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Overview

• Quantum computing advantages
• in terms of computational time and outcomes

• for pattern recognition or when using limited training sets

• Objective: classify two states (P300 ERPs) from a BCI experiment using 
a Quantum Classifier

EEG dataset
Riemannian Geometry + 

Tangent Space

Quantum 
classifier
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Literature on quantum computing suggests it may offer an advantage as compared 
with classical computing in terms of computational time and outcomes, such as for 
pattern recognition or when using limited training sets.
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Projects and Tools

• MOABB - helper project

• pyRiemann - state of the art ERP classification

• QISKIT - IBM Python wrapper around Quantum Computing

• pyRieamann-qiskit - PyRiemann + QISKIT + MOABB
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pyRieamann-qiskit combines the 3 projects above,so that we can easily apply 
Quantum computing on EP EEG signals.
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MOABB

• Github project page:

https://github.com/NeuroTechX/moabb

• Reproducible research
• same performance evaluation code and datasets

• EEG/MEG datasets and specifically P300 ERPs

• Automatic download
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PyRiemann (1)

• Github project page:

https://github.com/pyRiemann/pyRiemann

• Python ML framework

• Provides very good classification for BCI (P300, motor imagery)
• No preprocessing is needed

• Multi channel and Multiclass

• Works well between different sessions and subjects

• It won several BCI challenges
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PyRiemann provides state of the art classification of ERP signals.
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PyRiemann (2)

• Uses Riemannian Geometry

• Can use a matrix as in input

• Methods:
1. Covariance matrices + Tangent Space + standard classifier

2. Own MDM (Minimum Distance to Mean) classifier
• similar to K-means classifier, but supervised

• centroids are calculated for each class

• specific “distance” and “mean” used

• no manual parameter tuning

3. Other methods
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K-means is unsupervised in general, but here in MDM we use labeled data to build 
the two clusters for the classes: with or without P300 ERP. 
We need to properly define the distance and mean we are going to use. “distance” as 
defined using Riemannian Geometry.
Inherited from the geometric distance, the geometric mean is an appropriate 
descriptor of the central tendency (expected value) for the variance, while, inherited 
from the Euclidean distance, the arithmetic mean is not. 
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Covariance matrices + Tangent 
Space + standard classifier
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Any Classifier

The workflow can be used by a Quantum Classifier

- From each P300 epoch we calculate a “covariance matrix”. We want to preserve 
the spatial information in the covariance matrix. Usually the covariance matrix is 
vectorized (all rows of the matrix are put one after another) to form a single input 
vector to be used by any classifier, but here this is avoided. The spatial covariance 
matrix Cp is calculated using the single trail Xp (channels x samples): Cp = 1 / (T-1) 
* Xp * Xp(transposed).

- Cp is symmetric by definition
- With sufficient data Cp becomes positive definitive, otherwise it must be 

regularized (there are known algorithms for that)
- Next the space of SPDs creates a manifold (based on the training data)
- This manifold becomes Riemannian manifold M by adopting an Affine Invariant 

Metric
- Now we can apply Riemannian Geometry for M
- Each Cp can be represented in M
- For each point on the manifold M a tangent space T can be defined
- We need to select a reference point C as to where to construct the tangent space T. 

Usually this reference point  is the Geometric Mean. The Geometric Mean might 
not be the best reference point, but usually is a very good choice. The Geometric 
mean is calculated iteratively

7



- Each point on the manifold (each covariance matrix) can be projected on T using 
log mapping (and back using exponential mapping). A kind of optimization is C to 
become the identity matrix and to use parallel transport (parallel translation)

- So the Riemannian distance in M is well approximated by Euclidean distance in T –
so T (which is 2 dimensional) acts as a very good approxomation of M

- Any classifier can be used in T
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Riemannian representation of the ERP data
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Good feature vector

EGG signal epoch

By using PyRiemann we get a good a feature vector that can be used for Classical or 
Quantum Classification.
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Qiskit (1)

• Github project page: https://github.com/Qiskit/qiskit

• Launched in 2017 by IBM Research

• Provides access to IBM’s cloud quantum computing service 

• Where can it be used?
• Qiskit Finance

• Qiskit Optimisation

• Qiskit Nature

• Qiskit Machine Learning (<- we are here)

• Emulated vs Real Quantum computer
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We are in the exploration phase of Quantum computers. But the fact that anyone can 
access a real quantum computer is impressive and will help progress the domain.
Qiskit framework can be used on two levels: at a low level for Quantum models (as 
shown on the next slide) or at a higher level where a Quantum classifier is already 
provided (and we can focus on the hyper parameters).
Qiskit has 3 ML algorithms: QSVM (Quantum-enhanced Support Vector Machine) and 
VQC (Variational Quantum Classifier) and QGAN (Quantum Generative Adversarial 
Network).
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Qiskit (2)
• Quantum circuit

• Quantum bits

• Operations

• Registers:
• Quantum (q1,q2)
• Classical (c1)

• Code generated:
• Python
• QASM

• Result is the 
measurement of q1 
available  c1 https://quantum-computing.ibm.com
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With Qiskit we are doing Quantum Programming.
Qiskit compiles an algorithm to a quantum circuit.
Quantum bits can be manipulated in ways that can only be described by quantum 
physics.
Each quantum bit can seen as a “quantum register”. Classical bits form “classical 
register”.
Quantum circuit is a combination of operations on these registers. Here the quantum 
circuit is comprised from the quantum bits q0, q1, q2 and a normal bit c1.
Quantum operations include quantum gates, such as the Hadamard gate, as well as 
operations that are not quantum gates, such as the measurement operation.
From the Web interface you can generate either Qiskit python code or QASM (Open 
Quantum Assembly Language). 
Qubits are always initialized to give the output 0.

Quantum operations:
https://qiskit.org/textbook/ch-states/atoms-computation.html
H – is a Hadamard gate
+ - is a CX (CNOT) gate on control qubit 0 and target qubit 1 (a classical XOR gate). It 
looks at its two input bits to see whether they are the same or different. Next, it 
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overwrites the target qubit with the answer. The target becomes 0 if they are the 
same, and 1 if they are different. Another way of explaining the CNOT is to say that it 
does a NOT on the target if the control (the first quantum bit) is 1, and does nothing 
otherwise.
X – is a NOT gate (circle with + inside, exactly after Hadamard gate)

Textbook on Qiskit: https://qiskit.org/textbook/preface.html
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Quantum-enhanced Support Vector Machine (QSVM)

• Quantum Kernel
• Generated based on the input data and the Quantum Feature Map (QFM)

• QFM
• Maps classical data to Quantum states in Quantum Hilbert space

• Implemented as Quantum Circuit

• Can be used in SVM, Kernel Spectral Clustering or Kernel Ridge Regression

• QSVM
• QSVM inherits from ScikitLearn.svm.SVC (conventional SVM)

• Uses the Quantum Kernel

• Size of input vectors = n of qubits 
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Going to the higher dimensional space called “Feature Space” is done using a 
“kernel”. The job of the kernel is to transform linearly inseparable data to linearly 
separable space.
A Quantum Feature Map V(Φ(𝑥⃗)) converts classical data to quantum data. It maps to 
quantum Hilbert space with specific property of the dot product. The reason of 
choosing a QFM is to get the quantum advantage.
Based on the QFM we construct a quantum kernel (during the training phase).
The QFM is modeled using a quantum circuit and quantum operations as shown in 
the previous slide. 
A different QFM will produce a different kernel. The default Quantum Feature Map 
(QFM) is ZZFeatureMap: 
https://qiskit.org/documentation/stubs/qiskit.circuit.library.ZZFeatureMap.html

Links and extras:
The Quantum Kernel python class in Qiskit is:
qiskit_machine_learning.kernels.quantum_kernel
Check also on IBM web-site: qiskit-tutorials/qiskit-machine-
learning/03_quantum_kernel.ipynb
QSVC code: https://github.com/Qiskit/qiskit-machine-
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learning/blob/1f01764186ad5e6fd4b88deb4dfec1e5cbb05d03/qiskit_machine_learn
ing/algorithms/classifiers/qsvc.py
Article Quantum Feature Map: https://shubham-agnihotri.medium.com/quantum-
machine-learning-102-qsvm-using-qiskit-731956231a54
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Diagram with real Quantum Computer

ZZFeatureMap

Input data
Precomputed Quantum 

Kernel Matrix

Scikit Learn 
SVC

Quantum 
Computer
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The algorithm starts on your laptop, then the model representing the kernel and the 
data are sent to a real quantum computer.  The result is a kernel that is compatible 
with Scikitlearn’s implementation of Support Vector Machines.
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PyRiemann-qiskit

• Github project page: https://github.com/pyRiemann/pyRiemann-qiskit

• Facilitates the classification of ERP signals with Quantum Computing

• Trying to get the best of both PyRiemann and Qiskit

13
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Classification
• Dataset: bi2012 – P300, Gipsa-lab BCI game Brain Invaders, MOABB 

• Two ML pipelines:
• Both using Riemannian Geometry and Tangent Space
• Quantum bits = PCA components
• But the final classifier is different 

• Evaluation
• Provided by MOABB
• k-fold cross-validation
• Per session

• Experience on a real IBM quantum computer
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RG + Tangent 
Space

LDA 
classifier

RG + Tangent 
Space

QSVM 
classifier

The following pipeline “Xdawn spatial filter, Riemannian Geometry, Tangent Space, 
PCA” is used to generate the same feature vectors before applying a simple LDA or 
QSVM.
One subject can have several recorded sessions playing the BCI game Brain Invaders.
“Within-session” evaluation uses k-fold cross-validation to determine train and test 
sets for each separate session for each subject 
http://moabb.neurotechx.com/docs/generated/moabb.evaluations.WithinSessionEva
luation.html
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Evaluation using Quantum Emulation

Dataset: bi2012
Subjects: 25
Classes: 2

Accuracy:
- RG+LDA: 0.88
- RG+QuantumSVM: 0.72

Quantum emulation is
3 times slower
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Evaluation of the two pipelines.
Both finish in 5 minutes on a regular laptop.
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Experience on real IBM Quantum computer

• Training is slow due to usage restrictions
• Many quantum jobs are needed

• Each quantum job is queued

• Classification score can be low due to:
• Low number of “shots”

• Too small feature vector (depends on available quantum bits)

• Noise in quantum computers

• Not sufficient data 
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Training is slow because many users are “fighting” for the same “quantum computer”. 
Building the Quantum Feature Map is done by performing many “Quantum jobs” (a 
unit of work executed on a Quantum computer).
“Shots” – the number of times the circuit is executed. More shots gives more 
confidence in the result, but it also takes much longer to process.
The size of the generated feature vector (based on RG + Tangent Space) is limited to 
the number of available quantum bits.
A real quantum computer should perform less accurately than an emulated one. 
Although an emulated quantum computer can include emulation of quantum noise.
Adding more data (P300 ERP epochs) means more quantum jobs and more time to 
complete. But limiting the input data however means less training of the QSVM.
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Questions? 
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