Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Code PythonVersion PyPI version Build Status codecov Documentation Status DOI Downloads

pyRiemann is a Python machine learning package based on scikit-learn API. It provides a high-level interface for processing and classification of multivariate time series through the Riemannian geometry of symmetric positive definite (SPD) matrices.

pyRiemann aims at being a generic package for multivariate time series classification but has been designed around multichannel biosignals (like EEG, MEG or EMG) manipulation applied to brain-computer interface (BCI), transforming multichannel time series into covariance matrices, and classifying them using the Riemannian geometry of SPD matrices [1].

For BCI applications, studied paradigms are motor imagery [2] [3], event-related potentials (ERP) [4] and steady-state visually evoked potentials (SSVEP) [5]. Using extended labels, API allows transfer learning between sessions or subjects [6].

This code is BSD-licenced (3 clause).


The documentation is available on


Using PyPI

pip install pyriemann

or using pip+git for the latest version of the code :

pip install git+

Anaconda is not currently supported, if you want to use anaconda, you need to create a virtual environment in anaconda, activate it and use the above command to install it.

From sources

For the latest version, you can install the package from the sources using the script

python install

or in developer mode to be able to modify the sources.

python develop

How to use it

Most of the functions mimic the scikit-learn API, and therefore can be directly used with sklearn. For example, for cross-validation classification of EEG signal using the MDM algorithm described in [2], it is easy as:

import pyriemann
from sklearn.model_selection import cross_val_score

# load your data
X = ... # EEG data, in format n_epochs x n_channels x n_times
y = ... # labels

# estimate covariance matrices
cov = pyriemann.estimation.Covariances().fit_transform(X)

# cross validation
mdm = pyriemann.classification.MDM()

accuracy = cross_val_score(mdm, cov, y)


You can also pipeline methods using sklearn pipeline framework. For example, to classify EEG signal using a SVM classifier in the tangent space, described in [3]:

from pyriemann.estimation import Covariances
from pyriemann.tangentspace import TangentSpace

from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score

# load your data
X = ... # EEG data, in format n_epochs x n_channels x n_times
y = ... # labels

# build your pipeline
covest = Covariances()
ts = TangentSpace()
svc = SVC(kernel='linear')
clf = make_pipeline(covest, ts, svc)

# cross validation
accuracy = cross_val_score(clf, X, y)


Check out the example folder for more examples !

Contribution Guidelines

The package aims at adopting the scikit-learn and MNE-Python conventions as much as possible. See their contribution guidelines before contributing to the repository.


If you make a modification, run the test suite before submitting a pull request


How to cite

  author       = {Alexandre Barachant and
                  Quentin Barthélemy and
                  Jean-Rémi King and
                  Alexandre Gramfort and
                  Sylvain Chevallier and
                  Pedro L. C. Rodrigues and
                  Emanuele Olivetti and
                  Vladislav Goncharenko and
                  Gabriel Wagner vom Berg and
                  Ghiles Reguig and
                  Arthur Lebeurrier and
                  Erik Bjäreholt and
                  Maria Sayu Yamamoto and
                  Pierre Clisson and
                  Marie-Constance Corsi},
  title        = {pyRiemann/pyRiemann: v0.3},
  month        = jul,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {v0.3},
  doi          = {10.5281/zenodo.7547583},
  url          = {}


[1] M. Congedo, A. Barachant and R. Bhatia, "Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review". Brain-Computer Interfaces, 4.3, pp. 155-174, 2017. link

[2] A. Barachant, S. Bonnet, M. Congedo and C. Jutten, "Multiclass Brain-Computer Interface Classification by Riemannian Geometry". IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012. link

[3] A. Barachant, S. Bonnet, M. Congedo and C. Jutten, "Classification of covariance matrices using a Riemannian-based kernel for BCI applications". Neurocomputing, 112, pp. 172-178, 2013. link

[4] A. Barachant and M. Congedo, "A Plug&Play P300 BCI Using Information Geometry". Research report, 2014. link

[5] EK. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli and Y. Hamam, "Online SSVEP-based BCI using Riemannian geometry". Neurocomputing, 191, pp. 55-68, 2014. link

[6] PLC. Rodrigues, C. Jutten and M. Congedo, "Riemannian Procrustes analysis: transfer learning for brain-computer interfaces". IEEE Transactions on Biomedical Engineering, vol. 66, no. 8, pp. 2390-2401, 2018. link