll find successful variants in programs that play games such as chess. As one
more recursive example, we’ll write a method to play a game with a definite,
small search space, so we won’t need to cut down this space at all.

PROGRAMMING EXAMPLE: The Teddy Bear Game
Here are the rules of the Teddy Bear game: Your friend is going to give you a
certain number of bears. The number of bears is called initial, and your goal
is to end up with a particular number of bears, called the goal number.

There are two other integer parameters to the game: increment and n. At any
point in the game, you have two choices: (a) You can ask for (and receive)
increment more bears, or (b) if you have an even number of bears, then you can
give half of them back to your friend. Each time you do (a) or (b), that is called
a step in the game, and the goal must be reached in n steps or fewer. For example,
if initial is 99, increment is 53, and n is at least 4, then the following sequence
of steps will reach the goal of 91:

99  152 76  38 91

We want to write a recursive function, bears, that determines whether it is pos-
sible to reach a goal starting with some initial and increment numbers
(allowing no more than n steps). The implementation follows the pattern from
the previous page, although the “marking” step of the pattern is not needed since
we can prevent going around in circles by stopping when the parameter n
reaches zero. So the pattern has only these two steps:

• Check whether the initial value is equal to the goal. If so, return true
to indicate that the goal can be reached.

• On the other hand, if the initial value does not equal the goal, then
we’ll check that n is positive (otherwise we have no more moves to make
and must return false because the goal cannot be reached). When n is
positive, we’ll solve the problem by making some recursive calls. One
call starts by taking an (a)-step and the other starts by taking a (b)-step—
although this second call is made only if initial is an even number.

The implementation of the bear function appears in Figure 9.9. Notice the
expression (inital % 2 == 0) to determine whether the initial number of bears
is even. Also note that the bear function returns a bool value. Therefore, each
time we make a recursive call, we must use the return value of the recursive call
in some way (such as controlling an if-statement).

FORGETTING TO USE THE RETURN VALUE FROM A RECURSIVE CALL

When a nonvoid function is recursive, the return value of each recursive call should
be used in some way. Don’t make the recursive call as if it were a void function.

→
step a

→
step b

→
step b

→
step a

PITFALL ��  
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Self-Test Exercises for Section 9.2

9. Suppose you call random_fractal with a width of 8 and an epsilon of 1.
Then random_fractal will make two recursive calls, and each of those
will make two more calls, and so on until width is less than or equal to
epsilon. How many total calls will be made of random_fractal, includ-
ing the original call?

10. Draw a copy of the maze from Figure 9.6 on page 454, moving the
magic tapestry to a more difficult location. Run the traverse_maze
function, pretending that you are in this maze and following the func-
tion’s directions. (Do not peek over the walls.)

11. Revise the random_fractal function so that the movements of the mid-
points are no longer random. Instead, the first midpoint should be moved
upward by the amount width, the midpoints at the next level of recursion
should be moved down by the amount width, the next level will move
up again, then down, and so on.

A Function Implementation

// Precondition: All parameters are non-negative integers.
// Postcondition: The method has determined whether it is possible to reach the goal in the 
// following Teddy Bear game. In the game, your friend gives you a certain number of bears. 
// The number of bears is called initial, and your goal is to end up with a particular number of
// bears, called the goal number. At any point in the game, you have two choices: (a) You can
// ask for (and receive) increment more bears, or (b) if you have an even number of bears,
// then you can give half of them back to your friend. Each time you do (a) or (b), that is called
// a step in the game. 
// The return value is true if and only if the goal can be reached in n steps or fewer.
{

if (initial == goal)
return true;

else if (n == 0)
return false;

else if (bears(initial+increment, goal, increment, n-1))
return true;

else if ((initial % 2 == 0) && bears(initial/2, goal, increment, n-1))
return true;

else
return false;

}

 FIGURE  9.9 A Function to Play the Teddy Bear Game

bool bears(int initial, int goal, int increment, int n)

www.cs.colorado.edu/~main/chapter9/bears.cxx WWW
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12. Suppose that you are exploring a rectangular maze containing 10 rows
and 20 columns. What is the maximum number of recursive calls that
can be generated if you start at the entrance of the maze and call
traverse_maze?

9.3 REASONING ABOUT RECURSION

After a lecture on cosmology and the structure of the solar system, William James was
accosted by a little old lady.

“Your theory that the sun is the center of the solar system, and the earth is a ball
which rotates around it has a very convincing ring to it, Mr. James, but it’s wrong. I’ve
got a better theory,” said the little old lady.

“And what is that, madam?” inquired James politely.
“That we live on a crust of earth which is on the back of a giant turtle.”
Not wishing to demolish this absurd little theory by bringing to bear the masses of

scientific evidence he had at his command, James decided to gently dissuade his
opponent by making her see some of the inadequacies of her position.

“If your theory is correct, madam,” he asked, “what does this turtle stand on?”
“You’re a very clever man, Mr. James, and that’s a very good question,” replied the

little old lady, “but I have an answer to it. And it is this: the first turtle stands on the back
of a second, far larger, turtle, who stands directly under him.”

“But what does this second turtle stand on?” persisted James patiently.
To this the little old lady crowed triumphantly. “It’s no use, Mr. James—it’s turtles all

the way down.”

J. R. ROSS
Constraints on Variables in Syntax

In all our examples of recursive thinking, the series of recursive calls eventually
reached a call that did not involve further recursion (that is, it reached a
stopping case). If, on the other hand, every recursive call produces another
recursive call, then a recursive call will, in theory, run forever. This is called
infinite recursion. In practice, such a function will run until the computer runs
out of memory for the activation records and terminates the program
abnormally. Phrased another way, a recursive declaration should not be
“recursive all the way down.” Otherwise, like the lady’s explanation of the solar
system, a recursive call will never end, except perhaps in frustration.

In this section, we will show you how to reason about recursive functions,
both to show that there is no infinite recursion and to show that a recursive func-
tion’s results are correct. As an example, we’ll start with a new recursive function
called power that computes powers of the form , where x is any double number
and n is an integer. So, power(3.0, 2) is 3.02 (which is 9.0), and power(4.2,
3) is 4.23 (which is 74.088). For any nonzero value of x, the value of  is defined
to be 1, so for example power(9.1, 0) is 1. For a negative exponent, -n, the
value returned is defined by:

xn

x0

x n– 1 xn⁄    { x is any real number, and n– is a negative integer }=
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For example, power(3.0, -2) is  (which is 1/9). The only forbidden
power is taking  when n is not positive. Here is the function’s complete
specification:

double power(double x, int n);
// Precondition: If x is zero, then n must be positive.
// Postcondition: The value returned is x raised to the power n.

Our implementation begins by checking the precondition, and then deals with
several cases. The first case, when n is non-negative, is easy. This case is com-
puted by setting a local variable, product, to 1, and then repeatedly multiplying
product by x. The repeated multiplication occurs n times, in the for-loop
shown here:

if (n >= 0)
{

product = 1;
for (count = 1, count <= n; ++count)

product = product * x;
return product;

}

To understand what is needed for a negative exponent, let’s consider a
concrete case. Suppose that we are computing power(3.0, -2), which must
return the value 3.0-2. But this value is equal to . Negative powers are the
same as positive powers in the denominator. This means that if we know that
the function returns the correct answer when n is positive, then we can calculate
the correct value for power(3.0, -2) by the expression 1/power(3.0, 2). By
thinking recursively, whenever n is negative, power can compute its answer
with a recursive call, like this:

return 1/power(x, -n); // When n is negative (and so -n is positive)

Remember, in this statement, n is negative (such as -2), so that -n is positive,
and therefore, the recursive function call in the expression 1/power(x, -n) has
a positive second argument. With a positive second argument, our power function
makes no further recursive calls (i.e., a stopping case), and so the recursion ends.

This brings us to our first general technique for reasoning about recursion,
which can be applied to the complete power function of Figure 9.10:

One-Level Recursion
Suppose that every case is either a stopping case or it
makes a recursive call that is a stopping case. Then the
deepest recursive call is only one level deep, and therefore
no infinite recursion occurs.

1 3.0⁄ 2

0n

1 3.0⁄ 2
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How to Ensure That There Is No Infinite Recursion

In general, recursive calls don’t stop at just one level deep. A recursive call does
not need to reach a stopping case immediately. Programmers have developed
methods to reason about recursive calls that go beyond one level deep, based on
the principles of mathematical induction. The reasoning can increase your con-
fidence that a recursive function avoids infinite recursion. As an example to
show that there is no infinite recursion, let’s rewrite the function power so that it

A Function Implementation

// Precondition: If x is zero, then n must be positive.
// Postcondition: The value returned is x raised to the power n.
// Library facilities used: cassert
{

double product; // The product of x with itself n times
int count;

if (x == 0)
assert(n > 0);

if (n >= 0)
{

product = 1;
for (count = 1; count <= n; ++count)

product = product * x;
return product;

}
else

return 1/power(x, -n);
}

Sample Results of the Function

Call with these arguments Return value of function call
x n
3.0 2  9.0
2.0 -3  0.125
4.1 0  1.0

-2.0  3 -8.0

 FIGURE  9.10 Implementation of the Power Function with Only One Level of Recursion

double power(double x, int n)

www.cs.colorado.edu/~main/chapter9/powers.cxx WWW
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uses more recursion. The revision is based on the observation that for any num-
ber x and any positive integer n, the following relation holds:

This formula means that an alternative way to define is as follows:

an alternative 
algorithm for 
computing
powers

The C++ version of a recursive function that computes in this way is given in
Figure 9.11. To avoid confusion, we have used a slightly different name, pow,
for this version of the function.

Tracing a recursive function such as pow can quickly overwhelm you, but
there are relatively simple ways of showing that there is no infinite recursion
without actually tracing through the execution. The most common way to ensure
that a stopping case is eventually reached is to define a numeric quantity called
the variant expression. This quantity must associate each legal recursive call
with a single number. In a moment we’ll discuss the properties that the variant
expression should have; but first let’s look at the kind of quantity we have in
mind for the variant expression of the pow function. The value of the variant
expression for pow is as follows:

The Value of xn

The value is undefined when n  0 and x = 0;

otherwise the value is 0 when x = 0;

otherwise the value is 1 when n = 0;

otherwise the value is x times xn – 1 when n > 0;

otherwise the value is 1/x –n when n < 0.

xn x xn 1–( )=

xn

≤

The Variant Expression for pow

The variant expression is abs(n) + 1 (when n is negative),
and the variant expression is n (when n is non-negative).
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With this definition we can examine a sequence of recursive pow calls, begin-
ning with pow(2.0, -3):

A Function Implementation

// Precondition: If x is zero, then n must be positive.
// Postcondition: The value returned is x raised to the power n.
// Library facilities used: cassert
{

if (x == 0)
{ // x is zero, and n should be positive

assert(n > 0);
return 0;

}
else if (n == 0)

return 1;
else if (n > 0)

return x * pow(x, n-1);
else // x is nonzero, and n is negative

return 1/pow(x, -n);
}

 FIGURE  9.11 Alternative Implementation of a Function to Compute Powers

double pow(double x, int n)

www.cs.colorado.edu/~main/chapter9/powers.cxx WWW

A Sequence of Recursive Calls
pow(2.0, -3) has a variant expression abs(n) + 1, which
is 4; it makes a recursive call of pow(2.0, 3).

pow(2.0, 3) has a variant expression n, which is 3; it
makes a recursive call of pow(2.0, 2).

pow(2.0, 2) has a variant expression n, which is 2; it
makes a recursive call of pow(2.0, 1).

pow(2.0, 1) has a variant expression n, which is 1; it
makes a recursive call of pow(2.0, 0).

pow(2.0, 0) has a variant expression n, which is 0; this is
the stopping case.
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There are two important points to this example: (a) Each time a recursive call is
made, the variant expression is reduced by at least one; and (b) When the variant
expression reaches zero, there is a stopping case that terminates with no further
recursive calls.

variant
expression and 
threshold

In general, a variant expression is a numeric quantity that is decreased by at
least some fixed amount on each recursive call. And, once the variant expression
reaches a small enough value, a stopping case occurs. The “small enough value,”
which guarantees a stopping case, is called the threshold. In the pow example,
the threshold is zero, and each recursive call reduces the variant expression by
one. Here’s a summary of the general technique for proving that a recursive call
terminates:

It is important that the reduction is at least a fixed amount. Otherwise, the vari-
ant expression might start at 1, then decrease to one-half, then to one-quarter,
then to one-eighth, and so on, decreasing by ever-smaller amounts and never
reaching the threshold. In the most common case, such as pow, the variant
expression always decreases by at least one, and the threshold is zero. 

To see that these two conditions guarantee no infinite recursion, reason as fol-
lows: Suppose the two conditions hold. Since Condition 1 is true, every recursive
call will decrease the variant expression. This means that either the function will
terminate, which is fine, or else the variant expression will decrease until it
reaches the threshold. But if Condition 2 holds, then once the variant expression
reaches the threshold, the function will terminate. That covers all the cases.

Inductive Reasoning About the Correctness of a Recursive Function
induction In addition to checking that a recursive function terminates, you should also

check that it always behaves correctly—in other words, that it meets its precon-
dition/postcondition contract. The usual method for showing correctness of a
recursive function is called induction. (And, in fact, the technique is the same
as mathematical induction, which you may have used in math classes.) The

Ensuring That There Is No Infinite Recursion
To prove that a recursive call does not lead to infinite
recursion, it is enough to find a variant expression and a
threshold with the following properties:

1. Between one call of the function and any succeeding
recursive call of that function, the value of the variant
expression decreases by at least some fixed amount.

2. If the function is called and the value of the variant
expression is less than or equal to the threshold, then
the function terminates without making any recursive
calls.
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induction method requires a programmer to demonstrate the following facts
about the function’s behavior:

The conditions are numbered 3 and 4 to emphasize that they ensure correctness
only if you know that there is no infinite recursion. You must also ensure that
Conditions 1 and 2 hold for an appropriate variant expression and threshold.

Let’s return to the function pow defined in Figure 9.11 on page 465. To com-
plete our demonstration so that it performs as desired, we must show that Condi-
tions 3 and 4 hold.

It is easy to see that Condition 3 holds. The only way that the function can ter-
minate without a recursive call is if the value of x is zero or n is zero. If x is zero
the function returns 0, which is the correct answer; if n is zero (and x is not zero)
the function returns 1, which is also correct.

To see that Condition 4 holds we need only recall the algebraic identities:

To summarize how to reason about recursion: First check that the function
always terminates (no infinite recursion); next make sure that the stopping cases
work correctly; finally, for each recursive case, pretend that you know the recur-
sive calls will work correctly, and use this to show that each recursive case works
correctly.

Self-Test Exercises for Section 9.3
13. What is a variant expression?
14. Write a recursive function that finds the sum of the first n odd positive

integers.  Find a variant expression and a threshold for this function.

Induction Method
to Show That a Recursive Function is Correct

To show that a recursive function meets its precondition/
postcondition contract, first show that there is no infinite
recursion (by showing the previous Conditions 1 and 2), and
then show that the following two conditions are also valid:
3. Whenever the function makes no recursive calls, then it

meets its precondition/postcondition contract. (This is
called the base step.)

4. Whenever the function is called and all the recursive
calls it makes meet their precondition/postcondition con-
tracts, then the original call will also meet its precondi-
tion/postcondition contract. (This is called the induction
step.)

xn x xn 1–( )   and xn 1 x n–⁄= =
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15. Use inductive reasoning to show that your function from the previous
exercise is always correct.

16. Write a recursive function that computes the number of digits in an inte-
ger n. (You might recall from page 20 that this is .) Do not
use any local variables in your function declaration. Find a variant ex-
pression and threshold to show that the function has no infinite recur-
sion.

17. Use inductive reasoning to show that your function from the previous
exercise is always correct.

18. Find variant expressions and thresholds to show that the functions
random_fractal and traverse_maze (Section 9.2) never result in infi-
nite recursion.

19. Use induction to show that random_fractal meets its precondition/
postcondition contract.

CHAPTER SUMMARY

• If a problem can be reduced to smaller instances of the same problem,
then a recursive solution is likely to be easy to find and implement.

• A recursive algorithm for a function implementation contains two kinds
of cases: one or more cases that include a recursive call and one or more
stopping cases in which the problem is solved without the use of any
recursive calls.

• When writing recursive functions, always check to see that the function
will not produce infinite recursion. This can be done by finding an appro-
priate variant expression and threshold.

• Inductive reasoning can be used to show that a recursive function meets
its precondition/postcondition contract.

SOLUTIONS TO SELF-TEST EXERCISES

n10log 1+

? Solutions to Self-Test Exercises

1. The leftmost function prints 3, then 2, then 1.
The middle function prints 1, then 2, then 3.
The rightmost function prints 3, then 2, then 1,
then 1 again, then 2 again, then 3 again.

2. The activation record contains the return loca-
tion of the function after it is finished. It also
contains the values of the function’s local
variables and parameters. 

3. A stack is used to store activation records,
because the last function called is the first one
that returns.

4. The function call will never end because of an
infinite sequence of recursive calls.  In reality,
the recursive calls will terminate abnormally
when the memory storage for the run-time
stack runs out.
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5. The output is Hip, then Hip, then Hurrah, on
three separate lines.

6. For the first modification, change the two
lines in the else-block to
cheers(n-1);
cout << "Hip" << endl;

For the second modification, change the lines to
cout << "Hip" << endl;
cheers(n-1);
cout << "Hip" << endl;

For the third modification, change the lines to
if (n % 2 == 0)

cout << "Hip" << endl;
cheers(n-1);
if (n % 2 == 1)

cout << "Hip << endl";

7. The function implementation is
void exercise4(unsigned int n)
{

if (n > 0)
{

cout << '*';
exercise4(n-1);
cout << '!';

}
}

8. The function implementation is shown below.
Note that s.substr(1) gives the substring
that begins at location s[1] and continues to
the end of the string.
void reverse(const string s)
{

if (s.length( ) > 0 )
{

        reverse(s.substr(1));
        cout << s[0]);

}
}

9. The original call makes two calls with a width
of 4. Each of those calls makes two calls with
a width of 2, so there are four calls with a
width of 2. Each of those four calls makes two
more calls, again cutting the width in half, so
there are eight calls with a width of 1. These
eight calls do not make further calls since
width has reached epsilon. The total number
of calls, including the original call, is 1 + 2 + 4
+ 8, which is 15 calls.

10. Did you peek?

11. The easiest solution requires an extra parame-
ter, called level, which indicates how deep
the recursion has proceeded. When the revised
function is called from a program, the value of
level should be given as zero. Each recursive
call increases the level by one. When the level
is an even number, then the midpoint is moved
upward; when the level is odd, then the mid-
point is moved downward. The code to do the
movement is as follows:
if (level % 2 == 0)

mid_height += width;
else

mid_height -= width;

12. Each recursive call steps forward into a loca-
tion that has not previously been visited.
Therefore, the number of calls can be no more
than the number of locations in the maze,
which is 200.

13. A variant expression is a numeric quantity that
is used to ensure that a stopping case is even-
tually reached. 

14. The function implementation is:
unsigned int sum_odds(unsigned int n)
   {
      if (n == 1)
         return 1;
      else
         return 

sum_odds(n-1)+(2*n - 1);
   }

One possible variant expression is n, and the
threshold is 1.

15. The stopping case is correct, because the first
odd positive integer is 1.  For the induction
step, assume that the recursive call
sum_odds(n-1) returns the correct value of
the first n-1 odd integers. The nth odd integer
is 2*n-1, so the sum sum_odds(n-1) plus
(2*n-1) is the correct sum of the first n odd
integers.
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PROGRAMMING PROJECTS

PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Write a function that produces the following
output:

This was written by call number 1.
 This was written by call number 2.
 This was written by call number 3.
 This was written by call number 4.
 This ALSO written by call number 4.
 This ALSO written by call number 3.
 This ALSO written by call number 2.
This ALSO written by call number 1.

In this example, the recursion stopped when it
reached four levels deep, but your function should
be capable of continuing to any specified level.

1 Write a function with two parameters,
prefix (a string, using the string class from
<string>) and levels (an unsigned inte-

ger). The function prints the string prefix followed
by “section numbers” of the form 1.1., 1.2., 1.3., and
so on. The levels argument determines how many
levels the section numbers have. For example, if
levels is 2, then the section numbers have the form
x.y. If levels is 3, then the section numbers have
the form x.y.z. The digits permitted in each level
are always '1' through '9'. As an example, if
prefix is the string "BOX:" and levels is 2, then
the function would start by printing:

BOX:1.1.
BOX:1.2.
BOX:1.3.

2

16. The function implementation is:
int digits(int n)
{

if (n < 10) && (n > -10))
return 1;

else
return 1 + digits(n/10);

}
A good variant expression is “the number of
digits in n,” with the threshold of 1.

17. The base case includes numbers that are less
than 10 and more than –10. All these numbers
have one digit, and the function correctly
returns the answer 1. For the induction case,
we have a number n with more than one digit.
The number of digits will always be one more
than n/10 (using integer division), so if we
assume that the recursive function call
digits(n/10) returns the right answer, then
1 + digits(n/10) is the correct number of
digits in n.

18. For random_fractal, a good variant expres-
sion is the ratio width/epsilon. When this
ratio is greater than 1, each recursive call cuts
width in half, which subtracts at least 0.5
from the ratio. When the ratio reaches 1 (or
less), the recursion stops since width is then

no more than epsilon. Therefore, 1 is the
threshold.

The function traverse_maze has a variant
expression that is expressed in English as “the
number of locations in the maze that do not
yet have your name written on the ground.”
This value is reduced by at least one during
each recursive call, and when this value
reaches zero, there can be no further recursive
calls. Therefore, 0 is the threshold.

19. We have already found a variant expression
and threshold for Conditions 1 and 2, showing
that random_fractal does not result in infi-
nite recursion. For Condition 3, we must show
that the function has correct behavior for the
stopping case. In this case, width is no more
than epsilon, and therefore the line segment
does not need further dividing. We only need
to output the height of the right endpoint of
the current line segment, which is what the
function does. In Condition 4 of the inductive
reasoning, we assume that the two recursive
calls correctly generate a random fractal for
the two smaller line segments that we have
created. Putting these two smaller random
fractals together correctly gives us the larger
random fractal.
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and finish by printing:
BOX:9.7.
BOX:9.8.
BOX:9.9.

The stopping case occurs when levels reaches
zero. The primary string manipulation technique
that you will need is the ability to create a new string
that consists of prefix followed by a digit and a
period. If s is the string you want to create and i is
the digit (an integer in the range 1 to 9), then the
following statements will perform this task:

s = prefix;
s += '.';
s += char('0' + i);

The third statement puts the character ('0' + i) on
the end of the string, and this character is the ASCII
value for the digit that corresponds to the integer i.
This new string, s, can be passed as a parameter to
recursive calls of the function.

Write a recursive function that has two
inputs, first and second, which are both
strings (from <string>). The function

should print all rearrangements of the letters in
first, followed by second. For example, if first
is the string "CAT" and second is the string "MAN",
then the function would print the strings CATMAN,
CTAMAN, ACTMAN, ATCMAN, TACMAN, and TCAMAN. The
stopping case of the function occurs when the length
of first has zero characters. We’ll leave the recur-
sive thinking up to you, but we should mention that
two string member functions will make things go
smoother. These member functions are

void string::insert(
size_type position,
size_type number_of_copies,
char c

);
// Postcondition: The specified number of
// copies of c have been inserted into the
// string at the indicated position. Chars
// that used to be at or after the given
// position have been shifted right one spot.

void string::erase
(size_type position, size_type n);
// Postcondition: n characters have been 
// removed from the string, beginning at the 
// specified position.

3

Write an interactive program to help you
count all of the boxes in a room. The pro-
gram should begin by asking something like

How many unnumbered boxes can you see? Then
the program will have you number those boxes from
1 to m, where m is your answer. But, remember that
each box might have smaller boxes inside, so once
the program knows you can see m boxes, it should
ask you to open box number 1 and take out any box-
es you find, numbering those boxes 1.1, 1.2, and so
on. It will also ask you to open box number 2 and
take out any boxes you find there, numbering those
boxes 2.1, 2.2, and so on. This continues for box 3, 4,
up to m. And, of course, each time you number a box
1.1 or 3.8 or something similar, that box might have
more boxes inside. Boxes that reside inside of 3.8
would be numbered 3.8.1, 3.8.2, and so on. At the
end, the program should print a single number tell-
ing you the total number of boxes in the room.

Write a recursive function called sumover
that has one argument n, which is an
unsigned integer. The function returns a

double value, which is the sum of the reciprocals of
the first n positive integers. (The reciprocal of x is
the fraction 1/x.) For example, sumover(1) returns
1.0 (which is 1/1); sumover(2) returns 1.5 (which
is 1/1 + 1/2); sumover(3) returns approximately
1.833 (which is 1/1 + 1/2 + 1/3). Define
sumover(0) to be zero. Do not use any local vari-
ables in your function.

The formula for computing the number of
ways of choosing r different things from a
set of n things is the following:

In this formula, the factorial function is represented
by an exclamation point (!), and defined as the product:

Discover a recursive version of the C(n, r) formula
and write a recursive C++ function that computes
the value of the formula. Embed the function in a
program and test it.

4

5

6

C n r,( ) n!
r! n r–( )!
----------------------=

n! n n 1–( )× n 2–( )× … 1××=
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Write a recursive function that has as argu-
ments an array of characters and two bounds
on array indices. The function should reverse

the order of those entries in the array whose indices
are between the two bounds. For example, suppose
that the array is:

a[0] = 'A' a[1] = 'B' a[2] = 'C'
a[3] = 'D' a[4] = 'E' 

and the bounds are 1 and 4. Then after the function
is run the array elements should be:

a[0] = 'A' a[1] = 'D' a[2] = 'C' 
a[3] = 'B' a[4] = 'e'

Embed the function in a program and test it.

Write a recursive function to produce a pat-
tern of n lines of asterisks. The first line con-
tains one asterisk, the next line contains two,

and so on, up to the nth line, which contains n aster-
isks. Line number n+1 again contains n asterisks, the
next line has n-1 asterisks, and so on until line num-
ber 2n, which has just one asterisk.

Examine this pattern of asterisks and blanks,
and write a recursive function that can gen-
erate exactly this pattern:

*
* *
*

* * * *
*
* *
*

* * * * * * * *
*
* *
*

* * * *
*
* *
*

7

8

9

This is a number puzzle project. Here are the
rules: Your instructor is going to give you a
certain number of floppy disks. The number

of disks is called initial. You then have two
choices: (a) You ask for (and receive) 53 more disks,
or (b) if you have an even number of disks, then you
may give half of them back to your instructor. Each
time you do (a) or (b), that is called a step in the
game. Your goal is to end up with exactly 91 disks
in n steps or fewer. For example, if initial is 99
and n is 4, then the following sequence of steps will
reach the goal of 91:

99  152 76  38 91

For this project, write a recursive function, goal,
which determines whether it is possible to reach the
goal (91) starting with some initial number, and
allowing no more than n steps. The base case occurs
when initial is 91 (since in this case, the answer
is yes), or when n is zero and initial is not 91
(since in this case, the answer is no). If you
do not have a base case, then solve the problem
by making one or two recursive calls (one to
goal(initial+53, n-1) and the other to
goal(initial/2, n-1)—although this second call
is made only if initial is an even number).

Let’s think about your computer science
class for a moment. You might know several
students, perhaps Judy, Jervis, Walter, and

Michael. Each of those students knows several other
students, and each of those knows more students,
and so on. Now, there is one particular student
named Dor that you would like to meet. One way to
meet Dor would be if you had a mutual acquain-
tance:  For example, you know Judy, and Judy
knows Dor, so Judy could introduce you to Dor. Or,
there might be a longer path of acquaintances: For
example, you know Judy, and Judy knows Harry,
and Harry knows Cathy, and Cathy knows Dor. In
this case, Judy can introduce you to Harry, Harry
can introduce you to Cathy, and Cathy can introduce
you to Dor.

Write an interactive program to help you figure
out whether there is a path of acquaintances from
you to Dor. The program should include a recursive
function that has one argument, person, which is

10

→
step a

→
step b

→
step b

→
step a

11
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the name of a person in your class. The function
determines whether there is a path of acquaintances
from person to Dor. Hint: This problem is similar to
the maze problem in Section 9.2. But beware of
potential infinite recursion! One way to avoid infi-
nite recursion is to include a bag of student names,
which keeps track of the names of the students you
have already visited on your search for a path to Dor.

A pretty print program takes a program,
which may not be indented in any particular
way, and produces a copy with the same pro-

gram indented so that bracket pairs ({ and }) line up
with inner pairs indented more than outer pairs, so
that if-else statements are indented as we have been
doing, and so that other indenting is as we have been
doing. Write a program that reads a C++ program
from one text file and produces a pretty print version
of the program in a second text file. To make it eas-
ier, simply do this for the body of the program, ig-
noring the declarations, and assume that all
substatements of complex statements (other than
compound statements themselves) are compound
statements (that is, are enclosed by brackets).

Rewrite the recursive pow function from
Figure 9.11 on page 465, so that the time to
compute pow(x, n) is log(n). Hint: Use the
formula x2n = xn times xn.

Write a recursive function to convert a char-
acter string of digits to an integer. Example:
convert("1234") returns 1234. Hint: To

convert a character to a number, subtract the ASCII
value '0' from the character. For example, if the
string s has but one character, then the function can
return the value s[0] - '0'.

Ackermann’s function, named after the Ger-
man mathematician Wilhelm Ackermann, is
used in the theory of recursive functions. 

There are several variants of this function. Their
common properties are that the function takes two
parameters (x and y) and grows very fast (much fast-
er than polynomials or exponentials). Here is one

12

13

14

15

variant:

1. If x = 0 then Ackermann(x, y) = 2y
2. If x >= 1 and y = 0 then Ackermann(x, y) = 0
3. If x >= 1 and y = 1 then Ackermann(x, y) = 2
4. If x >= 1 and y >= 2 then Ackermann(x, y) = 

Ackermann(x–1, Ackermann(x, y–1))

Implement this variant of Ackermann’s function
with a recursive function.

Write a program that asks the user to think
of an integer between 1 and 1,000,000, and
then guesses the number through a series of

yes/no questions. To guess the number, the program
calls a recursive function guess that has two param-
eters, low and high. The precondition for the func-
tion requires that the user’s number lie in the range
low...high so that the program’s initial call is to
guess(1, 1000000). What is a good stopping case
for guess, when it can guess the user’s number with
little or no work?  Answer:  If (low == high), then
there is only one possible number, and the function
can guess that number. On the other hand, if (low <
high), then the function should calculate a point
near the middle of the range:

midpoint = (low + high) / 2;

Then the function asks the user whether the mid-
point is the correct number. If so, the function is fin-
ished. On the other hand, if the midpoint is not the
user’s number, then the function asks whether the
correct number is larger than midpoint. If so, the
function knows that the user’s number lies in the
range midpoint + 1 to high, and a recursive call can
be made to solve the smaller problem of finding a
user’s number in the range midpoint + 1 to high.
On the other hand, if the user’s number is not larger
than midpoint, then a recursive call can be made to
solve the smaller problem of finding a user’s num-
ber in the range low to midpoint - 1. This method
of searching is called binary search, which we will
explore further in Chapter 12.

16
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L EARN ING  OB J EC T I V ES
When you complete Chapter 10, you will be able to...

• follow and explain tree�based algorithms using the usual computer science 
terminology.

• design and implement classes for binary tree nodes and nodes for general trees.
• list the order in which nodes are visited for the three common binary tree traversals 

(in�order, pre�order, post�order) and implement these algorithms.
• list the rules for a binary search tree and determine whether a tree satisfies these 

rules.
• carry out searches, insertions, and removals by hand on a binary search tree and 

implement these algorithms using your binary tree node class.

CHAPTER  CONTENTS

10.1 Introduction to Trees
10.2 Tree Representations
10.3 Binary Tree Nodes
10.4 Tree Traversals
10.5 Binary Search Trees

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

Some people call it the Tree of Heaven. No matter
where its seed fell, it made a tree which struggles to

BETTY SMITH
A Tree Grows in Brooklyn

reach the sky.
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Trees

This chapter presents a new data structure, a tree, which is our
first example of a nonlinear structure. In a nonlinear structure the components
do not form a simple sequence of first entry, second entry, third entry, and so
on. Instead, there is a more complex linking between the components; this is
why they are called nonlinear. The nonlinear structure often allows dramatically
improved efficiency for container classes such as the bag.

The chapter starts with definitions of various kinds of trees and their applica-
tions. We then show how to represent trees and implement a node class for build-
ing and manipulating binary trees. The binary trees are useful for many classes
such as the new bag implementation in the final section of this chapter.

10.1 INTRODUCTION TO TREES

Binary Trees
The first kind of tree that we’ll look at is a binary tree, which is the most com-
monly used tree data structure. A binary tree is not too different from a real tree.
The real tree starts at its root, growing upward. At some point, the trunk splits
into two smaller branches. Each of the smaller branches continues, perhaps
splitting into two still smaller branches, and so forth, until each branch ends
with some leaves.

If you take that tree, pull it out of the ground, and stick its root in the air, you
will have a computer scientist’s tree. You see, a computer scientist draws a tree
with the root at the top, branches below that, and leaves at the very bottom. And,
of course, a computer scientist’s tree contains data of one kind or another. Let’s
be more specific, with a concrete example of a binary tree of integers, shown in
Figure 10.1.

nonlinear
structures

a real tree. . .

. . .and a
computer
scientist’s tree

FIGURE  10.1 A Binary Tree of Integers
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17 11
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root
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Each of the boxes in the Figure 10.1 is called a node of the tree, and each node
contains some data—in this case each piece of data is an integer, but we might
also have trees of double numbers, trees of strings, even trees where each node’s
data is a complex type like a stack or a queue. The node at the top of the diagram,
which has the number 14, is called the root. Each node in a binary tree may have
up to two nodes below it, one linked on its left and one linked on its right. These
are called the node’s left child and right child. For example, the root’s left
child is the node containing 17, and its right child contains 11. Some nodes have
only a left child, some have only a right child, and some have no children at all.
A node with no children is called a leaf. In more general kinds of trees, a node
may have more than two children, but for the binary trees that we’re discussing,
each node is limited to at most two children. One other point: With the exception
of the root, each node is the child of just one node; the root is not the child of any
node.

Much of the terminology for trees comes from family relations, such as the
word “child.” Perhaps you can guess the meaning of some other terms: parent,
sibling, ancestor, descendant. These definitions are given below, but first we’ll
provide a complete definition of a binary tree:

tree terminology Here are some other terms used with trees, with examples selected from
Figure 10.1 on page 475 and Figure 10.2 on page 477.

Parent. The parent of a node is the node linked above it. More precisely, if a
node c is the child of another node p, then we say that “p is c’s parent.” Except
for the root, every node has just one parent, and the root has no parent. In Figure
10.1, the node containing 17 is the parent of the nodes containing 9 and 53.

Sibling. Two nodes are siblings if they have the same parent. In Figure 10.1,
the nodes containing 9 and 53 are siblings.

Binary Trees
A binary tree is a finite set of nodes. The set might be empty
(no nodes, which is called the empty tree). But if the set is
not empty, it follows these rules: 
1. There is one special node, called the root.
2. Each node may be associated with up to two other differ-

ent nodes, called its left child and its right child. If a
node c is the child of another node p, then we say that “p
is c’s parent.”

3. Each node, except the root, has exactly one parent; the
root has no parent.

4. If you start at a node and move to the node’s parent (pro-
vided there is one), then move again to that node’s par-
ent, and keep moving upward to each node’s parent, you
will eventually reach the root.
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Ancestor. A node’s parent is its first ancestor. The parent of the parent is the
next ancestor. The parent of the parent of the parent is the next ancestor . . . and
so forth, until you reach the root. The root is an ancestor of each other node.

Descendant. A node’s children are its first descendants. The children’s chil-
dren are its next descendants. The children of the children of the children are . . .
well, you get the idea.

Subtree. Any node in a tree also can be viewed as the root of a new, smaller
tree. This smaller tree contains the node that we’ve picked as the new root and
all of the new root’s descendants. This is called a subtree of the original tree. In
Figure 10.2(a), we may choose 17 as the root of a new subtree, and that subtree
has three nodes: the nodes containing 17, 9, and 53. 

Left and right subtrees of a node. For a node in a binary tree, the nodes
beginning with its left child and below are its left subtree. The nodes beginning
with its right child and below are its right subtree.

Depth of a node. Suppose you start at a node n and move upward to its parent.
We’ll call this “one step.” Then move up to the parent of the parent—that’s a
second step. Eventually, you will reach the root, and the number of steps taken
is called the depth of the node n. The depth of the root itself is zero; a child of
the root has depth one. In Figure 10.2(b), the node containing 13 has depth three.

(c) A binary tree
that is neither

complete
nor full

(b) A binary tree 
that is complete but 
not full

13 16

41

FIGURE  10.2 More Examples of Binary Trees
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(a) A full binary tree
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Depth of a tree. The depth of a tree is the maximum depth of any of its
leaves. In Figure 10.2(b), the leaf containing 13 has depth three, and there is no
deeper leaf. So the depth of the example tree is three. If a tree has only one
node, the root, then its depth is zero (since the depth of the root is zero). The
empty tree doesn’t have any leaves, so we use –1 for its depth. Just to confuse
things, you’ll often see the term height of a tree used instead of depth, but they
mean the same thing.

Full binary trees. In a full binary tree, every leaf has the same depth, and
every nonleaf has two children. Figure 10.1 on page 475 is not a full tree
because it has leaves at different depths—some with depth two and some with
depth three. Also, some of the nonleaves have only one child. In Figure 10.2,
part (a) is full, but parts (b) and (c) are not full.

Complete binary trees. Suppose you take a full binary tree and start adding
new leaves at a new depth from left to right. All the new leaves have the same
depth—one more than where we started—and we always add leftmost nodes
first. For example, if you add three nodes to Figure 10.2(a), then one possible
result is Figure 10.2(b). The tree is no longer a full tree because some leaves are
a bit deeper than others. Instead, we call this a complete binary tree. In order to
be a complete tree, every level except the deepest must contain as many nodes
as possible; and at the deepest level, all the nodes are as far left as possible.

Binary Taxonomy Trees

binary taxonomy 
trees store 
knowledge

Binary trees are useful in many situations. We’ll look at one example, binary
taxonomy trees, which can be used to store certain kinds of knowledge. The
particular example we have in mind stores information about a collection of ani-
mals. Each leaf in a binary taxonomy tree contains the name of an animal, and
each nonleaf node contains a question about animals.

For example, suppose that we want a taxonomy tree for four animals: a kan-
garoo, a mouse, a trout, and a robin. The tree might look like Figure 10.3. To use
a binary taxonomy tree, you start at the root and ask the question that is written
there. If the answer is “yes,” you move to the left child, and if the answer is “no,”

Trout Robin

FIGURE  10.3 A Small Binary Taxonomy Tree

Kangaroo Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo
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you move to the right child. Eventually, you will reach a leaf, and the name at the
leaf tells you which animal you have been examining—or at least it does if the
animal is one of the animals that the tree knows about.

General Trees

Each node in a binary tree has at most two children. In fact, that’s why the word
“binary'” is used. But in general, a node in a tree may have any number of chil-
dren. Figure 10.4 shows an example where some nodes have one child, some
have two, and some have three. A node in a general tree might even have more
than three children (although three is the most in Figure 10.4). In Figure 10.4 we
have not written any data at the nodes—but we could have written integers or
strings or whatever data type we were interested in storing.

Trees
A tree is a finite set of nodes. The set might be empty (no
nodes, which is called the empty tree). But if the set is not
empty, then it must follow these rules:

1. There is one special node, called the root.
2. Each node may be associated with one or more different

nodes, called its children. If a node c is the child of
another node p, then we say that “p is c’s parent.”

3. Each node except the root has exactly one parent; the
root has no parent.

4. If you start at any node and move to the node’s parent
(provided there is one), then move again to that node’s
parent (provided there is one), and keep moving upward
to each node’s parent, you will eventually reach the root.

FIGURE  10.4 A General Tree

root
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There are other special kinds of trees. For example, Section 11.3 uses B-trees,
which are trees where the number of children of each node must lie between a
certain minimum and a certain maximum.

Self-Test Exercises for Section 10.1

1. Draw a binary tree with 12 nodes. Circle the root, and put asterisks at
each leaf. Find two nodes that are siblings, and connect them with a wig-
gly line. Choose one of the leaves, and shade all of its ancestors.

2. Consider the tree in the margin. Which nodes are leaves? Which nodes
are siblings with each other? What is the depth of the tree?

3. For the tree in the margin, what additions will make the tree full? What
additions will make the tree complete?

4. What is the depth of a tree with only a root node? What is the depth of a
tree with no nodes? 

5. Draw a tree that contains members of your family. The root should con-
tain your mother’s mother. Her children nodes contain her actual chil-
dren, and those nodes contain her children’s children, and so on.

6. What is the depth of the tree from Exercise 5? What is the depth of the
node that contains you? Draw a circle around all nodes that are your
ancestor nodes. Do each of these nodes contain one of your real-life
ancestors? Draw a big square around all nodes that are descendants of
your mother. Does each of these nodes contain one of her real-life
descendants?

7. Create a binary taxonomy tree with 16 animals. Is your tree full? Is it
complete?

10.2 TREE REPRESENTATIONS

This section discusses two kinds of trees and how they typically are represented
in a data structure. For the most part, if you understand these two representa-
tions, you can also manage other kinds of trees.

Array Representation of Complete Binary Trees

Complete binary trees have a simple representation using arrays. The represen-
tation can use a fixed-sized array (as in the classes of Chapter 3), which means
that the size of the data structure is fixed during compilation, and during execu-
tion it does not grow larger or smaller. Or the representation can use a dynamic
array (as in the classes of Chapter 4), allowing the representation to grow and
shrink as needed during the execution of a program.

Remember that in a complete binary tree, all of the depths are full, except
perhaps for the deepest. At the deepest depth, the nodes are as far left as possible.

3 5

6 7

2 4

1a tree. . .
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After the root, the two nodes with depth one are placed in the array, as shown
here:

'H' 'S'

'T''O' 'R'

'M'

'I'

'L' 'G'

'A'

For example, in the margin is a complete binary tree
with 10 nodes where the item contained in each node is
a character.

In this example, the first seven nodes completely fill
the levels at depth zero (the root), depth one (the root’s
children), and depth two. There are three more nodes at
depth three, and these nodes are as far left as possible.

The 10 characters that the tree contains can be stored
in an array of characters, starting with the root’s charac-
ter in the [0] location of the array, as shown below:

[0][1] [2][3][4] [5] [6][7][8] [9]

'H' 'S'

'T''O' 'R'

'M'

'I'

'L' 'G'

'A'

'A'

Data from the root
goes in the [0]

component of the
array.

[0][1] [2][3][4] [5][6] [7][8] [9]

'H' 'S'

'T''O' 'R'

'M'

'I'

'L' 'G'

'A'

'A'

Data from depth one
goes in the next two

components of the
array.

'L' 'G'
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We continue in this way, placing the four nodes of depth two next and finish-
ing off with the nodes of depth three. The entire representation of the tree by an
array is shown here:

formulas for 
storing data from 
a complete 
binary tree in the 
components of 
an array

There are several reasons why the array representation is convenient:

1. The data from the root always appears in the [0] component of the array.
2. Suppose that the data for a nonroot node appears in component [i] of the

array. Then the data for its parent is always at location [(i-1)/2] (using
integer division).

3. Suppose that the data for a node appears in component [i] of the array.
Then its children (if they exist) always have their data at these locations:

Left child at component [2i+1];
Right child at component [2i+2].

These formulas make it easy to implement algorithms that traverse the tree,
moving from node to node in various ways, processing data along the way.

the tree can use 
a dynamic array 
or a static array

Before long you will implement some classes that store data in a tree. If the
tree is a complete binary tree, then the class can store the complete binary tree in
a fixed-sized array, using the formulas that we have written. Such a class will
have at least two private member variables: (1) The array itself is one member
variable, and (2) a second member variable keeps track of how much of the array
is used. The actual links between the nodes are not stored. Instead, these links
exist only via the formulas that determine where an item is stored in the array
based on the item’s position in the tree.

As an alternative to a fixed-sized array, the implementation can use a dynamic
array. Using a dynamic array entails a third member variable to keep track of the
complete size of the dynamic array.

The shaded data is
from depth two and

depth three.

[0][1] [2][3][4] [5] [6][7][8][9]

'H' 'S'

'T''O' 'R'

'M'

'I'

'L' 'G'

'A'

'A''L' 'G' 'O''R''I''T' 'H' 'M''S'
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Noncomplete binary trees can also be implemented using an array, although
a problem arises in determining which children of a node actually exist. We’ll
address this problem in Programming Project 4 on page 535. But for now, let’s
look at the other alternative: a dynamic implementation of binary trees that allo-
cates and releases nodes as needed.

Representing a Binary Tree with a Class for Nodes

A binary tree can be represented by its individual nodes, where each node is
stored in an object of a binary_tree_node class, similar to the way that we
used a node to build linked lists. Here is the basic idea:

For a binary tree, we’ll link each node to its left child and right child. The node
also has a member variable to hold some data. The type of the data can be
declared with a template parameter, as shown here:

template <class Item>
class binary_tree_node
{
public:

private:
Item data_field;
binary_tree_node *left_field;
binary_tree_node *right_field;

};

The data_field of a node holds some information that occurs in the node.
Each binary tree node also contains two pointers that point to the left and right
children of the node. When a child pointer is NULL, it indicates that the particular
child does not exist. We could include other links in a binary tree node: perhaps
a pointer to the node’s parent, or to the root of the entire tree, or even to siblings.
But many applications need only the children links. 

We can draw a boxes-and-arrows representation of a small tree, as in Figure
10.5. Each node is stored in one object of type binary_tree_node, and the
entire tree is accessed through a pointer that points to the root node of the tree.
Within the diagram, a null pointer is drawn as a slash. The pointer to the root

Node Representation of Binary Trees
Each node of a tree is stored in an object of a new
binary_tree_node class. Each node contains pointers that
link it to other nodes in the tree. An entire tree is represented
as a pointer to the root node.

Public member functions will give access to the data and links.
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node is similar to the head pointer of a linked list, providing a starting point to
access all the nodes in the tree. If the tree was empty (with no nodes), then the
root pointer would be null.

A separate, single
pointer is used to

point to the root
node.

The slash
represents the null

pointer.

(b) Representation of 
the binary tree using 
binary_tree_node
objects. Each large 
box is a 
binary_tree_node
object, and each of the 
small shaded boxes is 
a pointer to a 
binary_tree_node.

FIGURE  10.5 A Binary Tree Represented with binary_tree_node Objects

(a) Example binary 
tree of characters

'T''O' 'R'

'L' 'G'

'A'

'A'

data_field

left right

'L'
data_field

left right

'G'

data_field

left right

'R'

data_field

left right

'T'

data_field

left right

'O'

data_field

left right

field field

field field field field

field field field field field field
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Self-Test Exercises for Section 10.2
8. Describe one problem with representing noncomplete binary trees using

the array implementation described in this section.
9. Consider a complete binary tree with exactly 10,000 nodes, implemented

with an array. Suppose that a node has its value stored in location 4999.
Where is the value stored for this node’s parent? Where is the value
stored for its left child? What can you say about its right child?

10. Draw a representation of a small binary tree with three nodes containing
integers. Put 10 in the root, 20 in the left child of the root, and 30 in the
right child of the root. Use the binary tree node definition from this section.

11. Write the member variables for a new node definition that could be used
for a tree where each node has up to four children, and each node also has a
pointer to its parent. Store the children pointers in an array of four pointers.

10.3 BINARY TREE NODES

Figure 10.6 shows the binary_tree_node definition that we plan to use. As we
did with the linked-list node, the data function returns a reference to the actual
data. In Chapter 6, we had a short discussion (page 318) of functions that return
a reference. We can provide some more details now. For the data function’s
return value of Item& (which is a reference to an Item), the return statement
(return data_field) arranges for the function to return a reference to the
data_field member variable of a node. A reference is like a pointer, but it can
be used with no need for the dereferencing asterisk (*). Therefore, any time we
have a binary_tree_node n, the expression n.data( ) will directly access the
node’s data_field. For example, with integer items, the assignment
n.data( ) = 42 puts the value 42 in the node’s data_field. The non-const
versions of these functions return a reference to the left or right pointer in the
node, so that, for example, an assignment such as  is an alter-
native to .

As we saw in Chapter 6, since the data function returns a reference, we require
both a const data function (to be used when we are forbidden from changing a
node) and a non-const data function (to be used when we are allowed to change
a node). Therefore, the function may be used with a pointer that was declared
with the const keyword (const binary_tree_node* p) or with an ordinary
pointer. The non-const versions of the functions to obtain the left and right links
also return references (to left_field or right_field). This allows us to use the
left or right function to change a link (for example, n.left( ) = NULL).

By the way, in the first printing of this text, the left and right functions did
not return references, but without the references, certain recursive functions are
harder to write in Section 10.5.

In addition to the expected functions to access and modify a node, we have
one more member function, is_leaf, with this implementation:

bool is_leaf( ) const
{ return (left_field == NULL) && (right_field == NULL); }

This function returns true if the given node has no children (both pointers to left
and right are null).

p->left( ) = q;
p->set_left(q);
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With the binary tree node definition in hand, we can define a small collection
of functions for creating and manipulating trees. Primarily, the functions are
meant to help a programmer who is writing a class that uses a binary tree to store
data. The functions are similar to the linked-list functions that we wrote in Chap-
ter 5 and subsequently used in linked-list versions of the bag class, sequence
class, stack class, and queue class.

We will start with only two functions, but we’ll add more later. 

A Class Definition

template <class Item>
class binary_tree_node
{
public:

// TYPEDEF
typedef Item value_type;
// CONSTRUCTOR
binary_tree_node(

const Item& init_data = Item( ),
binary_tree_node* init_left = NULL,
binary_tree_node* init_right = NULL

)
{
 data_field = init_data; 

left_field = init_left; 
right_field = init_right;

}
// MODIFICATION MEMBER FUNCTIONS
Item& data( ) { return data_field; }
binary_tree_node*& left( ) { return left_field; }
binary_tree_node*& right( ) { return right_field; }
void set_data(const Item& new_data) { data_field = new_data; }
void set_left(binary_tree_node* new_left) { left_field = new_left; }
void set_right(binary_tree_node* new_right) { right_field = new_right; }
// CONSTANT MEMBER FUNCTIONS
const Item& data( ) const { return data_field; }
const binary_tree_node* left( ) const { return left_field; }
const binary_tree_node* right( ) const { return right_field; }
bool is_leaf( ) const

{ return (left_field == NULL) && (right_field == NULL); }
private:

Item data_field;
binary_tree_node *left_field;
binary_tree_node *right_field;

};

 FIGURE  10.6 The Binary Tree Node Definition

www.cs.colorado.edu/~main/chapter10/bintree.h WWW
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Returning nodes to the heap. Our first function returns the nodes of a tree to
the heap. The function has one parameter, which is the root pointer of the tree.
Here is the specification:

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr);
// Precondition: root_ptr is the root pointer of a binary tree (which may be 
// NULL for the empty tree).
// Postcondition: All nodes at the root or below have been returned to the
// heap, and root_ptr has been set to NULL.

The implementation is easier than it seems—the ease comes from recursive
thinking. First notice that there is one easy case: When root_ptr is NULL, the
function does no work. On the other hand, if the root pointer is not null, then
there are four steps:

1. Clear the left subtree, returning all its nodes to the heap.
2. Clear the right subtree, returning all its nodes to the heap.
3. Return the root node to the heap.
4. Set the root pointer to null.

Steps 1 and 2 are examples of “smaller versions of the problem that we are try-
ing to solve in the first place.” Think recursively, and you will write this:

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr)
{

binary_tree_node<Item>* child;
if (root_ptr != NULL)

    {
child = root_ptr->left( );
tree_clear(child);
child = root_ptr->right( );
tree_clear(child);
delete root_ptr;

        root_ptr = NULL;
    }
}

The base case (when the root pointer is null) does no work.

Copying a tree. Our second function also has a simple recursive implementa-
tion. The function copies a tree, as specified here:

template <class Item>
binary_tree_node<Item>* tree_copy

(const binary_tree_node<Item>* root_ptr);
// Precondition: root_ptr is the root pointer of a binary tree (which may be
// NULL for the empty tree).
// Postcondition: A copy of the binary tree has been made, and the return
// value is a pointer to the root of this copy.
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Once again, there is a simple base case: When root_ptr is null, the function
simply returns NULL. On the other hand, if the root pointer is not null, then the
tree has at least one node. The tree can be copied with these three steps (using
local variables l_ptr and r_ptr, which are both pointers to nodes):

1. Make l_ptr point to a copy of the left subtree (which might be empty).
2. Make r_ptr point to a copy of the right subtree (which might be empty).
3. return new binary_tree_node(root_ptr->data( ), l_ptr, r_ptr);

Once again, the first two steps of the pseudocode are smaller versions of the
problem we are solving in the first place. Therefore these two steps can be
solved with recursive calls. Here’s the complete implementation of tree_copy:

template <class Item>
binary_tree_node<Item>* tree_copy

(const binary_tree_node<Item>* root_ptr)
{

binary_tree_node<Item> *l_ptr;
binary_tree_node<Item> *r_ptr;

if (root_ptr == NULL)
return NULL;

else
    {
        l_ptr = tree_copy( root_ptr->left( ) );
        r_ptr = tree_copy( root_ptr->right( ) );

return new binary_tree_node<Item>
(root_ptr->data( ), l_ptr, r_ptr);

    }
}

Later we will place the tree_clear and tree_copy functions in an implemen-
tation file (bintree.template) along with a header (bintree.h).

NOT CONNECTING ALL THE LINKS

Any time you are implementing a dynamic structure with pointers, there is a poten-
tial pitfall: forgetting to set all of the pointer fields of a node. With a linear structure,
such as a list or a stack, the pitfall is not so common, since each node has only one
pointer field. But as the structures become more complex, such as our binary tree
node, the potential for forgetting to correctly set a pointer becomes more likely.

For example, the binary_tree_node constructor must set both the left and
right pointers of a newly created node. When you allocate a node that is part of a
dynamic structure, any unused pointers should immediately be set to the null
pointer. This will prevent you from mistakenly thinking that unused pointers are
pointing to a valid node.

PITFALL ��  
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PROGRAMMING EXAMPLE: Animal Guessing

Now we’ll write a small program that uses the binary tree toolkit. The program
is a simple guessing game: You pretend that you are an animal, and the program
asks questions to try to guess what animal you are. If the program guesses cor-
rectly, another round of the game is started. And if the program can’t figure out
what you are, you provide some more knowledge to the program so that the next
time the game is played, the program is a bit smarter.

an animal 
guessing
program that 
gets smarter and 
smarter

As an example, suppose you are pretending to be a raccoon. The program
might start by asking “Are you a mammal?” and you answer,“Yes.” Next, the
program wants to know “Are you bigger than a cat?” and again you answer,
“Yes.” Finally, the program guesses: “Are you a kangaroo?” and with a smug
smile you reply, “No, don’t be ridiculous.”

At this point, the program says, “I give up. What are you?” You explain that
you are a raccoon. You then provide the program with a question that the pro-
gram can use in the future to distinguish a kangaroo from a raccoon—perhaps
“Are you a marsupial?”—and you tell the program that the answer to this ques-
tion is “yes” for a kangaroo but “no” for a raccoon. The next time that you are a
raccoon, the program will have enough information to guess correctly. A sample
dialogue with the program is given in Figure 10.7. 

A Sample Dialogue
Are you a mammal? Please answer [Yes or No]
Yes
Are you bigger than a cat? Please answer [Yes or No]
Yes
My guess is Kangaroo. Am I right? [Yes or No]
No
I give up. What are you?
Raccoon
Please type a yes/no question that will distinguish a Raccoon from a Kangaroo.
Your question:
Are you a marsupial?
As a Raccoon, Are you a marsupial? Please answer [Yes or No]
No
Shall we play again? [Yes or No]
No
Thank you for teaching me a thing or two.

 FIGURE  10.7 Part of a Sample Dialogue with the Animal Guessing Program
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As you might guess, the data used by the program is stored in a binary taxon-
omy tree, as described on page 478, with each nonleaf node containing a ques-
tion. When the program begins, it will only know about four animals, and the
taxonomy tree will look like this:

The program maintains a root pointer that always points to the root of the binary
taxonomy tree. As the game is being played, the program also maintains a sec-
ond pointer called current_ptr. The current pointer starts at the root and trav-
els down the tree according to the answers that the user provides.

For example, suppose that the user answers yes to the first question “Are you
a mammal?” Then the program will move its current pointer to the left subtree,
as shown here:

In the drawing we have hidden part of the tree to indicate that only the left sub-
tree is now relevant to the game. The rest of the tree and the root pointer are still
present, but they are not needed at this point in the game.

The program continues asking questions. Each time the user answers yes to a
question, the current pointer is moved left. Each no answer moves the current
pointer right. This continues until the program reaches a leaf. When a leaf is
reached, the program guesses that you are the animal whose name is stored at the
leaf. If the leaf contains the correct animal, then all is well. But if the guess is
wrong, then the program elicits information from the user, and that information
is used to update the taxonomy tree.

Trout RobinKangaroo Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

root_ptr

Trout RobinKangaroo Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

current_ptr

root_ptr
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In the example, where you were a raccoon, the program would use the infor-
mation to modify the taxonomy tree, resulting in the larger taxonomy tree of Fig-
ure 10.8(a). After several rounds of the game, the taxonomy tree might contain
quite a few animals. Figure 10.8(b) shows what the tree could look like with
seven animals. As an exercise, pretend you are a squid, and follow the route that
would be taken from the root to the squid leaf in this tree.

Animal Guessing Program—Design and Implementation

Now that we have a general idea of how the program works, let’s carry out a
top-down design. The main program has three steps, shown in the pseudocode
at the top of the next page.

Kangaroo Raccoon

Yes No

Kangaroo Raccoon

Yes No

Robin Snake

Yes No

Trout Squid

Yes No

Trout Robin

FIGURE  10.8 Two Possible Taxonomy Trees

Are you a marsupial? Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

(a) Taxonomy tree after adding a raccoon

Are you a vertebrate? Can you fly?Are you a marsupial? Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

(b) Taxonomy tree with seven animals
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1. Print the instructions for the user.
2. Create a small initial taxonomy tree with four animals; the pointer vari-

able taxonomy_root_ptr points to the root of this initial tree.
3. Repeat the following steps as often as the user wants:

a. Play one round of the game, perhaps adding information to the bottom
of the tree.

b. Ask the user, “Shall we play again?” and read the answer.

The first two steps from our outline will be accomplished by functions that we
call instruct and beginning_tree. For Step 3a, we’ll design a function called
play. Step 3b can be accomplished with the inquire function, which is part of
the toolkit of useful functions that we have used before (useful.h from Appen-
dix I). That function asks a yes/no question, returning true if the user replies yes,
and returning false if the user replies no.

Putting these steps together, we can write the main function, using a root
pointer to the binary taxonomy tree, as shown here:

int main( )
{

binary_tree_node<string> *taxonomy_root_ptr;

    instruct( );
    taxonomy_root_ptr = beginning_tree( );

do
        play(taxonomy_root_ptr);

while (inquire("Shall we play again?"));

    cout << "Thanks for teaching me a thing or two." << endl;
return EXIT_SUCCESS;

}

the data at each 
node is a string

Notice that the type of the data in each node is a string object from the Stan-
dard Library <string> facility.

Next, we discuss the functions instruct, beginning_tree, and play.

The instruct function. This is a function with output to the screen to explain
the game. You can write it yourself with the prototype: void instruct( );.
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The beginning_tree function. This function creates the initial binary taxon-
omy tree and returns a pointer to the root of this tree, as shown in this outline:

binary_tree_node<string>* beginning_tree( )
// Postcondition: The function has created a small taxonomy tree.
// The return value is the root pointer of the new tree.
{

binary_tree_node<string> *root_ptr;
binary_tree_node<string> *child_ptr;

1. Make root_ptr point to a new node with the data “Are you a 
mammal?” Both child pointers are initially null.

2. Make child_ptr point to a new node with the data “Are you bigger 
than a cat?” Give it two leaves as children with the data “Kangaroo”
on the left and “Mouse” on the right. Then activate
root_ptr->set_left(child_ptr);.

3. Make child_ptr point to a new node with the data “Do you live 
underwater?” Give it two leaves as children with the data “Trout” on 
the left and “Robin” on the right. Then activate
root_ptr->set_right(child_ptr);.

4. return root_ptr;
}

The complete implementation will be shown as part of a program in a moment.
For now, you should notice beginning_tree can create its new nodes by using
the binary tree node constructor. When beginning_tree finishes, the root
pointer in the main program will point to the root node of our initial taxonomy
tree.

The play function. The play function has one parameter, which initially is the
root pointer of the binary taxonomy tree, as shown in this prototype:

void play(binary_tree_node<string>* current_ptr);

The function causes the current pointer to move down the tree in response to the
user’s replies. (The root pointer, back in the main program, will stay pointing at
the root since current_ptr is an ordinary value parameter.) When the current
pointer reaches a leaf, an animal is guessed.

We’ll use two other functions to carry out most of play’s work. The first func-
tion, named ask_and_move, asks the question that’s contained at the current
node of the tree and then shifts the current pointer to the left or right child, based
on the user’s answer. Here is the specification for ask_and_move:
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void ask_and_move(binary_tree_node<string>*& current_ptr);
specification of 
the
ask_and_move
function

// Precondition: current_ptr points to a nonleaf node in a binary taxonomy
// tree.
// Postcondition: The question at the current node has been asked. The
// current pointer has been shifted left (if the user answered yes) or right 
// (for a no answer).

The second important function used by play is called learn. The learn
function is used after the game reaches a leaf and the animal at the leaf is wrong.
The function elicits information from the user and thereby improves the tree, as
specified here:

void learn(binary_tree_node<string>* leaf_ptr);
specification of 
the learn 
function

// Precondition: leaf_ptr is a pointer to a leaf in a taxonomy tree.
// This leaf contains a wrong guess that was just made.
// Postcondition: Information has been elicited from the user,
// and the tree has been improved.

Using the two functions, the implementation of play is relatively short, as
shown here:

void play(binary_tree_node<string>* current_ptr)
// Precondition: current_ptr points to the root of a binary taxonomy tree
// with at least two leaves.
// Postcondition: One round of the animal game has been played,
// and maybe the tree has been improved.
{
    cout << "Think of an animal, then press the return key.";

eat_line( );

while (!current_ptr->is_leaf( ))
        ask_and_move(current_ptr);

    cout << ("My guess is " + current_ptr->data( ) + ". ");
if (!inquire("Am I right?"))

        learn(current_ptr);
else

        cout << "I knew it all along!" << endl;
}

Within this implementation we used the inquire function to ask the ques-
tion “Am I right?”. A function named eat_line is also used to read and throw
away all characters up to the next newline character. Both of these functions are
part of our toolkit of useful functions (see Appendix I). 

So what’s left to do? Implement the two functions ask_and_move and learn,
which we’ll do now.
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The ask_and_move function. This function has one argument, which is the
current pointer to a node in the taxonomy tree. The function asks the question at
this node and shifts the current pointer down to a subtree based on the user’s
answer. Using the inquire function from useful.h, the implementation is
short:

void ask_and_move(binary_tree_node<string>*& current_ptr)
{

cout << current_ptr->data( );
if (inquire(" Please answer:"))

        current_ptr = current_ptr->left( );
else

        current_ptr = current_ptr->right( );
}

The learn function. This function is called when the game reaches a leaf and
makes a wrong guess. The function takes several steps to improve the taxonomy
tree. The function’s argument is a pointer to the node that contains the incorrect
guess, as shown in this prototype:

void learn(binary_tree_node<string>* leaf_ptr);

For example, suppose we just made an incorrect guess of a kangaroo from this
tree:

The learn function first sets three local string variables:

1. What animal was guessed? This comes from current_ptr->data( )
and is stored in a local variable called guess_animal. For this example,
the guess_animal is “Kangaroo.”

2. What is the correct animal? The user’s answer to this question is read into
a local string variable called correct_animal. To read the answer, we
use the string’s getline function. This function reads an entire line of
input, including blanks, and places this line in a string. For this example,
suppose that the user’s answer is “Raccoon.”

Trout RobinKangaroo Mouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

current_ptr
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3. What is a yes/no question that can distinguish the right animal from the
animal that was guessed? In our example, we need a question that can dis-
tinguish a kangaroo from a raccoon. The user might provide the question
“Are you a marsupial?” and we’ll store this question in another local
string variable called new_question.

With the three strings set, we need one more piece of information. In particular,
we need to know whether the new animal answers yes or no to the question that
the user has just provided. In our example, we need to know whether a raccoon
answers yes or no to the question “Are you a marsupial?” Of course, a raccoon
is not a marsupial, so based on this no answer, we can proceed as follows:

1. Copy the new question into current_ptr’s data field.
2. Copy the guessed animal into a new leaf, which is created to be the left

child of the current node.
3. Copy the correct new animal into a new leaf, which is created to be the

right child of the current node.

In our example, these steps improve the taxonomy tree as shown here:

The other possibility is that the new animal has a yes answer to the new ques-
tion. For example, the question to distinguish a raccoon from a kangaroo could
be “Do you have a ringed tail?” In this case, the new animal (raccoon) would be
added as the left child of the new question, and the old animal (kangaroo) added
on the right. 

The implementation of the learn function is part of the complete animal-
guessing program in Figure 10.9.

Animal Guessing Program—Improvements
Our animal program suffers from one problem: Each time the program is exe-
cuted, it starts out by knowing only four animals. An improvement will allow it
to store the current taxonomy tree in a file and read that file whenever the pro-
gram starts. This way the program remembers all the animals it was taught.

Trout RobinMouse

Are you bigger than a cat? Do you live underwater?

Are you a mammal?

Yes

YesYes

No

NoNo

current_ptr

Kangaroo

Yes No

Are you a marsupial?

Raccoon
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A Program
// FILE: animal.cxx
// This animal guessing program illustrates the use of the binary tree node class.

#include <cstdlib> // Provides EXIT_SUCCESS
#include <iostream> // Provides cout
#include <string> // Provides string class
#include "bintree.h" // Provides the binary tree node class
#include "useful.h" // Provides eat_line, inquire (from Appendix I)
using namespace std;
using namespace main_savitch_10; // binary_tree_node

// PROTOTYPES for functions used by this game program:

// Precondition: current_ptr points to a nonleaf node in a binary taxonomy tree.
// Postcondition: The question at the current node has been asked. The current pointer has
// been shifted left (if the user answered yes) or right (for a no answer).

// Postcondition: The return value is the root pointer of a new small taxonomy tree.

// Postcondition: Instructions for playing the game have been printed to the screen.

// Precondition: leaf_ptr is a pointer to a leaf in a taxonomy tree. The leaf contains a wrong
// guess that was just made.
// Postcondition: Information has been elicited from the user, and the tree has been improved.

// Precondition: current_ptr points to the root of a binary taxonomy tree with at least two leaves.
// Postcondition: One round of the animal game has been played, and maybe the tree has
// been improved.

{
    binary_tree_node<string> *taxonomy_root_ptr;

instruct( );
    taxonomy_root_ptr = beginning_tree( );

do
        play(taxonomy_root_ptr);

while (inquire("Shall we play again?"));
cout << "Thank you for teaching me a thing or two." << endl;
return EXIT_SUCCESS;

} (continued)

 FIGURE  10.9 The Animal Guessing Program

void ask_and_move(binary_tree_node<string>*& current_ptr);

binary_tree_node<string>* beginning_tree( );

void instruct( );

void learn(binary_tree_node<string>* leaf_ptr);

void play(binary_tree_node<string>* current_ptr);

int main( )
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 (FIGURE  10.9 continued)

// Library facilities used: bintree.h, string, useful.h
{

cout << current_ptr->data( );
if (inquire(" Please answer"))

        current_ptr = current_ptr->left( );
else

        current_ptr = current_ptr->right( );
}

// Library facilities used: bintree.h, string
{
    binary_tree_node<string> *root_ptr;
    binary_tree_node<string> *child_ptr;

const string root_question("Are you a mammal?");
const string left_question("Are you bigger than a cat?");
const string right_question("Do you live underwater?");
const string animal1("Kangaroo");
const string animal2("Mouse");
const string animal3("Trout");
const string animal4("Robin");

// Create the root node with the question “Are you a mammal?”
root_ptr = new binary_tree_node<string> (root_question);

    // Create and attach the left subtree.
    child_ptr = new binary_tree_node<string> (left_question);
    child_ptr->set_left( new binary_tree_node<string> (animal1) );
    child_ptr->set_right( new binary_tree_node<string> (animal2) );
    root_ptr->set_left(child_ptr);

    // Create and attach the right subtree.
    child_ptr = new binary_tree_node<string> (right_question);
    child_ptr->set_left( new binary_tree_node<string> (animal3) );
    child_ptr->set_right( new binary_tree_node<string> (animal4) );
    root_ptr->set_right(child_ptr);

return root_ptr;
}

(continued)

void ask_and_move(binary_tree_node<string>*& current_ptr)

binary_tree_node<string>* beginning_tree( )

void instruct( )
The implementation of this function is omitted—write it yourself!
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 (FIGURE  10.9 continued)

// Library facilities used: bintree.h, iostream, string, useful.h
{
    string guess_animal;    // The animal that was just guessed
    string correct_animal;  // The animal that the user was thinking of
    string new_question;    // A question to distinguish the two animals

    // Set strings for the guessed animal, correct animal, and a new question.
    guess_animal = leaf_ptr->data( );

cout << "I give up. What are you? " << endl;
    getline(cin, correct_animal);
    cout << "Please type a yes/no question that will distinguish a" << endl;
    cout << correct_animal << " from a " << guess_animal << "." << endl;

cout << "Your question: " << endl;
    getline(cin, new_question);

    // Put the new question in the current node, and add two new children.
    leaf_ptr->set_data(new_question);
    cout << "As a " << correct_animal << ", " << new_question << endl;

if (inquire("Please answer"))
    {
        leaf_ptr->set_left( new binary_tree_node<string> (correct_animal) );
        leaf_ptr->set_right( new binary_tree_node<string> (guess_animal) );
    }

else
    {
        leaf_ptr->set_left( new binary_tree_node<string> (guess_animal) );
        leaf_ptr->set_right( new binary_tree_node<string> (correct_animal) );
    }
}

// Library facilities used: bintree.h, iostream, string, useful.h
{
    cout << "Think of an animal, then press the return key.";
    eat_line( );

while (!current_ptr->is_leaf( ))
        ask_and_move(current_ptr);

    cout << ("My guess is " + current_ptr->data);
if (!inquire(". Am I right?"))

        learn(current_ptr);
else

        cout << "I knew it all along!" << endl;
}

void learn(binary_tree_node<string>* leaf_ptr)

void play(binary_tree_node<string>* current_ptr)

www.cs.colorado.edu/~main/chapter10/animal.cxx WWW
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Self-Test Exercises for Section 10.3

12. What is the base case for the recursive functions tree_clear and
tree_copy?

13. Write a new function to compute the number of children that a node has.
14. Write a new function to compute the number of nodes in a binary tree.

Write another function to compute the depth of a binary tree. Both
functions have one argument, which is the tree’s root pointer. Think
recursively.

10.4 TREE TRAVERSALS

And then he got up, and said: “And the only reason for
making honey is so as I can eat it.” So he began to climb
the tree.

He climbed and he climbed and he climbed, and as he
climbed he sang a little song to himself.

A.A. MILNE
Winnie-the-Pooh

Traversals of Binary Trees

Programs that use tree structures often need to process all of the nodes in a tree,
applying the same operation to each node. This processing is called a tree
traversal. For example, suppose we have a tree where each node contains an
integer, and we need to print a list of all the integers in the tree. For a binary
tree, there are three common ways of doing this kind of processing: pre-order
traversal, in-order traversal, and post-order traversal. This section defines
and implements the three traversal methods for binary trees. We also implement
an unusual fourth traversal method (a backward in-order traversal), which is
useful for printing a tree. We start with a description of each method.

Pre-order traversal. The word “pre-order” means the root is processed
previous to its two subtrees. So, a pre-order traversal has these three steps for a
non-empty tree:

1. Process the root.
2. Process the nodes in the left subtree with a recursive call.
3. Process the nodes in the right subtree with a recursive call.

At the end of this section we’ll give an extremely general implementation of
these three steps, which will allow you to do any kind of processing on each
node. For now, let’s look at a simpler case, where we just want to print the

pre-order: the 
root is 
processed
prior to its two 
subtrees
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contents of each node. In this case we would add this template function to the
binary tree functions of Section 10.3:

template <class Item>
void preorder_print(const binary_tree_node<Item>* node_ptr)
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree).
// Postcondition: If node_ptr is non-NULL, then the data of *node_ptr and
// all its descendants have been written to cout with the << operator, using 
// a pre-order traversal.
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

std::cout << node_ptr->data( ) << std::endl;
preorder_print( node_ptr->left( ) );
preorder_print( node_ptr->right( ) );

}
}

Notice how the processing of the two subtrees is accomplished with recursive
calls. It’s also important to see that pointers to the roots of the left and right sub-
trees of the original node are passed as arguments to the recursive calls.

Let’s look at an execution of the pre-order traversal in more detail. We’ll trace
preorder_print, applied to the binary tree shown here:

Suppose that our node_ptr points to the shaded root in the diagram. The func-
tion’s first step is to print the number at the root, so after this step, the only num-
ber printed is 14 (from the root).

The function’s second step makes a recursive call, with a pointer to the root
node of the left subtree. In effect, the recursive call says “do a pre-order traversal
of the left subtree.” To illustrate that we are now doing a traversal of a subtree,
we will temporarily hide everything except the left subtree, as shown here:

9 53

13

17 11

14
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In this recursive call, the node_ptr points to the shaded node containing 17.
The first step of the recursive call is to print the number at the node_ptr, so
after that step the total output contains two numbers:

14
17

The second step of the recursive call is to make yet another recursive call,
with the argument being its own node_ptr->left( ). In other words, this sec-
ond recursive call will begin at the shaded node containing 9 in this drawing:

We now have three function calls that are active: the original function call with
the pointer to the root (containing 14), the first recursive call with a pointer to
the left child of the root (containing 17), and the second recursive call with a
pointer to the shaded node as shown (containing 9). This second recursive call
carries out its appointed task by first printing a 9. After this, the total output con-
sists of these three lines:

14
17
9

9 53

13

17 11

14

9 53

13

17 11

14
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Once again, the function makes a recursive call. But this time the argument
node_ptr->left( ) is NULL, indicating that there is no left subtree of the cur-
rent node_ptr, so the function call returns. Where does it return to? It returns to
the place where it was called, with the node_ptr pointing to the node with 9,
and executing the code at the spot marked here with an arrow:

if (node_ptr != NULL)
{

std::cout << node_ptr->data( ) << std::endl;
preorder_print( node_ptr->left( ) );
preorder_print( node_ptr->right( ) );

}

At this point in the recursive call, we have already printed the 9 and processed
the empty left subtree. So the next step will make another recursive call to pro-
cess the right subtree. The node_ptr in this recursive call points to the node
with 13, in this drawing:

This function call prints the number 13, so that the entire output now has four
numbers:

14
17
9
13

Both the left and right subtrees are empty for the node containing 13. So the
recursive calls made at this level (to process those two empty subtrees) will do
no work. The recursive call, which printed 13, returns. Where do matters go
from there? Can you finish tracing the pre-order traversal? By the time the last
recursive call has returned, we’ve “visited” every node in the tree, and the num-
bers have been printed out, in this order:

when the 
recursive call 
returns,
execution
continues at this 
spot

9 53

13

17 11

14
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14
17
9
13
53
11

In-order traversal. The only change for an in-order traversal is that the root is
processed in between the processing of its two subtrees. Here are the three steps
for a non-empty tree:

1. Process the nodes in the left subtree with a recursive call.
2. Process the root.
3. Process the nodes in the right subtree with a recursive call.

The implementation of an in-order print function is a rearrangement of the pre-
order print:

template <class Item>
void inorder_print(const binary_tree_node<Item>* node_ptr)
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree).
// Postcondition: If node_ptr is non-NULL, then the data of *node_ptr and
// all its descendants have been written to cout with the << operator, using
// an in-order traversal.
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

inorder_print( node_ptr->left( ) );
 std::cout << node_ptr->data( ) << std::endl;

inorder_print( node_ptr->right( ) );
}

}

Post-order traversal. In a post-order traversal, the processing of the root is
postponed until last in a non-empty tree:

1. Process the nodes in the left subtree with a recursive call.
2. Process the nodes in the right subtree with a recursive call.
3. Process the root.

We’ll leave the implementation as an exercise in rearrangement.

in-order: the 
root is 
processed in 
between its 
two subtrees

post-order:
the root is 
processed
after its two 
subtrees
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Can you work out the order of the output numbers for the in-order and post-
order traversals on an example such as Figure 10.5 on page 484? You’ll be asked
to work that out in Self-Test Exercise 15 at the end of this section.

Printing the Data from a Tree’s Node

In debugging a program, the nodes of a tree are generally printed using a pre-
order traversal, printing each parent prior to its children. For example, consider
the small tree shown here, along with the output from the pre-order traversal:

14
17
9
13
53
11
4
99

There are two items that will make the output easier to read. The first trick is to
print some indication when a node is a leaf or when a node has only one child.
The second trick is to indent each number according to its depth in the tree.
Each number will have an indentation of four times the depth of the node, as
shown here:

14
17

9
 [Empty]
 13 [leaf]

53 [leaf]
11

4 [leaf]
99 [leaf]

Each leaf node has the word [leaf] printed after the data. Each nonleaf node
has its two children printed below it with an extra four spaces of indentation.
For example, the node containing 17 has a left child (containing 9) and a right
child (containing 53). Notice that the node containing 9 has only a right child. In
the spot where the left child would be printed if it existed is the word [Empty].

The function to carry out this kind of printing is a pre-order traversal with one
extra parameter to carry information about the depth of each node. The imple-
mentation is shown at the top of the next page.

4 999 53

13

17 11

14
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template <class Item, class SizeType>
void print

(const binary_tree_node<Item>* node_ptr, SizeType depth)
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree). If the pointer is not
// NULL, then depth is the depth of the node pointed to by node_ptr. 
// Postcondition: A representation of *node_ptr and all its descendants have 
// been written to cout with the << operator. Each node is indented four 
// times its depth.
// Library facilities used: cstdlib, iomanip, iostream
{

std::cout << std::setw(4*depth) << ""; // Indentation
if (node_ptr == NULL)
{ // Fallen off the tree

std::cout << "[Empty]" << std::endl;
}
else if (node_ptr->is_leaf( ))
{ // A leaf

std::cout << node_ptr->data( );
std::cout << " [leaf]" <<std::endl;

}
else
{ // A nonleaf

std::cout << node_ptr->data( ) << std::endl;
print(node_ptr->right( ), depth+1);
print(node_ptr->left( ), depth+1);

}
}

The statement  prints the empty
string (that is, ""), with a “field width” of 4*depth. The result is that 4*depth
spaces are printed before printing the node’s data. (The setw function from
iomanip sets the field width of the next item that is printed.).

The Problem with Our Traversals

The different binary tree traversals visit each node in a tree, and processing is
done at each node. For the specific traversals that we have seen, the “process-
ing” was simply printing the value of the contents of the node. But in general,
we’d like to be able to do any kind of processing—not just printing. On the sur-
face, this is not difficult. We can just replace the cout statement in the traversal
function with some other form of processing (or perhaps we could get our effi-
cient friend Jervis to do this). But there are two problems with the replacement
strategy:

1. Suppose that our boss Judy wants to do 3 different kinds of processing, or
worse yet, 3000 kinds of processing. Jervis would need to write 3000 dif-
ferent functions, each of which is nearly the same as all the others.

std::cout << std::setw(4*depth) << "";
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2. The writer of the binary tree class should not have to anticipate every kind
of processing that a user may desire. In fact, the writer of the class often
will have no contact with the programmer (Judy) who uses the class. Even
if there is contact, Judy might not want to tell the other programmer about
this processing. “Mind your own business,” Judy would say to the other
programmer. “Just give me one function that is capable of doing any kind
of processing.”

a different 
approach uses 
function objects

In C++, it is possible to write just one function that is capable of doing a tree
traversal and carrying out virtually any kind of processing at the nodes. One
approach, using C++ function objects, is described in the tree projects at
www.cs.colorado.edu/~main/projects. Another solution uses a new kind of
parameter, which is actually a function itself. A few examples can help explain
how a parameter can be a function.

A Parameter Can Be a Function
Here is the interesting idea that will lead us to a solution to the traversal problem:

The idea underlies the fact that some problems cannot be solved by any algo-
rithm. If you want to pursue that startling result you might read Douglas
Hofstadter’s book Gödel, Escher, Bach: An Eternal Golden Braid. But our own
use for the idea is more mundane. We merely want to write some simple func-
tions where some of the parameters are other functions.

As a first example, we’ll write a function called apply, with three arguments:
• The first argument is actually a void function that we’ll call f. The func-

tion f has one integer reference parameter of its own.
• The second argument is an array of integers called data.
• The third argument is a size_t value called n, indicating the number of

components in the array.
You can see these three parameters in the prototype of the apply function. We
have highlighted the first parameter:

void apply( , int data[ ], size_t n);

The first parameter of our apply function is no ordinary parameter. We list this
first parameter as , which means that the first parameter, f, must
be a void function with one reference parameter (an integer). The key syntactic
feature is that the parameter name, f, is followed by parentheses. Inside these
parentheses we give the types of f’s own parameters.

A parameter of a function may be a function itself.

void f(int&)

void f(int&)
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When a parameter is a function, we list that parameter as shown here:

Within the implementation of the apply function, the parameter f can be used
like any other void function with a single integer argument. Our intention is for the
apply function to take the parameter f, and apply it to each of the data elements
data[0], data[1], and so on, up to data[n-1]. Here is the implementation:

void apply( , int data[ ], size_t n)
// Precondition: data is an array with at least n components.
// Postcondition: The function f has been applied to the first
// n components of the data array.
{

size_t i;

for (i = 0; i < n; ++i)

}

As an example of how apply is used, suppose we have this function:

void seven_up(int& i)
// Postcondition: i has had 7 added to its value.
{

i += 7;
}

The seven_up function adds 7 to its reference parameter i. Now suppose that
numbers is an array of 10 integers. How can we easily add 7 to each of the 10
integers in the numbers array? Here’s the solution, using apply:

apply(seven_up, numbers, 10);

This use of the apply function executes seven_up(data[0]), and then
seven_up(data[1]), and so on, through seven_up(data[9]), adding 7 to
each of the components of the numbers array.

Parameters That Are Functions
A parameter to a function may be a function itself. Such a
parameter is declared by writing the name of the function’s
return type (or void ), then the name of the parameter, and
finally a pair of parentheses, ( ). Inside the parentheses is a
list of the parameter types that the function needs.

Example:
void apply( , ...void f(int&)

void f(int&)

f(data[i]);

f can be used
just like any
other function.
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The power of the apply function comes from the fact that its first argument
can be any void function with a single integer reference parameter. For example,
suppose we have a function with this prototype:

void triple(int& i);
// Postcondition: i has been increased by a factor of 3.

Then the call  will increase each of the compo-
nents of numbers by a factor of 3.

A Template Version of the Apply Function

At the moment, the apply function applies a function to every component in an
array of integers. The function becomes more useful if we write it as a template
function, where the component type of the array is specified by the template
parameter. Here is one way to write the new version of apply:

template <class Item, class SizeType>
void apply( , Item data[ ], SizeType n)
// Precondition: data is an array with at least n components.
// Postcondition: The function f has been applied to the first
// n components of the data array.
// Note: Item may be any type. SizeType may be any of the
// integer or const integer types.
{

size_t i;

for (i = 0; i < n; ++i)

}

In this template function, the template parameter Item is the component type of
the array, and a second template parameter, SizeType, is the data type of the
argument that specifies the array size. (See the Pitfall on page 299 for the reason
to use a template parameter instead of simply using size_t.)

The new apply function works fine. For example, suppose we have a function
with this prototype:

void convert_to_upper(char& c);
// Postcondition: If c was a lowercase letter, then it has been converted to 
// the corresponding uppercase letter; otherwise c is unchanged.

Now suppose that name is an array of 10 characters. We can convert all these
characters to uppercase with a single call to the apply template function:

apply(convert_to_upper, name, 10);

apply(triple, numbers, 10)

void f(Item&)

f(data[i]);
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This statement instantiates the apply function with the Item type as a char-
acter and the SizeType as an integer. The function call then applies
convert_to_upper to each of the 10 characters of name.

More Generality for the Apply Template Function
There’s another improvement we can make to the apply function. At the
moment, the first argument to the apply function must have the form:

void f(Item&);

This strict form precludes many functions that we might want to use. For exam-
ple, f cannot have a value parameter (it must have a reference parameter). To
obtain more generality with the function f, we can add a third template parame-
ter, as shown in the highlights here:

template < , class Item, class SizeType>
void apply( , Item data[ ], SizeType n)
// Precondition: data is an array with at least n components.
// Postcondition: The function f has been applied to the first
// n components of the data array.
// Note:
//  Item may be any type. SizeType may be any of
// the integer or const integer types.
{

size_t i;

for (i = 0; i < n; ++i)

}

We now have an extra template parameter, Process, which is used as the type
of the first argument, f. Using a template parameter in this way allows the type
of the actual first argument to vary. In particular, the first argument to apply can
be any function that “may be called with a single Item argument.” Here are
some common examples using the numbers array of 10 integers:

void triple(int& i); // Postcondition: i has been multiplied by three.

// Multiply each number in the array by three:
apply(triple, numbers, 10);

As a second example, the function may have a value parameter (instead of a ref-
erence parameter):

Compatibility
with Different 
C++ Compilers

Some C++ 
compilers don’t 
support the 
use of a 
template
function with a 
parameter that 
is a function 
itself.
Templates still 
seem to be a 
sticky point in 
compatibility
between
different
compilers.

class Process
Process f

Process is the type of a function f that may be called with a 
single Item argument.

f(data[i]);
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void print(int i); // Postcondition: i has been printed to cout.

// Print all the numbers to cout:
apply(print, numbers, 10);

As one last example, consider an array called words containing 10 strings:
void print(const string& s); // Postcondition: s has printed to cout. 

// Print all the words to cout:
apply(print, words, 10);

Template Functions for Tree Traversals
Our apply function applies a specified function to each of the components of an
array. We can use the same technique to apply a specified function to every item
in a binary tree. For example, this template function will apply a function f to
all the items in a binary tree, using a pre-order traversal:

template <class Process, class BTNode>
void preorder(Process f, BTNode* node_ptr)
// Precondition: node_ptr is a pointer to a node in a binary tree (or
// node_ptr may be NULL to indicate the empty tree).
// Postcondition: If node_ptr is non-NULL, then the function f has been
// applied to the contents of *node_ptr and all of its descendants, using a
// pre-order traversal.
// Note: BTNode may be a binary_tree_node or a const binary tree node.
// Process is the type of a function f that may be called with a single
// Item argument (using the Item type from the node).
// Library facilities used: cstdlib
{

if (node_ptr != NULL)
{

f( node_ptr->data( ) );
preorder(f, node_ptr->left( ) );
preorder(f, node_ptr->right( ) );

}
}

Within the implementation of preorder, we can use f just like any other func-
tion that needs a single Item argument. In particular, look at the statement:

f( node_ptr->data( ) );

This statement passes the data from one node to the function f. We don’t even
need to know exactly what f does. Perhaps it is simply a function to print the
data, or maybe it does a more complicated computation. As the writer of the
preorder function, we don’t need to worry about those details. We have truly
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managed to provide just one function that is capable of doing any kind of
processing.

We can add our new preorder function to the binary tree toolkit from Section
10.3. We can also add similar inorder and postorder functions, plus the nice
print function that we developed with a backward in-order traversal. All these
items are collected together in the header file (Figure 10.10, bintree.h) and
implementation file (Figure 10.11, bintree.template). We also added a func-
tion called tree_size to compute the number of nodes in a binary tree.

Self-Test Exercises for Section 10.4

15. Look at the tree in Figure 10.5 on page 484. In what order are the letters
printed for an in-order traversal? What about a post-order traversal?
What about a backward in-order traversal?

16. Suppose we do a traversal of the tree in Figure 10.1 on page 475, print-
ing out the numbers in the order 13, 9, 53, 17, 19, 7, 4, 11, 14. What kind
of traversal did we do? In what order are the numbers printed for the
other kinds of traversals?

17. Suppose that you have a tree where the left subtree contains 3000 nodes
and the right subtree contains 100 nodes. For each kind of traversal, how
many nodes are processed before the root node?

18. Consider the tree in the margin. Write the order of the nodes processed in
a pre-order, in-order, and post-order traversal. Draw the output that
would result from this tree with the tree-printing function from this
section.

19. Write a function with the prototype . The func-
tion prints a line of i stars. How can you easily apply the stars function
to every node in a binary tree using an in-order traversal?

20. Here is an output from the tree-printing function for a tree of integers:
45

9
17

20
 [Empty]

3
54

53
54

21. Which of the traversal methods make sense for general trees where there
is no limit to the number of children that a node may have?

3 5

6 7

2 4

1a tree. . .

void stars(int i);

For this exercise, draw the 
binary tree that this represents.
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A Header File
// FILE: bintree.h (part of the namespace main_savitch_10)
// PROVIDES: A template class for a node in a binary tree and functions for 
// manipulating binary trees. The template parameter is the type of data in each node.
//
// TYPEDEF for the binary_tree_node<Item> template class:
// Each node of the tree contains a piece of data and pointers to its children. The 
// type of the data (binary_tree_node<Item>::value_type) is the Item type from the template
// parameter. The type may be any of the C++ built-in types (int, char, etc.), or a class with
// a default constructor, and an assignment operator.
//
// CONSTRUCTOR for the binary_tree_node<Item> class:
//
//
//
//
//
// Postcondition: The new node has its data equal to init_data,
// and its child pointers equal to init_left and init_right. 
//
// MEMBER FUNCTIONS for the binary_tree_node<Item> class:
// <----- const version
// and
// <----- non-const version
// Postcondition: The return value is a reference to the data from this binary_tree_node.
//
// <----- const version
// and
// <----- non-const version
// and
// <----- const version
// and
// <----- non-const version
// Postcondition: The return value is a pointer to the left or right child (which will be
// NULL if there is no child).
//
//
// Postcondition: The binary_tree_node now contains the specified new data.
//
//
// and
//
// Postcondition: The binary_tree_node now contains the specified new link to a child.

(continued)

 FIGURE  10.10 Header and Implementation Files for the Binary Tree Node

binary_tree_node(
const Item& init_data = Item( ),
binary_tree_node<Item>* init_left = NULL,
binary_tree_node<Item>* init_right = NULL

)

const Item& data( ) const

Item& data( )

const binary_tree_node* left( ) const

binary_tree_node* left( )

const binary_tree_node* right( ) const

binary_tree_node* right( )

void set_data(const Item& new_data)

void set_left(binary_tree_node* new_link)

void set_right(binary-tree_node* new_link)



514 Chapter 10 / Trees

 (FIGURE  10.10 continued)

//
// Postcondition: The return value is true if the node is a leaf; otherwise the return value
// is false.
//
// NONMEMBER FUNCTIONS to maniplulate binary tree nodes:
//
//
// Precondition: node_ptr is a pointer to a node in a binary tree (or node_ptr may be NULL
// to indicate the empty tree).
// Postcondition: If node_ptr is non-NULL, then the function f has been applied to the
// contents of *node_ptr and all of its descendants, using an in-order traversal.
// Note: BTNode may be a binary_tree_node or a const binary tree node.
// Process is the type of a function f that may be called with a single
// Item argument (using the Item type from the node).
//
//
//
// Same as the in-order function, except with a post-order traversal.
//
//
//
// Same as the in-order function, except with a pre-order traversal.
//
//
//
// Precondition: node_ptr is a pointer to a node in a binary tree (or node_ptr may be 
// NULL to indicate the empty tree). If the pointer is not NULL, depth is the depth of the 
// node pointed to by node_ptr.
// Postcondition: A representation of *node_ptr and all its descendants have been written
// to cout with the << operator. Each node is indented four times its depth.
//
//
//
// Precondition: root_ptr is the root pointer of a binary tree (which may be NULL for the
// empty tree).
// Postcondition: All nodes at the root or below have been returned to the heap, and
// root_ptr has been set to NULL.
//
//
//
// Precondition: root_ptr is the root pointer of a binary tree (which may be NULL for the
// empty tree).
// Postcondition: A copy of the binary tree has been made, and the return value is a 
// pointer to the root of this copy. (continued)

bool is_leaf( )

template <class Process, class BTNode>
void inorder(Process f, BTNode* node_ptr)

template <class Process, class BTNode>
void postorder(Process f, BTNode* node_ptr)

template <class Process, class BTNode>
void preorder(Process f, BTNode* node_ptr)

template <class Item, class SizeType>
void print(const binary_tree_node<Item>* node_ptr, SizeType depth)

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr)

template <class Item>
binary_tree_node<Item>* tree_copy(const binary_tree_node<Item>* root_ptr)
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 (FIGURE  10.10 continued)

//
//
// Precondition: node_ptr is a pointer to a node in a binary tree (or node_ptr may be
// NULL to indicate the empty tree).
// Postcondition: The return value is the number of nodes in the tree.

#ifndef BINTREE_H
#define BINTREE_H
#include <cstdlib> // Provides NULL and size_t

namespace main_savitch_10
{

template <class Item>
class binary_tree_node
{

};

// NONMEMBER FUNCTIONS for the binary_tree_node<Item>:
template <class Process, class BTNode>
void inorder(Process f, BTNode* node_ptr);

template <class Process, class BTNode>
void preorder(Process f, BTNode* node_ptr);

template <class Process, class BTNode>
void postorder(Process f, BTNode* node_ptr);

template <class Item, class SizeType>
void print(const binary_tree_node<Item>* node_ptr, SizeType depth);

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr);

template <class Item>
binary_tree_node<Item>* tree_copy(const binary_tree_node<Item>* root_ptr);

template <class Item>
std::size_t tree_size(const binary_tree_node<Item>* node_ptr);

}

#include "bintree.template" // Include the implementation.
#endif

template <class Item>
size_t tree_size(const binary_tree_node<Item>* node_ptr)

See Figure 10.6 on page 486 for the class definition that goes here.

www.cs.colorado.edu/~main/chapter10/bintree.h WWW



516 Chapter 10 / Trees

An Implementation File
// FILE: bintree.template
// IMPLEMENTS: The binary_tree node class (see bintree.h for documentation). 
#include <cassert> // Provides assert
#include <cstdlib>  // Provides NULL, std::size_t
#include <iomanip> // Provides std::setw
#include <iostream> // Provides std::cout

namespace main_savitch_10
{

// Library facilities used: cstdlib
{

if (node_ptr != NULL)
{

 inorder(f, node_ptr->left( ));
f( node_ptr->data( ) );
inorder(f, node_ptr->right( ));

}
}

// Library facilities used: cstdlib
{

if (node_ptr != NULL)
{

 postorder(f, node_ptr->left( ));
postorder(f, node_ptr->right( ));
f( node_ptr->data( ) );

}
}

// Library facilities used: cstdlib
{

if (node_ptr != NULL)
{

f( node_ptr->data( ) );
preorder(f, node_ptr->left( ));
preorder(f, node_ptr->right( ));

}
} (continued)

 FIGURE  10.11 Second Version of the Implementation File for the Binary Tree Toolkit

template <class Process, class BTNode>
void inorder(Process f, BTNode* node_ptr)

template <class Process, class BTNode>
void postorder(Process f, BTNode* node_ptr)

template <class Process, class BTNode>
void preorder(Process f, BTNode* node_ptr)
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 (FIGURE  10.11 continued)

// Library facilities used: iomanip, iostream, stdlib
{

std::cout << std::setw(4*depth) << ""; // Indentation
if (node_ptr == NULL)
{ // Fallen off the tree

std::cout << "[Empty]" << std::endl;
}
else if (node_ptr->is_leaf( ))
{ // A leaf

std::cout << node_ptr->data( );
std::cout << " [leaf]" <<std::endl;

}
else
{ // A nonleaf

std::cout << node_ptr->data( ) << std::endl;
print(node_ptr->right( ), depth+1);
print(node_ptr->left( ), depth+1);

}
}

// Library facilities used: cstdlib
{

if (node_ptr == NULL)
return 0;

else
return
1 + tree_size(node_ptr->left( )) + tree_size(node_ptr->right( ));

}
}

template <class Item, class SizeType>
void print(const binary_tree_node<Item>* node_ptr, SizeType depth)

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr)

See the implementation on page 487.

template <class Item>
binary_tree_node<Item>* tree_copy(const binary_tree_node<Item>* root_ptr)

See the implementation on page 488.

template <class Item>
std::size_t tree_size(const binary_tree_node<Item>* node_ptr)

www.cs.colorado.edu/~main/chapter10/bintree.template WWW
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10.5 BINARY SEARCH TREES

Lucy looked very hard between the trees and could just see
in the distance a patch of light that looked like daylight.
“Yes,” she said, “I can see the wardrobe door.”

C.S. LEWIS
The Lion, the Witch and the Wardrobe

Perhaps you thought that you would never see another bag after Chapter 3 (the
bounded bag), Chapter 4 (the bag with a dynamic array), Chapter 5 (the linked-
list bag), and Chapter 6 (the bag as a template class). But binary trees offer yet
another way to improve our bag class, so we will have one last look at bags (the
last look, we promise).

The Binary Search Tree Storage Rules
Binary trees offer an improved way of implementing the bag class. The
improvement generally performs faster than our previous bags. Or at least
sometimes the improved approach may be taken. The improved implementation
requires that the bag’s entries can be compared with the usual comparison
operators <, >, ==, and so on. These operators must form a strict weak ordering,
as described in Figure 3.12 on page 139. Apart from requiring a strict weak
ordering, the new bag class has a specification that is identical to our earlier
bags. Therefore, a programmer who is using the bag class may switch to the
new, improved bag without difficulty.

So, what good do we obtain from the ordering of the elements? We’ll take
advantage of the order to store the items in the nodes of a binary tree, using a
strategy that will make it easy to find items. The strategy is to follow a collection
of rules called the binary search tree storage rules, defined here:

For example, suppose we want to store the numbers {3, 9, 17, 20, 45, 53, 53,
54} in a binary search tree. Figure 10.12(a) shows a binary search tree with these
numbers. You can check that each node follows the binary search tree storage
rules. Binary search trees also can store a collection of strings, or real numbers,
or anything that can be compared using some sort of less-than comparison.

Can you see an advantage to storing a bag in a binary search tree rather than
in an array or a linked list? The previous implementations of the bag class, using

Binary Search Tree Storage Rules
In a binary search tree, the entries of the nodes can be
compared with a strict weak ordering. These two rules are
followed for every node n:

1. The entry in node n is never less than an entry in its left
subtree (though it may be equal to one of these entries).

2. The entry in node n is less than every entry in its right
subtree.
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an array or a linked list, have a
striking inefficiency: When we
count the number of occurrences
of an entry in the bag, it is neces-
sary to examine every entry of the
bag. Even if we are interested only
in whether or not an entry appears
in the bag, we will often look at
many entries before we stumble
across the one we seek.

With a binary search tree,
searching for an entry is often
much quicker. For example, sup-
pose we’re looking for the number
16 in the tree of Figure 10.12(a).
We’ll start at the root and compare
16 to the root’s number. Since 16
is less than the root’s number (45),
we immediately know that 16 can
appear only in the left subtree—if
it appears at all. In Figure 10.12(b),
we show the area where 16 might
appear, based on knowing that 16
is less than the value at the root.
Next we’ll compare 16 with the
root of the left subtree. Since 16 is
greater than 9, this eliminates
another portion of the tree, as
shown in 10.12(c).

The number 16 is smaller than
the next point on the tree (17), so
we should continue to the left . . .
but we’ve run out of tree. At this
point, we can stop and conclude
that 16 is nowhere in the binary
search tree even though we only
looked at the three numbers 45, 9, and 17. In fact, the most we’ll ever have to
look at is the depth of the tree plus one—four entries in this case.

This efficiency is the motivation for representing bags with a binary search
tree. In the remainder of this section, we’ll use binary search trees to implement
the bag class, as specified in the header file of Figure 10.13. This is the same
specification we have used before, but we have added a restriction on the item
type, requiring the correct kind of less-than operator.

FIGURE  10.12 Using a Binary Search Tree

3 17

20

9 53

45

5453

(a) An example of 
a binary search 
tree.

(b) This shows the 
portion of the tree 
where 16 might 
appear, based on 
the fact that 16 is 
less than the value 
(45) at the root.

3 17

20

9 53

45

5453

(c) This shows the 
portion of the tree 
where 16 might 
appear, based on 
the fact that 16 is 
greater than 9.3 17

20

9 53

45

5453
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A Header File
// FILE: bag6.h (part of the namespace main_savitch_10)
// TEMPLATE CLASS PROVIDED: bag<Item> (a container template class for a collection of items)
//
// TYPEDEFS for the bag<Item> class:
//
// bag<Item>::value_type is the data type of the items in the bag. It may be any of the
// C++ built-in types (int, char, etc.), or a class with a default constructor, a copy 
// constructor, an assignment operator, and a less-than operator forming a strict
// weak ordering.
//
//
// bag<Item>::size_type is the data type of any variable that keeps track of how many
// items are in a bag.
//
// CONSTRUCTOR for the bag<Item> class:
//
// Postcondition: The bag is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the bag<Item> class:
//
// Postcondition: All copies of target have been removed from the bag. The return value
// is the number of copies removed (which could be zero).
//
//
// Postcondition: If target was in the bag, then one copy of target has been removed from
// the bag; otherwise the bag is unchanged. A true return value indicates that one copy
// was removed; false indicates that nothing was removed.
//
//
// Postcondition: A new copy of entry has been inserted into the bag.
//
//
// Postcondition: Each item in addend has been added to this bag.
//
// CONSTANT MEMBER FUNCTIONS for the bag<Item> class:
//
// Postcondition: Return value is the total number of items in the bag.
//
//
// Postcondition: Return value is number of times target is in the bag.
//
// NONMEMBER FUNCTIONS for the bag class:
//
// Postcondition: The bag returned is the union of b1 and b2. (continued)

 FIGURE  10.13 Header File for Our Sixth Bag Class

bag<Item>::value_type

bag<Item>::size_type

bag( )

size_type erase(const Item& target)

bool erase_one(const Item& target)

void insert(const Item& entry) 

void operator +=(const bag& addend)

size_type size( ) const

size_type count(const Item& target) const

bag operator +(const bag& b1, const bag& b2) 
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 (FIGURE  10.13 continued)

// VALUE SEMANTICS for the bag class:
// Assignments and the copy constructor may be used with bag objects.
// DYNAMIC MEMORY USAGE by the bag: 
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// the constructors, insert, operator +=, operator +, and the assignment operator.

#ifndef BAG6_H 
#define BAG6_H
#include <cstdlib> // Provides NULL and size_t
#include "bintree.h" // Provides binary_tree_node and related functions

namespace main_savitch_10
{

template <class Item>
class bag

    {
public:

// TYPEDEFS
typedef std::size_t size_type;
typedef Item value_type;
// CONSTRUCTORS and DESTRUCTOR

        bag( );
        bag(const bag& source);
        ~bag( );
        // MODIFICATION functions
        size_type erase(const Item& target);

bool erase_one(const Item& target);
void insert(const Item& entry);
void operator +=(const bag& addend);
void operator =(const bag& source);

        // CONSTANT functions
        size_type size( ) const;
        size_type count(const Item& target) const;

private:
binary_tree_node<Item> *root_ptr; // Root pointer of binary search tree

};

// NONMEMBER functions for the bag<Item> template class
template <class Item>
bag<Item> operator +(const bag<Item>& b1, const bag<Item>& b2);

}

#include "bag6.template" // Include the implementation.
#endif

Other private members may be added if you need them.

www.cs.colorado.edu/~main/chapter10/bag6.h WWW
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Our Sixth Bag—Class Definition

The second part of Figure 10.13 on page 521 shows the class definition for our
sixth and final bag. In our definition, the bag’s only member variable is a root
pointer for the binary search tree. This tree’s nodes contain the entries of the
bag. If the bag is empty, then the root pointer will be NULL. We could add other
member variables—for example, a count of the number of nodes would be con-
venient. But limiting ourselves to only the root pointer will allow us to clearly
focus on the necessary tree algorithms. So, the bag definition in Figure 10.13
looks like this:

template <class Item>
class bag
{
public:

private:
binary_tree_node<Item> *root_ptr; // Root pointer

};

Here’s a formal statement of the invariant of our new bag:

Our Sixth Bag—Implementation of Some Simple Functions

Now we’re ready to dive into the implementations of the bag functions. For the
most part, we will provide only pseudocode that you can implement yourself. 

Constructors. The default constructor sets the root pointer to NULL. The copy
constructor needs to make a new copy of the source’s tree, and point root_ptr
to the root of this copy. Use the tree_copy function to do the copying.

The destructor. The destructor needs to return all nodes to the heap. Again,
you should make use of an appropriate function from bintree.h.

Overloading the assignment operator. Since our bag uses dynamic memory,
we must overload the assignment operator. The assignment operator works like
the copy constructor with two preliminary steps: (1) First check for the possibil-
ity of a self-assignment by comparing (this == &source). If these two pointers

Invariant for the Sixth Bag

1. The items in the bag are stored in a binary search tree.
2. The root pointer of the binary search tree is stored in the

member variable root_ptr (which may be NULL for an
empty tree).

Prototypes of public member functions go here. 
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are equal, then we have a self-assignment such as . In this case, the func-
tion returns with no further work. (2) If there is no self-assignment, then before
we copy the source tree we must release all memory used by the nodes of the
current tree. Use tree_clear to release memory.

The size member function. The size member function simply returns the
answer from tree_size(root_ptr) using the tree_size function from
bintree.h.

Counting the Occurrences of an Item in a Binary Search Tree

The count member function counts the number of occurrences of an item called
target. We’ll keep track of these occurrences in a local variable called many
(which is initialized to zero). The important point to keep in mind is that we will
not look at every entry in the binary search tree. Instead, we’ll have a local
pointer called cursor, which is initialized to the root pointer. We’ll use a loop to
move the cursor down through the tree, always moving along the path where the
target might occur. At each point in the tree we have four possibilities:

1. The cursor can become NULL, indicating that we’ve moved off the bottom
of the tree. In this case, we have counted all the occurrences of the target.
So the loop can end, and we should return the current value of many.

2. The target might be smaller than the data at the cursor node. In this case,
the target can appear only in the left subtree. For example, suppose we are
counting occurrences of the string Denver in a binary search tree of
strings (using the lexicographic order on our string class). The cursor’s
data might be Pittsburgh, and the situation looks like this:

In this situation, we’ll continue our search by assigning:
cursor = cursor->left( );

3. The data at the cursor node might be smaller than the target. This is simi-
lar to the previous case, except that we must continue our search to the
right instead of the left, using the assignment:

cursor = cursor->right( );

4. The target might equal the data at the cursor node. In this case we add one
to many and continue the search to the left (since items to the left are less
than or equal to the item at the cursor node).

The implementation of these steps is straightforward using a while-loop.

b = b

...but Denver
cannot appear

in the right
subtree

Denver might
appear in the 
left subtree...

Pittsburgh
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Inserting a New Item into a Binary Search Tree

The insert member function adds a new item to a binary search tree, using this
prototype:

void insert(const Item& entry);

We suggest that you handle one special case first: When the first entry is
inserted, simply call .

The other case is when there are already some other entries in the tree. In this
case, we’ll set a cursor equal to the current root pointer, then we pretend to
search for the exact entry that we are trying to insert. But the search runs a bit
differently than a real search. The main difference is that we stop the search just
before the cursor falls off the bottom of the tree, and we insert the new entry at
the spot where the cursor was about to fall off. For example, consider the task of
inserting 16 into this binary search tree:

The cursor starts at the shaded node (with 45). If we were searching for the 16,
we would continue the search to the left. So, we move our cursor to the left,
resulting in the cursor pointing to the node that contains 9:

Again pretend that you are searching for the 16 instead of inserting it, so that
now the cursor moves right to the node containing 17:

root_ptr = new binary_tree_node<Item>(entry)

3 17

9 53

45

5453

3 17

9 53

45

5453

3 17

9 53

45

5453
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At this point, an ordinary search would continue to the left, stepping off the
bottom of the tree. But instead, we insert the new entry at this position, resulting
in this tree:

To implement the scheme, we suggest a boolean variable called done, which
is initialized to false. We then have a loop that continues until done becomes true.
Each iteration of the loop handles these two cases:

1. Suppose the new entry is less than or equal to the data at the cursor node.
In this case, check the left pointer. If the pointer to the left child is NULL,
then create a new node containing the entry, make this node the left child,
and set done to true. On the other hand, if the left pointer is not NULL, then
move the cursor to the left and continue the search with the single assign-
ment statement:

cursor = cursor->left( );

2. Suppose the new entry is greater than the data at the cursor node. In this
case, follow the same procedure as Case 1, but use the right pointer
instead of the left pointer.

After the loop ends, the function returns.

Removing an Item from a Binary Search Tree

The erase member function removes all copies of a specified item from the
tree, and the erase_one member function allows us to remove a specified item
from a binary search tree. Their implementations are similar, so we will focus
on just erase_one, with this prototype:

bool erase_one(const Item& target);

It is possible to implement the erase_one function on its own, but the direct
solution deals with many special cases and must also maintain a precursor simi-
lar to the precursor for removing a node from a linked list. Because of these
complications, we prefer an indirect method that uses two auxiliary functions
with the following specifications:

16

3 17

9 53

45

5453
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template <class Item>
bool bst_remove(

binary_tree_node<Item>*& root_ptr,
const Item& target

);
// Precondition: root_ptr is a root pointer of a binary search tree (or may
// be NULL for the empty tree).
// Postcondition: If target was in the tree, then one copy of target has been
// removed, root_ptr now points to the root of the new (smaller) binary 
// search tree, and the function returns true. Otherwise, if target was not 
// in the tree, then the tree is unchanged, and the function returns false.

template <class Item>
void bst_remove_max(

binary_tree_node<Item>*& root_ptr,
Item& removed

);
// Precondition: root_ptr is a root pointer of a non-empty binary search 
// tree.
// Postcondition: The largest item in the binary search tree has been
// removed, and root_ptr now points to the root of the new (smaller) binary 
// search tree. The reference parameter, removed, has been set to a copy
// of the removed item.

You will need to implement these two functions at the top of your implementa-
tion file, bag6.template. The only purpose of these functions is for your use,
making the bag’s removal function easier. Since you don’t intend for other pro-
grammers to use these functions, there is no need to mention them in your
header file. Instead, you should list their precondition/postcondition contracts
with their implementations.

With these two functions in place, the bag’s erase_one function is simply
implemented with a function call bst_remove(root_ptr, target). Now we
can turn to our two auxiliary functions.

The bst_remove function. The bst_remove function has a recursive imple-
mentation to remove the target. Here are the cases:

1. The binary search tree could be empty, indicated by a root pointer that is
NULL. If there’s nothing in the tree, then there’s nothing to remove, and the
function returns with no work.

2. The tree could be non-empty, with the target less than the root entry. In
this case, make a recursive call to delete the target from the left subtree,
like this:

bst_remove(root_ptr->left( ), target);

This recursive call works correctly because root_ptr->left( ) is the
root pointer for a smaller binary search tree (that is, the left subtree).
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3. The tree could be non-empty, with the root entry less than the target.
Again, make a recursive call, using the pointer to the right subtree.

4. The tree could be non-empty, with the target equal to the root entry. We
have found a copy of the target and must somehow remove it from the
tree. But be careful! We can’t simply delete this node, because it may
have children and we don’t want those children to be disconnected from
the rest of the tree. To avoid orphaning those children, we’ll deal with
Case 4 in two separate cases:
Case 4a: The root node has no left child.
Case 4b: The root node does have a left child.
The pseudocode for these two cases is described below.

Case 4a. In this case of the bst_remove function, the root data is equal to the
target, and the root node has no left child. For example, we might be deleting
Pittsburgh from this subtree:

In this case, we can delete the root entry and make the right child (Seattle) the
new root node. To actually implement this root shift requires three steps:

oldroot_ptr = root_ptr;
root_ptr = root_ptr->right( );
delete oldroot_ptr;

The variable oldroot_ptr is a local variable that we make point to the old root
(the root that we are about to get rid of). We then move the actual root pointer
down to its right child. And finally we execute , which
returns the old root node to the heap.

Does this scheme work correctly even if there is no right child? Yes, it does.
With no right child, the statement  will set
the root pointer to NULL, indicating that there are no nodes left in this particular
tree.

Case 4b. In this case, the root node does have a left child, so we can’t simply
move the root pointer to the right (as we did in case 4a). We could check
whether there is a right child, and if not, we could certainly move the root
pointer left—but we have a more general plan in mind. The plan is to find some
entry in the non-empty left subtree, and move this entry up to the root. But

The left 
subtree is 
empty.

Pittsburgh

Seattle

WichitaRochester

delete old_root_ptr.

root_ptr = root_ptr->right( )
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which entry? Here’s an example to help you figure out which entry should be
taken from the left subtree to replace the root entry. In this example, we are
deleting Pittsburgh from this subtree:

The plan is to replace the root with one of the three entries from the left sub-
tree. Which of these entries can safely be moved to the root? Not Atlanta, because
the remaining entries in the left subtree (Chicago and Denver) would be larger
than the new root (Atlanta). Not Chicago, because that would leave the larger
string Denver in the left subtree. What about Denver? Yes, that will do, since
none of the entries that remain in the left subtree are larger than Denver. Here is
the resulting subtree after removing Denver from the left subtree and placing it
at the root:

The string Denver is the correct choice because it is the largest entry in the
left subtree. Any other choice from the left subtree will violate the binary search
tree storage rules. So, how do we delete the largest item from the left subtree, and
place this same item at the root? We can use our own bst_remove_max function
with the call:

bst_remove_max(root_ptr->left( ), root_ptr->data( ));

Now you know why we proposed the bst_remove_max function. Used in this
way, it removes the largest item from the tree with root_ptr->left( ) as its
root pointer, and it places this largest item in the root’s data field.

The bst_remove_max function. The bst_remove_max function remains to be
implemented. We’ll leave that as an exercise in recursive thinking, with just two
cases: (1) The base case occurs if there is no right child. In this case, the largest
item is at the root, so you can set removed equal to the data from the root, move
the root pointer down to the left, and delete the root node. (2) On the other hand,

Pittsburgh

Seattle

WichitaRochester

Chicago

DenverAtlanta

Denver

Seattle

WichitaRochester

Chicago

Atlanta
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if there is a right child, then there are larger items in the right subtree. In this
case, make a recursive call to delete the largest item from the right subtree.

The Union Operators for Binary Search Trees

The last two operations for the bag are the += and + operators.

The operator +=. The operator += has this prototype:

template <class Item>
void operator +=(const bag<Item>& addend);

This is another example of a function that will benefit from an auxiliary func-
tion. The auxiliary function that we propose is actually another bag member
function, with this specification:

template <class Item>
void bag::insert_all
(const binary_tree_node<Item>* addroot_ptr);
// Precondition: addroot_ptr is the root pointer of a binary search tree that
// is separate from the binary search tree of the bag that activated this 
// method.
// Postcondition: All the items from the addroot_ptr’s binary search tree
// have been added to the binary search tree of the bag that activated this 
// method.

Our intention is that this method is a new private member function of the bag.
Since the function is private, the specification can use private information, such
as the fact that the bag is implemented with a binary search tree. As a private
method, the prototype for insert_all must be placed with other private mem-
bers in the bag’s definition, as shown here:

template <class Item>
class bag
{
public:

...
private:

binary_tree_node<Item>* root_ptr; // Root pointer 

};

A private member function is sometimes called a helper function because it
will help the other member functions do their work. In the case of the bag, the
operator += can be implemented by using insert_all, as shown next:

void insert_all
(const binary_tree_node<Item>* addroot_ptr);
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template <class Item>
void bag<Item>::operator +=(const bag& addend)
{

binary_tree_node<Item> *addroot_ptr;

if (this == &addend)
{

addroot_ptr = tree_copy(addend.root_ptr);
insert_all(addroot_ptr);
tree_clear(addroot_ptr);

}
else

insert_all(addend.root_ptr);
}

Notice that we do have a bit of complication when the addend is the same bag
as the bag that activated the operator += (as in the statement ). In this
case we must make a second copy of the addend’s tree and call insert_all,
using the second copy rather than using the addend’s tree directly. The reason
for this complication is the restriction of insert_all’s precondition, which
requires that the tree that’s being added “is separate from the binary search tree
of the bag that activated this method.”

Now we can look at the implementation of the private member function
insert_all. The approach is to traverse the tree that we are adding, inserting a
copy of each traversed item into the bag that activated the operator. For example,
if we use a pre-order traversal, then the pseudocode for insert_all is:

if (addroot_ptr != NULL)
{

insert(addroot_ptr->data( ));
Make a recursive call to insert all of addroot_ptr’s left subtree.
Make a recursive call to insert all of addroot_ptr’s right subtree.

}

Our pseudocode explicitly uses a pre-order traversal of the nodes. If you
wish, you may use a post-order traversal instead. But avoid an in-order
traversal. The problem with an in-order traversal is that the nodes of the addend
tree will be processed in order from smallest to largest. Therefore, these nodes
will be inserted into the other bag from smallest to largest. This is a bad way to
build a binary search tree. The resulting tree ends up with a single long, narrow
path, with only right children. Sometimes such long, narrow trees are hard to
avoid. But do avoid such trees when you can, because searching and other
algorithms are inefficient when the trees lose their branching structure. In the
next chapter we will examine some specific ways to ensure that long, narrow
trees are not created.

b += b
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The operator +. This is an ordinary function (not a member function) with the
prototype:

bag<Item> operator +(const bag& b1, const bag& b2);

The function is easy to implement by using the operator +=. Look back at the
operator + from a previous bag implementation if you are uncertain.

Time Analysis and an Iterator
With the descriptions that we’ve given, you can put together the implementation
file for the new bag. We’ll carry out a time analysis of the operations after we’ve
seen a few more trees (see Section 11.3).

You might also want to add an iterator to the new bag, to allow a programmer
to step through the items of the bag one at a time. One method for implementing
an iterator is described in Programming Project 7 on page 535.

Self-Test Exercises for Section 10.5
22. Why is it bad to insert nodes from smallest to largest in a binary search

tree?
23. Build a binary search tree with the following words (inserted in this

order): blueberry, peach, apricot, pear, cherry, mango, and papaya.
24. How many comparisons are needed to search for these words in the

search tree you created in the previous exercise: pear, orange, blueberry?
25. Add a new member function to the bag. The function should print all

items in the bag from smallest to largest. (Hint: Use a traversal.)
26. Write a bag friend function called join with this prototype:

template <class Item>
void join(

bag<Item>& top,
bag<Item>& left,
bag<Item>& right

);

The precondition of the function requires that top has just one item, that
everything in left is less than or equal to the item in top, and that every-
thing in right is greater than the item in top. The postcondition requires
that top now contains everything from left and right, and that left
and right are now both empty. Your function should take constant time.

CHAPTER SUMMARY

• Trees are a nonlinear structure, with many applications, including
organizing information (such as taxonomy trees) and implementing an
efficient version of the bag class (using binary search trees). 

• Trees may be implemented with either fixed-sized arrays or dynamic data
structures. An array is particularly appropriate for complete binary trees
because of the conditions that require the nodes of a complete tree to
occur in specific locations.
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• A tree traversal consists of processing a tree by applying some action to
each node. Three common traversal methods—pre-order traversal, in-
order traversal, and post-order traversal—differ only in the order in which
the nodes are processed. A backward in-order traversal is a quick and
convenient way to print the data from a tree in a readable format.

• A parameter of a function may be a function itself.
• Using parameters that are functions, we can write extremely flexible tree

traversals, where the action applied to each node is determined by a
parameter to the traversal function.

• Binary search trees are one common application of trees, which permit us
to store a bag of ordered items in a manner where adding, deleting, and
searching for entries is potentially much faster than with a linear struc-
ture.

• Operations on trees are good candidates for recursive thinking. This is
because many tree operations include a step to process one or more sub-
trees, and this step is “a smaller version of the same problem.”

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. Here is one 
possible solution:

*
*
* *

*
*

2. Leaves: 3, 4, 6, and 7. Siblings: 2 and 4; 3 and
5; 6 and 7. Depth: three.

3. To make a full tree, add a left child and right
child to node 3, and a left and right child to the
node 4 (call them 10 and 11); add a left and
right child to each of the new nodes 10 and 11.
To make a complete tree, add a left and right
child to node 3.

4. The depth of a tree with only a root is zero.
The depth of an empty tree is often called –1.

5 and 6. Here is a solution. The depth of this tree
is three. The node containing me has a depth
of two. My ancestors are circled, and my
mother’s descendants have a big square
around them.

5.

6.

HannahTim

Granny

Mom

me! Susan

Aunt Anne

Cousin

Scott

Harry
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7. This solution is both full and complete. “Yes” answers move left, and “no” answers move right.

Are you a mammal?

Do you live in water?

Can you
 talk?

Do you have a backbone?

Do you fly?

Do you
moo?

Can you
 bark?

Do you
fly?

Do you
 hunt?

Sharp
teeth?

Slimy?

Ape

Person

Pig

Cow

Cat Mouse

BatDog Hawk

Dove

Gator

Frog Clam

Slug

Ant

Lots of
 legs?

Are you bigger than a cat?

Are you a house pet?Are you a primate?

Squid

8. One problem is determining which children of
a node actually exist.

9. We use the formulas from page 482. The par-
ent is stored at index 2499, which is (4999–1)/
2. The left child is stored at index 9999, which
is (2*4999)+1. If there were a right child, it
would be stored at index 10,000 (which is
(2*4999)+2). But since the last index is 9999,
there is no right child.

10.

11. ...
private:

Item data_field;
tree_node *parent_ptr;
tree_node *links[4];
...

A separate single pointer is used to point to the 
root node.

10

data_field

left right

20
data_field

left right

30
data_field

left right
field field field field

field field

12. The base case is when the tree is empty (the
root pointer is NULL).

13. Here is one solution:
template <class Item>
int kids(binary_tree_node<Item> node)
// Postcondition: The return value is
// the number of children of the node.
// Libraries used: cstdlib
{
int answer = 0;
if (node->left( )!= NULL) ++answer;
if (node->right( )!= NULL) ++answer;
return answer;

}

14. The node counting function is tree_size
from the bottom of Figure 10.11 on page 517.
The depth function has a similar recursive
implementation.

15. The in-order traversal prints O, L, R, A, G, T.
The post-order traversal prints O, R, L, T, G,
A. The backward in-order traversal prints T,
G, A, R, L, O.

16. This would be a post-order traversal. For in-
order: 9, 13, 17, 53, 14, 19, 4, 7, 11. For pre-
order: 14, 17, 9, 13, 53, 11, 4, 19, 7. 
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

17. Pre-order: zero.
Post-order:3100.
In-order: 3000. 

18. Pre-order: 1, 2, 3, 5, 6, 7, 4. In-order: 3, 2, 6,
5, 7, 1, 4. Post-order: 3, 6, 7, 5, 2, 4, 1. The
output from the print function is
1

2
3 [leaf]

 5
6 [leaf]
7 [leaf]

4

19. void stars (int i)
{

int j;
for (j = 0; j < i; ++j);

cout << ‘*’;
cout << endl;

}
To apply the function to every node in a tree:
in_order(stars, r), where r is the root
pointer.

20.
54

53
45

3
9

17
20

21. Pre-order would process a node before any of
its children are processed. Post-order would
process a node after all of its children are pro-

54

cessed. In-order doesn’t really make sense for
a general tree.

22. The nodes will be inserted into the bag from
smallest to largest, resulting in a tree with a
single path with only right children.

23.

24. pear: 3. orange: 5. blueberry: 1.

25. The body of your function should call
inorder(print_item, root_ptr);

where print_item is a function that you
write to print one item.

26. The function needs four statements, as shown
here:
top.root_ptr->set_left

(left.root_ptr);
left.root_ptr = NULL;
top.root_ptr->set_right

(right.root_ptr);
right.root_ptr = NULL;

papaya

mango

blueberry

peach

pearcherry

apricot

This project deals with a simple kind of
expression tree, where there are two kinds of
nodes:

(a) Leaf nodes, which contain a real number as
their entry;

(b) Nonleaf nodes, which contain either the char-
acter + or the character * as their entry, and have ex-
actly two children.

1 For this project, implement a class for expression
trees, including operations for building expression
trees. Also include a recursive function to “evalu-
ate” a non-empty expression tree using these rules:

(a) If the tree has only one node (which must be
a leaf), then the evaluation of the tree returns the real
number that is the node’s entry;
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(b) If the tree has more than one node, and the
root contains +, then first evaluate the left subtree,
then evaluate the right subtree, and add the results.
If the root contains *, then evaluate the two subtrees
and multiply the results.

For example, consid-
er the small expression
tree shown to the right.
The left subtree evalu-
ates to 3+7, which is 10.
The right subtree evalu-
ates to 14.  So the entire
tree evaluates to 10*14,
which is 140.

Design and implement a class for binary
trees, following the specification of Figure
10.14 on page 536. Your design should use

the binary tree node class from this chapter. If you
wish, you may also add other member functions,
such as a function to remove a node. However, the
collection of functions in Figure 10.14 is sufficient
for many applications, such as writing a version of
the animal guessing program from Section 10.3.

Specify, design, and implement a class for
complete binary trees using the array
representation from Section 10.2. You should

have only one member function that adds a new
node (since there is only one place where a node
may be added), and one member function that re-
moves the last node of the tree.

Design and implement a class for binary
trees, following the specification of Figure
10.14 on page 536. Your design should use

a dynamic array to hold the data from the nodes in
the same way that a complete binary tree is usually
represented. However, these binary trees do not
need to be complete. Instead, you should have a sec-
ond private member variable that is a dynamic array
of boolean values called is_present. The
is_present array indicates which nodes actually
exist in the tree. For example, if the tree has a root
node, then location is_present[0] is true. If the
root has a left child, then is_present[1] is true. If
the root has a right child, then is_present[2] is
true.

'*'

'+'

3 7

14

2

3

4

Revise the animal guessing program from
Figure 10.9 on page 497 so that the initial
knowledge tree is obtained by reading infor-

mation from a file. Also, when the program ends, the
knowledge tree at that point is written to the same
file. You must carefully specify the format of the
data in this file. The format should make it easy to
do two things: (a) read the file and set the initial tree,
and (b) write the knowledge tree to the file, using
some kind of traversal.

This project requires that you know how to
determine the actual time taken for a func-
tion to execute. Write a test program for the

bag class from Section 10.5. The program should
allow the user to specify an integer, n. The program
adds n randomly selected integers to a bag and then
counts the number of occurrences of each integer
between 1 and n, keeping track of the amount of
time needed for the entirety of these operations.
Also use the test program to test one of the earlier
bag implementations.  Graph the results of your tests
on a plot that has elapsed time on the y-axis and n on
the x-axis.  (In the next chapter, we will do an anal-
ysis to explain these times.)

One of our previous bags had an iterator
that allows a programmer to step through the
items of a bag one at a time (see bag5.h from

Figure 6.7 on page 340). For this project, add an it-
erator to the bag from Section 10.5. The implemen-
tation of the iterator uses two private member
variables called s and i. The member variable s is a
dynamic array of pointers to binary tree nodes. Each
of the array elements points to one of the nodes in
the bag’s binary tree. The current item of the iterator
is always in the node that s[i] points to. 

The bag’s start function creates the initial
array, which will be given to the iterator. For an
empty tree, this is just an empty array. For a non-
empty tree, do an in-order traversal of the tree’s
nodes, putting pointers to each node into the array.

Adding or removing elements from the bag
should invalidate all of its iterators.

5

6

7
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Documentation for a Header File
// FILE: bt_class.h
// TEMPLATE CLASS PROVIDED: binary_tree<Item> (a binary tree where each node has an item)
// The template parameter, Item, is the data type of the items in the tree’s nodes.
// It may be any of the C++ built-in types (int, char, etc.), or a class with a default
// constructor, a copy constructor, and an assignment operator.
//
// NOTE: Each non-empty tree always has a current node. The location of the current node is
// controlled by three member functions: shift_up, shift_to_root, shift_left, and shift_right.
//
// CONSTRUCTOR for the binary_tree<Item> template class:
//
// Postcondition: The binary tree has been initialized as an empty tree (with no nodes).
//
// MODIFICATION MEMBER FUNCTIONS for the binary_tree<Item> template class:
//
// Precondition: size( ) is zero.
// Postcondition: The tree now has one node (a root node), containing the specified entry.
// This new root node is the current node.
//
//
// Precondition: size( ) > 0.
// Postcondition: The current node is now the root of the tree.
//
//
// Precondition: has_parent( ) returns true.
// Postcondition: The current node has been shifted up to the parent of the old current
// node.
//
//
// Precondition: has_left_child( ) returns true.
// Postcondition: The current node has been shifted down to the left child of the 
// original current node.
//
//
// Precondition: has_right_child( ) returns true.
// Postcondition: The current node has been shifted down to the right child of the
// original current node.
//

(continued)

 FIGURE  10.14 Specification of a Binary Tree Class for Programming Project 2 on page 535

binary_tree( )

void create_first_node(const Item& entry)

void shift_to_root( )

void shift_up( )

void shift_left( )

void shift_right( )
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 (FIGURE  10.14 continued)

//
// Precondition: size( ) > 0.
// Postcondition: The data at the current node has been changed to the new entry.
//
//
// Precondition: size( ) > 0, and has_left_child( ) returns false.
// Postcondition: A left child has been added to the current node, with the given entry.
//
//
// Precondition: size( ) > 0, and has_right_child( ) returns false.
// Postcondition: A right child has been added to the current node, with the given entry.
//
// CONSTANT MEMBER FUNCTIONS for the binary_tree<Item> template class:
//
// Postcondition: The return value is the number of nodes in the tree.
//
//
// Precondition: size( ) > 0.
// Postcondition: The return value is the data from the current node.
//
//
// Postcondition: Returns true if size( ) > 0, and the current node has a parent.
//
//
// Postcondition: Returns true if size( ) > 0, and the current node has a left child.
//
//
// Postcondition: Returns true if size( ) > 0, and the current node has a right child.
//
// VALUE SEMANTICS for the binary_tree<Item> template class:
// Assignments and the copy constructor may be used with binary_tree objects.
//
// DYNAMIC MEMORY USAGE by the binary_tree<Item> template class:
// If there is insufficient dynamic memory, then the following functions throw bad_alloc:
// create_first_node, add_left, add_right, the copy constructor, and the 
// assignment operator.

void change(const Item& new_entry)

void add_left(const Item& entry)

void add_right(const Item& entry)

size_t size( ) const

Item retrieve( ) const

bool has_parent( ) const

bool has_left_child( ) const

bool has_right_child( ) const

www.cs.colorado.edu/~main/chapter10/bt_class.h WWW
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Write a function that takes a binary search
tree as input and produces a linked list of
the entries, with the entries sorted (smallest

entries at the front of the list and largest entries at the
back). Hint: use in-order traversal. 

Binary search trees have their best perfor-
mance when they are balanced, which
means that at each node, n, the size of the

left subtree of n is within one of the size of the right
subtree of n. Write a function that takes a sorted
linked list of entries and produces a balanced binary
search tree.  If useful, you may add extra parameters
to the procedure, such as the total number of entries
in the list. Hint: First build the left subtree of the
root, then the right subtree of the root, then put the
pieces together with the join function from Self-
Test Exercise 26 on page 531.  Think recursively!

Redo Programming Project 17 in Chapter 3
using a binary search tree. Use the em-
ployee’s ID number as the search key.  A

template function should print out various statistics
on the tree by taking an appropriate function as a pa-
rameter.

Create a class to store the contact phone
numbers/email of your friends and relatives.
Use the new class in a program that main-
tains a list of contacts.

Design and implement a concordance pro-
gram, that stores a library of book records.
Create a book class with name, ISBN, author,

and publication date. Use a binary search tree to
store the records, where the author name is the
search key.  Revise the binary search tree to be able
to store and retrieve duplicate search keys.

An internal iterator for a bag is a collection
of member functions that allows a program-
mer to step through the elements of a bag one

at a time. For example, we might have an internal
iterator consisting of four member functions:
start, advance, is_current, and get_current.
The start method initializes the internal iterator;

8

9

10

11

12

13

the is_current function is a boolean function that
tells whether the iterator has a specified current ele-
ment that can be retrieved with the get_current
function; and the advance function moves the itera-
tor to its next element. 

For this project, add an internal iterator to the
bag from Section 10.5. The implementation tech-
nique is to use a private member variable called s.
The member variable s is a stack of pointers to
nodes.

Each of the elements in the stack points to a node
whose element has not yet been processed by the in-
ternal iterator. The current element of the internal it-
erator is always in the node at the top of the stack.
The pseudocode for the internal iterator functions is
given here:

The start function: Clear the stack. Then do an
in-order traversal of the tree’s nodes, pushing a
pointer to each node onto the stack.

The is_current function: Return true if the
stack is non-empty.

The get_current function: Check the precondi-
tion (the stack must be non-empty). Then peek at the
top node on the stack (without removing it). Return
the data element from this node.

The advance function: Check the precondition
(the stack must be non-empty). Then pop the top
node off the stack. 

Changing the bag by adding or removing ele-
ments should invalidate the internal iterator (by
clearing the stack).

When the internal iterator is started, use an in-
order traversal to push node pointers onto the stack.
As you pop the stack, these pointers come off in re-
verse order so that the iterator will advance through
the elements from largest to smallest. If you prefer a
smallest-to-largest order, you could use a queue in-
stead of a stack.

In Section 6.6, we showed how to add an
STL-style iterator to the bag class that was
implemented with a linked list. Do the same

thing for the tree-based bag class of Section 10.5. 
The iterator can be implemented with a single

pointer to a node, though to implement the operator
that moves to the next element, it will be useful to
modify the tree node so that each node has a pointer
to its parent. Alternatively, each iterator could have
a stack of pointers as in the previous project.

14
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L EARN ING  OB J EC T I V ES
When you complete Chapter 11, you will be able to...

• list the rules for a heap or B�tree and determine whether a tree satisfies these rules.
• insert a new element into a heap or remove the largest element by following the 

insertion algorithm (with reheapification upward) and the removal algorithm (with 
reheapification downward).

• do a simulation by hand of the algorithms for searching, inserting, and removing 
an element from a B�tree.

• use the heap data structure to implement a priority queue.
• use the B�tree data structure to implement a set class.
• use the STL priority queue, heap, map and multimap and be able to explain their 

typical implementations using balanced trees
• recognize which operations have logarithmic worst�case performance on 

balanced trees.

CHAPTER  CONTENTS

11.1 Heaps
11.2 The STL Priority Queue and Heap Algorithms
11.3 B�Trees
11.4 Trees, Logs, and Time Analysis
11.5 The STL Map and Multimap Classes

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

The great, dark trees of the Big Woods stood all around
the house, and beyond them were other trees and beyond

LAURA INGALLS WILDER
The Little House in the Big Woods

them were more trees.

11Ba lanced Trees11Ba lanced Trees
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Tree Projects

This chapter describes two programming projects involving
trees. The projects are improvements of classes that we’ve seen before: the pri-
ority queue class (Project 5 on page 433) and the set class (which is like a bag,
but does not allow more than one copy of an item). Both projects take advantage
of balanced trees, in which the different subtrees below a node are guaranteed to
have nearly the same height. We also analyze the time performance of tree algo-
rithms, concentrating on a connection between trees and logarithms, and
explaining the advantages obtained from balanced trees.

11.1 HEAPS

The Heap Storage Rules

In some ways, a heap is like a binary search tree: It is a binary tree where a less-
than operator forms a strict weak ordering that can be used to compare the
nodes’ entries. (For a reminder of the rules of a strict weak ordering, see
Figure 3.12 on page 139.) But the arrangement of the elements in a heap follows
some new rules that are different from a binary search tree:

As an example, suppose that entries are integers. The top of the next page
shows three trees with six entries. Only one is a heap—which one?

Heap Storage Rules
A heap is a binary tree where the entries of the nodes can be
compared with the less-than operator of a strict weak
ordering. In addition, these two rules are followed:

1. The entry contained by a node is never less than the
entries of the node’s children.

2. The tree is a complete binary tree, so that every level
except the deepest must contain as many nodes as pos-
sible; and at the deepest level, all the nodes are as far
left as possible (see “Complete binary trees” on
page 478).

540 Chapter 11 / Balanced Trees
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The tree on the left is not a heap because it is not complete—a complete tree
must have the nodes on the bottom level as far left as possible. The middle tree
is not a heap because one of the nodes (containing 52) has a value that is smaller
than its child (which contains 77). The tree on the right is a heap.

A heap could be implemented with the binary tree nodes from Chapter 10. But
wait! A heap is a complete binary tree, and a complete binary tree is implemented
more easily with an array than with the node toolkit (see “Array Representation
of Complete Binary Trees” on page 480). If we know the maximum size of a
heap in advance, then the array implementation can use a fixed-sized array. If we
are uncertain about the heap’s maximum size, then the array implementation can
use a dynamic array that grows and shrinks as needed. 

implement
heaps with a 
fixed array or 
with a dynamic 
array

In Self-Test Exercise 2, you’ll be asked to write definitions that would support
each of these implementations. The rest of this section will show how heaps can
be used to implement an efficient priority queue—and we won’t worry much
about which heap implementation we are using.

The Priority Queue with Heaps
A priority queue behaves much like an ordinary queue: Entries are placed in the
queue and later taken out. But unlike an ordinary queue, each entry in a priority
queue can be compared with the other entries using a less-than operator. When
entries leave a priority queue, the highest priority entries always leave first. We
have seen one suggested implementation of a priority queue in Section 8.4. Now
we’ll give an alternative implementation that uses a heap.

an alternative 
way to 
implement
priority queues

In the heap implementation of a priority queue, each node of the heap contains
one entry, which can be compared to each of the other entries by the less-than
operator. The tree is maintained so that it follows the heap storage rules using the
entries’ priorities to compare nodes. Therefore:

1. The entry contained by a node is never less than the entries of the node’s
children.

2. The tree is a complete binary tree.
We’ll focus on two priority queue operations: adding a new entry, and removing
the entry with the highest priority. In both operations, we must ensure that the
structure remains a heap when the operation concludes. Also, both operations
can be described without worrying about precisely how we’ve implemented the
underlying heap.
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Adding an Entry to a Heap

Let’s start with the operation that adds a new entry. For our examples, we will
use heaps where the entries are integers, with the usual less-than operation. Sup-
pose that we already have nine entries that are arranged in a heap as follows:

In an actual priority queue, each entry might be more complex, but they would
still be comparable by some less-than operator.

Suppose that we are adding a new entry of 42. The first step is to add this entry
in a way that keeps the binary tree complete. In this case the new entry will be
the left child of the entry with priority 21:

add the new 
entry in a way 
that keeps the 
binary tree 
complete

But now the structure is no longer a heap, since the node with 21 is less than its
child with 42. The algorithm for the insertion operation fixes this by causing the
new entry (42) to rise upward until it reaches an acceptable location. This is
accomplished by swapping the new entry with its parent:
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The new entry’s parent is still less than 42, so a second swap is done:

reheapification
upward

Now the new entry stops rising, because its parent (45) is no longer less than the
new entry. In general, the “new entry rising” stops when the new entry has a
parent with a higher or equal priority, or when the new entry reaches the root.
The rising process is called reheapification upward.

The steps for adding an entry are outlined in Figure 11.1. Some of the details
depend on how the underlying heap is implemented. For example, if the heap is
implemented with a fixed-sized array, then the first step must check that there is
room for a new entry. With a dynamic array, the first step might need to increase
the size of the array.

Removing an Entry from a Heap

When an entry is removed from a priority queue, we must always remove the
entry with the highest priority—the entry that stands “on top of the heap.” For
example, suppose the priority queue contains the 10 priorities drawn at the top
of the next page. 
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Pseudocode for Adding an Entry

The priority queue has been implemented as a heap.

1. Place the new entry in the heap in the first available location. This keeps the structure as a
complete binary tree, but it might no longer be a heap since the new entry’s parent might be
less than the new entry.

2. while (the new entry’s parent is less than the new entry)
Swap the new entry with its parent.

Notice that the process in Step 2 will stop when the new entry reaches the root, or when the new 
entry’s parent is no longer less than the new entry.

 FIGURE 11.1 Adding an Entry to a Priority Queue
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The entry at the root, with priority 45, will be removed, and this is the entry that
is returned by the operation:

But here we are ignoring a potential problem: There might be several entries
with the highest priority. One possibility is to have the equal entries leave the
priority queue in First-In/First-Out (FIFO) order. But our adding and deleting
mechanisms do not provide a way to determine which of several entries arrived
first. So, we will not specify any particular requirement about how equal entries
leave the priority queue.

The problem of removing the root from a heap remains. During the removal,
we must ensure that the resulting structure remains a heap. If the root entry is the
only entry in the heap, then there is really no more work to do except to decre-
ment the member variable that is keeping track of the size of the heap. But if there
are other entries in the tree, then the tree must be rearranged because a heap is
not allowed to run around without a root. The rearrangement begins by moving
the last entry in the last level up to the root, like this:

The structure is now a complete tree, but it is not a heap because the root is less
than its children. To fix this, we can swap the root with its larger child, as shown
here:
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The last entry in the last 
level has been moved to 
the root.
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The structure is not yet a heap, so again we swap the out-of-place node with its
larger child, giving this tree:

reheapification
downward

At this point, the node that has been sinking has reached a leaf so we can stop,
and the structure is a heap. The process would also stop when the sinking node
is no longer less than one of its children. This process, called reheapification
downward, is summarized in Figure 11.2.

Heaps have several other applications, including a sorting algorithm that is
discussed in Chapter 13.

519

4

21

35

42

23

2227

The 21 has been
swapped with its
larger child.

519

4

35

21

42

23

2227

Once again, the 21 has
been swapped with its
larger child.

Pseudocode for Removing an Entry
The priority queue has been implemented as a heap.

1. Copy the entry at the root of the heap to the variable that is used to return a value.
2. Copy the last entry in the deepest level to the root, and then take this last node out of the tree.

This entry is called the “out-of-place” entry.
3. while (the out-of-place entry is less than one of its children)

Swap the out-of-place entry with its highest child.
4. Return the answer that was saved in Step 1.
Notice that the process in Step 3 will stop when the out-of-place entry reaches a leaf or when the 
out-of-place entry is no longer less than one of its children.

 FIGURE 11.2 Removing an Entry from a Priority Queue
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11.2 THE STL PRIORITY QUEUE AND HEAP ALGORITHMS

The STL includes a priority queue class as outlined in Figure 11.3. The entries
themselves are directly compared to each other with the less-than operator. This
is the sort of priority queue that we built in the previous section.

In addition, the #include <algorithms> facility of the STL includes four
functions for creating and manipulating heaps from arrays or other structures that
have iterators. For example, suppose data is an array of integers of length N. The
function make_heap turns the array into a heap using an efficient O(N) algorithm
that we didn’t show in Section 11.1. The function call looks like this:

make_heap(data, data+N);

The first argument is the array and its length, in the same way as the copy func-
tion from Chapter 3 (page 116). Two other functions allow you to add and
remove items from an existing heap. The call push_heap(data, data+N)
assumes that data[0] to data[N-2] is already a heap, and that a new element
to be added is in data[N-1]. The call pop_heap(data, data+N) assumes that
data[0] to data[N-1] is a heap; after the call to pop_heap, the biggest element
(from data[0]) has been swapped with data[N-1] and the rest is reheapified.

Partial List of Members for the priority_queue<Item> Class from <queue>
// TYPEDEFS
// value_type: The data type of the items in the priority queue from the Item parameter
// For this version of the priority queue, the Item must have a “less than”
// operator < defined, forming a strict weak ordering (see 
// Figure 3.12 on page 139) . Appendix H shows other alternatives.
// size_type: The data type to keep track of how many items are in a priority queue
//
// CONSTRUCTOR
// Default constructor: Creates an empty priority queue
//
// VOID FUNCTIONS TO INSERT AND REMOVE ITEMS:
// pop( ): Removes the highest priority item of the priority queue
// push(const Item& entry): Adds an item to the priority queue
//
// FUNCTIONS TO EXAMINE THE QUEUE AND ITS ITEMS:
// empty( ): Returns true if the queue is empty (otherwise returns false)
// size( ): Returns the number of items in the queue
// top( ): Returns the highest priority item of the queue (without removing it)
// If there are several equally high priorities, the implementation may 
// decide which one to return.
//
// VALUE SEMANTICS:
// Assignments and the copy constructor may be used with priority_queue<Item> objects.

 FIGURE 11.3 The Standard Library Priority Queue Class
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Self-Test Exercises for Sections 11.1 and 11.2
1. How does a heap differ from a binary search tree?
2. Write a C++ class definition that would be appropriate for a priority

queue of values that is implemented as a heap with up to 50 entries.
Write a second definition that does not have any predefined limit to the
number of entries in the heap. Use a dynamic array for the second class.

3. Where is a new entry to a heap initially placed? Why?
4. After an item is removed from a heap, which item is placed in the root?
5. Start with an empty heap of integers, and enter the 10 numbers 1 through

10. Draw the resulting heap.
6. Remove three entries from the heap that you created in the previous

exercise. Draw the resulting heap.
7. In the description of reheapification downward, we specified that the

out-of-place entry must be swapped with the larger of its two children.
What goes wrong if we swap with the smaller child instead?

11.3 B-TREES

Binary search trees were used in Section 10.5 to implement a bag class. But the
efficiency of binary search trees can go awry. This section explains the potential
problem and shows one way to fix it. Most of the presentation is not tied to any
particular programming language.
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(a) A Troublesome 
Search Tree

The Problem of Unbalanced Trees

Let’s create a troublesome binary
search tree of integers. The first num-
ber is 1, then we add 2, then 3, 4, and
5, in that order. The result appears in
Figure 11.4(a). Perhaps you’ve spot-
ted the problem. Suppose next we add
6, 7, 8, 9, and 10, in that order, ending
up with Figure 11.4(b). The problem
is that the levels of the tree are only
sparsely filled, resulting in long, deep
paths and defeating the purpose of
binary trees in the first place. For
example, if we are searching Figure
11.4(b) for the number 12, then we’ll
end up looking at every node in the
tree. In effect, we are no better off
than the linked-list implementation.
Similar problems arise for adding and
deleting entries.

(b) A More 
Troublesome
Search Tree

FIGURE 11.4 Two Troublesome Search Trees
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The problem has several possible solutions, all of which involve trees where
the depth of the leaves remains small. For example, one solution is to periodically
balance the search trees, as described in Programming Project 9 in Chapter 10
(page 538). Another solution uses a particular kind of tree called a B-tree, where
leaves cannot become too deep (relative to the number of nodes). These trees
were proposed by R. Bayer and E. M. McCreight in 1972 (see “Organization
and Maintenance of Large Ordered Indexes” in Acta Informatica, Volume 1,
Number 3 [1972], pages 173–189). The rest of this section provides a B-tree
implementation.

The B-Tree Rules
B-trees are not
binary trees

A B-tree is a special kind of tree, similar to a binary search tree, where each
node holds entries of some type. As with binary search trees, the
implementation requires the ability to compare two entries via a less-than
operator. But a B-tree is not a binary search tree—in fact, a B-tree is not even a
binary tree because B-tree nodes have many more than two children. Another
important property of B-trees is that each node contains more than just a single
entry. The rules for a B-tree make it easy to search for a specified entry, and the
rules also ensure that leaves do not become too deep.

B-tree rules may 
be formulated 
for either a bag 
or a set

The precise B-tree rules may be formulated so that the B-tree stores a bag of
entries similar to the bag implementations that we have seen before. Alterna-
tively, a B-tree may be formulated to store a set of entries. The difference
between a set and a bag is that two or more equal entries can occur many times
in a bag but not in a set. For example, the C++ Standard Library has a set template
class where equal entries are forbidden (see Appendix H for details). We’ll look
at a “set formulation” of the B-tree rules, but keep in mind that a “bag formula-
tion” is also possible.

The entries in a B-tree node. Every B-tree depends on a positive constant
integer called MINIMUM. The purpose of the constant is to determine how many
entries are held in a single node, as shown in the first two B-tree rules:

B-tree Rule 1: The root may have as few as one entry (or even no entries
if it also has no children); every other node has at least MINIMUM entries.
B-tree Rule 2: The maximum number of entries in a node is twice the
value of MINIMUM.

Although MINIMUM may be as small as 1, in practice much larger values are
used—perhaps several hundred, or even a couple thousand.

The many entries of a B-tree node are stored in an array, so that we can talk
about “the entry at index 0,” or “the entry at index 1,” and so on. Within the array,
the entries must be sorted from smallest to largest. This provides our third B-tree
rule:

B-tree Rule 3: The entries of each B-tree node are stored in a partially
filled array, sorted from the smallest entry (at index 0) to the largest entry
(at the final used position of the array).
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The subtrees below a B-tree node. The number of subtrees below a node
depends on how many entries are in the node. Here is the rule:

B-tree Rule 4: The number of subtrees below a nonleaf node is always
one more than the number of entries in the node.

For example, suppose a node has 42 entries. Then this node will have 43 chil-
dren. We will refer to the many subtrees of a node from left to right as “subtree
number 0, subtree number 1, . . .” and so on, up to the last subtree.

The entries in each subtree are organized in a way that makes it easy to search
the B-tree for any given entry. Here is the rule for that organization:

B-tree Rule 5: For any nonleaf node: (a) An entry at index i is greater
than all the entries in subtree number i of the node, and (b) an entry at
index i is less than all the entries in subtree number  of the node.

Let’s look at an example to illustrate Rules 4 and 5. Suppose that a nonleaf node
contains two integer entries, the numbers 93 and 107. This node must have three
subtrees, organized as follows:

A B-tree is balanced. The final B-tree rule ensures that a B-tree avoids the
problem of an unbalanced tree:

B-tree Rule 6: Every leaf in a B-tree has the same depth.

An Example B-Tree

As another example, here is a B-tree of 10 integers (with MINIMUM set to 1). Can
you verify that all six B-tree rules are satisfied?

i 1+

Subtree
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Subtree
number 2

93 and 107

Subtree
number 0

Each entry
in subtree
number 0
is less 
than 93.

Each entry
in subtree
number 2
is greater
than 107.Each entry in

subtree number 1
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93 and 107.

5 7 and 81

2 and 4 9

3 10

6



550 Chapter 11 / Tree Projects

The Set ADT with B-Trees

The rest of this section discusses the algorithms for implementing a set class
using B-trees. The class is a template class that depends on the underlying type
of the items in the set. There are public member functions for adding and
removing items, and also for checking whether a given item is in the set. As you
can see in our complete header file (Figure 11.5), there are also several private
member functions that will simplify the implementations of the other member
functions. We’ll discuss these “helper” functions at the point where they are
used, but first let’s examine the private member variables and member constants
that we have in mind.

The set class has two private member constants, shown here with a selection
of 200 for MINIMUM:

static const size_t MINIMUM = 200;
two private 
member
constants of the 
set

static const size_t MAXIMUM = 2 * MINIMUM;

These constants are private because a programmer who uses the set class does
not need to know about their existence. Access to these private values is needed
only by the programmer who implements the set class.

After the declaration of the private member constants, the set class has four
private member variables. The purpose of these four member variables is to store
all the information about the root node of the B-tree that contains the set’s entries.
Here are the first three member variables from the set class in Figure 11.5 on
page 552:

member
variables store 
information
about the root of 
the B-tree

size_t data_count;
Item data[MAXIMUM+1];
size_t child_count;

Keep in mind that the member variables store information about the root node.
For example, data_count stores the number of entries in the B-tree’s root (not
in the entire B-tree). The root’s entries are stored in the partially filled array
called data, ranging from data[0] through data[data_count-1]. The com-
plete size of the data array is MAXIMUM + 1, which allows space for one extra
entry beyond the usual maximum number. You’ll see the benefit of this extra
space when we discuss the implementations of the member functions.
The number of children of the root node is stored in the member variable
child_count. The children of the root have an important property that will
allow us to use recursive thinking in our implementations. Here is the property
that you should hold onto:

(text continues on page 553)

Every child of the root is also the root of a smaller B-tree.
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A Header File
// FILE: set.h (part of the namespace main_savitch_11)
// TEMPLATE CLASS PROVIDED: set<Item> (a container template class for a set of items)
//
// TYPEDEFS for the set<Item> class:
//
// set<Item>::value_type is the data type of the items in the set. It may be any of the
// C++ built-in types (int, char, etc.), or a class with a default constructor, a copy 
// constructor, an assignment operator, and a less-than operator forming a strict
// weak ordering.
//
// CONSTRUCTOR for the set<Item> class:
//
// Postcondition: The set is empty.
//
// MODIFICATION MEMBER FUNCTIONS for the set<Item> class:
//
// Postcondition: The set is empty.
//
//
// Postcondition: If an equal entry was already in the set, the set is unchanged and the
// return value is false. Otherwise, entry was added to the set and the return value is true.
// This is slightly different than the C++ Standard Library set (see Appendix H).
//
//
// Postcondition: If target was in the set, then it has been removed from the set and the
// return value is 1. Otherwise the set is unchanged and the return value is zero.
//
// CONSTANT MEMBER FUNCTIONS for the Set<Item> class:
//
// Postcondition: Returns the number of items equal to the target (either 0 or 1 for a set).
//
//
// Postcondition: Returns true if the set is empty; otherwise returns false.
//
// VALUE SEMANTICS for the set<Item> class:
// Assignments and the copy constructor may be used with set<Item> objects.
//
// DYNAMIC MEMORY USAGE by the set<Item> class:
// If there is insufficient dynamic memory, then the following functions throw bad_alloc: 
// The constructors, insert, and the assignment operator.

(continued)

 FIGURE 11.5 Header File for the Set Template Class

set<Item>::value_type

set( )

void clear( )

bool insert(const Item& entry)

size_t erase(const Item& target)

size_t count(const Item& target) const

bool empty( ) const
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 (FIGURE 11.5 continued)
#ifndef MAIN_SAVITCH_SET_H
#define MAIN_SAVITCH_SET_H
#include <cstdlib>   // Provides size_t

namespace main_savitch_11
{

template <class Item>
class set

    {
public:

// TYPEDEFS
typedef Item value_type;

        // CONSTRUCTORS and DESTRUCTOR
        set( );
        set(const set& source);
        ~set( ) { clear( ); }
        // MODIFICATION MEMBER FUNCTIONS

void operator =(const set& source);
void clear( );
bool insert(const Item& entry);
std::size_t erase(const Item& target);

        // CONSTANT MEMBER FUNCTIONS
std::size_t count(const Item& target) const;
bool empty( ) const { return (data_count == 0); }

private:
// MEMBER CONSTANTS
static const std::size_t MINIMUM = 200;
static const std::size_t MAXIMUM = 2 * MINIMUM;
// MEMBER VARIABLES

        std::size_t data_count;
        Item data[MAXIMUM+1];

std::size_t child_count;
        set *subset[MAXIMUM+2];
        // HELPER MEMBER FUNCTIONS

bool is_leaf( ) const { return (child_count == 0); }
bool loose_insert(const Item& entry);
bool loose_erase(const Item& target);
void remove_biggest(Item& removed_entry);
void fix_excess(std::size_t i);
void fix_shortage(std::size_t i);

};
}
#include "set.template" // Include the implementation.

#endif

As an alternative to fixed 
arrays, you might 
consider using a vector as 
described in Appendix H. 
The advantage of the 
vector is that it has useful 
member functions such 
as insert.

The private member 
functions are discussed in 
the text.

The programmer who implements the class may add other private members.

www.cs.colorado.edu/~main/chapter11/set.h WWW
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Let’s look at an example to illustrate the rule “Every child of the root is also the
root of a smaller B-tree.” For the example, consider the following B-tree (with
MINIMUM equal to 1):

The root of this B-tree has two children, and each of these children is also the
root of a smaller B-tree. These two smaller B-trees are clearly shown here:

Each of the smaller B-trees also contains a set of entries. We will call these two
smaller sets “subset number 0” and “subset number 1.” If there were more chil-
dren, we would continue with “subset number 2,” and so on. The last subset is
“subset number child_count-1.”

Now consider how to store the subsets. The best solution is to store each sub-
set as an actual set object. In the root node itself, we will store pointers to these
smaller set objects. These pointers are stored in the fourth member variable of
the set class, declared here:

set *subset[MAXIMUM+2];

The member variable subset is a partially filled array of pointers to smaller
subsets. It is able to hold up to MAXIMUM + 2 such pointers—which is one more
than the maximum number of children that a B-tree node may have. As with the
entries, the benefit of this “space for one extra” will become evident shortly.

As an example, suppose a B-tree root has two children. Then subset[0] is a
pointer to “subset number 0,” and subset[1] is a pointer to “subset number 1.”
With this in mind, let’s again consider the following B-tree:
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2 and 4 9
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5 7 and 81
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A smaller
B-tree
on the
left

A smaller
B-tree
on the

right
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The root contains one entry and two children, so the member variables of the set
object for this B-tree will look like this:

The important idea is that each subset[i] is a pointer to another set object.
We will be able to use all of the set member functions with these objects in
various recursive calls. Here is the complete invariant for our set class:

Invariant for the Set Class Implemented with a B-Tree

1. The items of the set are stored in a B-tree, satisfying the
six B-tree rules.

2. The number of entries in the tree’s root is stored in the
member variable data_count, and the number of sub-
trees of the root is stored in the member variable
child_count.

3. The root’s entries are stored in data[0] through 
data[data_count-1].

4. If the root has subtrees, then these subtrees are
stored in sets pointed to by the pointers subset[0]
through subset[child_count-1].

5 7 and 81

2 and 4 9

3 10
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data
6 ? ?

data_count
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[2][0] [1]

subset
?

child_count
2

[2][0] [1]

?

[3]

Points to a
smaller set
object that contains
1, 2, 3, 4, and 5

Points to a
smaller set

object that contains
7, 8, 9, and 10
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Searching for an Item in a B-Tree

The set class has a member function, count, that determines whether an item
called target appears in the set. We use the name count to be consistent with
the multiset class, but keep in mind that the set’s count function always returns
zero (if the target is not found) or one (if the target is found). 

Searching for an item in a B-tree follows the same idea as searching a binary
search tree, although there’s more work needed to handle nodes that contain
many entries instead of just one. The basic idea: Start with the entire B-tree,
checking to see whether the target is in the root. If the target does appear in the
root, then the search is done—the function can return one to indicate that it found
the target. A second possibility is that the target is not in the root, and the root
has no children. In this case, the search is also done—the function can return zero
to indicate that the target is not in the set. The final possibility is that the target is
not in the root, but there are subtrees below. In this case, there is only one possible
subtree where the target can appear, so the function makes a recursive call to
search that one subtree for the target.

The entire function can benefit from one preliminary step, shown as the first
step of this pseudocode:

// Searching for a target in a set

1. Make a local variable, i, equal to the first index such that data[i] is not 
less than the target. If there is no such index, then set i equal to 
data_count, indicating that all of the entries are less than the target.

2. if (we found the target at data[i])
return 1;

else if (the root has no children)
return 0;

else
return

Be careful how you test the condition at the start of Step 2. In order to “find the
target at data[i],” you must ensure that i < data_count and also that the tar-
get is actually equal to data[i]. But the Item data type is not required to have
an == operator. Instead, you already know that data[i] is not less than the tar-
get, so if the target is also not less than data[i], then we have found the target.
One implementation is: .

The recursive call in the pseudocode above is highlighted. Notice the form
that the activation requires, using the member selection operator (->) rather than
a simple dot. The reason is that subset[i] is a pointer to a set (rather than an
actual set). The recursive call works well in this situation because the subset is
smaller than the entire set. Thus, the recursive call is solving a smaller version
of the original problem.

subset[i]->count(target);

if ((i < data_count) && !(target < data[i]))
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As an example of executing the pseudocode, suppose we are searching for 10
in this B-tree:

The search begins by finding the first item in the root that is not less than the tar-
get 10. This is the item 17, which occurs at data[1] in the root, so Step 1 sets
i to the index 1. In Step 2 we notice that we have not found the target
at data[1], but the root does have children. So, we make a recursive call,
searching subtree number 1 for the target 10. You can visualize the recursive
call subtree[1]->count(10) as searching for a 10 in this part of the tree:

The recursive call of the count member function has its own copy of the local
variable i. This variable i is set to 0 in Step 1 of the recursive call (since data[0]
of the subtree is greater than or equal to the target 10). Again, we have not found
the target, so the recursion continues, activating the count member function for
the still smaller subtree shown here:

The recursive call finds the target, returning one to the previous recursive call.
That previous recursive call then returns 1 to the original call, and the original
call can also return 1, indicating that the target was found somewhere in the set.
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There are several parts for you to clarify in your implementation. How do you
find the correct value of i in the first step of the pseudocode? (Make sure that
your approach uses only the less-than operator to compare items since the Item
data type is not required to have other comparison operations.) How do you
determine whether the root has children? (Use the private is_leaf member
function.)

Inserting an Item into a B-Tree

The insert member function of the set class adds a new item to the B-tree. It is
easier to add a new entry to a B-tree if we relax one of the B-tree rules. In partic-
ular, we will allow a somewhat “loose insertion” function to complete its work
with the possibility that there is one entry too many in the root node of the
B-tree. In other words, a loose insertion might result in MAXIMUM + 1 entries in
the root. For example, consider this B-tree where MAXIMUM is 2:

Suppose that we want to add 18 to the tree. The end result of a loose insertion
could be the following illegal B-tree:

The B-tree is illegal because the root node has three entries, which is one more
than the definition of MAXIMUM. Notice that only the root may have an extra entry
after the “loose insertion.” Our plan is for the insert member function to begin
by calling another member function that carries out a loose insertion. After the
loose insertion, the usual insert member function will examine the root node.
If the root node has too many entries, then the insert member function will fix
that problem in a way that we’ll describe later. For now, though, we’ll turn our
attention to the design of the loose insertion function.

The Loose Insertion into a B-Tree

From our previous discussion, you can design a specification for a loose inser-
tion. The function will be a private member function called loose_insert. The
specification is given here:
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template <class Item>
bool set<Item>::loose_insert(const Item& entry);
// Precondition: The entire B-tree is valid.
// Postcondition: If entry was already in the set, then the set is unchanged
// and the return value is false. Otherwise, the entry has been added to the
// set, the return value is true, and the entire B-tree is still
// valid EXCEPT that the number of entries in the root of this set might be
// one more than the allowed maximum.

Since this is a private member function, it may violate the usual invariant for the
set class. As you can see, the precondition does satisfy the usual invariant, but
the postcondition allows for a violation of the invariant. This precondition/post-
condition contract will not appear in the set’s header file. It is present only in the
implementation file, as an aid to the programmer who implements the class.

The first step of our approach for the loose insertion is identical to the first
step of the searching function. This step finds the first location in the root’s
entries that is not less than the new entry. Once we have this location, there are
three possibilities listed in Step 2 of the pseudocode:

// Inserting a new entry in a set

1. Make a local variable, i, equal to the first index such that data[i] is not 
less than entry. If there is no such index, then set i equal to data_count,
indicating that all of the entries are less than the target.

2. if (we found the new entry at data[i])
pseudocode for 
the loose insert

2a. Return false with no further work (since the new entry is
already in the set).

else if (the root has no children)
2b. Add the new entry to the root at data[i]. (The original entries 
at data[i] and afterwards must be shifted right to make room for 
the new entry.) Return true to indicate that we added the entry.

else
{ 2c. Save the value from this recursive call:

Then check whether the root of subset[i] now has an excess
entry; if so, then fix that problem.
Return the saved value from the recursive call.

}

Looking through the pseudocode, Steps 2a and 2b are fairly easy.
The more interesting work occurs in Step 2c, where we have not found the

new entry, nor are we ready to insert the new entry. In this case, we make a recur-
sive call to do a loose insertion of the new entry in the appropriate subset. Since
the recursive call is a loose insertion, we may end up with one excess entry in the
root of our subset. This excess entry must be dealt with before returning because
the postcondition does not allow subsets to have nodes with extra entries.

subset[i]->loose_insert(entry);
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As an example of executing the pseudocode, suppose we are making a loose
insertion of 18 into this B-tree (with MAXIMUM set to 2):

Step 1 of the pseudocode finds the first item in the root that is not less than the
new entry 18. As you see, all of the root entries are less than 18, so what does
Step 1 do instead? From the pseudocode, you see that the index i will be set to 2
(the number of entries in the root node).

In Step 2 we notice that we have not found the new entry in the root, nor are
we at a leaf. So we proceed to Step 2c, making a recursive call to insert 18 into
subtree number 2, as shown here:

The recursive call finds a small subtree with just a root. Following Step 2b,
the recursive call inserts the number 18 into the root of the subtree and then
returns true. After the recursive call returns, the entire tree looks like this:

When the recursive call returns, we carry out the rest of Step 2c, checking
whether the root of the subtree now has too many entries. Indeed, the root of
subset[2] now has three entries, which is one more than the allowed maximum.
We must fix this problem child, but how? It seems that fixing the child may take
quite a bit of work, so we will propose another private member function to carry
out this work.
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A Private Member Function to Fix an Excess in a Child

Here’s the specification for the private member function that we have in mind:

template <class Item>
void set<Item>::fix_excess(std::size_t i);
// Precondition: (i < child_count) and the entire B-tree is valid EXCEPT that
// subset[i] has MAXIMUM + 1 entries.
// Postcondition: The tree has been rearranged so that the entire B-tree is
// valid EXCEPT that the number of entries in the root of this set might be
// one more than the allowed maximum.

Looking at the specification, you can see that the function starts with a problem
child. When the function finishes, the child no longer has a problem, although
the root may now have a problem. The approach of the fix_excess function
can be simply stated:

Let’s examine an example of this approach. In the example, suppose that
MINIMUM is 2, so that the maximum number of entries in a node is 4 (which is
2*MINIMUM). We want to fix subtree number 1 (the shaded subtree) in this
example tree:

The approach taken by fix_excess is to split the problem node (with
2*MINIMUM + 1 entries) into two smaller nodes (with MINIMUM entries each). This
leaves one entry unaccounted for, and that one extra entry will be passed upward
to the parent of the split node. Therefore, the parent of the split node gains one
additional child (from splitting the full node) and also gains one additional entry
(the extra entry that is passed upward). In the example shown above, the result
of the splitting is shown here:

Fixing a Child with an Excess Entry
To fix a child with MAXIMUM + 1 entries, the child node is split
into two nodes that each contain MINIMUM entries. This
leaves one extra entry, which is passed upward to the parent.
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It is always the middle entry of the split node that moves upward. Also, notice
that the children of the split node have been equally distributed between the two
smaller nodes. 

As another example of fix_excess in action, suppose that MAXIMUM is 2, and
we have the problem child shown here:

After calling fix_excess(2), the problem child will be split into two nodes,
with the middle entry passed upward, as shown here:

As you can see in this example, fixing the problem child can create a root with
an excess entry—but that is all right because the postcondition of fix_excess
permits the root to have an extra entry.

Back to the Insert Member Function

We need to finish the discussion of the original insert function. By using the
loose_insert function, the public insert function has just two steps:

// Pseudocode for the public insert member function

pseudocode for 
insert

if (!loose_insert(entry))
Return false since loose_insert did not add a new entry to the set.

if (data_count > MAXIMUM)
Fix the root of the entire tree so that it no longer has too many entries.

Return true.
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In this pseudocode, how do we “fix the root of the entire tree so that it no
longer has too many entries”? The step can be accomplished in two parts. The
first part copies all entries and child pointers from the root to a newly allocated
node and clears out the root, leaving it with one child (which is the newly allo-
cated node) and no entries. For example, suppose that we do a loose insertion,
and then the B-tree looks like this (with MAXIMUM set to 2):

We will copy everything from the root to a new node and clear out the root. In
the resulting tree, the root will have no entries, and everything else has moved
down one level, as shown here:

Once we have shifted things in this way, the problem is now with the child of
the root. We can fix this problem by splitting the subset[0] of the root into two
nodes and passing the middle entry upward. In fact, if you are careful in writing
fix_excess, this splitting can be carried out by calling fix_excess(0). Care
must be taken because this root has no entries, so fix_excess must be prepared
to deal with such a situation. (If you take this approach, you should document the
extended ability of fix_excess in its precondition.)

In this example, after splitting subset[0] we have the completely valid
B-tree shown here:

B-trees gain 
height only at 
the root

By the way, this growth at the root (within the insert member function) is
the only point where a B-tree gains height.
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*

Removing an Item from a B-Tree
The erase member function of the set removes an entry from the B-tree. Most
of the work will be accomplished with a private member function,
loose_erase, which performs a “loose removal” that is analogous to the loose
insertion. The looseness in loose_erase occurs because it is allowed to leave a
root that has one entry too few. In other words, it might leave the root of the
whole tree with zero entries (which is not permitted unless there are also no
children), or it might leave the root of an internal subtree with fewer than
MINIMUM entries. The specification of loose_erase is given here:

template <class Item>
bool set<Item>::loose_erase(const Item& target);
// Precondition: The entire B-tree is valid.
// Postcondition: If target was not in the set, then the set is unchanged and 
// the return value is false. Otherwise, the target has been removed, the
// return value is true, and the entire B-tree is still valid
// EXCEPT that the number of entries in the root of this set might be one
// less than the allowed minimum.

Our complete erase function will first call loose_erase. Afterwards, if nec-
essary, we can fix a root that may have been left with zero entries and one child.
Thus, the erase pseudocode has these steps:

// Pseudocode for the public erase member function

pseudocode for 
removal

if (!loose_erase(target))
Return false since loose_erase did not remove an entry from the set.

if ((data_count == 0) && (child_count == 1))
Fix the root of the entire tree so that it no longer has zero entries.

Return true since an entry was removed from the set.

Employing Top-Down Design

As you work on the project, keep in mind the top-down
design that we have employed. As shown in Figure
11.6, the original insert member function calls the
private member function loose_insert. Both the
ordinary insert and the loose insert functions call
fix_excess. At several points in the design of
fix_excess, you should propose and implement
smaller functions to carry out the basic work of copy-
ing and shifting elements in an array. You might be
able to use some functions from the <algorithm>
facility to do this array work (see Appendix G).

FIGURE 11.6 Top-Down Design for 
the insert Member Function

The insert function calls:
• loose_insert

• fix_excess

The loose_insert function is 
recursive and also calls:

• fix_excess

• various array functions

The fix_excess function calls:
• various array functions
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In this pseudocode, how do we “fix the root of the entire tree so that it no longer
has zero entries”? For example, we might have a tree that looks like this:

Our solution for this problem is to first set a temporary pointer that points to
the only child. Next, copy everything from the only child up to the root node.
Finally, delete the original child. After this rearrangement, our tree will be one
level shorter, as shown here:

B-trees lose 
height only at 
the root

This shrinking at the root (within the remove member function) is the only point
where a B-tree loses height.

Now we are left with the task of designing the loose erase function.

The Loose Erase from a B-Tree

The private loose_erase function starts in the same way as the count and
insert functions, by finding the first index i such that data[i] is not less than
the target. Once we have found this index, there are four possibilities, shown
here:

pseudocode for 
loose erase

// Removing a target entry from a set (loose erase)

1. Make a local variable, i, equal to the first index such that data[i] is not 
less than target. If there is no such index, then set i equal to 
data_count, indicating that all of the entries are less than the target.

2. Deal with one of these four possibilities:
2a.The root has no children, and we did not find the target: In this case,
there is no work to do, since the target is not in the set (return false).
2b.The root has no children, and we found the target: In this case,
remove the target from the data array, and return true.
2c.The root has children, and we did not find the target (see following).
2d.The root has children, and we found the target (see following).

Cases 2c and 2d require further development.

The root has no
entries and one child.
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Case 2c. In this case, we did not find the target in the root, but the target still
might appear in subset[i]. We will make a recursive call (and save its answer
for us to return ourselves):

subset[i]->loose_erase(target)

This call will remove the target from subset[i], but we are then left with the
problem that the root of subset[i] might have only MINIMUM - 1 entries. If so,
then we’ll fix the problem by calling another private member function with the
specification shown here:

template <class Item>
void set<Item>::fix_shortage(std::size_t i);
// Precondition: (i < child_count) and the entire B-tree is valid EXCEPT that
// subset[i] has MINIMUM - 1 entries.
// Postcondition: The tree has been rearranged so that the entire B-tree is
// valid EXCEPT that the number of entries in the root of this set might be
// one less than the allowed minimum.

We’ll look at the design of fix_shortage later.

Case 2d. In this case, we have found the target in the root, but we cannot sim-
ply remove it from the data array because there are children below (and remov-
ing an entry would thereby violate B-tree Rule 4 on page 549). Instead, we will
go into subset[i] and remove the largest item in this subset. We will take a
copy of this largest item and place it into data[i] (which contains the target).
The total effect is the same as removing the target. 

For example, suppose we have found the target 28 at data[1] in the root of
this B-tree:

Our plan is to go into subset[1], remove the largest item (the 26), and place a
copy of this 26 on top of the target. After these steps, the B-tree no longer has
the 28:
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The combination of removing the largest item from subset[i] and placing a
copy of the largest item into data[i] can be accomplished by calling another
new private member function, remove_biggest, with this specification:

template <class Item>
void set<Item>::remove_biggest(Item& removed_entry);
// Precondition: (data_count > 0) and the entire B-tree is valid.
// Postcondition: The largest item in the set has been removed, and a copy 
// of this removed entry has been placed in removed_entry. The entire 
// B-tree is still valid, EXCEPT that the number of entries in the root of this
// set might be one less than the allowed minimum.

By using remove_biggest, most of Step 2d is accomplished with one func-
tion call:

subset[i]->remove_biggest(data[i]);

After this function call returns, we have deleted the largest entry from
subset[i] and placed a copy of this item into data[i] (replacing the target).
The work that remains is to fix the possible shortage that may occur in the root
of subset[i] (since the postcondition of subset[i]->remove_biggest
allows for the possibility that the root of subset[i] ends up with MINIMUM - 1
entries). How do we fix such a shortage? We can use the same fix_shortage
member function that we used at the end of Step 2c. Thus, the entire code for
Step 2d is the following:

subset[i]->remove_biggest(data[i]);
if (subset[i]->data_count < MINIMUM)

fix_shortage(i);
return true; // Indicate that we removed the target.

We have two more issues to deal with: the designs of fix_shortage and
remove_biggest.

A Private Member Function to Fix a Shortage in a Child
four situations 
for the 
fix_shortage
pseudocode

When fix_shortage(i) is called, we know that subset[i] has only MINIMUM - 1
entries. How can we correct this problem? There are four situations that you can
consider:

Case 1 of fix_shortage: Transfer an extra entry from subset[i-1].
Suppose that subset[i-1] has more than the minimum number of entries.
Then we can carry out these transfers:

a. Transfer data[i-1] down to the front of subset[i]->data.
Remember to shift over the existing entries to make room, and 
add one to subset[i]->data_count.
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b. Transfer the final item of subset[i-1]->data up to replace data[i-1],
and subtract one from subset[i-1]->data_count.

c. If subset[i-1] has children, transfer the final child of subset[i-1] over 
to the front of subset[i]. This involves shifting over the existing array 
subset[i]->subset to make room for the new child pointer at 
subset[i]->subset[0]. Also add one to subset[i]->child_count,
and subtract one from subset[i-1]->child_count.

For example, let’s call fix_shortage(2) for this tree (with MINIMUM set to 2):

In this example, we need to fix subset[2], which has only one entry. Following
the steps outlined above, we can transfer an entry from subset[1]. This trans-
ferred entry is the 22, which gets passed up to data[1], and the 28 (from
data[1]) comes down to be the new first entry of the problem node. One child
is also transferred from the end of subset[1] to the front of subset[2], as
shown here:

Case 2 for fix_shortage: Transfer an extra entry from subset[i+1].
Another possibility is to transfer an extra entry from subset[i+1]. The work is
similar to what you have just seen for transferring an entry from subset[i-1].

Case 3 for fix_shortage: Combine subset[i] with subset[i-1].
Suppose that subset[i-1] is present (in other words, i > 0), but it has only
MINIMUM entries. In this case, we cannot transfer an entry from subset[i-1],
but we can combine subset[i] with subset[i-1]. The combining occurs in
three steps:
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a. Transfer data[i-1] down to the end of subset[i-1]->data. This 
actually removes the item from the root, so shift data[i], data[i+1],
and so on, leftward to fill in the gap. Also remember to subtract one from 
data_count, and add one to subset[i-1]->data_count.

b. Transfer all the items and children from subset[i] to the
end of subset[i-1]. Remember to update the values of 
subset[i-1]->data_count and subset[i-1]->child_count. Also set 
subset[i]->data_count and subset[i]->child_count to zero.

c. Delete the node subset[i], and shift subset[i+1], subset[i+2], and 
so on, leftward to fill in the gap. Also reduce child_count by one.

For example, let’s call fix_shortage(2) for this tree (with MINIMUM set to 2):

In this example, subset[2] is merged with its sibling to the left. During the
merge, the 28 also is passed down from the root to become a new entry of the
merged nodes. The result is the following tree:

As you can see, this tree has too few entries in its own root, but that is okay
because the postcondition of fix_shortage allows the root of the resulting tree
to have one less than the required number of entries.

Case 4 for fix_shortage: Combine subset[i] with subset[i+1].
Our fourth case is to combine the problem subset with subset[i+1]. The work
is similar to what you have just seen for combining with subset[i-1].

You now have enough information to write the fix_shortage member
function. You should emphasize a clear logical structure to determine which of
the four cases is appropriate. Your implementation will be cleaner if you provide
four new private member functions to do the actual work in each of the four
cases.
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Removing the Biggest Item from a B-Tree
Our final member function has this specification:

template <class Item>
void set<Item>::remove_biggest(Item& removed_entry);
// Precondition: (data_count > 0) and the entire B-tree is valid.
// Postcondition: The largest item in the set has been removed, and a copy
// of this removed entry has been placed in removed_entry. The entire 
// B-tree is still valid, EXCEPT that the number of entries in the root of this
// set might be one less than the allowed minimum.

The work of remove_biggest is easy if the root has no children. In this case,
we copy the last item of data into the reference parameter, removed_entry.
Then we subtract one from data_count. That’s all! We might be left with a
node that has one less than the allowed minimum number of entries, but accord-
ing to the postcondition, that is okay.

What if the root has children? In this case, we make a recursive call to remove
the largest entry from the rightmost child. The recursive call is:

subset[child_count-1]->remove_biggest(removed_entry);

Notice the argument, removed_entry, that we use in the recursive call. This
argument will be set equal to the item that is removed from the subtree. This is
exactly what we need, and there is only one remaining problem. The recursive
call might leave the root of subset[child_count-1] with one entry too few.
How can we fix a child that has a shortage of entries? The fix_shortage func-
tion can fix such a node. So, after the recursive call, you should check the number
of entries in the root of subset[child_count-1]. If the number of entries is less
than MINIMUM, then call fix_shortage(child_count-1).

WRITE AND TEST SMALL PIECES

If you are implementing the entire set class, don’t try to do the whole thing at once.
Instead, you should write and test functions one at a time. In this project, you
should also carry out a major testing after you have completed the insert and
count functions, and before you have started on any of the erasing machinery.

When you start on the erasing functions, draw a diagram of the top-down design
that you are implementing.

Test pieces as soon as you can. This early testing can be aided by initially
implementing all of your planned functions with a single line that simply prints the
name of the function, indicating that the function has been activated. A single line
such as this is called a stub. With stubs in place, you can test any function as soon
as you have written the complete version. For example, as soon as you implement
the erase function, you can test it. You know that it should call the loose_erase
function, so you expect the loose_erase stub to print a message indicating that
loose_erase has been called.

PROGRAMMING TIP ��  
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Throughout your implementation work, it will be useful if you can print some rep-
resentation of a B-tree. We suggest that you temporarily add a public print func-
tion, similar to the function shown in Figure 11.7.

In order for the output of the print function to be understandable, keep the
value of MINIMUM small during testing—perhaps 1 or 2.

CONSIDER USING THE STL VECTOR

As an alternative to fixed arrays in your B-tree implementation, you might consider
using a vector as described in Appendix H. The advantage of the vector is that it
has useful member functions such as insert. Use the vector’s reserve member
function to allocate the maximum number of items that the vector will ever need.

External B-Trees

Programmers may use B-trees to ensure quick behavior from the fact that the
trees are always balanced (all the leaves are at the same depth). If a balanced
tree is your only objective, then the choice of the MINIMUM constant is

A Function Implementation

// This is a temporary public function for use by the programmer who implements the set
// class. The function prints a representation of the set’s B-tree. The entries of the root node
// are printed with an indentation given by the parameter, and each subtree has an extra
// four spaces of indentation.
// Library facilities used: iostream (provides cout), and iomanip (provides setw)
{

const int EXTRA_INDENTATION = 4;
    size_t i;

std::cout << std::setw(indent) << ""; // Print the indentation.

// Print the data from the root.
for (i = 0; i < data_count; ++i)

std::cout << data[i] << " ";
std::cout << std::endl;

// Print the subtrees.
for (i = 0; i < child_count; ++i)

subset[i]->print(indent+EXTRA_INDENTATION);
}

 FIGURE 11.7 Implementing a Temporary Member Function That Prints a Set’s B-Tree

template <class Item>
void set<Item>::print(int indent) const

PROGRAMMING TIP��  
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not critical. Sometimes MINIMUM is simply 1, meaning that each node has one or
two entries, and nonleaf nodes have two or three children. This situation is
called a 2-3 tree, which was proposed by John E. Hopcroft several years before
B-trees were devised.

most of the 
nodes reside in 
slower
secondary
memory

Sometimes B-trees become large—so large that the entire tree cannot reside
in the computer’s main memory at one time. For example, a residential phone
book of the United States contains over 100 million entries. The set of entries can
still be organized as a B-tree, but most of the nodes must be stored in slower sec-
ondary memory such as a hard drive or a CD-ROM. Typically, the root node is
loaded into main memory, where it stays for the life of the program. But nonroot
nodes must be loaded from the secondary memory whenever they are needed.
This situation is called an external B-tree.

A primary consideration with external B-trees is to reduce the total number of
accesses to the secondary memory device. Therefore, the MINIMUM constant will
be set quite large. With MINIMUM set to 1000, we can store more than one billion
(109) entries with just the root and two levels below it. Because the root is always
kept in memory, no search will ever require more than two nodes from the sec-
ondary memory device.

Another factor concerns the retrieval mechanism used by the secondary stor-
age device. When a request is made to read from a hard disk or CD-ROM, there
is a relatively long initial access time to position the disk’s read head over the
requested section of the disk. Once the head has been positioned, contiguous data
can be read fairly quickly. This data is transferred in fixed-sized blocks, using a
relatively high sustained transfer rate. For example, a 40x CD-ROM has an
access time of about  of a second. Once the head is positioned, the drive trans-
fers about 6 million bytes per second. With this in mind, you need to ensure that
each node is stored in a contiguous area of the disk—for if the node is spread out
in several different areas, each area will require  of a second access time to
reposition the head.

Self-Test Exercises for Section 11.2
8. What are two major differences between a B-tree and a binary search

tree? How do these differences affect searching for an item?
9. Suppose MINIMUM is 200 for a B-tree. What is the maximum number of

entries that a node may contain? What is the minimum number of entries
that a nonroot node may have? What is the maximum number of children
that a node may have? What is the minimum number of children that a
nonleaf, nonroot node may have?

10. Suppose MINIMUM is 1000 for a B-tree. The tree has a root and one level
of 1000 nodes below that. What is the minimum number of entries that
this tree might have? What is the maximum?

11. Suppose a nonleaf node in a B-tree contains the integers 17, 39, and 76
as entries. MINIMUM is set to 2. Give one possible set of values for the
entries in the children of the node.

12. Start with an empty B-tree, with MINIMUM set to 1. Enter the integers 1
through 10. Draw the resulting tree.

1
10
------

1
10
------



572 Chapter 11 / Tree Projects

13. Remove the numbers 8, 3, and 6 from the tree that you created in the pre-
vious exercise. Draw the resulting tree after each removal.

14. How are subtrees stored in the B-tree set implementation in this chapter?
15. What is meant by loose insertion? How is a loose insertion eventually

fixed?
16. What is a stub? Why is it useful?
17. What are two factors to consider when using external B-trees?

11.4 TREES, LOGS, AND TIME ANALYSIS

The implementations in this chapter—heaps and B-trees—are efficient for a
simple reason: The depth of the trees is kept small so that following a path from
the root to a leaf does not examine too many nodes. In fact, we can make a
strong statement relating the depth of a tree to the worst-case time required for
the operations we have implemented:

For example, consider adding an entry to a heap. The new entry is placed at
the next available location of the heap at the deepest level, d. The priority of the
new entry is then compared with its parent’s priority, and the new entry might be
swapped with its parent. In the worst case, this process continues, comparing the
new entry with its parent and swapping, until the new entry reaches the root. In
this worst case, the new entry had to be compared with its parent and swapped d
times, where d is the depth at which the new entry began its life. Since one com-
parison and swap requires a fixed number of operations, the total number of oper-
ations in the algorithm is a fixed number times d, which is O(d ). You can carry
out a similar analysis for each of the other tree operations.

Time analyses for these operations are more useful if they are given in terms
of the number of entries in the tree, rather than in terms of the tree’s depth. To
express the time analyses in these terms, we must first answer a secondary ques-
tion: What is the maximum depth for a tree with n entries? We’ll answer this
question for binary search trees and heaps, leaving the case of B-trees for your

Worst-Case Times for Tree Operations
The worst-case time performance for the following
operations are all O(d ), where d is the depth of the tree:

1. Adding an entry in a binary search tree, a heap, or a
B-tree

2. Deleting an entry from a binary search tree, a heap, or a
B-tree

3. Searching for a specified entry in a binary search tree or
a B-tree
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exercises. Once this question is answered, we can provide worst-case time anal-
yses in terms of the number of entries in a tree.

Time Analysis for Binary Search Trees

Suppose a binary search tree has n entries. What is the maximum depth the tree
could have? A binary tree must have at least one node at each level. For exam-
ple, a binary tree with depth two must have a root (at level 0), at least one child
of the root (at level 1), and at least one child of the child (at level 2). If a tree has
n nodes, then the first node may appear at the root level, the second node at
level 1, the third node at level 2, and so on, until the nth node, which appears at
depth n–1. So, a binary tree with n entries could have a depth as big as n–1.

What does this say about the worst-case time analysis of the binary search tree
operations in terms of the number of entries in a tree? Here’s the analysis:

Time Analysis for Heaps

In a heap, we can examine the relationship between depth and number of entries
by first computing the smallest number of entries required for a heap to reach a
given depth d. Remember that a heap is a complete binary tree so that each level
must be full before proceeding to the next level. The first entry goes at level 0
(the root level). The next two entries must go at level 1, the next four entries at
level 2, the next eight entries at level 3, and so on. Let’s present this information
in a table.

Worst-Case Times for Binary Search Trees
Adding an entry, deleting an entry, or searching for an entry
in a binary search tree with n entries is O(d ), where d is the
depth of the tree. Since d is no more than n–1, the operations
are O(n–1), which is O(n) (since we can ignore constants in
big-O notation).

Level

Number of 
nodes to fill 
the level

0 1 node
1 2 nodes
2 4 nodes
3 8 nodes
4 16 nodes

. . .
d 2d nodes
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The values in the table are the maximum number of nodes that may occur at
each level. Using the table, we can obtain the total number of nodes needed to
reach level d:

Number of nodes needed for a heap to reach depth d is 

The first part of the formula, up to , is the number of entries required to
completely fill the first d–1 levels, and the extra “+ 1” at the end is required
because there must be at least one entry in level d.

This formula can be simplified by shifting the +1 to the front:

Number of nodes needed for a heap to reach depth d is

Why is this a simplification? Look at the start of the formula, which begins
1 + 1… Then combine the two 1’s, like this:

 =

Now we have a formula that begins with two 2’s, which can also be combined:

 =

Now we have a formula that begins with two 4’s, and if we combine the 4’s we
get two 8’s, and so on until we eventually end up with just . So:

Number of nodes needed for a heap to reach depth d is 

This last formula, , is the same as , so we have the following
result:

Expressed another way: The number of nodes in a heap is at least , where d is
the depth of the heap.

This is certainly a simple formula, but in order to use it, we need to explain a
bit about base 2 logarithms. For any positive number x, the base 2 logarithm of
x is an exponent r such that:

The number of nodes needed for a heap to 
reach depth d is 2d.

1 2 4 … 2d 1–+ + + +( ) 1+

2d 1–

1 1 2 4 … 2d 1–+ + + + +

1 1 2 4 … 2d 1–+ + + + + 2 2 4 … 2d 1–+ + + +

2 2 4 … 2d 1–+ + + + 4 4 … 2d 1–+ + +

2d 1– 2d 1–+

= 1 2 4 … 2d 1–+ + + +( ) 1+

= 2d 1– 2d 1–+

2d 1– 2d 1–+ 2d

2d

2r x=
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The number r in this equation is usually written . For example:
, so that = 0
, so that = 1
, so that = 2
, so that = 3

, so that = 4
, so that = d

The last line of this table is the key to our heap analysis. We know that in a heap,
the number of entries, n, is at least , where d is the depth of the heap.
Therefore:

(since )

Since  = d, this implies that:

 .

This is the relationship that we need between the number of entries, n, and the
depth of a heap. Here’s the analysis:

The time analysis for B-trees will also result in O( ) time, as you’ll be
asked to show in Self-Test Exercise 19.

Omitting the subscript, 2, from O( ) may be a bit confusing, but to
explain why the omission is valid, we need to look at logarithms in more depth.
This look at logarithms will also give us a good understanding of the behavior
that is expected from logarithmic algorithms, such as adding and deleting from a
heap.

Logarithms

The definition of  is a number r such that . The number 2 is called
the base of the logarithm, and the definition extends to other bases. For exam-
ple,  is the number r such that . Or consider base 16, where

 is the number r such that .
Here are some specific examples for base 10:

Worst-Case Times for Heap Operations
Adding or deleting an entry in a heap with n entries is O(d ),
where d is the depth of the tree. Because d is no more than
log2 n, the operations are O(log2 n), which is O(log n) (since
we can ignore log bases in big-O notation).

log2 x
20 1= log2 1

21 2= log2 2

22 4= log2 4

23 8= log2 8

24 16= log2 16

2d 2d= log2 2d

2d

log2 n  log2 2d≥ n 2d≥

log2 2d

log2 n d≥

log n

log2 n

log2 x 2r x=

log10 x 10r x=
log16 x 16r x=



576 Chapter 11 / Tree Projects

, so that  = 0
, so that  = 1

, so that  = about 1.5
, so that  = 3

From these examples, you can see why we said in Chapter 1 that the number
of digits in a positive integer n is approximately . You can work out a
little table:

For n in the range 1 to 9,
For n in the range 10 to 99,
For n in the range 100 to 999,
For n in the range 1000 to 9999,

Extrapolating from this table, you can find a precise relationship between the
number of digits in a positive integer and base 10 logarithms (using  to
indicate rounding down the logarithm to an integer):

There is also a relationship between logarithms in one base and logarithms in
another base:

This equation is the reason why bases generally are omitted from big-O nota-
tion. For example, if an algorithm requires  operations, then that is the
same as  operations, since is 4. In big-O notation, the mul-
tiplication by a constant (such as 4) is ignored, and this is why we write simply
O( ) rather than O( ).

Logarithmic Algorithms

Logarithmic algorithms are algorithms with worst-case time O( ), such
as adding and deleting from a heap. These algorithms have a characteristic time
behavior:

The number of digits in a positive integer n is log10 n +1.

For any two bases, a and b, and a positive number x :
(logb a) × (loga x) = logb x

Time Behavior of Logarithmic Algorithms

For a logarithmic algorithm, doubling the input size will make
the time increase by a fixed number of new operations.

100 1= log10 1

101 10= log10 10

101.5 about 32= log10 32

103 1000= log10 1000

log10 n

0  log10≤ n  1<
1  log10≤ n  2<
2  log10≤ n  3<
3  log10≤ n  4<

n10log

log2 n
4 log16× n log2 16

log n log2 n

log n
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For example, consider adding a new entry to a heap with n entries. The algo-
rithm may look at as many as  nodes. If we double the number of nodes
to 2n, then the algorithm may look at as many as nodes—but  is
just one more than . (For example, , and ).
So we can double the number of entries in a heap, and the process of adding a
new entry requires us to examine only one extra node.

Self-Test Exercises for Section 11.3

18. Evaluate the following logarithms:

19. Show that adding, deleting, and searching in a B-tree have worst-case
time O( ).

20. Why are logarithmic bases generally omitted from big-O notation?
21. Use the definition of logarithms to show that  is always just one

more than .

11.5 THE STL MAP AND MULTIMAP CLASSES

Balanced trees are used as the underlying data structure for two STL classes—
the map and the multimap from <map>. Both classes can be used to store a col-
lection of items, each of which has two parts: a key and a value. When the item
is inserted, both the key and the value are inserted. Later, the value can be
retrieved by specifying only the key.

To effectively use a balanced tree structure, the keys must have a less-than
operator forming a strict weak ordering (see Figure 3.12 on page 139). This
allows keys that are numbers or strings or many other types. For example, if you
want to store the months of the year as keys, with their number of days as values,
you could declare a map object as follows: 

   map<string, int> months;

The first template parameter is the type of the key, and the second is the type of
the data that is stored with each key.

The map class provides subscripting through its keys. Because of the sub-
scripting functionality provided in map, values can be entered into a map either
through the insert function or through array-type assignment, such as here:

   months["July"] = 31; 

log2 n
log2 2n log2 2n

log2 n log2 1024 = 10 log2 2048 = 11

log2 32  log5 125  log16 256

log10 100  log37 1  log9 81

log n

log2 2n
log2 n
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The multimap is like a map, except that it allows multiple values to be associ-
ated with a single key (and therefore, you can’t use the cool subscripting nota-
tion that comes with a map). Multiple data with one key is useful in cases where
a key might need to have more than one value associated with it. For example, a
multimap for cities and their area codes might be declared, assigned, and printed
with the following code:

multimap<string, int> cities;
multimap<string, int>::const_iterator i;

cities.insert(make_pair("Denver", 303));
cities.insert(make_pair("Denver”, 720));

for (i = cities.begin(); i != cities.end(); ++i)
{

cout << i->first << '\t' << i->second << endl;
}

Multiple area codes for Denver will be assigned to the multimap, whereas a map
would overwrite the first entry with a duplicate key. Note that the items in the
map are structs with two parts, the key (called first) and the value (called
second), so these parts can be obtained through an iterator with the notation
i->first and i->second.

A partial list of map and multimap functions can be found in Appendix H.

Map and Multimap Implementations

You know enough about balanced trees that you could implement a map or a
multimap. You could use a B-Tree (Section 11.2) in which each piece of data is
a pair containing both the key and the value. When inserting or searching for
items, only the key portion of the pair is used to control the algorithm.

The actual map implementations that we have seen use other forms of bal-
anced trees. One form, the red-black tree, is a binary tree where each node is
assigned a red or black color in a way that:

1. The root and every leaf is black;
2. Every red node has two black children;
3. Any path from the root to a leaf has the same number of black nodes as

any other path.

Taken together, these rules guarantee that the length of two different paths (from
the root to a leaf) never differs by more than a factor of two, so the trees don’t
get the harmful, spindly look of those in Figure 11.4 on page 547—and there-
fore, searching is fast. The difficult part of this kind of implementation is design-
ing the algorithms that insert and remove items in a time that is proportional to the
length of the longest path.
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Another form of balanced tree—the AVL tree—is sometimes used for the STL
map or multimap. It is named after its inventors, the Russian mathematicians
Georgy Adelson-Velsky and Yevgeniy Landis, who published their results in 1962.

CHAPTER SUMMARY

• A heap is a complete binary tree that follows the rule that the entry at any
node is never less than any of its children’s entries. Heaps provide an effi-
cient implementation of priority queues.

• The STL includes a priority queue class as well as algorithms for building
and manipulating heaps.

• A B-tree is a tree for storing entries in a manner that follows six rules. The
first two rules specify the minimum and maximum number of entries for
each node. The third rule requires each node’s entries to be sorted from
smallest to largest. Rules 4 and 5 indicate how many subtrees a nonleaf
node must have and impose an order on the elements of the subtrees. The
last rule requires each leaf to be at the same depth.

• The tree algorithms that we have seen for binary search trees, heaps, and
B-trees all have worst-case time performance of O(d ), where d is the
depth of the tree.

• The depth of a heap or B-tree is never more than O(log n), where n is the
number of nodes. Hence, the operations on these structures are also
O(log n).

• The STL includes two classes, map and multimap, which allow a pro-
grammer to store key/value pairs.

SOLUTIONS TO SELF-TEST EXERCISES ?Solutions to Self-Test Exercises

1. Heaps are always complete binary trees. In addi-
tion, the ordering rule is different, requiring that
an entry contained by a node is never less than
the entries of the node’s children. 

2. The priority queue class needs a private member
variable that is an array of objects that can be
compared with a less-than operator. Our solution
is based on the interface from Figure 8.12 on
page 427. Here is the solution with a fixed-sized
array:
template <class Item>
class simple_priority_queue

{
public:
// TYPEDEFS and MEMBER CONSTANT
typedef Item value_type;
typedef std::size_t size_type;
static const size_type CAPACITY=50;
// CONSTRUCTOR
priority_queue( );
// MODIFICATION MEMBER FUNCTIONS
void pop( );
void push(const Item& entry);
// CONSTANT MEMBER FUNCTIONS
bool empty( ) const;
size_type size( ) const;
Item top( ) const;
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private:
Item data[CAPACITY];
size_type used;

};

For the version with no fixed capacity, you
can change the data array to a dynamic array.
You’ll also need to add a copy constructor, an
assignment operator, and a destructor.

3. A new entry to a heap is initially placed in the
leftmost available location in the deepest
level, in order to maintain a complete binary
tree. (Later, the new entry is pushed upward to
ensure that the heap rules are still valid.)

4. When an item is removed from a heap, the last
entry of the deepest level is placed in the root.
This item is then pushed downward to ensure
that the heap rules are still valid. After the
reheapification downward, the largest remain-
ing item is at the root.

7. If we swap with the smaller child, then the
larger child will still have a priority that
exceeds its parent’s priority.

5. With our insertion 
algorithm, you end 
up with this heap: 10

9

7 8

6

2 5

1 4 3

6. With our removal 
algorithm, you end 
up with this heap: 7

4

1 3

6

2 5

8. There are many differences that you might
choose for this answer, but two fundamental
differences are that each node in a B-tree may
contain more than one entry (whereas a binary
search tree has one entry per node), and the
number of children for a nonleaf node in a B-
tree is exactly one more than the number of
entries (whereas in a binary search tree, each
node has at most two children).

When searching for an item in a binary
search tree, the searcher must always choose
between going left or right at each node. In a
B-tree, the searcher must choose among more
than just two possible children.

9. The maximum number of entries that a node
may contain is 400, although during an inser-
tion we may temporarily have a node with 401
entries. The minimum number of entries that a
nonroot node may have is 200, although dur-
ing a removal we may temporarily have a
node with 199 entries. The maximum number
of children that a node may have is 401,
although during an insertion, we may tempo-
rarily have a node with 402 children. The min-
imum number of children that a nonleaf,
nonroot node may have is 201, although dur-
ing a removal we may temporarily have a
node with 200 children.

10. The root has 999 entries, and each of the 1000
nodes at the next level has between 1000 and
2000 entries. Therefore, the total number of
entries in the tree is between 1,000,999 and
2,000,999 entries.

11. Child 0: 15, 16; Child 1: 25, 26; 
Child 3: 50, 51; Child 4: 80, 81.

12. With our insertion 
algorithm, you end 
up with this B-tree:

4

2

1 3

6 and 8

5 9 and 107
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13. (continued)

14. Each subtree is stored as a set object. The par-
ent of each subset stores pointers to the
smaller set objects.

15. A loose insertion allows the top node of a sub-
tree to temporarily hold one too many entries.
The problem is fixed by splitting the node
with too many entries. After the split, one new
node contains the entries before the middle,
another new node contains the entries after the

13. After
removing
the 8:

4

2

1 3

6 and 9

5 107

After
removing
the 3:

6

4

1 and 2 5

 9

107

After
removing
the 6:

5

2

4

 9

1071

middle, and the middle entry itself has been
passed upward to a higher level.

16. A stub is a function with a single line that sim-
ply prints the name of the function, indicating
that it has been activated.  It is useful for writ-
ing and testing functions one at a time.

17. The total number of accesses to the secondary
memory devices should be minimized. Also,
ensure that each node is stored in a contiguous
area of the disk.

18. The logarithms are:

19. In all three functions, the number of total steps
is a constant times the depth of the B-tree. For
non-empty trees, this depth is no more than
logM n, where M is the MINIMUM constant and
n is the number of entries in the tree. Thus, the
functions all require no more than O(log n)
operations.

20. Bases are not generally used in big-O notation
because a relationship exists between loga-
rithms of different bases, such that they can be
equated using a constant. In other words, for
any two bases b and d, a logarithm in base b is
always equal to a constant times the same
logarithm in base d. (This constant is
logb d.) Big-O notation ignores multiplicative
constants.

21. All logarithms in this solution are base 2:

Therefore, .
21 nlog+ 2 2 nlog× 2n 2 2nlog== =

1 nlog+ 2nlog=

log2 32 = 5  log5 125 = 3 log16 256 = 2

log10 100 = 2 log37 1 = 0  log9 81 = 2
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Using a heap, implement the priority queue
class from Section 8.4. The class should
have a static constant member variable,

CAPACITY, which is the maximum size of the heap
(as in the solution to Self-Test Exercise 2) and an ar-
ray, data, that contains the heap with the entries.
We also want to have FIFO behavior for entries with
equal priority. To obtain this behavior, the class
should have an extra private member variable that is
an array, order, where order[i] contains the order
in which data[i] was added to the queue. For ex-
ample, if entry[7] was the 33rd item added to the
priority queue, then order[7] would be 33. When
you are comparing two entries with equal priority,
use the order number to “break the tie” (so that if
two entries have the same priority number, then the
one with the earlier order number will come out of
the priority queue first). 

Repeat Project 1, with no predefined limit
on the size of the heap. Use a dynamic array.

Use a B-tree to implement the set class
from Figure 11.5 on page 551. Follow the
programming tips from page 569-570.

The <math> facility provides a standard
function log(x), which returns the natural
logarithm of x (with a base that is ap-

proximately 2.71828). This base is written e, and the
logarithms with this base are called natural
logarithms, or Napierian logarithms, after the
Scottish mathematician John Napier (1550–1617)
who invented these logarithms. The number e may
seem like a strange choice for the base of a
logarithm, but the choice is motivated by the fact
that natural logarithms are easy to approximate as
the sum of a series, and they also occur as the limits
of series such as the computation of compound
interest. In your math class, you probably used the
notation ln x for the natural logarithm of x.

Anyway, in this project, you are to write a
function:

1

2

3

4

double logb(double base, double x);

The function returns the logarithm of x to the given
base. Make use of the log function and the formulas
in Section 11.4.

The heap in this chapter is referred to as a
maxheap, because the highest priority value
is also the maximum value.  Implement the

heap as a minheap, in which the entry of the node
with the highest priority has the minimum value in
the heap, and an entry of a node is never more than
the entries of the node’s children. 

Redo Programming Problem 12 in Chapter
8, using the heap implementation of the
priority queue. Break the tie of equal ele-

ments using the method in Programming Problem 1.

Once again, use a B-tree to implement the
set class from Figure 11.5 on page 551. But
this time, instead of using arrays within each

node, please use the STL vector class to hold the
data and the child pointers.

Modify a B-tree implementation of a set
class so that each piece of data has both a
key (such as a string) and an actual value

(which may be of any data type). When an item is in-
serted, both the key and value are specified. But in
order to retrieve a value, all that’s needed is the key.
You can use the STL map member functions as a
guide to your own member function prototypes.

Use files to implement an external B-Tree as
discussed on page 570.

5

6

7

8

9
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L EARN ING  OB J EC T I V ES
When you complete Chapter 12, you will be able to...
• do a simulation by hand of a serial search (to find an element in an array) or a 

binary search (to find an element in a sorted array) and be able to implement 
these algorithms.

• demonstrate why binary search has a logarithmic worst�case performance.
• do a simulation by hand of an insertion or removal of an element from an open�

address or chained hash table and be able to implement these algorithms.
• implement a hash table class using open�address hashing or chained hashing with 

an underlying data structure that is either an array or a vector.
• use template parameters that are classes, constant values, or functions.
• calculate the expected number of elements that will be examined to find an 

element in an open�address or chained hash table with a specified load factor.

CHAPTER  CONTENTS

12.1 Serial Search and Binary Search
12.2 Open�Address Hashing
12.3 Chained Hashing
12.4 Time Analysis of Hashing
12.5 Programming Project: A Table Class with STL Vectors
12.6 Hash Tables in the TR1 Library Extensions

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

His reasons are as two grains of wheat hid in two bushels
of chaff: you shall seek all day ere you find them, and,

WILLIAM SHAKESPEARE
The Merchant of Venice

when you have them, they are not worth the search.

12 Search ing12 Search ing

c
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Searching

Searching a list of values is a common computational task. An
application program might retrieve a student record, bank account record, credit
record, or any other type of record using a search algorithm. In this chapter, we
present and analyze some of the most common (and some of the most efficient)
methods of searching for a particular item. The algorithms include serial search,
binary search, and search by hashing. 

We also use the search algorithms to develop additional techniques for ana-
lyzing the running times of algorithms, particularly average-time analyses and
the analysis of recursive algorithms. 

12.1 SERIAL SEARCH AND BINARY SEARCH

Serial Search

Our starting point is the searching algorithm, shown in Figure 12.1. This algo-
rithm, called a serial search, steps through part of an array one item at a time
looking for a desired item. The search stops when the item is found or when the
search has examined each item without success. The technique is often used
because it is easy to write and is applicable to many situations.

Serial Search—Analysis

The running time of the serial search is easy to analyze, but some care is needed
to specify the precise kind of analysis. As always, we will count the number of
operations required by the algorithm rather than measuring actual elapsed time.
For searching an array, a common approach is to count one operation each time
that the algorithm accesses an element of the array. With the serial search, the
size of the array is one important factor in determining the number of array
accesses, but even if we use a particular fixed array, the number of array
accesses will still vary depending on precisely which target we are looking for.
If the target is the first element in the array, then there will be only one array
access. If the target is near the middle of the array, then the serial search
accesses about half of the array elements.

Usually when we discuss running times, we consider the “hardest” inputs, for
example, a target that requires the algorithm to access the largest number of array
elements. This is called the worst-case running time. For the serial search, the
worst-case running time occurs when the target is not in the array. In this case,
the algorithm accesses every element, and we have the following formula:

584 Chapter 12 / Searching
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average caseWith serial search, searches of an n-element array usually require fewer than
n array accesses. Thus, the worst-case expression “n array accesses” makes serial
search sound worse than it often is. An alternative is the average-case running
time, which is obtained by averaging the running times for all different inputs of
a particular kind. For example, we can develop an expression for the average-
case running time of serial search based on all the targets that are actually in the
array. To be concrete in this first example, suppose that the array has 10 ele-
ments, so that there are 10 possible targets. If we are searching for the target that
occurs at the first location, then there is just one array access. If we are searching
for the target that occurs at the second location, then there are two array accesses.
And so on, through the final target, which requires 10 array accesses. In all, there
are 10 possible targets, which require 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 array accesses.
The average of all these searches is

Worst-Case Time for Serial Search
For an array of n elements, the worst-case time for serial
search requires n array accesses.

Pseudocode for Serial Search
// Searches for a desired item in the n array elements starting at a[first]

Set a size_t variable i to 0, and set a boolean variable found to false.

while ((i < n) && !found)
{

if (a[first+i] is the desired item)
found = true;

else
++i;

}

if (found)
The desired item is in a[first+i].

else
The desired item does not appear in the n items starting at a[first].

 FIGURE  12.1 Serial Search Algorithm

1 2 3 4 5 6 7 8 9 10+ + + + + + + + +
10

---------------------------------------------------------------------------------------- 5.5=
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We can generalize this example so that the average-case running time of the
serial search is written as an expression with part of the expression being the size
of the array. Using n as the size of the array, this expression for the average-case
running time is

The first equality in this formula is obtained from the formula that we developed
on page 19. We can summarize the average-case running time for serial search:

You may have noticed that both the worst-case time and the average-case time
are O(n) expressions; nevertheless, the average case is about half the time of the
worst case. 

best case A third way to measure running times is called best-case running time, and as
the name suggests, it takes the most optimistic view possible. The best-case run-
ning time is defined as the smallest of all the running times on inputs of a partic-
ular size. For serial search, the best case occurs when the target is found at the
front of the array, requiring only one array access:

Unless the best-case behavior occurs with high probability, the best-case run-
ning time generally is not used during an analysis.

Binary Search
Serial search is easy to implement, easy to analyze, and fine to use if you are
only searching a small array a few times. However, if a search algorithm will be
used over and over, it is worthwhile to find a faster algorithm. A dramatically
faster search algorithm is sometimes available. The algorithm, called binary
search, may be used only if the array is sorted. Here are three examples for
which binary search is applicable:

Average-Case Time for Serial Search
For an array of n elements, the average-case time for serial
search to find an element that is in the array requires (n + 1)/
2 array accesses.

1 2 … n+ + +
n

--------------------------------- n n 1+( ) 2⁄
n

--------------------------- n 1+( ) 2⁄= =

Best-Case Time for Serial Search
For an array of n elements, the best-case time for serial
search is just one array access.
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• Searching an array of integers, where the array is sorted from the smallest
integer (at the front) to the largest integer (at the end of the array).

• Searching an array of strings, where the strings are sorted alphabetically.
• Searching an array where each component is an object containing infor-

mation about an auto part, and the array is sorted by “part numbers” from
the smallest to the largest.

For concreteness, we’ll develop the algorithm for the first of these three cases
(searching a sorted array of integers), but keep in mind that the same algorithm
applies to any other kind of sorted array.

Our integer version of the binary search will be implemented with a function
called search. The prototype for search requires six parameters. The first three
parameters provide the array itself, the starting index of the portion of the array
that we are searching, and the number of elements to search. The fourth param-
eter is the target that we are searching for. For example, consider: 

search(b, 17, 10, 42, ...

This example shows the first four arguments needed to search for the number 42
occurring somewhere in the 10 elements from b[17] through b[26].

The fifth and sixth parameters are reference parameters, used to return the
result of the search. The fifth parameter is a boolean value, indicating whether
the target was found. If the target was found, then the sixth parameter indicates
the index where the target occurs in the array. Here is the prototype:

void search(
const int a[ ],
size_t first,
size_t size,
int target,
bool& found,
size_t& location

);
// Precondition: The array segment starting at a[first] and containing size
// elements is sorted from smallest to largest.
// Postcondition: The array segment starting at a[first] and containing size 
// elements has been searched for the target. If the target was present,
// then found is true, and location is set so that target == a[location].
// Otherwise found is set to false.

Binary Search—Design

Let us produce an algorithm to perform this search task. It will help to visualize
the problem in concrete terms. Suppose that the list of numbers is a list of
invalid credit card numbers, and it is so long that it takes a book to list them all.
This is in fact how invalid credit card numbers are distributed to stores that do
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A Function Implementation

// Precondition: The array segment starting at a[first] and containing size elements is sorted
// from smallest to largest.
// Postcondition: The array segment starting at a[first] and containing size elements has been
// searched for the target. If the target was present, then found is true, and location is set so
// that target == a[location]. Otherwise, found is set to false.
// Library facilities used: cstdlib (provides size_t from namespace std)
{

size_t middle;

if (size == 0)
found = false;

else
{

middle = first + size/2;
if (target == a[middle])
{

location = middle;
found = true;

}
else if (target < a[middle])

// The target is less than a[middle], so search before the middle.
search(a, first, size/2, target, found, location);

else
// The target must be greater than a[middle], so search after the middle.
search(a, middle+1, (size-1)/2, target, found, location);

}
}

Sample Results of search(b, 2, 5, 42, ...) when b contains
found will be set to true;
location will be set to 4.

 FIGURE  12.2 The Binary Search Function

void search(
const int a[ ],
size_t first,
size_t size,
int target,
bool& found,
size_t& location

)

[0] [1] [2] [3] [4] [6][5]

-7 3 8 39 42 63 70

www.cs.colorado.edu/~main/chapter12/search.cxx WWW
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not have access to a computer. If you are a clerk and are handed a credit card,
you must check to see if it is on the list and hence invalid. How would you
proceed? Open the book to the middle and see if it is there. If not and it is
smaller than the middle number, then work toward the beginning of the book. If
it is larger than the middle number, work your way toward the back of the book.
This idea produces our first draft of an algorithm:

if (size == 0)
found = false;

else
{

middle = index of the approximate midpoint of the array segment;
if (target == a[middle])

the target has been found at a[middle];
else if (target < a[middle])

search for the target in the area before the midpoint;
else if (target > a[middle])

search for the target in the area after the midpoint;
}

It is natural to use recursive calls for the two substeps that “search smaller
lists,” and that is what our implementation will do. As with any recursive func-
tion, we must ensure that the function terminates rather than producing infinite
recursion. This insurance is provided by noting that each recursive call searches
a shorter list, and when the list length reaches zero there can be no further recur-
sive calls. This reasoning can be formalized as in Chapter 9 (see “Ensuring That
There Is No Infinite Recursion” on page 466). Using the Chapter 9 technique,
we see that the parameter size is a valid variant expression, with a threshold of
zero. In other words, the size parameter is always reduced by at least one on
each recursive call, and when size reaches zero, there is no further recursion.

Our complete implementation of the pseudocode is shown in Figure 12.2.

COMMON INDEXING ERRORS IN BINARY SEARCH IMPLEMENTATIONS

Binary search and similar array-based algorithms are notorious for having errors
involving the array indices. Two of the most common problems are listed here:

Calculating the size of the array for the recursive call. The implementation
in Figure 12.2 has two recursive calls. It’s important to double-check your
expression for the size of the array segment that is being searched in the recursive
call. For example, one of our recursive calls searches the segment that occurs
before a[middle]. This segment begins at a[first] going up to (but not includ-
ing) a[middle]. How many entries are there in this segment? The answer is
middle-first, which is the same as size/2, according to this calculation:

PITFALL ��  



590 Chapter 12 / Searching

middle - first = (first + size/2) - first = size/2

In our recursive call, we use the expression size/2 for the argument that
expresses the size of the array, since this expression conveys the idea that the
recursive call searches about half of the original array.

You should carry out a similar calculation to verify that the number of elements
after a[middle] is (size-1)/2. Hence, the size argument in our second recur-
sive call is the expression (size-1)/2.

Ensuring that size_t values do not become negative. A second common error is
writing a size_t expression that could end up with a negative value. For example,
first, size, and middle might all be as small as zero, so it would be a mistake to
write any of these expressions: first - 1, size - 1, middle - 1. We did not need
any of these expressions, but it may be tempting to use these expressions in other
implementations of binary search (particularly if you change the prototype so that
the first and last indices are both parameters).

Avoid these possibly negative size_t values, as the run-time results are unpre-
dictable.

Binary Search—Analysis

We want to estimate the running time for the binary search algorithm given in
Figure 12.2. The algorithm tests to see if the middle entry of the array has the
target that we are looking for. If it does, the algorithm stops, returning the index
of this middle entry. If our sought-after target is not in the middle of the array,
the algorithm searches either the “half” above or the “half” below this midpoint.
This narrows the search to about half of the array elements, then another recur-
sive call can take it to half of that, then half of that, and so forth. The algorithm
runs longest if the target is not in the array. If the target is not in the array, then
eventually the algorithm will make a recursive call to search an array with zero
elements. Of course, the target cannot occur in an empty array, so at that point
the algorithm returns and tells us that the target could not be found. We want to
analyze this algorithm for worst-case running time.

The binary search algorithm is a recursive algorithm so we need to compute
the amount of time taken by all recursive calls, and recursive calls of recursive
calls, etc. As in other cases, we will simply count the number of operations per-
formed. The only operations mentioned in the algorithm are addition, subtrac-
tion, division, assignment, tests for equality or “less than,” and the array access
operation.

Let n be the number of elements in the array segment being searched (i.e., the
value of size). We want to know how many operations the algorithm will per-
form in the worst case. As it turns out, the worst case is when the target is not in
the array so we will assume that target is not in the array.
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one operationWhen the algorithm starts out, it tests to see if the array segment is empty
(size == 0). This is a stopping case for the recursion. We’ll charge one operation
for this test for emptiness.

three more 
operations

After that, the algorithm computes the midpoint index as follows:

middle = first + size/2;

This adds an additional three operations, one each of division, addition, and
assignment.

two more 
operations

Next the algorithm tests to see whether the target equals a[middle]. This
requires one array access, and one application of ==, and so counts as two more
operations.

We are assuming that the target is not in the array. So the algorithm then goes
on to do the comparison:

another two 
operations(target < a[middle])

This also requires two operations—one for the array access and one for the
comparison.

10 more 
operations

The algorithm then makes a recursive call, which requires a few operations to
provide the arguments. The exact number of operations depends on the way
function calls are implemented, but 10 operations should handle all the
arithmetic and passing of arguments. And, of course, there will be the operations
carried out by the recursive call, but we have not begun to worry about that yet.

If we total up all the operations used, we’ve estimated that the algorithm per-
forms no more than 18 operations before each recursive call. The recursive call
can produce another recursive call, which in turn produces another recursive call,
which in turn produces another recursive call, until the procedure gets to a stop-
ping case. Each of these recursive calls is preceded by 18 (or fewer) operations.
The total number of operations is thus no more than 18 times the length of this
chain of recursive calls plus the number of operations performed in the stopping
case. Using the symbol T(n) for the worst-case running time to search an array of
n elements, we therefore have:

T(n) = (the length of the longest chain of recursive calls)
+

 the number of operations performed in the stopping case

There are two possible stopping cases—when the size becomes zero, or when
the target is found. Since the worst case is when the key is not in the array, we
assume that the key is not found. The stopping case when the key is not found
requires two operations (an equality test and an assignment to found).

Thus, the running time function can be expressed by

T(n) = (the length of the longest chain of recursive calls) + 2

18 ×

18 ×
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There is a standard term for the long phrase in parentheses, namely the depth of
recursive calls:

This definition allows us to replace the long phrase in our formula with this
standard term and so obtain the slightly more compact formula:

T(n) = (the depth of recursive calls) + 2

Rather than compute the exact value for the depth of recursive calls, we will
determine an upper bound approximation to the number of recursive calls. The
figure we obtain may be slightly larger than the actual number of calls but will
be a close approximation. This is common practice when analyzing running
times. It is often easier to calculate an upper bound than it is to calculate the
exact running time. As long as we use an upper bound so that we are estimating
higher than the true value, then we will always be safe. This way our algorithm
might turn out to be a bit faster than we thought, but never slower. Now let us
calculate this upper bound on the length of the longest string of recursive calls.

The array contains n elements to be searched. Each recursive call is made on
an array segment that contains, at most, half of the elements. Hence, to approxi-
mate the depth of recursive calls, all we need to do is determine how many times
we can divide n in half, and then divide that half in half again, then divide that
result in half yet again, and so on until the array is “all gone.” The array is “all
gone” when there are no entries to divide in half (that is, when size is zero).
Thus:

We can now estimate the number of operations performed by the binary
search algorithm on an array with n elements. We know that the number of oper-
ations performed is at most

T(n) = (the depth of recursive calls) + 2

= (the number of times that n can be divided by
2, stopping when the result is less than 1) + 2

Depth of Recursive Calls
The length of the longest chain of recursive calls in the
execution of an algorithm is called the depth of recursive
calls for that algorithm.

Depth of Recursive Calls for Binary Search
of an n -Element Array

The depth of recursive calls is, at most, the number of times
that n can be divided by 2, stopping when the result is less
than 1.

18 ×

18 ×

18 ×
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Let us denote the second expression in parentheses by H(n) and call it the
halving function. In other words:

With this new definition, we can express our estimate of the running time for the
binary search algorithm compactly. The worst-case running time is closely
approximated by:

T(n) = 18 H(n) + 2

To get a feel for how fast or slow this running time is, we must know a little
about this function H(n). As it turns out, H(n) is almost exactly equal to the base
2 logarithm of n, which is written . To be even more precise, for any pos-
itive integer n:

The symbols  mean that we round fractional numbers down to the next
lowest whole number. For example,  is 3. The notation  is called the
floor function, and we have used it before, in Chapter 1 when we noted that the
number of digits in a positive integer n is . Since H(n) is a whole
number and log2 n might include a fractional part, they cannot always be exactly
equal, but the above equality means that H(n) and log2 n will never differ by more
than one. Let’s explore what this equality tells us about the running time of
binary search.

For an array with n elements (n > 0), we have seen that the worst-case running
time of the binary search algorithm is

T(n) = 18 H(n) + 3 =

If we throw out the constants, the result says that the worst-case running time is
logarithmic (that is, O(log n)).

The Halving Function
The halving function H(n) is defined by H(n) = (the number
of times that n can be divided by 2, stopping when the result
is less than 1).

Value of the Halving Function
H(n) = (the number of times that n can be divided by 2,
stopping when the result is less than 1) has the value:

H(n) = log2 n + 1

Worst-Case Time for Binary Search
For an array of n elements, the worst-case time for binary
search is logarithmic.

log2 n

3.7

log10 n 1+

18 log2 n 1+( ) 2+
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An algorithm with logarithmic running time is fast because the logarithm of
n is much smaller than n. Moreover, the larger n is, the more dramatic this differ-
ence becomes. For example, the base 2 logarithm of 2 is 1, the base 2 logarithm
of 8 is 3, the base 2 logarithm of 64 is 6, the base 2 logarithm of a thousand is
less than 10, and the base 2 logarithm of a million is less than 20. 

binary search is 
an O(log n)
algorithm

This means that the binary search algorithm is very efficient. On an array
with a thousand elements, our binary search algorithm with a running time of

will perform no more than 182 operations. Even with a
million entries, the worst-case time is fewer than 400 operations.

We won’t give a rigorous analysis of the average running time for binary
search, but we can tell you that the average running time for actually finding a

average time is 
also O(log n)

number is O(log n). It is not hard to see why this is true. We have already seen
that, when a target is not found, the depth of recursion is . In
the worst case, even a found target requires a recursion depth of
(just one less than not finding a target). In some cases, the algorithm will not
need that many recursive calls. If the sought-after target is found, the algorithm
can terminate without additional recursive calls. Thus, on some inputs the depth
of recursive calls will be 0, on others it will be 1, on others 2, and so forth, up to

. However, a more complete analysis would show that nearly half the
keys in the array end up taking a recursion depth of . Even if the other
half of the keys had no recursion at all, this would still result in an average
recursion depth of one half of . Thus, the average number of recursive
calls for finding a key is at least one half of . So, the average case can
only save us a factor of ½ or less over the worst case. But constants like ½ do
not matter in big-O expressions; therefore the average-case running time is
O(log n), the same as the worst-case running time.

Standard Library Search Functions

The Standard Template Library provides operations in <algorithm> to find
elements within both sorted and unsorted ranges. These functions work with
forward iterators, bidirectional iterators, and random-access iterators (see
Section 6.3). 

Functions for Sorted Ranges

The following functions each have two versions. One version uses the operator
< to compare items. A second version, which we won’t discuss, uses an extra
parameter at the end to provide a comparison function. In each case, two itera-
tors, first and last, provide a range of elements [first..last), which
includes all the elements from *first up to but not including *last, and these
elements must be sorted from smallest to largest.

bool binary_search
(Iterator first, Iterator last, const Item& target);

18 log2 n 1+( ) 2+

log2 n 1+
log2 n

log2 n
log2 n

log2 n
log2 n
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Iterator lower_bound
(Iterator first, Iterator last, const Item& target);

Iterator upper_bound
(Iterator first, Iterator last, const Item& target);

binary searchThe binary_search function returns true if a specified value appears in the
sorted range, and false otherwise.

The lower_bound and upper_bound functions both return an iterator in the
range [first..last).

lower boundNormally, the iterator returned by lower_bound is an iterator that refers to the
first occurrence of the target in the range [first..last). For example, suppose
the elements in our sequence are the integers 2, 4, 6, 6, 7, 9, and 11; if our target
is the number 6, then lower_bound will return an iterator that refers to the first
occurrence of the number 6. If the target does not appear in the range, then the
iterator returned by lower_bound will refer to the first item that is bigger than
the target. With the same sequence (2, 4, 6, 6, 7, 9, 11) and a target of 8, the
lower_bound function will return an iterator that refers to the number 9. If all of
the sequence items are less than the target, then the return value will be equal to
the last iterator. Another way to view the lower bound iterator is that it is the
leftmost spot in the sequence before which the target can be inserted with the
numbers still staying in order.

upper boundThe iterator returned by upper_bound is an iterator that refers to the first item
that is bigger than the target. In our example sequence (2, 4, 6, 6, 7, 9, 11) and
the target of 6, the upper_bound function will return an iterator that refers to the
number 7. Once again, if no such element can be found, then the return value is
the last iterator. Another way to view the upper bound iterator is that it is the
rightmost spot in the sequence before which the target can be inserted with the
numbers staying in order.

Here’s another example that uses a vector of strings:

vector<string> pets;

// Put some strings into alphabetical order:
pets.push_back("cat");
pets.push_back("dog");
pets.push_back("dog");
pets.push_back("fish");
pets.push_back("snake");
pets.push_back("turtle");

The vector now contains six strings, sorted alphabetically:

"cat" "dog" "dog" "fish" "snake" "turtle"
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At this point, we can find the first occurrence of “dog” and the first item after all
the dogs, like this:

vector<string>::iterator first_dog = 
= lower_bound(pets.begin( ), pets.end( ), "dog");

vector<string>::iterator after_dog = 
= upper_bound(pets.begin( ), pets.end( ), "dog");

At this point in the code, *first_dog will be the first occurrence of "dog" and
*after_dog will be "fish".

By the way, the only time that lower_bound and upper_bound return the
same iterator is when the target does not appear in the sorted range. The tech-
nique used by both of these functions is a binary search, so their behavior is guar-
anteed to be logarithmic in the size of the range.

Functions for Unsorted Ranges

The STL find and count functions work with any STL sequence class that has
an iterator, regardless of whether the sequence is sorted. Note that some contain-
ers, such as set and map, implement their own versions of the find and count
functions. The prototypes for these functions are

difference_type count
(Iterator first, Iterator last, const Item& target);

iterator find
(Iterator first, Iterator last, const Item& target);

count The count function’s return type is a special integer type that allows the com-
puter to store integers that might be too large for an int. The return value of the
count function is the number of times that the target value appears in the range
[first..last). It uses the == operator of the Item type to determine whether
an item is equal to the target.

find The find function returns an iterator that refers to the first occurrence of the
target. If the target is not found, the last iterator is returned. The find and count
functions may be used with any of the STL container classes or with arrays. Even
the STL string class can be searched with these functions, as shown in Figure
12.3.

The STL search Function

An STL function called search can be used to determine whether a copy of one
sequence (determined by two iterators, [target_first..target_last))
occurs as a contiguous piece somewhere within a second sequence (determined
by two other iterators, [first..last)). The prototype is shown here:
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iterator1 search(
iterator1 first, iterator1 last, 
iterator2 target_first, iterator2 target_last

);

The return value is an iterator in [first..last) that is the start of an occur-
rence of a copy of [target_first..target_last). If there is no such occur-
rence, the the return value is the last iterator.

A Program
#include <algorithm> // Provides the find function
#include <iostream> // Provides getline and cout
#include <string> // Provides the string class
using namespace std;

{
    string line;
    string:: iterator i, where_is_e;

    cout << "Please enter a line of text: ";
    getline(cin, line);
    where_is_e = find(line.begin(), line.end(), 'e');

    cout << "You entered the following before entering an e: ";
for (i = line.begin(); i != where_is_e; ++i)

cout << *i;
    cout << endl;

    cout << "The rest of your input was: ";
for (i = where_is_e; i != line.end(); ++i)

cout << *i;
    cout << endl;

    return 0;
}

A Sample Dialogue
Please enter a line of text: Cyclops has just one eye.
You entered the following before entering an e: Cyclops has just on
The rest of your input was: e eye.

 FIGURE  12.3 Using the find Function with a String

int main( )

www.cs.colorado.edu/~main/chapter12/testfind.cxx WWW
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Self-Test Exercises for Section 12.1

1. When is a serial search an acceptable choice?
2. What is the worst-case, average-case, and best-case running time for a

successful serial search?
3. Reimplement the search function from Figure 12.2 on page 588 as a

serial search. Use the pseudocode from Figure 12.1 on page 585, and
make appropriate adjustments to the precondition/postcondition con-
tract.

4. Why does a binary search function require parameters of the first array
index and the size of the array?

5. What are the stopping cases in the recursive binary search function?
6. This exercise requires familiarity with template functions (Section 6.1).

Rewrite the search function from Figure 12.2 on page 588 so that it is a
template function. There is a template parameter for the type of the
array’s component.

7. Consider the search function from Figure 12.2 on page 588. Rewrite the
function so that there is no size parameter. Instead, there is a parameter
called last, which is the last index of the array segment that is being
searched. Your precondition may require first <= last.

8. Compute the following values (H is the halving function): H(1), H(2),
H(4), H(7), H(8), H(9).

12.2 OPEN-ADDRESS HASHING

In this section we will present another approach to storing and searching for val-
ues. The technique, called hashing, has a worst-case behavior that is linear for
finding a target, but with some care, hashing can be dramatically fast in the
average case. Hashing also makes it easy to add and delete elements from the
collection that is being searched, providing an advantage over binary search
(since binary search must ensure that the entire list stays sorted when elements
are added or deleted).

Introduction to Hashing

The Sixth Column Tractor Company sells all kinds of tractors with various stock
numbers, prices, and other details. They want us to store information about each
tractor in an inventory so that they can later retrieve information about any par-
ticular tractor simply by entering its stock number. To be specific, suppose the
information about each tractor is an object of the following form, with the stock
number stored in the key field:
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struct tractor
{

int key; // The stock number
double cost; // The price, in dollars
int horsepower; // Size of the engine

};

In this example, we have used the keyword struct rather than class. A struct
is the same as a class, with one difference: Unless you state otherwise, struct
members are public. Therefore, even without the keyword public, our tractor
definition has three public member variables.

As a kind of programming pact, C++ programmers tend to use a struct only
when all the members are public. For example, you will see this use of structs by
the Hewlett-Packard programmers who provided the first implementation of the
C++ Standard Library.

Of course there might be other information in each tractor object, but this will
do for our example. If the stock numbers have values ranging from 0 to 49, we
could store the tractor objects in an array of the following type, placing stock
number i in location data[i]:

tractor data[50]; // Array of 50 tractor records

The individual elements of our array are called the records of our data collec-
tion. The record for stock number i can be retrieved immediately since we
know it is in data[i].

But what if the stock numbers do not form a neat range like 0...49. Suppose
that we know there will be 50 or fewer different stock numbers, but that they will
be distributed in the range 0 through 4999. We could use an array with 5000 com-
ponents, but that seems wasteful since only a small fraction of the array would
be used. It appears that we have no alternative but to store the records in an array
with 50 elements and to use a serial search through the array whenever we wish
to find a particular stock number. Things are not that bad. If we are clever, we
can store the records in a relatively small array and yet retrieve particular stock
numbers much faster than we would by serial search.

To illustrate the trick involved, suppose that an inside informer at the Sixth
Column Tractor Company tells us that the stock numbers will be these:

0, 100, 200, 300, ... 4800, 4900

Struct
A struct is a special kind of class. The special feature is that
struct members are all public (unless you state otherwise).

C++ programmers tend to use a struct only when all the
members are public. 

unless you state 
otherwise, struct 
members are 
public
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In this case, we can store the records in an array called data with only 50 com-
ponents. The record with stock number i can be stored at this location:

data[i / 100]

With the aid of integer division, we can make do with the indexes 0 through 49,
even though the numbers become as large as 4900. If we want stock number
700, we compute 700/100 and obtain the index 7. The record for stock number
700 is stored in array component data[7].

This general technique is called hashing. Each record requires a unique iden-
tifying value called its key. In our example, the key was the stock number stored
in a member variable called key, but other, more complex keys are sometimes
used. A function, called the hash function, maps key values to array indexes.
Suppose we name our hash function hash. If a record has a key value of i, then
we will try to store that record at location data[hash(i)]. Using the hash func-
tion to compute the correct array index is called hashing the key to an array
index. The hash function must be chosen so that its return value is always a valid
index for the array. The hash function may be either a declared C++ function or
a simple arithmetic expression. In our example, hash(i) was this expression:

i / 100

collisions In our example, every key produced a different index value when it was
hashed. That is a perfect hash function, but unfortunately a perfect hash function
cannot always be found. Suppose we change the example so that we no longer
have stock number 400, but we have 399 instead. Then the record with stock
number 300 will be placed in data[3] as before, but where will stock number
399 be placed? Stock number 399 is supposed to be placed in data[399/100].
In other words, the record for stock number 399 is supposed to be placed in
data[3]. There are now two different records that belong in data[3]. This sit-
uation is known as a collision. In this case we could redefine the hash function
to avoid the collision. But in practice, you do not know the exact numbers that
will occur as keys, and therefore you cannot design a hash function that is guar-
anteed to be free of collisions (unless, perhaps, your insider at the tractor com-
pany has a lot of pull). Something must be done to cope with the tractor
collisions.

Typically you do not know what numbers will be used as the key values, but
you do know an upper bound on how many there will be. The usual approach is
to use an array size that is larger than needed—later we will see formulas that
indicate how many extra positions are needed. The extra array positions make
collisions less likely. A good hash function will distribute the key values uni-
formly through the index range of the array. If the array indexes range from 0 to
99, then you might use the following hash function to produce an array index for
a record with a given key:

key % 100

hash function
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This hash function always produces a value in the range 0 to 99 (that is, the
remainder when key is divided by 100).

dealing with 
collisions

One way of dealing with collisions is the algorithm given here:

// Basic storage by hashing algorithm

1. For a record with key value given by key, compute the index hash(key).
2. If data[hash(key)] does not already contain a record, then store the

record in data[hash(key)] and end the storage algorithm.
3. If the location data[hash(key)] already contains a record, then try

data[hash(key)+1]. If that location already contains a record, try
data[hash(key)+2], and so forth, until a vacant position is found. When
the highest numbered array position is reached, simply go to the start of
the array. For example, if the array indexes are 0...99, and 98 is the key,
then try 98, 99, 0, 1, and so on, in that order.

This storage algorithm is called open-address hashing, or more simply
open addressing. In open addressing, collisions are resolved by placing the
item in the next open spot of the array. Open addressing requires that the array
be initialized so that the program can test to see if an array position already con-
tains a record. For example, if the key will always be a non-negative integer, the
key field of each array element can be initialized to a negative number, perhaps
–1. As long as the key field contains a negative number, the program knows that
the array location does not contain a record. 

The Table Class—Specification

Storage by hashing forms the basis to implement a new container class called a
table. A table is a container of records with operations for inserting, deleting,
and locating records. This sounds a lot like a bag, but the difference is that each
table operation is controlled by a single key field of the record rather than being
controlled by the entire item value.

The table class will actually be a template class that depends on the data type
of the records that are being stored. We use the name RecordType for the name
of these records, so the actual table class definition will begin like this:

template <class RecordType>
class table
{ ...

The RecordType has some requirements: It must have a public integer member
called key, and this member holds the key of each record. Each key must be a
non-negative integer, and two different records cannot have the same key.

We will implement the table using a hash function as we outlined. When a
table is implemented in this way, it is called a hash table. The next few para-
graphs specify the operations for our table class.
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The constructor. The table class has a default constructor that creates a table
with a capacity of 811 records. The number 811 will be defined as a static
constant named CAPACITY in the table class. There are several ways that we
could allow for larger tables, but we will postpone that in order to focus on the
table mechanism itself. So, a typical table declaration using the tractor data
type would be as follows:

table<tractor> deere; // Can hold up to 811 tractors

The insert function. The table class has an insert function to place a new
record into the table. There are two possible outcomes from an insertion:

• There might already be a record with the same key as the new record. In
this case, the old record is replaced by the new record with the same key.

• If the new record has a key that is not already in the table, then the new
record is added to the table.

The specification of the insert member function is shown here:

void insert(const RecordType& entry);
// Precondition: entry.key >= 0. Also if entry.key is not already a
// key in the table, then the table has space for another record
// (that is, size( ) < CAPACITY).
// Postcondition: If the table already had a record with a key
// equal to entry.key, then that record is replaced by entry.
// Otherwise entry has been added as a new record of the table.

The precondition requires that entry.key is a valid key (not negative), and if
the key is a new key, then the table must not be already full (otherwise there
won’t be room for the new record).

The is_present and find functions. There are two constant functions called
is_present and find. These functions search the table for a record with a par-
ticular key. Here are the specifications of the member functions:

bool is_present(int key) const;
// Postcondition: The return value is true if the table contains a record with 
// the specified key. Otherwise the return value is false.

void find(int key, bool& found, RecordType& result) const;
// Postcondition: If the table contains a record with the specified key, then
// result is a copy of the record with that key, and found is true.
// Otherwise found is false, and the result contains garbage.

The remove function. This function removes a particular record from the
table. Here is the specification of the member function:
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void remove(int key);
// Postcondition: If a record was in the table with the specified key, then
// that record has been removed. Otherwise the table is unchanged.

The Table Class—Design

Now we’ll move on to the design and implementation of our table class. The
complete header file for this first version of our table is shown in Figure 12.4.

Invariant for the Table Class. The records of the table are stored in an array
called data, which is a private member variable. The number of array locations
actually being used is stored in the private member variable used. Here is our
complete invariant:

The second rule of the invariant needs some discussion. We have restricted valid
keys to be non-negative integers. So, any unused spot in the array can be indi-
cated by using a negative key. It turns out that we’ll gain some efficiency if we
distinguish between two different kinds of negative keys. We will use the con-
stant NEVER_USED (defined as –1) in the key field to indicate a location that has
never held a record. On the other hand, the constant PREVIOUSLY_USED (defined
as –2) in the key field indicates a location that once held a record that has since
been removed. You’ll see the purpose of NEVER_USED versus PREVIOUSLY_USED
when we implement the find function.

Five private member functions. The table definition also has five private
member functions. We think these five functions will be useful for the imple-
mentation, but they are not part of the public interface. We don’t want other pro-
grammers to use these functions; they are just for our own use in implementing
a specific kind of table—a hash table. We have used similar “helper” functions
in the past (such as next_index for one of the queue classes in Chapter 8).

The first helper function is the hash function, called hash. The function takes
a key (which is an int) and hashes the key to an array index.

Invariant for the Table Class

1. The number of records in the table is in the member vari-
able used.

2. The actual records of the table are stored in the array
data, with a maximum of CAPACITY entries. Each used
spot in the array has a non-negative key. An unused
record in the array has its key field set to the constant
NEVER_USED (if it has never been used) or the constant
PREVIOUSLY_USED (if it once was used but is now
vacant).
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A Header File
// FILE: table1.h (part of the namespace main_savitch_12A)
// TEMPLATE CLASS PROVIDED: table<RecordType> (a table of records with keys)
// This class is a container template class for a table of records.
// The template parameter, RecordType, is the data type of the records in the table.
// It may be any of the bulit-in C++ types (int, char, etc.), or a class with a default
// constructor, an assignment operator, and an integer member variable called key.
//
// TYPEDEFS and MEMBER CONSTANT for the table<RecordType> class:
//
// table<RecordType>::CAPACITY is the maximum number of records held by a table.
//
// CONSTRUCTOR for the table<RecordType> template class:
//
// Postcondition: The table has been initialized as an empty table.
//
// MODIFICATION MEMBER FUNCTIONS for the table<RecordType> class:
//
// Precondition: entry.key >= 0. Also if entry.key is not already a key in the table, then
// the table has space for another record (that is, size( ) < CAPACITY).
// Postcondition: If the table already had a record with a key equal to entry.key, then that
// record is replaced by entry. Otherwise, entry has been added as a new record of the 
// table.
//
//
// Postcondition: If a record was in the table with the specified key, then that record has
// been removed. Otherwise the table is unchanged.
//
// CONSTANT MEMBER FUNCTIONS for the table<RecordType> class:
//
// Postcondition: The return value is true if there is a record in the table with the
// specified key. Otherwise, the return value is false.
//
//
// Postcondition: If a record is in the table with the specified key, then found is true, and
// result is set to a copy of the record with that key. Otherwise found is false,
// and the result contains garbage.
//
//
// Postcondition: Return value is the total number of records in the table.

(continued)

 FIGURE  12.4 Header File for the Table Template Class

static const size_t CAPACITY = _____

table( )

void insert(const RecordType& entry) 

void remove(int key) 

bool is_present(int key) const

void find(int key, bool& found, RecordType& result) const

size_t size( ) const
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 (FIGURE  12.4 continued)

// VALUE SEMANTICS for the table<RecordType> template class:
// Assignments and the copy constructor may be used with table<RecordType> objects.

#ifndef TABLE1_H
#define TABLE1_H
#include <cstdlib> // Provides size_t

namespace main_savitch_12A
{

template <class RecordType>
class table
{
public:

// MEMBER CONSTANT -- See Appendix E if this fails to compile.
static const std::size_t CAPACITY = 811;
// CONSTRUCTOR
table( );
// MODIFICATION MEMBER FUNCTIONS
void insert(const RecordType& entry);
void remove(int key);
// CONSTANT MEMBER FUNCTIONS
bool is_present(int key) const;
void find(int key, bool& found, RecordType& result) const;
std::size_t size( ) const { return used; }

private:
 // MEMBER CONSTANTS -- These are used in the key field of special records.
static const int NEVER_USED = -1;
static const int PREVIOUSLY_USED = -2;
// MEMBER VARIABLES
RecordType data[CAPACITY];
std::size_t used;
// HELPER FUNCTIONS
std::size_t hash(int key) const;
std::size_t next_index(std::size_t index) const;
void find_index(int key, bool& found, std::size_t& index) const;
bool never_used(std::size_t index) const;
bool is_vacant(std::size_t index) const;

};
}

#include "table1.template" // Include the implementation.
#endif

www.cs.colorado.edu/~main/chapter12/table1.h WWW
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The second helper function, called next_index, is used to step through
the array one index after the other with wraparound at the end. The function
call next_index(i) usually returns i + 1, with one exception. When i is equal
to the last index of the array, next_index(i) returns the first index of the array
(zero).

The third helper function, find_index, is intended to find the array index of
a record with a particular key. The function call find_index(key, found, i)
searches for a record with the specified key. If such a record is found, the func-
tion sets the reference parameter found to true and sets i to the index of the
record. Otherwise the function sets found to false and leaves i as garbage. This
helper function is similar to the public find member function. The difference
is that find returns a copy of the record with the specified key, whereas
find_index returns the array index of the record that contains the specified key.
The find_index function is useful for the implementor of the class because the
implementor often needs to know where a particular record is located in the
array. On the other hand, the programmer who uses the class doesn’t need to
know where a record is stored—in fact, that programmer doesn’t even know that
the records happen to be stored in an array.

The last two helper functions are boolean functions. The value of
never_used(i) is true if data[i] has never been used (indicated by the
NEVER_USED value in its key field). The value of is_vacant(i) is true if
data[i] is not currently being used (indicated by any negative value in the key
field).

USING SIZE_T CAN INDICATE A VALUE’S PURPOSE

Can you tell that the return value of the hash function is intended to be used as an
array index? Yes, you can—because the return value is a size_t value (rather
than a mere int). In a similar manner, both the parameter and the return value of
next_index are size_t values, because both of these items are array indexes.
The parameters of find_index, never_used, and is_vacant follow the same
practice.

We use size_t values for array indexes because doing so helps us easily iden-
tify the purpose of various values. Later, we could change the type of the keys to
something other than an int, but each of the size_t values (used for array
indexes and sizes) would remain size_t.

The Table ADT—Implementation

The constructor. Most of the table constructor’s work involves filling the key
fields of each array component with NEVER_USED, to indicate that the locations

PROGRAMMING TIP��  
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are not now used and have never been used previously. The constructor will also
set used to zero.

The insert member function. The insert member function uses two local
variables: (1) A boolean variable, called already_present, is set to true or
false to indicate whether there is already an entry with the same key as the new
entry. (2) A size_t variable, called index, is set so that data[index] is the
right location for the new entry. The complete pseudocode has three steps:

1. find_index(entry.key, already_present, index);

2. if (!already_present)
a. Check that the size of the array is less than its capacity.
b. Use a loop to set index so that data[index] is the first vacant

location at or after data[hash(entry.key)]. If the loop reaches
the end of the array, then it should continue searching at data[0].

c. ++used;

3. data[index] = entry;

This pseudocode is implemented in the top of Figure 12.5. Notice that the loop
in Step 2b uses this assignment statement:

index = next_index(index);

This assignment moves index to the next available array index, wrapping back
to the start of the array when index reaches the last valid array index. Also
notice how the insert works if there is already a record with the same key as the
new entry. In this case, the new entry replaces the old record (and the private
member variable used remains unchanged).

The remove member function. In our insert function, we made use of the
helper function, find_index. This function also simplifies the remove function,
which has only two steps in its pseudocode (using local variables found and
index):

1. find_index(key, found, index);

2. if (found)
Remove the entry by setting data[index].key to PREVIOUSLY_USED
(indicating a spot that’s no longer used), and subtract 1 from used.

The remove implementation appears in the bottom of Figure 12.5.

The find_index function. We have pushed substantial work into the
find_index function, which we will now implement. The function is
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Two Function Implementations

// Library facilities used: cassert, cstdlib
{

bool already_present; // True if entry.key is already in the table
    std::size_t index; // data[index] is location for the new entry

    assert(entry.key >= 0);

    // Set index so that data[index] is the spot to place the new entry.
    find_index(entry.key, already_present, index);

// If the key wasn’t already there, then find the location for the new entry.
if (!already_present)

    {
        assert(size( ) < CAPACITY);
        index = hash(entry.key);

while (!is_vacant(index))
            index = next_index(index);

++used;
    }

    data[index] = entry;
}

// Library facilities used: cassert, cstdlib
{

bool found; // True if key occurs somewhere in the table
    std::size_t index; // Spot where data[index].key == key

assert(key >= 0);

    find_index(key, found, index);
if (found)

    {   // The key was found, so remove this record and reduce used by 1.
        data[index].key = PREVIOUSLY_USED; // Indicates a spot that’s no longer in use.

--used;
    }
}

 FIGURE  12.5 Implementation of insert and remove Functions for the Open-Address Hash Table

template <class RecordType>
void table<RecordType>::insert(const RecordType& entry)

template <class RecordType>
void table<RecordType>::remove(int key)

www.cs.colorado.edu/~main/chapter12/table1.template WWW
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responsible for finding the location in the array that contains a particular key
value. Here is the full specification of the private member function:
void find_index(int key, bool& found, std::size_t& index) const;
// Precondition: key >= 0.
// Postcondition: If a record is in the table with the specified key, then
// found is true, and index is set so that data[index].key is the specified
// key. Otherwise found is false, and i is garbage.

The function begins by hashing the key value to an array index and assigning
this index to its reference parameter, i. The function then uses a loop to advance
i through the array until we find the key or determine that the key is not in the
array. If the loop finds the key, then the index i will be exactly at the spot where
data[i].key == key, so the function can set found to true and return. On the
other hand, if data[i] is not equal to key, then the function should set found to
false before returning.

In our description of this work, just what does it mean to “determine that the
key is not in the array”? One possibility is that we have examined every record
in the array without finding the key. But sometimes it is possible to determine
that the key is not in the array even though some records have not been examined.
Recall that if there is a record with its key equal to the parameter key, then this
record should be in position hash(key) or in the first available position after
that. Our function starts searching at array index hash(key). Should it ever
encounter a position that has never held a record, then we have an interesting
fact: If the key were ever inserted in the array, then it would have been inserted
at or before this vacant spot. Hence, the function knows that it has looked at every
place that the key could possibly occur. Therefore, in the find_index implemen-
tation, the loop terminates if it reaches a position that has never been used, as
shown in this implementation of the loop (count is a local variable that keeps
track of how many records we have examined):

count = 0;
i = hash(key);
while((count < CAPACITY) && (!never_used(i)) && (data[i].key != key))
{

++count;
i = next_index(i);

}

Notice that this technique for terminating the search cannot simply stop when it
encounters a position that is currently vacant, but the loop must continue until it
encounters a position that has never held a record.

The find_index implementation is shown as part of the complete implementa-
tion file in Figure 12.6. The figure also implements the other member functions
that we have not yet discussed.
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An Implementation File
// FILE: table1.template
// TEMPLATE CLASS IMPLEMENTED: table (see table1.h for documentation)
// INVARIANT for the table class:
// 1. The number of records in the table is in the member variable used.
// 2. The actual records of the table are stored in the array data, with a maximum of
// CAPACITY entries. Each used spot in the array has a non-negative key. Any unused
// record in the array has a key field of NEVER_USED (if it has never been used) or
// PREVIOUSLY_USED (if it once was used, but is now vacant).
#include <cassert> // Provides assert
#include <cstdlib> // Provides size_t

namespace main_savitch_12A
{

template <class RecordType>
const std::size_t table<RecordType>::CAPACITY; 
template <class RecordType>
const int table<RecordType>::NEVER_USED;
template <class RecordType>
const int table<RecordType>::PREVIOUSLY_USED;

// Library facilities used: cstdlib
{

 std::size_t i;

used = 0;
for (i = 0; i < CAPACITY; ++i)

 data[i].key = NEVER_USED;  // Indicates a spot that’s never been used.
}

(continued)

 FIGURE  12.6 Implementation File for the Table Template Class

template <class RecordType>
table<RecordType>::table( )

template <class RecordType>
void table<RecordType>::insert(const RecordType& entry)

See the implementation in Figure 12.5 on page 608.

template <class RecordType>
void table<RecordType>::remove(int key)

See the implementation in Figure 12.5 on page 608.

template <class RecordType>
bool table<RecordType>::is_present(int key) const

See the solution to Self-Test Exercise 9 on page 625.

template <class RecordType>
void table<RecordType>::find(int key, bool& found, RecordType& result) const

See the solution to Self-Test Exercise 13 on page 626.
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 (FIGURE  12.6 continued)

// Postcondition: The return value is the hash value for the given key.
{

return (key % CAPACITY);
}

// Precondition: index < CAPACITY.
// Postcondition: The return value is either index+1 (if this is less than CAPACITY) or zero
// (if index+1 equals CAPACITY).
{

return ((index+1) % CAPACITY);
}

// Precondition: key >= 0.
// Postcondition: If a record is in the table with the specified key, then found is true and index
// is set so that data[index].key is the specified key. Otherwise found is false, and i is garbage.
{

 std::size_t count; // Number of entries that have been examined

 count = 0;
 i = hash(key);
while((count < CAPACITY) && (!never_used(i)) && (data[i].key != key))

 {
 ++count;
 i = next_index(i);
 }

 found = (data[i].key == key);
}

}

template <class RecordType>
inline std::size_t table<RecordType>::hash(int key) const

template <class RecordType>
inline std::size_t table<RecordType>::next_index(std::size_t index) const

template <class RecordType>
void table<RecordType>::find_index

(int key, bool& found, std::size_t& i) const

template <class RecordType>
inline bool table<RecordType>::never_used(std::size_t index) const

See the solution to Self-Test Exercise 14 on page 626.

template <class RecordType>
inline bool table<RecordType>::is_vacant(std::size_t index) const

See the solution to Self-Test Exercise 14 on page 626.

www.cs.colorado.edu/~main/chapter12/table1.template WWW
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INLINE FUNCTIONS IN THE IMPLEMENTATION FILE

Four of the five table helper functions are short—just one line of code each.
Because of their shortness, you might want to provide quicker execution by declar-
ing the helper functions to be inline member functions. On the other hand, you
could be unwilling to put the implementations of the functions in the header file
(where we have previously put inline member functions). After all, a programmer
who uses the table class doesn’t need to know about the helper functions and
certainly doesn’t need to see their implementations.

In such a case, you can get the best of both worlds by putting the implementa-
tions in the usual implementation file and including the keyword inline just before
the function definition. For example, here is the start of one of the helper functions
from the implementation file of Figure 12.6:

template <class RecordType>
std::size_t table<RecordType>::hash(int key) const

The keyword inline causes most compilers to provide a faster implementation of
the short function (by avoiding the actual function call and putting the code for the
function body at each location where the function is called).

Remember, you normally do not provide documentation for a helper function in
the header file. Instead, the documentation goes with the implementation in the
implementation file, where it can help the programmer who is implementing the
class.

Choosing a Hash Function to Reduce Collisions
We have used a simple hash function that hashes a given key to the array index:

key % CAPACITY

This kind of hash function depends on the remainder upon division, and is
therefore called a division hash function.

With a division hash function, certain table sizes are better than others at
avoiding collisions that arise in data taken from real examples. C. E. Radke’s
1970 study suggests that a good choice is a table size that is a prime number of
the form 4k+3. For example, 811 is a prime number equal to .

Although division hash functions are the most common, you may sometimes
encounter data that produces many collisions regardless of the table size. In this
case, you can try two other common kinds of hash functions:

• Midsquare hash function. The key is multiplied by itself. The hash func-
tion returns some middle digits of the result.

• Multiplicative hash function. The key is multiplied by a constant less
than one. The hash function returns the first few digits of the fractional
part of the result.

C++ FEATURE++

inline

4 202×( ) 3+
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Double Hashing to Reduce Clustering
Consider what happens during an insertion with a collision. The insertion func-
tion moves forward from the original index until a vacant spot is found in the
array. For example, suppose that a new key hashes to location 330, but this loca-
tion is full. Then the insertion tries 331, then 332, then 333, and so on. Search-
ing for a vacant spot in this manner is called linear probing.

There is a problem with linear probing. When several different keys are
hashed to the same array location, the result is a small cluster of elements, one
after another. As the table approaches its capacity, these clusters tend to merge
into larger and larger clusters. This is the problem of clustering. If the key values
happen to be consecutive numbers (such as a run of consecutive stock numbers
in an inventory), then a “division hash function” makes clustering even worse.
As clustering gets worse, insertions take longer because the insert function
must step all the way through a cluster to find a vacant location. Elements are
inserted farther and farther from their correct hashed index, and searches require
more time.

The most common technique to avoid clustering is called double hashing.
The technique uses a second hash function to determine how we move through
an array to resolve a collision. To see how this works, let’s call the original hash
function hash1, and call the second hash function hash2. When an item is
inserted, double hashing begins by hashing the key to an array index using
hash1. If there is a collision, then we calculate hash2(key) using the result to
tell us how far forward to move through the array in looking for a vacant spot.
For example, suppose that a new key hashes to location 330, and that
hash2(key) is 7. If location 330 is occupied, then we move forward 7 spots and
try location 337. If 337 is also occupied, then we move forward another 7 spots
to location 344, and so on. 

As we are stepping through the array, adding hash2(key) to the index at each
step, there are two considerations:

• The array index must not leave the valid range of 0 to CAPACITY - 1. We
can keep the index in this range with the “%” operation. In particular, sup-
pose that i is the index that we have just examined (with a collision).
Then the next index to examine is

(i + hash2(key)) % CAPACITY

For example, suppose that CAPACITY is 811, and hash2(key) is 14. If a
new key hashes to spot 787, and there is a collision, then the next few
spots that we will try are 801, then 4, then 18, then 32. Notice that the 4 is
calculated as (801 + 14) % CAPACITY.

• As we step through the array, we must ensure that every array position is
examined. With double hashing, this is a potential problem. We could
come back to our starting position before we have examined every avail-
able location. There is an easy way to avoid this problem: Make sure that
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the array’s capacity is relatively prime with respect to the value returned
by hash2 (in other words, these two numbers must not have any common
factors, apart from 1). One way to accomplish this is to choose CAPACITY
as a prime number, and have hash2 return values in the range 1 through
CAPACITY - 1. With this in mind, the preeminent computer scientist
Donald Knuth suggests the following possibility:
1. Both CAPACITY and CAPACITY - 2 should be prime numbers. For

example, 811 is prime and so is 809. (Two such primes, separated by
2, are called twin primes.)

2. hash1(key) = key % CAPACITY.
3. hash2(key) = 1 + (key % (CAPACITY - 2)). This particular hash2

function will never return a value above CAPACITY - 2, although in
general, the hash2 values could be as large as CAPACITY - 1.

With our table class from Figure 12.4 on page 604, double hashing can be
incorporated in several ways. The easiest approach is to add another private
member function to compute hash2, and change next_index to return:

(i + hash2(key)) % CAPACITY

This next_index function needs key as another parameter.
At this point, you know enough to implement open-address hashing with lin-

ear probing or with double hashing. We’ll delay the analysis of hashing until
after the presentation of chaining, which is another way to resolve collisions.

Self-Test Exercises for Section 12.2
9. What are the advantages of hashing over performing a binary search?

10. When should a programmer use a struct rather than a class?
11. How are collisions resolved in open-address hashing?
12. Write the table’s is_present member function.
13. Write the table’s find member function.
14. Write the two table helper functions: never_used and is_vacant.

These functions appear in the implementation file of Figure 12.6 on
page 610, but they are also inline functions (as described in the C++
Feature on page 612). The never_used function returns true if
data[index] has never been used. The is_vacant function returns true
if data[index] is not currently being used.

15. Suppose that a hash table is full and you try to insert a new entry. What
happens if the new entry’s key is already in the table? What happens if
the new entry’s key is not already in the table?

16. In the implementation of the table’s find_index function, the function
may sometimes find a key field that has been used previously (but not
currently). Why does the function need to continue to search?

17. Describe one problem with linear probing. How can this be solved?
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18. An empty hash table has a capacity of 103, and you insert six entries
with keys 103, 0, 205, 308, 411, and 2. Using linear probing and a divi-
sion hash function, where will these entries be placed in the table?
Where will they be placed with double hashing (with hash2(key)
returning the value 1 + (key % 101))?

19. Write a quick program to determine whether there is a pair of twin
primes between 1200 and 1250, with the upper prime having the form
4k+3 for some k. With this information, can you suggest a good size for a
hash table that uses double hashing and has a capacity around 1225?

12.3 CHAINED HASHING

In open-address hashing, a collision is handled by probing the array for an
unused position. Each array component can hold just one entry. When the array
is full, no more items can be added to the table. We could handle this problem
by resizing the array and rehashing all the entries, placing each entry in a new,
larger array. But this would require a careful choice of the new size and proba-
bly would require each entry to have a new hash value computed. Another
approach is to use a different collision resolution method called chained hashing.

In chained hashing, also called chaining, each component of the hash table’s
array can hold more than one entry. As with all hashing, we still hash the key of
each entry to obtain an array index. But if there is a collision, we don’t worry too
much. We simply place the new entry in its proper array component along with
other entries that happened to hash to the same array index.

How does chaining place more than one entry in each component of the array?
The answer is that each array component must have some underlying structure.
The most common structure that you will see for the array’s components is to
have each data[i] be a head pointer for a linked list. The nodes of the linked list
each have an item that is the RecordType of the table, as diagrammed here:

data

[2][0] [3] [4] [5][1]

. . .

Record whose
key hashes

to 0

Another record
that hashes

to 0

...

Record whose
key hashes

to 1

Another record
that hashes

to 1

...

Record whose
key hashes

to 2

Another record
that hashes

to 2

...

...
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In this scheme, all the records that hash to location i are placed on the linked
list, which has its head pointer stored in data[i]. To maintain the linked lists,
we can use the template version of our node class (from Section 6.4). With this
approach, the table class definition is shown in Figure 12.7.

In the figure we have included the file node2.h from Figure 6.4 on page 321
to provide the node class. We also have defined a static member constant called
TABLE_SIZE, which determines the size of the table’s array. We used the name
TABLE_SIZE rather than CAPACITY since “CAPACITY” suggests a limit to the
number of entries—but in fact, the chaining hash table can hold more than
TABLE_SIZE entries. 

A Template Class Definition
#include <cstdlib> // Provides size_t
#include "node2.h" // Provides the node type, from Figure 6.4 on page 321

namespace main_savitch_12B
{

template <class RecordType>
class table
{
public:

// MEMBER CONSTANT -- See Appendix E if this fails to compile.
static const std::size_t TABLE_SIZE = 811;
// CONSTRUCTORS AND DESTRUCTOR
table( );
table(const table& source);
~table( );
// MODIFICATION MEMBER FUNCTIONS
void insert(const RecordType& entry);
void remove(int key);
void operator =(const table& source);
// CONSTANT MEMBER FUNCTIONS
void find(int key, bool& found, RecordType& result) const;
bool is_present(int key) const;
std::size_t size( ) const { return total_records; }

private:
main_savitch_6B::node<RecordType> *data[TABLE_SIZE];
std::size_t total_records;
// HELPER MEMBER FUNCTION
std::size_t hash(int key) const;

};
}

 FIGURE  12.7 Definition of the Table Template Class Using Chaining and the Linked-List Toolkit

Each component of the
array is a head pointer
for a linked list.
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In our example, the table size is 811, so that the data array consists of 811
head pointers for 811 linked lists. Each list is a linked list where the nodes contain
RecordType values.

Our class definition has one other private member variable, total_records,
which keeps track of the total number of records in all 811 linked lists. You can
complete this implementation yourself.

Self-Test Exercises for Section 12.3
20. Consider the chaining version of the table that we have described. What

value will the constructor place in each component of data?
21. Write the insert member function for the chaining version of the table.
22. Use your insert function to place six items in a hash table with a table

size of 811. Use the keys 811, 0, 1623, 2435, 3247, and 2.
23. In our new table class, the array is still a fixed size. So why do we need

the copy constructor, destructor, and overloaded assignment operator?
24. Suppose that the keys can be compared with the usual “less than” opera-

tor. Can you think of some advantage to keeping each linked list of the
table sorted from smallest key to largest key?

12.4 TIME ANALYSIS OF HASHING

The worst case for hashing occurs when every key gets hashed to the same array
index. In this unfortunate case, we may end up searching through all the items to
find the one we are after—a linear operation, just like serial search. However,
with some reasonable assumptions, the average time for a search of a hash table
is dramatically fast, requiring us to examine just a handful of elements. This
section provides the information needed for an average-time analysis of our
three hashing methods.

The Load Factor of a Hash Table
The average-time performance of hashing is complex, particularly if deletions
are allowed. However, Knuth’s The Art of Programming, Volume 3, provides
formulas that can guide our choice of hash-table algorithms. Knuth’s most use-
ful formulas provide the average number of table elements that must be exam-
ined during a successful search for a key. There are three different formulas for
the three versions of hashing: open addressing with linear probing, open
addressing with double hashing, and chained hashing.

These three formulas depend on how many items are in the table. When the
table has many items, there are many collisions, and the average time for a search
is longer. With this in mind, we first define a fraction called the load factor,
which is written α and defined by the formula at the top of the next page.
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definition of the 
load factor, α

For open-address hashing, each array element holds at most one item, so the
load factor can never exceed 1. But with chaining, each array position can hold
many items, and the load factor might be higher than 1.

Average search time for open addressing (linear probing). Open-address
hash tables with linear probing have just one hash function. Collisions are
resolved by stepping forward, probing consecutive array elements. With linear
probing, and no deletions, Knuth’s formula for the average time of a successful
search is as follows:

This formula is not exact, but it is a good approximation when the load factor
(α) is below 1. You might notice that the formula completely fails when α is 1,
since there is then a division by zero. But that situation would indicate a full
hash table, and you should avoid getting close to full anyway. If you insist on a
full hash table of n elements, Knuth shows that the average time for a successful
search is approximately —but better yet, steer clear of full tables, and
you can use the preceding formula. In addition to a nonfull table, the formula’s
derivation also assumes that we have not deleted any items, and that the hash
function does a good job of uniformly distributing all possible keys throughout
the array (which is called uniform hashing).

As an example of how to use the formula, suppose that we plan to put 649
entries in a table with a capacity of 811. This provides a load average of 649/811,
or about 80%. On average, we expect successful searches to examine three table
elements, as shown here:

Average search time for open addressing (double hashing). You have seen
that open-address hash tables with double hashing provide some relief from
clustering. The result is a smaller average time, given by the following formula
(which uses “ln” to denote the natural logarithm of a number):

Searching with Linear Probing
In open-address hashing with linear probing, a nonfull hash
table, and no deletions, the average number of table ele-
ments examined in a successful search is approximately

α Number of occupied table locations
The size of the table's array

-------------------------------------------------------------------------------------=
table’s

1
2
--- 1 1
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------------+⎝ ⎠

⎛ ⎞

n π 8⁄( )

1
2
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------------+⎝ ⎠

⎛ ⎞ 1
2
--- 1 1

1 0.8–
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As with the previous formula, this estimate is approximate. It depends on a non-
full hash table, no deletions, and using a hash function with uniform hashing.

You don’t need to memorize the formula, but you should know how to use it
along with the ln key on your calculator. For example, ln(0.2) is about –1.6, so
with a load factor of 0.8 we expect to examine an average of two elements in a
successful search, as shown here:

This is an improvement over the linear probing with the same load factor.

Average search time for chained hashing. With chaining, each element of
the table’s array is a head pointer for a linked list, and each of these linked lists
may have several items. Therefore, the load factor may be higher than one in
this formula:

Once again, this estimate is approximate, and it depends on using uniform hash-
ing. Unlike the other two formulas, the chaining formula remains valid even
with deletions.

With a load factor of 0.8, chained hashing expects to examine only 1.4 items
during a successful search. Some other possible load factors are shown in Figure
12.8, where you can compare the average numbers for the three different hashing
methods.

Searching with Double Hashing
In open-address hashing with double hashing, a nonfull
hash table, and no deletions, the average number of table
elements examined in a successful search is approximately:

Searching with Chained Hashing
In open-address hashing with chained hashing, the average
number of table elements examined in a successful search is
approximately:

1 α–( )ln–
α

--------------------------

1 α–( )ln–
α

-------------------------- 0.2( )ln–
0.8

--------------------- 1.6
0.8
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1 α
2
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Self-Test Exercises for Section 12.4
25. Suppose that you place 180 items in a hash table with an array size of

200. What is the load factor? For each of the three hash methods, what is
the average number of table elements that you expect to have examined
during a successful search?

26. You want to place 1000 elements in a hash table, and you’d like an aver-
age search to examine just two table elements. How big does the table’s
array need to be? Give separate answers for the three hash methods.

12.5 PROGRAMMING PROJECT: A TABLE CLASS WITH STL VECTORS

A New Table Class

We have discussed table classes implemented with an array of records (for
open-address hashing) and an array of linked lists (for chained hashing). A table
class can also be implemented with existing STL containers. This is advanta-
geous in that the table can easily access and modify data items using the mem-
ber functions of the containers. We suggest the STL vector class to implement a
new version of the table class. The STL vector class is analogous to a dynamic
array for which certain member functions automatically increase the size of the
array. It uses subscripting to access elements (such as  for a vector v
of integer values). Appendix H provides details for using the vector template
class. Like the table in Figure 12.7 on page 616, this table will use chained
hashing, but there are a few changes in the design.

FIGURE  12.8 Average Number of Table Elements Examined During a Successful Search

Open addressing
with linear probing

Open addressing
with double

hashing

Chained hashing

Load factor (α)
0.5 1.50 1.39 1.25
0.6 1.75 1.53 1.30
0.7 2.17 1.72 1.35
0.8 3.00 2.01 1.40
0.9 5.50 2.56 1.45
1.0 1.50
2.0 Not applicable 2.00
4.0 3.00
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Using Vectors in the New Table

In the original version, the table was an array called data. Each location
data[i] was the head pointer for a linked list of all the records with a hash
value of i. The new version will use vectors instead of linked lists:

Template Parameters That Are Constants

Until now, all our template parameters have been data types, such as the
RecordType for our table. However, a template parameter can also be a constant
value that is used throughout the class definition. This will change our template
prefix as shown here:

template <class RecordType, >
class table
{ // In this definition, we’ll use RecordType and the constant TABLE_SIZE . 
. .

The syntax consists of the data type of the constant (such as size_t) followed
by the name that you want to use for the constant (such as TABLE_SIZE).

Template Parameters That Are Functions

We no longer require RecordType to have an explicit key member variable.
This gives us more flexibility in the kinds of records that can be stored. How-
ever, we will need a new mechanism to compute the key of a record. This will
be done by a function with the following prototype:

int hashkey(const RecordType& r);

When we need to compute a key for a record r, the function will use hashkey(r).
But how does the new table class obtain the hashkey function? The program-

mer who writes the table class can’t write hashkey because the RecordType is
unknown. The answer is that the hashkey function can be provided as a third
template parameter for the table class, like this:

The New Table Is an Array of Vectors
Each data[i] will be a vector that contains all the records
with a hash value of i.

Template Parameters Can Be Constant Values
A template parameter can be a constant value, and that
constant can then be used throughout the template’s defini-
tion. Our new table will have a template parameter for the
TABLE_SIZE constant.

size_t TABLE_SIZE
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template <
class RecordType, 
size_t TABLE_SIZE, 

>
class table
{ // In this definition, we’ll use RecordType, the constant TABLE_SIZE,

// and the function: int hashkey(const RecordType&).

The syntax for that third template parameter is the prototype for the function
that you want another programmer to provide to the template class. 

Implementing the New Table Class

Within the new definition of the class, the programmer who implements the new
table may use RecordType, TABLE_SIZE, and the function hashkey whenever
they are needed without worrying about where they came from. It is the respon-
sibility of the programmer who uses our table class to provide those three items.

A suggested class definition for the new table is shown in Figure 12.9. A pro-
grammer who wants to create a hash table of tractors using the tractor struct from
page 598 must first write the hashkey function for tractors and then declare
whatever tables are needed:

int hashkey(const tractor& t) 
{

return t.key; 
}

// Declare a hash table of size 811 for tractors:
main_savitch_12C::table<tractor, 811, hashkey> my_table;

//...now my_table can be used.

Hash tables of other kinds of records can also be created, so long as the pro-
grammer provides the record type, the table size, and the hashkey function.

Template Parameters Can Be Functions
A template parameter can be a function, and that function
can then be used throughout the template’s definition. Our
new table will have a template parameter for the hashkey
function.

int hashkey(const RecordType&)
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Self-Test Exercises for Section 12.5

27. Name three different kinds of template parameters.
28. Write a simple hash function for strings to use as a template parameter

for the table class in Figure 12.9.  One option is to add the ASCII integer
values of all the characters in the string. Use the expression
static_cast<int>(s[i]) to obtain the ASCII integer value of charac-
ter i in a string s.

29. Implement the is_present function for the new table.
30. Why doesn’t the new table need a copy constructor, destructor, or assign-

ment operator?

A Template Class Definition
#include <cstdlib> // Provides size_t
#include <vector> // Provides the STL vector class

namespace main_savitch_12C
{

template <class RecordType, size_t TABLE_SIZE, int hashkey(const RecordType&>
class table
{
public:

// CONSTRUCTORS (no destructor needed, uses automatic copy constructor)
table( );
// MODIFICATION MEMBER FUNCTIONS
void insert(const RecordType& entry);
void remove(int key);
// CONSTANT MEMBER FUNCTIONS
void find(int key, bool& found, RecordType& result) const;
bool is_present(int key) const;
std::size_t size( ) const { return total_records; }

private:
vector<RecordType> data[TABLE_SIZE];
std::size_t total_records;
// HELPER MEMBER FUNCTION
std::size_t hash(int key) const;

};
}

 FIGURE  12.9 The Table Template Class Using a Vector and Additional Template Parameters

Each component of the
array is a vector.
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12.6 HASH TABLES IN THE TR1 LIBRARY EXTENSIONS

As of 2009, the STL has no hash table class, partly because the schedule of the
1995 standards committee lacked time for a proper review of the hash table that
had been part of an earlier template library from Silicon Graphics, Inc., that
formed the basis for the STL. However, hash tables are part of a 2005 report,
ISO/IEC TR 19768, C++ Library Extensions (commonly referred to as TR1),
and these proposed library extensions are likely to become part of a future C++
standard. These extensions have already been implemented as part of the pub-
licly available Dinkum Compleat Libraries (www.dinkumware.com/manuals).

The proposal actually includes four kinds of hash tables:

1. The hash_map class, in which each inserted element is a pair containing
the element’s key and its data. The keys must have a comparison function
that forms a strict weak ordering, and each key may have just a single data
item associated with it. The implementation is with chained hashing,
although there is no requirement about the underlying data structure for
the chains themselves.

2. The hash_multimap class, which is like the hash_map class except that
each key may have multiple data items associated with it (like the
multimap class).

3. In the hash_set class, the stored elements are the keys themselves (there
is no separate data). Each element may appear only once in a hash_set.

4. The hash_multiset is like a hash_set except that elements may occur
multiple times.

CHAPTER SUMMARY

• Serial search is quick to program but requires linear time to find an item
in both the worst case and the average case.

• Binary search works well on a sorted array of items, requiring O(log n)
time in both the worst case and the average case. But as items are added
or deleted, keeping the array in order may take considerable time (linear
time for each insertion or deletion in the worst case).

• Hash tables are a good strategy for storing and retrieving records. In fact,
they would be perfect if there were no collisions.

• One way to deal with collisions is open addressing. This scheme handles
collisions by placing the new entry in the first open location that is at or
after the spot where the key hashes to. Two methods of searching for an
open location are linear probing (which examines the array locations in
consecutive order) and double hashing (which uses a second hash func-
tion to determine the size of the steps that are taken through the array).
Double hashing is the better method, because it avoids clustering.
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• Another way to deal with collisions is chaining. In the chaining approach,
each location of the hash table’s array is able to hold multiple entries. A
common way to implement chaining is for each array location to be a
head pointer for a linked list of entries.

• The worst-case search time for a hash table is linear. But the average-case
time is quite fast. Depending on the load factor and the precise method of
hashing, the average case requires about two to five table elements to be
examined during a successful search (see Figure 12.8 on page 620).

• A new class, such as a table, can sometimes be effectively implemented
using existing classes from the STL.

• Template parameters can be classes, constant values, or functions.
• The STL does not have a hash table class, but the proposed extensions

from TR1 do include four such classes.

SOLUTIONS TO SELF-TEST EXERCISES ?Solutions to Self-Test Exercises

1. A serial search is acceptable when you are
searching a small array only a few times.

2. Worst case: O(n). Average case looks at half
the items, which is still O(n). Best case is con-
stant time (looks at but one item).

3. The precondition is modified so that the array
no longer needs to be sorted. Here’s the code:
void search(

const int a[ ],
size_t first, size_t size,
int target, bool& found,
size_t& location

)
{

size_t i;
bool found;
i = 0;
found = false;
while ((i < size) && !found)
{

if (a[first+i] == target)
{

found = true;
location = first+i;

}
else

++i;
}

}

4. Because of the recursive calls in a binary
search, the array is repeatedly split in half.
The first and size parameters keep track of
the portion of the array that is currently being
searched.

5. When size becomes zero, or when the target
is found.

6. The following template prefix is placed before
the function:
template <class Item, class SizeType>
In the implementation, change every occur-
rence of int to Item, and change the size_t
parameters to SizeType. (See “Parameter
Matching for Template Functions” on
page 296 for an explanation of the need for the
SizeType.)

7. The function is not difficult to write, but pay
attention to the potential pitfalls from
page 589.

8. H(1)=1, H(2)=2, H(4)=3, H(7)=3, H(8)=4,
H(9)=4.

9. Hashing can be fast in the average case. Add-
ing and deleting elements is easier in a con-
tainer that provides hashing, because a binary
search requires that the items remain sorted. 
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10. Programmers tend to use a struct only when
all the members are public.

11. Collisions are resolved by placing the item in
the next open spot of the array.

12. Here’s the body of the implementation:
{

bool found;
std::size_t index;
assert(key >= 0);
find_index(key, found, index);
return found;

}

13. Here’s the body of the implementation:
{

std::size_t index;
assert(key >= 0);
find_index(key, found, index);
if (found)

result = data[index];
}

14. Here is the never_used member function:
template <class RecordType>
inline bool Table<RecordType>::
never_used(size_t index) const
// Library facilities used: stdlib.h
// Precondition: index < CAPACITY.
// Postcondition: If data[index] has never
// been used, then the return value is true.
// Otherwise the return value is false.
{
return
(data[index].key == NEVER_USED);

}

Here is the is_vacant member function:
template <class RecordType>
inline bool Table<RecordType>::
is_vacant(size_t index) const
// Library facilities used: stdlib.h
// Precondition: index < CAPACITY.
// Postcondition: If data[index] is not now
// being used, then the return value is true.
// Otherwise the return value is false.
{
return
(data[index].key < 0);

}

15. If the key was already present, then the record
with that key is overwritten. If the key was not
already present, then the assertion tests
whether size( ) < CAPACITY is true, and this
assertion fails, halting the program.

16. Suppose we start looking in the data array at
some index, say 34, and we move forward
until we find an unoccupied location. Perhaps
this first unoccupied location is at index 36. If
position 36 has a key of NEVER_USED, then
that indicates that the position has never been
used, and therefore no record with the given
key appears in the array (since it would have
been placed in this unused position, or perhaps
in position 34 or 35, which we already exam-
ined).

On the other hand, if position 36 has a key
of PREVIOUSLY_USED, then this position has
previously been used and since removed. In
this case, it is possible that there is a record
with the given key in the array at a position
after data[36]. It might be after this position,
because at the time it was inserted, data[36]
might have been in use.

17. Linear probing can result in clustering of ele-
ments when several different keys are hashed
to the same location. Insertions and searching
take longer as clustering gets worse. Double
hashing can solve this problem by using a sec-
ond hash function to resolve a collision.

18. For linear probing, the key/index pairs are
103 at [0], 0 at [1], 205 at [102], 308 at [2],
411 at [3], and 2 at [4]. For double hashing the
key/index pairs are 103 at [0], 0 at [1], 205 at
[102], 308 at [5], 411 at [7], and 2 at [2].

19. There is a twin prime pair at 1229 and 1231,
which suggests that 1231 is a good table
capacity.

20. NULL

21. We suggest that you first write a helper func-
tion with one parameter that is a key. The
function returns a pointer to a node with the
specified key (or returns NULL if there is no
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such node). Using this function (which we call
find_ptr), the implementation is:
template <class RecordType>
void Table<RecordType>::
insert(const RecordType& entry)
{
main_savitch_6B::node<RecordType>
*cursor;

cursor = find_ptr(entry.key);
if (cursor == NULL)
{
list_head_insert
(data[hash(entry.key)], entry);
++used;

}
else
cursor->setdata(entry);

}

22. The data[0] list will have the keys 0 and 811.
The data[1] list will have the key 1623. The
data[2] list will have the keys 2 and 2435.
The data[3] list will have the key 3247. All
other lists are empty.

23. The ADT does use dynamic memory (the
linked lists).

24. If the lists are kept in order, then a search can
stop as soon as it reaches a key that is greater
than the target.

25. The load factor is 0.9 (i.e., 180/200). With lin-
ear probing, the expected average is 5.50; with
double hashing, the expected average is 2.56;
with chained hashing, the expected average is
1.45.

26. For linear probing, we need a load factor of
2/3, which requires a table capacity of 1500.
For double hashing, we need a load factor of
just less than 0.8, requiring a table capacity of
about 1250. For chaining, we need a load fac-
tor of 2, requiring an array size of 500.

27. A template parameter can be a data type, a
constant data value, or a function.

28. Here is one implementation:
int hashkey(const string& s) 
{

int result = 0;

for (int i = 0; i < s.length(); ++i)
result = result + static_cast<int>(s[i]);

return (result % table_size);
}

29. Here is one implementation:
bool table::is_present(int key) const;
{

size_t i = hash(key); // If key exists, it will be in data[i].
vector<RecordType>::const_iterator it;

for (it = data[i].begin( ); it != data[i].end( ); ++it)
{

if (hashkey(*it) == key)
return true;

}
return false;

}

30. A copy constructor, destructor, and assignment operator are needed only when a class makes direct use
of dynamic memory. The new table class uses dynamic memory, but only through the vector class,
which is another great reason to use the STL classes.
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PROGRAMMING PROJECTSPROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Reimplement the binary search using a loop
and no recursion. If you are familiar with
template functions, then your implementa-

tion should be a template function that can search
any array that is sorted from smallest to largest (us-
ing the < operator).

Use a binary search technique to rewrite the
guess_game function from Figure 1.4 on
page 24. The function may ask questions

such as “Is your number bigger than 42?” Your re-
sult should have worst-case time of O(log n).

Use double hashing to reimplement the
hash table from Figure 12.4 on page 604.

In our open-address hash tables, we have
used linear probing or double hashing.
Another probing method, which avoids

some clustering, is called quadratic probing. The
simplest version of quadratic probing works like
this: Start by hashing the key to an array index. If
there is a collision, then move to the next array
index. If there is a second collision, then move
forward two more spots through the array. After a
third collision, we move forward three more spots,
and so on. For example, suppose that a new key
hashes to location 327, and this location is full. The
next location that we try is 328. If 328 is a second
collision, then we move two spots forward to loca-
tion 330. If 330 is a third collision, then we move
three spots forward to location 333. If our calcula-
tion of the next spot takes us beyond the end of the
array, then we “wrap around” to the front of the
array (similar to double hashing). In general, if
data[i] is the location that has just caused a colli-
sion, and we have already examined count ele-
ments, then we increase i according to the
assignment:

i = (i + count) % CAPACITY;

In this formula, the “% CAPACITY” causes the
“wraparound” to the front of the array. In order for

1

2

3

4

this approach to work correctly, the capacity must be
a power of 2, such as . Otherwise, the
sequence of probes does not correctly examine all
array items.

For this project, use quadratic hashing to reim-
plement the hash table from Figure 12.4 on
page 604.

Implement a dictionary program using a
table. The user inputs a word, and the word’s
definition is displayed. You will need to re-

vise one of the table implementations to use a string
as the search key. Use a hash function similar to the
one you implemented for Self-Test Exercise 28.

Redo Programming Problem 12 of Chapter
10 to allow the user to search for books
using the ISBN, book title, or author search

key. One way to accomplish this would be to create
a separate hash table of book objects for each search
key; however, this would result in duplicated data
and wasted memory. A better implementation would
be to store the actual data in a list, and use separate
hash tables for each search key.  The value associat-
ed with each key is not the book itself, but just the
position of the book in the long list of books. As-
sume that there are no duplicates in the search keys. 

Design a scheme that allows for duplicate
keys in the previous project.

Rewrite one of your hash tables so that it has
additional member functions to provide sta-
tistics. You should include functions to cal-

culate the load factor, the average number of items
examined during a successful search, and the maxi-
mum number of items examined during a successful
search.

Find a large collection of information to put in
your hash table, perhaps the list of users at your
computing site. Test how the statistics vary based on
the capacity of the hash table.

210 1024=
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L EARN ING  OB J EC T I V ES
When you complete Chapter 13, you will be able to...

• do a simulation by hand of selectionsort, insertionsort, mergesort, quicksort, and 
heapsort.

• implement each of these sorting algorithms to sort an array of numbers or to sort 
any collection of objects that provides a random access iterator.

• explain the run�time advantage of insertionsort for the situation in which an array 
is nearly sorted to begin with.

• explain the advantage of mergesort for sorting a collection of data that is too large 
to fit in memory all at once.

• demonstrate situations where the poor choice of a pivot element can cause 
quadratic behavior for quicksort.

CHAPTER  CONTENTS

13.1 Quadratic Sorting Algorithms
13.2 Recursive Sorting Algorithms
13.3 An O(n log n) Algorithm Using a Heap
13.4 Sorting and Binary Search in the STL

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

A place for everything and everything in its place.
ISABELLA MARY BEETON

The Book of Household Management
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Sor t ing

One commonly encountered programming task is sorting a
list of values. By way of examples, the list might consist of exam scores, and we
may want to see them sorted from lowest to highest, or from highest to lowest;
the list might be a list of words that we have misspelled, and we may want to see
them in alphabetical order; the list might be a list of student records, and we
may want them sorted by student number or alphabetically by student name. In
this chapter we present and analyze a number of different sorting algorithms.

To maintain a sharp focus on the sorting algorithms, we will consider only
arrays of integers and design algorithms to sort the integers into order from small-
est to largest. However, if you are familiar with templates (Chapter 6), then you
may easily adapt the algorithms to sort arrays of values of other types, or to sort
values according to other ordering relations. Other adaptations are also possible.
For example, one common way of ordering records is to choose one special field,
which is then called the key field, and to sort the records according to that key
field. Using a key field, we could sort a list of student records by student number
(with the student number serving as the key field). We could sort the same
records alphabetically by name (with the student name serving as the key field).

We’ll finish the chapter with a discussion of the sorting utilities in the C and
C++ Standard Libraries.

13.1 QUADRATIC SORTING ALGORITHMS

In this section we develop and implement two algorithms to sort a list of num-
bers into increasing order.

Selectionsort—Specification
We have an array of integers to sort into order from smallest to largest. To be
concrete, we’ll use this prototype and precondition/postcondition contract:

void selectionsort(int data[ ], size_t n);
// Precondition: data is an array with at least n components.
// Postcondition: The elements of data have been rearranged so
// that data[0] <= data[1] <= ... <= data[n-1].

Selectionsort—Design
The problem is to sort an array, such as data, from smallest to largest. That
means rearranging the values so that data[0] is the smallest, data[1] the next
smallest, and so forth, up to data[n-1], which is the largest. That definition
yields an outline for a straightforward algorithm (i is a local variable):

for (i = 0; i < n; ++i)
Put the next smallest element in location data[i].

sorting by key 
value
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This approach finds the smallest element, then the next smallest, and so on,
placing the items in data[0], data[1], ... as they are found. We can also work
the approach the other way, finding the largest item, then the next largest, and so
on:

for (i = n-1; i >= 0; --i)
Put the next largest element in location data[i].

There are many ways to realize this general approach. We could use two
arrays, copying the elements from one array to the other in sorted order. How-
ever, one array is both adequate and economical. To help in exploring this
approach, we will use the concrete example shown here:

Consider sorting this array with a pencil and eraser according to the second ver-
sion of the pseudocode that we have outlined (finding and placing the largest
element, then the next largest, and so on).

We begin by searching the array for the largest element, and we find this larg-
est element at data[6], which is the 18. We next want to set the last element of
the array equal to this value of 18. In doing so, we must be careful not to lose the
original value of 12 that was stored in array location data[9]. A simple assign-
ment statement like the following would destroy the 12:

data[9] = data[6]; // No good: destroys the original data[9].

The algorithm must not simply destroy the original value 12 that was in the final
spot of the array. Fortunately we have an array location in which to store it. We
can place it in the location that used to have the largest element. In other words,
we actually want to “swap” the largest element with the final element of the
array. After the swap, the array looks like this:

The values of data[6] and data[9] have simply been swapped. A similar thing
is done with the second-largest value of the array. We find this second-largest
value (the 16 at data[4]) and swap it with the next-to-last element of the array
(data[8]), resulting in this array:

data

10 8 6 2

[2][0] [3] [4] [5][1]

16 4 18 11 14 12

[8][6] [9][7]

data

10 8 6 2

[2][0] [3] [4] [5][1]

16 4 18 11 14

[8][6] [9][7]

12
12
18

The largest value has been
swapped with the final value
in the array.
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The entire array can be sorted by a series of swaps such as these. Any sorting
algorithm that is based on swapping is referred to as an interchange sort.

The simplest interchange sorting algorithm, which we have been describing,
is called selectionsort. The algorithm’s basic pseudocode is shown here:

for (i = n-1; i > 0; --i)
swap(data[i], data[suitable index]);

the swap 
function

These two lines of pseudocode have two refinements from our original pseudo-
code. First, we are using the swap function from the <algorithm> facility. The
function interchanges the values of its two arguments. The second refinement is
that the loop executes only n-1 times, stopping when i drops to zero. There is
no need to execute the loop with i equal to zero because when i reaches zero,
all the larger elements are already in their correct spots. Therefore, data[0]
must already have the smallest value.

All that remains is to calculate the expression for the “suitable index.” When
the loop considers data[i] and looks for a suitable value to interchange, the
locations with indices above i already contain the correct values for a sorted
array. So the sought-after index is the index of the largest of the remaining ele-
ments data[0], data[1], ... , data[i]. There are i+1 of these elements to
examine, searching for the index of the largest one. This search is carried out by
a loop, keeping track of the largest item that has been found, and also keeping
track of the index of that item. Here is the refinement of our pseudocode:

for (i = n-1; i > 0; --i)
{

index_of_largest = 0;
largest = data[0];
for (j = 1; j <= i; ++j)
{

if (data[j] > largest)
Change largest to data[j] and index_of_largest to j

}
swap(data[i], data[index_of_largest]);

}

Selectionsort—Implementation

The complete sorting algorithm is implemented by the function selectionsort,
which is shown in Figure 13.1, along with a small demonstration program.

data

10 8 6 2

[2][0] [3] [4] [5][1]

416 11 18

[8][6] [9][7]

14

The second-largest value has been
swapped with the next-to-last value
in the array.

14
16

12
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A Program
// FILE: select.cxx
// An interactive test program for the selectionsort function

#include <algorithm> // Provides swap
#include <cstdlib> // Provides EXIT_SUCCESS, size_t
#include <iostream> // Provides cout and cin
using namespace std;

// PROTOTYPE of the function used in this test program:

// Precondition: data is an array with at least n components.
// Postcondition: The elements are rearranged so that data[0] <= data[1] <= ... <= data[n-1].

{
const char BLANK = ' ';
const size_t ARRAY_SIZE = 10; // Number of elements in the array to be sorted
int data[ARRAY_SIZE]; // Array of integers to be sorted
int user_input; // Number typed by the user
size_t number_of_elements; // How much of the array is used
size_t i; // Array index

// Provide some instructions.
cout << "Please type up to " << ARRAY_SIZE << " positive integers. ";
cout << "Indicate the list's end with a zero." << endl;

// Read the input numbers.
number_of_elements = 0;
cin >> user_input;
while ((user_input != 0) && (number_of_elements < ARRAY_SIZE))
{

data[number_of_elements] = user_input;
++number_of_elements;
cin >> user_input;

}

// Sort the numbers, and print the result with two blanks after each number.
selectionsort(data, number_of_elements);
cout << "In sorted order, your numbers are: "<< endl;
for (i = 0; i < number_of_elements; ++i)

cout << data[i] << BLANK << BLANK;
cout << endl;

return EXIT_SUCCESS;
}

(continued)

 FIGURE  13.1 Selectionsort

void selectionsort(int data[ ], size_t n);

int main( )
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In the selectionsort implementation, you will notice that i and n are both
size_t, so we have added an extra if-statement to handle the case of “sorting an
empty array” (the case where n is zero). In this case, the function has no work to
do (there are no elements to sort), but since size_t values may not be negative,
we must avoid the assignment .

Selectionsort—Analysis
We want to analyze the worst-case running time for the selectionsort algorithm
that we implemented as the function selectionsort shown in Figure 13.1. Let
us use n for the number of items to be sorted. In the function selectionsort, n
is the value of the size_t parameter n.

In outline form, the main work of the selectionsort algorithm is given here:

 (FIGURE  13.1 continued)

// Library facilities used: algorithm, cstdlib
{

size_t i, j, index_of_largest;
int largest;

if (n == 0)
return; // No work for an empty array

for (i = n-1; i > 0; --i)
{

largest = data[0];
index_of_largest = 0;
for (j = 1; j <= i; ++j)
{

if (data[j] > largest)
{

largest = data[j];
index_of_largest = j;

}
}
swap(data[i], data[index_of_largest]);

}
}

Sample Dialogue
Please type up to 10 positive integers. Indicate the list's end with a zero.
80 10 50 70 60 90 20 30 40 0
In sorted order, your numbers are:
10 20 30 40 50 60 70 80 90

void selectionsort(int data[ ], size_t n)

www.cs.colorado.edu/~main/chapter13/select.cxx WWW

i = n-1
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for (i = n-1; i > 0; --i)
swap(data[i], data[suitable index]);

When i is equal to n-1, then data[suitable index] is the largest element in the
array; when i is equal to n-2, then data[suitable index] is the second-largest
element in the array, and so forth. 

How many operations are performed by this for-loop? The answer is not easy.
Many of the operations are hidden. The loop control variable, i, is compared to
zero at the start of each loop iteration. The swap function uses some number of
assignment operations, and the calculation of the “suitable index” requires some
work. The value of i is decremented at the end of each loop iteration. We could
determine the precise number of operations for each of these subtasks in the loop.
However, that is more detail than we need. We are only looking for a big-O
approximation, which means that we do not need the exact values for constants.
This will simplify our analysis significantly.

During each iteration of the loop, there is some constant number of operations
in managing the loop control variable, and there is some constant number of
operations involved in the call to the swap function. So the number of operations
in each loop iteration is the sum:

some constant +  the cost of finding the suitable index

Since there are n–1 loop iterations, the total count of the number of operations
performed is given by the product:

To change this into a nice formula expressed in terms of n, we need to determine
the cost of finding the “suitable index.”

As it turns out, when the algorithm is looking for the value to place in location
data[i], the “suitable index” is the index of the largest of the values

data[0], data[1], ..., data[i]

The selectionsort algorithm uses a for-loop to determine the location of this
largest element and thereby the value of the “suitable index.” This loop looks at
each of these array elements and performs some constant number of operations
with each of them. Since i can be as large as n–1, in the worst case, the loop will
look at all n array elements from data[0] to data[n-1] and perform a constant
number of operations on each one. Hence, our estimate of the number of opera-
tions to find this “suitable index” is at most a constant times n.

Putting this information together, we see that the total count of the number of
operations performed in the selectionsort is this:

Now we need to estimate the quantity:

n 1–( ) some constant + the cost of finding the suitable index( )×

Total n 1–( ) some constant + the cost of finding the suitable index( )×=

n 1–( ) some constant + (some other constant) n×[ ]×≤

n 1–( ) some constant + (some other constant) n×[ ]×
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If you multiply this out, you will get an  term, an n term, and a constant term
without any n. Thus, the number of operations performed is:

n2 × (some new constant)
+
n × (some other new constant)
+
(yet another new constant)

This is our estimate of the worst-case running time for selectionsort. Because
we are doing a big-O analysis, we can ignore the constants and only consider
the highest exponent of n. Hence, we see that the worst-case running time for
selectionsort is O(n2).

This analysis of the running time for selectionsort did not depend on the initial
values in the array. The selectionsort algorithm performs the same number of
operations no matter what values are in the array that it sorts. Thus, the average-
case running time (and even the best-case running time) is the same as the worst-
case running time.

ROUGH ESTIMATES SUFFICE FOR BIG�O

We have just computed big-O expressions for the worst-case running time of the
selectionsort algorithm. Notice that when we performed the big-O analyses, we did
not compute exact formulas for the running times. For example, when we estimated
the number of operations in one iteration of the primary loop used in the algorithm,
we decided that the algorithm performed the following number of operations in
each loop iteration: 

some constant +  the cost of finding the suitable index

Notice that we never computed the exact value of “some constant.” Because big-O
expressions are accurate only to “within a constant multiple,” the exact value of the
constant does not matter. If we want only a big-O expression, there is no reason to
spend time computing an exact value for this constant. 

Insertionsort
Another simple and natural sorting algorithm is based on the following illustra-
tion of sorting an array that contains this list of 10 integers:

( 8, 2, 5, 3, 10, 7, 1, 4, 6, 9 )

Selectionsort Running Time
The worst-case running time, the average-case running time,
and the best-case running time for selectionsort are all
quadratic.

n2

PROGRAMMING TIP ��  
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One way to proceed is to take the numbers one at a time and build up another
sorted list of values. The first number is 8, so make a list that contains only the
one number 8. That is certainly a sorted list. Next take the 2 and combine it with
the 8 to obtain a longer sorted list, namely (2, 8). Next, add the 5 to obtain the
list: (2, 5, 8).

If you keep adding numbers to the list, you will eventually obtain a sorted list
containing all the numbers. The original list decreases by one on each iteration,
and the list we are building increases by one on each iteration. The progress of
this process is shown here for the example list:

( ) ( 8, 2, 5, 3, 10, 7, 1, 4, 6, 9 )

( 8 ) ( 2, 5, 3, 10, 7, 1, 4, 6, 9 )

( 2, 8 ) ( 5, 3, 10, 7, 1, 4, 6, 9 )

( 2, 5, 8 ) ( 3, 10, 7, 1, 4, 6, 9 )

( 2, 3, 5, 8 ) ( 10, 7, 1, 4, 6, 9 )

( 2, 3, 5, 8, 10 ) ( 7, 1, 4, 6, 9 )

( 2, 3, 5, 7, 8, 10 ) ( 1, 4, 6, 9 )

( 1, 2, 3, 5, 7, 8, 10 ) ( 4, 6, 9 )

( 1, 2, 3, 4, 5, 7, 8, 10 ) ( 6, 9 )

( 1, 2, 3, 4, 5, 6, 7, 8, 10 ) ( 9 )

( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) ( )
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With the insertionsort, your first thought might be to use an additional array and
copy values from one array to the other. The numbers in the left-hand lists in our
drawings would be in one array, and the numbers in the right-hand lists would
be in the other array. But if you look carefully at the drawings, you will see that
one list grows at exactly the same rate that the other list shrinks. So we need
only one array. If we have 10 numbers, we need only 10 positions. One list can
be kept at the front of the array and the other at the back of the array.

We can redraw the progress of the insertionsort in a way that makes it evident
that one array is sufficient. At the start of the insertionsort, we have the same
10-element array that we have been working with:

We have called the array data. The first component, data[0], is shaded to indicate
that even at the start, the front part of the array—with only the one shaded item—
can be viewed as a tiny sorted array on its own. The first actual work will be to
insert the second element (data[1], which is a 2) into the tiny sorted array, increas-
ing the “sorted part” of the array to encompass two elements, as shown here:

So, at this point, the first two elements, (2, 8), form a small sorted list, and we
still need to insert the remaining elements, (5, 3, 10, 7, 1, 4, 6, 9). After the
insertion of the 5, we have the situation shown here:

The insertion process continues, taking the next element from the unsorted side
of the array and inserting it into the sorted side of the array. Each insertion
increases the size of the sorted side and decreases the unsorted side until the
entire array is sorted. The following pseudocode describes the whole process:

for (i = 1; i < n; ++i)
Insert data[i] into the elements before data[i]
(which are already sorted)

The insertion of data[i] can be done in three steps, which we’ll illustrate when
i is 3 for the sample array:

8 2 5 3

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

data

2 8 5 3

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

data

2 5 8 3

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

data
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1. Save a copy of the number to be inserted. For our example, this step cop-
ies data[3] into a temporary local variable, as shown here:

2. Move up the elements before data[i] until you reach the spot to insert the
new number. In our example, we move the 8 and then the 5, as shown here:

3. Insert the new number into the open spot. For our example, the 3 is
inserted:

2 5 8 3

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

2 5 8

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

data

3

3

2 5 8

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

3

2 5 8

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

3

2 5 8

[2][0] [3] [4] [5][1]

10 7 1 4 6 9

[8][6] [9][7]

3
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Insertionsort—Analysis

You can convert these ideas into the actual insertionsort function yourself
(see Self-Test Exercise 4 on page 642). We’ll finish this section by analyzing
the insertionsort in a slightly different manner, determining how many times the
algorithm must access an element of the array—either for a comparison or for a
swap of some sort. For many sorting algorithms, such as insertionsort, the count
of array accesses is proportional to the total number of operations. Therefore,
the final big-O analysis comes out the same. 

We start by asking how many array accesses are required to insert just one
new element. If you analyze the insertion process, you will see that the function
starts by comparing the new element to the final element from the sorted portion
of the array. After this comparison, the algorithm works backward through the
array until it finds the correct spot to insert a new element. In the worst case, the
algorithm could compare and shift each element of the array once, and therefore
the total number of array accesses is limited to a constant times n. In fact, an
insertion may need significantly fewer than O(n) accesses as an insertion exam-
ines only the elements in the sorted portion rather than all n. But O(n) operations
is a good overestimate because it is easy to express and easy to work with.

So, the insertion of one new element takes O(n) time, and there are n elements
to insert. Thus the total time for n separate insertions is no more than this:

Total = n × (the number of operations in an O(n) algorithm)
Total = n × (some constant times n)
Total = some constant times n2

Total = O(n2)

This analysis shows one important trick to remember:

In the case of insertionsort, we actually perform n–1 insertions rather than n, but
the time for n–1 insertions is also quadratic.

Our analysis has used one major overestimation. We assumed that each inser-
tion was required to examine the full n elements of the array, but some insertions
require the examination of far fewer elements. Will a more accurate estimate
reduce the time analysis? The answer is no. A precise analysis of the worst-case
running time still results in a quadratic formula. To see this, suppose that all the
original elements are far from their correct places. In fact, these elements might
be completely backward, as shown here:

Analysis for Quadratic Time
An O(n) process that is performed n times results in a
quadratic number of operations: (O(n 2)).
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The first insertion must insert the 9 before the 10, resulting in this array:

The next insertion must insert the 8 in front of everything else. And then the
7 is inserted, again at the front. With the elements starting out backward, each
insertion must compare and shift all the elements in the currently sorted part of
the array, placing the new element at the front. So, for an insertionsort to work
on a completely backward array requires these comparisons and shifts:

1 compare and shift to insert the 1st element
+
2 compares and shifts to insert the 2nd element
+. . .
+
n–1 compares and shifts to insert the (n–1) element

The total number of compares and shifts is thus 1 + 2 + 3 + . . . + (n–1). You can
use a technique similar to Figure 1.2 on page 19 to evaluate this sum. The result
is n(n–1)/2, which is O(n2). So the worst case for insertionsort is indeed
quadratic time, the same as selectionsort.

The analysis of the average-case running time for insertionsort is essentially
the same as that for the worst case. The only difference is that a single insertion
will, on the average, stop after accessing half of the elements from the sorted
side, rather than accessing them all. This means that the average-case running
time is half that of the worst-case running time, but we know that a constant mul-
tiple, such as ½, does not affect a big-O expression. Thus, the average-case run-
ning time for insertionsort is quadratic, the same as the worst-case running time.

On the other hand, the best-case running time for insertionsort is much better
than quadratic. In particular, suppose that the array is already sorted before we
begin our work. This is certainly an advantage, though the advantage does not
help all sorting algorithms. For example, starting with a sorted array does not
help selectionsort, which still requires quadratic time. But starting with a sorted
array does help insertionsort. In this case, each insertion of a new element will
examine only a single element from the array. This single-element examination
is carried out once to insert each new element, and the result is an O(n) time.

You probably think that starting with an already sorted array does not happen
too often. But frequently an array is nearly sorted—perhaps a few new elements
are out of place. Insertionsort is also quite quick for nearly sorted arrays.

10 9 8 7

[2][0] [3] [4] [5][1]

6 5 4 3 2 1

[8][6] [9][7]

9 10 8 7

[2][0] [3] [4] [5][1]

6 5 4 3 2 1

[8][6] [9][7]
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Self-Test Exercises for Section 13.1
1. Compare the worst-case, average-case, and best-case running times for

selectionsort and insertionsort. 
2. Show the following array after each iteration of selectionsort, using the

largest element version of swapping: 5 19 13 36 23 2
3. Show the following array after each iteration of insertionsort: 5 19 13 36 23 2
4. Give a complete function implementation for insertionsort.
5. The selectionsort function in Figure 13.1 on page 633 sorts integers

into increasing order. How would you change the function so that it sorts
integers into decreasing order?

6. The selectionsort function in Figure 13.1 on page 633 sorts integers
into increasing order. How would you change the function so that it sorts
an array of lowercase strings into alphabetical order?

13.2 RECURSIVE SORTING ALGORITHMS

Divide-and-Conquer Using Recursion
Let’s start with an explicit statement of a recursive design technique called
divide-and-conquer. Here’s the idea: When a problem is small, simply solve it.
When the problem is large, divide the problem into two smaller subproblems,
each of which is about half of the original problem. Solve each subproblem with a
recursive call. After the recursive calls, extra work is often needed to combine the
solutions of the smaller problems, resulting in a solution to the larger problem.

Divide-and-conquer can work in slightly different ways, perhaps having more
than two subproblems or having subproblems with unequal size, but the basic
approach—two subproblems with roughly equal size—works best.

Applied to sorting, divide-and-conquer results in the following pattern:

Insertionsort Running Time
Both the worst-case running time and the average-case
running times are quadratic. But the best-case (when the
starting array is already sorted) is linear, and the algorithm is
also quick when the starting array is nearly sorted.

The Divide-and-Conquer Sorting Paradigm

1. Divide the elements to be sorted into two groups of equal
(or almost equal) size.

2. Sort each of these smaller groups of elements (by recur-
sive calls).

3. Combine the two sorted groups into one large sorted list.

Divide-and-
conquer works 
best with two 
equally sized 
subproblems,
each of which 
is solved with 
a recursive 
call.

Key Design 
Concept
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As an illustration, we can see how these three steps will sort a small array. The
first step divides the array into two equally sized groups, as shown in this cut:

After the cut, we have two smaller arrays, with five elements each. These
smaller arrays can separately be sorted with recursive calls, providing this result:

When the recursive calls return, the two half-arrays somehow need to be put
together into one sorted array, as shown here:

We will present two recursive sorting functions based on this divide-and-
conquer paradigm. But first there is a C++ feature that we will discuss to make
the recursive calls easier.

SPECIFYING A SUBARRAY WITH POINTER ARITHMETIC

Our sorting functions will require recursive calls to sort various portions of the array.
This raises an interesting problem regarding the arguments of a sorting function.
As an example of the problem, look at the specification of one of our sorts:

void selectionsort(int data[ ], size_t n);
// Precondition: data is an array with at least n components.
// Postcondition: The elements of data have been rearranged so
// that data[0] <= data[1] <= ... <= data[n-1].

Is it possible to use this function to sort only part of an array? Certainly we can sort
the first part of an array. For example, suppose that data is an array of 10 integers.
This function call will sort the first five elements of data:

selectionsort(data, 5);

This function call will rearrange the elements data[0] through data[4] so that
the values are smallest to largest. But can we use the function to sort the second
part of the array (from data[5] through data[9]) or a middle piece (such as
data[2] through data[6])? The answer is yes, but we’ll need a C++ feature
called pointer arithmetic.

9 12 31 25 8 20 2 3 65

5 9 12 25 2 3 6 8 2031

2 3 5 6 9 12 20 25 318

C++ FEATURE++
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To illustrate pointer arithmetic, we’ll continue with our array, data, of 10 inte-
gers. Suppose that data has these values:

For any value i from 0 to 9, the expression data[i] refers to one of the 10 com-
ponents. For example, data[5] refers to the value 8 in the array. This is not new.
But another use of the index i is new: For any value i from 0 to 9, the expression
(data + i) refers to the small array that starts at data[i] and continues to the
end of the array. For example, (data + 5) refers to that part of data that begins at
data[5] and includes 8, 20, 11, 3, 6. A small array, which is actually part of a
larger array, is called a subarray. The expression (data + 5) is an example of
pointer arithmetic, which allows a programmer to combine a pointer or an array
with integer values. Pointer arithmetic has many interesting uses, but we’ll only use
it for this one purpose of specifying a subarray.

Consider the subarray (data + 5). This is part of the complete data array,
containing the last five elements of data. Moreover, (data + 5) can be used just
like any other five-element array. Here are some examples:

cout << (data + 5)[0]; // Prints the 8
cout << (data + 5)[2]; // Prints the 11
++((data + 5)[1]); // Adds one to the array element

The third statement, ++((data + 5)[1]), adds one to the [1] element of the
subarray, increasing it from 20 to 21. After this statement, the data array has these
values:

Notice that (data + 5)[1] is the [1] element of the subarray, but it is also the [6]
element of the whole array. So changing (data + 5)[1] will actually change
data[6]. In other words: A subarray is always part of a complete array. Changing
the subarray will change the complete array.

Why did we want to use subarrays in the first place? Using a subarray, we can
make a function call that sorts part of an array. Here are two examples:

selectionsort((data + 5), 4); // Sorts data[5] through data[8]
selectionsort((data + 2), 5); // Sorts data[2] through data[6]

For example, the second function call sorts five elements starting at data[2].
With subarrays in hand, we can develop our two recursive sorting algorithms.

9 12 31 25 8 20 11 35

data

[2][0] [3] [4] [5][1] [8][6] [7]

6

[9]

9 12 31 25 8 21 11 35

data

[2][0] [3] [4] [5][1] [8][6] [7]

6

[9]
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Mergesort
The most straightforward implementation of the divide-and-conquer approach
to sorting is the mergesort algorithm. The mergesort algorithm divides the
array near its midpoint, sorts the two half-arrays by recursive calls to the algo-
rithm, and then merges the two halves to get a new sorted array of elements. The
final “merging” step of the process will require some thought, so we’ll postpone
that part of the implementation by assuming that we have a separate function to
carry out the merging. The prototype for the merging function is shown here:

void merge(int data[ ], size_t n1, size_t n2);
// Precondition: data is an array (or subarray) with at least n1 + n2
// elements. The first n1 elements (from data[0] to data[n1-1]) are sorted
// from smallest to largest, and the last n2 (from data[n1] to
// data[n1 + n2 - 1]) are also sorted from smallest to largest.
// Postcondition: The first n1 + n2 elements of data have been rearranged 
// to be sorted from smallest to largest.
// NOTE: If there is insufficient dynamic memory, then bad_alloc is 
// thrown.

This merge function will be used as the last step of our mergesort. Notice that
the merge function will use some dynamic memory, so there is a possibility of
failure that we have indicated in the specification. Can you predict where the
dynamic memory will come into play? You’ll see the answer shortly, but for
now, examine the mergesort function in Figure 13.2.

The stopping case for mergesort’s recursion is when the array to be sorted
consists of only one element. In this stopping case, there is no work to do because
a single element does not need to be “rearranged.” On the other hand, if there is
more than one element, then the mergesort function carries out these steps:

1. Calculate the sizes of the two subarrays. The first size, n1, is approxi-
mately half of the entire size (calculated by n/2, using integer division).
The second size, n2, is whatever is left over (calculated by n - n1).

Specifying Subarrays with Pointer Arithmetic

Suppose that data is an array with at least n elements. For
any integer i from 0 to n, the expression (data + i) refers
to the subarray that begins at data[i] and continues to the
end of the array.

In the subarray, (data + i)[0] is the same as data[i];
(data + i)[1] is the same as data[i+1]; and so on.

A subarray is always part of a complete array. Changing the
subarray will change the complete array.
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2. Use recursive calls to sort the two subarrays. Notice that the second recur-
sive call, mergesort((data + n1), n2), uses pointer arithmetic to spec-
ify the subarray that begins at data[n1].

3. Finally, a call to the merge function combines the two sorted halves.

The operation of the merge function has some issues that we discuss next.

The merge Function
The algorithm for the merge function uses a second temporary array that we will
call temp. Elements will be copied from the array data to the array temp in such
a way that the array temp is correctly sorted. (After that, the values are simply
copied back to the array data.) The merging algorithm uses the precondition
that the two halves of the array (data[0] through data[n1 - 1], and data[n1]
through data[n1 + n2 -1]) are each sorted. Since they are both sorted, we know
that data[0] contains the smallest element in the first half, and data[n1]
contains the smallest element in the second half. Therefore, we know that the

A Function Implementation

// Precondition: data is an array with at least n components.
// Postcondition: The elements of data have been rearranged so
// that data[0] <= data[1] <= ... <= data[n-1].
// NOTE: If there is insufficient dynamic memory, then bad_alloc is thrown.
// Library facilities used: cstdlib
{

size_t n1; // Size of the first subarray
size_t n2; // Size of the second subarray

if (n > 1)
{

// Compute sizes of the subarrays.
n1 = n / 2;
n2 = n - n1;

mergesort(data, n1); // Sort from data[0] through data[n1-1]
mergesort((data + n1), n2); // Sort from data[n1] to the end

// Merge the two sorted halves.
merge(data, n1, n2);

}
}

 FIGURE  13.2 Mergesort

void mergesort(int data[ ], size_t n)

This function calls
merge, which uses
dynamic memory,
so we must indicate
the possibility of
failure.

The two subarrays are sorted
with recursive calls.

www.cs.colorado.edu/~main/chapter13/merge.cxx WWW
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smallest element in the entire array is either data[0] or data[n1]. The
algorithm compares these two elements and copies the smallest one to position
temp[0]. The algorithm then somehow marks the copied element as being
“already copied.” For example, suppose that data contains 10 integers. After
the first one is copied to temp, we might have this situation:

The drawing has a thick black line to separate the two halves of the data array.
The 2 (at the front of the second half) is smaller than the 5 (at the front of the
first half), so this 2 is copied to the front of the temporary array. We marked the
2 as “already copied” by shading it in the diagram. In the actual algorithm, we’ll
keep track of which items have been copied by maintaining three variables:
copied (total number of elements copied from data to temp), copied1 (the
number of elements copied from the first half of data), and copied2 (the num-
ber of elements copied from the second half of data). All three local variables
are initialized to zero in the merge function. Each time we copy an element from
the first half of data to the temporary array, we add one to both copied and
copied1. Each time we copy an element from the second half of data to the
temporary array, we add one to both copied and copied2. So, after copying the
2 in our example, copied and copied2 are both 1, but copied1 remains 0.

The merge algorithm proceeds by looking at the next uncopied elements from
each half of the data array. The smaller of these two elements is copied to the
next spot in the temporary array. In our example, we would next compare the 5
(from the first half) to the 3 (the next uncopied element from the second half).
Since the 3 is smaller, we copy the 3 to the next spot in temp, as shown here: 

5 9 12 25 2 3 6 8 2031

[2][0] [3] [4] [5][1] [8][6] [9][7]

data

2 ? ? ? ? ? ? ? ??

[2][0] [3] [4] [5][1] [8][6] [9][7]

temp

5 9 12 25 2 3 6 8 2031

[2][0] [3] [4] [5][1] [8][6] [9][7]

data

2 3 ? ? ? ? ? ? ??

[2][0] [3] [4] [5][1] [8][6] [9][7]

temp

2copied 0copied1 2copied2
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At this point we have copied a total of two elements (since copied is 2). Both
of the copied elements came from the second half (since copied1 is 0 and
copied2 is 2).

The next step of the algorithm will compare the 5 (from the first half) to the 6
(from the second half). The 5 is lower, so it gets copied to the temporary array,
as shown here:

The loop proceeds in this way, moving through the two array halves. With this
idea, we can write our first version of the pseudocode, as shown here:

1. Initialize copied, copied1, and copied2 to 0.

2. while (both halves of the array have more elements to copy)
if ((next element of the first half) <= (next element of the second half))
{

Copy the next element of the first half to the next spot in temp.
Add 1 to both copied and copied1.

}
else
{

Copy the next element of the second half to the next spot in temp.
Add 1 to both copied and copied2.

}

Using the local variables copied, copied1, and copied2, we can refine the
pseudocode a bit. The “next spot in temp” is temp[copied]; the “next element
in the first half” is data[copied1]. And the “next element in the second half” is
part of the subarray (data + n1)—that is, the subarray that begins at data[n1].
In fact, the element that we want to examine from the second half is the element
(data + n1)[copied2], as shown in this refinement:

1. Initialize copied, copied1, and copied2 to 0.

5 9 12 25 2 3 6 8 2031

[2][0] [3] [4] [5][1] [8][6] [9][7]

data

2 3 5 ? ? ? ? ? ??

[2][0] [3] [4] [5][1] [8][6] [9][7]

temp

3copied 1copied1 2copied2
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2. while (both halves of the array have more elements to copy)
if (  <= )
{

 = ;
Add 1 to both copied and copied1.

}
else
{

 = ;
Add 1 to both copied and copied2.

}

In our actual implementation, the two assignment statements can be modified to
also add 1 to copied and to the appropriate one of the other two local variables
(copied1 or copied2). The modified assignment statements make use of the ++
operator, as shown here:

1. Initialize copied, copied1, and copied2 to 0.

2. while (both halves of the array have more elements to copy)
if (data[copied1] <= (data + n1)[copied2])

temp[ ] = data[ ];
else

temp[ ] = (data + n1)[ ];

Using an index such as  has the effect of using the current value of the
variable copied as the index and afterward adding 1 to the variable. (If we
wanted to add 1 before using the index, we would write ++copied instead of
copied++).

This part of our algorithm works fine as long as neither half of the array runs
out of elements. However, eventually one of the two halves will run out of ele-
ments. For our example, this will occur after we copy the last element (20) from
the second half of the data array to the temporary array, as shown here:

data[copied1] (data + n1)[copied2]

temp[copied] data[copied1]

temp[copied] (data + n1)[copied2]

copied++ copied1++

copied++ copied2++

copied++

5 9 12 25 2 3 6 8 2031

[2][0] [3] [4] [5][1] [8][6] [9][7]

data

2 3 5 6 9 12 20 ? ?8

[2][0] [3] [4] [5][1] [8][6] [9][7]

temp

8copied 3copied1 5copied2
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A Function Implementation

// Precondition: data is an array (or subarray) with at least n1 + n2 elements. The first n1
// elements (from data[0] to data[n1 - 1]) are sorted from smallest to largest, and the last n2
// (from data[n1] to data[n1 + n2 - 1]) also are sorted from smallest to largest.
// Postcondition: The first n1 + n2 elements of data have been rearranged to be sorted from
// smallest to largest.
// NOTE: If there is insufficient dynamic memory, then bad_alloc is thrown.
// Library facilities used: cstdlib
{

int *temp; // Points to dynamic array to hold the sorted elements
size_t copied = 0; // Number of elements copied from data to temp
size_t copied1 = 0; // Number copied from the first half of data
size_t copied2 = 0; // Number copied from the second half of data
size_t i; // Array index to copy from temp back into data

// Allocate memory for the temporary dynamic array.
temp = new int[n1+n2];

// Merge elements, copying from two halves of data to the temporary array.
while ((copied1 < n1) && (copied2 < n2))
{

if (data[copied1] < (data + n1)[copied2])
temp[copied++] = data[copied1++]; // Copy from first half

else
temp[copied++] = (data + n1)[copied2++]; // Copy from second half

}

// Copy any remaining entries in the left and right subarrays.
while (copied1 < n1)

temp[copied++] = data[copied1++];
while (copied2 < n2)

temp[copied++] = (data+n1)[copied2++];

// Copy from temp back to the data array, and release temp’s memory.
for (i = 0; i < n1+n2; ++i)

data[i] = temp[i];
delete [ ] temp;

}

 FIGURE  13.3 A Function to Merge Two Sorted Arrays

void merge(int data[ ], size_t n1, size_t n2)

www.cs.colorado.edu/~main/chapter13/merge.cxx WWW
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At a point like this, we want to copy the elements remaining in the non-empty
half into the temporary array. This yields the following final version of our
pseudocode for the merge function:

1. Initialize copied, copied1, and copied2 to 0.

2. while (both halves of the array have more elements to copy)
if (data[copied1] <= (data + n1)[copied2])

temp[ ] = data[ ];
else

temp[ ] = (data + n1)[ ];

3. Copy any remaining entries from the left or right subarray.
4. Copy the elements from temp back to data.

This pseudocode translates to the C++ function shown in Figure 13.3. The only
additional items deal with allocating the memory for the temporary array. This
temporary array is a dynamic array containing n1 + n2 elements. At the end of
the function, the dynamic array is released via the delete operator.

Dynamic Memory Usage in Mergesort

During a mergesort, our merge function will be called many times. A complete
analysis would show that a mergesort of an n-element array makes O(n) calls to
the merge function. Each call to merge allocates a temporary dynamic array,
uses the array, and then releases the array. With some computers, this repeated
allocation and release of dynamic memory takes a significant amount of execu-
tion time. A solution is given in Programming Project 6 on page 681.

Mergesort—Analysis

A complete analysis of mergesort’s running time is beyond the scope of this
book, but we can give the final result and hint at its derivation. First the result:

As usual, n is the number of items to be sorted. Let us try to motivate this for-
mula. In the case of the mergesort, the algorithm performs similarly on all
inputs; so our motivation will apply to both the worst-case, average-case, and
best-case running times. Let’s diagram the first few levels of recursive calls
made by a typical mergesort:

Mergesort Running Time
The worst-case running time, the average-case running time,
and the best-case running time for mergesort are all
O(n log n).

copied++ copied1++

copied++ copied2++
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At the top level, we make two recursive calls to sort subarrays with n/2 elements
each. At this level, we call merge once to merge those two n/2 arrays into a sin-
gle n-element array. At the second level, each n/2 array is broken into two n/4
arrays. At this level there will be two merge calls, each of which merges a pair
of n/4 arrays to create the two n/2 arrays. Continuing this pattern, you will see a
total of these calls to merge:

At the top level, 1 call to merge creates an array with n elements
+
At the next level, 2 calls to merge to create two n/2 arrays
+
At the next level, 4 calls to merge to create four n/4 arrays
+
At the next level, 8 calls to merge to create eight n/8 arrays
+
. . .

The pattern continues until we cannot further subdivide the arrays (because we
have only a single element).

At each level of the pattern, the total work done by merging is O(n). For
example, at the top level we have one merge call to create an array with n ele-
ments, and the number of operations in this one call is proportional to n. At the
next level, there are two merge calls, but each of the calls does work that is pro-
portional to n/2, so again the total work done at that level is O(n). At the next
level we have four merge calls that each do work that is proportional to n/4. And
so on.

Each level does total work proportional to n. So the total cost of the mergesort
is given by this formula:

The size of the array pieces is halved on each step down the pattern. So the
number of levels in the pattern is approximately equal to the number of times

original array of n elements
Two recursive
calls sort
subarrays with
n/2 elements.

Four
recursive
calls sort
subarrays with
n/4 elements.And so on . . .

(some constant) n× the number of levels in the pattern( )×
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that n can be halved, stopping when the result is less than or equal to one. That
number of “halvings” is approximated by  (the base 2 logarithm of n).
Therefore, mergesort appears to perform the following number of operations:

As this is a big-O formula, we can throw out the multiplicative constant and also
the constant 2 in the base of the logarithm. So the time is O(n × log n). This
time of n multiplied by a logarithm of n is usually written more simply as
O(n log n), pronounced “big-O of n log n.”

Our analysis has not been formal, but it is the correct answer, and a rigorous
demonstration would follow the same outline as our intuitive explanation.

Mergesort for Files
The mergesort algorithm is not actually a good choice for sorting arrays. The
quicksort and heapsort, which we will describe in a moment, are better because
they don’t require a temporary array for the merge step. However, mergesort can
be modified to sort a file, even if the file is too large to fit in the largest possible
array. In the mergesort of a file, the file is divided into several pieces, and each
piece is sorted (perhaps with a recursive call of the mergesort function). The
sorted pieces are then merged into a single sorted file, and the separate pieces
can be removed.

With this use of mergesort, the separate file pieces get smaller and smaller
with each recursive call. Eventually, a piece gets small enough to fit into an array.
At this point, the piece should be read into an array and sorted using quicksort.

Quicksort

We developed the mergesort algorithm as a special case of a general sorting
technique that is called divide-and-conquer sorting. In this section we will
develop another sorting algorithm based on this same basic divide-and-conquer

n2log

(some constant) n× n2log×

Mergesort has a worst-case run-
ning time of O(n log n) operations,
which is faster than the O(n2) running
times for the selectionsort and inser-
tionsort algorithms. But, how much
faster is it? We can get a feel for the
difference by comparing the function
n log2 n with n2. The table in Figure
13.4 gives some representative values
for comparison. As you can see by
studying the table, an n log2 n run-
ning time is substantially faster than
an n2 running time, particularly if the
array to be sorted is large.

FIGURE  13.4
Value of n log2 n versus n2

n n log2 n n 2

2 2 4
8 24 64

32 160 1024
128 896 16,384
512 4608 262,144

2048 22,528  4,194,304
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approach. This sorting algorithm is called quicksort, first devised by the com-
puter scientist C. A. R. Hoare. It is similar to mergesort in many ways. It divides
the elements to be sorted into two groups, sorts the two groups by two recursive
calls, and combines the two sorted groups into a single array of sorted values.
However, the method for dividing the array in half is much more sophisticated
than the simple method we used for mergesort. On the other hand, the method
for combining these two groups of sorted elements is trivial compared to the
method used in mergesort. In mergesort the division is trivial and the combining
complicated. With quicksort the division is complicated and the combining is
trivial.

pivot element The basic idea of quicksort is simple: Suppose you know some particular
value that belongs in the middle of the array, or at least the approximate middle
of the array. We will call this value the pivot element, or simply, the pivot. Sup-
pose we somehow put this pivot element into its correct location in the array,
somehow put all the values less than or equal to the pivot in array positions
before the pivot, and somehow put all the values greater than the pivot in array
positions after the pivot element. At this point we have not sorted the values less
than the pivot element, we simply placed them, in any order, in array positions
before the pivot element. Similarly, we have not yet sorted the values greater than
the pivot, but we simply placed them, in any order, in array positions after the
pivot element.

After this initial moving of array elements, we have moved the array closer to
being sorted. We know that the pivot element of the array is in the correct posi-
tion. We also know that all other values are in the correct segment of the array,
either the segment before the pivot element or the segment after the pivot ele-
ment. However, although we know they are in the correct segment, those seg-
ments are still not sorted. One way to proceed is to sort the two segments
separately. This works because we know that all values in the first segment are
less than all values in the second segment, so no value ever needs to move from
one segment to the other. How do we sort the two segments? These are smaller
versions of the original sorting task, and so we can sort the two smaller array seg-
ments by recursive calls. If we continue to divide the array into smaller portions
in the way we outlined, we will eventually get down to array segments of size
one and we can use that as a stopping case (requiring no work).

This idea is sound except for one problem: How do we find a pivot element
and its correct final position in the sorted array? There is no obvious way to
quickly find the midpoint value until after the array is sorted. Our solution will
be to take an arbitrary array value and use it as the pivot element. As a result, we
may not be dividing the array exactly in half, but as long as we do divide it into
smaller pieces, our algorithm will eventually sort the array. We perform the
subtask of dividing the array elements with a function called partition. The
partition function chooses some arbitrary pivot element, places it at the correct
index position, and divides the remaining array elements as we have described.
The function will not necessarily do those three things in that order, but it will do
them all. The function prototype and specification is as follows:
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void partition(int data[ ], size_t n, size_t& pivot_index);
// Precondition: n > 1, and data is an array (or subarray) with at least n
// elements.
// Postcondition: The function has selected some “pivot value” that occurs
// in data[0]. . .data[n-1]. The elements of data have then been
// rearranged and the pivot index set so that
// -- data[pivot_index] is equal to the pivot;
// -- each item before data[pivot_index] is <= the pivot;
// -- each item after data[pivot_index] is > the pivot.

We will formulate our sorting algorithm as a recursive function called
quicksort, which makes a call to the partition function. After the partition-
ing, the array and the pivot index look like this:

After the partition, our quicksort function makes two recursive calls. The
first recursive call sorts the elements before the pivot element, from data[0] to
data[pivot_index - 1]. The second recursive call sorts the elements after the
pivot element, from data[pivot_index + 1] to data[n - 1]. The recursive
calls are part of the quicksort implementation in Figure 13.5. We still need to
derive the code for the partition function.

The partition Function
Since we have no information about the values in the array, all values have an
equal probability of being the value that belongs in the middle of the array.
Moreover, we know that the algorithm will work no matter what value we use
for the pivot element. So, we arbitrarily choose the first array element to use as
the pivot element. (On page 661 we discuss why this is not always the best
choice and propose a method to fix the problem.)

The partition function will move all the values that are less than or equal to
this pivot element toward the beginning of the array, that is, toward positions
with lower-numbered indices. All values that are greater than this pivot element
are moved the other way, toward the tail end of the array, with higher-numbered
indices. Because the pivot element is not necessarily the value that belongs at the
exact midpoint position of the array, we do not know where the dividing line
between the two array portions belongs. Hence, we do not know how far forward
we need to move elements less than or equal to the pivot element, nor do we
know how far toward the end of the array we must move elements that are greater
than the pivot element. We solve this dilemma by working inward from the two

[2][0] [1] [pivot_index]

pivot. . . . . .

These elements are all
less than or equal to the pivot.

These elements are all
 greater than the pivot.

[n-1]
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ends of the array. We move smaller elements to the beginning of the array, and
we move larger elements to the tail end of the array. In this way we obtain two
segments—one segment of smaller elements growing to the right from the begin-
ning of the array, and one segment of larger elements growing to the left from the
tail end of the array. When these two segments meet, we have correctly parti-
tioned the array. The correct location for the pivot element is at the boundary of
these two segments.

Starting at the beginning of the array, the algorithm passes over smaller
elements at the beginning of the array until it encounters an element that is larger
than the pivot element. This larger element is not in the correct segment and must
somehow move to the tail-end segment. Starting at the tail end of the array, the
algorithm passes over larger elements at that end of the array until it encounters
an element that is smaller than (or equal to) the pivot element. This smaller
element is not in the correct segment and must somehow move to the beginning
segment. At that point we know that the elements in the two segments up to, but
not including, these out-of-place elements are in the correct segment of the array.
If we switch these two out-of-place elements, we will know that they also are in
the correct portion of the array. Using this technique of locating and switching

A Function Implementation

// Precondition: data is an array with at least n components.
// Postcondition: The elements of data have been rearranged so that
// data[0] <= data[1] <= data[2] <= ... <= data[n-1].
// Library facilities used: cstdlib
{

size_t pivot_index; // Array index for the pivot element
size_t n1; // Number of elements before the pivot element
size_t n2; // Number of elements after the pivot element

if (n > 1)
{

// Partition the array, and set the pivot index.
partition(data, n, pivot_index);

// Compute the sizes of the subarrays.
n1 = pivot_index;
n2 = n - n1 - 1;

// Recursive calls will now sort the subarrays.
quicksort(data, n1);
quicksort((data + pivot_index + 1), n2);

}
}

 FIGURE  13.5 Quicksort

void quicksort(int data[ ], size_t n)

www.cs.colorado.edu/~main/chapter13/quick.cxx WWW
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incorrectly placed elements at the ends of the array, our algorithm proceeds to
continually expand the segment at the beginning of the array and the segment at
the tail end of the array, until these two segments meet.

For example, suppose the following represents our array:

We choose the first value, 40, as our pivot element. Starting at the beginning of
the array, we look for the first element that is greater than the pivot. That is the
80. Starting from the other end we look for the first value that is less than or
equal to the pivot. That is the 30. We use two variables called too_big_index
and too_small_index to hold the indices of these two array elements. After
finding the two out-of-place elements, the array can be represented as follows: 

The two shaded elements are in incorrect segments of the array. If we inter-
change them, the array will be closer to being divided correctly. After the
exchange the array will contain these elements:

We now repeat the process. Continuing from the places we left off, we incre-
ment too_big_index until we find another element larger than the pivot; we
decrement too_small_index until we find another element less than or equal
to the pivot element. This changes the values of the two index variables as
shown here:

40 20 10 80

[2][0] [3] [4] [5][1]

60 50 7 30 100 90

[8][6] [9][7]

70

[10]

40 20 10 80

[2][0] [3] [4] [5][1]

60 50 7 30 100 90

[8][6] [9][7]

70

[10]

3too_big_index 7too_small_index

40 20 10 30

[2][0] [3] [4] [5][1]

60 50 7 80 100 90

[8][6] [9][7]

70

[10]

3too_big_index 7too_small_index

40 20 10 30

[2][0] [3] [4] [5][1]

60 50 7 80 100 90

[8][6] [9][7]

70

[10]

4too_big_index 6too_small_index
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Exchanging these two elements places them in the correct array portions and
yields the following array value:

If we continue to look for elements to exchange, we will increment the
too_big_index until it reaches the element that contains 50, and we will decre-
ment the too_small_index past the element 50 to the index of the element 7. At
this point the two indices have crossed each other, as shown here:

Once the indices cross each other, we have partitioned the array. All elements
less than or equal to the pivot element of 40 are in the first five positions. All
elements greater than the pivot element of 40 are in the last six positions.
However, the pivot is not yet at the dividing point between the two parts of the
array. At this point, the correct spot for the pivot will always be at the loca-
tion given by the variable too_small_index. The reason is because the
too_small_index has just hit the tail end of the first of the two array segments.

So, we exchange the values of data[0] and data[too_small_index]. After
moving the pivot element, the array configuration is as follows:

In addition to the local variables too_small_index and too_big_index, our
pseudocode for the complete partition function will also have a local variable
called pivot to hold a copy of the pivot element. The array itself is called data,

40 20 10 30

[2][0] [3] [4] [5][1]

7 50 60 80 100 90

[8][6] [9][7]

70

[10]

4too_big_index 6too_small_index
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[8][6] [9][7]
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5too_big_index 4too_small_index

7 20 10 30

[2][0] [3] [4] [5][1]
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and the total number of elements is n. The precondition guarantees that n is at
least 2. Here is the pseudocode: 

void partition(int data[ ], size_t n, size_t& pivot_index)
// Precondition: n > 1, and data is an array (or subarray)
// with at least n elements.
// Postcondition: The function has selected some “pivot value”
// that occurs in data[0]. . .data[n-1]. The elements of data
// have then been rearranged and the pivot index set so that
// -- data[pivot_index] is equal to the pivot;
// -- each item before data[pivot_index] is <= the pivot;
// -- each item after data[pivot_index] is > the pivot.

1. Initialize values:
pivot = data[0];
too_big_index = 1; // Index of first item after pivot
too_small_index = n-1; // Index of last item

2. Repeat the following until the two indices cross each other (in other
words, keep going while too_big_index <= too_small_index):
2a. while too_big_index has not yet reached n, and 

data[too_big_index] is less than or equal to the pivot,
move too_big_index up to the next index.

2b. while data[too_small_index] is greater than the pivot,
move too_small_index down to the previous index.

2c. if (too_big_index < too_small_index), then there is still room 
for both end portions to grow toward each other, so swap the values of 
data[too_big_index] and data[too_small_index].

3. Move the pivot element to its correct position:
3a. pivot_index = too_small_index;

3b. Move data[pivot_index] (which still contains a value that is less 
than or equal to the pivot) to data[0] (which still contains the pivot).

3c. data[pivot_index] = pivot;

Quicksort—Analysis

We want to estimate the running time of quicksort from Figure 13.5 on page 656.
As always, n will be the number of items to be sorted, and we will express our
running times in terms of n. In the best situation, the analysis of quicksort is
much like our mergesort analysis from page 652. In this situation, each partition
places the pivot element in the precise middle of the current subarray so that
each recursive call sorts about half of the current subarray, as shown here:
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The total work carried out by the partitions on each level is O(n), so that the
total time for quicksort is:

In the ideal case, with the pivot element near the middle of each subarray, the
number of levels is about  (just like the mergesort analysis). This results
in a running time of O(n log n), which is the best that quicksort can manage.

But sometimes quicksort is significantly worse than O(n log n). In fact, the
worst time behavior occurs when the array is already sorted before calling
quicksort. In this case, the first element is smaller than everything else.
Because we have been using the first element for the pivot, the pivot element is
smaller than everything else. This causes a miserable partition, with everything
to the right of the pivot, as shown here:

In this situation, the recursive call to sort the right-hand subarray has a lot of
work to do. It must sort n–1 elements. Even worse, when the recursive call does
its own partitioning, its pivot element will be the smallest of its n–1 elements, and
again a bad partitioning occurs. The recursive call at the next level will have to
sort n–2 elements. This pattern of bad partitions continues with recursive calls to
sort n–3, n–4, and so on, right down to 1. The total work done by all these recur-
sive calls is proportional to the familiar sum: n + (n–1) + (n–2) + (n–3) + . . . + 1.

original array of n elements
Two recursive
calls sort
subarrays with
about

Four
recursive
calls sort
subarrays with
about n/4 elements

n/2 elements.

And so on . . .

(some constant) n× the number of levels in the pattern( )×

n2log

[2][0] [1]

No elements
are less than
or equal to the pivot.

n-1 elements
are greater than

 the pivot.

[n-1]

. . .pivot
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What’s the big-O analysis for this sum? It is  (see Figure 1.2 on page 19).
So the worst-case running time for quicksort is quadratic.

Despite a poor worst-case time, quicksort generally is quite good. In fact, the
average time (which we won’t develop) turns out to be O(n log n). This is the
same as mergesort, and we have the bonus of not needing to allocate an extra
array for the merging process.

Quicksort—Choosing a Good Pivot Element

Our analysis of running times points out that the choice of a good pivot element
is critical to the efficiency of the quicksort algorithm. If we can ensure that the
pivot element is near the median of the array values, then quicksort is very effi-
cient. One technique that is often used to increase the likelihood of choosing a
good pivot element is to choose three values from the array and then use the
middle of these three values as the pivot element. For example, suppose the
three values chosen from the array are 10, 107, and 53. Then 53 would be used
as the pivot element. One possibility for the three values is to use the first array
value, the last array value, and the value in the array position nearest to the mid-
point of the array. However, with our particular partitioning pseudocode, using
these three values actually has poor performance when the array starts in reverse
order. A better choice is to use three randomly selected values from the array.

Several other common techniques to speed up quicksort are discussed in the
Self-Test Exercises and Programming Projects.

Self-Test Exercises for Section 13.2
7. Use pointer arithmetic to print the ninth element of an array data.  Give

two ways to write this.
8. Suppose that data is an array of 1000 integers. Write a single function

call that will sort the 100 elements data[222] through data[321].
9. Which recursive sorting technique always makes recursive calls to sort

subarrays that are about half the size of the original array? 
10. Why is mergesort not a good choice for sorting arrays?  Why is it a good

choice for sorting files?
11. Compare the running times of mergesort and quicksort.
12. In quicksort, what kind of time performance is obtained when the good

“splitting” of arrays continues for all recursive calls? What time perfor-
mance occurs if there is bad splitting, so that many recursive calls reduce
the array size by only one?

Quicksort Running Time
The worst-case running time of quicksort is O(n 2). But the
average-case running time and the best-case running time
for quicksort are both O(n log n). Obtaining a good running
time requires the choice of a good pivot element.

O n2( )
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13. The quicksort function in Figure 13.5 on page 656 produces its worst-
case running time when the array is already sorted. Suppose you know
that the array might already be sorted or almost sorted. How should you
modify the algorithm for quicksort?

14. One problem with both of our recursive sorting algorithms is that the
recursion continues all the way down until we have a subarray with only
one entry. The one-entry subarray is our stopping case. This works fine,
but once the size of the subarrays becomes fairly small, a lot of time is
wasted making more and more recursive calls. To fix this problem,
actual implementations usually stop making recursive calls when the size
of the array becomes small. The definition of “small” can vary, but
experiments have shown that somewhere around 15 entries is a good
choice for small arrays. For this exercise, modify the recursive quicksort
algorithm so that any small array is sorted using insertionsort, and the
process of partitioning and making recursive calls is done only for arrays
that are not small.

13.3 AN O(N LOG N) ALGORITHM USING A HEAP

Heapsort

Both mergesort and quicksort have an average-case running time that is
O(n log n). Mergesort also has a worst-case running time that is O(n log n),
whereas the worst-case running time for quicksort is . That makes merge-
sort sound preferable to quicksort. However, mergesort requires more storage
since it requires an extra array. In this section we present a sorting algorithm,
called heapsort, that combines the time efficiency of mergesort and the storage
efficiency of quicksort. Like mergesort, heapsort has a worst-case running time
that is O(n log n), and like quicksort it does not require an additional array.

heapsort is an 
interchange
sorting algorithm

Like selectionsort, heapsort is an interchange sorting algorithm that works by
repeatedly interchanging pairs of array elements. Thus, heapsort needs only
some small constant amount of storage in addition to the array that holds the
items to be sorted. Heapsort is similar to selectionsort in another way as well.
Selectionsort locates the largest value and places it in the final array position.
Then it locates the next largest value and places it in the next-to-last array posi-
tion, and so forth. Heapsort uses a similar strategy, locating the largest value,
then the next largest, and so on. However, heapsort uses a much more efficient
algorithm to locate the array values to be moved.

the array is 
made into a 
heap

Heapsort works by first transforming the array to be sorted into a heap. This
notion of a heap is the same data structure that was used in Section 11.1 to imple-
ment a priority queue. As a quick review, here is the definition of a heap:

stopping
recursion
before the 
subarrays get 
too small

O n2( )
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A heap is a complete binary tree, and we have an efficient method for repre-
senting a complete binary tree in an array. This representation was first shown in
Section 10.2, following these rules:

• Data from the root of the complete binary tree goes in the [0] component
of the array.

• Data from the root’s children is put in the next two components of the array.
• We continue in this way, placing the four nodes of depth two in the next

four components of the array, and so forth. For example, a heap with 10
nodes can be stored in a 10-element array, as shown here:

To be more precise about the location of data in the array, we have these rules:

1. The data from the root always appears in the [0] component of the array.
2. Suppose that the data for a nonroot node appears in component [i] of the

array. Then the data for its parent is always at location [(i-1)/2] (using
integer division).

Heap Review (from Section 11.1)
A heap is a binary tree where the entries of the nodes can be
compared with the less-than operator of a strict weak
ordering. In addition, these two rules are followed:
1. The entry contained by a node is never less than the

entries of the node’s children.
2. The tree is a complete binary tree, so that every level

except the deepest must contain as many nodes as pos-
sible; and at the deepest level, all the nodes are as far
left as possible (see “Complete binary trees” page 478).

Location of the data
for a complete binary
tree, as stored in an

array

[0][1] [2][3][4] [5] [6][7][8][9]

19 5

3521 23

4

22

27 42

45

45 27 42 21 23 22 35 19 4 5
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3. Suppose that the data for a node appears in component [i] of the array.
Then its children (if they exist) always have their data at these locations:

Left child at component [2i+1]; Right child at component [2i+2].

With these facts in mind, we can easily state the general idea that underlies
the heapsort algorithm. We start with an array of values to be sorted. The heap-
sort algorithm treats the array values as if they were values in a complete binary
tree using the three rules listed previously. That much is easy since any array of
n values represents some complete binary tree with n nodes.

first, the array is 
made into a 
heap

The first step of the heapsort algorithm is to rearrange the values in the array
so that the corresponding complete binary tree is a heap. In other words, we re-
arrange the array so that the corresponding complete binary tree follows the heap
storage rule: The value contained in a node is never less than an entry from one
of the node’s children. For example, suppose the array begins with these values:

This array can be interpreted as representing this complete binary tree:

Of course, this complete binary tree is not a heap—for example, the data in the
root’s left child (35) is larger than the data in the root (21). So, the first step of
the heapsort is to rearrange the array elements so that the corresponding com-
plete binary tree is a heap.

For the 10-element example that we have just seen, the first step of the heap-
sort might rearrange the array so that the elements are in the following order:

[0][1] [2][3][4] [5][6] [7][8] [9]

21 35 22 27 23 45 42 19 4 5

19 5

4227 23

4

45

35 22

21

[0][1] [2][3][4] [5] [6][7][8] [9]

45 27 42 21 23 22 35 19 4 5

19 5

3521 23

4

22

27 42

45
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After the rearrangement of the array elements, the corresponding complete
binary tree is a heap, and to aid your visualization, we have drawn the corre-
sponding tree beside the array. But keep in mind that the only place that the num-
bers are stored is in the array. The tree is just our visualization of how those
elements are structured. In a moment, we’ll provide the details of how the
rearrangement into a heap occurs, but first let’s look at the rest of the heapsort
algorithm.

find the largest 
element, and 
move it to the 
end of the array

Recall that the largest value in a heap is stored in the root, and that in our
array representation of a complete binary tree, the root node is stored in the
first array position. Thus, since the array represents a heap, we know that
the largest array element is in the first array position. To get the largest value into
the correct array position, we simply interchange the first and the final array
elements. After interchanging these two array elements, we know that the largest
array element is in the final array position, as shown here:

The dark vertical line in the array separates the “unsorted side” of the array (on
the left) from the “sorted side.” Moreover, the unsorted side (on the left) still
represents a complete binary tree, which is almost a heap, as shown at the top of
the next page.

fix the heapWhen we consider the unsorted side as a complete binary tree, it is only the root
that violates the heap storage rule. This root is smaller than its children. So, the
next step of the heapsort is to reposition this one out-of-place value in order to
restore the heap. In Section 11.1 we discussed this process of restoring the heap
by repositioning the out-of-place root. The process, called reheapification
downward, begins by comparing the value in the root with the value of each of
its children. If one or both children are larger than the root, then the root’s value
is exchanged with the larger of the two children. This moves the troublesome
value down one level in the tree. For our example, the out-of-place value (5) is
exchanged with its larger child (42), as shown on the next page.

[0][1] [2][3][4] [5] [6][7][8] [9]

5 27 42 21 23 22 35 19 4 45

19

3521 23

4

22

27 42

5

[0][1] [2][3][4] [5] [6] [7][8] [9]

5 27 42 21 23 22 35 19 4 45
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Of course, this “exchange” of values actually occurs within the array that repre-
sents the heap, so that the array now looks like this:

In this example, the 5 is still out of place, so we will once again exchange it
with its largest child, resulting in the array (and heap) shown here:

Keep in mind that only the unsorted side of the array must be maintained as a
heap. In general, the reheapification continues until the troublesome value
reaches a leaf or it reaches a spot where it is no larger than its children.

When the unsorted side of the array is once again a heap, the heapsort contin-
ues by exchanging the largest element in the unsorted side with the rightmost ele-
ment of the unsorted side. For our example, the 42 is exchanged with the 4, as
shown here:

19

3521 23

4

22

27 5

42

[0][1] [2][3][4] [5] [6][7][8] [9]

42 27 5 21 23 22 35 19 4 45

19

521 23

4

22

27 35

42

[0][1] [2][3][4] [5] [6] [7][8][9]

42 27 35 21 23 22 5 19 4 45

[0][1] [2][3][4] [5][6][7] [8] [9]

4 27 35 21 23 22 5 19 42 45
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As you can see, the “sorted side” now has the two largest elements, and the
unsorted side is once again almost a heap, as shown here:

Only the root (4) is out of place, and that may be fixed by another reheapifica-
tion downward. After the reheapification downward, the largest value of the
unsorted side will once again reside at location [0], and we can continue to pull
out the next largest value. 

Here is the pseudocode for the heapsort algorithm we have been describing:

// Heapsort for the array called data with n elements

1. Convert the array of n elements into a heap.
2. unsorted = n; // The number of elements in the unsorted side

3. while (unsorted > 1)
{

// Reduce the unsorted side by one.
--unsorted;
Swap data[0] with data[unsorted].
The unsorted side of the array is now a heap with the root out of place.
Do a reheapification downward to turn the unsorted side back into
a heap.

}

The implementation of this pseudocode is shown in Figure 13.6. In the imple-
mentation, we use two functions, make_heap and reheapify_down, which we
will discuss next.

Making the Heap
At the start of the heapsort algorithm, we must rearrange the array elements so
that they form a heap. This rearrangement is accomplished by calling a function
with the following specification:

void make_heap(int data[ ], size_t n);
// Precondition: data is an array with at least n elements.
// Postcondition: The elements of data have been rearranged so that the
// complete binary tree represented by this array is a heap.

19
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There are two common ways to build an initial heap from the array. One method
is relatively easy to program, and we will show that method here. A second,
more efficient method requires more difficult programming, which we will out-
line in Programming Project 5 on page 680.

The simple approach to make_heap builds the heap one element at a time,
starting at the front of the array. Initially we start with just one element, and this
one element forms a small heap of one node. For example, we might start with
the array shown here:

the first array 
element forms a 
heap with one 
node

In this array, the area to the left of the vertical bar can be viewed as a heap with
just one node, and the area to the right is still a jumble of random values.

The make_heap algorithm adds the array nodes to the heap one at a time. In
our example, we will next add the 35 to the heap, resulting in the following

A Function Implementation

// Precondition: data is an array with at least n components.
// Postcondition: The elements of data have been rearranged so
// that data[0] <= data[1] <= ... <= data[n-1].
// Library facilities used: algorithm, cstdlib (using the namespace std)
// NOTE: The implementation also uses the two functions, make_heap and reheapify_down, 
// which are discussed in the text.
{

size_t unsorted;

make_heap(data, n);

unsorted = n;

while (unsorted > 1)
{

--unsorted;
swap(data[0], data[unsorted]);
reheapify_down(data, unsorted);

}
}

 FIGURE  13.6 Heapsort

void heapsort(int data[ ], size_t n)

www.cs.colorado.edu/~main/chapter13/heapsort.cxx WWW

[0][1] [2][3][4] [5][6] [7][8] [9]

21 35 22 27 23 45 42 19 4 5
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configuration. In this illustration, we have drawn both the array and the state of
the heap that is formed from the elements to the left of the vertical bar.

As you can see, just adding the node in this way does not actually create a heap
because the newly added node (35) has a value that is larger than its parent.
However, we can fix this problem by pushing the out-of-place node upward
until it reaches the root or it reaches a place with a larger parent. This process of
pushing a new node upward is called reheapification upward. We have seen
reheapification upward before, in Section 11.1. In that section, reheapification
upward was used whenever a new item was added to the priority queue (which
was represented as a heap).

The pseudocode for make_heap uses reheapification upward, as shown here
(with two local size_t variables called i and k):

// Making a heap from an array called data with n elements
for (i = 1; i < n; ++i)
{

k = i; // The index of the new entry
while (data[k] is not yet the root, and data[k] is bigger than its parent)

Swap data[k] with its parent, and reset k to be the index of its parent.
}

The complete implementation of this pseudocode as the function make_heap is
left up to you. The readability of your implementation can be improved if you
also implement another function called parent, as shown here:

inline size_t parent(size_t k)
// Precondition: k > 0.
// Postcondition: The function assumes that k is the index of an array
// element, where the array represents a complete binary tree. The return 
// value is the index of the parent of node k, using the formula from
// Rule 3 on page 664.
// Library facilities used: cstdlib
{

return (k-1)/2;
}

Whenever k is an index of an element in the array and k is not zero, the value of
parent(k) is the array index of the parent of data[k]. You can use this func-
tion whenever you need to calculate the index of the parent of a node. 

35

[0][1] [2][3][4] [5][6] [7][8] [9]

21 35 22 27 23 45 42 19 4 5
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inline function By the way, you may have noticed the keyword inline at the front of the
parent function. This keyword has the same effect that we have seen before for
inline member functions, causing the compiler to make the function calls a bit
faster by putting the actual code for the function body at each location where the
function is called. We suggest that you use inline functions for any one-line func-
tion that returns the value of a simple formula.

Reheapification Downward

We have one more function to implement, the reheapification downward, with
this specification:

void reheapify_down(int data[ ], size_t n);
// Precondition: n > 0, and data is an array with at least n elements. These
// elements form a heap, except data[0] may be in an incorrect location.
// Postcondition: The data values have been rearranged so that the first
// n elements of data now form a heap.

The function works by continually swapping the out-of-place element with its
largest child, as shown in this pseudocode:

// Reheapification downward (for a heap where the root is out of place)
size_t current; // Index of the node that’s moving down
size_t big_child_index; // Index of current’s larger child
bool heap_ok; // Will become true when heap is correct

current = 0;
heap_ok = false;

while ((!heap_ok) && (the current node is not a leaf ))
{

Set big_child_index to be the index of the larger child of the current
node. (If there is only one child, then big_child_index will be set to
the index of this one child.)

if (data[current] < data[big_child_index])
{

Swap data[current] with data[big_child_index].
current = big_child_index;

}
else

heap_ok = true;
}

The swapping stops when the out-of-place element reaches a leaf, or when
the out-of-place element is larger than both of its children. If you implement this
function, use two auxiliary functions (left_child and right_child) to com-
pute the indices of the left and right child of a node.
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Heapsort—Analysis

Let us count operations for the worst-case running time for the heapsort algo-
rithm. As usual, we take the problem size n to be the number of items to be
sorted. If you look back at the implementation from Figure 13.6 on page 668,
you will see that the total number of operations can be given as this sum:

(The operations to build the initial heap)
+
(The operations to pull the items out of the heap one at a time)
+
(Some fixed number of operations for a few other assignments)

To refine this formula, we must calculate the number of operations to build the
initial heap and the number of operations required when an element is pulled out
of the heap.

Building the initial heap. To build the heap we add the items one at a time,
using reheapification upward to push the new item upward until it reaches the
root or it reaches an acceptable spot (where the parent has a larger value). Since
we actually add n–1 elements (rather than n), the total time is this:

(number of operations for one reheapification upward)

The maximum number of operations for one reheapification upward is a con-
stant times the depth of the heap. In Section 11.3, we showed that the depth of a
heap is no more than log2 n. Therefore, the worst-case time for building the heap
is the following:

Removing the constants from this formula results in an O(n log n) running time
to build the initial heap.

Pulling the items out of the heap. Once the initial heap is built, we pull items
out of the heap one at a time. After each item is removed, we perform a reheapi-
fication downward. We pull out a total of n–1 items, and the number of opera-
tions in each reheapification downward is never more than a constant times the
depth of the tree. Therefore, pulling all the items out of the tree also requires

 operations, which is an O(n log n)  running time.

worst case for 
heapsort

Total time for heapsort. We can now give a final estimate for the worst-case
running time for the entire heapsort algorithm. Building the initial heap requires
O(n log n) operations, and then pulling the items out of the heap requires
another O(n log n) operations. You might be tempted to write that the sum of all
this work is O(2n log n), and you would be right. But remember that multiplica-
tion by a constant (such as 2) can be ignored in big-O notation, so in fact the
entire algorithm from start to finish requires O(n log n) operations. 

n 1–( ) ×

n 1–( ) a constant log2 n( )××

n 1–( ) a constant log2 n( )××
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average case for 
heapsort

We won’t give a derivation, but it turns out that the average-case running
time for heapsort is also O(n log n), the same as the worst-case running time.

Self-Test Exercises for Section 13.3

15. How is the heapsort algorithm similar to the selectionsort algorithm?
How is it different?

16. How would you modify the heapsort algorithm so that it sorts integers
into decreasing order rather than increasing order?

17. What features of the mergesort and quicksort algorithms does the heap-
sort algorithm have? 

13.4 SORTING AND BINARY SEARCH IN THE STL

The Original C qsort Function

The original C Standard Library has a quicksort function that is still widely
used. The prototype is part of <cstdlib>, along these lines:

void qsort(
void* base,
size_t number_of_elements,
size_t element_size,
int compare(const void*, const void*)

);

The first parameter is a pointer to an element of an array. The data type void*
indicates that the type of elements in the array remains unspecified. It could be
an array of integers, or an array of doubles, or some more complex type.

The second parameter is the number of elements in the array to be sorted
(starting with the element that base points to).

The third parameter tells how many bytes of memory are required for each
element of the array. In C++, this number can be obtained by applying the
sizeof operator to the data type. For example, sizeof(int) is the number of
bytes for one integer.

The final parameter, compare, is a parameter that is a function itself, as
described on page 507. As the name suggests, the compare function is used to
compare two elements of the array. In particular, the two parameters to the
compare function are pointers to elements in the array. The return value must be
an integer such that:

Heapsort Running Time
The worst-case running time and the average-case running
time for heapsort are both O(n log n).
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• A negative integer indicates that the first element is the smaller of the
two.

• A zero return value indicates that the two elements are equal to each
other.

• A positive integer indicates that the first element is the larger of the two.

Typically, the programmer who uses the qsort function will write the compari-
son function. For example, a programmer who is sorting an array of integers can
write and use this comparison function:

int compare_integers(const void* p1, const void* p2)
{

return *( (int *)p1 ) - *( (int *)p2) );
}

The first part of the return statement, , obtains a copy of the
integer that p1 points to. The (int *) phrase is needed to convert the pointer
from a void pointer to a pointer to an integer. The overall return value is created
by a subtraction (subracting the second integer from the first). This is just what
we need because the result will be negative (if the first number is smaller), or
zero (if the two numbers are equal), or positive (if the first number is larger). 

Once we’ve written the compare function, we can use the qsort function to
sort an array of integers, for example:

int numbers[7] = { 0, 10, 2, 0, 4, 15, 6 };
// This will sort all of the numbers array. Note that numbers is considered
// to be a pointer to the first element of the array. We convert it to a
// void pointer by the phrase (void *)numbers:
qsort( (void *)numbers, 7, sizeof(int), compare_integers);

Suppose that you wanted to sort the array from largest (at the front) to smallest.
The qsort function could also be used for this task by writing a different ver-
sion of compare_integers that returns a negative integer to indicate that the
first element is larger than the second.

The STL sort Function

There are several sort functions in the STL. The simplest is from <algorithm>:

void sort(Iterator begin, Iterator end);

The function has two iterators as parameters, which must be random access iter-
ators from some container, as described on page 315. The elements of the con-
tainer are sorted, starting at the begin element and going up to but not including
the end iterator.

*( (int *)p1 )
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Every pointer to an array element is considered to be a random access iterator,
so we can use the sort function to sort some or all of an array. For example:

int numbers[7] = { 0, 10, 2, 0, 4, 15, 6 };
// This will sort all of the numbers array. Note that numbers is considered
// to be a pointer to the first element of the array, and numbers + 7 is a
// pointer to the element that is one spot past the end of the array.
sort(numbers, numbers+7);

Within <algorithm> there are also several functions for performing various
parts of the sorting algorithms that we’ve seen in this chapter and elsewhere.
There are functions for partitioning a sequence (as in quicksort), creating or
maintaining a heap, and merging two sorted sequences. We’ll take a look at the
STL heap functions next.

Heapsort in the STL

In Section 11.2, we saw some of the <algorithm> functions for building a
heap. In particular, for an array that contains items that can be compared with
the < operator, the make_heap function rearranges the array elements so that
they form a heap. Once the array is a heap, there’s another function, sort_heap,
that will rearrange the elements into sorted order. So, for array called data that
contains N elements, we can make these two function calls in succession to sort
the array:

make_heap(data, data+N);
sort_heap(data, data+N);

As with the sort function, the two parameters can be any random access itera-
tors, and the pointers into arrays that we have used is just one example.

Binary Search Functions in the STL

Once a collection is sorted, the STL provides three functions that use a binary
search to find a specified target. The simplest is this function:

bool binary_search(Iterator begin, Iterator end, T target);

The function requires the range of elements to be sorted, and it returns true if the
value is found in the range that starts at the begin location and goes up to (but
not including) the end; otherwise, the function returns false. For example, we
can determine whether a sorted array, data, with N integers contains the target
42 by:

if (binary_search(data, data+N, 42))...
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The binary_search function tells us whether a target is in the collection, but it
does not tell us where the element is. Two other functions, lower_bound and
upper_bound, can provide that information. In particular:

• lower_bound(begin, end, target) searches the positions from begin
to end (not including the end spot). The return value is an iterator from
the range [begin..end], and the position of this iterator is the first spot
where the target could be inserted without destroying the order. Stated
another way: Everything before this iterator must be less than the target;
and if this iterator has a value of its own (i.e., it is not the end), then that
value must be greater than or equal to the target.

• upper_bound(begin, end, target) also searches the positions from
begin to end (not including the end spot). The return value is an iterator
positioned at the last spot where the target could be inserted without
destroying the order. Stated another way: Everything before this iterator
must be less than or equal to the target; and if this iterator has a value of
its own (i.e., it is not the end), then that value must be greater than the tar-
get.

Here is one way that we could use the lower bound function to find the index
of the number 42 in a sorted array of integers:

// data is a sorted array of N integers, and position is an int variable:
position = lower_bound(data, data+N, 42);
if (position = data+N)
{

cout << "All array elements are less than 42." << endl;
}
else if (data[position] == 42)
{

cout << "The first occurrence of 42 is at index “
<< position << " of the data array." << endl;

}
else
{

cout << “42 is not in the array. The first number that "
<< "exceeds 42 is at index "
<< position << " of the data array." << endl;

}

The Comparison Parameter for STL Sorting Functions

The STL’s sorting functions, heap functions, and binary search functions all use
the < operator to sort the data. But a programmer can change that with an
optional third parameter. The third parameter is called the comparison func-
tion. It must have two parameters (the two pieces of data to compare); and it
returns true if the first parameter should go before the second parameter in a
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sorted array. For example, if we want to sort integers from largest to smallest,
we could use this comparison function:

bool is_bigger(int x, int y)
{
    return (x > y);
}

Once we have written this function, we could use it to sort an array, data, of N
integers using the STL sort function: 

sort(data, data+N, is_bigger);

This sorts the array from largest (at data[0]) to smallest (at data[N-1]).

Writing Your Own sort Function That Uses Iterators

We wrote all of our sort algorithms to sort an array of integers, but each of these
algorithms can be generalized to sort any type of data. Sometimes, the general
algorithm requires a random access iterator that can traverse the sequence to be
sorted. Other algorithms can manage with a less powerful iterator such as the
implementation of a selectionsort in Figure 13.7. Here are a few notes on that
implementation:

• The algorithm differs from the selectionsort in Figure 13.1 on page 633.
The new algorithm works by repeatedly selecting the smallest item from
part of the array and swapping this item with the item at the front of the
array segment.

• The function is a template function with a template parameter called
ForwardIterator. This name informs a programmer that the function is
compatible only with iterators that have all the properties of a forward
iterator as described on page 314. You should always use the complete
name of the iterator type (such as ForwardIterator), or always use the
abbreviations suggest by Bjarne Stroustrup: Out, In, For, Bi, and Rand.

• Notice that the algorithm uses only the operations that are guaranteed for
a forward iterator.

• Normally, we declare variables at the top of a function. In this case, how-
ever, we declared i, j, and location_of_smallest at a lower point
when we knew what value to assign to these items initially. The reason for
delaying the declarations is so that the ForwardIterator does not
require a default constructor.

• The function uses std::iter_swap from <algorithm> to swap the cur-
rent items of two iterators.
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CHAPTER SUMMARY

• All the sorting algorithms presented in this chapter apply to any type of
values sorted according to any reasonable ordering relation. The array
values do not need to be integers.

• In divide-and-conquer sorting methods, the values to be sorted are split
into two approximately equal groups, the groups are sorted by a recursive
call, and then the two sorted groups are combined into the final sorted list.
Mergesort and quicksort are examples of divide-and-conquer sorting
algorithms.

• Selectionsort and insertionsort have quadratic running times in both the
worst case and the average case. This is comparatively slow. However, if
the arrays to be sorted are short, or if the sorting program will only be
used a few times, then they are reasonable algorithms to use. Insertionsort
is particularly good if the array is nearly sorted beforehand.

• Mergesort and quicksort are much more efficient than selectionsort and
insertionsort. They have an average-case running time that is O(n log n).
If you need to sort a large number of long lists, it would be worth the extra
effort of coding and debugging one of these more complicated algorithms.

A Function Implementation

// Precondition: first and last are ForwardIterators that define a sequence
// of items that can be compared with the < operator.
// Postcondition: The elements of [first..last) have been sorted from smallest to largest.
// Library facilities used: algorithm
{

for (ForwardIterator i = first; i != last; ++i)
    {   // Find smallest from [i..last) and swap it with *i.

ForwardIterator location_of_smallest = i;
for (ForwardIterator j = i+1; j != last; ++j)
{

if (*j < *location_of_smallest)
location_of_smallest = j;

}
// location_of_smallest is now at the smallest item in [i..last).
std::iter_swap(i, location_of_smallest);

    }
}

 FIGURE  13.7 Selectionsort Implemented with a ForwardIterator

template <class ForwardIterator>
void selectionsort(ForwardIterator first, ForwardIterator last)

www.cs.colorado.edu/~main/chapter13/selectit.cxx WWW
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• Mergesort has the advantage that its worst-case running time is
O(n log n), but it has the disadvantage of needing to allocate a second
array to use in the merging process.

• Quicksort has the disadvantage of a quadratic worst-case time. However,
with some care in the pivot selection process, we usually can avoid this
bad time. Quicksort can be further improved by stopping the recursive
calls when the subarrays become small (around 15 elements). These small
subarrays can be sorted with an insertionsort.

• Heapsort works by creating a heap from all the array elements and then
pulling the largest element out of the heap, then the next largest, and so
on. The worst-case and average-case times for heapsort are O(n log n).

• The STL has a versatile group of algorithms (in <algorithm>) for sorting
collections of data using the < operator or using a programmer-defined
comparison function.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. The worst-case, average-case, and best-case
running times for selectionsort are all qua-
dratic.  The worst-case and average-case run-
ning times for insertionsort are also quadratic,
but the best case is linear. The insertionsort
algorithm is quicker for arrays that are par-
tially sorted, whereas the selectionsort algo-
rithm performs the same number of operations
no matter what values are in the array.

2. 5 19 13 36 23 2 (at start)
5 19 13 2 23 36
5 19 13 2 23 36
5 2 13 19 23 36
5 2 13 19 23 36
2 5 13 19 23 36

3. 5 19 13 36 23 2 (at start)
5 19 13 36 23 2
5 13 19 36 23 2
5 13 19 36 23 2
5 13 19 23 36 2
2 5 13 19 23 36

4. Here is one solution:
void insertionsort
(int data[ ], size_t n)
{

size_t i, j;
int next;

for (i = 1; i < n; ++i)
{

next = data[i];
j = i;
while(j>0 && next<data[j-1])
{

data[j] = data[j-1];
--j;

}
data[j] = next;

}
}

5. In Figure 13.1 on page 633, we should find
the index of the smallest element rather than
the index of the largest.

6. To sort strings, change each declaration of the
array to an array of strings rather than an array
of integers. Alternatively, if you are familiar
with template functions (see Chapter 6), you
could implement the selectionsort as a
template function that depends on the underly-
ing type of items in the array. This underlying
type could be any type with a copy construc-
tor, an assignment operator, and with a less-
than operator that is a strict weak ordering.

7. cout << (data + 9)[0];
  cout << (data + 6)[3];

8. quicksort((data + 222), 100);
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PROGRAMMING PROJECTS PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

If you are familiar with template functions
(Chapter 6), then rewrite one of the sorting
functions as a template function. You may

choose selectionsort, insertionsort, mergesort,
quicksort, or heapsort. For example, with selection-
sort you would have the specification shown here:

template <class Item, class SizeType>
void selectionsort
(Item data[ ], SizeType n);
// Precondition: data is an array with at 
// least n components.
// Postcondition: The elements of data 
// have been rearranged so that
// data[0] <= data[1] <= ... <= data[n-1].
// NOTE: Item may be any of the C++ built-in 
// types (int, char, etc.), or any class with a 
// copy constructor, an assignment operator, 
// and the six comparison operators forming a 
// total order semantics.

1 Redo the insertionsort algorithm so that the
values are inserted into a linked list rather
than an array. This eliminates the need to

move other values when a new value is inserted,
since your algorithm can simply insert a new node
where the new value should go. Analyze your algo-
rithm to obtain a big-O expression of the worst-case
running time. Code your algorithm to produce a
complete C++ program that reads in a list of 10 in-
tegers, sorts the integers, and then writes out the
sorted list. Your program should allow the user to
repeat the process and sort another list until the user
says he or she wants to exit the program.

2

9. Mergesort always makes recursive calls to sort
subarrays that are about half the size of the
original array, resulting in O(n log n) time.

10. Mergesort is not a good choice for sorting
arrays because of the additional memory
required for the temporary array in the merge
step. However, a large file may be sorted
effectively by mergesort by dividing the file
into several pieces, and merging the sorted
pieces into a single file.  The individual pieces
can be removed after the file is sorted.

11. The worst-case, average-case, and best-case
running times for mergesort are all O(n log n).
The average-case and best-case running times
for quicksort are both O(n log n), but the
worst-case running time of quicksort is O(n2).
The running time of the quicksort depends on
the pivot element. The running time of merge-
sort does not depend on the array elements,
but on the array length. 

12. When there is good splitting in quicksort, the
resulting time is O(n log n). When there is bad
splitting in quicksort, the result can be quad-
ratic time.

13. See “Quicksort—Choosing a Good Pivot Ele-
ment” on page 661.

14. Your new quicksort function should have an
if-statement that tests whether (n <= 15). If
so, then call insertionsort; otherwise, proceed
as in the original quicksort.

15. Heapsort is also an interchange algorithm that
repeatedly swaps pairs of array elements.
Heapsort locates the largest value, then the
next largest, and so on, as the selection sort.
However, heapsort uses a heap to store, locate,
and swap values, which results in a much
more efficient implementation.

16. Change the heap rule so that the value in every
node is less than or equal to its children. Mod-
ify make_heap to build this new kind of heap
by changing the test in the while-loop to this:
(k>0 && data[k] < data[parent(k)])

In reheapify_down, change the series of if-
statements so that they find the index of the
smaller child. If this smaller child is less than
the current node, then swap the current node
with the smaller child and continue. Other-
wise, the heap is okay.

17. Like mergesort, heapsort has a worst-case run-
ning time that is O(n log n) and like quicksort,
it does not require an additional array.
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One of the advantages of mergesort is that it
can easily be adapted to sort a linked list of
values. This is because the algorithm retrieves

the values from the two lists being merged in the or-
der that they occur in the lists. If the lists are linked
lists, then that algorithm can simply move down the
list node after node. With heapsort or quicksort the
algorithm needs to move values from random loca-
tions in the array, so they do not adapt as well to
sorting a linked list. Write a program that sorts a
linked list of integers using mergesort. The program
will read the integers into a linked list and then sort
the linked list using mergesort. This will require ad-
ditional linked lists, but you should use linked lists,
not arrays, for all your list storage.

Rewrite quicksort so that there are no recur-
sive calls. The technique is to use a stack to
keep track of which portions of the array

still need to be sorted. Whenever we identify a por-
tion of the array that still needs to be sorted, we will
push two items onto the stack: (1) the starting index
of the array segment and (2) the length of the array
segment. The entire quicksort can now work as fol-
lows (with no recursion):

1. Push 0 and n onto the stack (indicating that
we must sort the n-element array segment
starting at data[0]).

2. while (the stack is not empty)
a. Pop a size n and a starting index i off the 

stack. We must now sort the n-element ar-
ray segment starting at data[i]. To do 
this sort, first call
partition(data+i,n,pivot_index)

b. If the area before the pivot index has more 
than one element, then we must sort this 
area. This area begins at data[i] and has 
pivot_index elements, so push i and 
pivot_index onto the stack.

c. If the area after the pivot index has more 
than one element, then we must sort this 
area. This area begins at
data[i + pivot_index + 1]
and has (n - pivot_index - 1) elements, 
so push (i + pivot_index + 1) and
(n - pivot_index - 1)  onto the stack.

3

4

With this approach, in the worst case the stack must
be as big as the array that’s being sorted. This worst
case occurs when we keep pushing two-element
array segments onto the stack. However, there is a
modification that reduces the maximum stack size.
When you do Steps 2b and 2c, make sure that the
larger array segment gets pushed onto the stack
first. With this modification, the maximum neces-
sary stack size is just . With this in mind, you
can use a stack with a fixed size—for example, a
100-element stack is enough to sort an array with

 elements.

The discussion on page 667 shows our algo-
rithm for building the initial heap in the
heapsort algorithm. The algorithm is reason-

ably efficient, but we can be even more efficient.
The more efficient algorithm uses a function that
creates a heap from a subtree of the complete binary
tree. This function has the following specification:

void heapify_subtree(
int data[ ], 
size_t root_of_subtree, 
size_t n

);
// Precondition: data is an array with at least 
// n elements, and root_of_subtree < n. We will
// consider data to represent a complete 
// binary tree, and in this representation the
// node at data[root_of_subtree] is the root of 
// a subtree called s. This subtree s is already 
// a heap, except that its root might be out of 
// place.
// Postcondition: The subtree s has been 
// rearranged so that it is now a valid heap.

You can write the heapify_subtree function your-
self. Using this function, you can make an entire n-
element array into a heap with the algorithm:

for (i = (n/2); i > 0; --i)
heapify_subtree(data, i-1, n);

For example, with n=10, we will end up making the
following sequence of calls:

heapify_subtree(data, 4, 10);
heapify_subtree(data, 3, 10);
heapify_subtree(data, 2, 10);
heapify_subtree(data, 1, 10);
heapify_subtree(data, 0, 10);

2 log2 n

250

5
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It turns out that this method is actually O(n) rather
than O(n log n).

For this project, reimplement make_heap, as out-
lined earlier.

On page 651, we discussed problems with
the dynamic memory usage of mergesort.
One solution to the problem is to rewrite the 

mergesort according to the following specification:
void mergesort(

int data[ ],
size_t first_index,
size_t last_index,
int temp[ ]

);
// Precondition: data[first_index] through
// data[last_index] are array elements in no
// particular order. The temp array has
// locations temp[first_index] through 
// temp[last_index].
// Postcondition: The elements 
// data[first_index] through data[last_index]
// have been rearranged so that they are
// ordered from smallest to largest. The array
// elements temp[first_index] through
// temp[last_index] have been used as
// temporary storage and now contain a
// copy of data[first_index] through
// data[last_index].

Rewrite the quicksort partition function
so that the pivot is chosen by selecting the
median of three random values from the

array (see page 661). Next, write a version using
five random values. This may reduce the running
time. Test both of these versions with sorted arrays,
random arrays, and reverse order arrays and display
your results.

Write a program to compare the running
time of the heapsort and quicksort algo-
rithms in this chapter with each other and

with the library sorting algorithms. Test each algo-
rithm with n random integers (using the rand( )
function) and n sorted numbers. You can use the
clock_t variable and clock function from the
<ctime> library facility to time each sort in terms
of CPU ticks. Display your results in a table.

6

7

8

Choose one of the recursive sorting algo-
rithms and vary the point where you cut off
the recursion. Below this size, the array is

sorted by a quadratic algorithm.
Use the clock_t variable and clock function

from the <ctime> library facility to time each sort
in terms of CPU ticks. Display your results in a ta-
ble, and make a recommendation for the best cutoff
point for the sort of data you were using.

A radix sort is a technique for sorting
unsigned integers (or other data that has
individual characters or digits). 

One version of radix sort works with a linked list
of unsigned integers. In addition to the list that is be-
ing sorted, there are two extra lists called list0 and
list1.

The algorithm begins by going through the list of
elements to be sorted; every even number is trans-
ferred from the original list to the tail of list0, and
every odd number is transferred to the tail of list1.
(If you are using the STL list class, you may re-
move an item from the head of a list with the
pop_front member function, and you may add a
new node to the tail of a list with push_back.) After
all numbers have been processed, put the two lists
together (with list0 in front and list1 at the back),
and then put the whole thing back in the original list.
With the STL list class, this can be done in constant
time with two splice statements shown here:

splice(original.begin( ), list1);
splice(original.begin( ), list0);

In this code, original is the original list (that is
empty before the two splices because we moved ev-
erything to list0 and list1).

The process of separating and splicing is repeat-
ed a second time, but now we separate based on the
boolean expression ((n/2) % 2 == 0). And then
we separate and splice using ((n/4) % 2 == 0).
And so on with larger and larger divisors 8, 16,
32, ... . The process stops when the divisor is bigger
than the largest number in the list.

Here is one way to implement the algorithm:

9

10
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const int MAX_ITERATIONS = 
sizeof(unsigned int)*8;

divisor= 1;
for (i = 0; i < MAX_ITERATIONS; ++i)
{

Perform the separation and splice using
using the ((n/divisor) % 2 == 0)
to control the split.

divisor = 2*divisor;
}

To improve performance, you can break out of the
loop if the divisor ever exceeds the largest number
in the list. But if you don’t do so, the loop will still
end when the divisor overflows the largest possible
unsigned integer.

If you are familiar with the bit-shift operator >>
on numbers, then a slightly more efficient expres-
sion is ((n >> i) % 2 == 0). Another efficient
alternative uses the bitwise & operator (written with
one & rather than &&): (n & divisor == 0).

The algorithm is quick: Each iteration of the loop
takes O(n) time (where n is the size of the list), and
the total number of iterations is about log2 m (where
m is the maximum number in the list). Thus, the en-
tire time is O(n log m).

The performance of the radix sort from the
previous project can be improved by using
more supplementary lists (rather than just
list0 and list1).

For example, you can have an array of 16 lists,
which we’ll call list[0] through list[15]. Each
item of the original list is put into list[index],
where the index is computed by the equation:

index = (n >> i) % 16;

During each iteration, you should add 4 to i and
multiply the divisor by 16.

Reimplement this base-16 version of the radix
sort or use some larger base of your own choosing.
Don’t make the base too big, though, since the
number of supplementary lists is equal to the base.

11

Work out an algorithm that uses a radix sort
to sort strings of characters.

In 1959, the American computer scientist
Donald Shell invented a technique that can
be used to speed up many different sorting

algorithms. For this project, you will apply Shell’s
method to insertion sort. 

The basis of the technique is to get the items to
move in big steps (rather than shifting elements to
the next-higher index). These big-step shifts are
done early in the algorithm, and they tend to put the
array in nearly sorted order. Later in the algorithm,
we use smaller steps (all the way down to steps of
size one, just like an ordinary insertionsort). But by
the time that the small steps are being taken, the
array is nearly sorted, and that’s a situation where
insertionsort is efficient. 

The choice of the various step sizes affects the
performance of the algorithm, but one sequence that
is empirically good starts at n/2, and each subse-
quent step size is about the previous size divided by
2.2.

The overall pseudocode is given here:

ss = n/2;
while (ss > 0)
{

Do an insertionsort on the elements
data[0], data[ss], data[2*ss]...

Also do an insertionsort on
data[1], data[ss+1], data[2*ss+1]...

And on
data[2], data[ss+2], data[2*ss+2]...

And so on. The last little insertionsort that
you do starts at data[ss-1].

ss = round ss/2.2 to nearest integer;
}

12

13
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L EARN ING  OB J EC T I V ES
When you complete Chapter 14, you will be able to...

• recognize situations in which inheritance can simplify the implementation of a 
group of related classes.

• implement derived classes.
• recognize situations in which creating an abstract base class will allow the later 

implementation of many derived classes that share underlying functions.
• use our abstract game class to implement many derived classes for playing two�

player strategy games such as chess, checkers, Othello, and Connect Four.
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Derived Classes and Inheri tance

Object-oriented languages provide support that allows pro-
grammers to easily create new classes that acquire some or many of their prop-
erties from an existing class. The original class is called the base class (or
parent class, or ancestor class, or superclass) and the new, slightly different
class is the derived class (or child class, or descendant class, or subclass).

The first section of this chapter provides an introduction to derived classes.
The next two sections show two detailed programming examples: an ecosystem
simulation using a variety of animal classes, and a powerful game class that forms
the base class for many different two-player strategy games. 

14.1 DERIVED CLASSES

One of the exercises in Chapter 2 was a clock class to keep track of a time
value such as 9:48 P.M. (see Self-Test Exercise 19 on page 62). One possible def-
inition for this class is shown in Figure 14.1 on page 685. Now suppose you’re
writing a program with various kinds of clocks: 12-hour clocks, 24-hour clocks,
alarm clocks, cuckoo clocks, and so on. Each of these things is a clock, but
each also has additional properties that don’t apply to clocks in general. For
example, a cuckoo_clock might have an extra function, is_cuckooing, that
returns true if its cuckoo bird is currently making noise. How would you imple-
ment a cuckoo_clock, which is a clock with one extra member function?

One possible solution uses no new ideas: Modify the original clock definition
by adding an extra member function. With this solution, the cuckoo_clock def-
inition looks a lot like the ordinary clock.

class
{
public:

// CONSTRUCTOR
( );

// MODIFICATION MEMBER FUNCTIONS
void set_time(int hour, int minute, bool morning);
void advance(int minutes);
// CONSTANT MEMBER FUNCTIONS
int get_hour( ) const;
int get_minute( ) const;
bool is_morning( ) const;

...

Can you think of some potential problems with this solution? Problems occur
when a program has a cuckoo_clock but also has an ordinary clock and

cuckoo_clock

cuckoo_clock

bool is_cuckooing( ) const;

684 Chapter 14 / Derived Classes and Inheritance
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Documentation for the clock Class
// CONSTRUCTOR for the clock class (part of namespace main_savitch_14):
//
// Postcondition: The clock is set to 12:00 (midnight).
//
// MODIFICATION MEMBER FUNCTIONS for the clock class:
//
// Precondition: 1 <= hour <= 12, and 0 <= minute <= 59.
// Postcondition: The clock’s time has been set to the given hour and minute (using usual
// 12-hour time notation). If the third parameter, morning, is true, then this time is from
// 12:00 midnight to 11:59 A.M. Otherwise this time is from 12:00 noon to 11:59 P.M.
//
//
// Postcondition: The clock has been moved forward by the indicated number of minutes.
// Note: A negative argument moves the clock backward.
//
// CONSTANT MEMBER FUNCTIONS for the clock class:
//
// Postcondition: The value returned is the current hour using a 12-hour clock.
//
//
// Postcondition: The value returned is the current minute on the clock.
//
//
// Postcondition: If the clock’s time lies from 12:00 midnight to 11:59 A.M. (inclusive),
// the function returns true; otherwise it returns false.
//
// VALUE SEMANTICS for the clock class:
// Assignments and the copy constructor may be used with clock objects.

Class Definition
class clock
{
public:

// CONSTRUCTOR
clock( );
// MODIFICATION MEMBER FUNCTIONS
void set_time(int hour, int minute, bool morning);
void advance(int minutes);
// CONSTANT MEMBER FUNCTIONS
int get_hour( ) const;
int get_minute( ) const;
bool is_morning( ) const;

private:

};

 FIGURE  14.1 The clock Class

clock( )

void set_time(int hour, int minute, bool morning)

void advance(int minutes)

int get_hour( ) const

int get_minute( ) const

bool is_morning( ) const

 For this example, we don’t care what private implementation is used. 

www.cs.colorado.edu/~main/chapter14/clocks.h WWW
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perhaps other kinds of clocks as well. We’ll end up writing a separate class
definition for each different type of clock. Even though all of these have similar
or identical constructors and member functions, we’ll still end up repeating the
member function implementations for each different kind of clock.

The solution to the clock problem is a new concept, called derived classes,
described here:

How to Declare a Derived Class
In the definition of the derived class, the name of the derived class is followed
by a single colon, the keyword public, and then the name of the base class. For
example, suppose that we want to declare a derived class cuckoo_clock using
the existing clock class as the base class. The beginning of the cuckoo_clock
class definition would then look like this:

class cuckoo_clock :
{ …

This definition indicates that every cuckoo_clock is also an ordinary clock.
The primary consequence is that all of the public members of an ordinary clock
are immediately available as public members of a cuckoo_clock. These mem-
bers are said to be inherited from the clock.

public base 
class versus 
private base 
class

In the clock example, we used the keyword public, which creates a public
base class. An alternative is to use the keyword private instead of public,
resulting in a private base class. With a private base class, all of the public mem-
bers of an ordinary clock are immediately available as private members of a
cuckoo_clock. In both cases—public base class or private base class—it is the
public members of the clock that are accessible to the cuckoo_clock. In some
sense, the private members of the clock are also present in a cuckoo_clock—
they must be present because some of the public members make use of the pri-
vate members. But, these private members cannot be accessed directly in a
cuckoo_clock, not even by the programmer who implements a cuckoo_clock.
This is why we did not even list the clock’s private members in Figure 14.1.

protected
members

For future reference, you should know that there is a third kind of member
called a protected member. In most respects, a protected member is just like a
private member, but the programmer of a derived class has direct access to pro-
tected members. We’ll use protected members in Section 14.3.

Derived Classes
Derived classes use a concept called inheritance. In
particular, once we have a class, we can then declare new
classes that contain all of the members of the original class—
plus any extras that you want to throw in. This new class is
called a derived class of the original class. The original
class is called the base class. And the members that the
derived class receives from its base class are called
inherited members.

public clock



Derived Classes 687

Now, let’s finish our cuckoo_clock definition and see how it can be used in
a program. Our complete cuckoo_clock is shown in Figure 14.2. As you can
see, a cuckoo_clock has one extra public member function: a boolean function
called is_cuckooing, which returns true when the clock’s cuckoo is making
noise. In the implementation of is_cuckooing, you can see that our cuckoos
make noise whenever the current minute of the time is zero. In this implementa-
tion, we use the ordinary clock function, get_minute, to determine whether the
current minute is zero.

Once the cuckoo_clock definition is available, a program may declare
cuckoo_clock objects using all the public clock member functions and also
using the new is_cuckooing function. In this usage, there are some special con-
siderations for the constructors, the destructor, and the assignment operator.
We’ll discuss these considerations over the next few pages.

The Automatic Constructors of a Derived Class
A derived class may declare its own constructors, or it may use the automatic
default constructor and the automatic copy constructor that are provided for
every C++ class. Later we will examine the case of derived classes with their
own declared constructors, but for the cuckoo clock, the automatic constructors
are sufficient. We get the following automatic constructors.

The automatic default constructor. If we don’t declare any constructors for a
derived class, then C++ will automatically provide a default constructor. This
default constructor will carry out two steps: (1) activate the default constructor
for the base class (to initialize any member variables that the base class uses),
then (2) activate default constructors for any new member variables that the
derived class has, but the base class does not have. 

A Derived Class Definition
class cuckoo_clock : public clock
{
public:

bool is_cuckooing( ) const;
};

A Member Function Implementation

{
return (get_minute( ) == 0);

}

 FIGURE  14.2 The CuckooClock Is Derived from the Ordinary Clock

The definition could be
added to the same header
file that contains the clock
class, or be placed anywhere
else that has access to the
clock class.

The new member function is
in an implementation file.bool cuckoo_clock::is_cuckooing( ) const

Part of www.cs.colorado.edu/~main/chapter14/clocks.h and clocks.cxx WWW
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For example, our cuckoo clock has an automatic default constructor that is
activated in an object declaration such as this:

cuckoo_clock noisy;

The cuckoo_clock’s automatic default constructor will activate the ordinary
clock default constructor for noisy, initializing any private member variables
of the ordinary clock. Remember, these private member variables are present in
any cuckoo clock, and therefore they must be initialized even though there is no
way to directly access these member variables.

The automatic copy constructor. If a derived class does not define a copy
constructor of its own, then C++ will automatically provide a copy constructor.
This copy constructor is similar to the automatic default constructor in that it
carries out two steps: (1) Activate the copy constructor for the base class (to
copy any member variables that the base class uses), then (2) activate copy con-
structors for any new member variables that the derived class has but the base
class does not have. The copy constructors that are activated in Steps 1 and 2
may themselves be automatic copy constructors, or they may be specially writ-
ten to accomplish correct copying of dynamic data structures. 

Using a Derived Class

We now know enough to write a bit of sample code that uses a derived class:

cuckoo_clock noisy;
int minutes;

cout << "How many minutes should I advance the clock? ";
cin >> minutes;
noisy.advance(minutes);

if (noisy.is_cuckooing( ))
cout << "Cuckoo cuckoo cuckoo." << endl;

else
cout << "All’s quiet on the cuckoo front." << endl;

The key feature is that a cuckoo clock may use ordinary clock member func-
tions (such as advance), and it may also use the new is_cuckooing function.
The inheritance is accomplished with little work on our part. We need to write
only the body of is_cuckooing; none of the ordinary clock functions need to
be rewritten for the cuckoo clock.

There’s another advantage to derived classes: An object of the derived class
may be used at any location where the base class is expected. For example, sup-
pose we overload the “less than” operator to compare the times on two clocks, as
shown in Figure 14.3 on page 689. We can use this relational operator to com-
pare two ordinary clocks, but we can also compare any of the clock’s derived
classes. Here is some sample code:
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cuckoo_clock sunrise, your_time;
int minutes;

sunrise.advance(60 * 6); // Set the sunrise for 6 A.M.
cout << "How many minutes do I advance your clock?" << endl;
cin >> minutes;
your_time.advance(minutes);

if
cout << "That’s before sunrise!" << endl;

else
cout << "That’s not before sunrise." << endl;

A Function Implementation

// Postcondition: Returns true if the time on c1 is earlier than the time on c2
// over a usual day (starting at midnight); otherwise returns false.
{

// Check whether one is morning and the other is not.
if (c1.is_morning( ) && !c2.is_morning( ))

return true;
else if (c2.is_morning( ) && !c1.is_morning( ))

return false;

// Check whether one is 12 o’clock and the other is not.
else if ((c1.get_hour( ) == 12) && (c2.get_hour( ) != 12))

return true;
else if ((c2.get_hour( ) == 12) && (c1.get_hour( ) != 12))

return false;

// Check whether the hours are different from each other.
else if (c1.get_hour( ) < c2.get_hour( ))

return true;
else if (c2.get_hour( ) < c1.get_hour( ))

return false;

// The hours are the same, so check the minutes.
else if (c1.get_minute( ) < c2.get_minute( ))

return true;
else

return false;
}

 FIGURE  14.3 Implementation of the Less-Than Operator for Clocks

bool operator < (const clock& c1, const clock& c2)

www.cs.colorado.edu/~main/chapter14/clocks.cxx WWW

(sunrise < your_time)
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In fact, we can even use the “less than” operator to compare an ordinary clock
with a cuckoo_clock, or to compare two objects from different derived classes.

Any functions that you write to manipulate a clock will also be able to manip-
ulate all of the clock’s derived classes. Without derived classes, we would need
to write a separate function for each kind of clock that we want to manipulate.

The Automatic Assignment Operator for a Derived Class
If a derived class does not define its own assignment operator, then C++ will
automatically provide an assignment operator. This automatic assignment oper-
ator is similar to the automatic constructors, carrying out two steps: (1) Activate
the assignment operator for the base class (to copy any member variables that
the base class uses), then (2) activate the assignment operator for any new mem-
ber variables that the derived class has but the base class does not have. The
assignment operators that are activated in Steps 1 and 2 may themselves be
automatic assignment operators, or they may be specially written to accomplish
correct copying of dynamic data structures. 

Assignments are also allowed from a derived class to the base class, for
example:

clock ordinary;
cuckoo_clock fancy;

fancy.advance(60);

The assignment  is permitted because a cuckoo clock (such
as fancy) can be used at any point where an ordinary clock is expected. There-
fore, the assignment will activate the assignment operator for an ordinary clock
(using fancy as if it were just an ordinary clock).

On the other hand, an assignment in the other direction, ,
is forbidden because an object of the base class (the ordinary clock) cannot be
used as if it were an object of the derived class (the cuckoo clock).

The Automatic Destructor of a Derived Class

Derived classes have one last automatic feature. If a class does not have a
declared destructor, then C++ provides an automatic destructor that carries out
two steps: (1) The destructors are called for any member variables that the
derived class has, but the base class does not have, then (2) the destructor is
called for the base class. Notice that an automatic destructor works differently

Advance the fancy clock to 1 A.M.

and assign the ordinary clock to
equal the fancy clock.ordinary = fancy;

ordinary = fancy

fancy = ordinary

Allowed:
When a base class is public, an
object of a derived class may be
used as if it were an object of the
base class.

Forbidden:
But an object of the base class can-
not usually be used as if it were an
object of the derived class.
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than an automatic constructor: An automatic destructor first activates the
destructors for member variables and then activates the destructor for the base
class. But an automatic constructor first activates the constructor for the base
class, and then activates the constructors for member variables.

Overriding Inherited Member Functions
A derived class must sometimes perform some actions differently from the way
the base class does. For example, the original clock provides the current hour
via get_hour, using a 12-hour clock. Suppose we want to implement a derived
class that provides its hour on a 24-hour basis, ranging from 0 to 23. The new
clock can be defined as a derived class called clock24. The clock24 class
inherits everything from the ordinary clock, but it provides a new get_hour
member function. This is called overriding an inherited member function.

To override an inherited member function, the derived class uses a new pro-
totype for the overridden function, as shown here:

class clock24 : public clock
{
public:

 // Overridden from the clock class
};

Now we are free to define a new implementation of clock24::get_hour.
Within this implementation, we can use any of the ordinary clock functions, and
we can even use the get_hour member function from the ordinary clock. The
notation for using the ordinary clock’s get_hour function is to place the scope
resolution operator, , in front of the function call. So, when we write

, we are activating the original clock’s get_hour func-
tion. Here’s the complete implementation of clock24::get_hour:

int clock24::get_hour( ) const
{

int ordinary_hour;

ordinary_hour = clock::get_hour( );
if (is_morning( ))
{

if (ordinary_hour == 12)
return 0;

else
return ordinary_hour;

}
else
{

if (ordinary_hour == 12)
return 12;

else
return ordinary_hour + 12;

}
}

int get_hour( ) const;

clock::

use the scope 
resolution
operator to call 
the original 
version of the 
functionclock::get_hour( )
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MAKE THE OVERRIDING FUNCTION CALL THE ORIGINAL

In the example of the clock24::get_hour function, the first action of the overrid-
ing function is to call the original function. Often, the overriding function will call the
original function to do some of its work. Frequently the call to the original function
will be the first action of an overriding member function.

Several features of derived classes remain to be seen, such as derived classes
that require new private member variables. These considerations will arise in the
examples from the next sections of this chapter.

Self-Test Exercises for Section 14.1
1. What are the similarities and differences between a public base class and

a private base class?
2. Suppose a derived class does not declare any constructors of its own.

What constructors is it given automatically?
3. If jacket is a derived class of clothes, are the following statements

legal?  Why or why not? 
clothes coat;
jacket blazer;
blazer = coat;

4. Design and implement a derived class called daylight_clock. A day-
light clock is like a clock except that it has one extra boolean member
function to determine whether it is currently daylight. Assume that day-
light stretches from 7:00 A.M. through 6:59 P.M.

5. Describe the actions of the automatic assignment operator and the auto-
matic destructor for a derived class.

6. Design and implement a derived class called noon_alarm. A noon alarm
object is just like a clock, except that whenever the advance function is
called to advance the clock forward through 12:00 noon, an alarm mes-
sage is printed (by the advance member function).

14.2 SIMULATION OF AN ECOSYSTEM

A is-a B means 
that A is a 
particular kind of 
B

There are many potential uses for derived classes, but one of the most frequent
uses comes from the is-a relationship. “A is-a B” means that each A object is a
particular kind of B object. For example, a cuckoo clock is a particular kind of
clock. Some other examples of is-a relationships for living organisms are shown
in Figure 14.4. The relationships are drawn in a tree called an object hierarchy
tree. In this tree, each base class is placed as the parent of its derived classes.

PROGRAMMING TIP��  
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Implementing Part of the Organism Object Hierarchy
We will implement four classes from the object hierarchy tree of living organ-
isms and use these four classes in a program that simulates a small ecosystem.
The four classes that we will implement are:

These four classes might fit into a larger hierarchy as shown in Figure 14.4.
Keep in mind that each of the derived classes might have new member variables
as well as new member functions.

The organism Class
At the top of our object hierarchy tree is a class called organism. Within a pro-
gram, every organism is given an initial size, measured in ounces. Each organ-
ism is also given a growth rate, measured in ounces per week. A program that
wants to simulate the growth of an organism will start by specifying an initial
size and growth rate as arguments to the organism’s constructor. Throughout a
computation, a program may call a member function named simulate_week,
which causes the organism to simulate the passage of one week in its life—in
other words, activating simulate_week makes the organism grow by its current
growth rate. The organism class has a few other member functions specified in
Figure 14.5, and a usage of the organism class is shown in Figure 14.6. 

The organism class has functions to assign a new growth rate, to alter the
organism’s current size by a specified amount, and to return information about
the organism’s current size and growth rate. Also notice that the constructor has
default arguments (one ounce for the initial size and zero ounces per week for the
initial growth rate); therefore the constructor may be used with no arguments
(that is, it’s a default constructor).

FIGURE  14.4 An Object Hierarchy

organism

plantanimal

herbivore

elephant bird of prey tiger

carnivore

An animal
is-an organism.

A plant
is-an organism.

An herbivore
is-an animal.

A carnivore
is-an animal.

An elephant
is-an herbivore.

A tiger
is-a carnivore.

A bird of prey
is-a carnivore.

• A general class, called
organism, that can be used
by a program to simulate
the simplest properties of
organisms, such as being
born, growing, and eventu-
ally dying.

• Two classes that are derived
from an organism. The
classes, called animal and
plant, can do everything
that an ordinary organism
can do—but they also have
extra abilities associated
with animals and plants.

• The final class, called
herbivore, is derived from
the animal class. It is a
special kind of animal that
eats plants.
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Documentation for the organism Class
// CLASS PROVIDED: organism (part of the namespace main_savitch_14)
// An organism object can simulate a growing organism such as a plant or an animal.
//
// CONSTRUCTOR for the organism class:
//
// Precondition: init_size >= 0. Also, if init_size is 0, then init_rate is also zero.
// Postcondition: The organism being simulated has been initialized. The value returned
// from get_size( ) is now init_size (measured in ounces), and the value returned from 
// get_rate( ) is now init_rate (measured in ounces per week).
//
// MODIFICATION MEMBER FUNCTIONS for the organism class:
//
// Postcondition: The size of the organism has been changed by its current growth rate.
// If the new size is less than zero, then the actual size is set to zero rather than to a
// negative value, and the growth rate is also set to zero.
//
//
// Postcondition: The organism’s growth rate has been changed to new_rate
// (measured in ounces per week).
//
//
// Postcondition: The given amount (in ounces) has been added to the organism’s current
// size. If this results in a new size less than zero, then the actual size is set to zero
// rather than to a negative value, and the growth rate is also set to zero.
//
//
// Postcondition: The organism’s current size and growth rate have been set to zero.
//
// CONSTANT MEMBER FUNCTIONS for the organism class:
//
// Postcondition: The value returned is the organism’s current size (in ounces).
//
//
// Postcondition: The value returned is the organism’s current growth rate (in oz/week).
//
//
// Postcondition: If the current size is greater than zero, then the return value is true.
// Otherwise the return value is false.
//
// VALUE SEMANTICS for the organism class:
// Assignments and the copy constructor may be used with organism objects.

 FIGURE  14.5 Documentation for the organism Class

organism(double init_size = 1, double init_rate = 0)

void simulate_week( )

void assign_rate(double new_rate)

void alter_size(double amount)

void death( )

double get_size( ) const

double get_rate( ) const

bool is_alive( ) const

www.cs.colorado.edu/~main/chapter14/organism.h WWW
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A Program
// FILE: blob.cxx
// This small demonstration shows how the organism class is used.
#include <cstdlib>  // Provides EXIT_SUCCESS
#include <iostream> // Provides cout and cin
#include "organism.h" // Provides the organism class
using namespace std;

{
main_savitch_14::organism blob(20.0, 100000.0);
int week;

// Untroubled by conscience or intellect, the Blob grows for three weeks.
for (week = 1; week <= 3; ++week)
{

blob.simulate_week( );
cout << "Week " << week << ":" << " the Blob is ";
cout << blob.get_size( ) << " ounces." << endl;

}

// Steve McQueen reverses the growth rate to -80000 ounces per week.
blob.assign_rate(-80000.0);
while (blob.is_alive( ))
{

blob.simulate_week( );
cout << "Week " << week << ":" << " the Blob is ";
cout << blob.get_size( ) << " ounces." << endl;
++week;

}

cout << "The Blob (or its son) shall return." << endl;
return EXIT_SUCCESS;

}

Sample Dialogue
Week 1: The Blob is 100020 ounces.
Week 2: The Blob is 200020 ounces.
Week 3: The Blob is 300020 ounces.
Week 4: The Blob is 220020 ounces.
Week 5: The Blob is 140020 ounces.
Week 6: The Blob is 60020 ounces.
Week 7: The Blob is 0 ounces.
The Blob (or its son) shall return.

 FIGURE  14.6 Sample Program from the Movie The Blob

int main( )

Steve McQueen comes to
the rescue at the end of
week 3!

Can anyone stop
the Blob?!

www.cs.colorado.edu/~main/chapter14/blob.cxx WWW
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The organism class is not hard to implement, and we’ll leave its implemen-
tation up to you. But we will give one example of using the class. Movie buffs
may recall the 1958 film The Blob. The Blob came to Earth from outer space at
a mere 20 ounces, but “untroubled by conscience or intellect,” it absorbs any-
thing and anyone in its path. Without giving away the whole plot, let’s suppose
that the Blob grows at the astonishing rate of 100,000 ounces per week for three
weeks. Then our hero (Steve McQueen) manages to reverse its growth to a rate
of negative 80,000 ounces per week. A program to simulate the movie plot is
shown in Figure 14.6. The program assumes that the organism class is imple-
mented with a header file called organism.h.

The animal Class: A Derived Class with New Private Member Variables

Now we will implement a class that can be used to simulate an animal. Since an
animal is-an organism, we will declare the animal class as a derived class of the
organism class. In our design, an animal is an organism that must consume a
given amount of food each week to survive. If a week has passed and the animal
has consumed less than its required amount of food, then death occurs. With this
in mind, the animal class will have two new private member variables, which
are not part of the organism class, as shown in this partial definition:

class animal : public organism
{
public:

the derived class 
has two new 
private member 
variables

private:

};

The first new member variable, need_each_week, keeps track of how many
ounces of food the animal must eat each week in order to survive. The second
new member variable, eaten_this_week, keeps track of how many ounces of
food the animal has eaten so far this week. 

When a derived class has some new member variables, it will usually need a
new constructor to initialize those member variables. This is the first example
that we have seen where a derived class has a new constructor rather than using
the automatic constructors that were described on page 687.

How to Provide a New Constructor for a Derived Class
When a derived class has a new constructor, the prototype for the new construc-
tor appears in the public portion of the class definition, just like any other
constructor. In the case of the animal, the new constructor will have three argu-
ments. The first two arguments are the same as the arguments for any organism,
providing the initial size and the initial growth rate. The third argument will
indicate how much food the animal needs, in ounces per week. Thus, the start of
the animal’s public section is given next.

 We discuss the animal’s public members in a moment.

double need_each_week;
double eaten_this_week;



Simulation of an Ecosystem 697

class animal : public organism
{
public:

Each parameter has a default argument, so that this constructor can also be used as a default
constructor. The constructor has no argument for eaten_this_week, since we plan to have
that member variable initialized to zero (indicating that a newly constructed animal has not eaten).

The work of the animal’s constructor is easy enough to describe: The first two arguments
must somehow initialize the size and growth rate of the animal; the last argument initializes
need_each_week; the value of eaten_this_week is initialized to zero. But how do we man-
age to use init_size and init_rate to initialize the size and growth rate of the animal?
Most likely the size and growth rate are stored as private member variables of the organism
class, but the animal has no direct access to the organism’s private member variables. 

There is a solution to this problem, called the member initialization list. This list is an
extra line in the constructor of a derived class. The purpose is to provide initialization, includ-
ing a call to the constructor of the base class. The details of the member initialization list are
given in Figure 14.7.

animal(double init_size = 1, double init_rate = 0, double init_need = 0);

FIGURE  14.7 How to Write a Member Initialization List

The Member Initialization List

A member initialization list is used by a constructor to call the constructor of the base class and
initialize other member variables. The rules are as follows:

1. The member initialization list appears in the implementation of a constructor, after the closing
parenthesis of the parameter list and before the opening bracket of the constructor’s body.

2. The list begins with a colon, followed by a list of items separated by commas. 
3. For a derived class, the list can contain the name of the base class, followed by an argument

list (in parentheses) for the base class constructor.
4. The list can also contain any member variable followed by its initial value in parentheses.
5. When the derived class constructor is called, the member variables are initialized with the

specified values and the constructor for the base class will be activated before anything else
is done.

6. If a base class constructor is not activated in the member initialization list, then the default
constructor for the base class will automatically be activated before any of the rest of the
derived class constructor is executed.

Example:
animal::animal(double init_size, double init_rate, double init_need)

{ // Because of the initialization list, the body of this constructor has no work to do. }

: organism(init_size, init_rate), // Activate base class constructor
need_each_week(init_need), // Initial value for need_each_week
eaten_this_week(0) // Initial value for eaten_this_week is 0
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Here is the implementation of our animal constructor, with the member
initialization list highlighted:

animal::animal
(double init_size, double init_rate, double init_need)

{
// Because of the initialization list, this constructor has no work.

}

By the way, in the animal class definition, we will provide each of the parame-
ters with a default argument, so that this constructor can be used as a default
constructor for the animal.

The Other Animal Member Functions

The animal has four new member functions that deal with eating, and the
simulate_week member function must also be overridden. The four new func-
tions are called assign_need, eat, still_need, and total_need. We’ll dis-
cuss each of these member functions now.

The assign_need function. This member function has this prototype:

void assign_need(double new_need);

The member function is activated when a simulation needs to specify how much
food an animal must eat to survive a week. For example, if spot is an animal
that needs 30 ounces of food to survive a week, then spot.assign_need(30) is
activated. During a simulation, the food requirements may change, so that
assign_need can be activated several times with different arguments.

The eat function. Whenever the animal, spot, eats m ounces of food, the
member function spot.eat(m) records this event. Here’s the prototype of the
member function:

void eat(double amount);

The amount of food that has been eaten during the current week is stored in a
private member variable, eaten_this_week. So, activating eat(m) will simply
add m to eaten_this_week.

Overriding the simulate_week function. The animal must do some extra
work in its simulate_week member function. Therefore, it will override the
organism’s simulate_week function. The animal’s simulate_week will first
activate organism::simulate_week to carry out whatever work an ordinary

: organism(init_size, init_rate), // Activate base class constructor
need_each_week(init_need), // Initial value for need_each_week
eaten_this_week(0) // Initial value for eaten_this_week is 0
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organism does to simulate one week. Next, the animal’s simulate_week deter-
mines whether the animal has had enough food to eat this week. If
eaten_this_week is less than need_each_week, then death is activated. Also,
eaten_this_week is reset to zero to restart the recording of food eaten for the
animal’s next week.

Here’s some example code to show the coordination of the new member
functions. It begins by declaring a 160-ounce animal spot (perhaps a cat). Spot
is not currently growing (since init_rate is zero in the constructor), but she
does require 30 ounces of food per week:

animal spot(160, 0, 30);

spot.eat(10);
spot.eat(25);
spot.simulate_week( );
if (spot.is_alive( ))

cout << "Spot lives!\n";
else

cout << “Spot has died.\n”;

spot.eat(10);
spot.eat(15);
spot.simulate_week( );
if (spot.is_alive( ))

cout << "Spot lives!\n";
else

cout << “Spot has died.\n”;

Two constant functions. The last two animal member functions are constant
functions called total_need and still_need. The total_need function
returns the total amount of food that the animal needs in a week, and the
still_need function returns the amount of food that the animal still needs in the
current week (which is the total need minus the amount already eaten).

The complete documentation and definition for the animal appears in Figure
14.8. The documentation and class definition could be placed in the same header
file as the organism class (organism.h), and the member function implementa-
tions would then appear along with the organism member functions in
organism.cxx. Alternatively, the animal class could have a separate header file
and a separate implementation file. If the animal files are separate, then
organism.h must be given in an include directive in the animal files.

The next derived class that we’ll build is a class to simulate a plant. The plant
class is derived from an organism, and it has one extra member function—but
the work is left up to you in the Self-Test Exercises on page 702.

Spot catches a 10-ounce fish
and steals 25 ounces of
chicken from the kitchen.

Spot still lives at the
end of her first week.

Spot catches another 10-ounce
fish, but gets only 15 ounces
of chicken this week.

Sadly, Spot dies at the
end of her second week.
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Documentation for the animal Class
// CLASS PROVIDED: animal (part of the namespace main_savitch_14)
// animal is a derived class of the organism class. All the organism public member functions
// are inherited by an animal. In addition, an animal has these extra member functions:
//
// CONSTRUCTOR for the animal class:
//
// Precondition: init_size >= 0, and init_need >= 0. If init_size is 0, then init_rate is zero 
// too.
// Postcondition: The organism being simulated has been initialized. The value returned
// from get_size( ) is now init_size (measured in ounces), the value returned from 
// get_rate( ) is now init_rate (measured in ounces per week), and the animal must eat
// at least init_need ounces of food each week to survive.
//
// MODIFICATION MEMBER FUNCTIONS for the animal class:
//
// Precondition: new_need >= 0.
// Postcondition: The animal’s weekly food requirement has been changed to new_need
// (measured in ounces per week).
//
//
// Precondition: amount >= 0.
// Postcondition: The given amount (in ounces) has been added to the amount of food
// that the animal has eaten this week.
//
//  -- overridden from the organism class
// Postcondition: The size of the organism has been changed by its current growth rate.
// If the new size is less than zero, then the actual size is set to zero rather than to a
// negative value, and the growth rate is also set to zero. Also, if the animal has eaten
// less than its required need over the past week, then death has been activated.
//
// CONSTANT MEMBER FUNCTIONS for the animal class:
//
// Postcondition: The return value is the ounces of food that the animal still needs to
// survive the current week (which is the total need minus the amount eaten so far).
//
//
// Postcondition: The return value is the total amount of food that the animal needs to
// survive one week (measured in ounces).
//
// VALUE SEMANTICS for the animal class:
// Assignments and the copy constructor may be used with animal objects.

(continued)

 FIGURE  14.8 The animal Class

organism(double init_size = 1, double init_rate = 0, double init_need = 0)

void assign_need(double new_need)

void eat(double amount)

void simulate_week( )

double still_need( ) const

double total_need( ) const
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 (FIGURE  14.8 continued)

Class Definition
class animal : public organism
{
public:

// CONSTRUCTOR
animal(double init_size = 1, double init_rate = 0, double init_need = 0);
// MODIFICATION MEMBER FUNCTIONS
void assign_need(double new_need);
void eat(double amount);
void simulate_week( ); // Overridden from the organism class
// CONSTANT MEMBER FUNCTIONS
double still_need( ) const;
double total_need( ) const { return need_each_week; }

private:
double need_each_week;
double eaten_this_week;

};

Implementation of the Member Functions

: organism(init_size, init_rate),
need_each_week(init_need),
eaten_this_week(0)

{
// Because of the initialization list, the body of this constructor has no work.

}

// Library facilities used: cassert
{

assert(new_need >= 0);
need_each_week = new_need;

}

// Library facilities used: cassert
{

assert(amount >= 0);
eaten_this_week += amount;

}
(continued)

animal::animal(double init_size, double init_rate, double init_need)

void animal::assign_need(double new_need)

void animal::eat(double amount)
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Self-Test Exercises for Middle of Section 14.2

7. Draw an object hierarchy diagram for various kinds of people.
8. The object hierarchy in the previous exercise might be used to track peo-

ple in a health club facility.  Provide a class definition of the base class.
Private data members should include name, birthdate, weight, and gen-
der. Include public function prototypes to calculate the age of a person
from the birthdate, and to set and retrieve the weight and gender.

9. Write the constructor for one of the derived classes from Exercises 7
and 8. Use a member initialization list. 

10. Declare a new class called plant, which is derived from an organism
and has one extra member function:

void nibbled_on(double amount);
// Precondition: 0 <= amount <= get_size( ).
// The plant’s size has been decreased by amount. If this reduces
// the size to zero, then death is activated.

Suppose fern is a plant. Activating fern.nibbled_on(m) corresponds
to some beast eating m ounces of fern. Notice that nibbled_on differs
from the existing alter_size member function, since in the
nibbled_on function, the amount is removed from the size (rather than
added), and there is also a strict precondition on the amount eaten.

Your plant class should have one constructor with the same parame-
ters as the organism constructor. The plant’s constructor merely calls
the organism constructor (in the member initialization list). The actual
body of the plant constructor has no lines (though you may want to put
in a comment). Provide default arguments of zero for both parameters.

 (FIGURE  14.8 continued)

{
organism::simulate_week( );
if (eaten_this_week < need_each_week)

death( );
eaten_this_week = 0;

}

{
if (eaten_this_week >= need_each_week)

return 0;
else

return need_each_week - eaten_this_week;
}

void animal::simulate_week( )

double animal::still_need( ) const

www.cs.colorado.edu/~main/chapter14/organism.h and organism.cxx WWW
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11. Write a function with one argument, which is a list of plants, as shown in
this prototype:

double total_mass(const vector<plant>& collection);
This uses the vector template class from the C++ Standard Library,
which is a container class that is similar to a dynamic array (see Appen-
dix H). The function should calculate and return the mass of all the
plants on the list. Your function may use collection.size( ) to deter-
mine the number of plants in the vector and then use the notation
collection[i] to access plant number i (starting at collection[0]).
Or you can use a vector iterator to step through the plants. (The use of
iterators is described in Section 6.3).

The herbivore Class

We’re almost ready to start designing a simulation program for a small ecosys-
tem. The ecosystem will be a small pond containing weeds and weed-eating
fish. The weeds will be modeled by the plant class from Self-Test Exercise 10
on page 702, and the fish will be a new class that is derived from the animal
class that we have just completed.

The new class for the fish, called herbivore, is an animal that eats plants.
This suggests that an herbivore should have one new member function, which we
call nibble. The member function will interact with a plant object that the her-
bivore is nibbling, and this plant object is a parameter to the new member func-
tion. Here is the specification we have in mind:

void herbivore::nibble(plant& meal);
// Postcondition: eat(amount) and meal.nibbled_on(amount) have both
// been activated. The amount is usually half of the plant, but it will not be
// more than 10% of the herbivore’s weekly need nor more than the
// amount that the herbivore still needs to eat to survive this week.

For example, suppose that carp is an herbivore, and bushroot is a plant. If
we activate carp.nibble(bushroot), then carp will eat some of bushroot, by
activating two other functions: (1) its own eat member function and (2) the
bushroot.nibbled_on( ) function.

The nibble function follows a few rules about how much of the plant is eaten.
The rules state that carp.nibble(bushroot) will usually cause carp to eat half
of bushroot, but a single nibble will not be more than 10% of the animal’s
weekly need nor more than the amount that the animal still needs to eat in order
to survive the rest of the week. In an actual model, these rules would be derived
from behavior studies of real herbivores.

The complete herbivore documentation is shown in Figure 14.9, along with
the class definition and the implementation of the herbivore’s member functions.
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Documentation for the herbivore Class
// CLASS PROVIDED: herbivore (part of the namespace main_savitch_14)
// herbivore is a derived class of the animal class. All the animal public member functions
// are inherited by an herbivore. In addition, an herbivore has these extra member
// functions:
//
// CONSTRUCTOR for the herbivore class:
//
// Same as the animal constructor.
//
// MODIFICATION MEMBER FUNCTIONS for the herbivore class:
//
// Postcondition: eat(amount) and meal.nibbled_on(amount) have been activated. The
// amount is usually half of the plant, but it will not be more than 10% of the
// herbivore’s weekly need nor more than the amount that the animal still needs to eat to
// survive this week.
//
// VALUE SEMANTICS for the herbivore class:
// Assignments and the copy constructor may be used with herbivore objects.

Class Definition
class herbivore : public animal
{
public:

// CONSTRUCTOR
herbivore(double init_size = 1, double init_rate = 0, double init_need = 0);
// MODIFICATION MEMBER FUNCTIONS
void nibble(plant& meal);

};

Implementation of the Member Functions

: animal(init_size, init_rate, init_need)
{

// No work is done here, except calling the animal constructor.
}

(continued)

 FIGURE  14.9 The herbivore Class

herbivore(double init_size = 1, double init_rate =0, double init_need = 0)

void nibble(plant& meal)

herbivore::herbivore(double init_size, double init_rate, double init_need)
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The Pond Life Simulation Program

A simulation program can use objects such as our herbivores to predict the
effects of changes to an ecosystem. We’ll write a program along these lines to
model the weeds and fish in a small pond. The program stores the pond weeds
in a container of plants, using the vector container class that is part of the C++
Standard Library (see Appendix H). For example, suppose the pond has 2000
weeds with an initial size of 15 ounces each and a growth rate of 2.5 ounces per
week. Then we will create a list of 2000 plants as shown here:

const size_t MANY_WEEDS = 2000; // Number of weeds in the pond
const double WEED_SIZE = 15; // Initial size of each weed (ounces)
const double WEED_RATE = 2.5; // Weed growth rate (ounces/week)

// Create a sample plant and initialize the vector to contain MANY_WEEDS
// copies of this sample plant:
const plant SAMPLE(WEED_SIZE, WEED_RATE);
vector<plant> weeds(MANY_WEEDS, SAMPLE);

Our vector of plants is initialized by the vector constructor with two arguments:
. This version of the construc-

tor creates an initial vector that contains MANY_WEEDS copies of the SAMPLE
plant.

 (FIGURE  14.9 continued)

{
const double PORTION = 0.5;  // Eat no more than this fraction of plant
const double MAX_FRACTION = 0.1; // Eat no more than this fraction of weekly need
double amount; // How many ounces of the plant will be eaten

// Set amount to some portion of the plant but no more than a given maximum fraction
    // of the total weekly need and no more than what the herbivore still needs to eat this
    // week.
    amount = PORTION * meal.get_size( );

if (amount > MAX_FRACTION * total_need( ))
        amount = MAX_FRACTION * total_need( );

if (amount > still_need( ))
        amount = still_need( );

    // Eat the plant.
    eat(amount);
    meal.nibbled_on(amount);
}

void herbivore::nibble(plant& meal)

www.cs.colorado.edu/~main/chapter14/organism.h and organism.cxx WWW

vector<plant> weeds(MANY_WEEDS, SAMPLE)
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Our simulation has a second vector, called fish, which is a vector of herbi-
vores. Initially, we’ll stock the fish vector with 300 full-grown fish. 

With the vectors initialized, our simulation may proceed. Throughout the sim-
ulation, various fish nibble on various plants. Each week, every weed increases
by its growth rate (stated as 2.5 ounces/week in the code). Some weeds will also
be nibbled by fish, but during our simulation no weed will ever be completely
eaten, so the weeds never die, nor do we ever create new weeds beyond the initial
2000. On the other hand, the number of fish in the pond may vary throughout the
simulation. When a fish dies (because of insufficient nibbling), that fish is
removed from the fish vector. New fish are also born each week at a rate that
we’ll explain in a moment. For now, though, you should be getting a good idea
of the overall simulation. Let’s lay out these ideas precisely with some
pseudocode:

// Pseudocode for the pond life simulation

1. Create a vector, called weeds, containing a bunch of plants. The exact
number of weeds, their initial size, and their growth rate are determined
by constants called MANY_WEEDS, WEED_SIZE, and WEED_RATE.

2. Create a vector, called fish, containing a bunch of herbivores. The num-
ber of fish and their initial size are determined by constants INIT_FISH
and FISH_SIZE. In this simple simulation, the fish will not grow (their
growth rate is zero), and their weekly need will be their initial size times a
constant called FRACTION.

3. For each week of the simulation, we will first cause some randomly
selected fish to nibble on randomly selected weeds. On average, each fish
will nibble on AVERAGE_NIBBLES weeds (where AVERAGE_NIBBLES is yet
another constant in our program). After all these nibbles, we will activate
simulate_week for each fish and each weed. Dead fish will be removed
from the fish vector. At the end of the week, we will give birth to some
new fish. The total number of new fish is the current number of fish times
a constant called BIRTH_RATE. To simplify the simulation, we will have
the new fish born fully grown with a growth rate of zero.

At the end of each week (simulated in Step 3), our program prints a few sta-
tistics. These statistics show the number of fish that are currently alive and the
total mass of the weeds.

Our program implementing the pseudocode is given in Figure 14.10. The top
of the program lists the various constants that we have mentioned, from
MANY_WEEDS to BIRTH_RATE. After the constants, we list prototypes for two func-
tions that we found useful in the implementation. One of the functions, called
pond_week, carries out the simulation of one week in the pond, as described in
Step 3 of the pseudocode. The other function, total_mass, computes the total
mass of all the plants in the bag of weeds. 

We discuss a few of the implementation details starting on page 710.
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A Program
// FILE: pondlife.cxx
// A simple simulation program to model the fish and weeds in a pond

#include <iostream>  // Provides cin, cout
#include <iomanip>  // Provides setw
#include <cstdlib> // Provides EXIT_SUCCESS, rand, size_t
#include <vector> // Provides the vector template class
#include "organism.h" // Provides herbivore, plant classes
using namespace std;
using namespace main_savitch_14;

// PROGRAM CONSTANTS
const size_t MANY_WEEDS      = 2000; // Number of weeds in the pond
const double WEED_SIZE       =   15; // Initial size of each weed, in ounces
const double WEED_RATE       =  2.5; // Growth rate of weeds, in ounces/week
const size_t INIT_FISH       =  300; // Initial number of fish in the pond
const double FISH_SIZE       =   50; // Fish size, in ounces
const double FRACTION        =  0.5; // A fish must eat FRACTION times its size
                                     // during one week or it will die.
const int    AVERAGE_NIBBLES =   30; // Average number of plants nibbled by
                                     // a fish over one week
const double BIRTH_RATE      = 0.05; // At the end of each week, some fish have
                                     // babies. The total number of new fish born is

 // the current number of fish times the
                                     // BIRTH_RATE (rounded down to an integer).

// Sample weed and fish objects to copy into the vectors of the main program:
const plant SAMPLE_WEED(WEED_SIZE, WEED_RATE);
const herbivore SAMPLE_FISH(FISH_SIZE, 0, FISH_SIZE * FRACTION);

// PROTOTYPES for the functions used in the program:

// Precondition: weeds.size( ) > 0.
// Postcondition: On average, each fish has nibbled on AVERAGE_NIBBLES plants, and then
// simulate_week has been activated for each fish and each weed. Any fish that died are
// removed from the fish bag, and then BIRTH_RATE * fish.size( ) new fish have been added to
// the fish bag.

// Postcondition: The return value is the total mass of all the plants in the collection.

(continued)

 FIGURE  14.10 The Pond Life Simulation

void pond_week(vector<herbivore>& fish, vector<plant>& weeds);

double total_mass(const vector<plant>& collection);
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 (FIGURE  14.10 continued)

{
    vector<plant> weeds(MANY_WEEDS, SAMPLE_WEED); // A vector of weeds

vector<herbivore> fish(INIT_FISH, SAMPLE_FISH); // A vector of fish
int many_weeks;  // Number of weeks to simulate
int i; // Loop control variable

    // Get number of weeks, and format the output.
    cout << "How many weeks shall I simulate? ";
    cin >> many_weeks;
    cout.setf(ios::fixed, ios::floatfield);
    cout << "Week Number Plant Mass" << endl;

cout << " of Fish (in ounces)" << endl;

    // Simulate the weeks.
for (i = 1; i <= many_weeks; ++i)

    {
pond_week(fish, weeds);

        cout << setw(4) << i;
        cout << setw(10) << fish.size( );
        cout << setw(14) << setprecision(0) << total_mass(weeds);
        cout << endl;
    }

return EXIT_SUCCESS;
}

{
double answer;
vector<plant>::const_iterator p;

    answer = 0;
for (p = collection.begin( ); p != collection.end( ); ++p)

        answer += p->get_size( );

return answer;
}

(continued)

int main( )

double total_mass(const vector<plant>& collection)
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 (FIGURE  14.10 continued)

{
// Variables for an index and an iterator for the weeds:
vector<plant>::iterator wi;
vector<plant>::size_type weed_index;

// Variables for an index, an iterator, and counters for the fish:
vector<herbivore>::iterator fi;
vector<herbivore>::size_type fish_index;
vector<herbivore>::size_type new_fish_population;

    size_t many_iterations; // How many random nibbles to simulate
size_t i; // Loop counter

    // Have randomly selected fish nibble on randomly selected plants.
    many_iterations = AVERAGE_NIBBLES * fish.size( );

for (i = 0; i < many_iterations; ++i)
    {
        fish_index = rand( ) % fish.size( ); // Index of a random fish
        weed_index = rand( ) % weeds.size( ); // Index of a random weed
        fish[fish_index].nibble(weeds[weed_index]);
    }

// Simulate the weeks for the weeds.
for (wi = weeds.begin( ); wi != weeds.end( ); ++wi)

        wi->simulate_week( );

// Simulate the weeks for the fish, and count how many died.
fi = fish.begin( );
while (fi != fish.end( ))

    {
        fi->simulate_week( );

if (!fi->is_alive( ))
            fish.erase(fi);

else
 ++fi;

    }

// Calculate the new number of fish, and reset the fish vector to this size. 
// If this adds new fish to the vector, then those new fish will be equal to the
// SAMPLE_FISH that is used for all our fish:
new_fish_population = (1 + BIRTH_RATE) * fish.size( );
fish.resize(new_fish_population, SAMPLE_FISH);

}

void pond_week(vector<herbivore>& fish, vector<plant>& weeds)

www.cs.colorado.edu/~main/chapter14/pondlife.cxx WWW
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Pond Life—Implementation Details
we use the 
vector’s ability to 
access an 
element with 
array notation, 
and we use a 
vector iterator

The implementations of pond_week and total_mass are at the end of Figure
14.10. These implementations show a few features of the Standard Library vector
class from Appendix H. In particular, we need the ability to access a random item
from a vector and the ability to step through the items of a vector one at a time. 

The vector permits quick access of an arbitrary element using array notation.
For example fish[i] is a reference to the item at position i in the fish vector
(where i can range from 0 to fish.size( ) - 1). Note that this is a reference
to the item, as discussed on page 318. This means that when we use the array
notation to access an item, any changes made to the item will change the actual
item in the vector. For example, consider the statement:

fish[fish_index].nibble(weeds[weed_index]);

This statement activates the nibble member function of a fish (which will
change the fish), and the argument to the function is a weed (so this weed is also
changed by being nibbled on). 

The use of the iterator is also important. For example, within the pond_week
function, we activate simulate_week for each plant by using the iterator to step
through the weeds one at a time, as shown here:

// Simulate the weeks for the weeds.
for (wi = weeds.begin( ); wi != weeds.end( ); ++wi)

wi->simulate_week( );

the member 
selection
operator can be 
used with an 
iterator to 
activate a 
member function 
of the iterator’s 
current object

For the iterator wi, we can use the notation *wi to access its element, or we can
use notation such as wi->simulate_week( ). This is the same member selec-
tion operator that is available to use with pointers. It is equivalent to writing the
longer expression (*wi).simulate_week( ). In either case, we activate the
simulate_week method of the weed that wi refers to. 

Using the Pond Model

No doubt you have noticed that our pond model is not entirely rooted in reality.
For example, each fish is born full grown and does not continue to grow. This
simplification makes it easier to handle the fish vector when we need to add or
remove fish at the end of the pond_week function. Some extensions to make the
model more realistic are given in the Programming Projects of this chapter.
Nevertheless, even our simple program illustrates the principles of simulation
programs. Let’s look at one way that a simulation program such as ours could be
used.
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Sample Dialogue
How many weeks shall I simulate? 38

Week Number Plant Mass
of Fish (in ounces)

1 315 27500
2 330 24625
3 346 21375
4 363 17725
5 379 13654
6 359 9286
7 144 6462
8 109 7960
9 112 10245

10 117 12445
11 122 14520
12 128 16470
13 134 18270
14 140 19920
15 147 21420
16 154 22745
17 161 23895
18 169 24870
19 177 25645
20 185 26220
21 194 26595
22 203 26745
23 213 26670
24 223 26345
25 234 25770
26 245 24920
27 257 23795
28 268 22374
29 281 20674
30 292 18656
31 306 16356
32 313 13720
33 301 10984
34 244 8689
35 189 7812
36 163 8225
37 161 9176
38 164 10159

 FIGURE  14.11 Pond Program DialogueSuppose that your friend Judy owns a pond
with 2000 weeds, about 15 ounces each. And
perhaps the pond is too choked with weeds for
Judy’s taste. One way to control the weeds is to
introduce a weed-eating species of fish—the
pond life program can help us predict what will
happen when a certain number of fish are put in
the pond. For example, suppose we have a spe-
cies of fish where the program’s constants
(Figure 14.10 on page 707) are accurate. When
we run the program with these constants, the out-
put in Figure 14.11 occurs.

Actually, if you run the program, you may get
slightly different output because of the use of the
random factor in the bag’s grab function. What
does the program predict will happen in the pond
if we introduce 300 of this kind of fish? Each out-
put line gives the fish population and the plant
mass at the end of one more week. The model
predicts that the mass of the weeds will decrease
fairly rapidly. This is followed by a period of
some oscillation in both the fish and plant popu-
lations, including a rather catastrophic week for
the fish when their population drops from 359 to
144. Sudden declines such as this are observed in
real ecosystems when a species is allowed to
expand, limited only by its food supply.

This kind of model can provide predictions as
well as testing theories of interactions in an eco-
system. It’s also important to remember that any
predictions are only as accurate as the underlying
model.

Dynamic Memory Usage

The pond life program requires a lot of dynamic
memory—enough room for about 6000 double
numbers, plus room for the bags of pointers. For
example, an older version of our program
required the “huge memory model” for Bor-
land’s 4.5 compiler (-mh option on the compile
line). If you receive abnormal program termina-
tion with your pond life program, it is probably
due to an insufficient dynamic memory.
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Self-Test Exercises for End of Section 14.2

12. Write code to declare a vector of organisms. Put 10 new organisms in the
vector, with an initial size of 16 ounces and a growth rate of 1 ounce per
week. Grab five random organisms, and alter their growth rates to 2
ounces per week. Finally, calculate the total of all the organisms’ growth
rates, and print the result.

13. In the previous exercise, you started with 10 organisms growing at 1
ounce per week. Five random organisms had their growth rates changed
to 2 ounces per week, so you might think that the total of all the organ-
isms’ rates would be 5*1 + 5*2, which is 15. But when we ran the pro-
gram, the total was only 14. Why?

14. Design and implement a new class derived from the animal class. The
new class, called carnivore, has one new member function with the
prototype shown here:

void carnivore::chase(animal& prey, double chance);

When chase(prey, chance) is activated for some carnivore, the carni-
vore chases the prey. The probability of actually catching the prey is
given by the parameter chance (which should lie between 0 and 1—for
example 0.75 for a 75% chance). If the prey actually is caught, then this
will also activate the carnivore’s eat member function and (sadly) acti-
vate the prey’s death member function.

Note: You can use the rand function (from <cstdlib>) to determine
whether the animal is caught, as shown here:

if (rand( )/double(RAND_MAX) < chance)
{

}

14.3 VIRTUAL MEMBER FUNCTIONS AND A GAME CLASS

This section demonstrates virtual member functions, which are a new kind of
member function that allows certain aspects of activating a function to be
delayed until a program is actually running. 

Introduction to the game Class
To make the explanation of virtual functions concrete, we’ll present an example
of a class called game, which will make it easier for us to write programs that
play various two-player games such as chess, checkers, or Othello. The games
we have in mind will pit a human player against the computer, with the
computer making moves that are, hopefully, intelligent. 

 Code for catching and eating the prey 
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The key to the game class is the realization that many aspects of these different
games can be handled in a uniform way. For example, each game needs a gen-
eral procedure for going back and forth between the human player and the com-
puter, and each game needs a sensible procedure for selecting the computer’s
move from among the alternatives. So our proposal is to have a game class that
provides all these common operations and will serve as a base class for many
derived classes that play various two-player games.

There’s a lot of information in the game class definition and it uses several new
techniques. We’ll briefly explain each part of the definition, and then we’ll
come back to concentrate on the parts of the definition that must be understood
in order to write a derived class such as chess, or Othello, or—as we’ll actually
do in an example—a derived class to play a game called Connect Four.

Class Definition
class game
{
public:

enum who { HUMAN, NEUTRAL, COMPUTER }; // Possible game outcomes

game( ) { move_number = 0; }
virtual ~game( ) { }

// The play function should not be overridden. It plays one game, with the human player
// moving first and the computer second. The computer uses an alpha-beta look ahead
// algorithm to select its moves. The return value is the winner of the game (or
// NEUTRAL for a tie).
who play( );

(continued)

 FIGURE  14.12 Definition for the game Class

// ENUM TYPE 

// CONSTRUCTOR and DESTRUCTOR

// PUBLIC MEMBER FUNCTIONS

The game class provides a framework for
other games to be implemented. For example, a
programmer who is writing a chess-playing pro-
gram can implement a derived chess class that
uses the game as the base. Another programmer,
writing a program to play Othello, can implement
a derived othello class that also uses the game
as its base.

The definition of our proposed game class is
given in Figure 14.12.

game

Othello
chess

...
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 (FIGURE  14.12 continued)

protected:

virtual void display_message(const std::string& message) const;
virtual std::string get_user_move( ) const;
virtual who last_mover( ) const;
virtual int moves_completed( ) const;
virtual who next_mover( ) const;
virtual who opposite(who player) const;
virtual who winning( ) const;

// Have the next player make a specified move:
virtual void make_move(const std::string& move) { ++move_number; }

// Restart the game from the beginning:
virtual void restart( ) { move_number = 0; }

// Return a pointer to a copy of myself:
virtual game* clone( ) const = 0;

// Compute all the moves that the next player can make:
virtual void compute_moves(std::queue<std::string>& moves) const = 0;

// Display the status of the current game:
virtual void display_status( ) const = 0;

// Evaluate a board position (positive values are good for the player who just moved):
virtual int evaluate( ) const = 0;

// Return true if the current game is finished:
virtual bool is_game_over( ) const = 0;

// Return true if the given move is legal for the next player:
virtual bool is_legal(const std::string& move) const = 0;

private:
int move_number; // Number of moves made so far

};

// OPTIONAL VIRTUAL FUNCTIONS (overriding these is optional)

// VIRTUAL FUNCTIONS THAT MUST BE OVERRIDDEN:
// The overriding function should call the original when it finishes.

// PURE VIRTUAL FUNCTIONS (these must be provided for each derived class)

 Other private items could go here, too.

www.cs.colorado.edu/~main/chapter14/game.h WWW
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The who type. The class starts with this definition:

enum who { HUMAN, NEUTRAL, COMPUTER }; // Possible game outcomes

enum typeThis definition defines an enum type, which you might not have used before.
An enum type defines a simple new data type along with values that variables of
that type can be assigned. In our example, the new enum type is called who, and
a variable of type who can be assigned one of the three constants called HUMAN,
NEUTRAL, and COMPUTER. We’ll use variables of this type to keep track of who
won a game (using NEUTRAL for a tie), or whose turn it is to move.

The constructor. The game class has a simple constructor that assigns the value
zero to its one private member variable (move_number). This variable keeps
track of how many moves have been made while a game is being played.

The public play function. The game class has one public member function:

who play( );

This function is activated to cause one game to be played. For example, later we
will write a class called connect4, which is derived from the game class and
plays a game called Connect Four. A simple main function that plays a Connect
Four game looks like this:

int main( )
{
    connect4 instance;
    connect4::who winner;

switch (winner)
{
case connect4::HUMAN:    cout << "You win" << endl; break;
case connect4::COMPUTER: cout << "I win"   << endl; break;
case connect4::NEUTRAL:  cout << "A draw"  << endl; break;
}

return EXIT_SUCCESS;
}

The game is interactive, letting the user type game moves at the keyboard (or, as
we will see, the input can come in other ways). A member function of the game
class directs the computer’s moves, searching through all possible moves, look-
ing at responses that the human might make to those moves, and looking at pos-
sible responses to the human’s responses, and so on. 

You are probably wondering about the details of directing the computer’s
moves. We will discuss that at the end of this section, but for now, let’s assume

This plays one game of
Connect Four.

winner = instance.play( );
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that some wise and generous programmer has given us the complete game class,
which we are going to use to implement games such as Connect Four. The won-
derful feature of the game class is that we don’t need to know the details of how
play works in order to write our derived class. We can just trust that our wise
and generous programmer wrote the play function correctly. This is one of the
big benefits of a well-written base class:

So, we’re planning to write a class that is derived from the game class. Among
other things, our derived class will inherit the powerful play function. We have
no immediate need to understand the details of the play function, but we do
need to know more about the next part of the game class definition, which pro-
vides a series of protected, virtual functions.

Protected Members

The next part of the game class definition begins like this:

protected:

virtual void display_message
(const std::string& message) const;

The keyword protected indicates that the items that follow will be a new kind
of member, somewhat between public and private. In particular, a protected
member can be used (and overridden) by a derived class—but apart from within
a derived class, any protected member is private. It cannot be used elsewhere.

Virtual Member Functions

The first protected member function in the game class is display_message.
The game class implements this function is a simple way by printing the mes-
sage (which is an argument) to the standard output (cout). This works fine, and
whenever the play function needs to print a message, it does so by activating
display_message. In fact, the beginning of our play function looks like this:

game::who game::play( )
{

display_message("Welcome!");
...

The Benefit of a Well-Written Base Class

With a well-written base class in hand, a programmer can
write derived classes without worrying about how the base
class accomplishes its work.

// OPTIONAL VIRTUAL FUNCTIONS (overriding these is optional)
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This works fine. When we play the game, the welcome message is printed at the
start. But, suppose that we write a game that needs to display messages by some
other method. Perhaps the messages go to a graphical window, or the messages
are embellished in some other manner before being printed. This sounds as if it
won’t be a problem. Our derived class will inherit all the game class members,
but it can override any method that it doesn’t like. As an example, perhaps we
want our Connect Four game to print "***" before each displayed message (just
to make the messages more exciting). We could override the display_method
function so that connect4::display_method first prints "***" and then prints
the message.

With this approach, when the play method begins, it will activate
display_message("Welcome!"), but what will this print? If it uses
game::display_message, then the word “Welcome!” appears by itself. If it
uses connect4::display_message, then “***Welcome!” is printed. So which
version is used? Here is the usual rule:

In this example, this means that game::play normally would use
game::display_message, even if a derived object activates the play method.
This is where virtual member functions come to the rescue. When a member
function is declared with the virtual keyword, you are anticipating that the
method will be overridden in some derived class. And you are also demanding a
bit more:

In other words: For a virtual member function, the choice of which version of
the function to use is never made until the program is running. At run time, the
program examines the data type of the object that activated the method, and
thereby uses the correct version of the function.

When One Member Function Activates Another

Normally, when a member function f activates another
member function g, the version of g that is actually activated
comes from the same class as the function f. This behavior
occurs even if the activated function g is later overridden,
and f is activated by an object of the derived class.

Activating a Virtual Member Function

Whenever a virtual member function is activated, the data
type of the activating object is examined when the program is
running, and the correct version of the function is used.
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There are several situations that require virtual member functions. The most
common situation is the case we have described, where one member function
activates another member function, and the programmer anticipates that this
other member function will be overridden in the future.

Virtual Destructors

Whenever a class has virtual methods, it’s a good idea to also provide a virtual
destructor, even if the base class has no need for a destructor. With a virtual
destructor, the compiler arranges for the right destructor to be called at run time,
even when the compiler is uncertain about the exact data type of the object. This
is why our game includes a destructor: .

The Protected Virtual Member Functions of the game Class

All of the protected functions of the game class are virtual member functions,
because we anticipate that the programmer who implements a derived game will
override some or all of these protected functions. In fact, we’re almost ready to
implement our derived Connect Four game, which will override eight virtual
functions. But first, let’s examine the three broad groups of virtual functions that
the game class provides:

Optional virtual functions. The display_message function is one of seven
optional virtual functions. The programmer of a derived class may override these
to obtain different behavior (such as a different method of displaying messages).
But for our Connect Four game, we’ll accept the game class’s implementations,
not overriding any of the seven methods.

Virtual functions that must be overridden. The game class requires that two
other virtual functions must be overridden by any derived class. In each case, the
game class has done a little bit of the work needed for these functions, but most
of the work must be done by the derived class. 

When these two methods are overridden, the new method in the derived class
must activate the original version of the method (otherwise the little bit of work
that the game class does will be omitted). For these two functions, there is no way
that the game class can actually require the derived class to provide the overriding
versions, except by making this request in the game class documentation.

Pure virtual functions. The final six virtual functions are examples where the
game class cannot do any of the work. Such a function is called a pure virtual
function, and it is indicated by the notation “= 0” before the semicolon of the
prototype. For example:

// Return true if the given move is legal for the next player:
virtual bool is_legal(const string& move) const ;

virtual ~game( ) { }

= 0
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A Derived Class to Play Connect Four
We’re ready to implement a connect4 class that is derived from the game class.
The derived class will have member variables to keep track of the status of a
Connect Four game as it is being played. The derived class will also override
eight virtual member functions to provide the tasks that the game class needs for
examining and manipulating the status of the game.

the rules of 
Connect Four

The rules of Connect Four are easy to describe. The game board consists of a
transparent vertical tray with seven slots at the top. The players alternate drop-
ping checkers into the slots: white (for player one), then black (player two), then
white (player one), black (player two), and so on. The game ends when someone
gets four of their checkers in a row (horizontally, vertically, or diagonally). For
example, after the first player’s third move, the board might look like as shown
in the margin.

The Private Member Variables of the Connect Four Class
what the game 
class requires 
from its derived 
classes

Our connect4 class definition will be derived from game. To write this class, we
need to know what the game class requires from each of its derived classes. The
requirements are easy to describe: The derived class must have member vari-
ables to keep track of the status of a single game. In the case of Connect Four,
the connect4 class must have member variables to keep track of the status of a
single game of Connect Four as the game is played. 

In addition, the derived class must implement at least the eight virtual func-
tions that allow the game class to access the game status. Our overall plan for the
connect4 class is shown in Figure 14.13, including three private member vari-
ables. Our intention with these variables is to refer to each location on the board
by a column number (from 0 to 6) and a row number (from 0 to 5). It may seem

Pure Virtual Functions and Abstract Classes

A pure virtual function is indicated by  before the end
of the semicolon in the prototype. The class does not provide
any implementation of a pure virtual function. Because there
is no implementation, any class with a pure virtual function is
called an abstract class and no instances of an abstract
class may appear in a program.

Abstract classes are used as base classes, and it is up to the
derived class to provide an implementation for each pure
virtual function.

= 0

In this situation, the black player needs to make the next move in
the rightmost column, otherwise the white player can win by getting
four-in-a-row horizontally on the next move. Each slot can hold up to
six checkers, so it is possible that the game ends with no player having
four-in-a-row (that would be a tie).
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Class Definition
class connect4 : public game
{
public:

// STATIC CONSTANTS
static const int ROWS = 6;
static const int COLUMNS = 7;

// CONSTRUCTOR
connect4( );

protected:
// Return a pointer to a copy of myself:
virtual game* clone( ) const;

// Compute all the moves that the next player can make:
virtual void compute_moves(std::queue<std::string>& moves) const;

// Display the status of the current game:
virtual void display_status( ) const;

// Evaluate a board position (positive values are good for the player who just moved)
virtual int evaluate( ) const;

// Return true if the current game is finished:
virtual bool is_game_over( ) const;

// Return true if the given move is legal for the next player:
virtual bool is_legal(const std::string& move) const;

// Have the next player make a specified move:
virtual void make_move(const std::string& move);

// Restart the game from the beginning:
virtual void restart( );

private:
// MEMBER VARIABLES TO TRACK THE STATE OF THE GAME
who data[ROWS][COLUMNS];
int many_used[COLUMNS];
int most_recent_column;

};

 FIGURE  14.13 Class Definition for the Connect Four Game

 Other private items could go here, too.

www.cs.colorado.edu/~main/chapter14/connect4.h WWW
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strange to start our numbers at 0 instead of 1, but doing so will make our pro-
gramming easier because we store information about the board in this two-
dimensional array (which is a private member variable):

who data[ROWS][COLUMNS];

the purpose of 
the three 
member
variables

Remember that the who data type came from the game class. It is an enum type
that has three possible values (HUMAN, NEUTRAL, COMPUTER). The ROWS and
COLUMNS constants are defined as static member constants of the connect4 class
(ROWS is 6 and COLUMNS is 7), so that each spot in the data array corresponds to
one spot on the game board. For example, if the game board has a black checker
at row 1 and column 6, then data[1][6] will be set to COMPUTER (since the
computer is the second player, using black checkers). Any location without a
checker will be recorded as NEUTRAL in the data array.

In addition to the data array, we have two other private member variables:

int many_used[COLUMNS];
int most_recent_column;

The value of many_used[i] is the number of checkers in column number i
(which is useful when you’re calculating where the next checker in that column
should go). After the game is started, the value of most_recent_column will be
the column where the last checker was placed. This is useful for reducing the
calculations about whether the game has ended.

The only remaining work is to understand and implement the eight virtual
functions and the constructor. We’ll do this over the next few pages, sometimes
providing an implementation and other times providing only a discussion. 

The Connect Four Constructor and Restart Function

The connect4 default constructor activates the game constructor (using the
member initialization list described in Figure 14.7 on page 697) and then acti-
vates the restart member function. The restart function initializes the
connect4 member variables; for example, the data array is set to all NEUTRAL
values. As indicated in the documentation for the game class (Figure 14.12 on
page 713), the restart function of any derived class must also activate game::
restart( ), which will reinitialize the game’s member variables.

Three Connect Four Functions That Deal with the Game’s Status

Each class that is derived from the game must implement three virtual member
functions that allow the game class to access the current state of the game:

The display_status function. This void function has no parameters. It merely
displays the current status of the game. Our implementation of display_status
prints a grid representing the game, like this:
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Current game status
(HUMAN = #  and  COMPUTER = @):
Most recent move in column 5
  .  .  .  .  .  .  .
  .  .  .  .  .  .  .
  .  .  .  .  .  .  .
  .  .  .  .  .  .  .
  .  .  .  @  .  .  .
  .  .  @  #  #  #  .
  0  1  2  3  4  5  6
Computer's turn to move...

The is_game_over function. This bool function also has no parameters. Its
return value is true if the current game is over. The game is over if the most
recently placed checker is part of a four-in-a-row, or if all the columns are full.

The evaluate function. This function is the heart of the game. It examines the
current status and provides a numerical estimate of how favorable the current sta-
tus seems, providing a positive answer if the status is good for the computer and
a negative answer if the status is good for the human. Larger magnitudes indicate
a more certain answer, and an evaluation of zero indicates that the game is more-
or-less even for both players. 

The evaluation should be done in fixed way that doesn’t try to look ahead at
possible future moves (because looking ahead is already built into the game
class’s play function). There’s no one right way to evaluate the game status, but
we can tell you the idea we used, which was suggested by our colleague John
Gillett: We examine each possible sequence of four consecutive locations, giving
each such sequence a value as follows:

The result of our evaluation function is the sum of all these values from examin-
ing each of the possible sequences of four locations in the current game. The
large numbers (+500 and –500) were selected so that the total evaluation would
always favor the player who obtained four-in-a-row, even if the other locations
completely favor the other player.

Three Connect Four Functions That Deal with Moves
Our game class needs some way to represent a move in the game. Since the pro-
grammer of the game class doesn’t know much about the exact game being
played, we decided to use strings to represent moves. The exact format of these
“move strings” can be decided by the programmer who implements a derived
class. In the case of Connect Four, our move strings will just be simple strings

If the four locations have... then the value is...

...four computer checkers +500

...1 to 3 computer checkers and none of the human’s +1 to +3

...no checkers or a mixture of both players zero

...1 to 3 human checkers and none of the computer’s -1 to -3

...four of the human’s checkers -500

In this grid, we used the
character ‘@’ to represent a
computer checker and the
character ‘#’ to represent the
human’s checker.
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that contain one digit specifying the slot in which the player wants to place the
next checker. For example, the string “3” represents the move of putting a
checker into slot number 3. 

Each derived class must provide three virtual member functions that deal with
its move strings:

The is_legal_move function. This bool function has a string as its parameter.
It returns true if the string is currently a legal move for the next player. Among
other things, the game class uses this function to determine whether a move typed
by the user is currently legal. For Connect Four, a move is legal provided that it
is a number from 0 to COLUMNS-1, and that the selected column is not already full.

The make_move function. This void function has a string move as its param-
eter. The string has already been checked to ensure that it is a legal move.
The function is responsible for making this move (by updating the member vari-
ables that represent the status of the game). The function must also activate
game::make_move, so that the base class can update any of its member variables
that deal with the status of the game.

The compute_moves function. The prototype for this function is:

void compute_moves(std::queue<std::string>& moves) const;

The function examines the current status of the game and determines what
moves are currently legal. All these legal moves are then placed into the queue.
The function does not actually make any of these moves (it just puts these
moves into the queue), so compute_moves can be a const member function.

If the game is not yet over, there should always be at least one legal move put
into the queue (although in some games, such as Othello, this one legal move
could be a “pass” move).

The clone Function

Each class derived from our game class must provide one more function:

virtual game* clone( ) const;

The purpose of this function is to make a complete copy of the current game,
and return a pointer to this copy. Such copies are needed by the game class when
it is exploring possible future moves. (These potential moves are made to copies
of the game, so that the actual game is not altered during the mere exploration of
future possibilities). 

The implementation of the connect4 clone function can use the automatic
copy constructor, so there is not much work to making a copy:

game* connect4::clone( ) const
{

return new connect4(*this);
}
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This call of the new operator uses the connect4 automatic copy constructor to
create a copy of *this. The notation *this is always the object that activated
the current method, in other words, the object that activated the clone method.
So, the overall effect is to create a copy of the connect4 object that activated
the clone method, and return a pointer to this new object. 

another reason 
why we used 
virtual member 
functions

Notice that the actual return type of the clone function is a pointer to a game
object. This is fine because a pointer to a game object (the base class) can be used
to point to a connect4 object (the derived type). Moreover, if we activate mem-
ber functions of this object, we will always use the correct connect4 member
functions (because we used virtual member functions).

virtual
constructors are 
forbidden

Finally, notice that the clone method is simple, but it cannot be implemented
by the game itself because the game base class cannot use the copy constructor
of the derived class. We might get around this problem if constructors could be
virtual, but C++ does not allow virtual constructors.

Writing Your Own Derived Games from the game Class
You can now write the connect4 class yourself (for comparison to ours), or you
could write other games that are derived from the game class. Some useful
resources are online:

It’s interesting that you can write such clever games without knowing the details
of the game class’s play function. In fact, we encourage you to write your
derived classes without much concern for the workings of the base. On the other
hand, it might be interesting to know a bit more about the game class’s algo-
rithm. You can download and read the entire game class, or read our short dis-
cussion, next.

The game Class’s Play Algorithm with Minimax
The play algorithm alternates between getting a human move and a computer
move. The interesting part is the computer move, which starts by using

www.cs.colorado.edu/~main

/chapter14/game.h our game class header file

/chapter14/game.cxx our game class implementation file

/chapter14/connect4.h our connect4 header file

/chapter14/connect4.cxx our connect4 implementation file

/projects/ ideas for other games to implement

compute_moves to calculate all the possible
moves. For example, if the computer has
three possible moves, then we can draw the
situation as shown in the margin. Our first
version of the game class had a private mem-
ber function, eval_with_look_ahead, which
was used to evaluate each of the possible new
positions, with this specification:

Current board position

New position
after making
move 1

New position
after making
move 2

New position
after making
move 3
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int eval_with_look_ahead(int look_ahead);
// The return value of the current board position is evaluated from the
// viewpoint of the player who just moved. Positive values are good for this
// player, and negative values are bad. The look_ahead parameter
// determines how far we should examine possible future moves.

For each possible move, the game class creates a copy of the current game,
makes the move in the copy, and calls eval_with_look_ahead to evaluate how
good the game seems to be after the possible move. In our implementation, the
game class uses a value of 4 for the look_ahead parameter, meaning that the
evaluation will look at the possible responses to the move, and the responses to
the responses, and so on (ending with four levels of responses). 

Base cases. The eval_with_look_ahead function has two easy cases: when
look_ahead is zero or when the game is over. In these cases, we don’t need to
look at any future moves. Instead, we simply call evaluate, which is the virtual
member function that evaluates the game status without looking ahead. (If we are
using eval_with_look_ahead to evaluate for the computer, then we just return
the evaluate value directly. If we’re evaluating from the human’s viewpoint,
then we multiply evaluate’s answer times -1 since the documentation specifies
that evaluate always does its work from the computer’s viewpoint).

Recursive cases. When the game is not over and look_ahead is more than
zero, we use recursion to evaluate all the responses that the other player
might make in the current board position. For example, suppose that
eval_with_look_ahead was asked to evaluate the current board position from
the viewpoint of the computer, with a look_ahead value of 4. Here are the steps
of the algorithm, carried out for our example:

1. Generate a queue of all moves that the human opponent could now make:
queue<string> moves;
compute_moves(moves);

2. For each move in the queue, create a copy of the current game, and apply
the move to this copy. Then evaluate how this altered game looks to the
opponent, keeping track of the biggest value that the opponent finds. We
use a recusive call of eval_with_look_ahead to evaluate the altered
state, reducing the look_ahead by one:

game* future;
int value, best_value;
best_value = INT_MIN; // INT_MIN is smallest int from <climits>
while (!moves.empty( ))
{

 future = clone( );
 future->make_move(moves.front( ));
 value = future->eval_with_look_ahead(look_ahead-1);

delete future;
if (value > best_value)

best_value = value;
 moves.pop( );

}
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3. In our example, suppose that Step 1 found three possible moves, and that
the values of these moves were –7, +10, and +42 (from the opponent’s
viewpoint). Which of these three moves do you think that the opponent
will choose? The opponent’s best move is the +42, so let’s assume that the
+42 is selected. From our viewpoint, that move would result in a value of
–42, so that’s what we’ll return as our value. In general, our return value
will be –1 times the best value that the opponent found:

return -1*best_value;

As we said, these three steps are the pseudocode for our first implementation of
eval_with_look_ahead. The steps are a variation of a common game-playing
algorithm called minimax search (which means that we assume that the oppo-
nent will move to try to minimize our value, and then we move to try to maxi-
mize our value). 

If you get the game class from www.cs.colorado.edu/~main/chapter14/, you’ll
find that the actual eval_with_look_ahead makes one other improvement by
using a second parameter:

int eval_with_look_ahead(int look_ahead, int beat_this);

The extra parameter, beat_this, is the value of another move that we have
been considering. If we discover that we can’t beat the value of that other move,
then we’ll stop the evaluation process—there’s no point in continuing if we
know that we can’t do better than some other move that we’ve already
examined. This process of cutting short a minimax search is called alpha-beta
pruning. You might analyze alpha-beta pruning in detail in an artificial
intelligence class. For now, you can just study our complete function in Figure
14.14.

Self-Test Exercises for Section 14.3
15. Where can a protected member of a class be used?
16. What is one situation where a virtual member function is required?
17. When a virtual member function is activated, how is the correct version

of the function chosen?
18. What is a pure virtual function and when is it used?
19. For the base class definition in Exercise 8, write a pure virtual func-

tion prototype that calculates the BMR (basal metabolic rate). The
function has no parameters and returns a float. You will implement
this function as part of Programming Project 5.

20. Implement the make_move function for the connect4 game.
21. What is alpha-beta pruning?
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Member Function Implementation
int game::eval_with_look_ahead(int look_ahead, int beat_this)
// Evaluate a board position with look ahead.
// --int look_ahead:  How deep the look ahead should go to evaluate the move.
// --int beat_this: Value of another move that we’re considering. If the current board position
// can’t beat this, then cut it short.
// The return value is large if the position is good for the player who just moved.
{

queue<string> moves;   // All possible opponent moves
int value;             // Value of a board position after opponent moves
int best_value;        // Evaluation of best opponent move
game* future; // Pointer to a future version of this game

// Base case:
if (look_ahead == 0 || is_game_over( ))

if (last_mover( ) == COMPUTER)
return evaluate( );

else
return -evaluate( );

// Recursive case:
compute_moves(moves);
best_value = INT_MIN;
while (!moves.empty( ))
{

 future = clone( );
 future->make_move(moves.front( ));
 value = future->eval_with_look_ahead(look_ahead-1, best_value);

delete future;
if (value > best_value)

 {
if (-value <= beat_this)

return INT_MIN + 1; // Alpha-beta pruning
best_value = value;

 }
 moves.pop( );
}

// The value was calculated from the opponent’s perspective.
// The answer we return should be from the player’s perspective, so multiply times –1:
return -best_value;

}

 FIGURE  14.14 Evaluate with Look Ahead Using Alpha-Beta Pruning

www.cs.colorado.edu/~main/chapter14/game.cxx WWW
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CHAPTER SUMMARY

• Object-oriented programming supports reusable components by permitting new derived
classes to be declared, which automatically inherit all members of an existing base class. 

• All members of a base class are inherited by the derived class, but only the nonprivate mem-
bers of the base class can be accessed by the programmer who implements the derived class.
This is why most of our examples do not specify the precise form of the private members of
the base class.

• The connection between a derived class and its base class can often be characterized by the
is-a relationship. For example, an herbivore is-a particular kind of animal, so it makes sense
to implement herbivore as a derived class of the animal base class.

• An abstract base class (such as the game class) can provide a common framework that is
needed by many derived classes. An abstract base class has one or more pure virtual func-
tions, which are functions that must be overridden before the class can be used. 

FURTHER READING

This chapter introduced the concept of derived classes and inheritance, which is a central concept
for object-oriented programming. In your future programming, further extensions of inheritance are
likely to be important. For example, C++ permits multiple inheritance, where a single derived
class inherits members from several base classes. To learn more about inheritance, multiple inherit-
ance, and virtual member functions, you can consult a comprehensive C++ language guide such as
C++ Primer by Stanley B. Lippman and Josée Lajoie.

Further analysis of minimax and alpha-beta pruning is covered in textbooks such as Artificial
Intelligence by Patrick Henry Winston.

SOLUTIONS TO SELF-TEST EXERCISES
? Solutions to Self-Test Exercises

Further Reading

1. In both cases, the public members of the base
class are available to the derived class. In a
public base class, the public members are
available as public members of the derived
class. In a private base class, the public mem-
bers of the base class are only available as pri-
vate members of the derived class.

2. The derived class receives an automatic
default constructor (which calls the default
constructor for the base class and then calls
the default constructor for any member vari-
ables of the derived class). The derived class
also receives an automatic copy constructor
(which calls the copy constructor for the base
class and then calls the copy constructor for
any member variables of the derived class).

3. The assignment is not legal, because an object
of the base class (coat) cannot be used as if it
were an object of the derived class.

4. The definition for the derived class is shown
here, along with the implementation of the
new member function:
class daylight_clock : public clock
{
public:

bool is_day( ) const;
};
bool daylight_clock::is_day( ) const
{

if (is_morning( ))
return (get_hour( ) >= 7);

else
return (get_hour( ) < 7);

}

5. The automatic assignment operator calls the
assignment operator for the base class and
then calls the assignment operator for any
member variables of the derived class. The
automatic destructor first calls the destructor
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for any member variables of the derived class,
and then calls the destructor for the base class.

6. The NoonAlarm overrides the advance mem-
ber function of the ordinary clock:
class noon_alarm : public clock
{
public:

void advance(int minutes);
};

void noon_alarm::advance(int minutes)
// Library facilities used: iostream
{

int until_noon; 

// Calculate number of minutes until 
// noon.
if (is_morning( ))

until_noon =
60 * (12-get_hour( ))
- get_minute( );

else if (get_hour( ) != 12)
until_noon =

60 * (24 - get_hour( ))
 - get_minute( );

else
until_noon =

60 * 24
- get_minute( );

// Maybe print an alarm message.
if (minutes > 0)

if (minutes >= until_noon)
cout << "Alarm!";

// Call the base member function.
clock::advance(minutes);

}

7.

8. A class definition of person: 
class person
{
public:
  person();
  person(string name, double weight,
         date birthdate, char gender);

double set_weight(double weight);
double get_weight() const;
int get_age() const;

Person

Youth Adult

Baby

private:
  string name;
  date birthdate;
double weight;
char gender;

};

9. A constructor for the derived class adult:
adult::adult(

string name, 
double weight,
date birthdate, 
char gender) 
:person
(name, weight, birthdate, gender) 

{}

10. The plant definition is:
class plant : public organism
{
public:

// CONSTRUCTOR
plant(double init_size = 0,

double init_rate = 0);
// MODIFICATION FUNCTIONS
void nibbled_on(double amount);

};
The member functions are implemented here:

plant::plant(double init_size,
double init_rate)

: organism(init_size, init_rate)
{
    // All work is done by the organism

// constructor.
}

void plant::
nibbled_on(double amount)
// Library functions used: cassert
{
    assert(amount >= 0);
    assert(amount <= get_size( ));
    alter_size(-amount);
}

11. See the solution in Figure 14.10 on page 709.

12. Here is one solution:
const int N = 10;
const int SELECT = 5;
const organism SAMPLE(16, 1);
vector<organism> blobs(N, SAMPLE);
int i, index;
double answer;
vector<organism>::iterator it;
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

for (i = 1; i <= SELECT; ++i)
{
index = rand( ) % N;
blobs[index].assign_rate(2);

}

answer = 0;
for (it = blobs.begin( );

it != blobs.end( );
++it)

answer += 
it->get_rate();

cout << answer << "total of rates\n";

13. rand selected one organism twice (and three
other organisms were selected once each).

14. We’ll leave some of this to you, but here is the
new member function:
void carnivore::chase
(animal& prey, double chance)
// Library facilities used: cassert, cstdlib
{
    assert(chance >= 0);

assert(chance <= 1);
if (chance > 0)

if (rand()/double(RAND_MAX)
 < chance)

{
eat(prey.get_size( ));
prey.death( );

}
}

15. A protected member can be used (and overrid-
den by a derived class) but cannot be used out-
side of a derived class.

16. The base class has a member function f,
which activates another member function g.
This g member function will be overridden in
a derived class. When an object of the derived

class activates f, it will use the base class ver-
sion of f. But within f, we want it to use the
overridden g from the derived class.

17. The correct version of a virtual member func-
tion is only determined during run time.  Dur-
ing execution, the program selects a member
function based on the data type of the object
that activated the method.

18. The class does not provide any implementa-
tion of a pure virtual function. Because there
is no implementation, any class with a pure
virtual function is called an abstract class
and no instances of an abstract class may
appear in a program. The pure virtual func-
tions are expected to be overriden in the
derived classes.

19. virtual double calculate_bmr() = 0;

20. Here is one solution using the Standard
Library function atoi to convert a string to an
integer (see Appendix G):
void connect4::make_move
(const string& move)
// Library facilities used: cassert, cstdlib
{

int row, column;

assert(is_legal(move));
column = atoi(move.c_str( ));
row = many_used[column]++;
data[row][column] = next_mover( );
most_recent_column = column;
game::make_move(move);

}

21. Alpha-beta pruning is the process of stopping
an evaluation, such as a minimax search, if it
cannot produce a better solution than one that
has already been determined.

A set is like a bag, except that a set does not
allow multiple copies of any element. If you
try to insert a new copy of an item that is

already present in a set, then the set simply remains

1 unchanged. For this project, implement a set as a
new class that is derived from one of your bags.
Your implementation should override only the
insert member function.
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Rewrite the pond life program from
Figure 14.10 on page 707 so that the values
declared at the start of the program are no

longer constant. The program’s user should be able
to enter values for all of these constants. Also,
extend the program so that the fish are more realis-
tic. In particular, the fish should be born at a small
size and grow to some maximum size. Each fish
should also have a weekly food requirement that is
proportional to its current size.

Extend the organism object hierarchy from
Section 14.2 so that there is a new class
carnivore as described in Self-Test Exer-

cise 14 on page 712. Use the hierarchy in a model of
life on a small island that contains shrubs, geese that
eat the shrubs, and foxes that eat the geese. The pro-
gram should allow the user to vary the initial condi-
tions on the island (such as number of foxes, the
amount of food needed to sustain a fox, and so on).

Implement a bag template class as a derived
class of a list. Use the list from the standard
template library. The bag should have all of
the operations from Figure 6.7 on page 340.

Implement the people base class of Self-
Test Exercise 8 on page 702. Also, imple-
ment male and female derived classes and

calculate BMR based on the following formulas:
Male:  66 + (30.14  weight in pounds) + (1.97
height in inches) - (6.8  age); Female: 655 + (21.12

weight in kilos)+ (.71 height in inches)- (4.7 age).
Expand the class hierarchy to include a function

to calculate recommended daily calorie intake.  The
calorie intake is the BMR multiplied by a constant
that indicates physical activity levels. The constants
are sedentary (1.2), moderately active (1.55), lightly
active (1.35), and highly active (1.725).

Write a program that maintains a vector of
people (from the previous project) to re-
present health club members. The program 

should give the user menu choices to modify and
view a person’s health information. Also include
functions to compute the average age, weight, and
activity level of all club members by gender.

Redo Programming Project 12 of Chapter 10
to store other forms of media (such as CD,
DVD, VHS, and cassette tape).  Create

a base class item, and derive the other forms, includ-

2

3

4

5

× ×
×

× × ×

6

7

ing books, as you see fit. The base class should con-
tain the ISBN, but derived classes may contain
different members depending on their media type.
Users should be able to view and modify items as
before, but also provide functionality to view items
of a particular media.

Tic-Tac-Twice is a game invented by Pat
Baggett and Andrzej Ehrenfeucht. It is
distributed by the Aristoplay company. The

rules are simple, starting with two 4x4 boards that
each have a pattern of 16 letters (or other objects). If
you use the letters A through P, then the two boards
have these patterns:

Board 1 Board 2

The two players (human and computer) take alter-
nate turns. During your turn, you can place a checker
of your color on an empty spot on Board 1. At the
same time, you put a checker of your color on the
square in Block 2 with the same letter. For example,
if you put your checker in the bottom-left corner of
Board 1 (letter M), then you would simultaneously
put one of your checkers on the third spot of the top
row of Board 2 (also letter M).

You win the game by having four of your circles
in a row (horizontally, diagonally, or vertically) on
either of the boards. Note that you don’t need four in
a row on both boards, just on one of them.

Implement a class that lets a user play Tic-
Tac-Twice against the computer. Use the game class
from Section 14.3 as your base class.

A B C D B K M H

E F G H P E C J

I J K L G N L A

M N O P I D F O

8
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L EARN ING  OB J EC T I V ES
When you complete Chapter 15, you will be able to...

• follow and explain graph�based algorithms using the usual computer science 
terminology. 

• design and implement classes for labeled or unlabeled graphs.
• list the order in which nodes are visited for the two common graph traversals 

(breadth�first and depth�first) and implement these algorithms.
• simulate the steps of simple path algorithms (such as determining whether a path 

exists) and be able to design and implement such algorithms.
• simulate the steps of Dijkstra’s shortest�path algorithm and be able to implement it.

CHAPTER  CONTENTS
15.1 Graph Definitions
15.2 Graph Implementations
15.3 Graph Traversals
15.4 Path Algorithms

Chapter Summary
Solutions to Self�Test Exercises
Programming Projects

So many gods, so many creeds,
So many paths that wind and wind,

ELLA WHEELER WILCOX
The World’s Need

When just the art of being kind
Is all this sad world needs.

15Graphs15Graphs
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Graphs

Graphs are the most general data structure in this text. In fact,
it’s fair to say that graphs are the ultimate commonly used data structure. Many
of the data structures that you will study in the future can be expressed in terms
of graphs. This chapter provides an introduction to graphs and their algorithms,
including the implementation of a graph class in C++.

15.1 GRAPH DEFINITIONS

A graph, like a tree, is a nonlinear data structure consisting of nodes and links
between the nodes. In the trees that we have already seen, the nodes are some-
what orderly: The root is linked to its children, which are linked to their
children, and so on, to the leaves. But in a graph, even this modicum of order is
gone. Graph nodes may be linked in any pattern—or lack of pattern—dependent
only upon the needs of an application.

Graphs occur in several varieties. We’ll start with the simplest form:
undirected graphs.

Undirected Graphs
An undirected graph is a set of nodes and a set of links between the nodes. Each
node is called a vertex, each link is called an edge, and each edge connects two
vertices. Undirected graphs are drawn by putting a circle for each vertex and a
line for each edge. For example, here is a drawing of an undirected graph with
five vertices and six edges:

Often we’ll need to refer to the vertices and edges of a graph, and we can do this
by writing names next to each vertex and edge. For example, the following
graph has vertices named , , , , and , whereas its edges are named

, , , , , and :
v0 v1 v2 v3 v4

e0 e1 e2 e3 e4 e5

v0

v1

v2

v3

v4

e0 e1

e2
e3

e4

e5

Graph Definitions 733

graphs occur in 
several
varieties, the 
simplest of 
which is an 
undirected
graph
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in a drawing, the 
placement of the 
vertices
and edges is 
unimportant

In a drawing such as this, the actual placement of the vertices and edges is
unimportant. The only important points are which vertices are connected and
which edges are used to connect them. So, when you are feeling like a contor-
tionist, you might draw the graph differently:

This is the same as the previous graph—we have just drawn it differently.
Here’s a formal definition of these graphs:

An edge is even allowed to connect a single vertex to itself—we’ll see examples
of this later, and we’ll also see several different variants of graphs. Many appli-
cations will require additional data to be attached to each vertex or to each edge,
but even without these extras, we can give the flavor of a graph application with
an example.

PROGRAMMING EXAMPLE: Undirected State Graphs

As an example of a problem where graphs are useful, we’ll look at a little game.
To start the game, you place three coins on the table in a line, as shown here:

At the start of the game, the middle coin is “tails” and the other two are “heads.”
The goal is to change the configuration of the coins so that the middle coin is
heads and the other two are tails, like this:

Undirected Graphs
An undirected graph is a finite set of vertices together with a
finite set of edges. Both sets might be empty (no vertices and
no edges), which is called the empty graph.

Each edge is associated with two vertices. We sometimes
say that the edge connects its two vertices. The order of the
two connected vertices is unimportant, so it does not matter
whether we say “This edge connects vertices u and v,” or
“This edge connects vertices v and u.”

v0v1

v2
v3

v4

e0
e1e2

e3

e4

e5

The start of the game1942 1942

The goal of the game1942
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Now, this wouldn’t be much of a game without a few rules. Here are the rules:
1. You may flip the middle coin (from heads to tails or vice versa) whenever

you want to.
2. You may flip one of the end coins (from heads to tails or vice versa) only

if the other two coins are the same as each other (both heads or both tails).
You are not allowed to change the coins in any other way, such as shuffling

them around. But within these rules you may flip coins. For example, if you start
with the position head-tail-head, then the first rule allows you to flip the middle
coin, resulting in three heads:

If you play the game for a while, you’ll soon figure out how to get from the
starting position (head-tail-head) to the goal position (tail-head-tail) within the
limits of the rules. But our real goal is to figure out how a graph can aid in solv-
ing this kind of problem—even if the rules were beyond human manageability.
The graph we’ll use is called an undirected state graph, which is a graph where
each of the vertices represents one of the possible configurations of the game.
These configurations are called “states,” and the coin game has eight states
ranging from head-head-head to tail-tail-tail. Therefore, these eight states are
the vertices of the state graph for the coin game. Figure 15.1 shows each vertex
as a large oval so that we have room inside the oval to draw the state of the
coins. Two vertices of the undirected state graph are connected by an edge
whenever it is possible to move back and forth between the two states using one
of the rules. For example, Rule 1 allows us to move between head-head-head
and head-tail-head, so one of the edges in the graph goes from the topmost state

From the start position,
1942 1942 1942 flip the middle coin.

a graph may 
represent the 
legal moves in 
a game

FIGURE  15.1 Undirected State Graph for the Coin Game
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in Figure 15.1 (head-head-head) to the state directly below it (head-tail-head).
Figure 15.1 shows a total of eight edges: The four vertical edges come from
Rule 1, and the four diagonal edges come from Rule 2. You may have noticed a
curious fact about our rules: Whenever it is possible to move from one state to
another (such as moving head-head-head to head-tail-head), it is also possible
to move in the other direction (such as head-tail-head to head-head-head). If
you study the rules, you will see that this is true. The way we have drawn the
edges reflects this symmetry. The edges are drawn as line segments connecting
two vertices, with no indication as to which direction a movement must pro-
ceed. In this game, if an edge connects two vertices  and , then a movement
is permitted in both directions, from  to , or from  to . This property of
the coin game is the reason why we may use an undirected state graph. Later, we
will see more complex games where movements might be permitted in only one
direction, and hence we will need more complex graphs.

Once we know the undirected state graph, the game becomes a problem of
finding a path from one vertex to another, where the path is only allowed to fol-
low edges. According to our rules, we need to find a path from the vertex head-
tail-head to the vertex tail-head-tail, and one such path consists of edges 1
through 5, highlighted here:

The coin game is a small problem, and the state graph isn’t vital to the solution.
But the important idea of the example goes beyond this small game:

Because of this wide applicability of graphs, we will study many different kinds
of graphs, exploring how to implement the graphs and how to solve problems
such as “Is there a path from here to there?” The rest of this section shows the
kinds of graphs we’ll study and some of the problems that we’ll solve.

Graphs in Problem Solving
Often, a problem can be represented as a graph, and the
solution to the problem is obtained by solving a problem on
the corresponding graph.

v0 v1
v0 v1 v1 v0

5

1
2

3

4

19421942 1942

1942 1942

194219421942

1942 1942 19421942
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Directed Graphs

The graphs we have seen so far are all undirected, which means that each edge
connects two vertices with no particular orientation or direction. An edge just
connects two vertices—there is no “first vertex” or “second vertex.” But there is
another kind of graph called a directed graph, where each edge has an orienta-
tion connecting its first vertex (called the edge’s source) to its second vertex
(the edge’s target). Here is the formal definition of a directed graph:

Directed graphs are drawn as diagrams with circles representing the vertices and
arrows representing the edges. Each arrow starts at an edge’s source and has the
arrowhead at the edge’s target, for example:

One application of directed graphs is a state graph for a game where reversing
a move is sometimes forbidden. For such a game, the state graph might have an
edge from a source  to a target  but not include the reverse edge from  to

. This would indicate that the game’s rules permit a move from state  to state
, but not the other way around. For example, we could use a large state graph

to represent the different states in a game of tic-tac-toe. Two of the many possible
states are shown next, with a directed edge between them.

Directed Graphs

A directed graph is a finite set of vertices together with a
finite set of edges. Both sets might be empty (no vertices and
no edges), which is called the empty graph.

Each edge is associated with two vertices, called its source
and target vertices. We sometimes say that the edge
connects its source to its target. The order of the two
connected vertices is important, so it does matter whether we
say “This edge connects vertex u to vertex v,” or “This edge
connects vertex v to vertex u.”

v1 v2 v2

v1 v1

v2
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There is a directed arrow between these two states, since it is possible to move
from the first state to the second state (by placing an O), but it is not possible to
move in the other direction (since once an O is placed, it may not be removed).

More Graph Terminology
Loops. A loop is an edge that connects a vertex to itself. In the diagrams that
we’ve been using, this is drawn as a line (or arrow) with both ends at the same
location. The highlighted edges at the left of these two graphs are both loops:

Path. A path in a graph is a sequence of vertices, , , …, , such that
each adjacent pair of vertices  and  are connected by an edge. In a directed
graph, the connection must go from the source  to the target .

Multiple edges. In principle, a graph may have two or more edges connecting
the same two vertices in the same direction. These are called multiple edges. In
a diagram, each edge is drawn separately. For example:

Note that the two edges at the bottom of the directed graph are not multiple
edges because they connect the two vertices in different directions. Many appli-
cations do not require multiple edges. In fact, many implementations of graphs
do not permit multiple edges. Throughout the graph implementations of this
chapter, we will specify which implementations permit multiple edges and
which implementations forbid them.

Simple graphs. The simplest of graphs have no loops and no multiple edges.
Appropriately enough, these graphs are called simple graphs. Many applica-
tions require only simple directed graphs, or even simple undirected graphs.

OX
X

O
OX

X
Two states
in the state
graph for
tic-tac-toe

p0 p1 pm
pi pi 1+

pi pi 1+

Multiple edges in
an undirected
graph

Multiple
edges in a
directed
graph
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Airline Routes Example
airline routes 
form a directed 
graph

Let’s examine a directed graph that represents the flights of a small airline
called Crocodile Airlines. Each vertex in the graph is a city, and each edge rep-
resents a regularly scheduled flight from one city to another. Crocodile’s com-
plete collection of flights is shown below. Notice that the graph is directed; for
example, it’s possible to fly from Darwin to Canberra on a nonstop flight, but
not the other way around.

Self-Test Exercises for Section 15.1
1. How many vertices and edges does the airline graph have? How many

loops? How would you interpret a loop in this graph?
2. Is the airline graph a directed graph? Why or why not?
3. Is the airline graph a simple graph? Why or why not?
4. The degree of a vertex v in an undirected graph is the number of times v

is an endpoint of an edge. A loop at the vertex contributes twice to the
degree. What is the degree of each vertex in the graph in the margin?

5. A vertex in a directed graph has an in-degree, which is the number of
edges with v as the target vertex, and an out-degree, which is the number
of edges with v as their source vertex. What are the in-degree and out-
degree of the following vertices in the airline graph: Canberra, Sydney,
and Melbourne?

6. A cycle in a directed graph is a path that begins and ends at the same ver-
tex.  The length of the cycle is the number of edges. Give example cycles
of length 3 and 5 in the airline graph by naming the vertices in the cycle.

7. Suppose we have four coins in the coin game instead of just three. At the
start of the game, the coins are in a line, with the two end coins heads

The point of expressing the flights
as a graph is that questions about the
airline can be answered by carrying
out common algorithms on the graph.
For example, a sheep farmer might
wonder what is the fewest number of
flights required to fly from Black
Stump to Melbourne. This is an exam-
ple of a shortest path problem that we
will solve in Section 15.4. With a
small graph such as this one you can
probably see that the shortest path
from Black Stump to Melbourne con-
sists of four edges, but a manual
examination might not suffice for a
larger graph.

a

b

c

d

e
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and the other two coins tails. The goal is to change the configuration so
that the two end coins are tails, and the other two coins are heads. There
are three rules for this game: (1) Either of the end coins may be flipped
whenever you want to. (2) A middle coin may be flipped from heads to
tails only if the coin to its immediate right is already heads. (3) A middle
coin may be flipped from tails to heads only if the coin to its immediate
left is already tails. Your mission: Draw the directed state graph for this
game, and determine whether it is possible to go from the start configu-
ration to the goal. Why does the graph need to be directed?

15.2 GRAPH IMPLEMENTATIONS

“I could spin a web if I tried,” said Wilbur, boasting. “I’ve just never tried.”

E. B. WHITE
Charlotte’s Web

Different kinds of graphs require different kinds of implementations, but the
fundamental concepts of all graph implementations are similar. We’ll look at
several representations for one particular kind of graph: directed graphs in
which loops are allowed. Some of the representations allow multiple edges, and
some do not. In each of the representations, the vertices of the graph are named
with numbers 0, 1, 2, …, so that we may refer to each vertex individually by
saying “vertex 0,” “vertex 1,” and so on.

Representing Graphs with an Adjacency Matrix

Let’s start with a directed graph with no multiple edges. The graph’s edges may
be represented in a square grid of boolean (true/false) values, called the graph’s
adjacency matrix. Here is an example of a graph with four vertices and its
adjacency matrix:

a true 
component at 
row i and column 
j indicates an 
edge from vertex 
i to vertex j

Each component of the adjacency matrix indicates whether a certain edge is
present. For example, is there an edge from vertex 0 to vertex 2? Yes, because
true appears at row 0 of column 2. But is there also an edge from vertex 2 to ver-
tex 0? No, because false appears at row 2 of column 0. The general rule for
using an adjacency matrix is given here:

0
1

2
3

0 1  2 3

0
1
2
3

true false true false
true false false false
false false false true
true false true false
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Using a Two-Dimensional Array to Store an Adjacency Matrix
in a two-
dimensional
array, every 
component has 
two indexes

In C++, an adjacency matrix can be stored in a two-dimensional array in
which every component has two indexes rather than the usual one index. Pro-
grammers usually view a two-dimensional array as a grid of elements, where the
first index provides the row number of a component, and the second index pro-
vides the column number of a component. In a declaration of a two-dimensional
array, the number of rows is given in square brackets, followed by the number
of columns (also in square brackets). For example, a program might require a
two-dimensional array of double numbers with 12 rows and 8 columns, as
declared here:

double budget[12][8];

Within the program, the individual components of the two-dimensional array
can be accessed by specifying both indexes. For example, we can assign 3.14 to
row number 2 and column number 6 with this assignment statement:

budget[2][6] = 3.14;

As with an ordinary array, the index numbers begin with 0, so our budget has
rows numbered from 0 to 11, and columns numbered from 0 to 7.

For an adjacency matrix, we use a two-dimensional array with one row and
one column for each vertex of the graph. The components of the array are bool-
ean true/false values. For example, the adjacency matrix for a graph with four
vertices can be stored using this declaration of a two-dimensional array:

bool adjacency_matrix[4][4];

The component adjacency_matrix[i][j] contains true if there is an edge
from vertex i to vertex j. A false value indicates no edge. Edges of a graph can
be added (by placing true in a location of the matrix) or removed (by placing
false). Once the adjacency matrix has been set, an application can examine loca-
tions of the matrix to determine which edges are present and which are missing.

Representing Graphs with Edge Lists
Again, suppose we have a directed graph with no multiple edges. Such a graph
can be represented by creating a linked list for each vertex. An example appears
at the top of the next page.

Adjacency Matrix
An adjacency matrix is a square grid of true/false values
that represent the edges of a graph. If the graph contains n
vertices, then the grid contains n rows and n columns. For
two vertex numbers i and j, the component at row i and
column j is true if there is an edge from vertex i to vertex j ;
otherwise the component is false.

Declaring a two-dimensional array with
12 rows and 8 columns



742 Chapter 15 / Graphs

To understand the example, look at the linked list for vertex number 0. This list
contains 1 and 2, which means that there is an edge from vertex 0 to vertex 1,
and a second edge from vertex 0 to vertex 2. In general, the linked list for vertex
number i is a list of vertex numbers following this rule:

Loops are allowed in this representation; for example, look at the list for vertex
1 in the edge lists just given. Number 1 appears on this list itself, so there is an
edge from vertex 1 to vertex 1 in the graph. We may also have vertices that are
not the source of any edge—for example, vertex 2 in the graph above. Since
vertex 2 is not the source of any edge, the edge list for vertex 2 is empty. If we
allow the same element to appear more than once on the list, then multiple
edges could also be allowed. But often, multiple edges are not allowed.

In a graph with n vertices, there are n edge lists. The head pointers for the n
edge lists can be stored in an array of n head pointers. When we need to deter-
mine whether an edge exists from vertex i to vertex j, we check to see whether j
appears on list number i.

Representing Graphs with Edge Sets

Another implementation of graphs uses the set class from the C++ Standard
Library. To represent a graph with 10 vertices, we can declare an array of 10 sets
of integers, as shown here:

set<int> connections[10];

Using this representation, a set such as connections[i] contains the vertex
numbers of all of the vertices that vertex i is connected to. For example, suppose
that connections[3] contains the numbers 1 and 2. In this case, there is an
edge from vertex 3 to vertex 1, and another edge from vertex 3 to vertex 2.

Linked-List Representation of Graphs
A directed graph with n vertices can be represented by n
different linked lists. List number i provides the connections
for vertex i. To be specific: For each entry j in list number i,
there is an edge from i to j.

Edge list
for vertex 0

Edge list
for vertex 1

Edge list
for vertex 2

Edge list
for vertex 3

3
NULL

0

2
NULL

NULL
0

1

2
3

1

2
NULL

1
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Which Representation Is Best?

If the space is available, then an adjacency matrix is easier to implement and
generally easier to use than edge lists or edge sets. But sometimes there are
other considerations. For example, how often will you be doing each of the fol-
lowing operations:

1. Adding or removing edges
2. Checking whether a particular edge is present
3. Iterating a loop that executes one time for each edge with a particular

source vertex i
The first two operations require only a small constant amount of time with

the adjacency matrices. But in the worst case, both (1) and (2) require O(n)
operations with the edge list representation (where n is the number of vertices).
This worst case occurs when the operation must traverse an entire edge list, and
that edge list might contain as many as n edges. With edge sets, both (1) and (2)
are somewhat fast (O(log n)) because the Standard Library set implementations
generally store items in a balanced tree as discussed in Chapter 11.

On the other hand, the edge lists are efficient for the third operation. With an
edge list, the third operation can be carried out by simply stepping through the
list one element at a time. The time required is O(e), where e is the number of
edges that have vertex i as their source. The set class also provides operations
to step through the elements of the set one at a time (using an iterator). In this
way, both edge lists and edge sets are likely to require just O(e) operations to step
through the edges with a particular source vertex. But with an adjacency matrix,
the act of stepping through the edges with source vertex i requires each entry in
row i to be examined. This traversal of the entire row is necessary just to see
whether each entry is true or false. This always requires O(n) time, where n is the
number of vertices.

In general, your choice of representations should be based on your expecta-
tions as to which operations are most frequent. One last consideration is the aver-
age number of edges originating at a vertex. If each vertex has only a few edges
(a so-called sparse graph), then an adjacency matrix is mostly wasted space
filled with the value false.

PROGRAMMING EXAMPLE: Labeled Graph Class

Now we’ll implement a class for directed graphs with no multiple edges. This
class has only a few member functions; for example, there is no way to remove
vertices. The simple form of the first graph class provides a sharp focus on
graphs and their algorithms.

With our graph class, each graph is initially created with no vertices and no
edges. There is a member function to add new vertices. For an n-vertex graph,
these vertices are always numbered from 0 to n–1. Once a graph has some verti-
ces, other functions add or remove edges. Each graph has a maximum number of
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vertices specified by the constant graph::MAXIMUM. We could avoid a maximum
number of vertices by using dynamic memory, but doing so will detract from our
primary focus, so we leave it for the Programming Projects at the end of this
chapter.

When we implement the graph, the number of vertices will be stored in the
member variable named many_vertices, which may be anywhere from zero to
MAXIMUM minus one. A graph’s edges are stored in an adjacency matrix, which is
implemented as the two-dimensional boolean array called edges. The edges
array has MAXIMUM rows and MAXIMUM columns, but keep in mind that we might
not be using all of this array. For example, if many_vertices is 3, then we will
use only the nine components ranging from edges[0][0] to edges[2][2].

Our graph class will have one extra feature: The vertices will have
information attached to them in the same way that we attached information to
tree nodes. For example, in the airline route graph on page 739, each vertex is
associated with a city name. The placement of information at each vertex makes
the graph a labeled graph, and the information itself is called a vertex’s label.
Of course, the information might be any data type—integers, doubles, strings,
you name it—which suggests that a class for labeled graphs should be
implemented as a template class, with the type of the labels determined by a
template parameter.

The labels of the vertices will be stored in a private member variable named
labels, which is an ordinary one-dimensional array. The label for vertex
number i will be stored in labels[i]. Thus, our graph definition has a total of
three member variables, listed in the private section shown here:

template <class Item>
class graph
{
public:

// MEMBER CONSTANTS
static const std::size_t MAXIMUM = 20;

private:
bool edges[MAXIMUM][MAXIMUM];
Item labels[MAXIMUM];
std::size_t many_vertices;

};

Member Functions to Add Vertices and Edges

When a graph is initialized with the constructor, it has no vertices and no edges.
At any time, the current number of vertices can be obtained from a constant
member function named size. Thus, a newly constructed graph g has
g.size( ) equal to zero. 

Two member functions, add_vertex and add_edge, allow us to add new ver-
tices and edges, with these specifications:

If your compiler does not permit 
initialization of static constants, 
see Appendix E.

 We’ll discuss the member functions in a moment. 



Graph Implementations 745

void add_vertex(const Item& label);
// Precondition: size( ) < MAXIMUM.
// Postcondition: The size of the graph has been increased by adding 
// one new vertex. This new vertex has the specified label and no edges.

void add_edge(size_t source, size_t target);
// Precondition: (source < size( )) and (target < size( )).
// Postcondition: The graph has all the edges that it originally had, and
// also has another edge from the specified source to the specified target.
// (If this edge was already present, then the graph is unchanged.)

For example, the following four statements create the two-vertex graph
shown in the picture. In this graph, vertex 0 (v0) contains the double number
3.14, and vertex 1 (v1) contains the double number 2.17:

graph<double> t;

t.add_vertex(3.14); // Adds vertex 0, with data of 3.14
t.add_vertex(2.17); // Adds the next vertex, with data of 2.17
t.add_edge(1, 0); // Adds an edge from vertex 1 to vertex 0

As you can see from the example, the add_vertex member function of the
graph class requires an argument, which is the label of the newly added vertex.

Labeled Graph Class—Overloading the Subscript Operator

Once a graph is created, we want to access its vertex labels by using the usual
“square bracket” notation from C++. For example, suppose that g is a 10-vertex
labeled graph. To print the label of vertex 3, we would like to write this:

cout << g[3];

When used this way, the square brackets are called the subscript operator.
We also want the subscript operator to allow assignments and other changes

to the labels. For example, suppose that g’s labels are integers. We want to be
able to change the label of a vertex with a simple assignment statement such as
this:

g[3] = 42;

In C++, we can overload the subscript operator to behave in exactly this way.
The overloading of the subscript operator is accomplished with the highlighted
prototype in the following class definition:

v0 v13.14
2.17

Change the label of vertex 3 to 42.
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template <class Item>
class graph
{
public:

...

...

In this definition, you can see the prototype for the overloaded subscript opera-
tor. Note that the return value is a reference. As discussed on page 318, this
allows us to use the operator to actually change a label (such as the assignment
statement ). An ordinary return value of Item would permit us to get
a current value, but it would not provide any way to change a label. 

The full implementation of the overloaded subscript operator is shown here:

template <class Item>
Item& graph<Item>::operator [ ] (std::size_t vertex)
{

assert(vertex < size( ));
return labels[vertex];

}

The return statement, , indicates that any changes
that the calling program makes directly on the return result will actually change
the component labels[vertex] in the private member variable labels.

A Const Version of the Subscript Operator

The subscript operator described above returns a reference to the label of the
vertex, allowing the label to be changed. Therefore the operator is not a constant
member function, and it cannot be used with a graph that is declared with the
const keyword (such as ). This is similar to the data
member function from our node class for linked lists (see page 320). The solu-
tion is to provide a second version of the subscript operator, which returns only
a copy of the vertex’s label, as shown here:

template <class Item>
 graph<Item>::operator [ ] (std::size_t vertex) 

{
assert(vertex < size( ));
return labels[vertex];

}

The only difference between this and the earlier version is that the return type of
the new version is Item (rather than a reference Item&). Therefore, it is not pos-
sible to use the new version to change a vertex, and the new version can be
declared as a constant member function.

Item& operator [ ] (std::size_t vertex);

g[3] = 42

return labels[vertex]

const graph<int> g

Item const
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Labeled Graph Class—Neighbors Function

Even though we’re implementing our graph using an adjacency matrix, the class
will also have a member function, called neighbors, that computes an edge list
for a specified vertex. This edge list will be provided as a set of integers, using
the Standard Library set class. The vector will contain all of the vertex num-
bers for the targets of edges that start at a specified source. Here’s an example to
show the integer array that’s computed and returned by g.neighbors(3) for a
particular graph:

The neighbors method may take O(n) time to compute one of its sets, but once
an array is available, it can be used to quickly traverse all the neighbors of a
vertex. Notice that the size of the set computed by g.neighbors(i) is equal to
the number of edges that have vertex i as the source, and this could even be zero
(resulting in a set with zero elements).

As an example, suppose that flight is a graph with string labels and at least
four vertices. The following code will print the vertex numbers of all of the
neighbors of vertex 3:

set<size_t> connections;
set<size_t>::iterator it;
connections = flight.neighbors(3);

for (it = connections.begin( ); it != connections.end( ); ++it)
cout << *it << endl;

A slightly different loop will print the labels of the neighbors of vertex 3:

for (it = connections.begin( ); it != connections.end( ); ++it)
cout << flight[*it] << endl;

Labeled Graph Class—Implementation

The header file and implementation file for the graph class are given in Figure
15.2. In addition to the member functions that we have already mentioned, there
is also a function to remove an edge from a graph, and a function to determine
whether a particular edge exists.

Note that throughout the class definition and implementation we have used
the notation std::size_t and std::set since size_t and set are part of the
std namespace and we must not place a using directive in a template class (see
page 304).

If g is the graph shown here,
then g.neighbors(3) returns the

0
1

2
3 This means that vertex 3 is the source of

two edges, going to vertices 0 and 2.

set containing 0 and 2.
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Self-Test Exercises for Section 15.2
8. Write an adjacency matrix for the graph drawn in the margin.
9. Consider this adjacency matrix. Are there any loops in the graph?

Which node has the highest in-degree? Which node has the highest out-
degree?

10. Write a new graph member function to remove the highest-numbered
vertex from a graph.

11. We have assumed that there are no multiple edges in a graph, and there-
fore we could store simple true/false values in the adjacency matrix.
Describe how adjacency matrices might be used if the graphs have multi-
ple edges.

12. Compare and contrast the adjacency lists and edge lists.
13. Write a function with one parameter that is a graph. The return value of

the function is the total number of edges in the graph.
14. Suppose that g is a graph with integer labels. What is the label of vertex

3 at the three points marked here? Assume that the statements are exe-
cuted one after another, and i is an integer variable.

g[3] = 42; // Point 1
i = g[3]; // Point 2
i = 43; // Point 3

[0] [1] [2] [3]
[0] false true false true
[1] false true true false
[2] false false false false
[3] false true true true

A Header File
// FILE: graph.h (part of the namespace main_savitch_15)
// TEMPLATE CLASS PROVIDED: graph<Item> (a class for labeled graphs)
// The vertices of an n-vertex graph are numbered from 0 to n-1. Each vertex has a
// label of type Item. It may be any of the C++ built-in types (int, char, etc.), or any
// class with a default constructor and an assignment operator. The graph may not have
// multiple edges.
//
// MEMBER CONSTANTS for the graph<Item> template class:
//
// graph::MAXIMUM is the maximum number of vertices that a graph can have.
//
// CONSTRUCTOR for the graph<Item> template class:
//
// Postcondition: The graph has been initialized with no vertices and no edges.

(continued)

 FIGURE  15.2 Header File for the Graph Class

static const size_t MAXIMUM = _____

graph( )

v0

v3

v1

v2
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 (FIGURE  15.2 continued)

// MODIFICATION MEMBER FUNCTIONS for the graph<Item> template class:
//
// Precondition: size( ) < MAXIMUM.
// Postcondition: The size of the graph has been increased by adding one new vertex.
// This new vertex has the specified label and no edges.
//
//
// Precondition: (source < size( )) and (target < size( )).
// Postcondition: The graph has all the edges that it originally had, and it also has
// another edge from the specified source to the specified target. (If this edge was
// already present, then the graph is unchanged.)
//
//
// Precondition: (source < size( )) and (target < size( )).
// Postcondition: The graph has all the edges that it originally had except for the edge
// from the specified source to the specified target. (If this edge was not originally
// present, then the graph is unchanged.)
//
//
// Precondition: vertex < size( ).
// Postcondition: The return value is a reference to the label of the specified vertex.
//
// CONSTANT MEMBER FUNCTIONS for the graph<Item> template class:
//
// Postcondition: The return value is the number of vertices in the graph.
//
//
// Precondition: (source < size( )) and (target < size( )).
// Postcondition: The return value is true if the graph has an edge from source to target.
// Otherwise the return value is false.
//
//
// Precondition: (vertex < size( )).
// Postcondition: The return value is a set that contains all the vertex numbers of
// vertices that are the target of an edge whose source is at the specified vertex.
//
//
// Precondition: vertex < size( ).
// Postcondition: The return value is a reference to the label of the specified vertex.
// NOTE: This function differs from the other operator [ ] because its return value is
// simply a copy of the Item (rather than a reference of type Item&). Since this function
// returns only a copy of the Item, it is a const member function.
//
// VALUE SEMANTICS for the graph<Item> template class:
// Assignments and the copy constructor may be used with graph<Item> objects.

(continued)

void add_vertex(const Item& label)

void add_edge(size_t source, size_t target)

void remove_edge(size_t source, size_t target)

Item& operator [ ] (size_t vertex)

size_t size( ) const

bool is_edge(size_t source, size_t target) const

set<size_t> neighbors(size_t vertex) const

Item operator [ ] (size_t vertex) const



750 Chapter 15 / Graphs

 (FIGURE  15.2 continued)

#ifndef MAIN_SAVITCH_GRAPH_H
#define MAIN_SAVITCH_GRAPH_H
#include <cstdlib> // Provides size_t
#include <set> // Provides set

namespace main_savitch_15
{

template <class Item>
class graph
{
public:

// MEMBER CONSTANTS
static const std::size_t MAXIMUM = 20;
// CONSTRUCTOR
graph( ) { many_vertices = 0; }
// MODIFICATION MEMBER FUNCTIONS
void add_vertex(const Item& label);
void add_edge(std::size_t source, std::size_t target);
void remove_edge(std::size_t source, std::size_t target);
Item& operator [ ] (std::size_t vertex);
// CONSTANT MEMBER FUNCTIONS
std::size_t size( ) const { return many_vertices; }
bool is_edge(std::size_t source, std::size_t target) const;
std::set<std::size_t> neighbors(std::size_t vertex) const;
Item operator[ ] (std::size_t vertex) const;

private:
bool edges[MAXIMUM][MAXIMUM];
Item labels[MAXIMUM];
std::size_t many_vertices;

};
}

#include "graph.template" // Include the implementation.
#endif

An Implementation File
// FILE: graph.template (part of the namespace main_savitch_15)
// TEMPLATE CLASS IMPLEMENTED: graph<Item> (See graph.h for documentation.)
// This file is included in the header file and not compiled separately.
// INVARIANT for the graph class:
// 1. The number of vertices in the graph is stored in the member variable many_vertices.
// 1. These vertices are numbered from 0 to many_vertices-1.
// 2. edges is the adjacency matrix for the graph (with true in edges[i][j] to indicate an
// 2. edge from vertex i to vertex j).
// 3. For each i < many_vertices, labels[i] is the label of vertex i. (continued)

If your compiler does not permit 
initialization of static constants, 
see Appendix E.



Graph Implementations 751

 (FIGURE  15.2 continued)

#include <cassert> // Provides assert
#include <cstdlib> // Provides size_t
#include <set> // Provides set

namespace main_savitch_15
{

// Library facilities used: cassert, cstdlib
{

assert(source < size( ));
assert(target < size( ));
edges[source][target] = true;

}

// Library facilities used: cassert, cstdlib
{

 std::size_t new_vertex_number;
 std::size_t other_number;

 assert(size( ) < MAXIMUM);
 new_vertex_number = many_vertices;
 ++many_vertices;

for (other_number = 0; other_number < many_vertices; ++other_number)
 {

 edges[other_number][new_vertex_number] = false;
 edges[new_vertex_number][other_number] = false;

 }
labels[new_vertex_number] = label;

}

// Library facilities used: cassert, cstdlib
{

assert(source < size( ));
assert(target < size( ));
return edges[source][target];

} (continued)

template <class Item>
const std::size_t graph<Item>::MAXIMUM;

template <class Item>
void graph<Item>::add_edge(std::size_t source, std::size_t target)

template <class Item>
void graph<Item>::add_vertex(const Item& label)

template <class Item>
bool graph<Item>::is_edge(std::size_t source, std::size_t target) const
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 (FIGURE  15.2 continued)

// Library facilities used: cassert, cstdlib
{

assert(vertex < size( ));
return labels[vertex]; // Returns a reference to the label

}

// Library facilities used: cassert, cstdlib
{

assert(vertex < size( ));
return labels[vertex]; // Returns only a copy of the label

}

// Library facilities used: cassert, cstdlib, set
{

std::set<std::size_t> answer;
std::size_t i;

assert(vertex < size( ));

for (i = 0; i < size( ); ++i)
{

if (edges[vertex][i])
answer.insert(i);

}
return answer;

}

// Library facilities used: cassert, cstdlib
{

assert(source < size( ));
assert(target < size( ));
edges[source][target] = false;

}
}

template <class Item>
Item& graph<Item>::operator [ ] (std::size_t vertex)

template <class Item>
Item graph<Item>::operator [ ] (std::size_t vertex) const

template <class Item>
std::set<std::size_t> graph<Item>::neighbors(std::size_t vertex) const

template <class Item>
void graph<Item>::remove_edge(std::size_t source, std::size_t target)

www.cs.colorado.edu/~main/chapter15/graph.template WWW
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15.3 GRAPH TRAVERSALS

In the chapter on trees, we saw three different binary tree traversals. Each tra-
versal visits all of a binary tree’s nodes and does some processing at each node.
The three traversals had similar recursive implementations, with the distinguish-
ing factor being whether a node was visited before, after, or in between its two
children. A graph vertex doesn’t have children like a tree node, so the tree
traversal algorithms are not immediately applicable to graphs. But there are two
common ways of traversing a graph. One of the methods (breadth-first search)
uses a queue to keep track of vertices that still need to be visited, and the other
method (depth-first search) uses a stack. The depth-first search can also be
implemented recursively in a way that does not explicitly use a stack of vertices.

This section discusses the two traversal algorithms and provides implementa-
tions of the algorithms (using the graph class—Figure 15.2 on page 748). Both
of the traversal algorithms have the same underlying purpose: to start at one ver-
tex of a graph (the “start” vertex), process the information contained at that ver-
tex, and then move along an edge to process a neighbor. When the traversal
finishes, all of the vertices that can be reached from the start vertex have been
processed.

A traversal algorithm must be careful that it doesn’t enter a repetitive cycle—
for example, moving from the start vertex to a neighbor, from there to the neigh-
bor’s neighbor, and possibly from there back to the starting point and back to the
same neighbor, and back to the same neighbor’s neighbor, and so on. To prevent
this potential “spinning your wheels,” we will include an ability to mark each
vertex as it is processed. If a traversal ever returns to a vertex that is already
marked, then reprocessing is not done. In drawings, we will indicate a marked
vertex by shading it. For example, consider this graph:

A traversal might begin by processing vertex number 0. We don’t really care
what kind of processing occurs—maybe the labels are printed out, or perhaps
there is more complicated processing. In any case, there will be some process-
ing of vertex number 0, and then we will mark it as processed, looking like this:

when the 
traversal
finishes, all of 
the vertices 
that can be 
reached from 
the start
vertex have 
been
processed

v0

v1

v2

v3

v4

v6 v5

v0

v1

v2

v3

v4

v6 v5

The shaded vertex
has already been
processed by
the traversal.
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The progress of a traversal after the start vertex depends on the traversal
method being used. We’ll start by looking at how a depth-first search proceeds.

Depth-First Search

After processing vertex 0, a depth-first search moves along a directed edge to
one of vertex 0’s neighbors. In our example, there are two possibilities: moving
to vertex 1 (along the edge from 0 to 1) or moving to vertex 4 (along the edge
from 0 to 4). In our example, it is not possible to move from vertex 0 to 3, or
from vertex 0 to 2, because the edges go in the wrong direction. So the traversal
has a choice: Move to vertex 1 or move to vertex 4. Right now we won’t worry
about exactly how the choice is made—let’s just assume that the next vertex
processed is vertex 1. After processing vertex 1, the picture looks like this:

In the drawing we have highlighted the edge from vertex 0 to vertex 1 to indi-
cate the intuitive notion of “moving from one vertex to another.”

From here, the traversal moves to one of vertex 1’s neighbors. You may think
of vertex 1 as being at the “leading edge” of the depth-first traversal. It is the ver-
tex that has most recently been processed, and so we will continue pushing for-
ward from vertex 1, moving to one of vertex 1’s unprocessed neighbors. In this
example, there is only one unprocessed neighbor to consider, vertex 3. So we will
move to vertex 3 and process it. At this point, we have processed three of the ver-
tices, as shown here:

to prevent going 
around in 
circles, never 
move forward to 
a marked vertex

One of vertex 3’s neighbors is vertex 0—but vertex 0 has already been marked
as previously processed. So, to prevent the traversal from going around in circles,
we will not move from 3 back to 0. In general, we will never move forward to a
marked vertex (since it has already been processed). But we will move to vertex

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.
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3’s other neighbors (vertices 5 and 6). Suppose we move to vertex 5 first. After
processing vertex 5, the picture looks like this:

Since vertex 5 has no neighbors, the depth-first traversal cannot proceed for-
ward any farther. Instead, the traversal comes back to see if the previous vertex—
vertex 3—has any more unmarked neighbors:

In this drawing, you can see that four vertices have been processed. And the
“leading edge” of the search has pulled back to vertex v3. Does v3 have any more
unmarked neighbors where the search can proceed? Yes—v6 is an unmarked
neighbor of v3, so again the search plunges forward, along the edge from v3 to v6.
Vertex 6 is processed, giving this picture:

What now? Vertex 6 does have a neighbor—vertex 1—but v1 has already been
marked. So, since vertex 6 has no unmarked neighbors, the traversal again backs
up to see if v3 has any more unmarked neighbors. After the backup, we have the
situation shown next.

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

Does v3 have any more
unmarked neighbors?

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.
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Vertex 3 has no more unmarked neighbors (thank goodness!). So back we
go to the previous vertex—vertex 1—to check whether it has any unmarked
neighbors:

You can see that the leading edge of the search is now at v1, and that v1 has no
more unmarked neighbors, so back we go to vertex 0, to see if it has any unfin-
ished business. This situation is drawn here:

From vertex 0 we can still travel to the unmarked vertex 4 and process it, as
shown here:

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

Does v3 have any more
unmarked neighbors?

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

Does v1 have any more
unmarked neighbors?

v0

v1
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v3

v4

v6 v5

The shaded vertices
have already been
processed.

Does v0 have any more
unmarked neighbors?
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v1
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v3

v4

v6 v5

The shaded vertices
have already been
processed.
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Vertex 4 has no neighbors, so we back up once more to vertex 0:

Vertex 0 has no more unmarked neighbors—and since this was the starting point
there is no place left to back up to. That’s the end of the traversal.

some vertices 
are not 
processed
because they 
can’t be reached 
from the start 
vertex

In this example, vertex 2 was never processed because there was no path from
the start vertex (vertex 0) to vertex 2. A traversal only processes those vertices
that can be reached from the start vertex.

There’s one other important point about a depth-first search: From the starting
vertex, the traversal proceeds to a neighbor and from there to another neighbor,
and so on, always going as far as possible before it ever backs up. In describing
this behavior, it seems as if there’s a lot to keep track of: where we start, where
we go from there, and where we go from there. But the actual implementation
can use recursion to keep track of most of these details in a simple way. We’ll
tackle that recursive implementation after looking at an alternative method:
breadth-first search.

Breadth-First Search

A breadth-first search uses a queue to keep track of which vertices might still
have unprocessed neighbors. The search begins with a starting vertex, which is
processed, marked, and placed in the queue. For example, suppose we are pro-
cessing this graph with vertex 0 as our starting point, so that vertex 0 is the first
vertex to be processed, marked, and placed into the queue:

Once the starting vertex has been processed, marked, and placed in the queue,
the main part of the breadth-first search begins. This consists of repeatedly car-
rying out the following steps:

v0

v1

v2

v3

v4

v6 v5

The shaded vertices
have already been
processed.

Does v0 have any more
unmarked neighbors?

v0

v1

v2

v3

v4

v6 v5

v0

Rear Front

A queue of vertices keeps
track of which vertices may
have unprocessed neighbors.
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1. Remove a vertex, v, from the front of the queue.
2. For each unmarked neighbor, u, of v: Process u, mark u, and then place u

in the queue (since u may have further unprocessed neighbors)

These two steps are repeated until the queue becomes empty. Let’s look at our
example to see how these two steps are carried out when vertex 0 is at the head
of the queue. Vertex 0 is removed from the queue, and we note that it has two
unprocessed neighbors: vertices 1 and 4. Vertices 1 and 4 will each be pro-
cessed, marked, and placed in the queue. Let’s assume that vertex 1 is placed in
the queue first, and then vertex 4. (The queuing could also occur the other way,
with vertex 4 placed first; the algorithm is correct either way.) After vertices 1
and 4 are in the queue, the situation looks like this:

Since the queue still has entries, we repeat the two steps again: Remove the
front entry (vertex 1), process and mark any unmarked neighbors of vertex 1,
and enter these neighbors into the queue. The only unmarked neighbor of vertex
1 is vertex 3, so after processing, marking, and entering vertex 3, the situation
looks like this:

Next we remove vertex 4 from the front of the queue. Since vertex 4 has no
neighbors, no new entries are processed or placed in the queue. The situation is
now:
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Vertex 3 comes out of the queue next. It has two unmarked neighbors (vertices 5
and 6), which are processed, marked, and placed in the queue, like this:

Notice that vertex 0 (which is also a neighbor of vertex 3) does not get repro-
cessed because it is already marked.

the effects of 
breadth-first and 
depth-first
search are 
similar—only the 
order of 
processing
vertices differs

At this point, we remove vertex 5 from the front of the queue, but it has no
unmarked neighbors to worry about. We then remove vertex 6 from the queue. It
also has no unmarked neighbors. The queue is finally empty, which ends the
breadth-first search.

The effect of the breadth-first search is similar to the depth-first search: Ver-
tices 0, 1, 3, 4, 5, and 6 have all been processed since they could all be reached
from the starting point (vertex 0). Vertex 2 was not processed since there is no
directed path from vertex 0 to vertex 2. However, the breadth-first search pro-
cesses the vertices in a different order than the depth-first search. The breadth-
first search first processed vertex 0, then processed the neighbors of the start
point (vertices 1 and 4), then processed their neighbors (vertex 3), and so on. This
contrasts with a depth-first search that processed the vertices 0, 1, 3, and 5 to start
with (in that order).

You should now be able to carry out depth-first and breadth-first searches by
hand on a directed graph. Next we will specify and implement the two searches
as template functions that can be applied to any labeled graph.

Depth-First Search—Implementation

One way to implement a depth-first search is with the following template
function:

template <class Process, class Item, class SizeType>
void depth_first(Process f, graph<Item>& g, SizeType start);
// Precondition: start is a vertex number of the labeled graph g.
// Postcondition: A depth-first search of g has been executed, starting at
// the start vertex. The function f has been applied to the label of each
// vertex visited by the search.

In this prototype, the parameter g may be any graph. For example, g could be a
graph with integer labels, so that the actual type of g is graph<int>. The
parameter f is a function with one argument. This function, which is a parame-
ter to the traversal function, is similar to the functions for tree traversals in
Figure 10.10 on page 513. The function has an argument itself, which must be
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the same data type as the labels of the graphs. During a search, each time a ver-
tex v is reached, that vertex is “processed” by calling f with the label of v as the
actual argument to f.

For example, suppose that we have the following function to print integer val-
ues, as shown here:

void print_int_line(int value)
{

cout << value << endl;
}

With this function in hand, we can carry out a depth-first search of a graph g,
starting at vertex 0, and print all the values that we encounter. The function call
for the search is as follows:

depth_first(print_int_line, g, 0);

The implementation of depth_first uses an array of boolean values
declared as a local variable of the function, shown here:

bool marked[g.MAXIMUM];

This array has one component for each possible vertex of the graph g, and its
purpose is to keep track of which vertices have been marked as visited by the
search. In general, for a vertex number v, the component marked[v] is true if v
has already been visited by the search, and false otherwise. The complete
pseudocode for depth_first is short:

pseudocode for 
depth-first
search

1. Check that the start vertex is a valid vertex number of the graph.
2. Set all the components of marked to false.
3. Call a separate function to actually carry out the search.

You may be wondering, “Why call a separate function in Step 3? Why can’t
we just carry out the search in the body of the depth_first function itself?”
Good question. The answer is that we plan to use recursion: The start vertex is
processed and then recursive calls are made to process each of the start vertex’s
neighbors. Further recursive calls are made to process the neighbors’ neighbors,
and so on. So, if the work were carried out in the body of the depth_first
function, each time a recursive call is made, we would do Step 2—clearing the
marked array—and . . . oops! Clearing the marked array at every recursive call
will definitely lead to trouble.

The new function, executed in Step 3, will be called rec_dfs with this
prototype:
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template <class Process, class Item, class SizeType>
void rec_dfs(

Process f, graph<Item>& g, SizeType v, bool marked[ ]
);
// Precondition: g is a labeled graph that is being traversed by a depth-
// first search. For each vertex x, marked[x] is true if x has already been
// visited by this search; otherwise marked[x] is false. The vertex v is an
// unmarked vertex that the search has just arrived at.
// Postcondition: The depth-first search of g has been continued through
// vertex v and beyond to all the vertices that can be reached from v via a 
// path of unmarked vertices. The function f has been applied to the label 
// of each vertex visited by the search, and each such vertex x has also
// been marked by setting marked[x] to true.

Now let’s examine the body of the rec_dfs function. The first task is to mark
and process the vertex v. After this we will examine each of vertex v’s neighbors.
Each time we find an unmarked neighbor we will make a recursive call to con-
tinue the search through that neighbor and beyond. The phrase “and beyond” is
important because if a neighbor has another unmarked neighbor, then there will
be another recursive call at that level, and so on, until we reach a vertex with no
unmarked neighbors. This description of rec_dfs is implemented in the top of
Figure 15.3, and the actual depth_first function is implemented afterward.

Breadth-First Search—Implementation
The breadth-first search is implemented with a queue of vertex numbers. The
start vertex is processed, marked, and placed in the queue. Then the following
steps are repeated until the queue is empty: (1) remove a vertex, v, from the front
of the queue, and (2) for each unmarked neighbor u of v: process u, mark u, and
then place u in the queue (since u may have further unprocessed neighbors).

These steps are implemented in the end of Figure 15.3.

Self-Test Exercises for Section 15.3

15. What would happen if the visited vertices were not marked in the
breadth-first and depth-first search?  What type of path produces this
effect?

16. Does a depth-first or breadth-first search process all vertices in a graph?
Why or why not?

17. Do a depth-first search of the Australia graph (page 739), starting at Syd-
ney. List the order in which the cities are processed. Do the same for a
breadth-first search.

18. Suppose you are doing a breadth-first search of a graph with n vertices.
How large can the queue get?

19. What kind of search occurs if you replace a breadth-first search’s queue
with a stack?
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Function Implementations

// Precondition: g is a labeled graph that is being traversed by a depth-first search. For each
// vertex x, marked[x] is true if x has already been visited by this search, otherwise marked[x] 
// is false. The vertex v is an unmarked vertex that the search has just arrived at.
// Postcondition: The depth-first search of g has been continued through vertex v and beyond 
// to all the vertices that can be reached from v via a path of unmarked vertices. The function
// f has been applied to the label of each vertex visited by the search, and each such vertex x
// has also been marked by setting marked[x] to true.
// Library facilities used: cstdlib, graph.h, set
{

std::set<std::size_t> connections = g.neighbors(v);
std::set<std::size_t>::iterator it;

marked[v] = true; // Mark vertex v.
f(g[v]); // Process the label of vertex v with the function f.

// Traverse all the neighbors, looking for unmarked vertices:
for (it = connections.begin( ); it != connections.end( ); ++it)
{

if (!marked[*it])
rec_dfs(f, g, *it, marked);

}
}

// Precondition: start is a vertex number of the labeled graph g.
// Postcondition: A depth-first search of g has been executed, starting at the start vertex.
// The function f has been applied to the label of each vertex visited by the search.
// Library facilities used: algorithm, cassert, graph.h
{

bool marked[g.MAXIMUM];

assert(start < g.size( ));
std::fill_n(marked, g.size( ), false);
rec_dfs(f, g, start, marked);

}
(continued)

 FIGURE  15.3 Depth-First Search and Breadth-First Search

template <class Process, class Item, class SizeType>
void rec_dfs(Process f, graph<Item>& g, SizeType v, bool marked[ ])

template <class Process, class Item, class SizeType>
void depth_first(Process f, graph<Item>& g, SizeType start)
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15.4 PATH ALGORITHMS

Determining Whether a Path Exists

Frequently, a problem is represented by a graph, and the answer to the problem
can be found by answering some question about paths in the graph. For exam-
ple, a network of computers can be represented by a graph, with each vertex
representing one of the machines in the network, and each edge representing a

 (FIGURE  15.3 continued)

// Same as the depth_first function, but using a breadth-first search instead
// Library facilities used: algorithm, cassert, cstdlib, graph.h, queue
{

bool marked[g.MAXIMUM];
std::set<std::size_t> connections;
std::set<std::size_t>::iterator it;
std::queue<std::size_t> vertex_queue;

assert(start < g.size( ));

std::fill_n(marked, g.size( ), false);

marked[start] = true;
f(g[start]);
vertex_queue.push(start);
do
{

connections = g.neighbors(vertex_queue.front( ));
vertex_queue.pop( );
// Mark and process the unmarked neighbors, and place them in the queue.
for (it = connections.begin( ); it != connections.end( ); ++it)
{

if (!marked[*it])
{

marked[*it] = true;
f(g[*it]);
vertex_queue.push(*it);

}
}

}
while (!vertex_queue.empty( ));

}

template <class Process, class Item, class SizeType>
void breadth_first(Process f, graph<Item>& g, SizeType start)

www.cs.colorado.edu/~main/chapter15/searches.template WWW
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communication wire between two machines. The question of whether one
machine can send a message to another machine boils down to whether the cor-
responding vertices are connected by a path.

Either breadth-first search or depth-first search may be used to determine
whether a path exists between two vertices u and v. The idea is to use u as the
start vertex of the search and proceed with a breadth-first or depth-first search. If
the vertex v is ever visited, then the search may stop and announce that there is a
path from u to v. On the other hand, if v is never visited, then there is no path from
u to v.

Graphs with Weighted Edges

Often we need to know more than just “Does a path exist?” In the network
example described previously, each edge represents a communication wire
between machines. Such a wire might have a “cost” associated with using it.
The cost could be the amount of energy required to use the path, or perhaps the
amount of time required for the wire to transmit a message, or even a dollars-
and-cents cost required to use the wire to send one message. In any case, there
could be many paths from one vertex to another, and we might want to find the
path with the lowest total cost (that is, the path with the lowest possible sum of
its edge costs).

This kind of question can be solved by using a graph where each edge has a
non-negative integer value attached to it, called the weight or cost of the edge.
Here’s an example of a graph with edge weights:

the shortest path 
between two 
vertices is the 
path with lowest 
total cost

In this example, there are several paths from vertex  to vertex . The path
with the lowest total cost traverses the edge from  to (with a cost of 1), then
from  to  (with a cost of 3), and finally from to  (with a cost of 2). The
total cost of this path is 1 + 3 + 2, which is 6. There is a path with fewer edges
(such as the path from  to  to ), but no other path has a lower total cost.
The path with the lowest total cost is called the shortest path. (If you think of
the weights as distances, then the term shortest path will sound sensible.) The
problem of finding the shortest path between two vertices of a graph occurs
often in computer science (such as the network example) and in applications
(such as finding the shortest driving distance between two points on a road
map).
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Here is a summary of the concepts we have introduced:

Shortest-Distance Algorithm

In this section we will present an efficient algorithm called Dijkstra’s algorithm
(named for computer scientist Edsger Dijkstra, who proposed the algorithm) for
finding the shortest path between two vertices. Throughout the section we will
use graphs with weighted edges where each weight is a non-negative integer.
We will use pseudocode rather than a particular language such as C++. x

We start with a problem that’s simpler than actually finding the shortest path
from one vertex to another. We’ll concentrate on simply finding the weight of the
shortest path—in other words, the smallest possible sum of edge weights along
a path from one vertex to another. This weight is called the shortest distance.

we’ll actually find 
shortest
distances rather 
than shortest 
paths

Dijkstra’s algorithm actually provides more information than just the shortest
distance from one vertex to another. In fact, the algorithm provides the shortest
distance from a starting vertex (which we call start) to every vertex in the
graph. The algorithm uses an integer array called distance, with one component
for each vertex in the graph. Here is the algorithm’s goal:

Weighted Edges and Shortest Paths
A weighted edge is an edge together with a non-negative
integer called the edge’s weight.

The weight of a path is the total sum of the weights of all
edges in the path. (Note: The weight of the empty path, with
no edges, is always zero.)

If two vertices are connected by at least one path, then we
can define the shortest path between two vertices. This is
the path that has the smallest weight. (There may be several
paths with equally small weights, in which case each of the
paths is called “smallest.”)

Goal of the Shortest-Distance Algorithm
The goal is to completely fill the distance array so that for
each vertex v, the value of distance[v] is the weight of the
shortest path from start to v.
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We’ll illustrate how the algorithm works with this small graph:

The algorithm begins by filling in one value in the distance array. We fill in 0 for
the component that is indexed by the start vertex itself, indicating that the
weight of the shortest path from the start vertex to the start vertex itself is zero.
This is correct since the empty path exists from the start vertex to itself. At this
point, the distance array has one known value:

At this point we have one correct value, distance[0]. In the other locations
we will write a value based on what we know so far. Because we don’t know too
much, our initial values won’t be too accurate, but that’s okay. In fact, the values
that we fill in will all be infinity, represented by the symbol ∞. The distance array,
with mostly ∞, is shown here:

In an actual implementation, we would use some special integer value for ∞.
For example, we could use –1 and make sure that all the rest of our program-
ming always treats an occurrence of –1 as if it were infinity.

Now we are ready to do some processing that will steadily improve the values
in the distance array. We begin with an observation about the initial values that
we’ve placed in the distance array: These initial values are actually correct, if we
are permitting only the empty path and ignoring all other paths. In other words,
if the empty path is the only path that we are permitting, then there is a path from
the start vertex to itself (namely the empty path with weight 0). But there is no
way to get from the start vertex to any other vertex, and the fact that there is no
path is represented by ∞ in the distance array.
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the algorithm 
gradually
improves the 
values in the 
distance array

Of course, permitting only the empty path is an overwhelming restriction. The
key to the algorithm is in gradually relaxing this restriction, allowing more ver-
tices to appear in permitted paths. As more and more vertices are allowed, we
will continually revise the distance array so that its values are correct, for paths
that pass through only allowed vertices. By the end of the algorithm, all vertices
are allowed, and the distance array has values that are entirely correct.

The idea we have described needs some refinement. How are newly allowed
vertices selected? How do we keep track of which vertices are currently allowed?
How is the distance array revised at each step? These questions are addressed in
the following list of three steps for the complete algorithm:

Step 1. Fill in the distance array with ∞ at every location with the exception of
distance[Start], which is assigned the value zero.

Step 2. Initialize a set of vertices, called allowed_vertices, to be the empty
set. Throughout the algorithm a permitted path is a path that starts at the start
vertex, and where each vertex on the path (except perhaps the final vertex) is in
the set of allowed vertices. The final vertex on a permitted path does not need to
be in the allowed_vertices set. At this point, allowed_vertices is the empty
set, so the only permitted path is the empty path without any edges. (This empty
path does contain one vertex, the start vertex. But since this vertex is the final
vertex on the path, the vertex is not required to be in the allowed vertices set.)

Step 3. The third step is a loop. Each time through the loop we will add one
more vertex to allowed_vertices and then update the distance array so that all
the allowed vertices may appear on paths. Here’s a brief summary of the loop:

// Loop in Step 3 of the shortest-distance algorithm:
// n is the number of vertices in the graph

for (allowed_size = 1; allowed_size <= n; ++allowed_size)
{

// At this point, allowed_vertices contains allowed_size -1 vertices, 
// which are the allowed_size -1 closest vertices to the start vertex.
// Also, for each vertex v, distance[v] is the shortest distance from the
// start vertex to vertex v, provided that we are considering only
// permitted paths (i.e., paths where each vertex except the final
// vertex must be in allowed_vertices).

Step 3a. Let next be the closest vertex to the start vertex that is not
yet in the set of allowed vertices (if several vertices are equally close,
then you may choose next to be any of them).

Step 3b. Add the vertex next to the set allowed_vertices.

Step 3c. Revise the distance array so that the new vertex (next) may
appear on permitted paths.

}
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The loop’s computation hinges on the condition written just before Step 3a.
The condition indicates that the allowed_vertices set actually contains the
allowed_size-1 vertices that are closest to the start vertex. The condition also
indicates that distance[v] is always the shortest distance from the start vertex
to vertex v, provided that we are considering only permitted paths (that is, paths
where all vertices except the final vertex must be in the set of allowed vertices).
This condition is true the first time the loop is entered, and it is also true at the
start of each subsequent iteration. The responsibility of the three steps—3a, 3b,
and 3c—is to ensure that the condition remains valid at the start of each itera-
tion. Let’s examine the three steps in some detail.

Step 3a. This step must determine which of the unallowed vertices is closest to
the start vertex. There is a simple rule for choosing this vertex:

For example, suppose we reach Step 3a, and we have this situation:

Since vertices 0 and 1 are already in the allowed set, we may not choose them as
the next vertex. Among the other vertices, vertex 5 has the smallest current
value in the distance array (the value is 8). So, we would choose vertex 5 as the
next vertex. In the answer to Self-Test Exercise 21, we will explain precisely
why this rule works, but for now it is sufficient to know that this is the correct
way to select the next vertex.

Step 3b. In this step we “add the vertex next to the set allowed_vertices.”
The implementation of this step depends on how the set of allowed vertices is
represented. One possibility is to implement allowed_vertices as a set of ver-
tex numbers, using set<int> from the Standard Template Library. In this case,
Step 3b merely inserts next into the set.

How to Choose the Next Vertex in Step 3a
In Step 3a, we will always choose the unallowed vertex that
has the smallest current value in the distance array. (If
several vertices have equally small distances, then we may
choose any of them.)

distance
0 2 10 17

[2][0] [3] [4] [5][1]

∞ 8

In this example, the two shaded vertices, 0 and 1,
are already in the set of allowed vertices.
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Step 3c. Finally, we must revise the distance array so that the newly allowed
vertex, next, is permitted on a path from the start vertex to another vertex. An
example will explain the necessary revisions. Suppose that vertices 0, 1, and 5
are already in the allowed_vertices set, and that we have just added vertex 2
as our next vertex, as shown here:

Since we have just added vertex 2 as a newly allowed vertex, we must now
update the distance array to reflect the fact that vertex 2 may now appear on
paths.

For example, distance[3] is currently 17. This means that there is a path
from the start vertex to vertex 3 that uses only vertices 0, 1, and 5, and that has a
length of 17. Here’s the key question: If we also allow vertex 2 to appear on a
path from the start vertex to vertex 3, can we obtain a distance that is smaller
than 17? A smaller distance might be possible by taking a two-part path, shown
here:

This path has two parts: the part from the start vertex to vertex 2, followed by
the part that has the single edge from vertex 2 to vertex 3. The total weight of
this path is:

distance[2] + (weight of the edge from vertex 2 to vertex 3)

distance
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vertex v2 . . .

. . . and the second part of the path
consists of one more edges from the newly allowed
vertex v2 to vertex v3.
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In our example, this sum is 11, which is smaller than the current “best distance
to vertex 3.” Therefore we should replace distance[3] with this smaller sum.
We must also create similar two-part paths for each of the other unallowed verti-
ces, and if the two-part path is smaller than the current distance, then we modify
the distance array. This provides the following refined pseudocode for Step 3c:

Step 3c. Revise the distance array so that the new vertex (next) may appear on
permitted paths. The integer n is the number of vertices; v and sum are local inte-
ger variables, as shown in this code:

for (v = 0; v < n; ++v)
if ((v is not an allowed vertex) and (there is an edge from next to v))
{

sum = distance[next] + (weight of the edge from next to v);
if (sum < distance[v])

distance[v] = sum;
}

Notice that we do not consider a possible new smaller distance to vertices that
are already allowed vertices. That is because these vertices are all closer to the
start vertex than next is, so that distance[next] is going to be larger than the
shortest distance to any of these vertices. 

Also, when we are creating the new two-part paths, we consider only the case
where the second part of the path is a single edge from next to the end vertex.
The reason for this is that a longer path from next to the end vertex would have
to pass through other allowed vertices, meaning that we have a path that goes
from the start vertex, through next, through another allowed vertex, and finally
to the end vertex. But such a path will always be shorter by avoiding the next
vertex altogether—just go from the start vertex to that other allowed vertex
(using the shortest path) and then to the end vertex. Such a path, which does not
go through the next vertex, is already permitted. We don’t need to consider such
a path again—we need to consider only new paths that pass through the next
newly allowed vertex.

The complete pseudocode for the algorithm is shown in Figure 15.4. The main
loop actually stops at the number of vertices minus 1 because at that point there
is only one unallowed vertex, and this must be the farthest vertex from the start
vertex so that no shortest paths can go through this farthest vertex.  x
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We’ll execute the algorithm on our example graph. Here’s the situation after
initializing the distance array:

At this point, the set of allowed vertices is empty, and we will enter the main
loop for the first time. In Step 3a, the value of next is set to vertex 0 (since
distance[0] is the smallest value in the distance array). We then look at each
unallowed vertex v with an edge from vertex 0 to vertex v. These are vertices 1
and 5, so we check to see whether we need to revise distance[1] and
distance[5]:

• distance[0] + (the weight of the edge from 0 to 1) is 2. Since this is
smaller than the current value of distance[1], we replace distance[1]
with 2.

• distance[0] + (the weight of the edge from 0 to 5) is 9. Since this is
smaller than the current value of distance[5], we replace distance[5]
with 9.

At this point, the distance array is as shown here (with the allowed vertices
shaded):
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Pseudocode

Input. A directed graph with positive integer edge weights and n vertices. One of the vertices,
called start, is specified as the start vertex.

Output. A list of the shortest distances from the start vertex to every other vertex in the graph.

The algorithm uses an array of n integers (called distance) and a set of vertices (called
allowed_vertices). The variables v, allowed_size, and sum are local integer variables. There
is some special value (∞) that we can place in the distance array to indicate an infinite distance
(which means there is no path).

Step 1. Initialize the distance array to contain all ∞, except distance[start], which is set to 0.

Step 2. Initialize the set of allowed vertices to be the empty set.

Step 3. Compute the complete distance array:
for (allowed_size = 1; allowed_size < n; ++allowed_size)
{

// At this point, allowed_vertices contains allowed_size -1 vertices, which are the 
 // allowed_size -1 closest vertices to the start vertex. Also, for each vertex v, distance[v]
 // is the shortest distance from the start vertex to vertex v, provided that we are 
 // considering only permitted paths (i.e., paths where each vertex except the final vertex
// must be in allowed_vertices).

Step 3a. Let next be the closest vertex to the start vertex, which is not yet in the set of 
allowed vertices (if several vertices are equally close, then you may choose next to be any 
of them).

Step 3b. Add the vertex next to the set allowed_vertices.

Step 3c. Revise the distance array so that the new vertex (next) may appear on permitted 
paths:
for (v = 0; v < n; ++v)

if ((v is not an allowed vertex) and (there is an edge from next to v))
{

sum = distance[next] + (weight of the edge from next to v);
if (sum < distance[v])

distance[v] = sum;
}

}

Step 4. Output the values in the distance array. (Each distance[v] is the shortest distance from 
the start vertex to vertex v.)

 FIGURE  15.4 Dijkstra’s Shortest-Distance Algorithm
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The second time we enter the main loop, the value of next is set to vertex 1
(since distance[1] is the smallest value of the unallowed vertices). We then
look at each unallowed vertex v with an edge from vertex 1 to vertex v. These
are vertices 2, 3, and 5, so we check to see whether we need to revise
distance[2], distance[3], and distance[5]:

• distance[1] + (the weight of the edge from 1 to 2) is 10. Since this is
smaller than the current value of distance[2], we replace distance[2]
with 10.

• distance[1] + (the weight of the edge from 1 to 3) is 17. Since this is
smaller than the current value of distance[3], we replace distance[3]
with 17.

• distance[1] + (the weight of the edge from 0 to 5) is 8. Since this is
smaller than the current value of distance[5], we replace distance[5]
with 8.

At this point, the distance array is:

The third time we enter the main loop, the value of next will be set to vertex
5 (since distance[5] is the smallest value of the unallowed vertices). We then
look at each unallowed vertex v with an edge from vertex 5 to vertex v. Vertex 4
is the only vertex that is the target of an edge from vertex 5, so we check to see
whether we need to revise distance[4]:

• distance[5] + (the weight of the edge from 5 to 4) is 11. Since this is
smaller than the current value of distance[4], we replace distance[4]
with 11.
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At this point, we have this situation:

The fourth time we enter the main loop, the value of next will be set to vertex
2 (since distance[2] is the smallest value of the unallowed vertices). We then
look at each unallowed vertex v with an edge from vertex 2 to vertex v. Ver-
tex 3 is the only such vertex, so we check to see whether we need to revise
distance[3]:

• distance[2] + (the weight of the edge from 2 to 3) is 11. Since this is
smaller than the current value of distance[3], we replace distance[3]
with 11.

At this point, the situation is:

The fifth time we enter the main loop, the value of next will be set to either
vertex 3 or vertex 4 (since both distance[3] and distance[4] are 11). It
doesn’t matter which one we choose, so let’s choose vertex 4. We then look at
each unallowed vertex v with an edge from vertex 4 to vertex v. This is only ver-
tex 3, so we check to see whether we need to revise distance[4]:

• distance[4] + (the weight of the edge from 4 to 3) is 14. Since this is
larger than the current value of distance[3], we do not replace
distance[3].
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At this point, we are nearly done:

The main loop of the algorithm now stops. We don’t need to process that last
unallowed vertex (3), since it is the farthest vertex from the start vertex. For each
vertex v, the value of distance[v] is the shortest distance from the start vertex
(vertex 0) to v.

Shortest-Path Algorithm

We have shown how to compute the weight of the shortest path from a start ver-
tex to each other vertex in a graph. But how can we compute the actual
sequence of vertices that occurs along the shortest path? It turns out that
Dijkstra’s shortest-distance algorithm contains enough information to actually
print the shortest path from the start vertex to any other vertex, provided that we
keep track of one extra piece of information:

The predecessor information is easy to keep track of. Each time that we
update distance[v] with the assignment , we must also
update predecessor[v] with this assignment:

predecessor[v] = next;

Predecessor Information for Shortest Paths
For each vertex v, we will keep track of which vertex was the
next vertex when distance[v] was given a new smaller
value. We will keep track of these values in an array called
predecessor, so that for each vertex v, predecessor[v]
is the value of next at the time when distance[v] was
given a new smaller value. (Note: predecessor[start]
does not need to have a value, since distance[start] is
never updated.)
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distance[v] = sum
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When the algorithm finishes, the value of distance[v] is the weight of the
shortest path from the start vertex to vertex v. Or distance[v] might be ∞,
indicating that there is no path from the start vertex to vertex v. But when
distance[v] is not ∞, we can actually print out the vertices on the shortest path
from the start vertex to vertex v, using the following method:

// Printing the vertices on the shortest path from the start vertex to v:
// Vertices are printed in reverse order, starting at v, and going to start.

vertex_on_path = v; // The last vertex on the path
cout << vertex_on_path << endl; // Print the final vertex.
while (vertex_on_path != start)
{

vertex_on_path = predecessor[vertex_on_path];
cout << vertex_on_path << endl;

}

In other words, the last vertex on the path to v is vertex v itself. The next-to-last
vertex is predecessor[v]. And the vertex before that is obtained by applying
predecessor to the next-to-last vertex—and so on, right back to the start ver-
tex. As indicated, this algorithm manages to print the vertices in reverse order,
from vertex v back to the start vertex.

Self-Test Exercises for Section 15.4

20. What value indicates that there is no path between vertices in Dijkstra’s
algorithm? Why is this value used?

21. When we select the next vertex in the shortest-distance algorithm, we
need to select the unallowed vertex that is closest to the start vertex. How
is this selection done?

22. Consider the graph that we have been using throughout this section,
except change the weight of the edge that goes from 0 to 5. Its new
weight is 4. Go through the entire algorithm to compute the new distance
array.

23. Compute the complete predecessor array for the previous exercise, and
use it to find the actual shortest path from vertex 0 to vertex 3.
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CHAPTER SUMMARY

• Graphs are a flexible data structure with many occurrences in computer
science and in applications. Many problems can be solved by asking an
appropriate question about paths in a graph.

• There are several different kinds of graphs: undirected graphs (where
edges have no particular orientation), directed graphs (where each edge
goes from a source vertex to a target vertex), graphs with loops (i.e., an
edge connecting a vertex to itself), graphs with multiple edges (i.e., more
than one edge may connect the same pair of vertices), labeled graphs
(where each vertex has an associated label), and graphs with weighted
edges (where each edge has an associated number called its weight).

• There are two common ways to implement a graph: an adjacency matrix
or an edge list. The different implementations have different time perfor-
mance for common operations such as determining whether two vertices
are connected.

• There are two common ways to traverse a graph: depth-first search and
breadth-first search.

• Dijkstra’s algorithm provides an efficient way to determine the shortest
path from a given start vertex to every other vertex in a graph with
weighted edges.

SOLUTIONS TO SELF-TEST EXERCISES ?Solutions to Self-Test Exercises

1. The airline route graph has 9 vertices, 14
edges, and no loops. A loop would be an
excursion flight that takes off and lands at the
same city.

2. It is directed because each edge (drawn as an
arrow) has an orientation, going from its
source to its target.

3. It is simple (no loops, no multiple edges).

4. The degree of (a) is 5; (b), (c), and (d) have
degree of 2; the degree of (e) is 3.

5. Canberra’s degrees are both 3; Sydney’s
degrees are both 2; Melbourne’s degrees are
3 (in) and 2 (out).

6. Length 3: Sydney, Canberra, Brisbane, Syd-
ney. Length 5: Canberra, Adelaide, Perth,
Black Stump, Darwin, Canberra.

7. Your state graph should have 16 vertices and
48 directed edges. (There are 32 edges from
Rule 1, and 8 edges each from Rules 2 and 3.)
It is possible to go from the start state to the
goal state in four moves.

The graph must be directed because some
state transitions can occur in only one direction.

8.

9. Yes, there are loops on vertex 1 and vertex 3.
Vertex 1 has the highest in-degree (3). Vertex
3 has the highest out-degree (also 3).

[0] [1] [2] [3]
[0] false true false true
[1] false false true false
[2] false false false false
[3] false true true false
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PROGRAMMING PROJECTS
PROGRAMMING PROJECTS
For more in-depth projects, please see www.cs.colorado.edu/~main/projects/

Consider our graph objects from
Figure 15.2 on page 748. These graphs have
a maximum number of vertices, determined

by the static constant graph::MAXIMUM. This con-

1 stant determines the number of rows and columns of
the adjacency matrix, and the size of the array for the
labels. These two arrays are declared in the high-
lighted lines of the graph definition:

10. The function need only subtract 1 from the
member variable many_vertices.

11. The adjacency matrix a could be a two-dimen-
sional array of unsigned integers with
a[i][j] storing the number of edges from
vertex i to vertex j.

12. This is an open-ended question, but your
answer should consider space requirements
for each representation, and time requirements
for common operations.

13. One solution would call neighbors for each
node. Each call to neighbors returns a set,
and your function can return the sum of the
sizes of all these sets. Another solution could
call is_edge for each possible source and tar-
get node. The return value from this function
would be the number of times that is_edge
returns true.

14. At point 1, the label is 42. At point 2, the label
is still 42, and the integer variable i is also 42.
At point 3, the i has changed to 43, but the
label is still 42. (To change the label, the
change must be made to g[3] itself.)

15. A traversal will loop indefinitely on a graph
with a cycle if visited vertices are not marked.

16. Not always. A vertex v in a graph will not be
processed by a DFS or BFS if there is no path
from the start vertex to v.

17. Traversals sometimes make choices about
which vertex to visit next. When we have such
a choice, we will visit the vertex that is alpha-
betically first, giving these two orders: Depth-
first: Sydney, Canberra, Adelaide, Melbourne,
Hobart, Perth, Black Stump, Darwin, Bris-
bane. Breadth-first: Sydney, Canberra, Mel-

bourne, Adelaide, Brisbane, Hobart, Perth,
Black Stump, Darwin.

18. If n is 1, then the queue needs room for only
one vertex. If n is more than 1, then the queue
will never have more than n–1 entries. Here is
why: The start vertex is only in the queue once
(by itself), and then we remove the start vertex
from the queue. Each other vertex is placed in
the queue at most once, so the largest queue
needed would occur if all n–1 vertices are
neighbors of the start vertex.

19. A depth-first search

20. The infinity symbol indicates that there is no
path between two vertices. An actual algo-
rithm would use some unused number, such as
–1, for this infinity. The shortest distances
algorithm gradually reduces the values in the
distance array, so the largest possible value
should be the initial value.

21. From among the unallowed vertices, we select
the vertex with the smallest current value in
the distance array. This works because the cur-
rent distance array contains the correct dis-
tance values if we are permitting only allowed
vertices, and the currently allowed vertices are
the n–1 closest vertices. Therefore, the short-
est path to the nth closest vertex must pass
through only currently allowed vertices, and
therefore the distance array contains the cor-
rect value for that nth closest vertex.

22. The new final distance array: (0, 2, 10, 10, 7,
4).

23. The new shortest path to vertex 3: vertex 0 to
vertex 5, vertex 5 to vertex 4, vertex 4 to ver-
tex 3.
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ing the loop shown here (i and j are both size_t
variables):

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)

edges[i][j] = false;

For example, with n equal to 3, then the previous
code constructs the dynamic arrays shown next. The
key point is that with this structure, we can use
edges as if it were a two-dimensional array.

For this project, rewrite the graph class so that
edges is implemented as we have described. You
should also add another private member variable
called allocated. The value of allocated is the
number of rows and columns in edges. This number
must be no less than the actual number of vertices
(which is still stored in the private member variable
many_vertices).

Your implementation should include a construc-
tor with one argument. This argument is a size_t
value that specifies the initial allocation for the num-
ber of rows and columns in the adjacency matrix.
There should also be a resize function to allow a
programmer to explicitly change the allocation. If
add_vertex is called and the matrix is already full,
then add_vertex should call resize to allocate a
larger adjacency matrix.

edges

[0]

[1]

[2]

[2]

edges is a pointer to

Each of these

an array of pointers.

[0] [1]

false false false

[2][0] [1]

false false false

[2][0] [1]

false false false

pointers points
to a dynamic
array of three
boolean values.

template <class Item>
class graph
{
public:
// MEMBER CONSTANTS
static const std::size_t MAXIMUM=20;
...

private:

std::size_t many_vertices;
};

There are several ways to change edges to a dy-
namic array, which can grow and shrink as vertices
are added and removed. This project describes one
approach for you to carry out. The approach is to
eliminate the static constant, and change the private
member variables as shown here:

template <class Item>
class graph
{
public:

...
private:

std::size_t many_vertices;
};

The array of labels has been changed to an ordinary
dynamic array. But what is the meaning of the dec-
laration ? This declaration says that
edges is more than a pointer to a boolean value; in
fact, it is a pointer to a pointer to a boolean. A
“pointer to a pointer” can be made to act like a two-
dimensional array. For example, suppose that we
want edges to act like an array with n rows and n
columns. Using a size_t variable i, we could write
this code to allocate the needed memory:

edges = new (bool*)[n];
for (i = 0; i < n; ++i)

edges[i] = new bool[n];

In this code, the first statement has an interesting
effect. The statement 
makes edges point to an array of n pointers. The for-
loop then makes each of these pointers point to a
dynamic array of n boolean values. After the for-
loop, we can use edges just as if it was an n by n
two-dimensional array of boolean values. For exam-
ple, we could fill the entire “array” with false us-

bool edges[MAXIMUM][MAXIMUM];
Item labels[MAXIMUM];

bool **edges;
Item *labels;
std::size_t allocated;

bool **edges

edges = new (bool*)[n]
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Use edge lists to reimplement the graph
class from Figure 15.2 on page 748. There
should be no limit to the number of vertices.

Alternatively, you could reimplement the graph
class so that each vertex has a set of edges (using the
set class from the Standard Library).

Implement a new template class that is
derived from graph. The new class should
permit both edges and vertices to have
labels.

Implement a function with three arguments:
a graph, a starting vertex number, and an
ending vertex number. The function deter-

mines whether there is a directed path from the start-
ing vertex to the ending vertex.

Implement a new class for graphs with
weighted edges. Use the ordinary graph
class as a base type for your implementation.

After implementing the new class, provide two extra
functions to implement Dijkstra’s shortest-distance
and shortest-path algorithms.

Write a program to help a traveler plan the
shortest traveling path from one city to
another. The program should read a file of

data containing a list of cities and a list of roads con-
necting the cities. Each road has a distance attached
to it. Allow the user to enter queries of the form
“City1, City2” and have the program print the short-
est sequence of roads to travel from City1 to City2.

Write a program to help you make better
social connections. The program should read
a file of data containing a list of people in

your community and a list of who knows who. Al-
low the user to enter various queries about which
people know each other, such as “How many people
does Harry know?” or “Is there anyone that both
Harry and Cathy know?”

2

3

4

5

6

7

Choose some graph implementation and
implement a graph member function to
delete a vertex from the graph.  The function

should not only remove the vertex but all edges that
have the vertex as the source or target.

Implement an undirected graph class by
modifying any of the graph implementations
discussed in this chapter.

Rewrite the maze program in Chapter 9
(page 453) using a graph class to represent
the maze.  A path should be generated with

the entrance and exit as endpoints. Use a depth-first
search to travel through the maze.

A connected graph is a graph that has a path
from every node to every other node. For
this project, you are given a connected, undir-

ected, weighted graph in which every edge has a
non-negative number called its weight. You must
create a new graph with the same vertices as the
original graph, but possibly fewer edges. Such a
graph is called a subgraph, and we are looking for a
particular subgraph called the minimal spanning
tree, which has these properties:

1. It is a subgraph of the original graph.
2. It is still connected.
3. Among all possible connected subgraphs, it

has a minimal total weight of its edges.

The algorithm you’ll use was first devised by the
Czech mathematician Vojtech Jarnik in 1930 and
later rediscovered by Robert Prim (1957) and Eds-
ger Dijkstra (1959). The algorithm starts by picking
any vertex and creating a set V that contains only this
vertex. We also create a set of edges, E, that initially
begins as the empty set. The remainder of the algo-
rithm adds edges to E one at a time. Each new edge
that you add must be the lowest weight edge that
connects a vertex from V to a vertex that is not in
V—and after the edge is added, the vertex that was
not in V is added to V. The process continues until V
contains all vertices.

8

9

10

11
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Appendixes

Most implementations of C++ provide the standard ASCII (American Standard Code for Informa-
tion Interchange) character set as the first 128 characters. Characters 0 through 31 and 127 are stan-
dard signals to control devices such as a printer.

Your programming should not depend on the ASCII characters being present. However, the lan-
guage does guarantee that the integer codes for the digits '0' through '9' will be numerically or-
dered and consecutive. So, for example, '0'+3 must be the character '3'.

0 null '\0' 22 syn 44 comma 66 B 88 X 110 n

1 soh 23 etb 45 minus 67 C 89 Y 111 o

2 stx 24 can 46 period 68 D 90 Z 112 p

3 etx 25 em 47 / 69 E 91 [ 113 q

4 end transmission 26 sub 48 0 70 F 92 \ 114 r

5 enquire 27 escape 49 1 71 G 93 ] 115 s

6 acknowledge 28 fs 50 2 72 H 94 ^ 116 t

7 ring a bell '\a' 29 gs 51 3 73 I 95 underscore 117 u

8 backspace '\b' 30 rs 52 4 74 J 96 back quote 118 v

9 tab '\t' 31 us 53 5 75 K 97 a 119 w

10 newline '\n' 32 blank 54 6 76 L 98 b 120 x

11 vertical tab '\v' 33 ! 55 7 77 M 99 c 121 y

12 form feed '\f' 34 " 56 8 78 N 100 d 122 z

13 carriage return '\r' 35 # 57 9 79 O 101 e 123 {

14 so 36 $ 58 : 80 P 102 f 124 |

15 si 37 % 59 ; 81 Q 103 g 125 }

16 dle 38 & 60 < 82 R 104 h 126 ~

17 dc1 39 single
quote

61 = 83 S 105 i 127 delete

18 dc2 40 ( 62 > 84 T 106 j

19 dc3 41 ) 63 ow 85 U 107 k

20 dc4 42 * 64 @ 86 V 108 l

21 nak 43 + 65 A 87 W 109 m

ASCII Character Set
Appendix A
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Formal Definition of Big-O

Throughout the text, we analyze the running times of algorithms in terms of the size of an algo-
rithm’s input. For example, in Section 12.1 we developed a binary search algorithm to search an
array of n elements, looking for a specified target. On page 593, we saw that the maximum number
of operations for the binary search is given by the formula:

T(n) = the maximum number of operations to search an n-element array
=

Big-O notation is a way of analyzing a function such as T(n). The analysis throws away some infor-
mation about the function, but keeps other information that is most relevant to determining algo-
rithm performance. In an informal way, you know enough to examine the function T(n) for the
binary search; you can “throw out the constants” and conclude that T(n) is an O(log n) function.

In general, when we examine a function, such as T(n), the big-O analysis results in some simpler
expression, such as log n. The simpler expression is also a function of n. If we call this F(n), then a
typical big-O analysis provides a result of the form “T(n) is an O(F(n)) function.” In mathematical
terms, this kind of result has a precise definition, as follows:

The graph at the top of the next page illustrates the meaning of a big-O expression. Notice that
before the threshold, either of the two functions may be larger; anything can happen before this
threshold value. But once n exceeds the threshold, the function cF(n) is always greater than T(n).
Also notice that it is c multiplied by F(n), and not simply F(n), that we are comparing to T(n). So,
the graph illustrates the fact that “T(n) is an O(F(n)) function.”

Appendix B
Further Big-O Notation

18 log2 n 1+( ) 2+

Formal Definition of Big-O
When we say that “T(n) is an O(F(n)) function,” we mean that there is
some fixed number that we call the threshold, and some constant multiplier
that we call c, such that

Whenever , then .

For example, consider the function T(n) = . Some arithmetic
shows that whenever , then . Therefore, using a
threshold of 5, and a constant multiplier of 4, we can see that

n threshold≥ T n( ) cF n( )≤

3n2 9n+
n 5≥ 3n2 9n+ 4n2≤

3n2 9n  is an+ O n2( ) function.
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If not used with some care, big-O
expressions can grossly misrepresent
the true running time of an algorithm.
For example, if an algorithm runs in
O(n) time, then we could also say that it
runs in time (since any function
that is below a constant times n will also
be below the same constant times ).
But of course, it would be silly to say
that an algorithm runs in time,
when we know that it runs in O(n) time.
When a programmer gives a big-O time,
he or she usually means that it is a
“good” big-O expression. 

What Big-O Expressions Indicate

Big-O expressions are admittedly crude,
but they do contain some information.
A big-O analysis will not distinguish
between a running time of 4n+3 and a
running time of 100n+50, but it will let
us distinguish between some running
times and determine that some algo-
rithms are faster than others. Look at the
graphs of the four functions to the right.
Notice that all three O(n) functions even-
tually fall below the function.
This leads us to the following important
big-O principle:

What exactly does it mean when we say “with a sufficiently large input”? Does this mean that an
input size of n=100 will result in a faster time from the algorithm with the better big-O? Or does it
require n=1000, or maybe even n=1,000,000? Unfortunately, a big-O analysis does not tell us how
big the input needs to be in order for the better big-O time to result in a faster algorithm. All that is
known is that larger and larger inputs will eventually result in a faster time for the algorithm with the
better big-O time.

O n2( )

n2

O n2( )

. . .

0

00

00

00

00

n increases

threshold

cF(n)

T(n)

After the 
threshold, T(n) is 
always below 
cF(n)

O n2( ) 0

4

8

12

n increases
0

10

0

4

8

12

0.5n2

2n
0.9n+2

0.9n

 Big-O Comparison of Algorithms
Suppose that two different algorithms perform the same task with different
big-O times. With a sufficiently large input, the algorithm with the better
big-O analysis will perform faster.
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:: Scope resolution operator

.
[ ]
++

->
( )
--

Member selection operators
Array indexing and function call
Postfix increment/decrement

High Precedence

++
!
~
unary +
*
&
new
sizeof

--

unary -

delete

Prefix increment/decrement
Not
Bitwise not
Unary plus and minus
Dereferencing operator
Address of
Memory allocation/deallocation
Size in bytes

This table gives the 
precedence of C++
operators. Operators 
in higher boxes have 
higher precedence 
than operators in 
lower boxes. Unary 
operators and the 
assignment operator 
are done in right-to-
left order when 
operators have the 
same precedence. For 
example, x = y = z
means x = (y = z).
Other operators that 
have the same 
precedence are done 
in left-to-right order.
For example,
x - y - z means 
(x - y) - z.

->* .* Member pointer selection

*
%

/ Multiplication and division
Remainder upon division

+ - Binary addition and subtraction

<< >> Shift operators

<
>

<=
>=

Less than; less than or equal
Greater than; greater than or equal

== != Equal and not equal

& Bitwise and

^ Bitwise exclusive or

| Bitwise or

&& Boolean and

|| Boolean or

? : Conditional operator

Low Precedence
=
+= -= *= /= %=
<<= >>= &= |= ^=

Assignment operators

, Comma operator

Appendix C
Precedence of Operators
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These two appendices are at www.cs.colorado.edu/~main/online_appendix.pdf to allow for better
updates.

This appendix is primarily for students with a background in C programming, but with little or no
C++ programming experience. In this appendix we provide details of the C++ approach to reading
from standard input, writing to standard output, and reading/writing files. Throughout the appendix,
we assume that your programs have a using directive  for the standard
namespace (otherwise you must write longer names such as std::cout rather than just cout).

Writing to Standard Output

The insertion operator (written <<) is used to write a value to an output stream such as the stan-
dard output device (usually the monitor screen). For example, if i is an integer variable, then the
following statement writes its value to the standard output:

cout << i;

In this statement, cout stands for the “console output,” and is defined as part of the header file
<iostream>. You may write several items at once by chaining together a sequence of insertion
operators. For example, if i, j, and k are integer variables, then the following statement first writes
i, then j, and finally k to the standard output:

cout << i << j << k;

Writing the End of a Line

There are two ways to write the end of a line to an output stream. You may simply write the newline
character '\n', or you may write the special object called endl (which is part of <iostream>). For
example:

cout << '\n';
cout << endl;

Appendix D
Command Line Compiling and Linking

Appendix E
Dealing with Older Compilers

Appendix F
Input and Output in C++

using namespace std;
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What’s the difference between these two statements? The main difference deals with the fact that
output is often written to a special place called a buffer, rather than to the actual output device.
When the buffer becomes full, the output is “flushed” from the buffer to the actual output device.
Such buffering can cause problems if a program crashes before the buffer is flushed. The buffer
may contain some output that never shows up on the output device. To avoid this problem, when-
ever you write the endl object, the output buffer is automatically flushed. However, simply writing
the newline character does not automatically flush the output buffer.

Setting the Field Width of an Output Item

The field width of an output item is the preferred number of output characters to be used when the
item is printed. For example, if you print the number 123 with a field width of eight, the result will
be five blank spaces followed by the digits 123 for a total of eight characters. If the output item
won’t fit in the specified field width, then more characters may be used. For example, if you print
the number 123 with a field width of only two, then the entire number 123 is still printed (even
though this requires three characters rather than just two). If you define the field width to be zero,
the item will be printed using the minimum possible number of characters.

How do you define the field width for an output item? One method is to use a special
“manipulator” named setw, which is part of <iomanip>. The setw manipulator is called like a
function, with one argument that is the desired field width. This manipulator is placed in the output
statement just before the item to be printed. For example, to print the number 123 with a field width
of eight, you may write the statement:

cout << setw(8) << 123;

The setw function may be used with the standard output device (cout), or with other output devices
that you will use later. Keep in mind that setw affects the field width of only the next item to be
printed.

Justification of the Output and Showing Plus Signs on Positive Numbers

When output occurs with a wide field width, each output item is padded with spaces to bring the
total number of characters up to the required field width. For example, when the number 123 is
printed with a field width of eight, the complete output will consist of five spaces followed by the
three digits of 123. If you don’t specify otherwise, the item is printed on the far right of the field
width, with any padding spaces before the item. You can control the placement of the item by call-
ing the setf function to set the control flags of an output device such as cout. This function is
called with the syntax shown in these three examples:

cout.setf(ios::right, ios::adjustfield); // Item appears on right side of field
cout.setf(ios::left, ios::adjustfield); // Item appears on left side of field
cout.setf(ios::internal, ios::adjustfield); // “Internal” spaces (described below)

Once the justification is set with the setf function, it remains in effect for all subsequent outputs
until it is reset to some other value. The ios::internal setting causes numbers to be printed with
the + or – sign as the first output character, but the remainder of the number appears on the right

uses setw from iomanip
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side of the field width. (To force a number to be printed with a + sign, you will have to call
cout.setf(ios::showpos); when you no longer want the + signs to print, you may call
cout.unsetf(ios::showpos).)

By the way, you can see that setf and unsetf are both member functions of the cout output
stream. They are defined in <iostream> and may be used with any output stream. The arguments,
such as ios::left, are also defined in the header file <iostream>.

Format of Float and Double Numbers

The format for printing float and double numbers is also controlled by the setf functions. Here
are three examples:

cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::scientific, ios::floatfield);
cout.setf(0, ios::floatfield);

Fixed-point notation. The first example, using ios::fixed, causes numbers to be printed in fixed-
point notation, which is the common way of writing numbers with a decimal point. For example,
the number 19¼ will be printed as 19.25.

Scientific notation. The second example, using ios::scientific, causes numbers to be printed in
scientific notation, consisting of a number times some power of 10. For example, the large number
1.8 × 1016 will be printed as 1.8e16. The letter e indicates the exponent.

Automatic notation. The third form, using the number 0 as the argument, causes C++ to select the
format that it thinks is best for a number (either fixed-point or scientific notation). 

If you don’t specify one of the three formats, then C++ uses the automatic format. Once a format
is set, it remains in place for all subsequent outputs.

Precision of Float and Double Numbers

Output streams have a precision function with one integer argument to determine how many
digits are printed for each number. For example, this statement sets the precision to 12:

cout.precision(12);

(An alternative is , which uses setprecision from <iomanip>.)
With a precision of 12, the fixed-point and scientific notations will both have 12 digits of accuracy
after the decimal point. The automatic notation will have a total of 12 significant digits. Once you
set the precision, it stays in effect for all subsequent outputs.

When the automatic notation is used, trailing zeros and the decimal point are not always printed.
For example, the double number 123.0 will be printed as 123 (with no decimal point). With a
precision of 12, the number 19¼ will be printed with no trailing zeros, resulting in 19.25 (rather than
19.250000000000). You may force the decimal point and trailing zeros for fixed-point numbers with
the function call cout.setf(ios::showpoint). You may revert to the usual method of automatic

cout << setprecision(12);
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notation with the function call cout.unsetf(ios::showpoint). As usual, these functions may be
used with any output stream (not just with cout).

Reading from Standard Input

The extraction operator (written >>) is used to read a value from an input stream such as the
standard input device (usually the keyboard). For example, if i is an integer variable, then the
following statement reads an integer value from the standard input and stores the result in i:

cin >> i;

In this statement, cin stands for the “console input,” and is defined as part of the header file
<iostream>. You may read several items at once by chaining together a sequence of extraction
operators. For example, if i, j, and k are integer variables, then the following statement first reads
i, then j, and finally k from the standard input:

cin >> i >> j >> k;

There are several details that you should be aware of regarding the extraction operator:

1. If the standard input device is a keyboard, then usually nothing is read until the user presses
the return key. This gives the user a chance to use the backspace key to correct mistakes
before pressing the return key.

2. When the extraction operator reads a data value, it starts by skipping any white space that
occurs in the input. This white space consists of any blanks, tabs, and newline characters.
Skipping the white space occurs even if you are reading a character value, which means that
the extraction operator cannot be used to read a character if the value that you want to read
might be a blank or other white space.

3. The extraction operator reads the input until the end of the input value is reached. The end of
the value occurs by reaching any character that is not part of the input value. This ending
character is called the delimiter, and the delimiter is not actually read. For example, suppose
that i is an integer variable, c is a character variable, and we execute the statement:

cin >> i >> c;

The program’s user might type the following input (followed by the return key):

42xyz

With this input, the number 42 will be assigned to i, and the character 'x' is assigned to c.
The characters 'y' and 'z' remain in the input, perhaps to be read at a later time.

Reading a Null-Terminated String or a C++ String

You may use the extraction operator to read a null-terminated string. For example:

char message[100];
cin >> message;
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In this case, the extraction operator skips any initial whitespace and reads characters into message
until more whitespace is encountered. For example, suppose that the program’s user types the fol-
lowing input line (followed by the return key):

The quick brown fox jumps over the lazy dog.

The statement cin >> message will skip any initial whitespace and read the characters The—end-
ing when the blank is encountered after the e. The blank itself is not read. The three characters that
were read are placed in message, with a null terminator after the third character. There is no check-
ing to ensure that the array is large enough to hold the characters that were read.

C++ strings (from the <string> header file) can be read in the same manner as null-terminated
strings, but there is also a getline function that will read an entire line into a string variable. For
example:

string message;

// Reads one input line into message, including whitespace. The end-of-line is read, but not
// added to the end of the message string:
getline(cin, message);

Failed Input

Sometimes a user provides illegal data for an input operation. For example, the program might be
reading an integer, but the user types the word quick. Whenever illegal data is encountered, the
input stream is marked as failed. Once the input stream has failed, any subsequent attempts to read
from the input stream will have no effect! Nothing is read; no variable values are assigned.

You may use the name of an input stream as a boolean expression to test whether the stream has
failed. A failed stream results in a false expression; a device that is still good results in a true expres-
sion. For example:

if (cin)
cout << "Input is still good." << endl;

else
cout << "Input is bad." << endl;

The failure can occur for many reasons, but the most common failure is encountering the wrong
type of data in the input stream. If an incorrect data type is the cause of the problem, you may reset
the input stream and try to read the data again using a variable of a different type. The member
function to reset a failed input stream is clear( ). For example, cin.clear( ) will reset the con-
sole input, allowing you to try to read the data again. 

Three More Functions: get, ignore, and peek

Many other input functions are part of <iostream>. We’ll describe three of the most useful func-
tions. The first function, called get, has several forms, including a form that simply reads the next
input character. For example, suppose that c is a character variable. The following statement reads
the next character from the standard input, and assigns the read value to c:

cin.get(c);
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Notice that get is called as a member function of the cin object. How does  differ
from ? The answer is that get always reads the next character without skipping
whitespace; on the other hand, the >> operator skips whitespace before reading the next character.

Another member function, called ignore, allows you to read and discard the next input character.
With cin, the function is called as shown here:

cin.ignore( ); // Read the next character from cin, and discard this character.

Another member function, called peek, allows you to look at the next available character without
actually reading it. For example, the following code checks to see whether the next character is the
letter 'X':

if (cin.peek( ) == 'X')
cout << "I am about to read an X from the standard input." << endl;

The peek function always returns the next input character without skipping whitespace. As another
example, this code will read and discard characters until the input stream fails, or a newline charac-
ter is reached:

while (cin && (cin.peek( ) != '\n'))
cin.ignore( );

Here is one more example of a function that reads and discards characters until the input stream
fails or a nonwhitespace character is reached. The function makes use of a boolean function, called
isspace, to determine whether a character is whitespace:

void eat_white( )
// Postcondition: Characters have been read from standard input until the input stream
// becomes bad, or a nonwhitespace character is reached.
// Library facilities used: cctype (provides isspace)
{

while (cin && isspace(cin.peek( )))
cin.ignore( );

}

Detecting the End of a File

It is possible for the standard input to be connected to a file of characters. In this case, a program
must be able to detect when the end of the input file has been reached. When the last actual charac-
ter of the file has been read, the peek function returns a special constant named EOF (which is part
of <iostream>). For example:

if (cin.peek( ) == EOF)
cout << "There is nothing more to read." << endl;

One warning: The peek function does not return the EOF constant until all characters of the file
have been read—including any blanks or newline characters that may appear after the last piece of

cin.get(c);
cin >> c;
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actual data. For example, suppose that the standard input is a file of integers. We want to read and
add up all these integers until the end-of-file is reached. The correct way to process the input file is
shown here (using the eat_white function, written earlier):

int sum = 0; // The sum of all the numbers that we read
int next; // The next number that we read

eat_white( ); // Skip any whitespace at the front of the file.
while (cin && (cin.peek( ) != EOF))
{

cin >> next;
eat_white( );
sum += next;

}

cout << "The total of all numbers is: " << sum << endl;

The special EOF character at the end of a file can be read by the usual get function. After this char-
acter is read, a member function cin.eof( ) will return true.

Writing or Reading a Text File

So far, we have shown output and input using the standard streams cout and cin. A program can
also create its own streams, connecting these streams to files. Such a program should include both
<iostream> and <fstream>, and proceed as follows.

Opening a file. For writing, a program should declare a variable of type ofstream. For reading, a
program should declare a variable of type ifstream. Once the variable is declared, it can be con-
nected to an actual file with the open member function, as shown here:

The argument to the open function is the name of the file that you wish to write. In our output
example, this argument is the constant string "results", so we will be writing a file named
results. Our input example is reading text from a file named data. The argument to the open func-
tion may also be a string variable, or any other string expression.

Checking for failure. Sometimes, when you open a file, the open operation fails. For example,
opening a file for writing can fail if the computer’s disk is already full. Opening a file for input will
fail if the specified file cannot be found. If the open operation fails, then the stream will be marked

Opening an Output File:

#include <iostream>
#include <fstream>

ofstream outfile;

outfile.open("results");

Opening an Input File:

#include <iostream>
#include <fstream>

ifstream infile;

infile.open("data");
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as failed. You may use the name of a stream as a boolean expression to test whether the stream is
bad. A failed stream results in a false expression; a device that is still good results in a true expres-
sion. Thus, after opening a file, you should check for possible failure. A simple approach uses the
assert function (from cassert), as shown here:

Using the ofstream or ifstream. Once an ofstream is open, you may use it in the same way that
you have used cout. For example, using outfile (opened as shown above), you may write:

outfile << "This sentence will be written to the file." << endl;

Once an ifstream is open, you may use it in the same way that you have used cin. For example,
suppose that infile (opened above) contains lines of digits. You can read the next integer in the
input file, storing the result in an integer variable i, as shown here:

infile >> i;

Closing a file. When you are done writing or reading a file, you should activate the close member
function of the ofstream or ifstream. This function has no arguments, as shown here:

Closing a file releases any resources that the file implementation uses. If output buffering is used,
then closing an output file also flushes the output buffer.

Check for Failure of an Output File:

#include <iostream>
#include <fstream>
#include <cassert>

ofstream outfile;

outfile.open("results");
assert(outfile);

Check for Failure of an Input File:

#include <iostream>
#include <fstream>
#include <cassert>

ifstream infile;

infile.open("data");
assert(infile);

Closing an Output File:

#include <iostream>
#include <fstream>
#include <cassert>

ofstream outfile;

outfile.open("results");
assert(outfile);

...Statements that use outfile...

outfile.close( );

Closing an Input File:

#include <iostream>
#include <fstream>
#include <cassert>

ifstream infile;

infile.open("data");
assert(infile);

...Statements that use infile...

infile.close( );
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The <cassert> Facility

The assert facility from <cassert> can be used by writing a statement of the form: 

assert(expression);

Notice that assert is not part of the std namespace (the name is simply assert, rather than
std::assert). If the expression is true, then the assertion does no action. If the expression is false,
then the assertion prints an error message that includes the text of the expression and stops the pro-
gram. For example, consider this assertion:

assert(i > 0);

If i is positive, then the assertion does nothing. If i is nonpositive, then the assertion will print a
message such as “Assertion failed on line 42: i > 0”. The primary purpose of using such assertions
is to aid a programmer in finding errors at the earliest possible moment.

Once a program is no longer undergoing testing, a programmer can turn off all assertions by plac-
ing the following at the top of each file:

#define NDEBUG

Functions from <cctype> to Manipulate Characters

isalpha(c); // Returns true if c is a letter from 'A' to 'Z' or from 'a' to 'z'.
isalnum(c); // Returns true if c is a letter from 'A' to 'Z' or 'a' to 'z', or a digit from '0' to '9'.
isdigit(c); // Returns true if c is a digit from '0' to '9'.
isspace(c); // Returns true if c is a blank, tab, newline, or carriage return.
tolower(c); // If c is an uppercase letter, then the function returns the equivalent

// lowercase letter. Otherwise c is returned unchanged.
toupper(c); // If c is a lowercase letter, then the function returns the equivalent

// uppercase letter. Otherwise c is returned unchanged.

Random Number Facility from <cstdlib>

int rand( ); // Successive calls to rand( ) return a sequence of
// pseudorandom numbers in the range 0 to RAND_MAX.

void srand(unsigned int seed); // The seed for the pseudorandom number generator
// has been set to the specified value.

const int RAND_MAX;  // The largest return value from the rand function

Appendix G
Selected Library Functions
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String Conversions from <cstdlib>
int atoi(const char[ ] s);

// The name stands for “ascii to integer.” The parameter s is a null-terminated string. The
// function inteprets the string as if it were typed from the keyboard and read into an
// integer. For example, the return value of atoi("42") is the integer 42.
// The function may also be used with a C++ string s, such as atoi(s.c_str( ));
// In this example, s activates c_str( ), which returns an equivalent null-terminated string.

double atof(const char[ ] s);
// The name stands for “ascii to float,” although the return value is actually a double
// number rather than a float. The parameter s is a null-terminated string. The function
// inteprets the string as if it were typed from the keyboard and read into a double
// variable. For example, the return value of atoi("42.2") is the double number 42.2.

Standard Library Sorting Functions 
(See Section 13.4 for Details)

void sort(Iterator begin, Iterator end);
void qsort(

void* base,
size_t number_of_elements,
size_t element_size,
int compare(const void*, const void*)

);

Functions from <cstring> to Manipulate Null-Terminated Strings

char* strcat(char target[ ], const char source[ ]);
// A copy of the null-terminated string source is copied to the end of the null-terminated 
// string target. The function returns a pointer to the first character of target.

int strcmp(const char s1[ ], const char s2[ ]);
// Compares two null-terminated strings. A negative return value indicates s1 < s2; a zero 
// return value indicates that s1 == s2; a positive return value indicates s1 > s2.

char* strcpy(char target[ ], const char source[ ]);
// Copies the null-terminated string source to the null-terminated string target. The function
// returns a pointer to the first character of target.

size_t strlen(const char s[ ]);
// The return value is the length of s (a null-terminated string).

char* strchr(const char s[ ], char c);
// The return value is a pointer to the first occurrence of c in the null-terminated string s (or
// the NULL pointer if c does not appear in s).

int strpos(const char s[ ], char c);
// The return value is the first index i such that s[i] = c (or -1 if c does not appear in the
// null-terminated string s).

char* strstr(const char s[ ], const char sub[ ])
// Returns a pointer to the first occurrence of the substring sub in the null-terminated
// string s (or the NULL pointer if sub does not appear in s).
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The Swap Function from <algorithm>

template <class Item>
void swap(Item& a, Item&b)
// The value of a has been interchanged with the value of b.

Selected Functions from <algorithm> for Manipulating Arrays

In general, the “location” arguments are iterators of various kinds. But a useful way to begin using
these functions is to have each argument be a “location” in an array. These locations may be the
name of an entire array. Or, for an array a and an integer i, a location a+i indicates the spot begin-
ning at a[i].

copy(<beginning location>, <ending location>, <destination location>)
// The function starts at the specified beginning location and copies an item to the destination.
// It continues beyond the beginning location, copying more and more items to the next spot of
// the destination, until we are about to copy the ending location. The ending location is not copied.

fill(<destination begin location>, <destination end location>, <value>)
// The function puts copies of the value into the destination, starting at the begin location,
// then the spot after that, and so on up to (but not including) the end location.

fill_n(<destination begin location>, <n>, <value>)
// The function puts a copy of the value into the begin location of the destination, then
// another copy into the next spot, and so on, until n copies have been placed.

This brief introduction can’t cover all the details of the Standard Template Classes. For more
detailed information, we suggest The C++ Standard Library by Nicolai M. Josuttis or an online
guide such as P. J. Plauger’s www.dinkumware.com or www.cppreference.com.

Parameters Used in this Reference
begin and end // Two iterators that specify a range of items starting at the

// begin iterator’s item and going up to (but not including) the
// item of the end iterator

comp // The name of a function that takes two items as arguments
// and returns true if the first item is less than the second

pos // An iterator from the actual container that activated the
// member function

m, m1, m2 // A map or multimap
r, r1, r2 // A set or multiset
s, s1, s2 // A string
t, t1, t2 // A stack, queue, or priority queue
w, w1, w2 // A vector or list

Appendix H
Brief Reference for the Standard Template Classes
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Sets and Multisets from <set>

The set<Item> template class provides a collection of items. Any given item may appear in the set
only once. The multiset<Item> class is like a set, but a given item may appear more than once in
a multiset. For both sets and multisets, the items are typically stored in a balanced binary search
tree, so that the Item type must have a less-than operator forming a strict weak ordering (see
Figure 3.12 on page 139).

CONSTRUCTORS:
In these examples, set<...> may be any instantiated set or multiset
(such as set<double> or multiset<int>).
set<...> r // Create an empty set or multiset.
set<...> r1(r2) // Copy constructor
set<...> r(comp) // Create an empty set or multiset using the specified comp

// function to determine when an item is less than another.
set<...> r(begin, end) // Create a new set or multiset that initially contains the

// range of items from [begin...end).
set<...> r(begin, end, comp) // Just like the previous constructor, but it will use the 

// comp function to determine when an item is less than
// another

CONSTANT MEMBER FUNCTIONS:
r.count(target) // Returns the number of times that target occurs in r.
r.empty( ) // Returns true if r has no items.
r.max_size( ) // Returns the maximum number of items that r can hold.
r.size( ) // Returns the number of items currently in r.
r1 == r2 and r1 != r2 // Boolean tests to see whether two sets are equal or unequal.
r1 < r2 and r1 > r2 // Tests for lexicographical ordering of sets.
r1 <= r2 and r1 >= r2

FUNCTIONS THAT RETURN BIDIRECTIONAL ITERATORS:
r.begin( ) // Returns an iterator that is positioned at the start of r.
r.end( ) // Returns an end iterator (just beyond the last item of r).
r.equal_range(target) // Returns a pair of iterators: 

// r.equal_range(x).first is equal to r.lower_bound(x),
// r.equal_range(x).second is equal to r.upper_bound(x)

r.find(target) // Returns an iterator that is positioned at the first occurrence of 
// the target (or an end iterator if target does not occur).

r.lower_bound(target) // Returns an iterator that is positioned at the first item that is 
// greater than or equal to the target (or an end iterator if there is
// no such item).

r.rbegin( ) // Returns a reverse iterator that is positioned at the last item of r.
r.rend( ) // Returns a reverse end iterator (just before the first item of r).
r.upper_bound(target) // Returns an iterator that is positioned at the first item that is 

// greater than the target (or an end iterator if there is
// no such item).
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MODIFICATION MEMBER FUNCTIONS:
All of the erase functions return the number of items removed. Most of the insert functions return
an iterator that is positioned at the new element. However, for a set m, the return value of
r.insert(element) is a pair where r.insert(element).first is the usual iterator and
r.insert(element).second is a boolean value (true if the element was newly inserted, and false
if the element was previously in the set). 
r.clear( ) // Removes all elements from r.
r.erase(element) // Removes all copies of the specified element .
r.erase(pos) // Removes the one element of the position iterator.
r.erase(begin, end) // Removes all elements from the range [begin...end).
r.insert(element) // Puts the specified element into the set.
r.insert(pos, element) // Same as r.insert(element), but uses the iterator pos as a hint

// about where to put the new element. A good hint will improve
 // the speed of the function.

r.insert(begin, end) // Inserts all elements in the range [begin...end).

Stacks, Queues, and Priority Queues from <stack> and <queue>

The stack<Item>, queue<Item>, and priority_queue<Item> template classes provide a collec-
tion of items organized as a stack, a queue, or a priority queue. For the priority queue, the Item type
must have a less-than operator forming a strict weak ordering (see Figure 3.12 on page 139).

CONSTRUCTORS:
The stack, queue, and priority queue each have a default constructor (to create an empty contain-
er) and a copy constructor. There are additional constructors, especially for the priority queue.

CONSTANT MEMBER FUNCTIONS:
t.empty( ) // Returns true if t has no items.
t.size( ) // Returns the number of items currently in t.
t1 == t2 and t1 != t2 // Boolean tests to see whether t1 and t2 are equal or unequal.
t1 < t2 and t1 > t2 // Tests for lexicographical ordering of t1 and t2.
t1 <= t2 and t1 >= t2

FUNCTIONS THAT GIVE ACCESS TO ITEMS:
All versions of the top, front, and back functions return a reference to the next item. When t is
not a const object, this return value can be used to change the item (see Section 8.5). 
// Return the next item of a stack or const stack:
Item& t.top( )
const Item& t.top( ) const

// Return the next item of a queue, const queue, priority queue, or const priority queue. For a
// queue or const queue, this is the first item that was added. For a priority queue or 
// const priority queue, this is the highest priority item. If a priority queue has several items
// with equally high priority, the Standard does not specify which is accessed first.
Item& t.front( )
const Item& t.front( ) const

// For a queue or const queue, these return a reference to the most recently added item.
Item& t.back( )
const Item& t.back( ) const
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FUNCTIONS THAT ADD OR REMOVE ITEMS:
t.pop( ) // Remove the next item from the container.
t.push(element) // Add the specified item to the container.

Strings from <string>

The simplest string class allows easy creation and manipulation of sequences of characters. Our
list of string functions is not complete, but it contains the functions that we have found most useful.
Many of these functions have a string as an argument and can take the string in a variety of forms.
In our list of functions, we will use these names to specify the various formats of arguments:

1. const string& str 
The sequence of all characters in str.

2. const string& str, size_type index, size_type n
The sequence of up to n characters from str, starting at str[index].

3. char c
The string that contains just the one character c.

4. size_type n, char c
The string that contains n consecutive copies of the character c.

5. const char carray[ ]
The string that contains characters from the start of the array until the null terminator
character occurs.

6. const char carray[ ], size_type n
The string that contains characters from carray[0] through carray[n-1].

7. iterator begin, iterator end
The string that contains characters from *begin up to (but not including) *end, which is
[begin...end).

CONSTRUCTORS AND ASSIGNMENT:
Note that there is no constructor that takes a single character as its parameter. Each of the assign
functions assigns a new value to s using the seven forms of arguments listed previously.
string s( )
string s(str)
string s(str, index, n)
string s(n, c)
string s(carray)
string s(carray, n)
string s(begin, end)
s.assign(str) or s = str
s.assign(str, index, n)
s.assign(c) or s = c
s.assign(n, c)
s.assign(carray) or s = carray
s.assign(carray, n)
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CONSTANT MEMBER FUNCTIONS:
s.capacity( ) // Returns the maximum number of characters that could

 // be put in s without having to add more memory.
s.c_str( ) // Returns a const array of characters that contains a null-

// terminated string with the same characters as s.
s.data( ) // Same as s.c_str( ) but without the null terminator.
s.empty( ) // Returns true if s has no characters.
s.length( ) // Returns the current number of characters in s.
s.max_size( ) // Returns the maximum number of characters that s

// could ever have.
s.size( ) // Same as s.length( ).
s1 == s2 and s1 != s2 // Boolean tests of whether two strings are equal or unequal.
s1 < s2 and s1 > s2 // Tests for lexicographical ordering of strings.
s1 <= s2 and s1 >= s2

FUNCTIONS THAT GIVE ACCESS TO THE CHARACTERS OF THE STRING:
For an index in the range 0 to s.length( )-1, the notation s[index] or s.at(index) returns the
character at the specified index. Both of these functions return a reference to a character. When
the string is not const, then this reference can be used to change a character, such as s[2] = 'x'.
The at version causes an exception when the index is out of range, but the s[index] behavior is
undefined in this case.

CONCATENATION:
The expression s1 + s2 is a new string containing the characters of s1 followed by those of s2.

APPEND FUNCTIONS:
These add the specified characters to the end of what’s already in the string, using one of the
forms of arguments shown earlier.
s.append(str) or s += str
s.append(str, index, n)
s.append(c) or s += c
s.append(n, c)
s.append(carray) or s += carray
s.append(carray, n)
s.append(begin, end)

INSERT FUNCTIONS:
These insert new characters, specified using one of the forms of arguments shown earlier. These
characters are inserted beginning at s[i]. The value of i must be less than or equal to s.size( ).
Any characters that were already at s[i] or beyond are shifted rightward to make room for the
new characters.
s.insert(i, str)
s.insert(i, str, index, n)
s.insert(i, n, c)
s.insert(i, carray)
s.insert(i, carray, n)
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REPLACE FUNCTIONS:
These functions replace len characters of s starting at s[i]. The value of i must be less than or
equal to s.size( ), and if there are fewer than len characters starting at this spot, then all char-
acters to the end of the string are replaced. The new characters are specified using one of the forms
of arguments shown earlier.
s.replace(i, len, str)
s.replace(i, len, str, index, n)
s.replace(i, len, n, c)
s.replace(i, len, carray)
s.replace(i, len, carray, n)

FUNCTIONS TO FIND A POSITION IN A STRING:
These functions return a value of type string::size_type. The return value is the constant
string::npos if the character is not found.
s.find(c) // Returns index of first occurrence of the character c in s
s.find(c, i) // Returns index of first occurrence of c that is at or after s[i]
s.rfind(c) // Returns index of final occurrence of the character c in s
s.rfind(c, i) // Returns index of final occurrence of c that is at or before s[i]
s.find(str) // Returns index of first occurrence of the substring str within s
s.find(str, i) // Returns index of first occurrence of str that is at or after s[i]
s.rfind(str) // Returns index of final occurrence of the substring str within s
s.rfind(str, i) // Returns index of final occurrence of str that is at or before s[i]

FUNCTIONS THAT RETURN A SUBSTRING:
s.substr(i) // Returns a string containing characters from s[i] to the end of s
s.substr(i, n) // Returns a string containing up to n characters, starting at s[i]

OTHER MODIFICATION MEMBER FUNCTIONS:
s.clear( ) // Removes all characters from s.
s.erase( ) // Removes all characters from s.
s.erase(i) // Removes all characters from s[i] to the end of s.
s.erase(i, len) // Removes up to len characters starting at s[i].
s.reserve(amount) // Requests that the capacity of s be changed to the specified amount

// (which may be smaller than the current capacity). However, the
 // changed capacity will never be smaller than the current string size.

s.resize(n, c) // Changes the length of s to n (if this increases the length, new 
// characters are the character c).

s.resize(n) // Same as s.resize(n, '\0')

INPUT AND OUTPUT:
cout << s // Print all of s to cout.
cin >> s // Skip whitespace and then read characters into s until whitespace is

// encountered. The terminating whitespace is not read.
getline(cin, s, c) // Read characters from cin into s until c is encountered.

// The terminating c is read but not added to the end of s.
getline(cin, s) // Same as getline(cin, s, '\n')
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Vectors from <vector>, Lists from <list>, and Deques from <deque>
The vector<Item> template class provides a sequence of items, similar to the way that a string pro-
vides a sequence of characters. Although not required by the C++ Standard, the typical vector
implementation stores the items in a dynamic array.

The list<Item> template class also provides a sequence of items, similar to our sequence class
in Chapters 3 through 5. Insertions and deletions at any point that is marked by an iterator are more
efficient with lists because they are typically implemented with a linked list.

The deque<Item> template class is a double-ended queue, which is a sequence with quick access
to elements at both ends (as described in Section 8.4).

CONSTRUCTORS AND ASSIGNMENT:
All three classes have a default constructor (creates an empty sequence), a copy constructor, and
an assignment operator. The function w.assign(n, element) changes w to a sequence that con-
tains n copies of the specified element.

CONSTANT MEMBER FUNCTIONS:
w.capacity( ) // (Vector only) Returns the maximum number of items

// that could be put in w without adding more memory.
w.empty( ) // Returns true if w has no items.
w.size( ) // Returns the current number of items in w.
w.max_size( ) // Returns the maximum number of elements that w could

// ever have.
w1 == w2 and w1 != w2 // Boolean tests of whether two sequences are equal or unequal.
w1 < w2 and w1 > w2 // Tests for lexicographical ordering of sequences.
w1 <= w2 and w1 >= w2

FUNCTIONS THAT GIVE RANDOM ACCESS TO THE ITEMS OF THE VECTOR (BUT NOT A LIST OR
DEQUE):

For an index in the range of 0 to v.size( )-1, the notation v[index] or v.at(index) returns
the item at the specified index. Both of these functions return a reference to the item. When the
vector is not const, then this reference can be used to change an item such as . The
at version causes an exception when the index is out of range, but the v[index] behavior is un-
defined in this case.

INSERT FUNCTIONS:
Each insert function has a parameter pos that is an iterator for the sequence. The new element
is inserted at this position. Any items that were already at or beyond this position are shifted right-
ward to make room for the new items.
w.insert(pos, element) // Inserts new element at specified position.
w.insert(pos, n, element) // Inserts n copies of new element at specified position.
w.insert(pos, begin, end) // Inserts elements [begin...end) into the sequence at the

 // specified position.

v[2] = 'x';
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OTHER MODIFICATION MEMBER FUNCTIONS:
w.clear( ) // Removes all elements from w.
w.erase(pos) // Pos is an iterator for the sequence; this function removes the item

// at this position.
w.erase(begin, end) // Removes all elements from *begin up to (but not including) *end,

// i.e., the left-inclusive interval [begin...end).
w.erase(i, len) // (Vector only) Removes up to len elements starting at w[i].
w.front( ) // Returns a reference to the first element of the sequence.
w.back( ) // Returns a reference to the last element of the sequence.
w.pop_back( ) // Removes the final element of w.
w.push_back(element) // Appends the specified element to the end of w.
w.pop_front( ) // Removes the first element of w.
w.push_front(element)// Inserts the specified element to the front of w.
w.reserve(amount) // (Vector only) Requests that the capacity of w be increased to the

 // amount. (Unlike the string, this will never reduce the capacity.)
w.resize(n, element) // Changes the length of w to n (if this increases the 

// length, new items are the specified element).
w.resize(n) // Changes the length of w to n (if this increases the length, new 

// items are the default value of the Item type).

FUNCTIONS THAT RETURN ITERATORS:
w.begin( ) // Returns an iterator that is positioned at the start of w.
w.end( ) // Returns an end iterator (just beyond the last item of w).
w.rbegin( ) // Returns a reverse iterator that is positioned at the last item of w.
w.rend( ) // Returns a reverse end iterator (just before the first item of w).

Maps and Multimaps from <map>
The map<Key, Item> and multimap<Key, Item> template classes from <map> allow a programmer
to store a collection of items in which each item has an associated key, similar to the hash tables of
Chapter 12 (but stored in a different manner that depends on the keys being ordered by a less-than
operator). The map is limited to having at most one distinct item for any given key, whereas the
multimap allows many different items with the same key. The map and multimap have a variety of
the member functions similar to the set, but they also allow unique map operations, described here:

INSERTING AN ITEM WITH A PARTICULAR KEY:
To insert an item e with a key into a map m, write . For a multimap, the syntax is more
complex: , where xxx is the type of the
key and yyy is the type of the items.

RETRIEVING AN ITEM WITH A PARTICULAR KEY:
The item associated with key k can be retrieved from a map with the m[k] notation, for example:

. For a multimap, the sequence of items that all have a specified key k can be
obtained in several ways. One approach used by Lippmann and Lajoie is to use the count and
find functions, as shown here (where it is an iterator for the multimap m):
int i;
int many = m.count(k);
it = m.find(k);
for (i = 0; i < many; ++i, ++it)

// Do something with *it

m[k] = e;
m.insert(multimap<xxx,yyy>::value_type(k,e));

cout << m[k];
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Operations for Bidirectional Iterators
In these operations, p is a bidirectional iterator (such as provided by the all the classes of this appen-
dix).

*p // Returns a reference to the current item of p.
++p // Moves p to the next item (and returns a reference to the new iterator).
p++ // Moves p to the next item (and returns a copy of the iterator before the move).
--p // Moves p to the previous item (and returns a reference to the new iterator).
p-- // Moves p to the previous item (and returns a copy of the iterator before the move).

Operations of Random Access Iterators
In these operations, p is a random access iterator (such as provided by a vector, but not the other
classes in this appendix) and i is an integral value.

p[i] // Returns a reference to the item that is i spots forward from p’s current item.
p += i // Moves p forward i spots.
p -= i // Moves p backward i spots.
p + i // This expression is an iterator that is i spots beyond p (but p itself doesn’t change).
p - i // This expression is an iterator that is i spots before p (but p itself doesn’t change).

Header File
// FILE: useful.h
// PROVIDES: Five useful functions for random numbers and displays. These functions are
// in the global namespace.
//
// FUNCTIONS PROVIDED:
//
// Postcondition: The return value is a random real number in the closed interval [0..1]
// (including the endpoints).
//
//
// Precondition: low <= high.
// Postcondition: The return value is a random real number in the closed interval [low..high]
// (including the endpoints).
//
//
// Postcondition: The function has written one line of output to the standard output, with a
// vertical bar in the middle. If x is positive, then approximately x stars are printed to the 
// right of the vertical bar. If x is negative, then approximately -x stars are printed to the
// left of the vertical bar. If the absolute value of x is more than 39, then only 39 stars 
// are printed. Examples:
//     display(8) prints:                          |********
//     display(-4) prints:                     ****|

Appendix I
A Toolkit of Useful Functions

double random_fraction( )

double random_real(double low, double high)

void display(double x)
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//
// Postcondition: Up to next newline has been read and discarded from cin.
//
//
// Precondition: query is a null-terminated string of characters.
// Postcondition: query has been printed, and a one-line response read from the user.
// The function returns true if the user’s response begins with 'Y' or 'y', and returns false if 
// the user’s response begins with 'N' or 'n'. (If the response begins with some other letter, 
// then the query is repeated.)

#ifndef USEFUL_H
#define USEFUL_H

double random_fraction( );
double random_real(double low, double high);
void display(double x);
void eat_line( );
bool inquire(const char query[ ]);

#endif

Implementation File
// FILE: useful.cxx
// IMPLEMENTS: Five useful functions (see useful.h for documentation)
// These functions are in the global namespace.

#include <cassert>  // Provides assert
#include <cctype>  // Provides toupper
#include <iostream> // Provides cout, cin, get
#include <cstdlib>  // Provides rand, RAND_MAX
#include "useful.h"
using namespace std;

// Library facilities used: iostream
{

const char STAR = '*';
 const char BLANK = ' ';
const char VERTICAL_BAR = '|';
const int LIMIT = 39;
int i;

if (x < -LIMIT)
        x = -LIMIT;

else if (x > LIMIT) 
        x = LIMIT;

(continued)

void eat_line( )

bool inquire(const char query[ ])

void display(double x)
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for (i = -LIMIT; i < 0; i++)
    {

if (i >= x)
            cout << STAR;

else
            cout << BLANK;
    }
    cout << VERTICAL_BAR;

for (i = 1; i <= LIMIT; i++)
    {

if (i <= x)
            cout << STAR;

else
            cout << BLANK;
    }
    cout << endl;
}

// Library facilities used: iostream
// Reads characters from cin until and end-of-line has been read.
{

char next;

do
        cin.get(next);

while (next != '\n');
}

// Library facilities used: cctype, iostream
{

char answer;

do
    {
        cout << query << " [Yes or No]" << endl;
        cin >> answer;
        answer = toupper(answer);
        eat_line( );
    }

while ((answer != 'Y') && (answer != 'N'));
return (answer == 'Y');

}

// Library facilities used: cstdlib
{

return rand( ) / double(RAND_MAX);
} (continued)

void eat_line( )

bool inquire(const char query[ ])

double random_fraction( )
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// Library facilities used: cassert
{
    assert(low <= high);

return low + random_fraction( ) * (high - low);
}

Specifications with Preconditions and Postconditions

This appendix outlines three of our fundamental style guidelines. Each of our function’s behavior is
specified with a precondition/postcondition contract.

For a function that is provided as part of a collection of functions, the contract appears in a com-
ment at the top of the toolkit’s header file.

For a member function of a class that is provided with a header file and implementation file, the
contract appears in a comment at the top of the class’s header file.

For a function that is implemented and used only in a “.cxx” file, the contract appears with the
function’s implementation in the “.cxx” file.

Capitalization

Variable names and function names are written with all lowercase letters. If the name consists of
several words, then these words are separated by an underscore (such as eat_white).

Declared constants and member constants of a class are written with all uppercase letters. If the
name consists of several words, then these words are separated by an underscore (such as
MANY_COLUMNS). However, constant function parameters are written with lowercase letters (just like
any other parameter).

New class names are written in lowercase, preferably as a noun. This differs from our first edition
of the text (where we used an initial capital letter). The reason for the change is to better match the
Standard Template Library, where class names are lowercase letters and the name of a template
parameter (such as Item) has an initial capital.

Indentation

Any statements grouped between brackets ('{' and '}') are indented four spaces. The brackets
themselves appear on separate lines with no extra indentation. The only exceptions are the keywords
public, private, or protected (in a class definition), which appear on lines by themselves with the
same indentation as the brackets.

In a loop or conditional statement with a one-line body (i.e., no brackets), the one line appears on
a line by itself with four spaces of indentation beyond the loop or conditional statement.

The statements that follow a case label of a switch statement are written with at least four spaces
of indentation beyond the case label. 

double random_real(double low, double high)

www.cs.colorado.edu/~main/appendix/useful.h and useful.cxx WWW

Appendix J
Fundamental Style Guide
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This appendix is at www.cs.colorado.edu/~main/online_appendix.pdf to allow for better updates.

Using exception handling in C++ programs creates robust programs with error recovery. This
allows programs to be safely reused as components in other programs, a key goal in object-oriented
programming. When an exception occurs, there is considerable overhead in the run-time
environment. Therefore, exception handling should be done with care, so as not to impact run-time
speed under normal circumstances.
Throwing an Exception 
Throughout the book, we have used the cassert facility to verify that arguments to a function were
valid. When an invalid argument was detected, an assertion would fail and the program would print
an appropriate error message before ending. An alternative is to “throw an exception” whenever an
invalid argument is detected. Here’s an example to show the syntax of throwing a particular kind of
exception called domain_error, which is part of <stdexcept>. You can compare this example to
our earlier version in Figure 1.1 on page 9.

#include <stdexcept>
using namespace std;

double celsius_to_fahrenheit(double c) 
// Precondition: c is a Celsius temperature no less than absolute zero (-273.15).
// Postcondition: The return value is the temperature c converted to Fahrenheit degrees.
{

const double MINIMUM_CELSIUS = -273.15; // Absolute zero in Celsius degrees

if (c < MINIMUM_CELSIUS)

return (9.0 / 5.0) * c + 32;
}

The highlighted line is is an example of throwing an exception. The syntax consists of the keyword
throw followed by an expression that creates some kind of exception object. The object that we
have created is a new domain_error exception with a message that indicates what went wrong.
There are a handful of other exception types, but domain_error is the type that is well suited to
violations of a precondition.
Catching an Exception
This celsius_to_fahrenheit function may be used just like the original version. For example:

cout << "Enter a Fahrenheit temperature: ";
cin >> value;
f_value = celsius_to_fahrenheit(value);

Appendix K
Downloading the GNU Compiler and Software

Exception Handling
Appendix L

throw new invalid_argument("Fahrenheit temperature is too small.");
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With this code, if the user types a value that is below MINIMUM_CELSIUS, then the
celsius_to_fahrenheit function will throw the exception. This will cause the program to halt
with an appropriate error message. However, as the programmer who uses the exception-throwing
celsius_to_fahrenheit function, we can take control, catch the exception, and take some error-
correcting action. The general form for taking this control involves two steps:

• The call to the function that might throw the exception is put inside a block with the
keyword try at the front.

• After the try block, a new block of code (called the catch block) is inserted containing the
code that will handle the error situation. 

Here’s an example that shows the format of the catch block:

bool valid;
double value, f_value;

do
{

cout << "Enter a Fahrenheit temperature: ";
cin >> value;
try
{

f_value = celsius_to_fahrenheit(value);
valid = true;

}
catch (domain_error)
{ // Write an error message to cerr, which is the standard error output device.

cerr << "Illegal input value. Please try again." << endl;
valid = false;

}
}
while (!valid);

If there are several kinds of exceptions that might be thrown, then the try block can be followed by
several different catch blocks. You may create a catch block that catches any type of exception by
using ellipses in the argument list: catch (...). This catch-all block should be placed at the end of
the catch sequence so that it will not catch exceptions that are intended for more specific type
parameters.

An exception that is caught can be given a name to use in the catch block. By giving the excep-
tion a name, you can then activate various member functions that are associated with the exception.
The most useful member function is a function called what( ), which returns the string that was at-
tached to the exception when it was created. With this in mind, we can rewrite our sample code as
shown on the top of the next page. In the rewriting, we have also handled the possibility that the user
has typed non-numeric input (using the technique for failed input shown on page 789).

bool valid;
double value, f_value;
string error_input;
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do
{

cout << "Enter a Fahrenheit temperature: ";
cin >> value;
if (!cin)
{ // The user did not type a number:

cin.clear( ); // Fix the input stream.
getline(cin, error_input); // Get the illegal line, so it isn’t read again.
cerr << "Please type a number." << endl;
valid = false;

}
else
{

try
{

f_value = celsius_to_fahrenheit(value);
valid = true;

}
catch (domain_error e)
{

cerr << e.what( ) << endl;
valid = false;

}
}

}
while (!valid);

Exception Specification

It is good programming practice to inform the person using your function of what exceptions you
might throw. This is accomplished by writing an exception specification (also called a throw list),
which appears after the argument list of the function header. For example:

double celsius_to_fahrenheit(double c) 
throw (domain_error)

If more than one possible exception can be thrown in the function, the exceptions are listed,
separated by commas. For example, suppose that our function could also throw an overflow_error
when the resulting Fahrenheit temperature is beyond the legal range of double numbers. Then the
heading would be:

double celsius_to_fahrenheit(double c) 
throw (domain_error, overflow_error)

If a function has no exception specification, any type of exception can be thrown inside the body. If
you want to specify that a function cannot possibly throw an exception, then put an empty list in the
exception specification:

double supersafe(double c)
throw ( )
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Uncaught Exceptions

An exception that is thrown in a function but is not caught has two possible cases. If there is an
exception specification and the exception is not listed, then a function unexpected( ) is called. On
the other hand, if the exception is listed in the exception specification, the function terminate( ) is
called. The default behavior of unexpected( ) is to call terminate( ), and the default behavior of
terminate( ) is to end the program. You may override the default behavior of these functions. 

Standard Exceptions

The C++ Library provides a set of exceptions in the <stdexcept> facility. You can also define your
own classes for exceptions, but it is often more efficient to use the standard exceptions. Here is a list
of some of the standard exceptions arranged by class hierarchy:

exception
  logic_error

domain_error (violation of a precondition)
invalid_argument  (invalid argument to a function)
length_error (a length value has been requested larger than the maximum allowed)
out_of_range (an index or similar value is outside the range for an array or similar object)
bad_cast (an invalid dynamic type cast has occurred)

  runtime_error
range_error (when a function returned, its postcondition was unexpectedly invalid)

This can be used, for example, when a function interfaces with a physical device for
measurements such as temperature or pressure, and the return value of the function
is outside the physical realm of possibility. Don’t confuse the range_error with
out_of_range (although some early implementations of the STL vector made
exactly this confusion).

overflow_error (arithmetic overflow)
bad_alloc (failure to allocate dynamic storage, usually by the new operator) 

In the following example, the ranges of a vector are checked with an out_of_range exception:

  vector <int> v(20); 
int index, item;

  cout << "Enter an index:\n";
  cin >> index;
try
{

 item = v.at(index);
  } 
catch (out_of_range e)

  {
 cerr << e.what() << endl;

  }

We’ll leave it to you to put this code inside of a loop that also checks for possible non-numeric
input.
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linked list
adding a node 240
as a function parameter 238
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pointer 166–168
reference parameter 69–70
template 293
temporary used for 71
that is a function 507–509
value parameter 67–69
wrong argument type 71

parent
class 684
of a tree node 476
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partially filled array 109
partition for quick sort 655
path in a graph 738

shortest 764
peek function 366, 790
pivot element 654

how to choose 661
point class 63–84
pointers

as a function parameter 166–168
delete operator 163
introduction 165
new operator 159–162
used as member variable 176
using assignment operator 158

Polish notation 377
polynomial 150, 212
pop 798
pop_back 802
pop_heap 546
postcondition

See precondition/postcondition.
postfix expression 378
post-order traversal 504
power function 461
precedence rules 381, 784
precision in output 787
precondition/postcondition 6

contract 806
prefix expression 377
pre-order traversal 500–504
prerequisite chart xi
Prim, Robert 780
priority queue 797
priority queue class 546
priority queue

heap implementation 541–545
queue implementation 426

private
base class 686
part of a class 38

procedural abstraction 6
procedure 6
profiler 28
protected member 686, 716
prototype 7, 36
pseudocode 4
pseudorandom numbers 93, 271, 793, 

803

public
base class 686
part of class 36

pure virtual function 718
push 798
push_back 802
push_heap 546

Q
qsort function 672, 794
quadratic expression 91
quadratic time 21, 640
queue 797

array implementation 413–418
introduction 394–397
linked list implementation 420–423
See also priority queue.

quick sort 653–661
choosing pivot 661

R
radix sort 681, 682
rand function 793
RAND_MAX 793
random access 278
random access iterator 315, 803
random fractal 448
random_fraction 803
random number generator 93, 793
random numbers 803
random_real 451, 803
rbegin

set 796
vector 802

reading from standard input 788
recursion

depth of calls 592
divide-and-conquer 642
fractals and mazes 447
introduction 437–446
reasoning about 467

red-black tree 578
reference parameter 69–70

for a linked list 237
implementation 157
that is a pointer 171–172

reference return type 213, 318
for overloaded input/output 78

reheapification
downward 545, 670

upward 543, 669
rend

set 796
vector 802

replace 800
reserve 179

string 800
vector 802

resize
string 800
vector 802

return value of a function 73
reference return type (&) 78
use of the copy constructor 196

rfind 800
right justification 786
root of a tree 476
running time analysis

 See  time analysis.
run-time stack 443

S
scientific notation 787
scope resolution operator 42
searching

binary search 586–594
linked list 245–247
serial 584–586
See also hash table.

selectionsort 288, 630–636
serial search 584–586
set class 139, 796
setprecision 787
set_union 313
setf function 786
setw function 786
short-circuit evaluation 115
shortest path 764
showpoint 787
showpos 787
sibling 476
significant digits 787
simple graph 738
size

priority_queue 797
queue 797
stack 797
string 799
vector 801
set 796

Index
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size_t type 100
common errors 590

sizeof operator 672
sort 673, 794
sorting

based on key field 630
heap sort 662–672
insertion sort 636–642
interchange sort 632
merge sort 645–653
quick sort 653–661
selection sort 288, 630–636

source (of a graph edge) 737
spaces, checking input 207
specification phase 4
srand function 793
stack 797

array implementation 369–373
introduction 353–356
linked list implementation 373–

374
run-time 443
STL class 354

stair counting 15–22
standard namespace 11
standard output 785
Standard Template Library 86, 795
state graph 735
static data structure 176
static member constant 103–105
std 11, 60
stdlib.h 14
stopping case 438
story-writing program 309–312
strcat function 200, 794
strchr function 367, 794
strcmp function 201, 794
strcpy function 199, 794
strict weak ordering 139
string 201–211, 798, 799, 800

conversion from C++ to C 794
empty string 198
lexicographic order 201

string.h 199–201
strlen function 201, 794
Stroustrup, Bjarne 3
strpos function 794
strstr function 794
subclass 684

subscript operator
overloading 149, 745

substr 800
subtree 477
superclass 684
swap function 296, 795

T
table class

See hash table.
tail pointer 223
target (of a graph edge) 737
taxonomy tree 478, 489–496
Teddy bear game 459
temperature program 4
template

.template file name 303
class 301–313
function 291–301
instantiation 86, 139
parameter that is functon 621

temporary used for parameter 71
testing 26–29

black box testing 149
test programs 133–138

text file 791
this keyword 188, 213, 332
threshold 466
throttle class 34–50
tic-tac-twice 731
time analysis 15–26

constant time 123
worst, average, best 25

time stamp 402
tolower function 793
toolkits 231

item template toolkit 312
linked list 231–254

with templates 317
tree

first version 488
with traversals 512–517

useful functions 795, 803
top 797
toupper function 134, 793
tr1 extensions 624
trailing zeros 787
transitivity 139

traversal
in-order 504
of a graph 753
of a tree 500–512
of binary tree 500–512
post-order 504
pre-order 500–504

tree
array representation 480–483
balanced 540
binary 479
binary search 518–531
clearing 487
complete binary 478, 480–483
copying 487
full binary 478
general 479–480
introduction 480
node representation 483–484
toolkit

first version 488
with traversals 512–517

traversal 500–512
true keyword 37
true-or-false values 36
twin prime 614
two-dimensional array 741
two-way cursor 278
type cast 50
typedef statement 98

versus template function 292
within a linked-list node 222

typename keyword 293

U
undirected graph 733
unification error 294
uniform distribution 94
uniform hashing 618
unsetf function 787
unsigned integer 403
upper_bound 796
useful.h 795, 803
using 11, 59

std 60
with templates 304
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V
value parameter 67–69

initialized by copy 
constructor 196

that is a pointer 166
value semantics 56–57, 181–183
value_type 98
variant expression 464
vector 620, 801, 802
vertex of a graph 733
virtual member function 712–726

definition 717
pure 718

W
washer class 402
white space 199, 207
width of output 786
worst-case time 25, 584
writing values 785
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