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Abstract—Riemannian geometry-based methods have shown
to be effective in many sorts of Brain-Computer Interface (BCI)
applications, but are only capable of measuring the power of the
measured signal. This paper proposes a set of novel features
derived via the Hilbert transform and applies them to the
generalized Riemannian manifold, the Hermitian manifold, to see
whether the classification accuracy benefits from this treatment.
To validate these features, we benchmark them with the Mother
of All BCI Benchmarks framework, a recently introduced tool
to make BCI methods research more reproducible. The results
indicate that in some settings the analytic covariance matrix can
improve BCI performance.

I. INTRODUCTION

BCI research suffers from little and noisy data, making
robust feature generation crucial for building good classifiers.
However, most methods are either based on the band-power
or covariance of the time domain signal, such as common
spatial pattern (CSP) [1, 2], which may imply that only a small
fraction of the information contained in the electroencephalog-
raphy (EEG) signal has been efficiently utilized. Considering
the intractable problem of data scarcity, the other feasible
breakthrough is via extracting more information from the
signal and constituting novel features.

To best deal with the non-stationarities of the EEG sig-
nal, neither spatial filtering nor a conventional power-based
classification scheme is employed in our work. Instead, we
adopt the Riemannian classification framework due to two
reasons [3, 4]: First, Riemannian approaches intend to replace
the conventional Euclidean metrics with Riemannian metrics,
which are a more appropriate measure of the distance between
the symmetric positive definite (SPD) covariance matrices
computed from the filtered EEG signal. Next, this framework
outperforms standard spatial-filtering based approaches signif-
icantly in a recent meta-analysis [5], which may imply that
classifiers built on these metrics are more robust.

Since noise is always an impediment to power-based analy-
ses, phase or frequency methods have been adopted in order to
focus on non-power-related aspects of the EEG signal. In par-
ticular, phase locking value [6], phase synchrony [7], and the
average shift in frequency during a segment of EEG data [8]
have also shown to add relevant information to classification.
Being able to take advantage of the power of the Riemannian

approaches while also using the additional information present
in phase-based features may further improve classification
outcomes in BCI.

As the most direct method to decode the phase information
from the time-domain signal, the Hilbert transform (HT) has
been explored in BCI [8, 9]. The HT is chosen in our work
for two additional reasons: First, the power information of the
signal remains identical after the HT is applied, which may
imply common power-based methods could still be valid for
transformed signals. Second, through the HT it is possible to
compute the analytic signal, which can extend the real analysis
of EEG signal into the complex domain. Furthermore, the
generalization of the Riemannian manifold is well-defined in
the complex number domain, and its metrics make it possible
to measure the distance between analytic signals, which carry
both phase and amplitude information. We would anticipate
that the additional information carried with the analytic signal
and Hilbert transformed (HT-ed) features could be beneficial
as indicated by the success of the phase locking value [6].

The main contribution of this paper is: we generalize the
currently best-performing feature extraction framework for
BCIs into the complex domain and generate a set of novel
features from it. Afterward, these features are validated using a
new meta-analysis tool that allows us to compare effectiveness
across over 250 subjects from various open-access datasets.

The remainder of this paper is structured as below: In
Section II the Riemannian framework and the HT are briefly
introduced. Afterward, we proceed with the Hermitian metrics
and analytic features. Subsequently, the Mother of All BCIs
Benchmarks (MOABB) [5] and its settings are given. Some
important results are presented in Section III and illustrated
in Section IV. Ultimately, we discuss the prospect of the
proposed features in Section V.

II. METHODS
A. Riemannian classification framework

1) Riemannian metric: To use Riemannian manifold-based
techniques, we first compute the covariance matrices for the
signal from each trial. Standard Euclidean distances between
covariance matrices are not robust, but recent work has
shown that various other metrics can more reliably capture
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the structure of a set of covariance matrices. In this paper,
the adopted metric is the affine-invariant Riemannian metric
(AIRM) [10] where the ”affine-invariance” means that the
distance between two SPD matrices remains invariant after any
affine transformation [11]. While a robust measure of distance,
geometric properties such as geodesics and intersection angles
on the manifold are complicated to compute. Therefore, by
employing the logarithm mapping of matrices [3], we project
the covariances on the manifold to the vectors lying on the
tangent space (TS) centered around a point in order to use
standard linear classification methods. The centered point is
usually chosen as the mean covariance matrix to minimize the
mapping error. One major benefit of classifying the vectors on
the TS is the implicit filtering on the data which could get rid
of the influence of noise [3].

B. Hilbert transform and analytic signal
The HT is routinely employed to estimate phase [12] or

frequency [8, 9] features via the analytic signal. Because the
instantaneous phase information can be extracted by compar-
ing the information encoded within the real portion with the
imaginary portion of analytic signal, i.e., x(t) and H [(x(t))]
respectively. In our paper, besides the phase-related features,
we are also interested in the information contained by the
imaginary portion of the analytic signal, i.e., the HT-ed signal
H [(x(t))]. In the time domain, it can be easily seen from
its definition that the HT produces a weighted sum of the
neighborhood of a point, where the weighting is signed and
inversely proportional to distance.

Except for computing phase-related features, another advan-
tage we take from the HT and the analytic signal is the ability
to generalize real analysis into the complex analysis, which is
seldom considered in the BCI field but rather common in the
signal processing fields.

C. Classification on the Hermitian manifold
1) Hermitian metric: A Riemannian manifold is defined as

a real manifold, which means that a complex-valued point can-
not be measured properly with Riemannian metrics. Hence, we
choose the Hermitian metrics which are a complex analogue
of the Riemannian metrics, which in the particular case of the
AIRM means we utilize the Hermitian inner product instead
of the fully real version.

2) Analytic features: In the manifold approach, the features
to be classified are the tangent vectors (TVs) mapped from the
covariance matrices on the manifold, which are computed from
three kinds of signal matrices: the time domain signal X(t),
the HT-ed signal H [X(t)], and the analytic signal X̃(t) =
X(t) + iH [X(t)].

After computing the corresponding covariance matrices,
they are mapped onto the TS and then vectorized into the
TVs. However, the TVs from the analytic signal are complex,
which presents a problem to standard classification techniques.
Therefore, the classification of analytic TVs in the complex
domain will not be inspected in our work. Instead, the real
part and imaginary part of the complex TVs are examined
independently. Moreover, in order to check the effectiveness
of additional information encoded with the analytic signal, we
concatenate the real and imaginary part of the complex TVs
as a new type of analytic features. Therefore, five types of
features are tested in our work as summarized below:

• RE: TVs from the covariance matrices of time domain
signal - E

{
X(t)XT (t)

}
• IM: TVs from the covariance matrices of HT-ed signal -
E
{
H [X(t)]HT [X(t)]

}
• Cov. Mat. real: TVs from the real part of analytic covari-

ance matrices - E
{
X(t)XT (t) +H [X(t)]HT [X(t)]

}
• Cov. Mat. imag: TVs from the imaginary part of analytic

covariance matrices-E
{
H [X(t)]XT (t)−X(t)HT [X(t)]

}
• Cov. Mat. re+im: Concatenation of Cov. Mat. real and Cov.

Mat. imag

D. MOABB Framework

We choose the MOABB framework for our analysis for
two main reasons: First, by applying our proposed method on
multiple datasets, we could acquire more trustworthy results.
Second, our work will be more reproducible thanks to the open
datasets and the framework provided by MOABB.

1) Datasets: In the following analysis, three typical
paradigms of motor imagery (MI) signal are chosen: left hand,
right hand, and feet MI. For each pair of comparisons, eight
datasets are chosen to keep balance. For more details on the
selected MOABB datasets, e.g., the number of channels and
subjects, please refer to Table I.

TABLE I: Brief Summary of MOABB Datasets

Dataset Name Motor Imagery #Channels #Subjects #SessionsLeft vs Right Hand Feet vs Right Hand
Alexandre Motor Imagery X 16 8 1

BNCI 2014-001 X X 22 9 2
BNCI 2014-002 X 15 14 1
BNCI 2014-004 X 3 9 5
BNCI 2015-001 X 13 12 2/3
BNCI 2015-004 X 30 9 2
Cho et al. 2017 X 64 49 1

Munich Motor Imagery X 128 10 1
Physionet Motor Imagery X X 64 109 1

Shin et al. 2017 X 25 29 3
Weibo et al. 2014 X X 60 10 1
Zhou et al. 2016 X X 14 4 3
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2) Setting of framework: We first limit our analysis to MI.
Next, the classifications are all done within-session such that
the non-stationarity is reduced to a minimum. As we are
working with MI, our analysis is restricted to α and β band
(8Hz ∼ 32Hz) which is less contaminated by noise and more
neurophysiologically interpretable. In all datasets, all channels
are selected except for the electrooculography (EOG) channel.

E. Pipeline

1) Features: The HT is first performed on the filtered signal
along the time axis to compute the analytic signal. Next,
in order to ensure all covariance matrices are full-rank, the
estimation of the covariance matrices is regularized via the
oracle approximating shrinkage estimator. Subsequently, the
covariance matrices are projected to the TVs which comprises
two steps: First, the geometric mean is computed for all co-
variance matrices based on AIRM. Afterward, the covariance
matrices on the manifold are mapped to the TS based on the
mean point and then converted into TVs.

2) Classification: Fisher’s Linear Discriminant Analysis
(LDA) is chosen as our classification algorithm without regu-
larization, and the accuracies are calculated with 5-fold cross-
validation within each session.

3) Statistical analysis: Two statistical parameters are uti-
lized: the p-values and the effect size (standard mean differ-
ence, SMD). We compute the p-value for the one-sided test

within each dataset, whose null hypothesis is that the median
accuracy of RE is not larger than that of another feature. As for
more details, such as which model is employed to calculate p-
values and which algorithm is used to combine p-values from
multiple datasets, please refer to [5]. The effect size is taken
as the SMD in the direction of the accuracies of RE minus
the accuracies of another feature.

III. RESULTS

Fig. 1 shows the comparison of accuracies using various
features for different tasks. When comparing between RE and
IM for both tasks, their performance tied with each other.
However, from the results in the second column, we could
note that RE is significantly better than the real part of complex
TVs (Cov. Mat. real) when comparing between left and right
hand MI signal, but not in the case of right hand versus feet.
Interestingly, the subplots in the third column show that RE is
significantly better than Cov. Mat. imag in both comparisons.
Lastly, after using the concatenated features, there is no clear
winner again. However, for some datasets, the novel features
even improve the performance.

To figure out what happened to each dataset in the last
column subplots of Fig. 1, the relevant meta-analysis has been
conducted, and its results are as shown in Fig. 2. Subplot (a)
shows that RE generally outperforms Cov. Mat. re+im for left
versus right hand MI. However, when distinguishing between
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Fig. 1: Accuracies comparison between using different features (Section II-C2). In each subplot, every point represents the
classification results from one subject and the results from different datasets are distinguished from the shape and color of
markers. Statistical parameters: overall p-value of one-tailed test p and overall effect size (SMD) t are computed based on
the parameters from each dataset (Section II-E3). Text color: green - significant (p < 0.05 and t > 0) , black - not significant
(p >= 0.05) , red - contradictory (p < 0.05 but t < 0)
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feet and right hand MI, although there is no overall significant
result, we could still notice that the concatenated features
outperform the RE in three datasets with sizable effect and
p-values lower than 0.03, which is rather surprising.
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Fig. 2: Meta analysis: p-value p and SMD are computed within
each dataset. Black ∗ means this dataset appears in both tasks.
Red ∗, ∗∗ and ∗∗∗ represent p < 0.05, 0.01, 0.001 respectively

IV. DISCUSSION

Our goal was to verify whether those novel features de-
rived via the Hermitian framework would be beneficial for
classification accuracy. Based on the results in Section III, our
novel features show increased performance in some situations,
suggesting that complex covariance matrices may allow for a
larger portion of the information in the EEG signal to be used.

In Fig. 1 the tied performance between RE and IM is
regardless of the number of channels. These phenomena
indicate that the information encoded in the IM is almost as
effective for classification as that in RE. In other words, there
is no information loss when using these new features, which
is consistent with the fact that the HT does not alter the power
spectrum of a signal. In addition, the subplots in the second
column of Fig. 1 imply that RE is less effective when the
location of stimulation sources are highly overlapped, such as
when comparing feet and hand MI. Besides, although Cov.

Mat. imag is significantly worse than RE with SMD > 0.8,
it is still a predictive feature. The imaginary portion of the
covariance corresponds to the covariance of the signal with its
Hilbert transform, which has no obvious relationship to phase
or amplitude.

Most surprising are the results in the last column of Fig. 1
and in Fig. 2. Although on average the Hermitian framework is
not very effective, for some datasets the Hermitian-based sig-
nals (Cov. Mat. re+im) significantly outperform the Rieman-
nian ones (RE) with very small p-values when classifying feet
versus right hand imagery. In particular, for the case of Weibo
2014, this increase in performance is despite the addition of
over 1800 additional features without any extra labels, which
suggests that there is a rather prominent predictive component
in the imaginary portion of the covariance.

V. CONCLUSION
In this paper, we propose a novel way to generate features

which combine the Riemannian classification framework and
the Hilbert transform together. Although the explanations of
Cov. Mat. imag and concatenated features are still inadequate,
their good performances convey the information that it would
be worthy to explore them more which could also inspire
researchers to find more relevant features in the future.
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