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1 Overview

This report presents a gate-set tomography (GST) analysis of a dataset called “test”.

GST characterizes logic operations on a quantum device (e.g., a qubit), by treating it as a black box.
This black box is equipped with a small set of “buttons” that apply quantum gates to the quantum system
inside. One button initializes it, a second button triggers a 2-outcome measurement, and the remaining
buttons perform transformations. We avoid assumptions about the device’s operation whenever possible.
Currently, we assume that:

e the quantum device is a qubit (has a Hilbert space of dimension 2),

e cach gate, or logic operation, can be represented by a stationary Markov process (a.k.a. “quantum
channel”).

The core of GST is an algorithm that takes certain inputs, and produces certain outputs. The input to GST
comprises (1) a list of data, and (2) “target” gate set describing the ideal behavior of the device. GST data
comprises a list of experiments — each described by the sequence of gates that was applied — and, for each
experiment, two integer counts stating how often the “plus” and “minus” results were observed. The target
gates are used only to (a) report how consistent the estimates are with the target, and (b) choose the best
gauge in which to report the results. GST does not take them into account in its core analysis, and there is
no possibility of circularity or other “cheating”.

GST’s primary output is an estimated gate set that models or fits the device’s observed behavior. Gate
sets are of the form {pg, Eo, {Gx}}, where

e po is an estimate of the density matrix in which the device gets initialized,
e {Fy, 1l — Ey} is an estimate of the POVM describing how it gets measured,

e and each of the G, is an estimate of the superoperator (quantum process) describing the corresponding
gate.

Unless something went wrong (usually it doesn’t), the output of GST is the best possible fit to the data.
This should also mean that the output is a very accurate description of what happens when you trigger a
gate on your device. However, this happy conclusion relies on two assumptions:

1. The experiments were chosen wisely, so that the only gate sets consistent with their results are very
close to the true behavior. This is usually true. The main failure mode occurs when you were not able
to perform long sequences (e.g., because your decoherence rate is very high), in which case accuracy
may be limited.

2. The operations you are performing really are stationary (time-independent), Markovian, and acting
on a quantum system with the correct Hilbert space dimension. These assumptions define the model
that GST fits to the data. They are usually not true! Quantum operations are usually at least
a little bit non-Markovian. In this report (Section [4]) we provide extensive self-checks to identify and
diagnose violations of the model. If your system is visibly non-Markovian, then (a) these checks will
probably warn you of it, and (b) the other quantities reported here should be treated with caution —
using GST on non-Markovian gates violates the warranty!

This document is organized into three main sections, which address three broad questions.



e Section [2} What inputs did you give GST?
e Section [3} What estimate did GST output, and what does it mean?
e Section |4} How reliable are the results? (How badly was the model violated?)

Section [2] is primarily useful to verify that the inputs were correct. Section [3|is the most important: it
presents the raw estimates derived by the GST algorithm, and also provides a variety of derived quantities
that may be useful in interpreting what this estimate means.

Section [] is dedicated to summarizing how well the model imposed by GST was able to fit the data,
relative to what is expected of a “good” model. This is not related to “How close is the GST estimate to the
target gates?”, which is addressed in Section [3| It is also not the same as “How large are the error bars on
the GST estimate?”, which is a good question that is addressed in section [3| when this report is generated
with the confidence intervals option turned on. Instead, Section [4]is intended to tell you whether (a) you
should take the GST estimate at face value, or (b) it should be treated skeptically because no gate set was
capable of fitting the data.

Finally, appendices may be present (depending on which options were chosen when this report was
generated). Appendices present more detailed debugging information, elaborating on the goodness-of-fit
metrics presented in Section [4]

2 Input Summary

The input for this GST analysis comprised: (1) a target gate set (see Tables ; and (2) a dataset called
“test”.

2.1 Target Gate set

The target gate set describes the ideal initial state (density matrix), measurement (POVM effect), and gate
operations (superoperators). Typically, density matrices and POVM effects are represented as square d x d
matrices on a Hilbert space H. In GST, it is often more convenient to represent them as d>-element vectors
in the Hilbert-Schmidt space B(#) of linear operators on /. Both representations are shown in Table
Superoperators are sometimes represented in Choi or Kraus form, but for GST it is more convenient to
represent them as square d? x d? matrices that multiply associatively and act on B(#). These are shown in
Table 21

These Hilbert-Schmidt space representations require choosing a basis {M;} for B(#H). We use the Pauli
basis, comprising the four 2 x 2 Pauli matrices (including the identity 1) for d = 2. In d > 2, we use the
analogous Gell-Mann matrices as a basis. The choice of this basis is what is meant when state preparations
and measurements are written as vectors and gate operations are written as matrices in the “Pauli basis”.
Keep in mind that we want to use an orthonormal basis, so the basis matrices are normalized so that
(M| M) = TrM;Mj = 0;;. In d = 2, this means that the basis matrices are M; = %ai.

The ideal state prepration and measurement (SPAM) operations for your particular case are given in
Table [1. The ideal logic gate operations are given, as superoperators written in the Pauli basis, in Table

In most cases, the ideal/target logic gates are reversible unitary rotations. The corresponding superop-
erators are orthogonal rotations on B(#H). For your convenience, Table [2| also lists (for each logic gate) an
axis of rotation [as a vector in B(#H)] and an angle of rotation.

2.2 GST Input Data

The most important input to GST is a dataset — a list of experimental counts or frequencies, each associated
with a gate sequences. Gate sequences are also referred to as “gate strings”. Each gate sequence defines an
experiment, in which you (1) initialize the device, (2) apply the operations specified by the gate sequence,
and (3) measure and record the result (“plus” or “minus”).

Typically, the gate sequences that appear in the dataset are generated by the following process:

1. A small set of short gate sequences called germs are chosen,



Operator | Hilbert-Schmidt vector (Pauli basis) | Matrix
0.7071
0 10
po 0 ( 0 0 )
0.7071
0.7071

0 00
Eo 0 (0 1)

—0.7071

Table 1: Target gate set: SPAM (state preparation and measurement) gates. These are the ideal
input state (po) and ‘plus’ POVM effect Ej for the device on which we report. SPAM gates are given here
both as d x d matrices, and in “vectorized” form as d?-dimensional vectors in B(H). See Table [5| for GST
estimates of the actual pg and Ej implemented in this experiment.

Gate | Superoperator (Pauli basis) | Rotation axis | Angle
1 0 0 O 0
. 01 0 O 0
Gi 0010 0 om
0 0 0 1 1
1 0 0 O 0
01 0 O 1
Gx 00 0 -1 0 0.57
00 1 O 0
1 0 0 0 0
0 0 01 0
Gy 00 1 0 1 0.5
0 -1 0 O 0

Table 2: Target gate set: logic gates. These are the ideal (generally unitary) logic gates. Each has a
name starting with “G”, and is represented as a d? x d? superoperator that acts by matrix multiplication on
vectors in B(H). For each gate, its axis of rotation (in B(#)) and angle of rotation are also given. See Table
[7 for GST estimates of the actual logic gates implemented in this experiment.

2. A small set of short fiducial sequences are chosen so that, when applied to pg or Fy, they generate an
informationally complete set of states or effects.

3. Each germ is concatenated with itself to form base sequences of length approximately 1,2,4,8, ... Liqq-
4. Each base sequence is sandwiched between every possible pair of fiducial sequences.

The dataset comprises all sandwiched base sequences. A few other short sequences (e.g., those corresponding
to the empty base sequence) may also appear.

The fiducial sequences and germs for this dataset are given in Table An overview of the information
contained in the file you provided for dataset “test” is given in Table [

This table also contains one derived quantity, the spectrum of the largest Gram matriz that GST could
extract from the data. This is included here rather than in the analysis because it is not useful for predictive
purposes, and therefore is not part of the estimate. It serves, instead, to tell you something about the quality
of the data. More precisely, it tells you about the dimension of the state space that is explored by the fiducial
sequences. This should be d?-dimensional [because the fiducials are intended to explore all of B(#H)], and
therefore the spectrum listed in Table 4| should (ideally) have exactly d? elements that are large and nonzero.
In practice, you should see d? large elements, and a rapid drop in magnitude thereafter. If fewer than d?
elements are large, then the fiducials were poorly chosen and are not exploring the state space effectively. If



more than d? are large, then the system is experiencing strong non-Markovian effects (e.g., strong coupling
to environmental degrees of freedom) or it has a larger Hilbert space dimension than expected.

# Germ
1 Gx
Fiducials 2 Gy

+# Prep. Measure 3 Gi

1 4 Gx - Gy

2 Gx Gx 5 Gx -Gy - Gi

3 Gy Gy 6 Gx - Gi- Gy

4 Gx - Gx Gx - Gx 7 Gx - Gi-Gi

5 | Gx-Gx-Gx | Gx-Gx-Gx 8 Gy-Gi-Gi

6 | Gy-Gy- -Gy | Gy-Gy- Gy 9 Gx-Gx-Gi- Gy
10 Gx-Gy-Gy-Gi
11 | Gx-Gx-Gy-Gx-Gy- Gy

Table 3: Fiducial sequences and germs. See discussion in text.

Quantity Value
Number of strings 2737
Gate labels Gx, Gy, Gi
SPAM labels minus, plus
Counts per string 2000
0.0169 0
Gram singular values 0.0309 0
. . 0.8915 1
(right column gives the values 0.9042 1
when using the target gate set) 0911 1
2.9832 3

Table 4: General dataset properties. See discussion in text.

3 Output from GST

The primary output of GST is an estimated gate set. This section presents the raw estimate, and then some
useful derived quantities of the estimated gates, including comparisons to the target gates.

3.1 Raw GST estimates

Table[5|reports the estimated SPAM operations, and Table[7]reports the logic gate operations. The estimated
SPAM gates (po and Ep) are vectors in B(H), and the estimated logic gates are superoperators represented
as matrices acting on B(H), all in the Pauli basis. By taking the dot product of state preparation and
measurement vectors, estimated SPAM probabilites are computed in Table [6]

The estimated gates can be compared directly to the target gate set given in Section Ideally, they
would match. In practice, of course, they won’t. One of the best ways we have found to evaluate the
significance of discrepancies is to compare derived quantities — i.e., certain properties calculated from the
gate matrices and SPAM vectors. Deriving quantities from these raw outputs occupies the remainder of this
section.



Operator | Hilbert-Schmidt vector (Pauli basis) Matrix
0.7071
0.0003 0.9307 0.0003¢~0-620
Po 0.0002 (0.0003&0-620 0.0693 )
0.6091
0.7071
0.0004 ( —0.0246 0.0004€_i0'825>

Eo 0.0004 0.0004¢0-825 1.0246

—0.7419

Table 5: The GST estimate of the SPAM operations. Compare to Table

Ey Ec
po | 0.0482 | 0.9518

Table 6: GST estimate of SPAM probabilities. Computed by taking the dot products of vectors in
Table [5| The symbol Ex, when it appears, refers to the “complement” effect given by subtracting each of
the other effects from the identity.

Gate Superoperator (Pauli basis)
1 0 0 0
Gi —4 %1075 0.997 —0.0001  —0.0001

2x107° 0.0001 0.997 —4x107°
—-1x107® -3 x107% —0.0001 0.997
1 0 0 0
3x 1075  0.9971 0.0001 3 x107°

Gx 1x107° 0.0001  —0.0001 —0.9969
2x107% 6x107¢ 0.9969 0.0001
1 0 0 0
Gy 2 X 1()*5r —4x107% —2x107°  0.997
—-1x107> —0.0001 0.997 —0.0001

—1x1075 —0.997 0.0001 —0.0001

Table 7: The GST estimate of the logic gate operations. Compare to Table [2]



3.2 Derived quantities

Generally, the first thing that you want to know is “How far from ideal are the gates?”. To answer this, the
report tabulates several well-known definitions of distance. Table[§|lists the discrepancy from each estimated
gate to its corresponding target, as measured by:

1. Process infidelity. Infidelity is simply 1 — F, where F' is the fidelity. The process fidelity be-
tween quantum processes G, and Gy, is given by F' = Tr (‘/\/)EXI,\/)TG)Z, where x, and x;, are the
Jamiolkowski states (normalized Choi process matrices) corresponding to gate matrices G, and Gy
respectively. If the target is unitary (as is often the case), F' = Tr (x.Xs). Process infidelity is roughly
what is measured in randomized benchmarking protocols; it quantifies the incoherent error rate if
coherent errors (e.g. over-rotations) are not allowed to accumulate.

2. Trace distance. This is the Jamiolkowski trace distance between the Jamiolkowski states correspond-

ing to the two processes: di = |xo — X/t = Tt (\/(Xa — Xb)Q). This distance is useful primarily as a
proxy for the diamond norm distance, because di < do, < dim(H)dy,.

3. Diamond Norm. The diamond norm between two quantum processes G, and G is given by
Ga — Gbll, = sup, [[(Ga @ Ik)(p) — (Gb @ Ik )(p) ||, where I, is the k-dimensional identity operation,
|I-||; denotes the trace norm, and the supremum is taken over all & > 1 and density matrices p of
dimension nk, with n the dimension of G, and Gp. The diamond norm is also called the completely
bounded trace norm, and plays the analogous role for quantum process distinguishability that the trace
norm plays for density matrices. Specifically, the optimal probability of distinguishing G, from G}
after a single evaluation is given by % + i |Ga — Gbll,- The diamond norm distance is an upper bound
on the rate of error under any possible circumstance (including coherent accumulation of errors) and
is often used in proofs of fault tolerance. For gates dominated by coherent/unitary error, it is common
to see d, =~ /1 — F. For gates dominated by incoherent error, d, ~ 1 — F.

4. Frobenius-norm distance. The Frobenius norm distance between two gates G, and Gy is simply
dp =/ Tr [(Ga — Gb)z} . It has no known operational interpretation, but is very convenient as a rough

measure of inaccuracy. It is also equal to the sum of the RMS errors in the individual matrix elements
of the gates.

It’s also useful to know how the real gates (or, more precisely, GST’s estimates of the real gates) differ
from the targets. There are several ways we could represent this, but the most useful involves an error
generator. These are also given in Table [8l The final column of the table lists, for each gate, a Lindbladian
superoperator L. It is defined by the equation G = Gtargeteﬂ“, where G is the estimate and G'arget is the ideal
gate. This Lindbladian would be zero if the gates were perfect, and its overall magnitude is approximately
equal to the diamond distance (or Jamiolkowski trace distance) between the target gate and the estimate.

It’s usually useful to understand how gates fail. The error generators in Table [§| provide one view on
this, but they are not necessarily intuitive. For example, you might want to know whether your gate suffers
depolarizing, dephasing, or over-rotation errors. In Table |§|, the estimated gates are decomposed into: (1)
rotations (including angle and axis errors); (2) incoherent diagonal decay rates (depolarizing or 77 noise);
and (3) incoherent off-diagonal decay rates (dephasing or T5 noise). These analyses can be compared with
a the similar decomposition of the target gates (cf. table . Note that for some erroneous gates, this
decomposition simply fails; if the numbers make no sense, this is probably the case.

It might be useful to know the closest unitary operation to the estimated gate, and how close it is.
Usually, you were trying to implement a unitary. If the closest unitary to G was indeed Giarget, then all
errors are incoherent; if not, you might be able to tweak the gate parameters to get closer relatively easily.
Also, implementing a particular unitary may be less important than just achieving some set of mutually
independent unitaries. In these and other cases, the distance from an estimated gate to its closest unitary
approximation is of interest.

Table lists, for each estimated gate, the properties of its closest unitary approximation. The table
defines the closest unitary, in terms of an axis and angle (in B(H)) of rotation. It also presents the process
fidelity and Jamiolkowski trace distance between the estimated gate and its closest unitary approximation.



Process 1/2 Trace
Gate Infidelity ]éistance /2 -Norm
Gi 0.0022 0.0022 0.0022
Gx 0.0023 0.0023 0.0023
Gy 0.0023 0.0023 0.0023
Gate Error Generator
0 0 0 0
Gi —4x107° —0.003 —0.0001  —0.0001
4x107° 0.0001 —0.003 —4x107°
—1x107® —3x107° —0.0001 —0.003
0 0 0 0
Gx 3x107° —0.0029 0.0001 3x107°
2x107° 6x107% —0.0031 0.0001
—1x10"® —0.0001 0.0001 —0.0031
0 0 0 0
Gy 1x107° —0.003 —0.0001 0.0001
—1x107® —0.0001 —0.003 —0.0001
2x107° —4x107% —-2x1075 —0.003

Table 8: Comparison of GST estimated gates to target gates. This table presents, for each of
the gates, three different measures of distance or discrepancy from the GST estimate to the ideal target
operation. See text for more detail. The second table lists the “Error Generator” for each gate, which is the
Lindbladian L that describes how the gate is failing to match the target. This error generator is defined by
the equation G = Gtargeteﬂ‘.

A sanity check is computed by comparing the fidelity of the obtained closest unitary with a theoretical
upper bound (if a value greater than one appears in this column then the other values in that row may be
inaccurate). If these numbers are similar to those in Table |8} then the gates are as close to the targets as
they are to any unitary.

Finally, Table [11] presents each estimated gate’s Choi matriz, along with its spectrum. The Choi matrix
(sometimes ambiguously referred to as the “process matrix”) is an alternative way to describe a process.
We usually prefer the “superoperator representation”, which has the very useful property that the process
matrix corresponding to applying G, and then Gy is simply GyG,. This is completely false for the Choi
representation. Nonetheless, the Choi representation is often useful, so we present it here — but without a
detailed discussion of its properties (see, e.g. the textbook by Nielsen and Chuang).

The Choi matrix x(G) for a gate G can be simply understood in either of two ways. First, it is equivalent
(up to choice of basis) to the Jamiolkowski state defined by applying G to one half of a maximally entan-
gled bipartite state. Second, it is the general (non-diagonal) form of the well-known Kraus representation,
Glp) = >, KipK, j . The Choi matrix behaves in many ways like a quantum state, and appears naturally in
expressions for the process fidelity and Jamiolkowsi trace distance just as density matrices would enter these
expressions when computing differences between states.

Additionally, the condition of complete positivity or CP (which all real quantum processes must satisfy)
is simply the positivity of the Choi matrix. Thus, negative eigenvalues in Table[11]indicate that the estimate
violates complete positivity. If they are very small, they may simply indicate statistical fluctuations (unitary
gates have x matrices with zero eigenvalues, so any small fluctuation is likely to violate CP). If they are
large, they serve as a warning that (1) the model of CPTP maps is probably violated (usually because of
non-Markovian behavior), and (2) this estimate may produce negative or greater-than-unity probabilities.
GST does not generally impose complete positivity (although it is an option), precisely because violation of
CP is a warning flag for non-Markovian behavior (which is very common in experimental qubits).



Table 9: Eigen-decomposition of estimated gates. Each estimated gate is described in terms of: (1)
the eigenvalues of the superoperator; (2) the gate’s fixed point (as a vector in B(#), in the Pauli basis);
(3) the axis around which it rotates, as a vector in B(H); (4) the angle of the rotation that it applies; (5)
the decay rate along the axis of rotation (“diagonal decay”); (6) the decay rate perpendicular to the axis of
rotation (“off-diagonal decay”); and (7) the angle between each gate’s rotation axis and the rotation axes of

Gate Eigenvalues Fixed pt Rotn. axis | Diag. decay | Off-diag. decay
0.9971 0.9998 0
. 0.997¢%0-000 —0.0146 —0.278
Gi 0.997¢ 0000 ~0.0005 ~0.7336 0.0029 0.003
1 —0.0039 0.6201
0.9969¢°1-°71 0.9999 0
0.9969¢ #1571 0.0088 1
Gx 0.9971 1% 10-5 9 % 10 0.0029 0.0031
1 1x107° 3x107°
0.997¢1571 1 0
0.997¢ 1571 3x 1076 0.0001
Gy 0.997 ~0.0035 1 0.003 0.003
1 —1x107° 0.0001
Angle between Rotation Axes
Gate Angle e Cx Gy
Gi | 3x10™°x —
Gx 0.57 0.57
Gy 0.57 0.5m

the other gates. “X” indicates that the decomposition failed or couldn’t be interpreted.

Gat Process 1/2 Trace Rotation Rotation Sanity v
ate Infidelity Distance Axis Angle antty
0
. —0.1419 _5 _s
Gi 0.0022 0.0022 04529 3x107°7w 6x10
0.8802
0
-1 s
Gx 0.0023 0.0023 4 % 10-5 0.57 3x10
—1x107¢
0
Gy 0.0023 0.0023 1 io 0.57 1x10-8
—2x107°

Table 10: Information pertaining to the closest unitary gate to each of the estimated gates.




Gate Choi matrix (Pauli basis) Eigenvalues
0.9978 1 x 10752554 —2x 1075 5 x 10 %¢ 1638 0.0007
G 1 x 10572554 0.0008 8 x 10~ 6¢12-769 —4x107° 0.0007
2 x 107%4 8 x 10~ 6¢—12.769 0.0008 3 x 10~ 5¢?0-370 0.0008
5 x 107511638 —4x1075 3 x 109 —70-370 0.0007 0.9978
0.4993 0.4985e " 10TT 7 % 107072058 9 % 10~ 6¢ 1097 0.0007
Gx 0.4985¢"-571 0.4993 3 x 107Pe 02T 1 x 1075 ~10-357 0.0008
7 x 107 6e712:058 3 5 10~5¢?3-027 0.0007 6 x 10~ 6¢—71.512 0.0008
9 x 107 6e771:097 1 % 10750337 § x 10~ 6e?1-512 0.0008 0.9977
0.4992 0.0001¢—#1-500 0.4985¢ 15711 % 1051864 0.0007
G 0.0001¢71-500 0.0008 2 x 107 5¢0-136 3 5 10 6eil-447 0.0007
y 0.4985¢~#1:57T1 9 % 10510136 0.4993 9 x 10~ 6g—72.634 0.0008
1 x 107571864 3 5 1076 —i1447 g x 10 6¢i2:634 0.0007 0.9977

Table 11: Choi matrix representation of the GST estimated gate set. This table lists Choi repre-
sentations of the estimated gates, and their eigenvalues. Unitary gates have a spectrum (1,0,0...), just like
pure quantum states. Negative eigenvalues are non-physical, and may represent either statistical fluctuations
or violations of the CPTP model used by GST.



4 Goodness-of-model Analysis

The previous section presented the estimated gate set, and compared it to the target gate set. This section
is concerned with a mostly orthogonal analysis which seeks to explain how much the estimated gate set can
be trusted — i.e., how well it fits the data.

To understand the goal of this section, consider the simple problem of fitting a line to a set of points.
For any set of points, there is always a best-fit line — but this doesn’t mean that the best-fit line is a good
fit! The data points may trace out a parabola, a square, or even something more complicated. It is essential
to understand not just what the best-fit line was (and perhaps how close it was to some desired line), but
also how well that linear model was able to fit all the data. Of course, we do not expect it to fit
every data point perfectly. The critical question is “Did the linear model fit as well as we would expect it to
if the data really were generated by a linear process?”

In this analogy, GST’s estimated gate set is like the best-fit line, and the target gate set like the desired
line. This section asks the question “How well was GST able to fit all of the data — and did it fit well enough
to suggest that its model is valid?”. A central tool used to do this is the likelihood function, which we denote
L, which formally is the probability of the observed data given a set of model parameters. The basic idea is
that we maximize the likelihood function to obtain the best set of model parameters (i.e. gate set), and by
looking at the value of this maximum we can determine the model’s goodness-of-fit. We will actually deal
primarily with the logarithm of the likelihood function, log(£), which is simliarly maximized.

4.1 Aggregated log(L)

The log-likelihood for an n-outcome system with predicted probabilities p; and observed frequencies f;
(i=1...n) is given by:

log(L) = Z N f;log(py). (1)

where N is the total number of counts. In this analysis, log(L) is used to compare the set of probabilities
predicted by a gate set (ps) and the frequencies obtained from a dataset (fs). Each experiment (or gate
sequence) s is associated to two probabilities: “plus” has probability ps and “minus” has probability 1 — p;.
The log(£) contribution of a single gate string s is

IOg(ﬁ)s = Nfs 1Og(ps) + N(l - fs) log(l - ps)7 (2)

where N is the number of times the experiment s was performed, ps is the probability of a “plus” outcome
as predicted by the gate set, and f, is the observed frequency of “plus”. The total log-likelihood for an entire
dataset is just the sum
log(L£) = ) log(L)s. (3)
seS
A theoretical upper bound on the log-likelihood can be found by replacing ps with fs in Eq.[2]and evaluating
Eq. |3l We will refer to this quantity as log(L)ysp-

Statistical theory has quite a lot to say about the likelihood function (see any of the major textbooks).
Using some of these results, we can predict that if there are N, free parameters in the gate set that GST is
fitting, and GST fits a dataset containing N, > N, distinct experiments (gate sequences), then if the gate
set model is correct, then two times the difference between log(L£),s and the maximum log(L) obtained is a
random variable with a X% distribution, where

k= Ns— Np.

Its expected value is <X2> = k, and its standard deviation is v/2k. Thus, if the fit is “good”, then twice
Alog(L) = log(L)us — max(log(£)) should lie roughly within the interval [k — v/2k, k + v/2k]. Thus, by
comparing the difference 2Alog(L) — k to V2k, one can determine how well the GST estimate was able to
fit the data in dataset “test”.

The MLEGST algorithm used to generate this estimate is iterative. It starts by fitting only data from the
shortest gate sequences (which are easy to fit and insensitive to most non-Markovian noise), then successively

10



adds longer and longer sequences (with base sequence length L < 1,2,4,8,...) to the mix. Since we get an
estimate at each intermediate L, it is possible to quantify not just the goodness of the best fit (presented in
the previous section), but how the goodness-of-fit behaves as longer and longer sequences are added in.

This data is presented in Table What you should be looking for here is whether — at each value of L
— the 2Alog(L) quantity is roughly the same as k. More precisely, is |2Alog(L) — k| less than or equal to
V/2k? If not, then the model is not fitting as well as it should, which usually indicates non-Markovian noise
(or, rarely, that the GST algorithm has simply failed to find a good fit even though one exists).

As a rough rule of thumb, for GST experiments involving relatively long sequences (e.g. L > 100):

e “Incredibly good” (Fcsk % %) experiments have 2Alog(L) = k, as predicted by theory (and seen in
simulations).

e “Great” (%% %) experiments have 2A log(L) < 2k or so.
e “Good” (%) experiments have 2Alog(L) < 5k or so.
e “Okay” (%) experiments have 2Alog(L) < 10k.

e Experiments in which 2Alog(£) > 10k (%) have very significant non-Markovian noise, and the results
in the previous section should be viewed very cautiously.

L | 2Alog(L) k| 2Alog(L) —k | V2K D Ns, | Np Rating

0 65.664 61 4.6635 11.045 0.32 92 31 | ek kkk
1 65.664 61 4.6638 11.045 0.32 92 31 | Ydkokokk
2 159.42 137 22.419 16.553 0.09 168 | 31 . 8.8.0.¢
4 476.3 410 66.299 28.636 0.01 441 | 31 Y %k ¥k
8 903.82 786 117.82 39.648 | 2x1073 | 817 | 31 . 8.8.0.¢
16 1274.2 1170 104.16 48.374 0.02 1201 | 31 Y %k ¥k
32 1657.5 1554 103.53 55.749 0.03 1585 | 31 ). 8.8.0.¢
64 2062.1 1938 124.08 62.258 0.02 1969 | 31 %k ke
128 2490.4 2322 168.4 68.147 0.01 2353 | 31 . 8.8.0.¢
256 2831.2 2706 125.2 73.566 0.05 2737 | 31 Yk kK

Table 12: Comparison between the computed and expected maximum log(£) for different values
of L. Ng and N, are the number of gate strings and parameters, respectively. The quantity 2A log(L)
measures the goodness of fit of the GST model (small is better) and is expected to lie within [k—+/2k, k-+v/2k]
where K = N; — N,,. p is the p-value derived from a X% distribution.(For example, if p = 0.05, then the
probability of observing a x? value as large as, or larger than, the one indicated in the table is 5%, assuming
the GST model is valid.) The rating from 1 to 5 stars gives a very crude indication of goodness of fit as
explained in the text.

4.2 Detailed likelihood analysis

The aggregated 2A log(£) numbers presented in Table [12] tell you how well the GST estimate fits the entire
dataset. If they are in line with theory (2Alog(L) ~ k), then there is little more to be said. But if the best
fit to the data is not good, we can debug it by identifying which experiments are inconsistent with the fit.

Figure [1] displays the 2Alog(L) contribution from each individual gate sequence (Eq. [2). Each gate
sequence corresponds to a single colored “pixel” in the plot. Each block of pixels corresponds to a single
base sequence (i.e., a germ power), and the individual pixels within a block correspond to the various
fiducial sequence pairs between which that base sequence was sandwiched. (The column indicates the fiducial
adjacent to state preparation, while the row indicates the fiducial adjacent to measurement). Base sequences
are arranged in a grid; different rows correspond to different germs, while different columns correspond to
different maximum lengths L. Pixels are labeled with the 2Alog(L) contribution for that sequence, and
colored appropriately.
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Sequences whose observed frequencies are consistent with a Markovian gate set are shown in gray, with
darker shades indicating greater inconsistency with the estimated gate set. Data shown in red are not
consistent with a Markovian gate set. It may appear contradictory to say that (a) gray is “consistent”
with Markovian, but (b) darker shades indicate “greater inconsistency”. The resolution is that the y2
values quantify inconsistency with the model, but they themselves are also subject to random fluctuations.
Therefore, even if the data are perfectly consistent with the model, we expect to see (for example) a single
X2 > 10 once per each 638 experiments. Observing x? > 10 for any given sequence does suggest that the
data from s were relatively surprising, but we also expect to see one such fluctuation if there are more than
about 600 experiments. The gray/red threshold is chosen based on the total number of sequences so that if
the data are perfectly Markovian, then the probability of one or more experiments being colored red is only
5%.

Identifying patterns and trends within such “pixel plots” can aid in identifying specific sources and types
of non-Markovian noise which may be to blame if the GST algorithms are unable to produce a “good”
estimate. For example, it is often the case that all the short sequences [L = O(1)] can be fit reasonably
well, but the right-hand side of Figure [1| becomes a sea of red. This indicates that non-Markovian behavior
(potentially due to slow drift of gate set parameters) is becoming more significant for longer experiments.
In other cases, a single row may be particularly bad, indicating that a particular gate or germ is especially
problematic (e.g., was not stabilized using dynamical decoupling techniques). Be cautious in debugging,
however — sometimes bad log(L) values for a particular gate or germ can result not from faults in that
operation, but because another operation failed so badly that it distorted the entire fit (e.g., in trying to fit
catastrophically non-Markovian data at Point A, GST ended up failing to fit perfectly good data at Point
B).

Similar pixel plots for the intermediate estimates whose total 2A log(L) is listed in Table |12 are included
when the “pixel plots” appendix is enabled.

Similar pixel plots for the intermediate estimates whose total 2A log(L) is listed in Table can be found
in Appendix

Figure [2[ shows exactly the same log(L) analysis as Figure |1} but arranged differently. Here, blocks
(not square) all correspond to a single fiducial pair (e.g., pre- and post-fiducial), and pixels within a block
correspond to different base sequences. This can be useful for diagnosing a single bad fiducial sequence.
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