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A B S T R A C T

In this thesis, we develop efficient mathematical models of lithium-ion
batteries and the key degradation mechanism, Solid–electrolyte inter-
phase (SEI) growth. By doing this, we provide a modular mathematical
framework for lithium-ion battery modelling from which an appropri-
ate fidelity model can be selected and extended. Our approach is to
develop detailed physics-based models motivated by standard electro-
chemical modelling approaches and then employ asymptotic methods
to systematically simplify these models. An important output of this
work is an open-source battery modelling software called PyBaMM
(Python Battery Mathematical Modelling) that allows other researchers
to easily use and interact with the models we develop.
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1
I N T R O D U C T I O N

1.1 O V E RV I E W

With the shift to vehicle electrification and renewable energy sources,
lithium-ion batteries are emerging as one of the most important tech-
nologies of the 21st century. The first lithium-ion batteries were devel-
oped during the 1970s and 1980s by Jon B. Goodenough and collabo-
rators at the University of Oxford [16]. Since then we have witnessed
large increases in energy and power density, and huge reductions in
the cost of production. These advances have brought electric vehicles
to the centre of the plans of car manufacturers and created a boom in
lithium-ion battery manufacturing. To further advance these technolo-
gies, and properly manage them, there is a clear need to develop our
quantitative understanding of lithium-ion batteries.

The term battery can be used to refer to individual cells, modules (a
connected set of cells), or packs (a connected set of modules). Lithium-
ion cells come in three major formats: cylindrical cells (e.g. the 18650
cells used by Tesla), pouch cells, and prismatic cells. Our attention
is directed towards individual lithium-ion pouch cells although our
modelling approaches can be adapted to the other cell formats.

Lithium-ion pouch cells consist of many repeated electrochemical
layers. Each electrochemical layer consists of two electrodes, a porous
separator, an electrolyte, and two current collectors, as depicted in Fig-
ure 1.1. Each electrode consists of active material particles (shown as

L∗
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L∗
cn L∗

n L∗
s L∗

p L∗
cp

L∗
x

R∗
n R∗

p

Current collector
Negative electrode
Separator
Positive electrode

Electrolyte

– +

Figure 1.1: Schematic of a single layer of a lithium-ion pouch cell. Active
material particles are shaded cross-stitch and diagonally for the
negative and positive active materials, respectively.
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2 I N T R O D U C T I O N

spheres) within which lithium can be stored, and a binder (not shown)
which holds the electrode together and maintains an electrical connec-
tion between the active material particles and the current collectors.
Additionally, a tab is located at the top of each current collector, to
provide an electrical connection to the layer. Typically, the negative and
positive tabs of each layer (referred to as soft tabs) are connected to a
master negative tab and a master positive tab (referred to as hard tabs)
so that each electrochemical layer is connected in parallel.

Upon discharge, lithium intercalated in the negative electrode parti-
cles migrates to the surface of the particles where an electrochemical
reaction occurs. This electrochemical reaction produces a lithium ion,
which is free to move through the electrolyte and an electron which is
free to move through the electrode. The electron travels through the
electrode, into the current collector and tab, and through an external
circuit. Meanwhile, the lithium ion migrates through the electrolyte
towards the positive electrode. At the surface of the positive electrode
particles, the lithium ion and electron combine through another elec-
trochemical reaction to form a lithium atom intercalated in the positive
electrode particle. To charge the battery, a voltage is applied across the
cell and the whole process occurs in reverse.

The picture we have described above is of an idealised lithium-ion
cell. In reality, many degradation mechanisms occur within the cell
that result in deviations from this idealisation. A few of the major
mechanisms are: the growth of the solid–electrolyte–interphase (SEI),
which is a side reaction that consumes lithium; lithium plating, another
side reaction that consumes lithium; and loss of active material, where
particles either crack or become fully detached from the electrode and
hence cannot be used to store lithium. Even these main mechanisms
are not well understood quantitatively. For an overview of known
degradation mechanisms in lithium-ion batteries, see [10]. Each of
these degradation mechanisms results in capacity fade and/or power
fade of the cell, which render the cell less valuable.

1.2 M O T I VAT I O N

Many important factors influence the design of lithium-ion cells. A few
examples are the chemical composition of the electrodes and electrolyte
[1], the size distributions of active material particles [39], [76], the thick-
ness of the electrodes, the porosity of the electrodes [96], the format of
the cell (cylindrical or pouch), cell dimensions [38], and tab placement
[38]. The ideal lithium-ion cell would have a high energy and power
density, have limited degradation, and be low cost. However, design
trade-offs must be made between these objectives. For example, to
increase the power density of a lithium-ion cell, we could increase the
surface area of the active material by having smaller particles. Unfor-
tunately, increasing the surface area of the particles has been found to
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increase the rate of degradation [24]. Understanding degradation is,
therefore, a key challenge in the design of lithium-ion cells.

Degradation is also key in the management of lithium-ion cells (e.g.
in vehicle-to-grid applications [62] and grid storage [60], [72]). In [72],
significant improvements in system management were demonstrated
by employing physics-based mathematical models of a lithium-ion
cell instead of simpler alternatives. Thus highlighting the potential
benefits of developing better mathematical models of lithium-ion cells
and degradation mechanisms.

In this thesis, we divide the task of understanding degradation into
two key challenges. These are

1. Develop efficient mathematical models of a lithium-ion cell.

2. Develop an accurate model of the growth of the SEI.

The motivation behind the first challenge is to address the fact the
simulating degradation, which occurs over many cycles and very long
timescales, is a computationally intensive task. Brute force simulation
of a complex model of a full lithium-ion cell is not an efficient option
particularly when using parameter estimations routines for unknown
parameters in degradation models and incorporating cell models into
larger systems (e.g. battery packs with cooling modules). Therefore,
having an efficient model of a full lithium-ion cell is a prerequisite for
modelling degradation and developing our quantitative understand-
ing.

The second challenge is motivated the lack of accurate and validated
mathematical models of the growth of the SEI. We have chosen to focus
our attention on the growth of the SEI because it is considered to be
one of the most important degradation mechanisms. Addressing this
challenge also serves as an example of how to extend battery models
to include other degradation mechanisms.

1.3 O U T L I N E A N D C O N T R I B U T I O N S

In this section, we provide an outline of this thesis and indicate the
novel contributions of our work. For each chapter, we state the as-
sociated research papers that we have produced. We also detail our
contributions to collaborative papers.

In Chapter 2, we provide a gentle introduction to the core concepts of
battery modelling. We then address the first of our two key challenges
(develop efficient mathematical models of a lithium-ion cell) in Chap-
ters 3 and 4. The second key challenge (develop an accurate model of
the growth of the SEI) is addressed in Chapter 5. Finally, in Chapter 6,
we draw our conclusions. All of the models that we develop within
this thesis are implemented within the open-source battery modelling
software PyBaMM (Python Battery Mathematical Modelling) [86]. We
provide an overview of PyBaMM in Appendix A.



4 I N T R O D U C T I O N

The work in Chapter 3 forms the basis of the published research
article:

• S. G. Marquis, V. Sulzer, R. Timms, C. P. Please, and S. J. Chap-
man, “An asymptotic derivation of a single particle model with
electrolyte,” Journal of The Electrochemical Society, vol. 166, no. 15,
A3693–A3706, 2019

In this work, we provide the first asymptotic derivation of a model com-
monly used in the battery modelling community: the single-particle
model (SPM). We also extend this model and provide the first asymp-
totic version of the single-particle model with electrolyte (SPMe). We
then identify a common issue with other ad-hoc versions of the SPMe
from the literature and demonstrate how this is corrected. Mathemati-
cally, the approach taken in this chapter is similar to that adopted in
[85] for lead-acid batteries and also [53]. In [53], a non-standard model
of a lithium-ion battery that neglected the effects of the active material
particles was adopted. However, our analysis of common parameter
values suggests that capturing the effects within the particles is critical.
Another mathematical contribution in this area is the work in [75]. In
[75], a different asymptotic limit is taken to the one we take in Chapter 3
however both give rise to similar reduced models. We also undertook
related work on parameter estimation with the SPMe

• A. Aitio, S. G. Marquis, P. Ascencio, and D. Howey, “Bayesian
parameter estimation applied to the Li-ion battery single parti-
cle model with electrolyte dynamics,” arXiv preprint, vol. arXiv,
p. 2001.09890, 2020, (Accepted to IFAC 2020)

but we do not include this work in this thesis. Here, we contributed a
sub-millisecond spectral implementation of the SPMe in MATLAB.

The work in Chapter 4 forms the basis of two submitted research
papers

• R. Timms, S. G. Marquis, V. Sulzer, C. P. Please, and S. J. Chapman,
“Asymptotic reduction of a lithium-ion pouch cell model,” arXiv
preprint, vol. arXiv, p. 2005.05127, 2020, (Submitted to SIAM)

• S. G. Marquis, R. Timms, V. Sulzer, C. P. Please, and S. J. Chapman,
“A suite of reduced-order models of a single-layer lithium-ion
pouch cell,” arXiv preprint, vol. arXiv, p. 2008.03691, 2020, (Sub-
mitted to Journal of The Electrochemical Society)

This work was mainly a collaboration I had with R. Timms. Broadly, the
division of work was as follows. I was mainly responsible for the math-
ematical analysis associated with electrical and chemical components
of the problem (e.g. the current collectors and internal cell electrochem-
istry) whilst R. Timms was responsible for the mathematical analysis
associated with the thermal aspects of the problem. A large proportion
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of work in this chapter is dedicated to developing a modular imple-
mentation of the suite of models that were derived from the asymptotic
reduction. This was implemented within the PyBaMM, with which
V.Sulzer was also involved. I was involved heavily in most of the key
aspects of this implementation such as inputting of the model equa-
tions, developing discretisation schemes, and interfacing to efficient
numerical solvers. The asymptotic analysis conducted in this chapter
is similar to that conducted in [84] for lead-acid batteries. However,
there are a few key geometric differences between lithium-ion and
lead-acid batteries, namely that lead-acid batteries do not have current
collectors. As a result, the reduced models are different. The models
that we develop as a result of our asymptotic analysis have a ‘2+1’
structure. Such simplifications are sometimes referred to as “potential
pair” models and are usually made in an ad-hoc manner (e.g. [25], [38],
[40], [42]). We provide the first systematic asymptotic derivation of
these models. We also provide the first full numerical comparison of
the various combinations of simplifications made in this chapter and
Chapter 3.

In Chapter 5, we develop a novel detailed mathematical model of
the SEI. We then apply asymptotic methods to this model to develop
simplified SEI growth models. This work is the first application of
asymptotic methods to the modelling of the SEI. We are also the first
to account for the interactions between the SEI growth reaction and
the intercalation reaction. We then adopt an experimentally motivated
model of a full lithium-ion cell from [82] to allow us to compare our SEI
model to experimental data. In [82], SEI models are only compared to
experimental data for a single temperature at a single time. In contrast,
we are the first to compare our SEI model to the full set of available ca-
pacity fade data and demonstrate that our model captures the thermal,
temporal, and state-of-charge (SoC) dependence of SEI growth.

As previously mentioned, the models in this thesis have been imple-
mented within the open-source software PyBaMM. We have submitted
a software engineering paper on this work

• V. Sulzer, S. G. Marquis, R. Timms, M. Robinson, and S. J. Chap-
man, “Python Battery Mathematical Modelling (PyBaMM),” EC-
SarXiv, vol. 7, 2020, (Submitted to the Journal of Open Research
Software)

Related to this, we have also been involved with the numerical imple-
mentation of the work in the paper

• T. G. Tranter, R. Timms, T. Heenan, S. G. Marquis, V. Sulzer, A.
Jnawali, M. D. R. Kok, C. P. Please, S. J. Chapman, P. R. Shearing,
and D. J. L. Brett, “Probing heterogeneity in li-ion batteries with
coupled multiscale models of electrochemistry and thermal trans-
port using tomographic domains,” Journal of The Electrochemical
Society, vol. 167, no. 11, p. 110 538, 2020.





2
I N T R O D U C T I O N T O B A T T E R Y M O D E L L I N G

2.1 I N T R O D U C T I O N

In this chapter, we provide a gentle introduction to battery modelling.
We begin by introducing some commonly used terminology and then
define the mathematical notation that we will adopt for the rest of this
thesis. We then introduce some key concepts from electrochemistry.
Following this, we state the standard model of a lithium-ion battery, the
Doyle–Fuller–Newman (DFN) model, and provide a set of parameter
values for this model. We then discuss some important properties of
the DFN model which we will use in later chapters.

2.2 T E R M I N O L O G Y

This section is intended to serve as a quick reference for some of the
most commonly used terminology in the study of batteries. We will also
re-write these concepts in mathematical notation as required through-
out the thesis.

• C-rate — The C-rate is a measure of the current being drawn from
a cell. A C-rate of one, denoted 1 C, corresponds the current which
fully discharges the battery from the maximum to the minimum
voltage in 1 hour. A rate of 2 C is twice that current. The C-rate is
dependent upon the particular cell and the choice of maximum
and minimum voltages.

• Open-circuit potential (OCP) — The OCP is the potential difference
at which an individual electrochemical reaction is in equilibrium.

• Open-circuit voltage (OCV) — The OCV is the potential difference
across a lithium-ion cell for which the current flowing through
the cell is zero (i.e. the cell is in equilibrium). The terms OCP
and OCV are sometimes used interchangeably within the battery
community, but we will reserve the OCP for the equilibrium of
individual electrochemical reactions (e.g. on the surfaces of the
electrode) and OCV for the equilibrium of the full cell.

• Overpotential — The overpotential of an electrochemical reaction
is the difference between the actual potential difference and the
OCP. Thus the overpotential is a measure of how far from equi-
librium an electrochemical reaction is. This type of overpotential
is often referred to as the reaction overpotential. Overpotentials
can also be defined for other electrochemical components. For

7
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example, the potential drops associated with Ohmic losses are
considered a type of overpotential.

• Galvanostatic and potentiostatic — A galvanostatic problem is one
in which the current is held fixed and the potential determined.
In contrast, a potentiostatic problem is one in which the potential
difference is held fixed and the current determined.

• State-of-charge (SoC) — The state of charge of a cell, SoC ∈ [0, 1],
indicates the extent to which a cell is charged. When SoC = 1 the
cell is fully charged and when SoC = 0 the cell is fully discharged.
The ‘fully charged’ and ‘fully discharged’ states are defined to
be where the cell reaches a manufacturer defined maximum and
minimum voltage during an infinitely slow charge and discharge.
Because of internal cell resistances, a particular measured voltage
can correspond to multiple SoCs depending upon the applied
current. Although commonly used in the study of batteries, we
will generally try to avoid using SoC and instead work with
cut-off voltage limits and physical concentrations.

• Nominal capacity — The nominal capacity of a cell, measured
in A h, is the total amount of charge that can be drawn from a
cell when discharging very slowly from SoC = 1 to SoC = 0. The
cell must be discharged slowly to avoid exceeding the voltage
limits of the cell as a result of internal resistances. In practice, the
nominal capacity of a cell is not accessible due to these internal
resistances.

2.3 N O TAT I O N

In this section, we comment on the notational conventions that we
adopted throughout this thesis. Firstly, we use a superscript ‘∗’ to de-
note dimensional quantities, with dimensionless quantities denoted
without this superscript. We denote electric potentials by φ, current
densities by i, lithium concentration by c (in the electrolyte c denotes
the lithium-ion concentrations), molar fluxes by N , and temperature by
T . To distinguish potentials, fluxes and concentrations in the electrolyte
from those in the solid phase of the electrode, we use a subscript ‘e’ for
electrolyte variables and a subscript ‘s’ for solid-phase variables. To
indicate the region within which each variable is defined, we include
an additional subscript ‘k’, which takes one of the following values: ‘n’
(negative electrode), ‘p’ (positive electrode), ‘cn’ (negative current col-
lector), ‘cp’ (positive current collector), or ‘s’ (separator). For example,
the notation φ∗s,n refers to the dimensional electric potential in the solid
phase of the negative electrode. When stating the governing equations,
we take the region in which an equation holds to be implicitly defined
by the subscript of the variables.
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As indicated in Figure 1.1, the negative current collector, negative
electrode, separator, positive electrode, and positive current collector
are of thickness L∗cn, L∗n, L∗s , L∗p, and L∗cp, respectively. We denote the
distance between the negative and positive current collectors by L∗x =

L∗n +L∗s +L∗p, the width of the cell by L∗y and the height of the cell by L∗z .
The active material particles in the negative and positive electrodes are
assumed to be spheres with radii R∗n and R∗p, respectively. The battery
models that we employ in this thesis consist of both a macro spatial
scale and a micro spatial scale. On the macroscale, we use the spatial
coordinates x∗ = (x∗, y∗, z∗) ∈ [−L∗cn, L

∗
x + L∗cp] × [0, L∗y] × [0, L∗z] to

indicate the location through the thickness, width, and height of the
cell. At each macroscale point a microscale particle problem exists.
Since behaviour in the particles is assumed to be spherically symmetric,
we use a single microscale spatial coordinate r∗ ∈ [0, R∗k], k ∈ {n, p},
to indicate the location within the active material particles. Time is
denoted by t∗. We define

Ω∗cn = [−L∗cn, 0]× Ω∗, Ω∗n = [0, L∗n]× Ω∗,

Ω∗s = [L∗n, L
∗
x − L∗p]× Ω∗, Ω∗p = [L∗x − L∗p, L∗x]× Ω∗,

Ω∗cp = [L∗x, L
∗
x + L∗cp]× Ω∗,

corresponding to the negative current collector, negative electrode,
separator, positive electrode, and positive current collector, respectively,
where Ω∗ = [0, L∗y] × [0, L∗z] is the projection of the battery onto the
(y∗, z∗)-plane. We use the notation ∂Ω∗tab,k to refer to the negative and
positive tabs (k ∈ {cn, cp}), ∂Ω∗ext,k to refer to the external boundaries
of region k ∈ {cn, n, s, p, cp}, and ∂Ω∗k1,k2

to refer to the interface
between regions k1 and k2. Finally, for k ∈ {cn, cp} we use ∂Ω∗tab,k,⊥ to
denote the projection of the tabs onto the (y∗, z∗)-plane, and ∂Ω∗ext,k,⊥ =

∂Ω∗ \ ∂Ω∗tab,k,⊥ to denote the non-tab region of the boundary of the
projection. We will denote the dimensionless versions of each of these
regions by omitting the superscript ‘∗’.

Throughout we shall make use of the following notation to represent
averaged quantities

f̄∗n =
1

L∗n

∫ L∗n

0
f∗n dx∗, (Negative electrode) (2.1a)

f̄∗s =
1

L∗s

∫ L∗x−L∗p

L∗n

f∗s dx∗, (Separator) (2.1b)

f̄∗p =
1

L∗p

∫ L∗x

L∗x−L∗p
f∗pdx∗, (Positive electrode) (2.1c)

〈f∗k 〉 =
1

L∗yL
∗
z

∫ L∗z

0

∫ L∗y

0
f∗k dy∗dz∗, (Transverse average) (2.1d)

along with the obvious dimensionless versions (i.e. just remove super-
script stars).
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2.4 E L E C T R O C H E M I S T R Y B A S I C S

Before introducing the standard model of a lithium-ion battery, we
overview the important basics of electrochemical modelling which
are employed heavily in battery modelling. Two key electrochemical
components are: the electrochemical reactions and the electrolyte. We
introduce the standard modelling approaches for each of these compo-
nents here. More in-depth introductions to these concepts can be found
in [55], [64], [70].

2.4.1 Modelling electrochemical reactions

Electrochemical reactions are central to battery modelling and are
usually modelled using the phenomenological Butler–Volmer equa-
tion. To illustrate the assumptions that go into developing the Butler–
Volmer equation, we consider an intercalation reaction taking place on
a graphite electrode submerged in an electrolyte. The reaction takes the
form

LiC6 � Li+ + e- + C6, (2.2)

where LiC6 represents lithium carbonate (graphite with lithium in-
tercalated within it), Li+ represents lithium ions in the electrolyte, e-

represents electrons within the graphite electrode, and C6 represents
unlithiated graphite. In the forward reaction, that is

LiC6 → Li+ + e- + C6, (2.3)

lithium is transferred into the electrolyte at a rate proportional to the
concentration of lithium within the electrode. Additionally, the rate
of reaction is also dependent upon the potential difference between
the graphite and the electrolyte. The potential dependence is chosen
such that a greater applied potential difference (φ∗s − φ∗e), where φ∗s
is the potential in the solid and φ∗e is the potential in the electrolyte)
results in a higher rate of reaction. We do this because a greater potential
difference gives greater incentive for the positively charged lithium ions
to travel into the electrolyte of lower electric potential. The reaction is
also assumed to have an Arrhenius dependence upon the temperature.
Charge in the form of a positively charged lithium ion is transferred
during this reaction. By taking a positive current to correspond to ions
being transferred from the electrode into the electrolyte, we can write
the total current density transferred by the reaction as

j∗s,e = F ∗k∗s,ec
∗
s exp

(
αs,eF

∗

R∗gT
∗

(
φ∗s − φ̂∗e

))
, (2.4)
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where k∗s,e is the forward reaction rate constant, c∗s is the concentration
of lithium in the graphite, αs,e is the charge transfer coefficient, F ∗ is
Faraday’s constant, R∗g is the gas constant, T ∗ is temperature, φ∗s is
the electric potential in the solid, and φ̂∗e is the electric potential in the
electrolyte. Similarly, in the backwards reaction given by

LiC6 ← Li+ + e- + C6, (2.5)

lithium is transferred into the graphite at a rate proportional to the
concentration of lithium in the electrolyte, c∗e , and the concentration
of empty graphite sites within the electrode, (c∗s,max − c∗s ) where c∗s,max
is the maximum concentration of lithium within graphite. The rate is
also dependent upon the potential difference across the layer. However,
this time a greater potential difference will lead to a smaller rate of
reaction because there will be a greater energy barrier to overcome
for lithium ions to leave the electrolyte. Again, the temperature de-
pendence is captured by an Arrhenius dependence. The total current
density transferred by the reaction is then

j∗e,s = −F ∗k∗e,s(c
∗
s,max − c∗s )c∗e exp

(
−αe,sF

∗

R∗gT
∗

(
φ∗s − φ̂∗e

))
, (2.6)

where k∗e,s is the reaction rate constant and αe,s is the charge transfer
coefficient. For a reaction in which a single unit of charge is transferred,
such as the one we have here, it can be shown that αs,e + αe,s = 1 [64].
Furthermore, it is common to take αs,e = αs,e = 1/2, which we will
adopt from now on [70]. Given that these forward and backward reac-
tions occur simultaneously, we can write the total interfacial current,
j∗ = j∗s,e + j∗e,s, as

j∗ =F ∗k∗s,ec
∗
s exp

(
F ∗

2R∗gT
∗

(
φ∗s − φ̂∗e

))

− F ∗k∗e,s(c
∗
s,max − c∗s )c∗e exp

(
− F ∗

2R∗gT
∗

(
φ∗s − φ̂∗e

))
.

(2.7)

When the total reaction current is zero, the electrochemical reaction is
said to be in equilibrium. The potential difference at which the reaction
is in equilibrium is called the open-circuit potential (OCP). Setting j∗ = 0

in (2.7) and denoting the OCP by Û∗(c∗s , c∗e) = (φ∗s − φ̂e)
∣∣
j∗=0

, we find

Û∗(c∗s , c
∗
e) =

R∗gT
∗

F ∗
log

(
k∗e,s(c

∗
s,max − c∗s )c∗e
k∗s,ec

∗
s

)
. (2.8)
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We now express (2.7) in terms of Û∗(c∗s , c∗e) by using (2.8) to get

j∗ = j∗0 sinh

(
F ∗η̂∗

2R∗gT
∗

)
, (2.9a)

where

j∗0 = m∗(c∗s )1/2(c∗s,max − c∗s )1/2(c∗e)1/2 (2.9b)

is the exchange current density and

η̂ = φ∗s − φ̂∗e − Û∗(c∗s , c∗e) (2.9c)

is the reaction overpotential. Here, we have introduced an effective reac-
tion constant for notational convenience defined as

m∗ = 2F ∗(k∗s,ek
∗
e,s)

1/2. (2.10)

Equations (2.9) are the Butler–Volmer equations for the reaction (2.2).
In practice, the functional form for Û∗(c∗s , c∗e) presented in (2.8) is not

employed. This is because it does poorly in representing the experimen-
tally observed behaviour of batteries. Instead experimentally measured
OCP functions are used. One could choose to measure Û∗(c∗s , c∗e), how-
ever, the main drawback to this approach is that Û∗(c∗s , c∗e) is a function
of both the electrolyte properties and the electrode properties and
would therefore need to be re-tabulated for every combination of elec-
trode and electrolyte chemistry. Instead, we formulate our model in
terms of the OCP of graphite relative to a lithium reference electrode.
To measure this new OCP, a lithium reference electrode is inserted
into the electrolyte, a wire connected to the graphite electrode, and the
voltage is varied until the flow of current through the circuit is zero.
On the surface of the lithium reference electrode, a reaction occurs of
the form

Li � Li+ + e- (2.11)

where Li represents lithium in the lithium reference electrode, Li+ rep-
resents lithium ions in the electrolyte, and e- represents electrons in
the lithium reference electrode. We define φ∗e to be the potential in the
lithium reference electrode when (2.11) is in equilibrium. Therefore, we
have

φ∗e = φ̂∗e +
R∗gT

∗

F ∗
log

(
k∗e,Lic

∗
e

k∗Li,e

)
. (2.12)

where k∗Li,e is the forward reaction rate associated with (2.11), and k∗e,Li
is the backward reaction rate associated with (2.11). This new potential,
φ∗e , is also identified as the electrochemical potential in the electrolyte.
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Assuming that the concentration of lithium ions in the electrolyte is the
same near both the graphite and the lithium reference electrode, the
OCP of the graphite relative to the lithium reference electrode is then
given by

U∗(c∗s ) = (φ∗s − φ∗e)
∣∣
j∗=0

,

= (φ∗s − φ̂∗e)
∣∣
j∗=0

+ (φ̂∗e − φ∗e)

= Û∗(ĉ∗s , ĉ
∗
e) + φ̂∗e − φ∗e

=
R∗gT

∗

F ∗
log

(
k∗e,sk

∗
Li,e(c∗s,max − c∗s )

k∗s,ek
∗
e,Lic

∗
s

)
,

(2.13)

which is independent of the electrolyte concentration. We can now use
(2.13) to re-write (2.9) as

j∗ = j∗0 sinh

(
F ∗η∗

2R∗gT
∗

)
, (2.14a)

j∗0 = m∗(c∗s )1/2(c∗s,max − c∗s )1/2(c∗e)1/2, (2.14b)

η = φ∗s − φ∗e − U∗(c∗s ), (2.14c)

which is the form of the Butler–Volmer equations that is commonly
used in battery modelling. An experimentally measured OCP is nor-
mally used instead of the analytic form stated in (2.13). This experi-
mentally measured OCP is now independent of the electrolyte and so
is significantly easier to tabulate for various electrochemical setups.

2.4.2 Modelling electrolytes

An electrolyte is a material that consists of ionic species which can
conduct a current through the material. In contrast to electric conduc-
tors, in an electrolyte, it is the ionic species that carry the current and
not electrons. A typical electrolyte consists of positively charged ionic
species (cations), negatively charged ionic species (anions), and neu-
tral solvent species. There can be any number of each species but we
restrict ourselves to the case of a binary electrolyte, which consists of a
single cation and a single anion species in a solvent. This case allows
for simplifications to be made during the analysis that result in a sim-
pler final numerical implementation of the model. Additionally, we
consider the specific case in which the ions have a charge of ±1 unit of
charge. We provide an introduction to the modelling of infinitely dilute
electrolytes, which is the so-called Nernst–Planck theory. The resulting
equations are the same as those derived by the more involved Stefan–
Maxwell theory of moderately concentrated electrolytes. However,
the definitions of grouped parameters such as the effective diffusiv-
ity and effective conductivity are different. In practice, the effective
diffusivity and effective conductivity are experimentally measured so
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these subtleties are not of concern here. For a full comparison of the
Nernst–Planck and Stefan–Maxwell theories see [11].

In the case of an infinitely dilute binary electrolyte the concentrations
of the two ionic species are assumed to be negligibly small compared
to the concentration of the solvent, which forms the majority of the
electrolyte. We denote the concentrations of the positively charged ions
and negatively charged ions by

c∗+, c
∗
−,

respectively. We also denote the fluxes of the positively charged ions
and negatively charged ions by

N∗+, N
∗
−,

respectively. Each species is assumed to be driven down gradients
in it’s own concentration according to Fick’s law. Additionally, each
species is also assumed to migrate in the presence of a gradient in
the electric potential. Firstly, the rate of migration is assumed to be
proportional to the gradient of the electric potential, such that a larger
gradient in potential will lead to a greater flux of ions. Secondly, this
rate is assumed to be proportional to the concentration of ions, such
that a greater flux will be observed when there is a higher concentration
of ions. Thirdly, this migration rate is also assumed to be proportional
to the mobility of ions, which is measured in m2 V−1 s−1 and captures
the extent to which the ions will move within a particular solvent in
the presence of an electric field. Finally, the rate is assumed to be pro-
portional to the charge of the ion; in our case the charge of each species
is±e∗ where e∗ is the value of elementary charge (the magnitude of the
charge of a single electron). We neglect the effects of convection within
the electrolyte although this is considered in [55]. Therefore the fluxes
of the two species are given by

N∗+ = −D∗+(c∗+)∇∗c∗+ − e∗µ∗+(c∗+)c∗+∇∗φ̂∗e , (2.15a)

N∗− = −D∗−(c∗−)∇∗c∗− + e∗µ∗−(c∗−)c∗−∇∗φ̂∗e , (2.15b)

where D∗+(c∗+) and D∗−(c∗−) are the positive and negative ion diffusiv-
ities, µ∗+(c∗+) and µ∗−(c∗−) are the positive and negative ion mobilities,
and φ̂∗e is the electric potential in the electrolyte. Here, the sign of the
mobility term is chosen such that the positive species moves down
gradients in electric potential and the negative species moves up gra-
dients in the electric potential. In battery modelling, it is uncommon
to express the electrolyte equations in terms of the elementary unit of
charge and the mobilities. Instead, the equations are usually re-written
using the Einstein relation

D∗(c∗) = µ∗(c∗)k∗BT
∗, (2.16)
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where k∗B is the Boltzmann constant and T ∗ is temperature, in conjunc-
tion with Faraday’s constant, F , and the gas constant, R∗g, which are
given by

F ∗ = N∗Ae∗, R∗g = N∗Ak
∗
B, (2.17)

where N∗A is Avogadro’s constant. Equations (2.15) then become

N∗+ = −D∗+(c∗+)

(
∇∗c∗+ +

F ∗

R∗gT
∗ c
∗
+∇∗φ̂∗e

)
, (2.18a)

N∗− = −D∗−(c∗−)

(
∇∗c∗− −

F ∗

R∗gT
∗ c
∗
−∇∗φ̂∗e

)
. (2.18b)

Applying the principle of conservation of mass to each ionic species
gives

∂c∗+
∂t∗

= −∇∗ ·N∗+, (2.19a)

∂c∗−
∂t∗

= −∇∗ ·N∗−. (2.19b)

We thereby have two partial differential equations, (2.18) with (2.19), for
three unknowns: c∗+, c∗−, and φ̂∗e . In the absence of an external magnetic
field, we obtain an additional equation from Maxwell’s equations in
the form of Poisson’s equation

∇∗ ·
(
ε∗∇∗φ̂∗e

)
= F ∗

(
c∗− − c∗+

)
, (2.20)

where ε∗ is the permittivity of the electrolyte. Equations (2.18), (2.19),
and (2.20) alongside appropriate boundary conditions and initial con-
ditions provide a fully closed system. However, in the modelling of bat-
teries, it is common to simplify this system. To make this simplification,
we first nondimensionalise (2.20) by scaling the electric potential with
the thermal voltage, the spatial gradients by some typical lengthscale,
L∗typ, and the concentrations of ions by some typical concentration,
c∗e,typ, as

φ̂∗e =
R∗gT

∗

F ∗
φ̂e, ∇∗ =

1

L∗typ
∇, (2.21)

c∗+ = c∗e,typc+, c∗− = c∗e,typc−. (2.22)

Substituting these scalings into (2.20) gives

λ∇2φ̂e = c− − c+. (2.23)
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where

λ = 2

(
λ∗

L∗typ

)2

(2.24)

and

λ∗ =

√
ε∗R∗gT

∗

2(F ∗)2(c∗e,typ)2
(2.25)

is the Debye length. For a typical electrolyte used in a lithium-ion
battery, we have λ∗ ≈ 1 nm. The typical thickness of a lithium-ion cell
is on the order of L∗typ ≈ 100 µm. Therefore, we have λ� 1. In the bulk
electrolyte (away from boundaries) an outer problem for (2.23) can
solved to find

c+ = c− +O(λ). (2.26)

Thus in this outer region the concentrations of the two ionic species are
approximately equal. In the electrochemical community this condition
is referred to as charge neutrality.

On a domain near the boundaries of size O(
√
λ), an inner problem

must be solved. This inner problem has been studied in detail in [74].
Typically, within this inner region, a very large concentration of one
ionic species and low concentration of the other species is observed. In
the electrochemical community, this region is referred to as the double
layer or the Debye layer. It is common to neglect a full description of this
region and instead assume it is incorporated into the phenomenological
Butler–Volmer relations that describe the electrochemical reactions
across the boundaries. Sometimes a capacitance effect is introduced to
account for charge buildup within the double layer, but we will neglect
this since the effect is small.

In the outer charge-neutral region, we define

c∗e := c∗+ = c∗−.

This condition takes the place of (2.20) leaving two equations (2.18) with
(2.19) for two unknowns, c∗e and φ̂∗e . It is common to slightly rearrange
these two equations. We first define the current to be

i∗e = F ∗(N∗+ −N∗−)

= κ∗e(c∗e)

(
−∇∗φ̂∗e + (1− 2t+(c∗e))

R∗gT
∗

F ∗
∇∗ log(c∗e)

) (2.27)
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where

κ∗e(c∗e) =
(F ∗)2(D∗+(c∗e) +D∗−(c∗e))c∗e

R∗gT
∗ ,

t+(ce) =
D∗+(c∗e)

D∗+(c∗e) +D∗−(c∗e)
.

Here κ∗e(c∗e) is the effective conductivity, and t+(c∗e) is the positive
transference number. Then subtracting (2.19b) from (2.19a) gives

∇∗ · i∗e = 0. (2.28)

We replace the equation for the conservation of negative ionic species,
(2.18b) and (2.19b), with the current conservation equation (2.28) and
the current defined in (2.27). For the conservation of the positive ionic
species we re-write the positive flux in terms of effective electrolyte
parameters as

N∗e := N∗+ = −D∗e(c∗e)∇∗c∗e +
t+(c∗e)

F ∗
i∗e (2.29)

where

D∗e(c∗e) =
2D∗+(c∗e)D∗−(c∗e)

D∗+(c∗e) +D∗−(c∗e)
,

is the effective diffusivity.
Finally, we formulate the electrolyte equations in terms of the electro-

chemical potential in the electrolyte, φ∗e . This ensures that we employ
the same definition of the potential in the electrolyte model that we do
in Butler–Volmer equations (2.14) where the OCP is defined relative to
a lithium reference electrode. We do this using

∇∗φ̂∗e = ∇∗φ∗e −
R∗gT

∗

F ∗
∇∗ log(c∗e) (2.30)

which is a direct consequence of (2.12). Therefore, the Nernst–Planck
governing equations for a binary electrolyte are

∂c∗e
∂t∗

= −∇∗ ·N∗e , (2.31a)

N∗e = −D∗e(c∗e)∇∗c∗e +
t+(c∗e)

F ∗
i∗e , (2.31b)

∇∗ · i∗e = 0, (2.31c)

i∗e = κ∗e(c∗e)

(
−∇∗φ∗e + 2(1− t+(c∗e))

R∗gT
∗

F ∗
∇∗ log(c∗e)

)
. (2.31d)

There are three important functional parameters in this model: the
effective diffusivity D∗e(c∗e), the effective conductivity κ∗e(c∗e), and the
positive transference number t+(c∗e). These parameters are measured
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experimentally and so for our purposes we can ignore their definitions
in terms of the diffusivities of the individual ionic species, which differ
from those of the Stefan–Maxwell theory. The model equations (2.31)
are the same as those derived in Stefan–Maxwell theory (for the specific
cases commonly considered in battery modelling) [11]. Henceforth, we
shall take t+(c∗e) = t+ since the transference number is constant for all
of the parameter sets we consider.

2.5 D O Y L E – F U L L E R – N E W M A N ( D F N ) M O D E L

The classical model of a lithium-ion battery was developed by Doyle,
Fuller, and Newman (DFN model) [21], [55]. The model captures the
electrochemical behaviour in the through-cell direction (x∗-direction)
and neglects any current collector and thermal effects. As a result, the
model is independent of both y∗ and z∗. The model naturally decom-
poses into a set of ‘submodels’, with one for each component of the cell.
Here we introduce each component and the corresponding modelling
equations.

2.5.1 Electrodes

The electrodes in a lithium-ion cell are electrically conducting porous
materials which consist of active material, where lithium can interca-
late, and an electrically conducting binder material. The pores of the
electrode are flooded with an electrolyte. Within the framework of the
DFN model, the active material is treated as spherical particles, with
diffusion being the transport mechanism for lithium transport within
the solid [21]. The behaviour within the particle is assumed to be spher-
ically symmetric. The timescale associated with diffusion within the
active material is long compared with the timescale associated with the
transport of electrons, and the model, therefore, requires two compo-
nents which describe processes occurring over disparate length scales:
a macroscale description of charge conservation (electron transport),
and a microscale description of mass conservation (lithium transport)
[21].

2.5.1.1 Charge conservation in the electrodes

The current in the electrodes is described by Ohm’s law. To account
for the transfer of current between the electrode and electrolyte (which
occurs via electrochemical reactions), an additional current source/sink
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term is included. The governing equations for current in the electrode
are therefore

∂i∗s,k

∂x∗
= −a∗kj

∗
k , k ∈ {n, p}, (2.32a)

i∗s,k = −σ∗s,k
∂φ∗k
∂x∗

, k ∈ {n, p}, (2.32b)

where a∗k is the surface area per unit volume of the electrode, and j∗k is
the interfacial current density. On the boundary between the negative
current collector and the negative electrode, we set the potential to a
reference value. We also consider the cell under galvanostatic condi-
tions. Therefore, we have the following boundary conditions at either
end of the cell

φ∗s,n = 0, x∗ ∈ ∂Ω∗n,cn, (2.32c)

i∗s,p = I∗, x∗ ∈ ∂Ω∗p,cp, (2.32d)

where I∗ is the applied current density. Finally, the separator is taken
to be electrically insulating so that no charge is transferred from the
electrodes to the separator (charge can be transferred through the
separator region but only by ion transport in the electrolyte which
floods the pores of the separator). Therefore, on the electrode–separator
boundary, we have

i∗s,k = 0, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}. (2.32e)

2.5.1.2 Mass conservation in the active material

As in [21], we treat the active material on the microscale as spherical
particles of uniform radius, in which spherically symmetric diffusion
of lithium is described by Fick’s law

∂c∗s,k

∂t∗
= − 1

(r∗)2

∂

∂r∗

(
(r∗)2N∗s,k

)
, k ∈ {n, p}, (2.33a)

N∗s,k = −D∗s,k(c∗s,k)
∂c∗s,k

∂r∗
, k ∈ {n, p}, (2.33b)

where c∗s,k is the concentration of lithium in the active material, N∗s,k is
the flux of lithium ions in the active material, D∗s,k(c∗s,k) is the diffusivity
of lithium in the active material, r∗ is the radial spatial coordinate,
and t∗ is time. We assume that the particle is entirely surrounded
by electrolyte and that lithium transfer with the electrolyte occurs
uniformly across each particle’s outer surface, giving

N∗s,k

∣∣
r∗=0

= 0, N∗s.k

∣∣
r∗=R∗k

=
j∗k
F ∗

. k ∈ {n, p}, (2.33c)
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where F ∗ is Faraday’s constant. Further, we assume that the concentra-
tion within the particles in each electrode is initially uniform in space

c∗s,k

∣∣
t∗=0

= c∗s,k,0, k ∈ {n, p}, (2.33d)

where c∗s,k,0 is a constant. It should be noted that this microscale model
for the active material holds at every point x∗ ∈ Ω∗k for k ∈ {n, p} of the
macroscale model. In this sense, the radial direction r∗ can be viewed
as a ‘pseudodimension’. It is this that gives the DFN it’s alternative
name, the pseudo-two-dimensional (P2D) model. This also means that
c∗s,k is in general a function of r∗, x∗, and t∗.

2.5.2 Electrolyte

We model the electrolyte using a homogenised version of the elec-
trolyte equations we introduced earlier (2.31). The derivation of these
homogenised electrolyte equations via the method of multiple scales
can be found in [73]. In performing the homogenisation, there are three
main modifications to (2.31). The first modification is to account for
the electrolyte volume fraction in the transfer of mass. The second
modification is that diffusivities and conductivities are converted to
their homogenised counterparts which account for the tortuosity of the
porous structure. We shall take the tortuosity to be given through the
Bruggeman relation, εbk, where εk is the electrolyte volume fraction in
the region k, and b is the Bruggeman coefficient [58]. The third main
modification is the addition of a source term which accounts for the
transfer of lithium between the macroscale electrolyte and the active
material particles at every macroscale point.

2.5.2.1 Charge conservation in the electrolyte

As a result of these considerations, the governing equations for the
current in the electrolyte are

∂i∗e,k

∂x∗
= a∗kj

∗
k , k ∈ {n, p}, (2.34a)

∂i∗e,s

∂x∗
= 0, (2.34b)

i∗e,k = εb
kκ
∗
e(c∗e,k)

(
−
∂φ∗e,k

∂x∗

+2(1− t+)
R∗gT

∗
∞

F ∗
∂

∂x∗
(
log
(
c∗e,k
)))

, k ∈ {n, s, p},
(2.34c)

where i∗e,k is the current in the electrolyte, c∗e,k is the lithium-ion con-
centration, κ∗e(c∗e,k) is the effective electrolyte conductivity, φ∗e,k is the
electrochemical potential in the electrolyte, t+ is the transference num-
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ber, R∗g is the gas constant, and T ∗∞ is the temperature. No charge is
transferred directly from the electrolyte into the current collectors, so
that

i∗e,k = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (2.34d)

Finally, on the electrode–separator boundaries the electrical potential
and current in the electrolyte must be continuous

φ∗e,k = φ∗e,s, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (2.34e)

i∗e,k = i∗e,s, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}. (2.34f)

Note that the electrochemical potential in the electrolyte appears to
only be determined up to a constant. However, this constant will be
determined through the electrochemical reactions.

2.5.2.2 Mass conservation in the electrolyte

The concentration of lithium ions in the electrolyte is determined by
solving an effective diffusion equation with an additional source term
describing lithium transfer to the active material

εk
∂c∗e,k

∂t∗
= −

∂N∗e,k

∂x∗
+

1

F ∗
∂i∗e,k

∂x∗
, k ∈ {n, s, p}, (2.35a)

N∗e,k = −εb
kD
∗
e(c∗e,k)∇∗c∗e,k +

t+

F ∗
i∗e,k, k ∈ {n, s, p} (2.35b)

where we have used (2.34a) and (2.34b) to give a concise description of
the flux of lithium ions across the interface between the electrolyte and
solid particle. Here, N∗e,k is the lithium-ion flux in the electrolyte and
D∗e(c∗e,k) is the effective diffusivity of the electrolyte. There is no flux of
lithium ions from the electrolyte into the current collectors and so we
have

N∗e,k = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}. (2.35c)

We also require that the concentration and flux of lithium ions be
continuous across the electrode/separator boundaries

c∗e,k = c∗e,s x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (2.35d)

N∗e,k = N∗e,s, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (2.35e)

and assume that the concentration of lithium ions in the electrolyte is
initially uniform in space

c∗e,k

∣∣
t∗=0

= c∗e,0, k ∈ {n, s, p}, (2.35f)

where c∗e,0 is a constant.
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2.5.3 Electrochemical reactions

On the surface of the active material particles, electrochemical reactions
occur that transfer lithium ions between the active material and the
electrolyte. In the negative electrode region, we have the intercalation
reaction

LiC6 � Li+ + e- + C6,

where LiC6 represents lithium carbonate (graphite with lithium in-
tercalated within it), Li+ represents lithium ions in the electrolyte, e-

represents electrons within the graphite electrode, and C6 represents
unlithiated graphite. In the positive electrode region we have

LiX � Li+ + e- + X,

where LiX represents lithium within some transition metal (e.g. nickel/-
manganese), Li+ represents lithium ions in the electrolyte, e- represents
electrons within the positive electrode, and X represents unlithiated
postive electrode active material. We model both of these electrochemi-
cal reactions using the symmetric Butler–Volmer kinetics introduced in
§2.4.1. The reaction flux density, j∗k , is then given by

j∗k = j∗0,k sinh

(
F ∗η∗k

2R∗gT
∗
∞

) ∣∣∣∣
r∗=R∗k

, k ∈ {n, p}, (2.36a)

j∗0,k = m∗k(c∗s,k)1/2(c∗s,k,max − c
∗
s,k)1/2(c∗e,k)1/2

∣∣
r∗=R∗k

(2.36b)

k ∈ {n, p},
η∗k = φ∗s,k − φ

∗
e,k − U

∗
k (c∗s,k)

∣∣
r∗=R∗k

, k ∈ {n, p}, (2.36c)

where j∗0k is the exchange current density, η∗k is the surface reaction over-
potential, U∗k (c∗s,k) is the OCP relative to a lithium reference electrode
of electrode k, and m∗k is the effective reaction rate constant.

2.5.4 Reformulation of the DFN model

It is useful to reformulate the DFN model (2.32)-(2.36). This reformu-
lation will be helpful for our asymptotic analysis in later section. The
main idea is to take advantage of current conservation to re-write
boundary conditions on the electrode–separator boundaries. By sum-
ming (2.32a) and (2.34a), we obtain

∂

∂x∗
(
i∗s,k + i∗e,k

)
= 0, k ∈ {n, p}. (2.37)
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Integrating this with respect to x∗ and applying (2.32d) and (2.34d) for
the case k=p, we get

i∗s,p + i∗e,p = I∗. (2.38)

Then using (2.32e), (2.34b), and (2.34f), we have that

i∗e,s = I∗. (2.39)

Finally, integrating (2.37) for the case k=n, and applying (2.32e) and
(2.34f) gives

i∗s,n + i∗e,n = I∗. (2.40)

Therefore, using (2.38) and (2.40), we can replace (2.32) with

I∗ − i∗e,k = σ∗s,k
∂φ∗s,k

∂x∗
, k ∈ {n, p}, (2.41a)

φ∗s,n = 0, x∗ ∈ ∂Ω∗n,cn (2.41b)

where we note that the constant of integration for φ∗s,p is determined
by the electrochemical reactions (2.36). Similarly, we can also replace
(2.34) with

∂i∗e,k

∂x∗
= a∗kj

∗
k , k ∈ {n, p}, (2.42a)

i∗e,s = I∗, (2.42b)

i∗e,k = εb
kκ
∗
e(c∗e,k)

(
−
∂φ∗e,k

∂x∗

+2(1− t+)
R∗T ∗∞
F ∗

∂

∂x∗
(
log
(
c∗e,k
)))

, k ∈ {n, s, p},
(2.42c)

i∗e,k = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (2.42d)

i∗e,k = I∗, x∗ ∈ ∂Ω∗s,k, k ∈ {n, p}, (2.42e)

The reformulated DFN then comprises of (2.33), (2.35), (2.36), (2.41),
and (2.42).
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2.6 PA R A M E T E R VA L U E S

For reference, all of the parameters in the DFN are defined in Tables 2.1
and 2.2, along with typical values for a copper negative current collec-
tor, graphite negative electrode, LiPF6 in EC:DMC electrolyte, lithium
cobalt oxide positive electrode, and aluminium positive current collec-
tor, adapted from [51], [52], [54]. In addition to the parameter values in
Tables 2.1 and 2.2, the model also requires functional forms to be pro-
vided for U∗n (c∗s,n), U∗p(c∗s,n), D∗e(c∗e), and κ∗e(c∗e). We present the forms
that we employ in Figure 2.1.

Parameter Units Description Value

F ∗ C mol−1 Faraday’s constant 96487

R∗g J mol−1 K−1 Universal gas constant 8.314

T ∗∞ K Reference temperature 298.15

b - Bruggeman coefficient 1.5

t+ - Transference number 0.4

L∗x µm Cell thickness 225

L∗y mm Cell width 207

L∗z mm Cell height 137

I∗ A m−2 Typical current density 24

Table 2.1: Typical dimensional parameter values taken from [51]. The param-
eters are for a carbon negative current collector, graphite negative
electrode, LiPF6 in EC:DMC electrolyte, LCO positive electrode, and
aluminium positive current collector. (Part 1).
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Parameter Units Description cn n s p cp

L∗k µm Region thickness 25 100 25 100 25

c∗e,typ mol m−3 Typical lithium concentration
in electrolyte

- 1× 103 1× 103 1× 103 -

D∗e,typ m2 s−1 Typical electrolyte diffusivity - 5.34× 10−10 5.34× 10−10 5.34× 10−10 -

εk - Electrolyte volume fraction - 0.3 1 0.3 -

c∗s,k,max mol m−3 Maximum lithium concentra-
tion in solid

- 2.498× 104 - 5.122× 104 -

σ∗k Ω−1 m−1 Solid conductivity 5.96× 107 100 - 10 3.55× 107

D∗s,k m2 s−1 Solid diffusivity - 3.9× 10−14 - 1× 10−13 -

R∗k µm Particle radius - 10 - 10 -

a∗k µm−1 Electrode surface area per unit
volume

- 0.18 - 0.15 -

m∗k A m−2 (m3 mol−1)1.5 Reaction rate - 2× 10−5 - 6× 10−7 -

c∗k,0 mol m−3 Initial lithium concentration
in solid

- 1.999× 104 - 3.073× 104 -

Table 2.2: Typical dimensional parameter values taken from [51]. The parameters are for a carbon negative current collector, graphite negative electrode,
LiPF6 in EC:DMC electrolyte, LCO positive electrode, and aluminium positive current collector. (Part 2).
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Figure 2.1: Experimentally measured functional forms of U∗
n (c∗s,n), U∗

p (c∗s,n),
D∗

e (c∗e ), and κ∗e (c∗e ), taken from [51].

2.7 C O M M E N T S O N T H E D F N M O D E L

In this section, we discuss variations of the DFN model and some help-
ful properties that aid intuition and understanding. These properties
will also be useful for our asymptotic analysis later.

2.7.1 Galvanostatic, potentiostatic, and power control

The DFN model in galvanostatic form is given by (2.32)-(2.36). For
the galvanostatic problem a current is applied and the voltage is to
be determined. We formulated our model in terms of the through-
cell current density, I∗, but since the model neglects the effects of the
current collectors, this is easily related to the applied current, I∗app
(measured in A), through

I∗ =
I∗app

L∗yL
∗
z

. (2.43)

The voltage across the layer is simply obtained from

V∗ = φ∗s,p
∣∣
∂Ω∗p, cp

− φ∗s,n
∣∣
∂Ω∗n, cn

, (2.44)
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and since resistances in the current collectors are neglected, the terminal
voltage (as measure by connecting a voltmeter to the negative and
positive tabs) is simply given by

V ∗ = V∗. (2.45)

The model can be re-written in potentiostatic form, where V ∗ (and
in turn V∗) is prescribed, by replacing (2.32d) by

φ∗s,p = V∗, x∗ ∈ ∂Ω∗p,cp. (2.46)

The through-cell current density then is obtained from

I∗ = i∗s,p
∣∣
∂Ω∗p,cp

Alternatively, a power controlled version of the model can be imple-
mented using either (2.32d) or (2.46) and determining I∗app and V ∗ (and
in turn I∗ and V∗) from the additional constraint

I∗appV
∗ = P ∗, (2.47)

where P ∗ is the prescribed power.

2.7.2 Components of the voltage

We can obtain the voltage of the cell, V∗, directly from (2.44). However,
one can obtain a better understanding of the electrochemical behaviour
of the cell by breaking the voltage into individual contributing compo-
nents; this is also helpful for understanding our asymptotic results later.
To do this, we consider a particular path that a unit of charge follows
through the cell. Charge enters the cell through the boundary ∂Ω∗n,cn
and is carried through the solid phase of the negative electrode by elec-
trons to some point x∗n ∈ Ω∗n. At this point, an electrochemical reaction
occurs so that the charge is transferred into the electrolyte. It is then
carried through the electrolyte by ionic species until it reaches a point
x∗p ∈ Ω∗p where another electrochemical reaction occurs transferring it
into the solid phase of the positive electrode. Finally, the charge is again
carried by electrons through the positive electrode until it reaches the
positive current collector. The voltage can be written in terms of the
potential drops associated with each section of this path as

V∗ = φ∗s,p
∣∣
∂Ω∗p,cp

− φ∗s,p
∣∣
x∗=x∗p

(Positive electrode)

+ φ∗s,p
∣∣
x∗=x∗p

− φ∗e,p
∣∣
x∗=x∗p

(Positive reaction)

+ φ∗e,p
∣∣
x=x∗p

− φ∗e,n
∣∣
x=x∗n

(Electrolyte)

+ φ∗e,n
∣∣
x∗=x∗n

− φ∗s,n
∣∣
x∗=x∗n

(Negative reaction)

+ φ∗s,n
∣∣
x∗=x∗n

− φ∗s,n
∣∣
∂Ω∗n,cn

(Negative electrode).

(2.48)
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We define the open-circuit voltage (OCV) to be

U∗eq = U∗p(c∗s,p)
∣∣
r∗=R∗p , x∗=x∗p

− U∗n (c∗s,n)
∣∣
r∗=R∗n , x∗=x∗n

,

the solid-phase Ohmic losses to be

∆Φ∗Solid =
(
φs,p
∣∣
x=1
− φs,p

∣∣
x=xp

)
+
(
φs,n
∣∣
x=xn

− φs,n
∣∣
x=0

)
,

and using the definition of the reaction overpotential given in (2.36c),
we define the total reaction overpotential to be

η∗r = η∗p
∣∣
x∗=x∗p

− η∗n
∣∣
x∗=x∗n

.

Additionally, by integrating (2.34c) from x∗n to x∗p, we split the potential
drop in the electrolyte into two components

φ∗e,p
∣∣
x∗=x∗p

− φe,n
∣∣
x∗=x∗n

= η∗c + ∆Φ∗Elec,

where η∗c is the concentration overpotential given by

η∗c = 2(1 + t+)
R∗T ∗∞
F ∗

log

c∗e,p
∣∣
x∗=x∗p

c∗e,n
∣∣
x∗=x∗n

 ,

and ∆Φ∗Elec is the electrolyte Ohmic losses given by

∆Φ∗Elec = −
∫ x∗p

x∗n

i∗e,k

εbkκ
∗
e(c∗e,k)

dx∗

With these definitions (2.48) becomes

V∗ = U∗eq + η∗r + η∗c + ∆Φ∗Elec + ∆Φ∗Solid. (2.49)

Because the values of each of the components of the voltage are de-
pendent upon the choice of path (e.g. choosing reaction points close
to the current collectors leads to lower solid-phase Ohmic losses and
higher electrolyte Ohmic losses than choosing reaction points next to
the separator), we average (2.49) over all possible paths, leading to

V∗ = Ū∗eq + η∗r + η∗c + ∆Φ
∗
Elec + ∆Φ

∗
Solid. (2.50)

where it is understood that the bar notation in this context indicates
averages over the electrodes as

Ū∗eq = Ū∗p(c∗s,p)
∣∣
r∗=R∗p

− Ū∗n (c∗s,n)
∣∣
r∗=R∗n

,

etc. Adopting (2.50) is useful for understanding the contribution of each
term to the voltage. It is also useful for comparing the reduced-order
models that we derive later.
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Figure 2.2: Components of the voltage: (a) sum of the OCV and loss terms;
(b) absolute values of the loss terms. These results were generated
using the DFN model with the parameter set in Tables 2.1 and 2.2.

In Figure 2.2, we have plotted the contribution from each compo-
nent of (2.50) for a twenty-minute, constant-current discharge. The
first term, Ū∗eq, is the OCV and is the voltage that would be observed
during an infinitely slow discharge. In Figure 2.2 (a), we can see that
most of the distinctive shape of the voltage curve is a direct result
of the OCV. It follows that good experimental measurements of the
OCPs of each electrode are essential for accurate reproduction of the
voltage. Additionally, capturing the evolution of the concentration on
the surface of the active material particles (of which the OCPs are a
strong function) is also very important. The other terms in (2.50) each
correspond to a different internal cell resistances, which cause voltage
losses. The most important of these is the reaction overpotential, η̄∗r ,
which is associated with the voltage losses due to electrochemical re-
actions. This is followed in importance by the two sources of losses in
the electrolyte: the concentration overpotential, η̄∗c ; and the electrolyte
Ohmic losses, ∆Φ

∗
Elec. In Figure 2.2 (b), we can see the distinction be-

tween these two terms. The concentration overpotential, is a strong
function of electrolyte concentration and thus a transient response is
observed on the electrolyte diffusion timescale. The electrolyte Ohmic
losses, on the other hand, are instantaneous (there is only a small de-
pendency upon the electrolyte concentration through the electrolyte
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conductivity). Distinguishing these two losses can help estimate param-
eter values. The least important term is the solid-phase Ohmic losses,
which is orders of magnitude lower than the other components for this
particular parameter set.

From Figure 2.2, we can hypothesise that a good reduced-order
model of the DFN would focus on accurately capturing the OCV and
the reaction overpotential, and hence the evolution of the concentration
on the surface of the active material particles. A correction to this
model would then involve incorporating the electrolyte effects. In later
chapters, we perform asymptotic analysis to derive such reduced-order
models that confirm this.

2.7.3 Conservation of lithium

In our asymptotic analysis in later chapters, we make use of lithium
conservation properties. We show here that the total amount of lithium
in the active material particles is conserved. We also show that the
total amount of lithium in the electrolyte is conserved. By integrating
(2.42a) over electrodes n and p separately and applying the boundary
conditions (2.42d) and (2.42e), it can be shown that∫ L∗n

0
j∗ndx∗ =

I∗

a∗n
,

∫ L∗x

L∗x−L∗p
j∗pdx∗ = −I

∗

a∗p
. (2.51)

To obtain an evolution equation for the total lithium contained within a
single active material particle, we integrate (2.33a) over a single active
material particle and apply (2.33c) to get

∂

∂t∗

(
4π

∫ R∗k

0
(r∗)2c∗s,kdr∗

)
= −4π(R∗k)2 j

∗
k
F ∗

, (2.52)

where the factor of 4π has arisen from integration over the sphere. We
identify the term contained within the brackets as the total lithium con-
tent in a single active material particle. To derive an evolution equation
for the total lithium content in an entire electrode, we must integrate
(2.52) over the electrode whilst accounting for the density of particles.
A consistent way to obtain the particle density is divide the surface
area density, a∗k, by the total surface area of a single particle, 4π(R∗k)2.
Thus integrating (2.52) over each electrode and applying (2.51), we
have

∂

∂t∗

(
a∗nL

∗
yL
∗
z

(R∗n)2

∫ L∗n

0

∫ R∗n

0
(r∗)2c∗s,ndr∗dx∗

)
= −

L∗yL
∗
zI∗

F ∗
(2.53a)

∂

∂t∗

(
a∗pL

∗
yL
∗
z

(R∗p)2

∫ L∗x

L∗x−L∗p

∫ R∗p

0
(r∗)2c∗s,pdr∗dx∗

)
=
L∗yL

∗
zI∗

F ∗
, (2.53b)
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where we identify the terms contained within the brackets as the total
lithium content in the active material of the negative electrode and the
total lithium content in the active material of the positive electrode,
respectively. Note that L∗y and L∗z terms are a result of integration
over the y∗ and z∗ directions. It is then clear from summing (2.53a)
and (2.53b) that the total lithium content contained within the active
material of the cell is constant. Thus any lithium leaving one of the
electrodes must instantaneously be offset by lithium entering the other
electrode.

We now consider lithium conservation in the electrolyte. Integration
of (2.35a) over each electrode and the separator, separately, followed
by the application of (2.35c), (2.42d), (2.42e), and (2.51) yields

∂

∂t∗

(
εnL

∗
yL
∗
z

∫ L∗n

0
c∗e,ndx∗

)
= L∗yL

∗
zN
∗
e,n
∣∣
∂Ω∗s,n

+
L∗yL

∗
zI∗

F ∗
, (2.54a)

∂

∂t∗

(
εsL
∗
yL
∗
z

∫ L∗n

0
c∗e,sdx

∗

)
= L∗yL

∗
zN
∗
e,s
∣∣
∂Ω∗s,p

− L∗yL∗zN∗e,s
∣∣
∂Ω∗s,n

,

(2.54b)

∂

∂t∗

(
εpL

∗
yL
∗
z

∫ L∗p

0
c∗e,pdx∗

)
= −L∗yL∗zN∗e,p

∣∣
∂Ω∗s,p

−
L∗yL

∗
zI∗

F ∗
,

(2.54c)

where we identify the terms in the brackets as the total lithium con-
tent in the negative electrolyte, separator electrolyte, and positive elec-
trolyte, respectively. By summing (2.54a), (2.54b), and (2.54c); and using
the continuity conditions (2.35e), it is clear that the total lithium content
in the electrolyte is constant. By integrating (2.54a) and (2.54c) with re-
spect to t∗, summing them, applying (2.35e) and (2.35f), and re-writing
in terms of averaged quantities, we can express this in the form of the
relation

εnL
∗
nc̄
∗
e,n + εsL

∗
s c̄
∗
e,s + εpL

∗
pc̄
∗
e,p = (εnL

∗
n + εsL

∗
s + εpL

∗
p)c∗e,0. (2.55)

2.8 S U M M A R Y

In this chapter, we have introduced the terminology, notation, and key
concepts that we employ throughout the rest of this thesis. The DFN
model will play a central role in our development of simple models of
full lithium-ion cells and we will regularly interpret our results in terms
of OCPs and overpotentials. We will use the Butler–Volmer and Nernst–
Planck equations as building blocks for our SEI model, where it will
also be crucial to distinguish between the electric and electrochemical
potentials in the electrolyte.
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3.1 I N T R O D U C T I O N

In this chapter, we employ asymptotic methods to simplify the DFN
model as given by (2.33), (2.35), (2.36), (2.41), and (2.42). We begin by
introducing typical scalings and writing the DFN in dimensionless
form. We then identify key dimensionless parameters and perform a
systematic asymptotic reduction in the distinguished limit in which
the electrical conductivities are of comparable size to the ratio of the
typical discharge timescale to the lithium-ion migration timescale. We
make a uniform asymptotic expansion and, at leading order, recover
the classical single particle model (SPM). By extending the asymptotic
expansion to first order, we obtain an additional PDE for the concen-
tration of lithium ions in the electrolyte and an additional algebraic
correction to the voltage. We summarise our reduced models and com-
pare their computational complexity and accuracy with the DFN model.
Following the discussion on computational complexity, we compare
our model with a selection of ad-hoc models from the literature, show-
ing that our model best recovers the behaviour of the DFN model.
Finally, we also compare our model with the asymptotic model derived
in [75].

3.2 L I T E R AT U R E R E V I E W

The DFN model is too computationally expensive for studies of long-
term degradation and applications within battery management sys-
tems. As a result, there have been many previous efforts to develop
simplified models of lithium-ion batteries. The most popular approach
adopted in industry is equivalent circuit models (ECM) [31], [41], [65],
[78]. ECMs use circuit elements such as resistors and capacitors to
model the behaviour of a lithium-ion cell. Mathematically, these cir-
cuits can be thought of as systems of time-dependent ordinary differ-
ential equations (ODEs). These models are empirically driven, with
parameter values for resistances and capacitances being adjusted to a
particular set of data. As a result, ECMs perform well for the particular
operating conditions of the training data but generally perform poorly
as degradation processes occur and the cell deviates from its initial
state. Further, because it is not clear what the exact physical connection
between circuit elements and physical processes are, it is unclear how
to extend ECMs to account for degradation [64].

33
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The most popular physics-based reduced-order model is the single-
particle model (SPM) [12], [26], [77], [89]. In this model, it is assumed
that all of the particles in each electrode act in the same way. As a
result, a single representative particle can be solved for in each elec-
trode, dramatically reducing computation power. It is also assumed
the electrolyte effects can be neglected. This model performs well at
low currents but deviates significantly from the DFN at higher currents.
Therefore, there have been several ad-hoc attempts to extend the SPM
so that it is valid at higher currents [27], [36], [61], [67], [68], [88]. Each
of these extensions includes an expression to estimate the electrolyte ef-
fects which are normally neglected by the SPM. Approaches here range
from using interpolating polynomials for the electrolyte [68] to slightly
more systematic approaches where a long list of assumptions are made
to decoupling the electrolyte PDEs from the rest of the problem [61].

There have been some previous applications of asymptotic meth-
ods to batteries. In [85], asymptotic methods were applied to detailed
models of lead-acid batteries to develop reduced-order models. In
[53], a model of a lithium-ion battery that neglects the active mate-
rial particles was developed and then systematically reduced using
asymptotic methods. Asymptotic methods have also been applied to
the DFN model in [75]. In [75], asymptotic methods were applied to the
DFN model to systematically reduce it. This involved taking a different
asymptotic limit to the one taken here to derive a model similar to ours.
We will compare these two models later.

3.3 N O N D I M E N S I O N A L I S AT I O N

In order to facilitate the asymptotic analysis to follow, we write the
classical DFN model in dimensionless form. This is achieved by intro-
ducing characteristic scales for each of the variables. The through-cell
x∗-coordinate is scaled with L∗x and in each of the particles, we scale
lengths by the particle radius. As our typical timescale, we take a repre-
sentative discharge time of the cell τ∗d , which is defined in Table 3.2. The
current densities in both the electrode and electrolyte are scaled by a
typical operating current density, I∗. We choose to scale the potentials,
overpotentials, and OCPs by a typical potential scale, Φ∗, which we
take to be the thermal voltage Φ∗ = R∗gT

∗
∞/F

∗. The scaled potential in
the negative electrode is measured relative to ground (0 V), whereas
the scaled potential in the positive electrode is measured relative to
the reference OCV, U∗ref = U∗p,ref − U

∗
n,ref, which is the voltage measured

across the cell when no current is applied for a particular set of ref-
erence concentrations, c∗s,n,ref and c∗s,p,ref. The scaled potential in the
electrolyte is measured relative to the reference OCP in the negative
electrode, U∗n,ref. The lithium concentration in the electrolyte is scaled
by the typical value c∗e,typ, whereas the lithium concentrations in the
solid particles are scaled with their maximum concentrations, c∗s,k,max.
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The electrolyte conductivity and electrolyte diffusivity are scaled by
their typical values κ∗e,typ, and D∗e,typ, respectively. In our analysis, we
will work with the solid diffusivities as a function of concentration,
D∗s,k(c∗s,k), (even though they are constant in our parameter set). We
therefore also scale the solid diffusivities by a typical value D∗s,k,typ.
Fluxes then scale in the natural way. To summarise, the dimensionless
variables are related to their dimensional counterparts in the following
way:

global:

x∗ = L∗xx, t∗ = τ∗dt,

I∗ = I∗I κ∗e = κ∗typκe, D∗e = D∗e,typDe;

for k ∈ {n, p} :

r∗k = R∗krk, c∗s,k = c∗s,k,maxcs,k

D∗s,k = D∗s,k,typDs,k,

N∗s,k =
D∗s,k,typc

∗
s,k,max

R∗k
Ns,k,

j∗k =
I∗

a∗kL
∗
x

jk, j∗0,k =
I∗

a∗kL
∗
x

j0,k,

η∗k =
R∗T ∗∞
F ∗

ηk, U∗k = U∗k,ref +
R∗T ∗∞
F ∗

Uk;

for k ∈ {cn, n, p, cp} :

i∗s,k = I∗is,k;

for k ∈ {cn, n} :

φ∗s,k =
R∗T ∗∞
F ∗

φs,k;

for k ∈ {p, cp} :

φ∗s,k =
(
U∗p,ref − U

∗
n,ref

)
+
R∗T ∗∞
F ∗

φs,k;

for k ∈ {n, s, p} :

c∗e,k = c∗e,typce,k, N∗e,k =
D∗e,typc

∗
e,typ

L∗x
Ne,k,

φ∗e,k = −U∗n,ref +
R∗T ∗∞
F ∗

φe,k, i∗e,k = I∗ie,k.

(3.1)
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For clarity, in Table 3.1 we have included the full set of the dimen-
sionless variables that result from making the scalings (3.1). Through
non-dimensionalisation, we identify a number of key timescales in our
model which relate to various physical processes. These are provided
and interpreted in Table 3.2. For the discharge timescale, we have used
that the available lithium in the cell isO(c∗s,n,maxL

∗
xL
∗
yL
∗
z) and that this is

consumed at a rate O(I∗L∗yL
∗
z/F

∗). This give rise to a timescale that is
not quite the same as the discharge time (otherwise its value would be
3600/C, since a 1 C discharge takes 3600 seconds). The difference arises
for three reasons: (i) the negative electrode is of size L∗n and not L∗x; (ii)
the volume of active material is lower than the superficial volume; (iii)
the actual capacity of the cell is lower than the theoretical capacity. The
OCP tends to±∞when the battery is fully charged/discharged; the ac-
tual capacity is that available between two (finite) voltage limits, which
we take to be 3.2 V and 4.7 V in defining C. In addition, we identify a
number of dimensionless parameters which are presented alongside
their respective interpretations and typical values in Tables 3.3 and 3.4.

Symbol Interpretation Region k ∈ {· · · }

φs,k Electric potential in solid n, p,
φe,k Electric potential in the electrolyte n, s, p
is,k Current density in the solid n, p,
ie,k Current density in the electrolyte n, s, p
cs,k Lithium concentration in the active

material
n, p

ce,k Lithium-ion concentration in the
electrolyte

n, s, p

Ns,k Lithium flux in the active material n, p
Ne,k Lithium-ion flux in the electrolyte n, s, p
jk Interfacial current density n, p
j0,k Exchange current density n, p
ηk Surface reaction overpotential n, p
Uk Open circuit potential n, p

Table 3.1: Variables in dimensionless DFN model.
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Symbol Expression Interpretation Value (s)

τ∗d F ∗c∗n,maxL
∗
x/I
∗ Discharge timescale 2.260× 104/C

τ∗n (R∗n)2/D∗n,typ Diffusion timescale in the negative electrode solid material 2.564× 103

τ∗p (R∗p)2/D∗p,typ Diffusion timescale in the positive electrode solid material 1× 103

τ∗e (L∗x)2/D∗e,typ Diffusion timescale in the electrolyte 1.816× 102

τ∗rn
F ∗/(m∗n,typa

∗
n(c∗e,typ)1/2) Reaction timescale in the negative electrode 8.475× 102

τ∗rp
F ∗/(m∗p,typa

∗
p(c∗e,typ)1/2) Reaction timescale in the positive electrode 3.390× 104

Table 3.2: Timescales associated with the physical processes occurring in the battery model. For the isothermal case, m∗
k,typ = m∗

k.
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Parameter Expression Interpretation cn n s p cp

Lk L∗k/L
∗
x Ratio of region thickness to

cell thickness
0.1111 0.4444 0.1111 0.4444 0.1111

Ck τ∗k/τ
∗
d Ratio of solid diffusion and

discharge timescales
- 0.1135C - 0.04425C -

Cr,k τ∗r,k/τ
∗
d Ratio of reaction and dis-

charge timescales
- 0.0375C - 1.5C -

σk (R∗T ∗∞/F
∗)/(I∗L∗x/σ

∗
k) Ratio of thermal voltage to

the typical Ohmic drop in the
solid

2.84× 108/C 475.8/C - 47.58/C 1.69× 108/C

ak a∗kR
∗
k Product of particle radius and

surface area per unit volume
- 1.8 - 1.5 -

γk c∗k,max/c
∗
n,max Ratio of maximum lithium

concentrations in solid
- 1 - 2.0501 -

ck,0 c∗k,0/c
∗
k,max Dimensionless initial lithium

concentration in solid
- 0.8 - 0.6 -

Table 3.3: Typical dimensionless parameter values derived from dimensional parameters in Tables 2.1 and 2.2. Here C = I∗/(24 Am−2) is the C-Rate where
we have taken a 1 C rate to correspond to a typical x∗-direction current density of 24 Am−2. This is for a cell with an initial stoichiometry of 0.8
in the negative electrode and 0.6 in the positive electrode with a voltage cutoff of 3.2 V. (Part 1).
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Parameter Expression Interpretation Value

Ce τ∗e /τ
∗
d Ratio of electrolyte transport and discharge timescales 8.036× 10−3 C

γe c∗e,typ/c
∗
n,max Ratio of maximum lithium concentration in the negative

electrode solid and typical electrolyte concentration
4.003× 10−2

κ̂e (R∗T ∗∞/F
∗)/(I∗L∗x/κ

∗
e,typ) Ratio of thermal voltage to the typical Ohmic drop in the

electrolyte
4.981/C

Table 3.4: Typical dimensionless parameter values derived from dimensional parameters in Tables 2.1 and 2.2. Here C = I∗/(24 Am−2) is the C-Rate where
we have taken a 1 C rate to correspond to a typical x∗-direction current density of 24 Am−2. This is for a cell with an initial stoichiometry of 0.8
in the negative electrode and 0.6 in the positive electrode with a voltage cutoff of 3.2 V. (Part 2).
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3.4 D I M E N S I O N L E S S D F N M O D E L

Here, we summarise the dimensionless version of the reformulated
DFN model as given by (2.33), (2.35), (2.36), (2.41), and (2.42). Using
the scalings from (3.1), the electrode equations (2.41) become

I − ie,k = σs,k
∂φs,k

∂x
k ∈ {n, p}, (3.2a)

φs,n = 0 x ∈ ∂Ωn,cn (3.2b)

the active material equations (2.33) become

Ck
∂cs,k

∂t
= − 1

r2
k

∂

∂rk

(
rkNs,k

)
, k ∈ {n, p}, (3.3a)

Ns,k = −Ds,k(cs,k)
∂cs,k

∂r
, k ∈ {n, p}, (3.3b)

Ns,k
∣∣
r=0

= 0, Ns.k
∣∣
rk=1

=
Ckjk

akγk
. k ∈ {n, p}, (3.3c)

cs,k
∣∣
t=0

= cs,k,0, k ∈ {n, p}; (3.3d)

the electrolyte current equations (2.42) become

∂ie,k

∂x
= jk, k ∈ {n, p}, (3.4a)

ie,s = I, (3.4b)

ie,k = εb
kκ̂eκe(ce,k)

(
−
∂φe,k

∂x
+ 2(1− t+)

∂

∂x
(log(ce,k))

)
, (3.4c)

k ∈ {n, s, p},
ie,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.4d)

ie,k = I, x ∈ ∂Ωk,s, k ∈ {n, p}, (3.4e)

the electrolyte diffusion equations (2.35) become

Ceεk
∂ce,k

∂t
= −γe

∂Ne,k

∂x
+ Ce

∂ie,k

∂x
, k ∈ {n, s, p}, (3.5a)

Ne,k = −εb
kDe(ce,k)

∂ce,k

∂x
+
Cet

+

γe
ie,k, k ∈ {n, s, p}, (3.5b)

Ne,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.5c)

ce,k = ce,s, Ne,k = Ne,s, x ∈ ∂Ωk,s, k ∈ {n, p}, (3.5d)

ce,k
∣∣
t=0

= 1, k ∈ {n, s, p}; (3.5e)



3.5 A S Y M P T O T I C R E D U C T I O N 41

and the electrochemical reaction equations (2.36) become

jk = j0,k sinh
(ηk

2

) ∣∣∣∣
r=1

, k ∈ {n,p}, (3.6a)

j0,k =
γk

Ce,k
(cs,k)1/2(1− cs,k)1/2(ce,k)1/2

∣∣
r=1

k ∈ {n, p}, (3.6b)

ηk = φs,k − φe,k − Uk(cs,k)
∣∣
rk=1

, k ∈ {n, p}. (3.6c)

We also note that the dimensionless version of (2.55) is

εnLnc̄e,n + εsLsc̄e,s + εpLpc̄e,p = (εnLn + εsLs + εpLp), (3.7)

which is a consequence of lithium being conserved in the electrolyte.

3.5 A S Y M P T O T I C R E D U C T I O N

We consider the limit in which the electrical conductivity in the elec-
trodes and electrolyte is high (such that the typical potential drop in
each material is small relative to the thermal voltage) and the timescale
for the migration of lithium ions in the electrolyte is small relative to the
typical timescale of a discharge. This corresponds to the limit Ce → 0,
where Ce is the ratio of the typical timescale for lithium ion migration
to the typical discharge timescale, σk → ∞, where σk is ratio of the
thermal voltage to the typical Ohmic drop in the solid, and κ̂e → ∞,
where κ̂e is the ratio of the thermal voltage to the typical Ohmic drop
in the electrolyte. We consider the distinguished limit in which each
overpotential term in (2.50) appears at leading or first order in our
asymptotic expansion. We take σkCe and κ̂eCe to both tend to a constant
as Ce → 0, σk →∞, and κ̂e →∞ by setting

σk =
σ′k
Ce
, σ′k = O(1), k ∈ {n, p},

κ̂e =
κ̂′e
Ce
, κ̂′e = O(1).

(3.8)

We then expand all variables in powers of Ce in the form

cs,k = c
(0)
s,k + Cec

(1)
s,k + C2

e c
(2)
s,k + . . . ,

etc.
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3.5.1 Leading-order analysis

At leading order in Ce, the electrode potential equations (3.2) become

∂φ
(0)
s,k

∂x
= 0 k ∈ {n, p}, (3.9a)

φ
(0)
s,n = 0 x ∈ ∂Ωn,cn; (3.9b)

the active material equations (3.3) become

Ck
∂c

(0)
s,k

∂t
= − 1

r2
k

∂

∂rk

(
rkN

(0)
s,k

)
, k ∈ {n, p}, (3.10a)

N
(0)
s,k = −Ds,k(c

(0)
s,k )

∂c
(0)
s,k

∂r
, k ∈ {n, p}, (3.10b)

N
(0)
s,k

∣∣
r=0

= 0, N
(0)
s.k

∣∣
rk=Rk

=
Ckj

(0)
k

akγk
, k ∈ {n, p}, (3.10c)

c
(0)
s,k

∣∣
t=0

= cs,k,0; (3.10d)

the electrolyte current equations (3.4) become

∂i
(0)
e,k

∂x
= j

(0)
k , k ∈ {n, p}, (3.11a)

i
(0)
e,s = I, (3.11b)

∂φ
(0)
e,k

∂x
= 2(1− t+)

∂

∂x

(
log
(
c

(0)
e,k

))
k ∈ {n, s, p}, (3.11c)

i
(0)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.11d)

i
(0)
e,k = I, x ∈ ∂Ωk,s, k ∈ {n, p}, (3.11e)

the electrolyte diffusion equations (3.5) become

0 = −γe
∂N

(0)
e,k

∂x
, k ∈ {n, s, p}, (3.12a)

N
(0)
e,k = −εb

kDe(c
(0)
e,k)

∂c
(0)
e,k

∂x
, k ∈ {n, s, p}, (3.12b)

N
(0)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.12c)

c
(0)
e,k = c

(0)
e,s , N

(0)
e,k = N

(0)
e,s , x ∈ ∂Ωk,s, k ∈ {n, p}, (3.12d)

c
(0)
e,k

∣∣
t=0

= 1, k ∈ {n, s, p}; (3.12e)
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and the electrochemical reaction equations (3.6) become

j
(0)
k = j

(0)
0,k sinh

(
η

(0)
k
2

)∣∣∣∣
r=1

, k ∈ {n, p}, (3.13a)

j
(0)
0,k =

γk

Ce,k
(c

(0)
s,k )1/2(1− c(0)

s,k )1/2(c
(0)
e,k)1/2

∣∣
r=1

k ∈ {n, p}, (3.13b)

η
(0)
k = φ

(0)
s,k − φ

(0)
e,k − Uk(c

(0)
s,k )
∣∣
rk=1

, k ∈ {n, p}. (3.13c)

Firstly, from (3.12), we have that

c
(0)
e,k = 1 x ∈ Ωk, k ∈ {n, s, p}, (3.14a)

N
(0)
e,k = 0, x ∈ Ωk, k ∈ {n, s, p}. (3.14b)

By using (3.14) in (3.11) we have that φ(0)
e,k is independent of x. Addition-

ally from (3.9), we have that φ(0)
s,k is independent of x. Since c(0)

e,k , φ(0)
e,k ,

and φ(0)
s,k are all independent of x and c(0)

s,k is initially independent of x,

it follows that c(0)
s,k , j(0)

k , j(0)
0,k , η(0)

k , and Uk(c
(0)
s,k )
∣∣
rk=1

are also independent
of x. Therefore, integrating (3.11a) over each electrode and applying
the boundary conditions (3.11d) and (3.11e), gives

i
(0)
e,n =

xI
Ln
, i

(0)
e,s = I, i

(0)
e,p =

(1− x)I
Lp

, (3.15)

j
(0)
n =

I
Ln
, j

(0)
p = − I

Lp
. (3.16)

From (3.9), we have

φ
(0)
s,n = 0, x ∈ Ωn. (3.17)

Therefore, since φ(0)
e,k is independent of x, rearranging (3.13c) for k=n

gives

φ
(0)
e,k = −Un(c

(0)
s,n )
∣∣
rn=1
− η(0)

n , x ∈ Ωk, k ∈ {n, s, p}. (3.18)

We can then rearrange (3.13c) for k=p and use that φ(0)
s,p is independent

of x to obtain

φ
(0)
e,p = Up(c

(0)
s,p)
∣∣
rp=1
− Un(c

(0)
s,n )
∣∣
rn=1

+ η
(0)
p − η

(0)
n , x ∈ Ωp. (3.19)

Finally, we rearrange (3.13a) to get

η
(0)
k = 2 sinh−1

j(0)
k

j
(0)
0,k

 , x ∈ Ωk, k ∈ {n, p}. (3.20)
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3.5.2 Summary of the single-particle model

The dimensionless leading-order model is given by (3.10), (3.13b), and
(3.15)-(3.20). In this limit, each particle in the electrode acts in the same
way to lowest order in Ce. Therefore, the model only consists of a single
representative particle in each electrode. This gives the model it’s name:
the single-particle model (SPM) [12], [61]. In the SPM, the voltage is
simply given by V(0) = φ

(0)
s,p . To provide an easy reference and to draw

parallels with the voltage breakdown introduced in §2.7.2, we also
summarise the SPM in dimensional form. Here, we shall drop the
asymptotic order notation. In each of the representative particles, we
have

∂c∗s,k

∂t∗
= − 1

(r∗)2

∂

∂r∗

(
(r∗)2N∗s,k

)
, k ∈ {n, p}, (3.21a)

N∗s,k = −D∗s,k(c∗s,k)
∂c∗s,k

∂r∗
, k ∈ {n, p}, (3.21b)

N∗s,k

∣∣
r∗=0

= 0, k ∈ {n, p}, (3.21c)

N∗s.k

∣∣
r∗=R∗k

=

 I∗
F ∗a∗nL

∗
n
, k = n

− I∗
F ∗a∗pL

∗
p

k = p
k ∈ {n, p}, (3.21d)

c∗s,k

∣∣
t∗=0

= c∗s,k,0, k ∈ {n, p}, (3.21e)

with the voltage, expressed in the form of §2.7.2, given by

V∗ = Ū∗eq + η̄∗r (3.21f)

Ū∗eq = U∗p(c∗s,p)
∣∣
r∗=R∗p

− U∗n (c∗s,n)
∣∣
r∗=R∗n

(3.21g)

η̄∗r = η∗p − η∗n (3.21h)

η∗p = −
2R∗gT

∗
∞

F ∗
sinh−1

(
I∗

j∗0,pa
∗
pL
∗
p

)
(3.21i)

η∗n =
2R∗gT

∗
∞

F ∗
sinh−1

(
I∗

j∗0,na
∗
nL
∗
n

)
(3.21j)

j∗0,k = m∗k(c∗s,k)1/2(c∗s,k,max − c
∗
s,k)1/2(c∗e,0)1/2 k ∈ {n, p}. (3.21k)
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The remaining internal cell variables are given by

φ∗s,n = 0, φ∗s,p = V∗, (3.21l)

i∗s,n = I∗ − x∗I∗

L∗n
i∗s,p = I∗ − (L∗x − x∗)I∗

L∗p
(3.21m)

i∗e,n =
x∗I∗

L∗n
, i∗e,s = I∗, i∗e,p =

(L∗x − x∗)I∗

L∗p
, (3.21n)

j∗n =
I∗

a∗nL
∗
n
, j∗p = − I

∗

a∗pL
∗
p
, (3.21o)

φ∗e,k = −U∗n (c∗s,n)
∣∣
r∗=R∗n

− η∗n, k ∈ {n, s, p} (3.21p)

c∗e,k = c∗e,0, N∗e,k = 0, k ∈ {n, s, p}. (3.21q)

Written in this form, it is clear that the SPM only estimates the OCV and
reaction overpotential in the voltage expression (2.50). In Figure 2.2,
we saw that these two terms are the main contributors to the terminal
voltage and so this is consistent with what we would expect from a
leading-order model. The SPM does particularly well at low C-rates
but at higher C-rates, electrolyte effects in particular become more
important. To correct for this, we proceed to first order in the asymptotic
expansion.

3.5.3 First-order analysis

At O(Ce), the electrode potential equations (3.2) become

I − i(0)
e,k = σ′k

∂φ
(1)
s,k

∂x
k ∈ {n, p}, (3.22a)

φ
(1)
s,n = 0 x ∈ ∂Ωn,cn; (3.22b)

the active material equations (3.3) become

Ck
∂c

(1)
s,k

∂t
= − 1

r2
k

∂

∂rk

(
rkN

(1)
s,k

)
, k ∈ {n, p}, (3.23a)

N
(1)
s,k = −Ds,k(c

(0)
s,k )

∂c
(1)
s,k

∂r
−D′s,k(c

(0)
s,k )c

(1)
s,k

∂c
(0)
s,k

∂r
, (3.23b)

k ∈ {n, p},

N
(1)
s,k

∣∣
r=0

= 0, N
(1)
s.k

∣∣
rk=Rk

=
Ckj

(1)
k

akγk
. k ∈ {n, p}, (3.23c)

c
(1)
s,k

∣∣
t=0

= 0, k ∈ {n, p}; (3.23d)



46 A S Y M P T O T I C R E D U C T I O N O F T H E D F N M O D E L

and the electrolyte current equations (3.4) become

∂i
(1)
e,k

∂x
= j

(1)
k , k ∈ {n, p}, (3.24a)

i
(1)
e,s = 0, (3.24b)

i
(0)
e,k = εb

kκ̂
′
eκe(c

(0)
e,k)

−∂φ(1)
e,k

∂x
+ 2(1− t+)

1

c
(0)
e,k

∂c
(1)
e,k

∂x

 , (3.24c)

k ∈ {n, s, p},

i
(1)
e,k = 0, x ∈ ∂Ωck,k ∪ ∂Ωk,s, k ∈ {n, p}, (3.24d)

where we have omitted the terms from (3.24c) that become zero upon
substitution of (3.14a) and (3.18). At O(Ce), the electrolyte diffusion
equations (3.5) become

εk
∂c

(0)
e,k

∂t
= −γe

∂N
(1)
e,k

∂x
+
∂i

(0)
e,k

∂x
, k ∈ {n, s, p}, (3.25a)

N
(1)
e,k = −εb

kDe(c
(0)
e,k)

∂c
(1)
e,k

∂x
+
t+

γe
i
(0)
e,k , k ∈ {n, s, p} (3.25b)

N
(1)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.25c)

c
(1)
e,k = c

(1)
e,s , N

(1)
e,k = N

(1)
e,s , x ∈ ∂Ωk,s, k ∈ {n, p}, (3.25d)

c
(1)
e,k

∣∣
t=0

= 0, k ∈ {n, s, p}; (3.25e)

where we have omitted the terms from (3.25b) that become zero upon
substitution of (3.14a) and (3.18). The electrochemical reaction equa-
tions (3.6) become

j
(1)
k = j

(1)
0,k sinh

(
η

(0)
k
2

)
+
j

(0)
0,kη

(1)
k

2
cosh

(
η

(0)
k
2

)
, (3.26a)

k ∈ {n, p},

j
(1)
0,k =

j
(0)
0,k

2

c(1)
s,k

c
(0)
s,k

−
c

(1)
s,k

1− c(0)
s,k

+
c

(1)
e,k

c
(0)
e,k

∣∣∣∣∣
rk=1

, k ∈ {n, p}, (3.26b)

η
(1)
k = φ

(1)
s,k − φ

(1)
e,k − c

(1)
s,k

∣∣
rk=1

∂Uk

∂cs,k

∣∣∣∣
cs,k=c

(0)
s,k

, k ∈ {n, p}. (3.26c)

Substituting (3.14a) and (3.15) into (3.25a), integrating over each Ωk,
and applying the boundary conditions (3.25c) and (3.25d) gives

N
(1)
e,n =

Ix
γeLn

, N
(1)
e,s =

I
γe
, N

(1)
e,p =

I(1− x)

γeLp
. (3.27)
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Then, substituting (3.14a), (3.15), and (3.27) into (3.25b) and applying
the constraint on conservation of lithium in the electrolyte, (3.7), gives

c
(1)
e,n =

(1− t+)I
γe6De(1)

(
2

(
L2

p

εbp
− L2

n
εbn

)

+
2Ls
εbs

(1 + Lp − Ln) +
3

εbnLn
(L2

n − x2)

)
,

(3.28a)

c
(1)
e,p =

(1− t+)I
6γeDe(1)

(
2

(
L2

p

εbp
− L2

n
εbn

)

+
3

εbs
(L2

n − L2
p + 1− 2x)

)
,

(3.28b)

c
(1)
e,p =

(1− t+)I
6γeDe(1)

(
2

(
L2

p

εbp
− L2

n
εbn

)

+
3Ls
εbs

(Lp − Ln − 1) +
3

Lpεbp
((x− 1)2 − L2

p)

)
.

(3.28c)

Integrating (3.24a) over Ωn and Ωp and applying the boundary condi-
tions (3.24d) gives

j̄
(1)
k = 0, k ∈ {n, p}. (3.29)

Therefore, integrating (3.23) over Ωn and Ωp gives the problem

Ck
∂c̄

(1)
s,k

∂t
= − 1

r2
k

∂

∂rk

(
rkN̄

(1)
s,k

)
, k ∈ {n, p}, (3.30a)

N̄
(1)
s,k = −Ds,k(c

(0)
s,k )

∂c̄
(1)
s,k

∂r
−D′s,k(c

(0)
s,k )c̄

(1)
s,k

∂c
(0)
s,k

∂r
, (3.30b)

k ∈ {n, p},

N̄
(1)
s,k

∣∣
r=0

= 0, N̄
(1)
s.k

∣∣
rk=Rk

= 0. k ∈ {n, p}, (3.30c)

c̄
(1)
s,k

∣∣
t=0

= 0, k ∈ {n, p}, (3.30d)

to which the solution is

c̄
(1)
s,k = 0, k ∈ {n, p}. (3.31)

Hence the first-order correction to the lithium concentration in the
average particle in each electrode is zero. Using (3.15) in (3.22) gives

φ
(1)
s,n = − Ix

2σ′nLn
(2Ln − x) (3.32a)

φ
(1)
s,p = V(1) +

I(x− 1)(1− 2Lp − x)

2σ′pLp
, (3.32b)
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where V(1) = φ
(1)
s,p
∣∣
∂Ωp,cp

is a constant of integration that remains to be
determined. By averaging (3.26c) over Ωn and Ωp and applying (3.31),
we have

η̄
(1)
k = φ̄

(1)
s,k − φ̄

(1)
e,k , k ∈ {n, p}. (3.33)

We can now average (3.32b) over Ωp and use (3.33) with k=p, to obtain

V(1) = φ̄
(1)
e,p + η̄

(1)
p −

ILp

3σ′p
, (3.34)

which is the first-order correction to the terminal voltage. To fully
determine the first-order terminal voltage, it only remains to determine
φ̄

(1)
e,p and η̄(1)

p . By integrating (3.24c) over Ωk for k ∈ {n, s, p} and using
(3.33) with k=n to determine the constant of integration, we have

φ
(1)
e,n = Φe + 2(1− t+)(c

(1)
e,n − c̄

(1)
e,n)

− I
κ̂′eκe(1)

(
x2 − L2

n
2εbnLn

+
Ln

εbs

)
,

(3.35a)

φ
(1)
e,s = Φe + 2(1− t+)(c

(1)
e,s − c̄

(1)
e,n)− Ix

κ̂′eκe(1)εbs
, (3.35b)

φ
(1)
e,p = Φe + 2(1− t+)(c

(1)
e,p − c̄

(1)
e,n)

− I
κ̂′eκe(1)

(
x(2− x) + L2

p − 1

2εbpLp
+

1− Lp

εbs

)
,

(3.35c)

where

Φe = φ̄
(1)
s,n − η̄

(1)
n −

ILn

κ̂′eκe(1)

(
1

3εbn
− 1

εbs

)
. (3.35d)

Finally, averaging (3.26a) over Ωn and Ωp and rearranging for η̄(1)
k gives

η̄
(1)
k = −

2j̄
(1)
0,k

j
(0)
0,k

tanh

(
η0

k
2

)
(3.35e)

where we average (3.26b) and use (3.14) and (3.31) to get

j̄
(1)
0,k =

j
(0)
0,k c̄

(1)
e,k

2
. (3.35f)

We have now fully determined V(1), c(1)
e,k , φ(1)

s,k , φ(1)
e,k , η̄(1)

k , c̄(1)
s,k , j̄(1)

k , and

j̄
(1)
0,k as algebraic expressions which require negligible additional com-

putational effort to evaluate. However, to determine c(1)
s,k , j(1)

k , j(1)
0,k , i(1)

e,k ,

and i
(1)
s,k requires significant additional computational effort because

one must then resolve the concentrations in all of the particles instead
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of a single averaged particle. We will discuss this later but since the ter-
minal voltage is the key output of interest to battery engineers, we will
simply employ the leading-order approximations for these variables in
our reduced-order models.

3.5.4 Transient response

In the previous analysis, we only considered the steady state solution
for c(0)

e,k and c(1)
e,k . However, we can account for the transient effects by

scaling time with the electrolyte diffusion timescale as

t∗ = τet̂

instead of the discharge timescale. We can now solve a new short time
problem by transforming the dimensionless equations (3.2)-(3.6) using

t = Cet̂

and denoting short time variables as

ĉe,k, ĉs,k, etc. (3.36)

We consider the limit in (3.8) and make asymptotic expansions in these
short time variables of the form

ĉe,k = ĉ
(0)
e,k + Ceĉ

(1)
e,k + . . . (3.37)

etc. We shall only consider the analysis to determine the electrolyte
concentration as the analysis for the other variables is trivial (i.e on
the short timescale the solid concentration remains constant, and the
current and potentials are given in the same form as before). At leading
order, the electrolyte concentration equations (3.5) become

εk
∂ĉ

(0)
e,k

∂t̂
= −γe

∂N̂
(0)
e,k

∂x
, k ∈ {n, s, p}, (3.38a)

N̂
(0)
e,k = −εb

kDe(ĉ
(0)
e,k)

∂ĉ
(0)
e,k

∂x
, k ∈ {n, s, p}, (3.38b)

N̂
(0)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.38c)

ĉ
(0)
e,k = ĉ

(0)
e,s , N̂

(0)
e,k = N̂

(0)
e,s , x ∈ ∂Ωk,s, k ∈ {n, p}, (3.38d)

ĉ
(0)
e,k

∣∣
t̂=0

= 1, k ∈ {n, s, p}, (3.38e)

which yields the solution

ĉ
(0)
e,k = 1 (3.39)
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and thus clearly satisfies the matching condition

lim
t̂→∞

ĉ
(0)
e,k = lim

t→0
c

(0)
e,k (3.40)

At O(Ce), the electrolyte concentration equations (3.5) become

εk
∂ĉ

(1)
e,k

∂t̂
= −γe

∂N̂
(1)
e,k

∂x
+
∂i

(0)
e,k

∂x
, k ∈ {n, s, p}, (3.41a)

N
(1)
e,k = −εb

kDe(1)
∂ĉ

(1)
e,k

∂x
+
t+

γe
i
(0)
e,k , k ∈ {n, s, p}, (3.41b)

N̂
(1)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.41c)

ĉ
(1)
e,k = ĉ

(1)
e,s , N̂

(1)
e,k = N̂

(1)
e,s , x ∈ ∂Ωk,s, k ∈ {n, p}, (3.41d)

ĉ
(1)
e,k

∣∣
t̂=0

= 0, k ∈ {n, s, p}, (3.41e)

where we have used î
(0)
e,k = i

(0)
e,k and ĉ

(0)
e,k = 1. We can see that this

electrolyte concentration, ĉ(1)
e,k will satisfy the matching condition

lim
t̂→∞

ĉ
(1)
e,k = c

(1)
e,k , (3.41f)

because c(1)
s,k is the steady-state solution of (3.41). Since i(0)

e,n = xI
Ln

, i(0)
e,s =

I, and i
(0)
e,p = (1−x)I

Lp
and I is in general a function of time, it is most

appropriate to solve (3.41) using computational methods. The most
general approach is to consider a composite electrolyte problem that
is valid on both the electrolyte diffusion timescale and the discharge
timescale. To do this, we write the composite variables

c
(c)
e,k = ĉ

(1)
e,k︸︷︷︸

Short time

+ c
(1)
e,k︸︷︷︸

Long time

− c
(1)
e,k︸︷︷︸

Matched

= ĉ
(1)
e,k (3.42a)

N
(c)
e,k = N̂

(1)
e,k︸︷︷︸

Short time

+ N
(1)
e,k︸︷︷︸

Long time

− N
(1)
e,k︸︷︷︸

Matched

= N̂
(1)
e,k . (3.42b)

Therefore, the composite problem, written in terms of t, is given by

Ceεk
∂c

(c)
e,k

∂t
= −γe

∂N
(c)
e,k

∂x
+
∂i

(0)
e,k

∂x
, k ∈ {n, s, p}, (3.43a)

N
(c)
e,k = −εb

kDe(1)
∂c

(c)
e,k

∂x
+
t+

γe
i
(0)
e,k , k ∈ {n, s, p}, (3.43b)

N
(c)
e,k = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (3.43c)

c
(c)
e,k = c

(c)
e,s , N

(c)
e,k = N

(c)
e,s , x ∈ ∂Ωk,s, k ∈ {n, p}, (3.43d)

c
(c)
e,k

∣∣
t=0

= 0, k ∈ {n, s, p}. (3.43e)
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We can then use this composite form in the expressions derived in the
previous section with c(1)

e,k replaced by c(c)
e,k.

As an aside, in the particular case where I is a constant and εn = εs =

εp, (3.41) can be solved by separation of variables, with the solution
given by

ĉ
(1)
e,k = c

(1)
e,k

+

∞∑
m=1

αm exp
(
−γeε

b−1
k De(1)π2m2t̂

)
sin(mπx),

(3.44a)

αm = −2

∫ 1

0
c

(1)
e,k sin(mπx)dx. (3.44b)

For a constant current discharge, we found that taking the first term
in this series accurately recovered the predicted terminal voltage. A
similar solution can also be found for a jump between two arbitrary
constant currents.

3.5.5 Summary of the single-particle model with electrolyte

The dimensionless version of the single-particle model with electrolyte
(SPMe) is given by a combination of the leading-order equations (3.10),
(3.13b), and (3.15)-(3.20) and the first-order equations (3.32), (3.34),
(3.35), (3.35e), (3.35f), and (3.43). Note that we make use of the com-
posite electrolyte concentration equations. Similar to how we treated
the SPM, we now summarise the SPMe in dimensional form. We shall
combine leading and first-order equations where convenient to present
a condensed and easy to interpret form of the model. We will also
make two small modifications to the model, that we have found help
the model perform better in certain situations.The first modification
involves noticing that

De(c
(0)
e,k) = De(c

(0)
e,k + Cec

(c)
e,k) +O(Ce). (3.45)

Therefore, we can replace the linear diffusion coefficient in the first-
order composite electrolyte diffusion equation (3.43) by its nonlinear
counterpart whilst maintaining O(C2

e ) accuracy. The second modifica-
tion is to notice that

log

1 + Cec
(1)
e,k

1 + Cec̄
(1)
e,k

 = Ce(c
(1)
e,k − c̄

(1)
e,k) +O(C2

e ). (3.46)

Therefore, we can absorb the terms of the form (c
(1)
e,k − c̄

(1)
e,k) in (3.35)

into a combined-order expression involving ‘log’ whilst maintaining
O(C2

e ) accuracy. Both of these modifications reverse the linearisation of
nonlinear functions performed during our asymptotic analysis.
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In the following, we state the dimensional SPMe. The combined
leading- and first-order electrode-averaged lithium concentration in
the active material is given by the problem

∂c̄∗s,k

∂t∗
= − 1

(r∗)2

∂

∂r∗

(
(r∗)2N̄∗s,k

)
, k ∈ {n, p} (3.47a)

N̄∗s,k = −D∗s,k(c̄∗s,k)
∂c̄∗s,k

∂r∗
, k ∈ {n, p}, (3.47b)

N̄∗s,k

∣∣
r∗k =0

= 0, N̄∗s,k

∣∣
r∗k =R∗k

=

 I∗
F ∗a∗nL

∗
n
, k = n,

− I∗
F ∗a∗pL

∗
p
, k = p,

(3.47c)

k ∈ {n, p},
c̄∗s,k

∣∣
t∗=0

= c∗s,k,0, k ∈ {n, p}; (3.47d)

and in the electrolyte, we have the combined leading- and first-order
problem

εk
∂c∗e,k

∂t∗
= −

∂N∗e,k

∂x∗
+


I∗

F ∗L∗n
, k = n,

0, k = s,

− I∗
F ∗L∗p

, k = p,

k ∈ {n, s, p}, (3.47e)

N∗e,k = −εb
kD
∗
e(c∗e,k)

∂c∗e,k

∂x∗
+


x∗t+I∗
F ∗L∗n

, k = n,
t+I∗
F ∗ , k = s,

(L∗−x∗)t+I∗
F ∗L∗p

, k = p,

(3.47f)

k ∈ {n, s, p},

N∗e,k = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (3.47g)

c∗e,k = c∗e,s x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (3.47h)

N∗e,k = N∗e,s, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (3.47i)

c∗e,k

∣∣
t∗=0

= c∗e,0, k ∈ {n, s, p}. (3.47j)

The combined leading- and first-order voltage is given by

V∗ = Ū∗eq + η̄∗r + η̄∗c + ∆̄Φ
∗
Elec + ∆̄Φ

∗
Solid, (3.47k)

where Ūeq is the combined leading- and first-order electrode-averaged
OCV and is given by

Ū∗eq = U∗p

(
c̄∗s,p
∣∣
r∗=R∗p

)
− U∗n

(
c̄∗s,n
∣∣
r∗=R∗n

)
; (3.47l)



3.5 A S Y M P T O T I C R E D U C T I O N 53

η̄∗r is the combined leading- and first-order electrode-averaged reaction
overpotential and is given by

η̄∗r = η̄∗p − η̄∗n (3.47m)

η̄∗n =
2R∗gT

∗
∞

F ∗
sinh−1

(
I∗

a∗nj̄
∗
0,nL

∗
n

)
, (3.47n)

η̄∗p = −
2R∗gT

∗
∞

F ∗
sinh−1

(
I∗

a∗pj̄
∗
0,pL

∗
p

)
, (3.47o)

where j̄∗0,n and j̄∗0,p are the combined leading and first-order average
negative and positive exchange current densities given by

j̄∗0,n =
m∗n
L∗n

∫ L∗n

0
(c∗s,n)1/2(c∗s,n,max − c∗s,n)1/2(c∗e,n)1/2 dx∗, (3.47p)

j̄∗0,p =
m∗p

L∗p

∫ L∗

L∗−L∗p
(c∗s,p)1/2(c∗s,p,max − c∗s,p)1/2(c∗e,p)1/2 dx∗. (3.47q)

The combined leading- and first-order electrolyte concentration over-
potential is given by

η̄∗c = 2(1− t+)
R∗gT

∗
∞

F ∗
log

(
c̄∗e,p

c̄∗e,n

)
; (3.47r)

the combined leading- and first-order electrolyte Ohmic losses are

∆Φ
∗
Elec = − I∗

κ∗e(c∗e,0)

(
L∗n
3εbn

+
L∗s
εbs

+
L∗p

3εbp

)
; (3.47s)

and the combined leading- and first-order solid-phase Ohmic losses
are

∆Φ
∗
Solid = −I

∗

3

(
L∗p

σ∗p
+
L∗n
σ∗n

)
. (3.47t)

The remaining key variables are given by the following algebraic ex-
pressions. The combined leading- and first-order negative and positive
electrode potentials are given by

φ∗s,n = − I
∗x∗

2σ∗nL
∗
n

(2L∗n − x∗), (3.47u)

φ∗s,p = V∗ +
I∗(x∗ − L∗x)(L∗x − 2L∗p − x∗)

2σ∗pL
∗
p

; (3.47v)
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the combined leading- and first-order electrolyte potential is given by

φ∗e,n = Φ∗e + 2(1− t+)
R∗gT

∗
∞

F ∗
log

(
c∗e,n

c̄∗e,n

)
− I∗

κ∗e(c∗e,0)

(
(x∗)2 − (L∗n)2

2εbnL
∗
n

+
L∗n
εbs

)
,

(3.47w)

φ∗e,s = Φ∗e + 2(1− t+)
R∗gT

∗
∞

F ∗
log

(
c∗e,s

c̄∗e,n

)
− I∗x∗

κ∗e(c∗e,0)εbs
, (3.47x)

φ∗e,n = Φ∗e + 2(1− t+)
R∗gT

∗
∞

F ∗
log

(
c∗e,p

c̄∗e,n

)
− I∗

κ∗e(c∗e,0)

(
x∗(2L∗x − x∗) + (L∗p)2 − (L∗x)2

2εbpL
∗
p

+
L∗x − L∗p

εbs

)
,

(3.47y)

where

Φ∗e = φ̄s,n − η̄n +
I∗L∗n
κe(c∗e,0)

(
1

εbn
− 1

εbs

)
;

and the combined leading- and first-order average negative and posi-
tive interfacial current densities are given by

j̄∗n =
I∗

F ∗a∗nL
∗
n
, j̄∗p = − I∗

F ∗a∗pL
∗
p
. (3.47z)

Written in this form, we can see that the SPMe adopts the OCV
predicted by the SPM but also corrects for electrolyte effects in the
reaction overpotential, concentration overpotential, and electrolyte
Ohmic losses in the voltage expression (2.50). The SPMe also accounts
for the solid-phase Ohmic losses. There is a key difference in how we
should interpret the active material equations in the SPM and the SPMe,
which is why we have written the SPMe equations with an ‘overbar’
and the SPM equation without an ‘overbar’. In the SPM, all active
material particles behave in the same way and therefore we can solve
for the concentration in a single representative particle. However, for
the SPMe, we only solve for a theoretical average particle and are not
necessarily determining the concentration in any particular particle.
Without making this distinction, one may have chosen to evaluate the
voltage by considering a particular path through the cell as in (2.49),
which does not guarantee the same asymptotic accuracy. We will see in
following sections that this error is implemented in the ad-hoc versions
of the SPMe.
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3.6.1 Finite-volume implementation

In this section, we compare the DFN model (as given by (2.33), (2.35),
(2.36), (2.41), and (2.42)), SPM (3.21), and the SPMe (3.47). We imple-
ment the DFN model by discretising the spatial dimensions using the
finite-volume method to convert the system of PDEs into a system of
differential-algebraic equations (DAEs) of index one. Before solving
this system, a set of consistent initial conditions for the potentials are
found numerically using Newton’s method. The time evolution of the
system is then performed using the SUNDIALs DAE solvers interfaced
through PyBaMM [29], [86]. Similarly, we use the finite-volume method
to discretise the spatial dimensions of the SPM and SPMe and again use
SUNDIALs for the time evolution. We use the same mesh to discretise
the SPM, SPMe, and DFN model. In the x∗-direction, we use 30 points
in the negative electrode, 20 points in the separator, and 30 points in
the positive electrode. In the r∗-direction, we use 15 points. Numerical
errors associated with the spatial discretisation, are therefore of order
10−2. However, we have limited their influence upon the comparison
by applying the same numerical method to each model and check-
ing convergence. Since we aim to compare models and not numerical
methods, we only concern ourselves with the relative reduction in
computational complexity obtained by using the SPMe instead of the
DFN model, whilst retaining the same numerical method. Here, we
use the finite-volume method, but of course, alternative methods could
be applied to both models to further increase speed and/or reduce
memory requirements of each.

Computational complexity consists of space complexity (memory)
and time complexity. To demonstrate the reduction in space complexity,
we consider our finite-volume implementation with 30 points in the
electrodes, 20 points in the separator, and 15 points in the particles. In
this case, the DFN model requires 2 × (30 × 15) = 900 states for the
concentration of lithium in the particles, 80 states for the concentration
of lithium ions in the electrolyte, 80 states for the electrolyte potential,
and 60 states for the electrode potentials. This leads to a total of 1120
internal states, which are to be stored at each time step. On the other
hand, the SPMe requires only 30 states for the concentration of lithium
in the particles and 80 states for the concentration of lithium ions in
the electrolyte. Therefore, for this discretisation, the SPMe requires just
over 10% of the memory required by the DFN model. With regards
to time complexity, the DFN model is limited in two respects. Firstly,
it is limited by the large number of states which must be computed
at every time step and secondly it is limited by the stiff nature of the
system, which arises from the discretisation of the mixed parabolic and
elliptic PDEs resulting in a system of DAEs. As previously discussed,
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the SPMe addresses the first of these limitations. It also addresses
the second limitation because the model consists of three parabolic
PDEs, which upon discretisation lead to a well-conditioned system of
ODEs amenable to taking larger time steps than the stiff DAE system
of the DFN model. Furthermore, being a system of DAEs the DFN
model suffers from convergence issues if inconsistent initial conditions
are provided or if there is a large change in current, for example, in
switching between charging and discharging. This is an inherent issue
with DAE based algorithms and efforts have been made to limit the
range of inconsistent initial conditions [50]. However, this robustness
problem persists and convergence of the DFN model cannot always be
ensured for non-constant currents.

3.6.2 Voltage comparison

We compare the SPM, SPMe, and DFN model by considering the case of
a single constant-current discharge over a range of C-rates. The initial
stoichiometries of the negative and positive electrodes are 0.8 and 0.6,
respectively, and we terminate the discharge when the terminal voltage
reaches 3.2 V. For this cell, a C-rate of 1 C corresponds to a discharge
current density of 24 A/m2. As provided in Tables 3.3 and 2.2, we have
Ce = 5.1× 10−3C where C is the C-rate. The predicted terminal voltage
of each model is presented in Figure 3.1 and root mean square (RMS)
errors in Table 3.5.
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Figure 3.1: Constant-current discharge comparison of DFN model (as given
by (2.33), (2.35), (2.36), (2.41)), SPM (3.21), and SPMe (3.47) over
a range of typical C-rates. The RMS voltage error for the reduced
models with respect to the DFN model is provided in Table 3.5.

At low C-rates, all three models match well with an RMS voltage
error of just 1.72 mV for the SPM at 0.1 C. However, at higher C-rates we
observe that the SPM prediction deviates from the DFN model solution,
producing an RMS voltage error of 19.86 mV at 1 C and 62.78 mV at
3 C. The SPMe greatly improves upon this, with a RMS voltage error
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0.1 C 0.5 C 1 C 2 C 3 C

SPM 1.72 mV 9.62 mV 19.86 mV 40.67 mV 62.78 mV
SPMe 0.17 mV 1.34 mV 3.04 mV 7.36 mV 13.34 mV

Table 3.5: RMS voltage error between the reduced models and the DFN model
for the finite-volume implementation with 30 points in each domain.

of just 3.04 mV at 1 C and 13.34 mV at 3 C. Unfortunately, there is a
discrepancy in the voltage curves near then end of the discharge at 3 C.
To investigate the source of this discrepancy, we plot the error in each
component of the voltage during a 3 C discharge in Figure 3.2.
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Figure 3.2: Voltage component errors of the SPMe vs. DFN.

We observe that for the majority of the discharge all components of
the SPMe voltage agree well with the voltage predicted by the DFN
model. However, near the end of the discharge, there is a large increase
in the error of our solution, as observed in Figure 3.1. Around 60-70%
of this error is due to a poor estimation of the electrode-averaged
OCV. This error occurs when the OCV becomes highly nonlinear. If we
extend our asymptotic expansion of the OCP, Uk(ck), to second order,
we obtain the term C2

eU
′′
k (c0

s,k)(c1
s,k)2/2. Hence, when the OCV is highly

nonlinear, U ′′k (c0
s,k) becomes large and the higher-order terms neglected

from the SPMe become significant. We account for this behaviour later
but the resulting model requires a significantly larger computational
budget than the SPM and SPMe.

3.6.3 Grid dependence and computation time

In Figure 3.3, we compare the solutions of the SPMe and DFN model
with 5, 10, 20 and 30 points in each domain (negative electrode, sepa-
rator, positive electrode, negative particle, positive particle) across a
range of C-rates. Here, we measure the RMS voltage error against the
DFN model solution with 30 points in each domain. It is important
here to only focus upon the relative timings of the models and not
absolute times. It should also be noted that this comparison is for a
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constant-current discharge; the non-constant case has been reported to
give rise to even longer computation times for the DFN model [13]. The
key observation from Figure 3.3 is that for a relatively small increase in
RMS voltage error, particularly at low C-rates, an order of magnitude
decrease in computation time is achieved by using the SPMe instead of
the DFN model. Achieving such large decreases in computation time is
consistent across all C-rates and numbers of grid points used. Further,
we can observe that the SPMe generally increases the accuracy of the
SPM by an order of magnitude for a particular C-rate whilst maintain-
ing a similar computation time. When a small number of grid points
(e.g. 10 points) are used, and a current above 0.5 C is applied, the SPMe
produces a solution that is not limited by the discretisation error. There-
fore, to achieve the asymptotic accuracy of the SPMe, a coarser spatial
discretisation is often sufficient, which allows for further increases in
speed and savings in memory.
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Figure 3.3: RMS voltage error relative to the DFN model with 30 x∗-grid
points in each of the domains: negative electrode, separator, and
positive electrode; as well as 30 r∗-grid points in the particles. This
reference model with 30 points in each domain has an average
(across C-rates) run time of 120 s. Here, ‘n pts’ refers to n points in
each of the domains: negative electrode, separator, and positive
electrode as well as n points in each of the particles.

3.6.4 Comparison of internal states

To further confirm the accuracy of the SPMe, we compare the internal
states predicted by the SPMe and DFN model. These are presented
for a 1 C constant current discharge in Figure 3.4. We observe good
agreement between the two sets of model predictions. The apparent
discrepancy in the negative electrode potential is only due to the scale
employed in Figure 3.4. This discrepancy is in fact O(C2

e ). The discrep-
ancy in the negative electrode stoichiometry is a result of the SPMe
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Figure 3.4: Comparison of DFN model and SPMe internal states during a 1 C
constant current discharge. The DFN model solution is given by
the solid lines and the SPMe solution by the closest black dashed
line. Note that some of the black dashed lines lie upon others so it
appears that there are fewer black dashed lines than solid lines.
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using only the leading-order equations in Ce within the electrode par-
ticles; this is equivalent to considering only the electrode-averaged
concentration in the particles. This is the same approximation as em-
ployed by the SPM and the SPMe is therefore only accurate to O(Ce)

for the concentration in the particles.
In Figure 3.5, we compare the internal states of the SPMe and DFN

model across a range of C-rates. Here, we display the lithium concen-
tration in the x∗-averaged particle to demonstrate the ability of our
model to capture the concentration profile inside particles as well as
the surface concentration. We observe good agreement of the internal
states, with the exception the electrolyte potentials at large C-rates,
which is a result of the assumption of high electrolyte conductivity.

3.6.5 Drive cycle comparison

Whilst comparing the models using a constant current discharge is
useful for gaining insight into where discrepancies occur, it is not fully
representative of an actual cell use case. To replicate actual operat-
ing conditions better, we run the DFN, SPMe, and SPM on the US06
standard test drive cycle. The input current density is presented in
Figure 3.6 and ranges from −50 A m−2 to 100 A m−2, where a negative
current corresponds to charging. Therefore, this cycle has a max C-
rate of just over 5 C. This input current density profile corresponds to
an initial charge of the cell followed by a rest period just before the
thirty-second mark. After this rest period, the car begins the driving
phase, drawing a positive current from the cell. Occasionally, a nega-
tive current is observed during the driving phase which is a result of
regenerative braking recharging the cell.

In Figures 3.6 (b) and (c), we can see clearly that the SPMe performs
significantly better than the SPM at recovering the voltage of the DFN.
In particular, we observe an order of magnitude reduction in error
across the entire drive cycle. We can also observe that on regions of
high current, the poorer performance of the SPM is more pronounced.
This reduction in error can be important for SoC estimation algorithms
because even small variations in the voltage prediction can be misinter-
preted as large variations in the SoC.
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Figure 3.5: Comparison of internal state across multiple C-rates after a dis-
charged capacity of 15 Ah/m2. The DFN model solution is given
by the solid lines and the SPMe solution by the closest black dashed
line. Note that we plot the x∗-averaged particle concentration here
instead of the surface concentration plotted in Figure 3.4.
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Figure 3.6: Comparison of DFN, SPMe, and SPM running a two minute snap-
shot of the US06 standard drive cycle: (a) Input current density for
each model; (b) predicted voltage; (c) SPMe vs DFN, SPM vs DFN
voltage errors.
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3.7.1 Comparison with ad-hoc models

Several alternative models in the literature extend the SPM in an ad-hoc
manner to account for electrolyte effects [27], [36], [61], [67], [68], [88].
In this section, we highlight the key differences between these models
and the asymptotic SPMe (3.47) presented here. We have chosen to
compare a subset of the models, which cover the variety of ad-hoc
models available of similar computational complexity. In some papers,
the model is discretised during development. We view the choice of
discretisation to be a numerical method instead of a feature of the model
itself. Therefore, we have converted each model into the continuum
form to highlight the differences in the underlying models. We do
not aim to study the benefits and drawbacks of different numerical
methods.

A common theme in the literature is to implicitly replace the electrode-
averaged concentration overpotential and electrode-averaged elec-
trolyte Ohmic losses with pointwise versions but still use the OCV
and reaction overpotential obtained from the active material solution
in a single particle. It is also common to neglect the solid-phase Ohmic
losses (this is a reasonable assumption since we have already observed
this to be small). The general form of the voltage expression used in
the literature is

V∗ = Ū∗eq + η̄∗r + η∗c
∣∣
x∗n=0,x∗p=L∗x

+ ∆Φ∗Elec

∣∣
x∗n=0,x∗p=L∗x

. (3.48)

This expression consists of a combination of both electrode-averaged
and pointwise terms, and therefore accuracy of O(C2

e ) cannot be en-
sured. This error arises because the single particle in the SPMe is taken
to mean a representative particle (i.e. all particles behave the same)
instead of a theoretical average particle and so the ad-hoc models sim-
ply choose a particular current path to evaluate the voltage. To make
matters worse, they often choose a path involving particles adjacent
to the current collectors where the true particle concentration is the
furthest from the average.

We begin by considering the model proposed by Perez et. al. in
[61]. In this model, the electrode-averaged concentration overpotential
(3.47r) and the electrode-averaged electrolyte Ohmic losses (3.47s) are
replaced by the pointwise versions

η∗c
∣∣
x∗n=0,x∗p=L∗x

= 2(1− t+)
R∗gT

∗
∞

F ∗
log

(
c∗e,p
∣∣
x∗=L∗x

c∗e,n
∣∣
x∗=0

)
, (3.49a)

∆Φ∗Elec

∣∣
x∗n=0,x∗p=L∗x

= − I∗

2κ̄∗e,eff

(
L∗n + 2L∗s + L∗p

)
, (3.49b)
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respectively (note that to get (3.49b) we have corrected the sign of
the expression in [61]). Here, κ̄∗e,eff is the effective conductivity aver-
aged across the entire cell, with the x∗-averaged effective conductivity
defined as

κ∗e,eff =
∑

k=n,s,p

L∗k
L∗x
εbkκ̄
∗
e,k(c∗e,k).

The voltage is then given by (3.48). Additionally, (3.49b) requires that
κ∗e,eff ≈ κ̄

∗
e,eff throughout the cell. With this assumption, O(C2

e ) accuracy
cannot be ensured for all values of εn, εs, and εp. Finally, solid-phase
Ohmic losses are neglected and Ohmic losses due to the presence of
SEI are included; we shall neglect the SEI terms in our comparisons,
noting that (3.47) can be easily extended to include them.

The model presented by Prada et. al. [67] also employs (3.49a) for the
concentration overpotential but the electrolyte Ohmic losses are taken
to be

∆Φ∗Elec

∣∣
x∗n=0,x∗p=L∗x

= −I
∗

2

(
L∗n

εbnκ̄
∗
e,n

+ 2
L∗s
εbsκ̄
∗
e,s

+
Lp

εbpκ̄
∗
e,p

)
, (3.50)

where κ̄∗e,k is the electrolyte conductivity averaged over region k. Whilst
(3.50) does not rely upon the assumption that κ∗e,eff ≈ κeff

e , its form is
still a result of considering the pointwise electrolyte potential differ-
ence instead of the electrode-averaged difference. In addition to these
differences, Prada et. al. [67] take the average exchange-current densi-
ties j̄∗0,n and j̄∗0,p to be constant. In terms of accurately reproducing the
results of the DFN model, this simplification has a clear disadvantage
as the reaction overpotentials are strong functions of the lithium and
lithium-ion concentrations.

The model developed by Han et. al [27] is the same as that presented
by Prada et. al. [67] without the additional assumption of constant
exchange-current densities. That is, Han et. al. [27] employ (3.49a) and
(3.50), which are the pointwise concentration overpotential, and elec-
trolyte Ohmic losses, respectively. Han et. al. [27] note the tendency for
their model to over-correct the voltage. We suspect the use of pointwise
terms is the cause.

The model presented by Kemper et. al. [36] is somewhat different
from the others we have discussed. Firstly, the model is presented as
a set of ODEs instead of PDEs. These ODEs are derived by spatially
discretising the underlying PDEs. Whilst this particular discretisation
may be useful, we consider this to be a numerical method and not a
feature of the model itself. Since we aim to compare the underlying
simplified models directly, we have converted these ODEs back into
PDEs. The resulting PDEs that describe the concentrations in the elec-
trode particles and the electrolyte are equivalent to those used in our
model. However, the expression for the terminal voltage is different
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and it is not clear how to prescribe meaning to each of the individual
components in the way we have done here. The full statement of these
equations can be found in our paper [48].

We compare the variations of the SPMe in the literature and our
asymptotic SPMe. For this section, we use a finite-volume implemen-
tation of each of the models implemented in MATLAB with ODE15s
being used for the time integration. We consider a range of constant-
current discharge rates and then consider the RMS voltage error of each
model relative to the DFN model. For each model, we discretise using
30 points in each electrode, 20 in the separator, and 15 in each particle.
Our results are presented in Figure 3.7, where we compare the models
in [27], [36], [61]. Each version of the SPMe consists of three parabolic
PDEs, one in the negative particle, one in the positive particle, and one
in the electrolyte alongside an algebraic expression for the voltage. As
a result, each SPMe must store 2× 15 + (30 + 20 + 30) = 120 states at
each time step. Therefore, the memory requirements of each model are
similar. Upon evaluation, each version of the model takes on average
0.07 s. We observe that across all discharge rates, the asymptotic SPMe
outperforms the ad-hoc models from the literature. In particular, the
asymptotic SPMe is consistently an order of magnitude more accurate
than the models in Perez et. al. [61] and Kemper et. al [36]. Further-
more, at higher C-rates, the RMS voltage errors in the models from
the literature approach being of the order of 0.1 V whereas the RMS
voltage errors of our SPMe only reach the order of 0.01 V. Additionally,
as we would expect, our model converges to the DFN model solution
at a faster rate than the other models. We attribute the main gains of
our model to the consistent electrode-averaged OCPs, overpotentials,
and Ohmic losses in our terminal voltage expression.
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Figure 3.7: Comparison of versions of the SPMe: Asymptotic (3.47), Perez et.
al. [61], Han et. al. [27], and Kemper et. al. [36]. The models are
compared by considering the RMS voltage error of the simplified
model voltage prediction vs the DFN model.
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3.7.2 Comparison with the corrected single particle model

In [75], an alternative asymptotic limit was explored that also gives
rise of a variant of the SPMe. The limit taken in [75] corresponds to the
case in which the OCV exhibits large changes relative to the thermal
voltage. Their limit recovers a variant of the SPM at leading order
because the reaction overpotentials are small. In contrast, in our limit
the small gradients in the electrolyte concentration, electrolyte potential,
and electrode potentials give rise to the homogeneous behavior of
electrode particles and hence the SPM. Both limits recover a variant of
the SPM at leading order and a similar correction term at first order.
The main difference between the two resulting models is that instead
of employing an analytic expression for φ∗e,k, [75] solve the elliptic
equation

i∗e,k = εb
kκ
∗
e(c∗e,k)

(
−
∂φ∗e,k

∂x∗

+2(1− t+)
R∗T ∗

F ∗
∂

∂x∗
(
log
(
c∗e,k
)))

,

(3.51)

i∗e,n =
x∗I∗

L∗n
, i∗e,s = I∗, i∗e,p =

(L∗x − x∗)I∗

L∗p
. (3.52)

Therefore, the model in [75], which is referred to as the corrected single-
particle (cSP) model, becomes a system of DAEs upon spatial discreti-
sation. In contrast, (3.47) is a purely parabolic problem and one can,
therefore, employ ODE solvers after discretisation. Because of this in-
creased complexity in the model structure, we choose not to include
it in our previous comparisons. In terms of computation time, the cSP
takes on the order of 2 seconds, whereas the SPMe takes around 1 sec-
ond to run a constant current discharge in PyBaMM. In Figure 3.8 and
Figure 3.9, we compare the voltage and electrolyte potential predicted
by the cSP and the SPMe for the parameter set in [75]. In Figure 3.8, we
can see that employing the more expensive cSP instead of the SPMe
does not offer any clear benefit for reproducing the voltage. In Fig-
ure 3.9, we observe that there is a gain in the accuracy of the prediction
of the electrolyte potential. For most applications, we believe that this
gain in accuracy is not worth the additional computational effort re-
quired to solve the cSP. Please note that in [75], a comparison between
the SPMe and the cSP wsa also provided. However, there was an error
in comparison included in the original manuscript, which has been cor-
rected in [90] and brings the results in agreement with those presented
here.
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Figure 3.8: Voltage errors vs. DFN for the cSP and SPMe.
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Figure 3.9: Comparison of the electrolyte potential predicted by the cSP and
SPMe at 576 seconds into a 5 C discharge.
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3.8 E X T E N D I N G T H E S P M E

In Figure 3.1 and Figure 3.2, we observed that a discrepancy arises
between the SPMe and the DFN voltage predictions when the OCPs
are nonlinear. In this section, we present an extension that corrects for
this behaviour. We consider the same limit as (3.8) but additionally take

U ′′k (c
(0)
s,k ) = O(Ce

−1). (3.53)

The asymptotic analysis follows very similarly to before so to avoid
repetition, we will simply highlight the key differences. Firstly, in §3.5.3,
we have that

Ūk(cs,k) = Uk(c
(0)
s,k ) +O(C2

e ). (3.54)

where c(0)
s,k is independent of x. Here, we instead have

Ūk(cs,k) = Uk(c
(0)
s,k ) + C2

e (c
(1)
s,k )2U ′′k (c

(0)
s,k ) +O(C2

e ). (3.55)

where

(c
(1)
s,k )2 =

1

|Ωk|

∫
Ωk

(c
(1)
s,k )2dx. (3.56)

Therefore, in this limit, we must determine both the average particle
concentration given by c(0)

s,k and the variance in the particle concentra-
tions given by (3.56). Whereas before we only required the average
particle concentration. Ideally, we could now solve an additional PDE
in each electrode for the particle concentration variance. However we
quickly run into a problem when squaring and averaging the first-
order particle equations (3.23). Here, the squared source term, (j

(1)
k )2,

involves various cross-terms of c(1)
s,k and not c(1)

s,k alone. Therefore, we

must solve for c(1)
s,k itself in each particle and thus vastly increase com-

putational complexity. In practice the simplest way to do this is to
recombine the leading- and first-order particle equations; this avoids
issues such as particle concentrations exceeding their maximum and
minimum values.
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In dimensional form, the resulting equations are the same as those
in (3.47) but with the active material equations (3.47a)-(3.57d) replaced
by

∂c∗s,k

∂t∗
= − 1

(r∗)2

∂

∂r∗

(
(r∗)2N∗s,k

)
, k ∈ {n, p} (3.57a)

N∗s,k = −D∗s,k(c∗s,k)
∂c∗s,k

∂r∗
, k ∈ {n, p}, (3.57b)

N∗s,k

∣∣
r∗k =0

= 0, N∗s,k

∣∣
r∗k =R∗k

= j̃∗k k ∈ {n, p}, (3.57c)

c∗s,k

∣∣
t∗=0

= c∗s,k,0, k ∈ {n, p}; (3.57d)

where the j̃∗k is the corrected interfacial current density given by

j̃∗n =
I∗

a∗nL
∗
n

+ (j∗n − j̄∗n) j̃∗p = − I
∗

a∗pL
∗
p

+ (j∗n − j̄∗n) (3.57e)

where

j∗k = j∗0,k sinh

(
η∗k
2

)
, (3.57f)

j∗0,k = m∗k(c∗s,k)1/2(c∗s,k,max − c
∗
s,k)1/2(c∗e,k)1/2 (3.57g)

η∗k = φ∗s,k − φ
∗
e,k − U

∗
k (c∗s,k)

∣∣
r∗=R∗k

(3.57h)

and c∗e,k, φ∗s,k, and φ∗e,k are given by their expressions in (3.47) with

U∗k (c̄∗s,k)

replaced by

1

|Ω∗k|

∫
Ω∗k

U∗k (c∗s,k)dx∗.

The corrected interfacial current density, j̃∗k is asymptotically equivalent
to the calculated interfacial current density, j∗k , up to terms of sizeO(C2

e )

but the higher-order terms are chosen such that the analytical average
current density is enforced.

In Figure 3.10, we compare the DFN, SPMe, and the extended SPMe
introduced in this section. We observe that the discrepancy between
the SPMe and DFN when the OCP is nonlinear is corrected by the
proposed extension. Further, by making this extension the extended
SPMe is seen to give a good estimate of the terminal voltage up to 10 C.
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Figure 3.10: Comparison of the terminal voltage predicted by the DFN, SPMe,
and extended SPMe.

The extended SPMe introduced in this section is significantly more
computationally expensive than the original SPMe. This is a result
of solving for the concentration in every particle in each electrode
instead of just a single average particle. We have considered this case
mainly to demonstrate that improving the calculation of the average
OCP does indeed correct for the discrepancy in the SPMe voltage.
However, this model also has a computational advantage over the
DFN because we have eliminated the elliptic part of the problem. Thus
upon discretisation in space, we recover a system of ODEs that are
simpler to solve than the DAE system produced by the DFN.

3.9 S U M M A RY

In this chapter, we have employed asymptotic methods to simplify the
DFN model. At leading-order, we recovered the classical SPM and by
proceeding to first-order we derived a correction term. By comparing
the DFN, SPMe, and SPM, we found that the SPMe offers a good trade-
off between speed and accuracy. We then identified and addressed
a key error in ad-hoc versions of the SPMe. This error results in the
ad-hoc versions being less accurate than our asymptotic version of
the same computational complexity. We also identified the source of
a discrepancy in the terminal voltage and determined the additional
effort required to address the problem. The majority of the work in
this chapter is contained within our published paper [48]. The SPMe as
derived here has been implemented within PyBaMM so that it is easily
available for use by other researchers and industrialists [86].
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A S Y M P T O T I C R E D U C T I O N O F A P O U C H C E L L
M O D E L

4.1 I N T R O D U C T I O N

In this chapter, we develop a thermal three-dimensional model of a
lithium-ion pouch cell inspired by the one-dimensional DFN model.
We introduce typical scalings and write this model in dimensionless
form. We then exploit the small aspect ratio of the cell and the high cur-
rent collector conductivity to asymptotically reduce this model. We will
find that there are two distinguished limits: one in which the model re-
duces to a set of through-cell one-dimensional models coupled through
a two-dimensional problem for the boundary conditions, and a second
in which only a single through-cell one-dimensional problem needs
to be solved, with an additional two-dimensional problem needed to
calculate an in-series resistance. We provide a numerical comparison
of these reduced models with the full models. We then combine this
analysis with the analysis conducted in Chapter 3 to develop a hierar-
chy of nine reduced-order models of a lithium-ion pouch cell. We give
a critical numerical comparison of each of these models in both isother-
mal and thermal settings, and study their performance on realistic
drive cycle data. Finally, we make recommendations regarding model
selection, taking into account the available computational resources
and the quantities of interest in a particular study.

4.2 L I T E R AT U R E R E V I E W

The multiscale and multidimensional nature of lithium-ion pouch cells
has been accounted for serval times within the literature (e.g. [6], [23],
[30], [37], [40], [56]), with many models based on extensions or adap-
tations of the porous electrode model developed by Doyle, Fuller and
Newman [21] (the DFN model), or reductions thereof.

While fully-coupled three-dimensional electrochemical and thermal
models provide useful information for predicting cell behaviour, they
are often too computationally expensive to be practically useful, and
simplifications must be made. One approach is to treat the electrochem-
ical problem as a network of resistors, coupled to a three-dimensional
thermal model [25], [38], [42]. A current-voltage relation is given for
each of the resistors in the network, which can either be a compli-
cated description based on porous electrode theory [42], or a simplified
description, such as a nonlinear resistor fitted to an electrochemical
model [25] or data [37]. This approach reduces the three-dimensional

71
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electrochemical model to a system of one-dimensional electrochemi-
cal models coupled via a two-dimensional electrical problem in the
current collectors, and a three-dimensional thermal model across the
entire cell. These simplifications, sometimes referred to as “potential
pair” models, are usually made in an ad-hoc manner (e.g. [25], [38],
[40], [42]). Asymptotic methods have been applied to simplify a three-
dimensional model of a lead-acid battery [84]. However, there are key
differences between lead-acid batteries and lithium-ion batteries (e.g.
lead-acid batteries do not have separate current collectors).

4.3 P O U C H C E L L M O D E L

We begin by providing a detailed exposition of the three-dimensional
thermal pouch cell model that we have developed. The electrochemical
model consists of a three-dimensional version of the standard DFN
model (2.32)-(2.36) [21], with an additional equation relating to charge
balance in the current collectors, which we model as Ohmic resistors.
This is supplemented with an equation for energy balance, which in-
cludes source terms arising from Ohmic, irreversible, and reversible
heat generation within the cell. Descriptions of each of the cell compo-
nents, along with modelling assumptions, and the resulting governing
equations, are laid out in the following sections.

4.3.1 Current collectors

In the current collectors conservation of charge along with Ohm’s law
gives

∇∗ · i∗s,ck = 0, k ∈ {n, p}, (4.1a)

i∗s,ck = −σ∗ck∇
∗φ∗s,ck, k ∈ {n, p}, (4.1b)

where i∗s,ck is the current density, φ∗s,ck is the electric potential, and σ∗ck is
the electrical conductivity. We assume no charge is exchanged through
the external boundary of the current collectors except at the tabs so that

i∗s,ck · n = 0, x∗ ∈ ∂Ω∗ext,ck, k ∈ {n, p}. (4.1c)

We need to set a reference potential, or ground state, against which
other potentials are measured. We assume a uniform potential across
the surface of the negative tab and set this potential to be zero

φ∗s,cn = 0, x∗ ∈ ∂Ω∗tab,n. (4.1d)

The boundary condition that describes the charging rate of the cell can
be implemented in several ways. If the voltage is specified then we can
take the potential at the positive tab to be given. Alternatively, the ap-
plied current may be specified, which can be implemented in different
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ways: either by assuming the electric potential at the positive tab is
spatially uniform, but unknown, and letting the total applied current
be given; or by assuming that the applied current is uniform across
one tab and letting the voltage be determined by the average potential
on the tab. Adopting the former approach provides the following two
conditions describing the current flow through the tabs∫

∂Ω∗tab,n

i∗s,cn · ndx∗ = −I∗app,

and so∫
∂Ω∗tab,p

i∗s,cp · ndx∗ = I∗app,

(4.1e)

where n is the outward pointing unit normal. In practice the first
of these conditions is not needed, since we set the potential to zero
on the negative tab, and conservation of current ensures the integral
conditions (4.1e) are satisfied. If instead we assume a uniform current
density across the tabs the integral condition at the positive tab is
replaced with

i∗s,cp · n = −
I∗app

A∗tab,p
, x∗ ∈ ∂Ω∗tab,p, (4.1f)

where A∗tab,k = L∗ckL
∗
tab,k is the area of tab k, L∗ck is the current collector

thickness, and L∗tab,k is the tab width. Finally, the electric potential and
the normal component of the current density are continuous across the
current collector–electrode interface

φ∗s,ck = φ∗s,k, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (4.1g)

i∗s,ck · n = i∗s,k · n, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (4.1h)

where φ∗s,k and i∗s,k are the electric potential and current density in
electrode k.

4.3.2 Electrochemistry

The governing equations for the electrochemical part of the problem (i.e.
the electrodes, active material, and electrolyte) extend naturally from
the DFN equations stated in (2.32)-(2.36), with the one-dimensional
gradients being replaced by three-dimensional gradients, the inclusion
of an additional boundary condition on the external walls of the cell,
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and the addition of temperature dependence. The electrode equations
are then given by

∇∗ · i∗s,k = −a∗kj
∗
k , k ∈ {n, p}, (4.2a)

i∗s,k = −σ∗s,k∇
∗φ∗k, k ∈ {n, p}, (4.2b)

i∗s,k · n = 0, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.2c)

i∗s,k · n = 0, x∗ ∈ ∂Ω∗ext,k, k ∈ {n, p}. (4.2d)

Additionally on the boundaries between the electrodes and current
collectors, the continuity conditions (4.1g) and (4.1h) hold. The temper-
ature dependent active material equations are

∂c∗s,k

∂t∗
= − 1

(r∗)2

∂

∂r∗

(
(r∗)2N∗s,k

)
, k ∈ {n, p}, (4.3a)

N∗s,k = −D∗s,k(c∗s,k, T
∗
k )
∂c∗s,k

∂r∗
, k ∈ {n, p}, (4.3b)

N∗s,k

∣∣
r∗=0

= 0, N∗s.k

∣∣
r∗=R∗k

=
j∗k
F ∗

. k ∈ {n, p}, (4.3c)

c∗s,k

∣∣
t∗=0

= c∗s,k,0, (4.3d)

where D∗s,k(c∗s,k, T
∗
k ) is the temperature dependent diffusivity of lithium

in the active material and T ∗k is the (macroscopic) temperature. The
governing equations for the current in the electrolyte are

∇∗ · i∗e,k = a∗kj
∗
k , k ∈ {n, p}, (4.4a)

∇∗ · i∗e,s = 0, (4.4b)

i∗e,k = εb
kκ
∗
e(c∗e,k, T

∗
k )
(
−∇∗φ∗e,k

+2(1− t+)
R∗T ∗k
F ∗
∇∗
(
log
(
c∗e,k
)))

,
(4.4c)

k ∈ {n, s, p},
φ∗e,k = φ∗e,s, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.4d)

i∗e,k · n = i∗e,s · n, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}. (4.4e)

i∗e,k · n = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p} (4.4f)

i∗e,k · n = 0, x∗ ∈ ∂Ω∗ext,k, k ∈ {n, s, p}. (4.4g)

where κ∗e(c∗e,k, T
∗
k ) is the temperature dependent electrolyte conduc-

tivity. Note that the electrochemical potential in the electrolyte, φ∗e , is
only determined up to a constant. This will be determined relative
to the reference electrode potential on the negative tab through the
electrochemical reactions. The electrolyte diffusion equations are

εk
∂c∗e,k

∂t∗
= −∇∗ ·N∗e,k +

1

F ∗
∇∗ · i∗e,k, k ∈ {n, s, p}, (4.5a)

N∗e,k = −εb
kD
∗
e(c∗e,k, T

∗
k )∇∗c∗e,k +

t+

F ∗
i∗e,k, k ∈ {n, s, p}, (4.5b)
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N∗e,k · n = 0, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (4.5c)

N∗e,k · n = 0, x∗ ∈ ∂Ω∗ext,k, k ∈ {n, s, p}, (4.5d)

c∗e,k = c∗e,s x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.5e)

N∗e,k · n = N∗e,s · n, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.5f)

c∗e,k

∣∣
t∗=0

= c∗e,0, k ∈ {n, s, p}, (4.5g)

where D∗e(c∗e,k, T
∗
k ) is the temperature dependent diffusivity of the elec-

trolyte. Finally, the interfacial current density, j∗k , is given by

j∗k = j∗0,k sinh

(
F ∗η∗k

2R∗gT
∗
k

)
, k ∈ {n, p}, (4.6a)

j∗0,k = m∗k(T ∗k )(c∗s,k)1/2(c∗s,k,max − c
∗
s,k)1/2(c∗e,k)1/2

∣∣∣∣
r∗=R∗k

(4.6b)

k ∈ {n, p},
η∗k = φ∗s,k − φ

∗
e,k − U

∗
k (c∗s,k, T

∗
k )
∣∣
r∗=R∗k

, k ∈ {n, p}, (4.6c)

where U∗k (c∗s,k, T
∗
k ) is the temperature dependent OCP, and m∗k(T ∗k ) is

the temperature dependent effective reaction rate constant.

4.3.3 Energy conservation

The governing equation for energy conservation is

ρ∗kc
∗
p,k
∂T ∗k
∂t∗

= ∇∗ · (λ∗k∇
∗T ∗k ) +Q∗Ohm,k +Q∗rxn,k +Q∗rev,k,

k ∈ {cn, n, s, p, cp},
(4.7a)

where ρ∗k is the density, c∗p,k is the specific heat, and λ∗k is the ther-
mal conductivity. Within the electrode region, the model accounts for
Ohmic heating Q∗Ohm,k due to resistance in the solid and electrolyte,
irreverisble heating due to electrochemical reactions Q∗rxn,k, and re-
versible heating due to entropic changes in the the electrode Q∗rev,k [9],
given by

Q∗Ohm,k = −
(
i∗s,k · ∇

∗φ∗s,k + i∗e,k · ∇
∗φ∗e,k

)
, k ∈ {n, p}, (4.7b)

Q∗rxn,k = a∗kj
∗
kη
∗
k, k ∈ {n, p}, (4.7c)

Q∗rev,k = a∗kj
∗
kT
∗
k
∂U∗k
∂T ∗k

∣∣∣∣
T ∗k =T ∗∞

, k ∈ {n, p}. (4.7d)

In the current collectors and separator there is no heat generation due
to electrochemical effects, and we need only consider the Ohmic heat
generation terms given by

Q∗Ohm,k = −i∗s,k · ∇
∗φ∗s,k, k ∈ {cn, cp}, (4.7e)

Q∗Ohm,s = −i∗e,s · ∇∗φ∗e,s. (4.7f)
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For the thermal part of the problem, we assume Newton cooling on
all boundaries, including the tabs,

−λ∗k∇
∗T ∗k · n = h∗(T ∗k − T

∗
∞), x∗ ∈ ∂Ω∗ext, (4.7g)

k ∈ {cn, n, s, p, cp},

where h∗ is the (possibly spatially dependent) heat transfer coefficient.
Some authors have considered the effects of different cooling scenar-
ios, such as tab cooling vs. surface cooling, on battery operation. For
instance, Hunt et al. [32] conducted experiments showing that surface
cooling can lead to a greater loss of capacity compared with tab cooling
when discharging cells at high rates. These different cooling scenar-
ios can be investigate by choosing particular cooling functions h∗ (for
example, h∗ may be larger on the tabs).

We require the temperature and heat flux to be continuous at the
interfaces between the components of the cell

T ∗ck = T ∗k , x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (4.7h)

λ∗ck∇
∗T ∗ck · n,= λ∗k∇

∗T ∗k · n, x∗ ∈ ∂Ω∗ck,k, k ∈ {n, p}, (4.7i)

T ∗k = T ∗s , x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.7j)

λ∗k∇
∗T ∗k · n = λ∗s∇∗T ∗s · n, x∗ ∈ ∂Ω∗k,s, k ∈ {n, p}, (4.7k)

and prescribe an initial uniform temperature T ∗0 , that is

T ∗k
∣∣
(t∗=0)

= T ∗0 , k ∈ {cn, n, s, p, cp}. (4.7l)

4.4 T H E R M A L PA R A M E T E R VA L U E S

In Tables 2.1 and 2.2, and Figure 2.1, we provided a set of parameter
values for the one-dimensional DFN that we introduced in §2.5. In
our pouch cell model, we will use these parameter values along with
a few modifications and additions. We introduce the temperature de-
pendencies to the parameters in the following way. The temperature
dependent OCPs are given by

U∗k (c∗s,k, T
∗
k ) = U∗k (c∗s,k) + (T ∗k − T

∗
∞)

∂U∗k
∂T ∗k

∣∣∣∣
T ∗k =T ∗∞

(4.8a)

whereU∗k (c∗s,k) is given in Figure 2.1 and the entropic change, ∂U
∗
k

∂T ∗k

∣∣∣∣
T ∗k =T ∗∞

,

is given as a function of the lithium concentration in the active material
and is presented in Figure 4.1.
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Figure 4.1: Experimentally measured functional forms of entropic change,
taken from [51].

The temperature dependence of the electrolyte diffusivity, electrolyte
conductivity, solid diffusivity, and reaction rate are accounted for using
the following Arrenhius dependencies

De(c∗e,k, T
∗
k ) = D∗e(c∗e,k) exp

(
E∗De

R∗g

(
1

T∞∗
− 1

T ∗k

))
, (4.8b)

κe(c∗e,k, T
∗
k ) = κ∗e(c∗e,k) exp

(
E∗κe

R∗g

(
1

T∞∗
− 1

T ∗k

))
, (4.8c)

D∗s,k(T ∗k ) = D∗s,k exp

(
E∗Ds,k

R∗g

(
1

T ∗∞
− 1

T ∗k

))
, (4.8d)

m∗k(T ∗k ) = m∗k exp

(
E∗mk

R∗g

(
1

T ∗∞
− 1

T ∗k

))
, (4.8e)

where the values of the activation energies are given in Table 4.1. The
additional dimensional parameters in the thermal model are given in
Table 4.1.

4.5 D I M E N S I O N L E S S P O U C H C E L L M O D E L

We introduce a set of scalings to nondimensionalise the pouch cell
model. The temperature is measured relative to the ambient temper-
ature, T ∗∞, and we scale the deviation by some typical temperature
difference, ∆T ∗, to be determined later. The transverse coordinates, y∗

and z∗ are scaled with a typical transverse dimension L∗ (which could
be L∗y, L∗z or (L∗yL

∗
z)

1/2 for example). We then scale the applied current
I∗app by some typical through-cell current density, I∗, multiplied by the
scale for the transverse area, (L∗)2. For details on the other scalings,
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Parameter Units Description cn n s p cp

E∗De
J mol−1 Activation energy for electrolyte diffusiv-

ity
3.704× 104

E∗κe
J mol−1 Activation energy for electrolyte conduc-

tivity
3.470× 104

E∗Ds,k
J mol−1 Activation energy for solid diffusivity - 4.277× 104 - 1.855× 104 -

E∗mk
J mol−1 Activation energy for reaction rate - 3.748× 104 - 3.957× 104 -

h∗ W m−2 K−1 Heat transfer coefficient 10

ρ∗k kg m−3 Density 8954 1657 397 3262 2707

c∗p,k J kg−1 K−1 Specific heat capacity 385 700 700 700 897

λ∗k W m−1 K−1 Thermal conductivity 401 1.7 0.16 2.1 237

ρ∗eff J K−1 m−3 Lumped effective thermal density 1.812× 106

λ∗eff W m1− K−1 Effective thermal conductivity 59.396

T ∗0 K Initial temperature 298.15

Table 4.1: Typical dimensional parameter values relevant for the thermal extension of the DFN taken from [51]. The parameters are for a carbon negative
current collector, graphite negative electrode, LiPF6 in EC:DMC electrolyte, LCO positive electrode, and aluminium positive current collector.
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please refer to §3.3. To summarise, the dimensionless variables are
related to their dimensional counterparts in the following way

global

x∗ = L∗xx, y∗ = L∗y, z∗ = L∗z, t∗ = τ∗dt,

I∗app = I∗(L∗)2Iapp κ∗e = κ∗typκe, D∗e = D∗e,typDe;

for k ∈ {n, p} :

r∗k = R∗krk, c∗s,k = c∗s,k,maxcs,k D∗s,k = D∗s,k,typDs,k,

N∗s,k =
D∗s,k,typc

∗
s,k,max

R∗k
Ns,k,

j∗k =
I∗

a∗kL
∗
x

jk, j∗0,k =
I∗

a∗kL
∗
x

j0,k, m∗k = m∗k,typmk,

η∗k =
R∗T ∗∞
F ∗

ηk, U∗k = U∗k,ref +
R∗T ∗∞
F ∗

Uk;

for k ∈ {cn, n, p, cp} :

i∗s,k = I∗is,k;

for k ∈ {cn, n} :

φ∗s,k =
R∗T ∗∞
F ∗

φs,k;

for k ∈ {p, cp} :

φ∗s,k =
(
U∗p,ref − U

∗
n,ref

)
+
R∗T ∗∞
F ∗

φs,k;

for k ∈ {n, s, p} :

c∗e,k = c∗e,typce,k, N∗e,k =
D∗e,typc

∗
e,typ

L∗x
N e,k,

φ∗e,k = −U∗n,ref +
R∗T ∗

F ∗
φe,k, i∗e,k = I∗ie,k;

for k ∈ {cn, n, s, p, cp} :

T ∗k = (∆T ∗)Tk + T ∗∞.

The resulting dimensionless parameters are presented in Tables 3.3,
3.4, 4.2, and 2.2. The key timescales in the model are the same as those
presented in Table 3.2, with the addition of

τ∗th =
ρ∗eff(L

∗)2

λ∗eff
≈ 5.724× 102, (4.9)

which is the planar (y∗-z∗) thermal diffusion timescale.
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Parameter Expression Interpretation cn n s p cp

Atab,k A∗tab,k/(L
∗
xL
∗) Dimensionless tab area - 0.0324 - 0.0324 -

ρk ρ∗kc
∗
p,k/ρ

∗
eff Dimensionless volumetric

heat capacity
1.903 0.6403 0.1535 1.2605 1.3403

λk λ∗k/λ
∗
eff Dimensionless thermal con-

ductivity
6.7513 0.0286 0.0027 0.0354 3.9901

B I∗R∗T ∗∞τ
∗
th/(ρ

∗
effF

∗∆T ∗L∗x) Dimensionless heat generation coefficient 0.3608

Cth τ∗th/τ
∗
d Ratio of planar thermal diffusion and discharge

timescales
0.02533C

Θ ∆T ∗/T ∗∞ Ratio of typical temperature variation and reference
temperature

0.008 C

h h∗L∗x/λ
∗
eff Dimensionless heat transfer coefficient 3.7881× 10−5

Table 4.2: Typical dimensionless parameter values derived from dimensional parameters in Tables 2.1, 2.2, and 4.1. Here C = I∗/(24 Am−2) is the C-Rate
where we have taken a 1C rate to correspond to a typical x∗-direction current density of 24 Am−2. This is for a cell with an initial stoichiometry
of 0.8 in the negative electrode and 0.6 in the positive electrode with a voltage cutoff of 3.2 V. (Part 1).
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Parameter Expression Interpretation Value

T0 (T ∗0 − T ∗∞)/∆T ∗ Dimensionless
initial tempera-
ture

0

δ L∗x/L
∗ Aspect ratio 1.642× 10−3

Ly L∗y/L
∗ Dimensionless

cell width
1.511

Lz L∗z/L
∗ Dimensionless

cell height
1

Table 4.3: Typical dimensionless parameter values derived from dimensional
parameters in Tables 2.1, 2.2, and 4.1 (Part 2).

Here, we summarise the dimensionless pouch cell model. In the
following, we use the scaled gradient operator

∇δ ≡
∂

∂x
e1 + δ

∂

∂y
e2 + δ

∂

∂z
e3, (4.10)

where ei is the unit vector in the i th direction, and δ = L∗x/L
∗ is the

aspect ratio of the cell (which arises because of the different scaling
in the x∗ and y∗, z∗ directions). The current collector and electrode
equations (4.1) and (4.2) become

∇δ · is,k = 0, k ∈ {cn, cp}, (4.11a)

is,k = −σk∇δφs,k, k ∈ {cn, cp}, (4.11b)

∇δ · is,k = −jk, k ∈ {n, p}, (4.11c)

is,k = −σk∇δφs,k, k ∈ {n, p}, (4.11d)

with boundary conditions

φs,cn = 0, x ∈ ∂Ωtab,cn, (4.11e)

δ

∫
∂Ωtab,cp

is,cp · ndA = Iapp, (4.11f)

is,k · n = 0, x ∈ ∂Ωext,k k ∈ {cn, n, p, cp} (4.11g)

is,ck · n = is,k · n, x ∈ ∂Ωck,k, k ∈ {n, p}, (4.11h)

is,k · n = 0, x ∈ ∂Ωk,s, k ∈ {n, p}, (4.11i)

φs,ck = φs,k, x ∈ ∂Ωck,k, k ∈ {n, p}. (4.11j)
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The active material equations (4.3) become

Ck
∂cs,k

∂t
= − 1

r2
k

∂

∂rk

(
r2

kNs,k
)
, k ∈ {n, p}, (4.12a)

Ns,k = −Ds,k(cs,k, Tk)
∂cs,k

∂rk
k ∈ {n, p}, (4.12b)

Ns,k
∣∣
rk=0

= 0,
akγk

Ck
Ns,k

∣∣
rk=1

= jk, k ∈ {n, p}, (4.12c)

cs,k
∣∣
t=0

= cs,k,0, k ∈ {n, p}. (4.12d)

The electrolyte potential equations (4.4) become

∇δ · ie,k =

jk, k = n, p,

0, k = s,
k ∈ {n, s, p}, (4.13a)

Ceie,k = εb
kκ̂eκe(ce,k, Tk) (−∇δφe,k

+2(1− t+)(1 + ΘTk)∇δ (log ce,k)−∇δφe,k
)
,

(4.13b)

k ∈ {n, s, p},
ie,k · n = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (4.13c)

ie,k · n = 0, x ∈ ∂Ωext,k, k ∈ {n, s, p}. (4.13d)

The electrolyte concentration equations (4.5) become

Ceγeεk
∂ce,k

∂t
= −γe∇δ ·N e,k + Ce∇δ · ie,k, k ∈ {n, p}, (4.14a)

N e,k = −εb
kDe(ce,k, Tk)∇δce,k +

Cet
+

γe
ie,k, k ∈ {n, p}, (4.14b)

with boundary conditions

N e,k · n = 0, x ∈ ∂Ωext,k, k ∈ {n, s, p}, (4.14c)

N e,k · n = 0, x ∈ ∂Ωck,k, k ∈ {n, p}, (4.14d)

N e,k · n = N e,s · n, x ∈ ∂Ωk,s, k ∈ {n, p}, (4.14e)

ce,k = ce,s x ∈ ∂Ωk,s, k ∈ {n, p}, (4.14f)

ce,k
∣∣
t=0

= ce,0, k ∈ {n, s, p}. (4.14g)

The electrochemical reactions equations (4.6) become

jk = j0,k sinh

(
ηk

2(1 + ΘTk)

)
, k ∈ {n, p}, (4.15a)

j0,k =
γk

Cr,k
mk(Tk)c

1/2
s,k (1− cs,k)1/2c

1/2
e,k

∣∣∣∣
rk=1

, k ∈ {n, p}, (4.15b)

ηk = φs,k − φe,k − Uk(cs,k, Tk)
∣∣
rk=1

, k ∈ {n, p}. (4.15c)
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Finally, the energy conservation equation (4.7) becomes

δ2Cthρk
∂Tk

∂t
= ∇δ · (λk∇δTk) + δ2B (Qohm,k +Qrxn,k +Qrev,k) ,(4.16a)

k ∈ {cn, n, s, p, cp},
QOhm,k = − (is,k · ∇δφs,k + ie,k · ∇δφe,k) , k ∈ {n, p}, (4.16b)

QOhm,s = −ie,s · ∇δφe,s, (4.16c)

QOhm,k = −is,k · ∇δφs,k, k ∈ {cn, cp} (4.16d)

Qrxn,k = jkηk, k ∈ {n, p}, (4.16e)

Qrev,k = jk(Θ−1 + Tk)
∂Uk

∂Tk

∣∣∣∣
Tk=0

, k ∈ {n, p}, (4.16f)

with Qrxn,k = Qrev,k = 0 for k ∈ {cn, s, cp}. The thermal boundary
conditions are given by

− λk∇δTk · n = h(x)Tk, x ∈ ∂Ωext, (4.16g)

k ∈ {cn, n, s, p, cp},
Tck = Tk, x ∈ ∂Ωck,k, k ∈ {n, p}, (4.16h)

λck∇δTck · n = λk∇δTk · n, x ∈ ∂Ωck,k, k ∈ {n, p}, (4.16i)

Tk = Ts, x ∈ ∂Ωk,s, k ∈ {n, p}, (4.16j)

λk∇δTk · n = λs∇δTs · n, x ∈ ∂Ωk,s, k ∈ {n, p}, (4.16k)

Tk
∣∣
t=0

= T0, k ∈ {cn, n, s, p, cp}. (4.16l)

4.6 A S Y M P T O T I C A N A LY S I S

In this section, we exploit the small aspect ratio of a typical pouch cell
by considering the limit δ → 0. To enable a balance of terms in the
current conservation equations we rescale the transverse currents by
writing

is,k = is,k,1e1 +
is,k,⊥
δ

, k ∈ {cn, n, p, cp},

ie,k = ie,k,1e1 +
ie,k,⊥
δ

, k ∈ {n, s, p},
(4.17)

where is,k,⊥ and ie,k,⊥ are the y-z components of the solid and elec-
trolyte current, respectively. We define

∇⊥ ≡
∂

∂y
e2 +

∂

∂z
e3, (4.18)

for notational convenience.



84 A S Y M P T O T I C R E D U C T I O N O F A P O U C H C E L L M O D E L

4.6.1 The large conductivity limit

We consider the physically-relevant limit of large (dimensionless) con-
ductivity in the current collectors. There is a distinguished limit when
σk = σ′k/δ

2 for k ∈ {cn, cp}, where σ′k = O(1) as δ → 0. Further, to
retain both heat loss from the current collector surfaces (area O(1)) and
heat loss from the cell edges including the tabs (areaO(δ)) at leading or-
der we consider the limit in which h = δ2h′ for x ∈ {−Lcn, 1+Lcp}×Ω

, and h = δh′′ for the remaining external boundaries, with h′ and h′′ of
O(1) as δ → 0. Such a scaling for the heat transfer coefficient is applica-
ble for cooling under free convection, but h may be considerably larger
for forced cooling (e.g. [14], [17], [34]). All other parameters are taken
to be O(1). We expand each variable in powers of δ2 as δ → 0 in the
form

φs,k = φ
(0)
s,k + δ2φ

(2)
s,k + · · · . (4.19)

4.6.1.1 Charge conservation in the solids

Using (4.17)-(4.18) the governing equations for charge transport in the
current collectors, (4.11a)-(4.11b), read

∂is,k,1

∂x
+∇⊥ · is,k,⊥ = 0, k ∈ {cn, cp}, (4.20a)

δ2is,k,1 = −σ′k
∂φs,k

∂x
, is,k,⊥ = −σ′k∇⊥φs,k, k ∈ {cn, cp}, (4.20b)

along with the rescaled boundary conditions at the tabs

φs,cn = 0, x ∈ ∂Ωtab,cn, (4.21a)

is,cp,⊥ · n =
Iapp

Atab,cp
, x ∈ ∂Ωtab,cp, (4.21b)

the no flux conditions (4.11g)–(4.11i), and continuity of the potential
and current at the electrode/separator interfaces x = Ln, 1− Lp. After
expanding in powers of δ2, we immediately see from (4.20b) that φ(0)

s,cn

and φ(0)
s,cp are independent of x, and therefore i

(0)
s,cp,⊥ and i

(0)
s,cp,⊥ are also

independent of x. Then, integration of the leading-order terms in (4.20a)
and application of the appropriate boundary conditions gives

Lcn∇⊥ · i
(0)
s,cn,⊥ = −In(y, z), Lcp∇⊥ · i

(0)
s,cp,⊥ = Ip(y, z) (4.22)

where In and Ip are the leading-order currents densities through the
electrode/current collector interfaces:

In(y, z) := i
(0)
s,cn,1

∣∣
x=0

= i
(0)
s,n,1

∣∣
x=0

,

Ip(y, z) := i
(0)
s,cp,1

∣∣
x=1

= i
(0)
s,p,1

∣∣
x=1

.
(4.23)
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Using (4.20b) to write (4.22) in terms of potentials, gives

Lcnσ
′
cn∇2
⊥φ

(0)
s,cn = In, Lcpσ

′
cp∇2
⊥φ

(0)
s,cp = −Ip, (y, z) ∈ Ω (4.24a)

with boundary conditions

φ
(0)
s,cn = 0, (y, z) ∈ ∂Ωtab,cn,⊥, (4.24b)

− σ′cp∇⊥φ
(0)
s,cp · n =

Iapp

Atab,cp
, (y, z) ∈ ∂Ωtab,cp,⊥, (4.24c)

∇⊥φ
(0)
s,k · n = 0, (y, z) ∈ ∂Ωext,k,⊥, k ∈ {cn, cp}. (4.24d)

In the electrodes, after using (4.17)-(4.18) the governing equations
(4.11c)-(4.11d) read

∂is,k,1

∂x
+∇⊥ · is,k,⊥ = −jk, k ∈ {n, p}, (4.25a)

is,k,1 = −σk
∂φs,k

∂x
, is,k,⊥ = −δ2σk∇⊥φs,k, k ∈ {n, p}, (4.25b)

At leading order i(0)
s,k,⊥ = 0 for k ∈ {n, p}, so that

∂i
(0)
s,k,1

∂x
= −j(0)

k , i
(0)
s,k,1 = −σk

∂φ
(0)
s,k

∂x
, k ∈ {n, p}, (4.26a)

with the boundary conditions

φ
(0)
s,n
∣∣
x=0

= φ
(0)
s,cn, i

(0)
s,n,1

∣∣
x=Ln

= 0, (4.26b)

φ
(0)
s,p
∣∣
x=1

= φ
(0)
s,cp, i

(0)
s,p,1

∣∣
x=1−Lp

= 0. (4.26c)

4.6.1.2 Charge conservation in the electrolyte

A similar calculation holds for charge conservation in the electrolyte.
Using (4.17)-(4.18) in (4.13b) the transverse current in the electrolyte is

ie,k,⊥ = δ2εb
kκ̂eκe(ce,k, Tk) (−∇⊥φe,k

+2(1− t+)(1 + ΘTk)∇⊥ (log ce,k)
)
, k ∈ {n, s, p},
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Thus, to leading order in δ, we have i
(0)
e,k,⊥ = 0 for k ∈ {n, s, p}, and

the flow of current in the electrolyte is also predominantly in the x-
direction. Then, at leading order in δ, equations (4.13) give

∂i
(0)
e,k,1

∂x
=

j
(0)
k , k = n, p,

0, k = s,
k ∈ {n, s, p}, (4.27a)

i
(0)
e,k,1 = εb

kκ̂eκe(c
(0)
e,k , T

(0)
k )

(
−
∂φ

(0)
e,k

∂x

+ 2(1− t+)(1 + ΘT
(0)
k )

∂

∂x

(
log c

(0)
e,k

))
,

(4.27b)

k ∈ {n, s, p},

with boundary conditions given by (4.13c)–(4.13d), and continuity con-
ditions given by

i
(0)
e,n,1

∣∣
x=0

= 0, i
(0)
e,p,1

∣∣
x=1

= 0, (4.27c)

φ
(0)
e,n
∣∣
x=Ln

= φ
(0)
e,s
∣∣
x=Ln

, i
(0)
e,n,1

∣∣
x=Ln

= i
(0)
e,s,1

∣∣
x=Ln

, (4.27d)

φ
(0)
e,s
∣∣
x=1−Lp

= φ
(0)
e,p
∣∣
x=1−Lp

, i
(0)
e,s,1

∣∣
x=1−Lp

= i
(0)
e,p,1

∣∣
x=1−Lp

. (4.27e)

Note that (4.26a), (4.27a) imply i(0)
s,k,1 + i

(0)
e,k,1 is independent of x, so that

i
(0)
s,k,1 + i

(0)
e,k,1 = Ik k ∈ {n, p}, (4.27f)

which can be used to eliminate i(0)
s,k,1 in (4.26a). Note also that integrating

(4.27a) in x and using (4.27c)-(4.27f) gives

In = Lnj̄
(0)
n = i

(0)
e,s,1 = −Lpj̄

(0)
p = Ip = I,

say, where I = I(y, z) is the through-cell current density.

4.6.1.3 Lithium conservation

For the lithium concentrations in the solid and electrolyte we find at
leading order

Ck
∂c

(0)
s,k

∂t
= − 1

r2
k

∂

∂rk

(
r2

kN
(0)
s,k

)
, k ∈ {n, p}, (4.28a)

N
(0)
s,k = −Ds,k(c

(0)
s,k , T

(0)
k )

∂c
(0)
s,k

∂rk
, k ∈ {n, p}, (4.28b)
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Ceεkγe
∂c

(0)
e,k

∂t
= −γe

∂N
(0)
e,k

∂x
+ Ce

∂i
(0)
e,k

∂x
, k ∈ {n, s, p}, (4.28c)

N
(0)
e,k = −εb

kDe(c
(0)
e,k , T

(0)
k )

∂c
(0)
e,k

∂x
+
Cet

+

γe
i
(0)
e,k , k ∈ {n, s, p}, (4.28d)

with boundary conditions

N
(0)
s,k

∣∣
rk=0

= 0,
akγk

Ck
N

(0)
s,k

∣∣
rk=1

= j
(0)
k , k ∈ {n, p}, (4.28e)

N
(0)
e,n
∣∣
x=0

= 0, N
(0)
e,p
∣∣
x=1

= 0, (4.28f)

c
(0)
e,n
∣∣
x=Ln

= c
(0)
e,s |x=Ln , N

(0)
e,n
∣∣
x=Ln

= N
(0)
e,s
∣∣
x=Ln

, (4.28g)

c
(0)
e,s |x=1−Lp = c

(0)
e,p|x=1−Lp , N

(0)
e,s
∣∣
x=1−Lp

= N
(0)
e,p
∣∣
x=1−Lp

, (4.28h)

and initial conditions

c
(0)
s,k (x, y, z, r, 0) = cs,k,0, k ∈ {n, p}, (4.28i)

c
(0)
e,k(x, y, z, 0) = 1, k ∈ {n, s, p}. (4.28j)

4.6.1.4 Electrochemistry

At leading order in δ, the electrochemical reactions are given by

j
(0)
k = j

(0)
0,k sinh

(
η

(0)
k

2(1 + ΘT
(0)
k )

)
, k ∈ {n, p}, (4.29a)

j
(0)
0,k =

γk

Cr,k
mk(T

(0)
k )(c

(0)
s,k )1/2(1− c(0)

s,k )1/2(c
(0)
e,k)1/2

∣∣
rk=1

, (4.29b)

k ∈ {n, p},

η
(0)
k = φ

(0)
s,k − φ

(0)
e,k − Uk(c

(0)
s,k , T

(0)
k )
∣∣
rk=1

, k ∈ {n, p}. (4.29c)

4.6.1.5 Energy conservation

At leading order in (4.16) we find

∂2T
(0)
k

∂x2
= 0, k ∈ {cn, n, s, p, cp} (4.30)

with T (0)
k and λk∂T

(0)
k /∂x continuous at x = 0, 1, Ln and 1− Lp, and

∂T
(0)
cn

∂x

∣∣∣∣
x=−Lcn

=
∂T

(0)
cp

∂x

∣∣∣∣
x=1+Lcp

= 0, (4.31)
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giving T (0) = T (0)(y, z, t), where we can drop the subscript k on the
leading-order temperature since it is x-independent and the same
across all of the cell components. At the next order, we find

Cthρk
∂T (0)

∂t
= λk

(
∂2T

(2)
k

∂x2
+∇2

⊥T
(0)

)
+ B

(
Q

(0)
Ohm,k +Q

(0)
rxn,k +Q

(0)
rev,k

)
,

k ∈ {cn, n, s, p, cp},

(4.32)

where

Q
(0)
Ohm,k = σk

∂φ(0)
s,k

∂x

2

− i(0)
e,k,1

∂φ
(0)
e,k

∂x
, k ∈ {n, p}, (4.33a)

Q
(0)
Ohm,s = −i(0)

e,s,1
∂φ

(0)
e,s

∂x
, (4.33b)

Q
(0)
Ohm,k = σ′k|∇⊥φ

(0)
s,k |

2, k ∈ {cn, cp} (4.33c)

and Q(0)
rxn,k and Q(0)

rev,k are the leading-order terms in (4.16e)-(4.16f). In-
tegrating across the whole cell from x = −Lcn to x = 1 + Lcp gives

Cth

∑
k

(ρkLk)
∂T (0)

∂t
=
∑

k

(λkLk)∇2
⊥T

(0)

+ B
∫ 1+Lcp

−Lcn

Q
(0)
k dx

+

[
λk
∂T

(2)
k
∂x

]1+Lcp

−Lcn

,

(4.34)

where Q(0)
k = Q

(0)
Ohm,k + Q

(0)
rxn,k + Q

(0)
rev,k, and it is understood that the

integral ofQ(0)
k is the sum of the integrals over each cell component. The

final term of (4.34) may be evaluated through the use of the boundary
condition (4.16g), which gives

λcn
∂T

(2)
cn

∂x

∣∣∣∣
−Lcn

= h′cnT
(0), λcp

∂T
(2)
cp

∂x

∣∣∣∣
1+Lcp

= −h′cnT
(0), (4.35)

where

h′cn(y, z) = h′(−Lcn, y, z), h′cp(y, z) = h′(1 + Lcp, y, z),
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are the heat transfer coefficients for the negative and positive current
collectors, respectively. Since our choice of nondimensionalisation is
such that∑

k

ρkLk =
∑

k

λkLk =
∑

k

Lk = Lcn + 1 + Lcp = L,

say, the governing equation for the leading-order temperature may be
written

Cth
∂T (0)

∂t
= ∇2

⊥T
(0) + BQ̄(0) −

(h′cn + h′cp)

L
T (0), (4.36a)

where

Q̄(0) =
1

L

∫ 1+Lcp

−Lcn

Q
(0)
k dx

is the x-averaged heat source term. Equation (4.36a) is subject to the
initial condition

T (0)(y, z, 0) = T0, (4.36b)

and the boundary condition

−∇⊥T (0) · n = h′′T (0) (y, z) ∈ ∂Ω, (4.36c)

where

h′′ =
1

L

∫ 1+Lcp

−Lcn

h′′ dx

is the x-averaged edge heat transfer coefficient.

4.6.1.6 Summary

To leading order the reduced model is the two-dimensional pair-potential
problem

Lcnσ
′
cn∇2
⊥φ

(0)
s,cn = I, Lcpσ

′
cp∇2
⊥φ

(0)
s,cp = −I in Ω (4.37a)

with boundary conditions

φ
(0)
s,cn = 0 on ∂Ωtab,cn,⊥, (4.37b)

∇⊥φ
(0)
s,cn · n = 0 on ∂Ωext,cn,⊥ (4.37c)

−σ′cp∇⊥φ
(0)
s,cp · n =

Iapp

Atab,cp
on ∂Ωtab,cp,⊥, (4.37d)

∇⊥φ
(0)
s,cp · n = 0 on ∂Ωext,cp,⊥, (4.37e)
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where I is the through-cell current given (at each point (y, z)) by a one-
dimensional DFN model (4.26)-(4.29), coupled to the two-dimensional
thermal problem

Cth
∂T (0)

∂t
= ∇2

⊥T
(0) + BQ̄(0) −

(h′cn + h′cp)

L
T (0) in Ω, (4.37f)

−∇⊥T (0) · n = h′′T (0) on ∂Ω. (4.37g)

with initial condition T (0) = T0, where the heat source is

Q̄(0) =
1

L

∫ 1

0
Q(0) dx+

Lcn

L
σ′cn|∇⊥φ

(0)
s,cn|2

+
Lcp

L
σ′cp|∇⊥φ

(0)
s,cp|2,

(4.37h)

where Q(0) = Q
(0)
Ohm,k +Q

(0)
rxn,k +Q

(0)
rev,k (k ∈ {n, s, p}) is the heat source

in the one-dimensional DFN model.

4.6.2 The very large conductivity limit

The model derived in §4.6.1 is the distinguished limit in which the
resistance to current travelling down the current collector is comparable
to that to current travelling through the cell. In applications, in order
to ensure the whole cell is used uniformly, the current collectors are
designed to be thick enough that the potential on them is approximately
uniform. In this section we analyse this situation by considering the
sub-limit σ′k � 1.

In §4.6.1 we also took the edge cooling coefficient to be asymptotically
larger than the surface cooling coefficient so that both effects appeared
in the leading-order heat balance. In this section, we weaken the effect
of edge cooling by considering the sub-limit h′′ � 1. We also suppose
that the surface cooling coefficients h′k do not vary spatially so that the
temperature is also approximately uniform.

We will see that with these approximations the model simplifies con-
siderably. For ease of exposition we quantify the limits by introducing
a single small parameter ε such that σ′k = σ′′k/ε, h

′′ = h′′′ε with σ′′k ,
h′′′ = O(1) as ε→ 0. We now expand the leading-order term of §4.6.1
in each variable in powers of ε as

φ
(0)
s,k = φ

(00)
s,k + εφ

(01)
s,k + · · · , (4.38)

as ε→ 0. We will retain both the leading term and the first correction in
this expansion in ε, while neglecting the first correction in the expansion
in δ2; thus our results are asymptotically accurate providing δ2 � ε.
After rewriting σ′k and h′′ (4.37) become

Lcnσ
′′
cn∇2
⊥φ

(0)
s,cn = εI, Lcpσ

′′
cp∇2
⊥φ

(0)
s,cp = −εI in Ω (4.39a)
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φ
(0)
s,cn = 0 on ∂Ωtab,cn,⊥, (4.39b)

∇⊥φ
(0)
s,cn · n = 0 on ∂Ωext,cn,⊥ (4.39c)

−σ′′cp∇⊥φ
(0)
s,cp · n =

εIapp

Atab,cp
on ∂Ωtab,cp,⊥, (4.39d)

∇⊥φ
(0)
s,cp · n = 0 on ∂Ωext,cp,⊥, (4.39e)

Cth
∂T (0)

∂t
= ∇2

⊥T
(0) + BQ̄(0) −

(h′cn + h′cp)

L
T (0) in Ω, (4.39f)

−∇⊥T (0) · n = εh′′′T (0) on ∂Ω. (4.39g)

with initial condition T (0) = T0. It is useful to also write down a global
current conservation equation, by integrating the second equation in
(4.39a) over Ω and using (4.39d) to give

Iapp =

∫
Ω
I dy dz . (4.39h)

4.6.2.1 Leading-order problem

At leading order in ε we find the potentials are uniform as expected,
with

φ
(00)
s,cn = 0, φ

(00)
s,cp = V (00)(t), (4.40)

where V (00)(t) is the (unknown) leading-order terminal voltage. Since
(4.39g) gives

−∇⊥T (00) · n = 0 on ∂Ω,

the leading-order temperature T (00) will be spatially uniform if the
heat source Q̄(00) is spatially uniform. Additionally, if T (00) is spatially
uniform then at each point (y, z) the one-dimensional DFN model
(4.27)-(4.29) sees the same temperature T (00) and potential difference
V (t), so that (providing the initial condition is independent of y and
z) the solution to each of these models is independent of y and z, and
the through-cell current I(00) and heating Q̄(00) are uniform. Thus a
single one-dimensional DFN problem suffices to determine V (00) as a
functional of I(00) and T (00). Let us write this output of the DFN model
as

φs,cp − φs,cn = V(I, T ), (4.41)

so that V (00) = V(I(00), T (00)). The current I(00) is given by (4.39h) as

I(00) =
Iapp

LyLz
, (4.42)
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while the leading-order temperature is determined from the ordinary
differential equation

Cth
dT (00)

dt
= BQ̄(I(00), T (00))−

(h′cn + h′cp)

L
T (00), (4.43a)

with initial condition T (00)(0) = T0, where

Q̄(I, T ) =
1

L

∫ 1

0
Q(0) dx , (4.44)

is the x-averaged heat source in the one-dimensional DFN model,
which, like V is a functional of the temperature T and current I.

4.6.2.2 First-order correction

The first-order corrections to the current collector potentials satisfy

Lcnσ
′′
cn∇2
⊥φ

(01)
s,cn =

Iapp

LyLz
, in Ω (4.45a)

Lcpσ
′′
cp∇2
⊥φ

(01)
s,cp = −

Iapp

LyLz
, in Ω (4.45b)

φ
(01)
s,cn = 0 on ∂Ωtab,cn,⊥, ∇⊥φ

(01)
s,cn ·n = 0 on ∂Ωext,cn,⊥ (4.45c)

−σ′′cp∇⊥φ
(01)
s,cp · n =

Iapp

Atab,cp
on ∂Ωtab,cp,⊥, (4.45d)

∇⊥φ
(01)
s,cp · n = 0 on ∂Ωext,cp,⊥, (4.45e)

We note that φ(01)
s,cp is only determined up to a function of time, which is

fixed by solving the through-cell DFN problem at O(ε). However, we
will see that we can evaluate this term without solving multiple DFN
models parameterised by y and z. We use (4.41) to write

φ
(01)
s,cp − φ

(01)
s,cn =

δV
δI
I(01) +

δV
δT

T (01)

where the functional derivatives are evaluated at (I(00), T (00)), and are
therefore independent of y and z. Integrating over Ω gives

〈φ(01)
s,cp 〉 − 〈φ

(01)
s,cn 〉 =

δV
δI
〈I(01)〉+

δV
δT
〈T (01)〉 (4.46)

where

〈·〉 =
1

LyLz

∫
Ω
· dy dz .
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But (4.39h) gives

〈I(01)〉 = 0,

so the only contribution from the DFN at O(ε) is from the temperature
perturbation.

Recalling that the terminal voltage is the average of the potential
over the positive tab,

V (01) =
Lcp

Atab,cp

∫
∂Ωtab,cp,⊥

φ
(01)
s,cp ds ,

and (4.45a) and (4.45e) are enough to determine 〈φ(01)
s,cn 〉 and V (01) −

〈φ(01)
s,cp 〉, which can be interpreted as the potential drops across the nega-

tive and positive current collectors respectively. Since these are propor-
tional to Iapp (which may be time dependent) they can be most easily
formulated in terms of current collector resistances by writing

〈φ(01)
s,cn 〉 = −RcnIapp, V (01) − 〈φ(01)

s,cp 〉 = −RcpIapp, (4.47)

where

Rcn =
〈fn〉

LyLzLcnσ′′cn
, Rcp =

1

LyLzσ′′cpAtab,cp

∫
∂Ωtab,cp,⊥

fp ds (4.48)

with

∇2
⊥fn = −1, ∇2

⊥fp = 1 in Ω, (4.49a)

fn = 0 on ∂Ωtab,cn,⊥, (4.49b)

∇⊥fn · n = 0 on ∂Ωext,cn,⊥, (4.49c)

∇⊥fp · n =
LyLzLcp

Atab,cp
on ∂Ωtab,cp,⊥, (4.49d)

∇⊥fp · n = 0 on ∂Ωext,cp,⊥, 〈fp〉 = 0. (4.49e)

Combining (4.47) with (4.46) gives the perturbation to the terminal
voltage as

V (01) =
δV
δT
〈T (01)〉 −RcpIapp −RcnIapp. (4.50)
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At next order in (4.39f)-(4.39g) we find

Cth
∂T (01)

∂t
= ∇2

⊥T
(01) + B δQ̄

δT
T (01) −

(h′cn + h′cp)

L
T (01)

+
BLcnσ

′′
cn

L
|∇⊥φ

(01)
s,cn |2

+
BLcpσ

′′
cp

L
|∇⊥φ

(01)
s,cp |2 in Ω,

−∇⊥T (01) · n = h′′′T (00) on ∂Ω,

where the functional derivative is evaluated at T (00). Integrating over
y and z gives

Cth
∂〈T (01)〉
∂t

= B δQ̄
δT
〈T (01)〉 −

(h′cn + h′cp)

L
〈T (01)〉

− T (00)

LyLz

∫
∂Ω
h′′′ ds+HcnI

2
app

+HcpI
2
app in Ω,

(4.51)

where the coefficients related to Ohmic heating in the current collectors
are

Hcn =
BLcn

L(LyLzLcn)2σ′′cn
〈|∇⊥fn|2〉, (4.52a)

Hcp =
BLcp

L(LyLzLcp)2σ′′cp
〈|∇⊥fp|2〉. (4.52b)

In principle (4.51) allows the correction to the average temperature
to be determined, whence (4.50) gives the correction to the terminal
voltage. Rather than evaluating δV/δT and δQ̄/δT the most convenient
way to capture the perturbation is to note that

V(I(00), T (00) + ε〈T (01)〉) = V(I(00), T (00))

+ ε
δV
δT

(I(00), T (00))〈T (01)〉

+O(ε2),

so that

V (00) + εV (01) = V(I(00), T (00) + ε〈T (01)〉)
− εRcpIapp − εRcnIapp +O(ε2).

Thus we may solve a single one-dimensional DFN using the y, z-
averaged temperature, and the error will be O(ε2).
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4.6.2.3 Summary

Writing 〈T 〉 = T (00) + ε〈T (01)〉 gives

V = V(I(00), 〈T 〉)− εRcpIapp − εRcnIapp +O(ε2, δ2), (4.53a)

Cth
∂〈T 〉
∂t

= BV̄(I(00), 〈T 〉)−
(h′cn + h′cp)

L
〈T 〉

− ε〈T 〉
LyLz

∫
∂Ω
h′′′ ds

+ εHcnI
2
app + εHcpI

2
app +O(ε2, δ2) in Ω.

(4.53b)

After solving this single one-dimensional model, the potential distribu-
tion in the current collectors is

φs,cn = − εI
(00)

Lcnσ′′cn
fn +O(ε2, δ2), (4.53c)

φs,cp = V +
εI(00)

Lcpσ′′cp
fp +O(ε2, δ2). (4.53d)

Recall that in this limit the leading-order current is I(00) = Iapp/(LyLz).

4.6.2.4 An ad-hoc model for the temperature distribution

The reduced model (4.53) gives the spatial variation of the potential
in the current collectors, but only the average cell temperature. An
approach sometimes used in the literature is to retain the spatial deriva-
tives in the energy balance equation, but use heat source terms from the
averaged one-dimensional electrochemical model (see e.g. [30]). Such
an approach corresponds to replacing Q̄(I(00), T ) with Q̄(I(00), 〈T 〉)
and replaces (4.53b) with

Cth
∂T

∂t
= ∇2

⊥T + BQ̄(I(00), 〈T 〉)−
(h′cn + h′cp)

L
T

+
BLcnσ

′′
cn

εL
|∇⊥φs,cn|2 +

BLcpσ
′′
cp

εL
|∇⊥φs,cp|2

in Ω,

(4.54a)

−∇⊥T · n = εh′′′T on ∂Ω. (4.54b)

This model captures the variation due to Ohmic heating in the cur-
rent collectors and cooling at the boundaries, but neglects the spatial
variation of the heat source within the cell.
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4.7 N U M E R I C A L C O M PA R I S O N

In this section, we provide a numerical comparison of the full pouch cell
model with the reduced models (4.37) and (4.53). For ease of exposition,
we focus on the case in which all variables are uniform in y, so that
the full model is two-dimensional, and the reduced model (4.37) has
a one-dimensional current collector (in the z-direction), at each point
of which we solve a one-dimensional DFN model (we refer to this
as a 1+1D model, though since the DFN is already a pseudo-two-
dimensional model, perhaps it is more properly a 1+1+1D model). We
refer to the very-high conductivity limit model (4.53) as the DFNCC
model, to indicate that it involves a single (averaged) DFN model with
an additional (uncoupled) problem for the distribution of potential in
the current collectors (from which the resistance and heat source can
be calculated).

Numerical simulations of the full model were performed using the
commercial software COMSOL [33], while the reduced models were
implemented in PyBaMM [86]. All simulations were performed on
a desktop computer (i5, 2.1 GHz) with 16 Gb of RAM. The model
equations in COMSOL are discretised in space using the finite-element
method, while in PyBaMM the equations are discretised using the
finite-volume method. Both solvers use an adaptive, variable-order
backward differentiation formula for the time integration, with both
relative and absolute tolerances set to 10−6. Since we aim to compare
the full and reduced models and not the merits of any particular nu-
merical approach, we provide a comparison of the solutions of the
standard one-dimensional DFN model produced by both COMSOL
and PyBaMM in Appendix A.6. Whilst this does not fully quantify
differences introduced by employing two different numerical solution
methods, it does provide context for our comparisons that follow.

Typical dimensional parameter values for a battery comprising a
carbon negative current collector, graphite negative electrode, LiPF6 in
EC:DMC electrolyte, LCO positive electrode, and aluminium positive
current collector are given in Tables 2.1, 2.2, and Table 4.1. These trans-
late into the dimensionless parameters in Tables 3.3, 3.4, 4.2, and 4.3.
From there we see that

h ≈ 3.8× 10−5, δ ≈ 1.6× 10−3.

The dimensionless conductivities σcn and σcp depend on the charge/dis-
charge rate (the so-called C-rate). To give an idea of the typical asymp-
totic regime batteries operate in, at a C-rate of 3 we find that

σcn ≈ 9.5× 107, σcp ≈ 5.6× 107. (4.55)

We compare the results of the 2D DFN model with the 1+1D DFN
and DFNCC models for a 3 C constant current discharge, with both
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positive and negative tabs placed at the top of the cell (i.e. at z =

Lz). In Figures 4.2, 4.3, 4.4 and 4.5 we present comparisons for the
potential in the negative current collector, the potential in the positive
current collector, the through-cell current density and the x-averaged
temperature respectively. Solutions from the full model are shown as
a function of space in time in panel (a), with snapshots at a series of
times throughout the discharge shown in panel (b). The time- and
space-averaged absolute errors (by “error” we mean the difference
between the numerical solution of the reduced model in PyBaMM and
the COMSOL solution of the full model) are shown in panels (c) and
(d), respectively.

We see in Figures 4.2 and 4.3 that the electrical conductivity of the
current collectors is sufficiently high that the potentials remain fairly
uniform in space, and both the 1+1D DFN and DFNCC models accu-
rately capture the potential distribution in the current collectors. The
error is of a similar size to that between the numerical solutions of
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Figure 4.2: Potential in the negative current collector. (a) the COMSOL so-
lution; (b) comparison with the reduced models at various times
during discharge; (c) time-averaged absolute errors; (d) z-averaged
absolute errors.
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Figure 4.3: Potential in the positive current collector (with the terminal voltage
subtracted off). (a) the COMSOL solution; (b) comparison with
the reduced models at various times during discharge; (c) time-
averaged absolute errors; (d) z-averaged absolute errors.

the 1D DFN obtained using COMSOL and PyBaMM (Appendix A.6),
so that little additional error has been introduced as a result of the
asymptotic reduction.

In Figure 4.4(a) we see that positioning both tabs at the top of the cell
means that for most of the simulation the current preferentially travels
through the upper part of the cell. Eventually, as the cell continues
to discharge, this part becomes more (de)lithiated until the resultant
local increase in through-cell resistance is sufficient for it to become
preferential for the current to travel further down the current collectors
and through the lower part of the cell (as seen in the final time shown in
Figure 4.4(b)). This behaviour is well captured by the 1+1D model, with
space-averaged absolute errors in the through-cell current on the order
of 10−3A m−2 for most of the discharge, as displayed in Figure 4.4(d).
The largest error is found towards the end of the discharge where the
OCV becomes highly nonlinear. However, this is also where the greatest
discrepancy in the solution between COMSOL and PyBaMM in 1D is
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Figure 4.4: Through-cell current density. (a) the COMSOL solution; (b) com-
parison with the reduced models at various times during discharge;
(c) time-averaged absolute errors; (d) z-averaged absolute errors.

found (see the 1C result in Figure A.4). In the DFNCC formulation, the
through-cell current density is assumed uniform, so the greatest error
is found at the ends of the current collectors where the current density
deviates most from its average.

For the parameters in Tables 2.1, 2.2, and 4.1, we find that the tem-
perature exhibits a relatively weak variation along the length of the
current collectors, as shown in Figure 4.5. The 1+1D model captures
the temperature distribution well.

Since the temperature rise is moderate (and the variation of tem-
perature in space is small), the uniform temperature predicted by the
DFNCC model gives a good estimate of the temperature in the full
model.

In Table 4.4, we give the normalised RMS error in the current collector
potentials, through-cell current, temperature, and voltage obtained
by solving the model in PyBaMM as the mesh is refined. The RMS
error was computed against the solution obtained using COMSOL’s
“fine” mesh (450 elements in each current collector, 1650 elements in
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Figure 4.5: The x∗-averaged temperature (a) the COMSOL solution; (b) com-
parison with the reduced models at various times during discharge;
(c) time-averaged absolute errors; (d) z∗-averaged absolute errors.

each electrode, 450 elements in the separator), which was typically
solved in around 5376 s. It can be seen that the error in the through-
cell current density I∗ for the DFNCC model is much larger than that
of the 1 + 1D model, and remains unchanged as the mesh is refined:
this is the asymptotic error inherent in the model. However, other
quantities, such as the terminal voltage, are predicted equally well by
the DFNCC model at a fraction of the computation time. Depending
on the quantities of interest the simpler DFNCC model may well be
sufficient for a range of applications.

Finally, to illustrate the asymptotic convergence of the DFNCC model
we fix σcn = σcp = σ and solve for a range of values of σ. The nor-
malised RMS error between the 2D solution in COMSOL and the 1+1D
DFN and DFNCC solutions in PyBaMM for a selection of model vari-
ables are shown in Figure 4.6.
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Figure 4.6: Normalised RMS error between the 2D solution in COMSOL and
the 1+1D DFN and DFNCC solutions in PyBaMM for a selection of
model variables as the non-dimensional conductivity σ is varied,
with σcn = σcp = σ. The quantities plotted for a variable ψ were
computed as RMS(ψPyBaMM − ψCOMSOL)/RMS(ψCOMSOL).
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1+1D

N φ∗s,cn φ∗s,cp − V ∗ c̄∗s,n,surf c̄∗s,p,surf I∗ T̄ ∗ V ∗ Solution time [s]

4 2.148× 10−2 6.420× 10−2 1.646× 10−2 2.676× 10−3 3.954× 10−4 1.024× 10−4 2.341× 10−3 0.6115

8 5.377× 10−3 1.605× 10−2 5.767× 10−3 7.584× 10−4 1.015× 10−4 3.030× 10−5 6.864× 10−4 1.323

16 1.345× 10−3 4.011× 10−3 1.815× 10−3 2.082× 10−4 3.249× 10−5 7.772× 10−6 1.774× 10−4 9.446

32 3.421× 10−4 1.004× 10−3 5.231× 10−4 5.459× 10−5 2.665× 10−5 3.056× 10−6 4.412× 10−5 85.97

DFNCC

N φ∗s,cn φ∗s,cp − V ∗ c̄∗s,n,surf c̄∗s,p,surf I∗ T̄ ∗ V ∗ Solution time [s]

4 2.172× 10−2 2.172× 10−2 1.650× 10−2 2.703× 10−3 2.120× 10−3 1.202× 10−4 2.339× 10−3 0.24

8 5.725× 10−3 5.725× 10−3 5.895× 10−3 8.527× 10−4 2.294× 10−3 8.622× 10−5 6.801× 10−4 0.41

16 1.948× 10−3 1.948× 10−3 2.194× 10−3 4.437× 10−4 2.330× 10−3 8.612× 10−5 1.728× 10−4 0.99

32 1.262× 10−3 1.262× 10−3 1.241× 10−3 3.963× 10−4 2.334× 10−3 8.724× 10−5 4.931× 10−5 2.9

Table 4.4: Normalised RMS error between the 2D solution in COMSOL and the 1+1D DFN and DFNCC solutions in PyBaMM for a selection of model
variables. The tabulated quantities for a variable ψ were computed as RMS(ψPyBaMM − ψCOMSOL)/RMS(ψCOMSOL). Here N is the number of mesh
cells per spatial dimension in PyBaMM. The 2D solution was evaluated on a “fine” mesh (450 elements in each current collector, 1650 elements
in each electrode, 450 elements in the separator) in COMSOL. Both time stepping routines used a relative and absolute tolerance of 10−6.
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4.8 A S U I T E O F R E D U C E D - O R D E R M O D E L S

In this section, we combine the asymptotic analysis conducted in this
chapter with the analysis conducted in Chapter 3 to develop a suite of
reduced-order models of a lithium-ion pouch cell. These models are
displayed pictorially in Figure 4.7. The 2+1D DFN, the most complex
model we consider, is shown in the top-left panel. Proceeding down-
wards in Figure 4.7, represents making simplifications to the transverse
model (i.e. the current collectors), which corresponds to the asymp-
totic analysis conducted earlier in this chapter. The first simplification
(the middle row) gives rise to a set of models which we label ‘CC’.
These models consist of a single ‘average’ through-cell electrochemical
model and a second decoupled two-dimensional problem for the cur-
rent collector resistances (hence the name ‘CC’) which can be solved
‘offline’ before solving the through-cell model. On the bottom row of
Figure 4.7, the effects of the current collectors are neglected entirely,
with only a single representative through-cell electrochemical model
being solved. We refer to these as 0D transverse models. Moving to the
right in Figure 4.7 represents making simplifications to the through-cell
electrochemical model, which corresponds to the asymptotic analysis
we performed in Chapter 3. The three through-cell models that we
consider are the DFN model, the SPMe, and the SPM. By combining a
transverse model with a through-cell electrochemical model, we arrive
at one of the nine models in Figure 4.7. For example, by choosing the
‘CC’ transverse model and the SPMe for the through-cell model, we ar-
rive at the SPMeCC model, which consists of an ‘average’ SPMe model
and decoupled current collector problem. Alternatively, by choosing a
0D transverse model and the SPM through-cell model, we arrive at the
classical SPM model.

4.8.1 Summary of dimensional transverse models

To make clear the exact model equations associated with the schemat-
ics in Figure 4.7, we now state each of the transverse models in di-
mensional form. Each transverse model consists of a model for the
potentials in the current collectors and a model for the cell temperature.
These two models are then coupled to a through-cell model through
current sources in the current collector model and/or heat sources in
the temperature model.
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2+1D DFN (P4D) 2+1D SPMe (P3D) 2+1D SPM (P3D)

DFNCC (P2D) SPMeCC (P1D) SPMCC (P1D)

DFN (P2D) SPMe (P1D) SPM (P1D)

Figure 4.7: Schematic diagram of the reduced-order pouch cell models, and
their complexity. DFN corresponds to a one-dimensional problem
through the cell, at each point of which there is a radial problem
for the concentration of Li in the active material. Thus such a
model is pseudo-two-dimensional (P2D). In the 2+1D DFN at ev-
ery point of the current collectors, a one-dimensional DFN model
is solved, leading to a pseudo-four-dimensional (P4D) model. In
DFNCC a single DFN model is solved, along with an uncoupled
two-dimensional problem in the current collectors. SPM consid-
ers a single active particle in each electrode, leading to a one-
dimensional model (P1D). In the SPMe an extra one-dimensional
equation for the electrolyte is added; such a model remains P1D.
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4.8.1.1 N+1D model

For theN+1D transverse model, we use (4.37) which we derived earlier
in this chapter. The dimensional from of this potential-pair problem is

L∗cnσ
∗
cn(∇∗⊥)2φ∗s,cn = I∗, in Ω∗ (4.56a)

L∗cpσ
∗
cp(∇∗⊥)2φ∗s,cp = −I∗, in Ω∗ (4.56b)

φ∗s,cn = 0 on ∂Ω∗tab,cn,⊥, (4.56c)

∇∗⊥φ∗s,cn · n = 0 on ∂Ω∗ext,cn,⊥ (4.56d)

− σ∗cp∇∗⊥φ∗s,cp · n =
I∗app

A∗tab,cp
on ∂Ω∗tab,cp,⊥, (4.56e)

∇∗⊥φ∗s,cp · n = 0 on ∂Ω∗ext,cp,⊥, (4.56f)

with the thermal model given by

ρ∗eff
∂T ∗

∂t∗
= λ∗eff(∇

∗
⊥)2T ∗ + Q̄∗ −

(h∗cn + h∗cp)

L∗
(T ∗ − T ∗∞),

in Ω∗
(4.56g)

− λ∗eff∇
∗
⊥T
∗ · n = h∗eff(T

∗ − T ∗∞) on ∂Ω∗ (4.56h)

T ∗
∣∣
t∗=0

= T ∗0 . (4.56i)

Here, the heat source is given by

Q̄∗ = Q̄∗ +
L∗cn
L∗

σ∗cn|∇∗⊥φ∗s,cn|2 +
L∗cp

L∗
σ∗cp|∇∗⊥φ∗s,cp|2, (4.56j)

where Q̄∗ is the x∗-averaged heat source from the through-cell electro-
chemical model. In the above, h∗eff is the dimensional effective edge heat
transfer coefficient, and h∗cn and h∗cp are the heat transfer coefficients on
the faces of the negative and positive current collectors, respectively.
The dimensional effective edge heat transfer coefficient is

h∗eff =
1

L∗

∫ L∗x+L∗cp

−L∗cn

h∗edge dx∗ ,

and the dimensional effective volumetric heat capacity and dimen-
sional thermal conductivity are

ρ∗eff =

∑
k
ρ∗kc
∗
p,kL

∗
k∑

k
L∗k

, λ∗eff =

∑
k
λ∗kL

∗
k∑

k
L∗k

, (4.56k)

respectively.
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4.8.1.2 CC model

For the ‘CC’ model, we employ (4.53a), (4.53c)(4.53d), and (4.54). Whilst
we derived (4.53) asymptotically, we henceforth use the ad-hoc exten-
sion to the thermal model (4.54) because we have found that in practice
it a offers significant improvement to accuracy. The dimensional ‘CC’
model that we use for the rest of this chapter is then

V ∗ = V∗ (I∗, 〈T ∗〉)−R∗cpI
∗
app −R∗cnI

∗
app, (4.57a)

ρ∗eff
∂T ∗

∂t∗
= λ∗eff(∇

∗
⊥)2T ∗ + Q̄∗(I∗, 〈T 〉∗)

−
(h∗cn + h∗cp)

L∗
(T ∗ − T ∗∞)

+
L∗cn
L∗

σ∗cn|∇∗⊥φ∗s,cn|2

+
L∗cp

L∗
σ∗cp|∇∗⊥φ∗s,cp|2, in Ω∗

(4.57b)

− λ∗eff∇
∗
⊥T
∗ · n = h∗eff(T

∗ − T ∗∞) on ∂Ω∗ (4.57c)

T ∗
∣∣
t∗=0

= T ∗0 . (4.57d)

where V∗ is the through-cell voltage and Q̄∗ is the x∗-averaged heat
source from the through-cell electrochemical model. In this case, we
solve for a single average through-cell model with input current density
I∗ = I∗app/(L

∗
yL
∗
z). The current collector resistances are given by

R∗cn =
〈f∗n〉

L∗yL
∗
zL
∗
cnσ
∗
cn
, (4.57e)

R∗cp =
1

L∗yL
∗
zσ
∗
cpA

∗
tab,cp

∫
∂Ω∗tab,cp,⊥

f∗p ds∗ (4.57f)

and the coefficients related to Ohmic heating in the current collectors
are

H∗cn =
L∗cn〈|∇∗⊥f∗n |2〉

L∗(L∗yL
∗
zL
∗
cn)2σ∗cn

, H∗cp =
L∗cp〈|∇∗⊥f∗p |2〉

L∗(L∗yL
∗
zL
∗
cp)2σ∗cp

, (4.57g)

where f∗n and f∗p satisfy the dimensional version of (4.49) which is

(∇∗⊥)2f∗n = −1, (∇∗⊥)2f∗p = 1 in Ω∗, (4.57h)

f∗n = 0 on ∂Ω∗tab,cn,⊥, (4.57i)

∇∗⊥f∗n · n = 0 on ∂Ω∗ext,cn,⊥, (4.57j)

∇∗⊥f∗p · n =
L∗yL

∗
zL
∗
cp

A∗tab,cp
on ∂Ω∗tab,cp,⊥, (4.57k)

∇∗⊥f∗p · n = 0 on ∂Ω∗ext,cp,⊥, (4.57l)

〈f∗p〉 = 0. (4.57m)
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The potential distribution in the current collectors is then determined
from f∗n and f∗p via

φ∗s,cn = −
I∗appf

∗
n

L∗yL
∗
zL
∗
cnσ
∗
cn
, φ∗s,cp = V ∗ +

I∗appf
∗
p

L∗yL
∗
zL
∗
cpσ
∗
cp
. (4.57n)

4.8.1.3 0D model

In the CC model, the conductivity of the current collectors is high
enough that the potential is approximately uniform across them, and
the resistances due to the current collectors are calculated as a perturba-
tion. When this perturbation can be ignored, we then have from (4.40)
that

φ∗s,cn = 0, φ∗s,cp = V ∗, (4.58)

and we arrive at a model in which the effects of the current collectors
are ignored entirely. In this model the cell behaviour is uniform in
(y∗, z∗), and the temperature, which is now a function of time only, is
governed by the ODE (4.43) which in dimensional form is

ρ∗eff
∂T ∗

∂t∗
= Q̄∗ (I∗, T ∗)−

(h∗cn + h∗cp)

L∗
(T ∗ − T ∗∞)

− (T ∗ − T ∗∞)

L∗yL
∗
z

∫
∂Ω∗

h∗eff ds∗ in Ω∗,
(4.59)

T ∗
∣∣
t∗=0

= T ∗0 . (4.60)

4.8.2 Summary of dimensional through-cell models

The dimensional through-cell models that we employ are the DFN
((2.33), (2.35), (2.36), (2.41), and (2.42)), SPMe (3.47), and SPM (3.21).
Although, we only considered the isothermal case in Chapter 3, these
model equations trivially extend to the thermal case by adding the tem-
perature dependence to the parameters discussed in §4.4. It therefore
only remains to state the heat source term, which for each through-cell
model is given by

Q∗k = Q∗Ohm,k +Q∗rxn,k +Q∗rev,k, (4.61)

and accounts for Ohmic heating Q∗Ohm,k due to resistance in the solid
and electrolyte, irreverisble heating due to electrochemical reactions
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Q∗rxn,k, and reversible heating due to entropic changes in the the elec-
trode Q∗rev,k [9]. In the electrodes these terms are computed as

Q∗Ohm,k = −
(
i∗s,k

∂φ∗s,k

∂x∗
+ i∗e,k

∂φ∗e,k

∂x∗

)
, k ∈ {n, p}, (4.62)

Q∗rxn,k = a∗kj
∗
kη
∗
k, k ∈ {n, p}, (4.63)

Q∗rev,k = a∗kj
∗
kT
∗∂U

∗
k

∂T ∗

∣∣∣∣
T ∗=T ∗∞

, k ∈ {n, p}. (4.64)

However, in the separator there is no heat generation due to electro-
chemical effects, and we need only consider the Ohmic heat generation
term given by

Q∗Ohm,s = −i∗e,s ·
∂φ∗e,s

∂x∗
. (4.65)

The x∗-averaged through-cell heat generation is given by

Q̄∗ =
1

L∗

∑
k

L∗kQ̄
∗
k. (4.66)

In the SPM, the potentials are all independent of space and so the only
non-zero contributions to the heating come from the electrochemical
reactions Q∗rxn,k and Q∗rev,k. The Ohmic heating terms appear at higher
order, and are included in the SPMe.

4.9 C R I T I C A L C O M PA R I S O N O F I S O T H E R M A L M O D E L S

In this section, we provide a numerical comparison of the models
depicted in Figure 4.7. For ease of exposition, we consider the case
in which all variables are uniform in y∗, so that each model has one-
dimensional current collectors (in z∗). In total we consider 9 models:
1+1D DFN, 1+1D SPM, 1+1D SPMe, DFNCC, SPMeCC, SPMCC, DFN,
SPMe and SPM. Each model is implemented within PyBaMM [86].
The model equations are discretised in space using the finite-volume
method and integrated in time using an adaptive, variable-order back-
ward differentiation formula. For the spatial discretisation we use the
following number of grid points: Nz = 30 in the z∗-direction of the
current collectors; Nrn = 20 and Nrp = 20 in r∗-direction of the nega-
tive and positive particles, respectively; and Nxn = 35, Nxs = 20, and
Nxp = 35 in the x-direction negative electrode, separator and positive
electrode, respectively. Unless otherwise stated, results are presented
for a 1C constant current discharge. To demonstrate the relative compu-
tational complexity of each model we present the number of states in
each model alongside the solve time in Table 4.5. Here we refer to the
number of states required by the part of the model that is integrated
in time. That is, we ignore the states in the “CC” part of the problem
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which is solved “offline” and is separate from the time integration. We
observe a dramatic decrease in both memory requirements and solve
times as the complexity of the model is decreased. For example, the
SPMeCC requires around 0.2% of the memory required by the 1+1D
DFN and is over 400 times faster to solve than the 1+1D DFN.

Model States Solve time [ms]

1+1D DFN 49561 8308
1+1D SPMe 3961 1514
1+1D SPM 1261 105
DFN(CC) 1651 259
SPMe(CC) 131 18
SPM(CC) 41 13

Table 4.5: The number of states required for the time integration component
of the isothermal version of each model and associated time in-
tegration solve time (i.e. excluding any initial time independent
solves) for a 1 C constant current disharge with Nz = 30, Nxn = 35,
Nxs = 20, Nxp = 35, Nrn = 20, and Nrp = 20. Since we have ignored
the time independent part of the problem, the results for the “CC”
and 1D (no current collector effects) models are the same.

Despite the clear computational benefits of employing a reduced-
order model, modelling errors are introduced and must be understood.
To help quantify the spatial and temporal errors, we use two measures.
The first is the maximum absolute error at each point in z∗ defined for
a variable Φ∗ to be

ε∗z = max
t∗
|Φ∗1+1D DFN − Φ∗Reduced| , (4.67)

where Φ∗1+1D DFN is the value of variable predicted by the 1+1D DFN
model and Φ∗Reduced is the value of the variable predicted by relevant
the reduced-order model. The other measure of the error that we use
is the maximum absolute error at each point in time in the discharge
defined for each variable Φ∗ as

ε∗t = max
z∗
|Φ∗1+1D DFN − Φ∗Reduced| . (4.68)

Both ε∗z and ε∗t inherit the units of the variable, Φ∗, under study.
The results and conclusions presented below are specific to the pa-

rameter values in Tables 2.1, 2.2, and 4.1. One should keep in mind that
the most appropriate model is a function of the particular parameter
values being used.
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4.9.1 Comparison of terminal voltage

The most commonly used output of lithium-ion battery models is the
terminal voltage. In Figure 4.8 (a), and (b), we present the 1 C terminal
voltage predicted by each model and the associated errors between
the reduced-order model and the 1+1D DFN. Except for the SPM, the
reduced-order models recover the behaviour predicted by the 1+1D
DFN at 1 C. However, in Figure 4.8 (b), we observe between a one and
two orders of magnitude decrease in the error when using the DFN as
the through-cell model, irrespective of the choice of transverse model.
This suggests that simplifications in the through-cell electrochemistry
result in a greater increase in error than simplifications in the transverse
direction. In Figure 4.8 (c), the maximum absolute error in the terminal
voltage across the discharge is presented as a function of the C-rate.
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Figure 4.8: Comparison of the predicted terminal voltage: (a) 1 C discharge
voltage profile predicted by each model; (b) 1 C discharge voltage
profile absolute error between each reduced-order model and the
1+1D DFN; and (c) the maximum absolute error between each
reduced-order model and the 1+1D DFN at a range of C-rates.
The results for the 1+1D SPMe, SPMeCC, and SPMe are almost
indistinguishable and the results for the 1+1D SPM, SPMCC, and
SPM are indistinguishable.



4.9 C R I T I C A L C O M PA R I S O N O F I S O T H E R M A L M O D E L S 111

As expected, the error increases with increasing C-rate for all of the
models considered. Additionally, the error in the models which use the
SPM and SPMe increases more quickly with C-rate when compared
with the models that use the DFN. This suggests that at higher C-rates
retaining a more complex through-cell model becomes increasingly
important.

If the terminal voltage is the only quantity of interest then our results
suggest that employing a reduced-order model that does not couple
the current collector and electrochemical effects is the most appropriate
model choice, in the sense the voltage can be accurately predicted at
a greatly reduced computational cost. In particular, if one has a larger
computational budget and has access to efficient differential-algebraic
equation (DAE) solvers then making use of the DFN or DFNCC gives
the best prediction of the voltage. However, if the computational bud-
get is more limited the SPMe or SPMeCC may be more appropriate.
Finally, we note that the errors between experimental data and more
complex through-cell models can be on the order of 10−1 V [22], so in
practice introducing a modelling error on the order of 10−2 V, such as
in the SPMeCC, may not affect the ability of the model to replicate
experimental results.

4.9.2 Comparison of particle concentrations

In Figure 4.9(a), we display the variation in z∗ of the surface concen-
tration of the through-cell averaged (x∗-averaged) negative particle
predicted by the 1+1D DFN throughout the full discharge. Initially,
the surface concentration is uniform in z∗. However, as the discharge
proceeds, the upper portion of the cell near the tabs becomes more
depleted than the lower portion of the cell. This is due to current pref-
erentially travelling through the upper portion of the cell as the path
of least resistance. When the upper portion of the cell is almost fully
depleted, the resistances in the upper portion of the cell increase (i.e. it
becomes harder to remove more lithium from the negative electrode
and harder to insert lithium into the positive electrode) to a sufficient
level such that current preferentially travels through the less utilised
portions of the cell. This gives rise to a final uniform particle surface
concentration. The effect of this on the current can be observed in
Figure 4.10(a).

In Figure 4.9(b), we plot the x∗-averaged negative particle surface
concentration at 0.17 A h predicted by the 1+1D DFN, the 1+1D SPM,
the 1+1D SPM, and the average concentration which is predicted by
the models that do not include the z∗-dependence of the concentrations
(i.e. the “CC” and 1D models). Given that the variation in surface
concentration is on the order of 15 mol m−3, employing a z∗-averaged
model recovers the surface concentrations to 0.1% accuracy. However,
as shown in Figures 4.9(c) and (d), an order of magnitude decrease
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Figure 4.9: Comparison of the x∗-averaged negative particle surface concentra-
tion: (a) Variation in the x∗-averaged negative particle surface con-
centration predicted by the 1+1D DFN; (b) Snapshot at 0.17 [A h];
(c) Maximum (over z∗) absolute error at each time in the discharge;
(d) Maximum (over the entire discharge) absolute error at each z∗

location.

in the error can be achieved when using a z∗-resolved model such as
the 1+1D SPM or 1+1D SPMe. For situations in which resolving the
spatial inhomogeneities (in z∗) in the surface concentration are crucial,
a model at least as detailed as the 1+1D SPM should be employed.

A further comparison of the surface concentration variables is pro-
vided in Table 4.6. Instead of comparing the x∗-averaged surface con-
centration, we now compare the surface concentration at every (x∗,z∗)-
location in the cell. Here, we observe that the RMS error in the particle
surface concentration is larger for the 1+1D SPM(e) than the 1D DFN
and DFNCC. This is because 1+1D SPMe considers a single x∗-averaged
particle in the through-cell direction, and in this instance, the through-
cell variation in the particle surface concentration is more significant
than the z∗-direction variation. This highlights the fact that the best
combination of through-cell and transverse simplifications depends
on which quantities are of interest: for the results here we find that
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the 1+1D SPMe best recovers the through-cell averaged particle sur-
face concentration, but the 1D DFN better approximates the surface
concentration at each (x∗,z∗) location.

4.9.3 Comparison of current distribution

In Figure 4.10(a), we present the through-cell current density predicted
by the 1+1D DFN as a function of z∗ and discharge capacity. As dis-
cussed in our description of the particle surface concentration variation,
we observe that the current preferentially travels through the top of the
cell except at particular times where particle concentrations are such
that the through-cell resistance makes it preferential for the current
to flow more uniformly through the cell (at 0.35 A h) and through the
bottom of the cell (at the end of discharge). In Figure 4.10(b), shows
the through-cell current density as a function of z at 0.17 A h through
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Figure 4.10: Comparison of the through-cell current: (a) Through-cell current
predicted by the 1+1D DFN; (b) Snapshot at 0.17 [A h]; (c) Max-
imum (over z∗) absolute error at each time in the discharge; (d)
Maximum (over the entire discharge) absolute error at each z∗

location.
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the discharge. We observe that the average current (as predicted by
the “CC” and 1D models) provides a good first approximation of the
through-cell current density which is reasonably uniform (only varying
by about 0.04 A m−2). However, the 1+1D SPM and 1+1D SPMe both
provide an improved estimate of the spatial variation in the through-
cell current density, and can give an order of magnitude decrease in
the error, as demonstrated in Figures 4.10(c) and (d). In applications
where accurately resolving the current distribution is a key objective
and the computational budget is limited, the 1+1D SPMe is the best
choice in terms of offering good accuracy at low computational costs.

4.9.4 Comparison of negative potentials

In Figure 4.11(a), we present the potential in the negative electrode
at the point 0.17 A h in the discharge (we display this instead of the
current collector potential through time because the current collector
potential is approximately constant throughout a 1 C discharge). In
the upper left corner of the electrode, next to the tab, the potential
takes values close to the reference value of zero. However, as we move
through the cell in the x-direction or down the current collector in the
z-direction we observe a drop in the potential. In particular, a greater
potential drop is observed in the current collector direction and so
current collector Ohmic losses are of greater importance than through-
cell electrode Ohmic losses. In Figures 4.11(b), (c), and (d), we compare
the negative current collector potential at 0.17 A h as predicted by the
1+1D and “CC” models. Note that the 1D models predict that the
potential will simply take on the reference value of 0 everywhere in the
current collector. We observe excellent agreement between all models.

4.9.5 Summary of isothermal comparison

In this section, we have provided a critical comparison of some of the
key outputs predicted by the 1+1D DFN model and the reduced-order
models introduced in this paper. In the interest of brevity, we have only
presented detailed results for a limited set of variables, but results for
other key variables are provided in Table 4.6 for reference.

The key result is that in the isothermal case, choosing a reduced-
order model that simplifies the z-direction behaviour (e.g. the DFNCC)
instead of the x-direction behaviour (e.g. 1+1D SPMe) provides a better
allocation of computational resources. Only in situations where the
z-direction variation in variables such as the surface concentrations and
through-cell current are essential should simplifications to the through-
cell model be made in favour of simplifications to the transverse model.
In such situations, the 1+1D SPMe typically provides a good balance of
accuracy and computational cost.
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Figure 4.11: Comparison of negative potentials: (a) Snapshot at 0.17 [A.h] of
the negative electrode potential predicted by the 1+1D DFN; (b)
Snapshot of the negative current collector potential at 0.17[A.h];
(c) Maximum (over z∗) absolute error in the negative current
collector potential at each time in the discharge; (d) Maximum
(over the entire discharge) absolute error in the negative current
collector potential at each z∗ location. The results of the DFNCC,
SPMeCC, and SPMCC are all represented by CC.



116
A

S
Y

M
P

T
O

T
IC

R
E

D
U

C
T

IO
N

O
F

A
P

O
U

C
H

C
E

L
L

M
O

D
E

L

Variable Units Typical values 1+1D SPMe 1+1D SPM DFNCC SPMeCC SPMCC DFN SPMe SPM

V ∗ V 3.4 – 3.8 3.25× 10−3 2.04× 10−2 1.29× 10−4 3.29× 10−3 2.05× 10−2 2.70× 10−4 3.33× 10−3 2.06× 10−2

φ∗s, cn V −1.5× 10−4 – 0 1.44× 10−8 3.30× 10−8 6.75× 10−8 6.75× 10−8 6.75× 10−8 1.11× 10−4 1.11× 10−4 1.11× 10−4

φ∗s,n V −1.7× 10−4 – 0 2.03× 10−6 1.53× 10−5 7.79× 10−8 2.00× 10−6 1.53× 10−5 1.11× 10−4 1.11× 10−4 1.24× 10−4

φ∗e,k V −0.26 – −0.17 2.03× 10−3 1.20× 10−2 3.81× 10−5 2.03× 10−3 1.20× 10−2 1.04× 10−4 2.07× 10−3 1.20× 10−2

φ∗s,p V 3.4 – 3.8 3.25× 10−3 2.02× 10−2 1.14× 10−4 3.25× 10−3 2.02× 10−2 1.22× 10−4 3.28× 10−3 2.03× 10−2

φ∗s,cp V 3.4 – 3.8 3.25× 10−3 2.04× 10−2 7.55× 10−5 3.27× 10−3 2.04× 10−2 1.22× 10−4 3.28× 10−3 2.05× 10−2

I∗ A m−2 23.7 – 24.1 6.11× 10−3 1.40× 10−2 2.87× 10−2 2.87× 10−2 2.87× 10−2 2.87× 10−2 2.87× 10−2 2.87× 10−2

c∗s,n

∣∣
r∗=R∗

n
mol m−3 4804 – 19404 9.28× 102 9.28× 102 6.77 9.28× 102 9.28× 102 6.77 9.28× 102 9.28× 102

c∗s,p

∣∣
r∗=R∗

p
mol m−3 31506 – 48316 4.14× 102 4.14× 102 7.33 4.14× 102 4.14× 102 7.33 4.14× 102 4.14× 102

c∗e,k mol m−3 800 – 1200 1.08× 101 1.14× 102 1.41× 10−1 1.08× 101 1.14× 102 1.41× 10−1 1.08× 101 1.14× 102

i∗e,k A m−2 0.9 – 24 1.65 1.65 2.11× 10−2 1.65 1.65 2.11× 10−2 1.65 1.65

j∗k A m−2 −2.3 – 2.6 3.06× 10−1 3.06× 10−1 2.54× 10−3 3.06× 10−1 3.06× 10−1 2.54× 10−3 3.06× 10−1 3.06× 10−1

η∗n V 0.0014 – 0.008 1.30× 10−3 1.34× 10−3 1.01× 10−5 1.30× 10−3 1.34× 10−3 1.01× 10−5 1.30× 10−3 1.34× 10−3

η∗p V −0.12 – −0.06 4.20× 10−3 4.80× 10−3 7.14× 10−5 4.20× 10−3 4.80× 10−3 7.14× 10−5 4.20× 10−3 4.80× 10−3

Table 4.6: RMS errors of key model variables in each of the reduced-order models vs. the 1+1D DFN for a 1 C constant-current discharge.
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4.10 C R I T I C A L C O M PA R I S O N O F T H E R M A L M O D E L S

We now compare the thermal versions of the models under the condi-
tions of a 3 C discharge and tab cooling. Tab cooling is simulated by
applying

λ∗eff∇
∗T ∗ · n = −h∗tab(T ∗ − T ∗∞) (4.69)

on the tabs and

λ∗eff∇
∗T ∗ · n = 0 (4.70)

on all other boundaries. For this comparison, both tabs are placed
at the top of the cell and the value of h∗tab is set to 1000 W m−2 K−1 so
that a temperature variation on the order of a few degrees Kelvin is
observed across the cell; this is in accordance with experimental results
[32]. This approach was taken as a simple way to induce a variation
in the temperature in the z∗-direction that is similar to the variation
seen in experiments. However, a proper treatment of tab cooling would
involve a more complete model of the tabs which are a major heat
transfer bottleneck [32].

In Figure 4.12, we display the volume-averaged temperature pre-
dicted by each model. By referring to the performance of the 0D trans-
verse model, we observe that it is important to account for transverse
effects in order to accurately predict the temperature during tab cool-
ing. This is because using the average temperature in (4.69) leads to
a higher rate of cooling. In Figure 4.12, we also observe that models
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Figure 4.12: Comparison of the volume-averaged cell temperature: (a) pre-
dicted volume-averaged cell temperature; (b) absolute error be-
tween reduced model and 1+1D DFN.
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with an SPM through-cell model perform poorly. This is because they
neglect the Ohmic heating in the electrolyte.

The DFN, SPMe, and SPM employ a lumped thermal model with
cooling proportional to the difference between the average temperature
and the ambient temperature. Since the actual temperature at the tab
is lower than the average temperature, these models overpredict the
cooling rate, giving a lower volume-averaged cell temperature, as
observed in Figure 4.12.

In Figure 4.13, we present the temperature as a function of space
and time throughout the discharge. Again we observe that the DFNCC
best predicts the temperature profile of the 1+1D DFN, and the greatest
error is introduced by using the SPM. Note that the error for the 1+1D
and “CC” models is similar, which suggest using a simpler transverse
model (that still retains some z∗-dependence).
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Figure 4.13: Comparison of temperature profiles: (a) x-averaged cell temper-
ature variation through time predicted by the 1+1D DFN; (b)
x-averaged cell temperature at 0.17 [A h]; (c) Maximum (over z∗)
absolute error at each time in the discharge; (d) Maximum (over
the entire discharge) absolute error at each z∗ location.
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In Figure 4.14, we break the volume-averaged heating into its com-
ponents to help diagnose where errors in the various reduced models
arise. We observe that across all forms of heating, the DFNCC is almost
indistinguishable from the results of the 1+1D DFN. Whilst one might
initially think that the DFN should produce the same irreversible and
reversible reaction heating as the DFNCC, this is not the case because
the temperature predicted by the DFN is lower, as mentioned in the
discussion of Figure 4.12. The temperature dependence of the elec-
trochemical reactions then means that the 1D DFN overpredicts the
reaction heating. The SPMeCC and 1+1D SPMe both capture the gen-
eral behaviour of the Ohmic and irreversible reaction heating, however,
they fail to capture the fluctuations in this general behaviour, partic-
ularly in the Ohmic heating. This is a result of failing to capture the
though-cell variations in the reaction overpotentials, as well as the vari-
ations in the electrolyte potentials. Despite this, both the SPMeCC and
1+1D SPMe perform reasonably well at recovering the total heating.
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Figure 4.14: Comparison of volume-averaged cell heating: (a) total heating; (b)
Ohmic heating; (c) reaction (irreversible) heating; (d) irreversible
heating.
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The main failing of the SPM and 1+1D SPM is that neither accounts for
any though-cell Ohmic heating, with the 1+1D SPM only accounting
for current collector Ohmic heating. As a result, these models signifi-
cantly underpredict cell heating. Therefore it is recommended that a
more complicated through-cell model than the SPM is used for thermal
studies.

In Figure 4.15 (a), we present the total heating predicted by the 1+1D
DFN as a function of z∗ and the discharge time. Initially, the cell heats
near the top, but as the discharge proceeds heating mainly occurs near
the bottom of the cell. This may seem in contrast to what we would
expect given the isothermal current profiles in Figure 4.10. However,
as shown in Figure 4.16, the current profile can be very different for
the tab cooling scenario considered here. We now see that the current
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Figure 4.15: Comparison of x∗-averaged total heating, Q̄∗: (a) The variation in
the heat generation profile throughout the discharge predicted by
the 1+1D DFN; (b) x∗-averaged heat generation at 0.17[A.h]; (c)
Maximum (over z∗) absolute error at each time in the discharge;
(d) Maximum (over the entire discharge) absolute error at each
z∗ location.
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now preferentially travels through the bottom of the cell for most of the
discharge, and the increased current leads to increased heating. This
is an effect of the temperature dependence of the parameters in the
through-cell models and as a results higher temperature leads to lower
through-cell resistance. In Figures 4.15 (b), (c), and (d), we compare the
heat generation predicted by each reduced order model with that of
the 1+1D DFN. We observe that all reduced models give rise to around
a 10% error in the total heating.
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Figure 4.16: Current distribution during the discharge of a tab-cooled cell.

4.10.1 Drive cycle comparison

The constant current discharges that we have investigated throughout
this chapter are useful for comparing models. However, they are not
fully representative of a realistic usage scenario. To give an example of
how the models perform under more realistic conditions, we compare
the performance of each model on a portion of the US06 drive cycle.
Here, we just consider the measured terminal voltage and the average
temperature of the cell, as shown in Figure 4.17. We observe that similar
to our previous results, the main errors are introduced by making
simplifications to the through-cell electrochemical model. Therefore
to most accurately capture the temperature rises, computational effort
should be placed upon using a more detailed through-cell model like
the DFN with a CC or 0D transverse model, rather than in using a
detailed 1+1D transverse model and a simplified through-cell model
like the SPM.



122 A S Y M P T O T I C R E D U C T I O N O F A P O U C H C E L L M O D E L

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [min]

3.5
3.7
3.9
4.1

V
∗

[V
]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [min]

10−8

10−3

A
bs

ol
ut

e
er

ro
r

[V
]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [min]

−6
−3

0
3
6

I
∗ ap

p
[A

]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [min]

298

300

302

〈T̄
∗ 〉

[K
]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [min]

10−5

10−1

A
bs

ol
ut

e
er

ro
r

[K
]

1+1D DFN
DFNCC
DFN

1+1D SPMe
SPMeCC
SPMe

1+1D SPM
SPMCC
SPM
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4.11 C O M PA R I S O N S U M M A R Y

In the previous sections, we have provided a detailed comparison
of the nine models in Figure 4.7. In Table 4.7, we have condensed
this information into a concise format. Whilst the recommendations
presented in Table 4.7 are informed by the quantitative performance of
the models in each of the comparisons in the previous sections, they
are to some degree qualitative in nature.

The first two columns in the table correspond to the solve time and
the number of states required to solve that model. The solve times
should only be considered relative to one another, as one could achieve
speedups by employing different numerical methods or hardware. Sim-
ilarly, the number of states should only be considered as representative
of the spatial complexity of each model as different discretisation meth-
ods lead to a different number of states. Solve times in green are on the
order of 10ms, orange on the order of 100ms, and red on the order of
1000ms, so that a green model is approximately 100 times faster than a
red model. We similarly colour the states of each model so that a red
model requires around 10 times more memory than an orange model
and around 100 times more memory than a green model.

The second set of columns summarises the ability of each model
to accurately predict key output variables during a 1 C discharge: the
current distribution, I∗; the negative current collector potential, φ∗s,cn;
the x-averaged negative particle surface concentration, c̄∗s,n; and the
average cell temperature, 〈T̄ ∗〉. We adopt a traffic light system for each
of these variables as described in Table 4.8. The system is designed
to divide the predictions of each variable into three categories, where
green is most accurate and red is least accurate. This is done with
reference to the results presented throughout this chapter. Generally,
moving from one colour to the next represents an order of magnitude
difference in error, but this wasn’t always the most appropriate division
and we refer the reader to Table 4.8 for precise details. To be clear, red
does not indicate that the model should not be used, but that this model
is less accurate than the other models. Since we refer to the 1+1D DFN
model for calculation of errors in models, the 1+1D DFN is always
coloured green.

The third set of columns considers the ability of each model to pre-
dict the terminal voltage under low current, medium current, and high
current conditions. We again adopt a traffic light system where a maxi-
mum absolute error of < 1× 10−3 V is coloured green, < 1× 10−1 V is
coloured orange, and < 1 V is coloured red. For this column, we have
used the data in Figure 4.8(c). Again, since we refer to the 1+1D DFN
model for the calculation of model errors, the 1+1D DFN is always
coloured green.
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Model Solve time [ms] States
1 C 3 C V ∗

I∗ φ∗s,cn c̄∗s,n 〈T̄ ∗〉 I∗app < 1 C 1 C < I∗app < 4 C I∗app > 4C

1+1D DFN 8377 49561

1+1D SPMe 1519 3961

1+1D SPM 102 1261

DFNCC 248 1651

SPMeCC 10 131

SPMCC 5 41

DFN 248 1651

SPMe 10 131

SPM 5 41

Table 4.7: Qualitative evaluation of the suite of reduced-order models. In the variables, we employed the traffic light system described in Table 4.8. For the
final set of columns (current dependence), we make use of the results in Figure 4.8(c) with the following traffic light system for the maximum
absolute errors: < 1× 10−3 V (green), < 1× 10−1 V (orange), < 1 V (red).
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V ∗ [V] I∗ [A m−2] φ∗s,cn [V] c̄∗s,n [mol m−3] 〈T̄ 〉∗ [K]

< 10−3 < 5× 10−2 < 10−7 < 5 < 10−1

< 10−1 < 10−1 < 10−6 < 10 < 1

< 1 < 1 < 10−3 < 100 < 10

Table 4.8: Traffic light system key. The numbers refer to ranges in the absolute
errors obtained for a 1 C discharge (3 C for temperature). For the
variables, V ∗, I∗, φ∗s,cn, and c̄∗s,n these errors refer to the isothermal
case. For the variable 〈T̄ ∗〉, the errors refer to the thermal case.

We now interpret the summary presented in Table 4.7. Firstly, by
employing the 1+1D SPMe instead of the 1+1D DFN, we can achieve
similar performance in terms of predicting the current, current collector
potential, and y∗-z∗ concentration variation while reducing memory
requirements by an order of magnitude. This is achieved at the expense
of a slight reduction in accuracy of the terminal voltage prediction
and average cell temperature. The model is most appropriate in the
low to medium C-rate range. Employing the 1+1D SPM sees a similar
reduction in memory requirements, but with an additional reduction
in solve time by an order of magnitude. However, this is achieved at
the expense of less accurate predictions of all of the variables as well as
being limited to low C-rates.

The DFNCC offers a reduction in both solve time and memory re-
quirements by an order of magnitude without loss of accuracy in both
the terminal voltage and average cell temperature. Further, there is
only a small reduction in accuracy of the current collector potential.
However, it achieves this reduction in solve time and memory require-
ments at the expense of accuracy in the estimates of the through-cell
current density, and x∗-averaged negative particle concentration. The
DFNCC recovers the terminal voltage well across the range of C-rates
we investigated. The SPMeCC drops the solve time and memory re-
quirements by a further order of magnitude relative to the DFNCC. To
achieve this, a small amount of accuracy is sacrificed in the terminal
voltage and average temperature estimates. Additionally, the SPMeCC
is limited to low and medium C-rates. The solve time and memory
requirements of the SPMCC are similar to that of the SPMeCC, but the
predictions of the voltage and average temperature are less accurate.
Further, the SPMCC is limited to low C-rates.

The DFN, SPMe, and SPM all offer orders of magnitude reductions
in solve time and memory requirements compared to the models that
account for current collector effects, but all do so at the expense of accu-
racy in the predictions of through-cell current density, current collector
potential, x∗-averaged concentration, and average temperature. How-
ever, the DFN can accurately predict the terminal voltage, and recovers
the terminal voltage well across the full range of C-rates we considered.
The SPMe performed moderately at recovering the terminal voltage
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at low to medium C-rates. The SPM was the worst performing model
across all variables, and is best applied at low C-rates.

Table 4.7 highlights the trade-off that must be made between com-
putational complexity and accuracy. However, we see that through
the appropriate choice of a model, one can choose where accuracy is
sacrificed in favour of reduced complexity. For example, in a study
of spatially dependant degradation within a lithium-ion pouch cell, it
makes more sense to employ the 1+1D SPMe or the 1+1D SPM instead
of the DFN or DFNCC, because they retain greater accuracy in the
y∗-z∗-dependent variables for a similar computational budget. Alterna-
tively, in pack or module level simulations where one is only interested
in the average temperature and voltage outputs of a cell, the DFNCC
or the SPMeCC is more appropriate. Further, where computational
constraints are really strict such as in model-based control, simple
models such as the SPM and SPMe are most appropriate (the SPMCC
and the SPMeCC could also be used in a limited form). In applying
these simple models, it is important to understand their limitations so
that they can be used appropriately. As a general rule, if integrated
quantities, such as the terminal voltage, are important then the most
detailed through-cell model that the budget can afford should be used.
On the other hand, if capturing variations in the transverse directions
is important then a 1+1D model is an appropriate choice.

4.12 S U M M A R Y

In this chapter, we have developed a full three-dimensional model of a
lithium-ion pouch cell inspired by the one-dimensional DFN model.
We then provided a systematic asymptotic derivation of the 2+1D DFN
battery model from the full 3D DFN model, identifying the key di-
mensionless parameters controlling the reduction. Our findings are in
agreement with other works that employ the 2+1D approach in an ad-
hoc fashion (e.g. [25], [38], [40], [42]). Moreover, we have shown that, in
a suitable parameter regime, the model can be simplified further to the
DFNCC comprising a single representative 1D model describing the
electrochemistry in the through-cell direction with an uncoupled two-
dimensional problem to solve for the distribution of potential in the
current collectors, from which resistances and heat generation can be
determined. This latter approximation reduces the model from pseudo-
four-dimensional to pseudo-two-dimensional, dramatically reducing
the computational cost. By identifying the parameters which control
the asymptotic reduction our analysis highlights the parameter regimes
in which the 2+1D DFN and DFNCC models are appropriate, and quan-
tifies the error a priori. This informs practical design choices for key
cell parameters (such as current collector thickness or tab placement)
in order that the cell discharge uniformly. Our systematic analysis also
makes clear that the simplifications are independent of the model used
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for the through-cell current so that they can be combined with other
through-cell asymptotic simplifications in a systematic and mathemati-
cally consistent way. This led us to develop a suite of reduced-order
pouch cell models which combined the limit taken in this chapter with
that taken in Chapter 3.

Through a series of comparisons, it was demonstrated that choosing
a reduced-order model depends on the variables of interest for a par-
ticular application. For instance, in many control or systems-level ap-
plications, one is only concerned with obtaining integrated quantities,
such as the terminal voltage and volume-averaged cell temperature. In
such cases, it is best to select the highest fidelity through-cell models
the computational budget allows, combined with a simpler transverse
model (e.g. the SPMeCC). However, if distributed (in y∗-z∗) quantities
are of interest, such as in trying to model non-uniform degradation,
then it is necessary to choose a more complicated transverse model (e.g.
the 1+1D SPMe).

In contrast to the simplifications to the through-cell model that we
pursued here, more complicated through-cell models could also be
used by extending the DFN to include additional physics such as
degradation mechanisms, particle size distributions, non-spherical
particles, etc. The 2+1D DFN model provides a framework into which
such additional physical effects can be straightforwardly incorporated.
This provides a computationally efficient way of investigating how
non-uniform cell use affects degradation, for example, and helps to
rapidly assess new cell designs that aim to mitigate non-uniform ageing
of cells.
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5.1 I N T R O D U C T I O N

Whilst a large number of degradation mechanisms occur within lithium-
ion batteries (see [10]), we focus our attention on the growth of the
solid–electrolyte interphase (SEI) [7], [83], [94]. The SEI is a layer that
forms on the surface of the negative electrode particles as a result
of parasitic side reactions which consume lithium ions and solvent
molecules from the electrolyte [7], [59], [81], [83], [94]. Experiments
indicate that the SEI grows quickly during the first few cycles of a
lithium-ion cell and slowly thereafter [15], [82]. Being able to predict
the long-term growth rate of the SEI is of particular commercial in-
terest because degradation occurs on the timescale of years and is
highly cell dependent, rendering direct experiment infeasible and rais-
ing questions around extrapolation for data-driven approaches, such
as machine learning. Therefore, we develop physics-based models of
the SEI focused on capturing the long-term growth rate.

Physics-based SEI models broadly fall into one of three categories: de-
tailed first principles density functional theory (DFT) models, continuum-
level models, and zero-dimensional growth models. DFT models are
used to provide key insights into the important properties of the SEI
such as the diffusion coefficients of particular species [8], [79], and
the chemical composition of the SEI [46]. However, these models are
computationally expensive and are not appropriate for application in
cell level simulations. On the other hand, zero-dimensional growth
models, neglect most of the complexity of the SEI and instead model
a single ‘limiting’ mechanism (e.g. diffusion of a single species). The
goal of these zero-dimensional models is to capture the key long-term
SEI growth behaviour whilst remaining sufficiently computationally
simple to be incorporated into a full battery model such as (2.32)-(2.36).
Continuum-level models offer a bridge between some of the complexity
of DFT models and the simplicity of the zero-dimensional SEI model.
We develop a detailed continuum model of the SEI that is informed
by results from DFT models and then employ asymptotic methods to
systematically simplify this model and develop a set of reduced-order
models with the complexity of the zero-dimensional growth models.
We will then adopt one of these reduced models and re-write it in terms
of measurable electrochemical quantities. Upon doing this we validate
this reduced model by comparing it with experimental capacity fade
data. Finally, we integrate this validated SEI model into a simple full

129
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cell model of a lithium-ion battery to study the impact dynamic loads
have on the rate of SEI growth.

5.2 O V E RV I E W O F T H E S E I

The SEI is generally considered to consist of two layers of differing com-
position: a porous outer layer of organic materials (e.g (CH2OCO2Li)2)
and a dense inner layer of inorganic materials (e.g. Li2CO3) [4], [5], [93].
There is some debate over the typical thicknesses of each layer. A recent
study of a 20 nm thick SEI has reported the porous outer layer to be
5 nm thick with the majority of the SEI being dense and impermeable
to the electrolyte [45]. However, it has also been reported that the outer
layer can be up to 100 nm thick with the inner layer a few nanometers
thick [3]. This discrepancy is likely a result of the high dependency
of the SEI on the particular chemistry of a cell. Several fundamental
studies on the structure, composition, and other key features of the SEI
have been conducted — reviews of which can be found in [4], [93], [97].

Figure 5.1: Schematic of the SEI and associated electrochemical reactions:
(a) lithium intercalation reaction path (during charging); (b) SEI
growth reaction path.

A schematic of the inner an outer layer structure of the SEI is pre-
sented in Figure 5.1. There are two main sets of processes that occurs
through the SEI. The first set of processes, depicted in Figure 5.1 (a),
is associated with lithium intercalation and consists of lithium ions
being transferred from the electrolyte into the inner SEI and then to
the electrode where they combine with an electron to form intercalated
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lithium (and vice versa). The second set of processes is associated with
SEI growth and is depicted in Figure 5.1 (b). This consists of electrons
jumping from the electrode into the inner SEI and then combining with
a lithium ion and solvent molecule at the interface between the inner
and outer SEI to form fresh SEI.

5.3 L I T E R AT U R E R E V I E W

All of the zero-dimensional SEI growth models that we are aware of
choose to model one or two components of the processes involved in
the growth of SEI depicted in Figure 5.1(b) and neglect the effects that
the intercalation process, as presented in Figure 5.1(a), may have on
the growth rate. The common zero-dimensional SEI growth models
fall into the following categories: solvent-diffusion-limited growth [66],
electron-migration-limited growth [19], [59], reaction-limited growth
[44], [69], and solvent diffusion with reactions [63]. Other authors have
considered alternative methods of transport for electrons through the
inner SEI in the form of: electron tunnelling [43], or being carried by
neutral lithium atom interstitials [82]. Two review papers compare each
of these zero-dimensional growth models with SEI growth experiments
[82], [87]. Both conclude that solvent diffusion through the outer SEI,
reactions, and electron tunnelling are unlikely to be the rate-limiting
mechanism in the long-term growth of SEI. Solvent diffusion is elimi-
nated because it does not predict the experimentally observed potential
dependence of the SEI growth rate. The reaction-limited and electron-
tunnelling cases are eliminated because they do not predict the t1/2

growth rate that is observed experimentally. In [82], the authors con-
sider electron transport via neutral lithium atom interstitials to be the
most likely candidate for the rate-limiting mechanism but the authors
also note in a previous paper that interstitial concentrations found from
DFT results are insufficient to drive SEI formation at reasonable rates
[81]. In [87], the authors conclude that no current zero-dimensional
growth model is fully consistent with their experimental results. They
eliminate the electron-migration-limited growth model based upon an
experiment which increased the flow of electrolyte to the surface upon
which SEI was being created. In doing this, they observed an increase
in the growth rate of SEI which they believe could only be explained
if the rate-limiting species was contained within the electrolyte. They
hypothesise that a charged solvent species could explain their results.

There are only a hand-full of continuum-level studies of SEI growth.
In [81], a continuum model of the SEI is developed which treats the SEI
as a porous structure within through which electrons are transported.
Electrolyte floods the pores of this structure allowing lithium ions and
solvent molecules to be transported within the SEI. An SEI formation re-
action is assumed to occur throughout the SEI and decrease the porosity
where it occurs. From their full model, they derive zero-dimensional
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models for the SEI growth rate for the cases of electron-migration-
limited growth and solvent-diffusion-limited growth. For the electron
migration limited growth case, their SEI model predicts the presence of
a single dense layer, which we recognise as the inner SEI. In contrast,
the solvent-diffusion-limited growth case predicts the presence of a
single porous layer, which we recognise as the outer SEI. By consider-
ing the dependence of these two expressions upon the porosity and
tortuosity of the SEI, [81] conclude that solvent diffusion is unlikely to
be the rate-limiting mechanism. Instead, transport through the inner
SEI is considered the key mechanism to study to determine the long
term growth rate.

Whilst the continuum model developed in [81] accounts for electron
transport within the inner SEI, the transport of lithium ions is neglected.
Therefore, the reduced-order expressions developed in [81] neglects
the interactions between these species without justification. This may
help explain some of the inconsistencies that are observed between
zero-dimensional growth models and experimental results. In both [18]
and [20] detailed continuum models of the inner SEI that account for
the transport of electrons, vacancies and lithium ion interstitials are
developed. However, these models are significantly more computation-
ally expensive than the zero-dimensional growth models and therefore
their application in full cell and multi-cell simulations is limited. In
our work, we develop a detailed model of the inner SEI that accounts
for the interactions between the key species in the layer and then used
asymptotic methods to derive simplified expressions for the growth of
the inner SEI.

5.4 M AT H E M AT I C A L M O D E L O F T H E I N N E R S E I

In this section, we develop a mathematical model of the growth of the
inner SEI by considering a detailed description of electron and lithium
ion interstitial transport within a layer of pure Li2CO3 coupled to elec-
trochemical reactions at the surfaces. Our model takes inspiration from
[18], in which electroneutrality is enforced by balancing the concentra-
tions of lithium-ion interstitials and lattice vacancies. In [80], density
functional theory calculations were performed for Li2CO3 and it was
found that the concentrations of electrons and lithium-ion interstitials
are orders of magnitude greater than those of other species for the
typical potential drops seen across the surface of the negative electrode
particle ∼0.2 V. Therefore, we have chosen to enforce electroneutral-
ity by instead balancing the concentrations of lithium ion interstitials
and electrons. We note in passing that electroneutrality may not hold
in a significant portion of the SEI as the Debye length is ∼2.4 nm for
10−3 M of lithium ion interstitials and electrons and the SEI itself has a
thickness of ∼10–100 nm [18].
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5.4.1 Transport model

We consider the transport of two species within the inner SEI: nega-
tively charged electrons and positively charged lithium ion interstitials.
We model the two species using the Nernst–Plank theory of electrolytes
introduced in §2.4.2, where the electrons take up the role of the anionic
species. That is, we assume that each species is driven down concentra-
tion gradients according to Fick’s law and by gradients in the electric
potential. Therefore, the fluxes of lithium ion interstitials and electrons
are

N∗+σ = −D∗+σ

(
∂c∗σ
∂ξ∗

+
F ∗

R∗gT
∗ c
∗
σ

∂φ∗σ
∂ξ∗

)
, (5.1a)

N∗−σ = −D∗−σ

(
∂c∗σ
∂ξ∗
− F ∗

R∗gT
∗ c
∗
σ

∂φ∗σ
∂ξ∗

)
, (5.1b)

respectively. Here, D∗+σ , D∗−σ are the (constant) diffusivities of lithium
ion interstitials and electrons, c∗σ is the concentration of both lithium ion
interstitials and electrons (set equal by our assumption of electroneu-
trality), ξ∗ ∈ [0, L∗σ] is the spatial coordinate within the inner SEI (where
L∗σ is the thickness of the SEI), F ∗ is Faraday’s constant, R∗g is the gas
constant, T ∗ is temperature, and φ∗σ is the electric potential in the SEI.
For this section, we choose to work with the fluxes of the individual
species instead of the current and an effective flux as in §2.31.

5.4.2 Electrochemical reactions

On the surfaces of the inner SEI layer, electrochemical reactions take
place which are dependent upon the concentrations, and potential
differences across the surfaces. The first set of reactions are the lithium
intercalation reactions that we are familiar with from earlier chapters.
On the graphite–SEI interface, lithium intercalated in the graphite
electrode can form a lithium ion interstitial in the SEI and an electron
in the negative electrode and vice versa. Therefore, we have

Lin � Li+σ + e−n ,

where, Lin represents lithium in the graphite particle, e−n represents the
electrons in the graphite particle, Li+σ represents lithium ion interstitials
in the SEI. We capture this reaction mathematically by considering the
forward and backward reactions to obtain

j∗+n,σ =m∗+n,σc
∗
s,n exp

(
F ∗

2R∗gT
∗
∞

(φ∗s,n − φ∗σ)

)
−m∗+σ,n(c∗s,n,max − c∗s,n)c∗σ exp

(
− F ∗

2R∗gT
∗
∞

(φ∗s,n − φ∗σ)

) ∣∣∣∣
ξ∗=0

,

(5.2)
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where j∗+n,σ is the interfacial current density of the intercalation reac-
tion at the graphite–SEI interface, and m∗+n,σ and m∗+σ,n are the forward
and backward reaction constants, respectively. Here, c∗s,n is the lithium
concentration in the graphite, c∗s,n,max is the maximum lithium concen-
tration in graphite, and φ∗s,n is the negative electrode potential.

On the SEI–electrolyte surface (we will neglect the outer SEI for
simplicity), lithium ion interstitials can become lithium ions in the
electrolyte and vice versa. Therefore, we have

Li+σ � Li+e ,

where Li+e represents lithium ions in the electrolyte. We represent this
reaction mathematically using

j∗+σ,e =m∗+σ,ec
∗
σ exp

(
F ∗

2R∗gT
∗
∞

(φ∗σ − φ̂∗e,n)

)
−m∗+e,σc

∗
e,n exp

(
− F ∗

2R∗gT
∗
∞

(φ∗σ − φ̂∗e,n)

) ∣∣∣∣
ξ∗=L∗σ(t∗)

,

(5.3)

where j∗+σ,e is the interfacial current density of the lithium ion reaction at
the SEI–electrolyte interface, and m∗+σ,e and m∗+e,σ,n are the forward and
backward reaction constants, respectively. Here, c∗e,n is the lithium ion
concentration in the electrolyte and φ̂∗e,n is the true electrolyte potential
(not the electrochemical potential, see §2.4.1).

In addition to the lithium intercalation reactions, there is also a reac-
tion on the graphite–SEI surface that transfers electrons between then
graphite and the SEI, given by

e−n � e−σ ,

where en represents electrons in the graphite and e−σ represents elec-
trons in the SEI. This reaction is captured by

j∗−n,σ =−m∗−n,σ exp

(
− F ∗

2R∗gT
∗
∞

(φ∗s,n − φ∗σ)

)
+m∗−σ,nc

∗
σ exp

(
F ∗

2R∗gT
∗
∞

(φ∗s,n − φ∗σ)

) ∣∣∣∣
ξ∗=0

,

(5.4)

where j∗−n,σ is the interfacial current density of the electron transfer reac-
tion at the graphite–SEI interface, and m∗−n,σ and m∗−σ,n are the forward
and backward reaction constants, respectively. Note that the forward
reaction is negative and the backward is positive in this expression
because electrons are negatively charged.

Finally, on the SEI–electrolyte surface, the SEI formation reaction
takes place. The reaction consumes a lithium ion from the electrolyte, a
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solvent molecule from the electrolyte, and an electron from the SEI to
create pure Li2CO3, written as

Li+e + ECe + e−σ → Li2CO3

where Li+e represents lithium ions in the electrolyte, ECe represents
ethylene carbonate (an example of a solvent) in the electrolyte, and
e−σ represents electrons in the SEI. Here, we only consider the forward
reaction, thus we have

j∗−σ,e = −m∗−σ,ec
∗
e,nc
∗
solc
∗
σ exp

(
− F ∗

2R∗gT
∗
∞

(φ∗σ − φ̂∗e,n)

) ∣∣∣∣
ξ∗=L∗σ

, (5.5)

where j∗−σ,e is the interfacial current density of the SEI formation reaction,
m∗−e,σ is the reaction rate constant, and c∗sol is the concentration of solvent
in the electrolyte. Note that this reaction induces a negative interfacial
current density because negatively charged electrons flow into the
reaction from the SEI (we have been using the convention that a positive
current corresponds to the flow of positive charge from the negative
electrode, through the SEI and electrolyte, and towards the positive
electrode).

5.4.3 Full model

Using the expressions for the fluxes and electrochemical reactions given
by (5.1)-(5.5), we formulate the SEI growth model. Within the SEI, we
have conservation of both lithium ion interstitials and electrons, which
gives

∂c∗σ
∂t∗

= −∂N
∗+
σ

∂ξ∗
(5.6a)

∂c∗σ
∂t∗

= −∂N
∗−
σ

∂ξ∗
. (5.6b)

We take the initial concentration of lithium ion interstitials and electrons
to be given by

c∗σ
∣∣
t∗=0

= c∗σ,0 (5.6c)

where c∗σ,0 is a constant. On the graphite–SEI interface the flux of
lithium into the SEI is given by

N∗+σ
∣∣
ξ∗=0

=
j∗+n,σ

F ∗
, (5.6d)

and the flux of electrons into the SEI is given by

N∗−σ
∣∣
ξ∗=0

= −
j∗−n,σ

F ∗
, (5.6e)
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where the minus sign accounts for the negative charge of the electrons
in the conversion of the interfacial current density into a molar flux.

On the SEI–electrolyte boundary, we need to account for the effect of
the moving boundary. Within newly created SEI, there may be some
concentration of lithium ion interstitials and electrons present. In gen-
eral, this could depend upon the potential at which a reaction occurs,
the concentrations of particular reaction products, and thermal effects.
However, for simplicity, we shall assume that the concentration in fresh
SEI is zero. Other concentrations could be considered but these must
be chosen carefully to avoid issues with the conservation of mass. We
shall see shortly that making this assumption of zero concentration in
fresh SEI does not affect our results. Under this assumption, within in
a small region [L∗σ(t∗) −∆ξ∗, L∗σ(t∗)] of constant concentration, there
will be a loss of

dL∗σ
dt∗

c∗σ|∗ξ∗=L∗σ(t∗)

moles per metre squared per second from the region due only to the
movement of the region (from the growth of the SEI). Accounting for
this in the flux of lithium out of the SEI at the SEI–electrolyte interface,
we have

N∗+σ
∣∣
ξ∗=L∗σ

=
j∗+σ,e

F ∗
+

dL∗σ
dt∗

c∗σ|ξ∗=L∗σ(t∗). (5.6f)

Similarly, the flux of electrons out of the SEI at the SEI interface is given
by

N∗−σ
∣∣
ξ∗=L∗σ

= −
j∗−n,σ

F ∗
+

dL∗σ
dt∗

c∗σ|ξ∗=L∗σ(t∗), (5.6g)

where the minus sign in front of the reaction terms accounts for the
negative charge of the electrons.

Finally, the SEI grows at a rate proportional to the interfacial current
density of the SEI growth reaction and the partial molar volume of SEI,
V̄ ∗σ (a higher partial molar volume means each mole of SEI has greater
volume, leading to a greater increase in thickness). Therefore, we have

dL∗σ
dt∗

= −V̄ ∗σ
j∗−σ,e

F ∗
. (5.6h)

with the initial thickness of the SEI given by

L∗σ
∣∣
t∗=0

= 0. (5.6i)

The full set of dimensional parameters in this model is presented in
Tables 5.1, 5.2. We have reported parameter values where available.
However, one should be aware that many of these values are mearly
‘educated’ guesses from previous modelling papers.
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Parameter Units Description Value Reference

m∗+n,σ A m mol−1 Graphite–SEI intercalation forward
reaction rate

9.841× 104 [18]

m∗+σ,n A m4 mol−2 Graphite–SEI intercalation back-
ward reaction rate

1.03× 1010 [18]

m∗+σ,e A m mol−1 SEI–electrolyte lithium transfer for-
ward reaction rate

-

m∗−e,σ A m mol−1 SEI–electrolyte lithium transfer
backward reaction rate

-

m∗−n,σ A m−2 Graphite–SEI electron transfer for-
ward reaction rate

0.964 [18]

m∗−σ,n A m mol−1 Graphite–SEI electron transfer back-
ward reaction rate

9.64× 10−8 [18]

m∗−σ,e A m7 mol−3 SEI–electrolyte SEI formation reac-
tion rate

-

D∗+σ m2 s−1 Lithium ion interstitial diffusivity in
SEI

2× 10−14 [20]

D∗−σ m2 s−1 Electron diffusivity in SEI 5× 10−19 [20]

Table 5.1: Dimensional parameters in the SEI model (Part 1).
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Parameter Units Description Value Reference

V̄ ∗σ m3 mol−1 Partial molar volume of Li2CO3 3.5019× 10−5 [20]

c∗σ,0 mol m−3 Initial lithium ion interstitial and
electron concentration in SEI

10 [20]

L∗σ,typ nm Typical SEI thickness 10 [80]

c∗sol mol m−3 Electrolyte solvent concentration 4.5× 103 [81]

F ∗ C mol−1 Faraday’s constant 96487

R∗g J mol−1 K−1 Universal gas constant 8.314

T ∗∞ K Reference temperature 298.15

c∗s,n mol m−3 Negative electrode lithium concen-
tration

1.2491× 104 c∗s,n,max/2

c∗s,n,max mol m−3 Maximum negative electrode
lithium concentration

2.4983× 104 [51]

c∗e,n mol m−3 Negative electrolyte lithium ion con-
centration

1000 §3

φ∗s,n V Negative electrode potential 0 §3

φ̂∗e,n V Negative electrolyte potential -

Table 5.2: Dimensional parameters in the SEI model (Part 2).
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5.4.4 Nondimensionalisation

To facilitate our asymptotic analysis, we nondimensionalise the SEI
model by introducing typical scalings. The through-SEI position, ξ∗,
and the thickness of the SEI, L∗σ, are scaled with the typical thickness
of the SEI. We scale time with the SEI growth timescale, as stated
in Table 5.3. The concentration is scaled with the initial value and
the electric potential is scaled by the magnitude of the total potential
drop across the SEI layer. The flux of lithium ion intersitials is scaled
naturally by the diffusion flux and the interfacial current densities are
scaled similarly. Likewise, the electron flux and associated interfacial
current densities are scaled naturally with the electron diffusion. The
scalings are summarised as

ξ∗ = L∗s,typξ, L∗σ = L∗σ,typLσ, t∗ = τ∗growt

c∗σ = c∗σ,0cσ, φ∗σ = |φ∗s,n − φ∗e,n|φσ + φ̂∗e,n,

N∗+σ =
D∗+σ c∗σ,0
L∗σ,typ

N+
σ , N∗−σ =

D∗−σ c∗σ,0
L∗σ,typ

N−σ ,

j∗+n,σ =
F ∗D∗+σ c∗σ,0
L∗σ,typ

j+
n,σ, j∗−n,σ =

F ∗D∗−σ c∗σ,0
L∗σ,typ

j−n,σ,

j∗+σ,e =
F ∗D∗+σ c∗σ,0
L∗σ,typ

j+
σ,e, j∗−σ,e =

F ∗D∗−σ c∗σ,0
L∗σ,typ

j−σ,e.

(5.7)

After making these scalings we identify a set of dimensionless parame-
ters in the model which are presented in Tables 5.4 and 5.2 alongside
their interpretation and derived values. We also present key timescales
for the model in Table 5.3.

Symbol Expression Interpretation Value (s)

τ∗grow (L∗σ,typ)2/(D∗−σ V̄ ∗σ c
∗
σ,0) SEI growth

timescale
5.711× 105

τ∗Li (L∗σ,typ)2/D∗+σ Lithium ion in-
terstitial diffusion
timescale

5× 10−3

τ∗e− (L∗σ,typ)2/D∗−σ Electron diffusion
timescale

200

Table 5.3: Timescales associated with the physical process in the SEI model.
The SEI growth time scale is chosen to be associated with the diffu-
sion timescale of electrons through the SEI as this is often reported
to be the rate-limiting mechanism and not the electrochemical re-
action. (Note we have omitted the reaction timescales from this
table).
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Parameter Expression Description Value

m+
n,σ m∗+n,σc

∗
s,nL

∗
σ,typ/(D

∗+
σ c∗σ,0F

∗) Ratio of interstitial diffusion timescale and graphite–SEI
intercalation forward reaction timescale

6.37× 108

m+
σ,n m∗+σ,n(c∗s,n,max − c∗s,n)L∗σ,typ/(D

∗+
σ F ∗) Ratio interstitial diffusion timescale and graphite–SEI inter-

calation backward reaction timescale
6.67× 1014

m+
σ,e m∗+σ,eL

∗
σ,typ/(D

∗+
σ F ∗) Ratio of interstitial diffusion timescale and SEI–electrolyte

lithium transfer forward reaction timescale
-

m+
e,σ m∗−e,σc

∗
e,nL

∗
σ,typ/(D

∗+
σ c∗σ,0F

∗) Ratio of interstitial diffusion timescale and SEI–electrolyte
lithium transfer backward reaction timescale

-

m−n,σ m−n,σL
∗
σ,typ/(D

∗−
σ c∗σ,0F

∗) Ratio of electron diffusion timescale and graphite–SEI elec-
tron transfer forward reaction timescale

1.99× 104

m−σ,n m−σ,nL
∗
σ,typ/(D

∗−
σ F ∗) Ratio of electron diffusion timescale and graphite–SEI elec-

tron transfer backward reaction timescale
1.99× 10−3

m∗−σ,e m−σ,ec
∗
e,nc
∗
solLσ,typ/(D

∗−
σ F ∗) Ratio of electron diffusion timescale and SEI–electrolyte SEI

formation reaction timescale
-

Table 5.4: Dimensionless parameters in SEI model (Part 1).
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Parameter Expression Description Value

CLi τ∗Li/τ
∗
grow Ratio of lithium interstitial and SEI growth timescales 8.75× 10−9

Ce− τ∗e−/τ
∗
grow Ratio of electron transport and SEI growth timescales 3.5× 10−4

λ F ∗|φs,n − φe,n|/(R∗gT∞) Ratio of magnitude of potential difference across SEI to the
thermal voltage

11.677

Φ sgn(φs,n − φe,n) Sign of potential difference across SEI 1, −1

Table 5.5: Dimensionless parameters in SEI model (Part 2).
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In the following we state the dimensionless version of the SEI model
(5.1a)-(5.6) which we arrive at after applying (5.7). The lithium ion
interstitials are governed by

CLi
∂cσ
∂t

= −∂N
+
σ

∂ξ
, N+

σ = −
(
∂cσ
∂ξ

+ λcσ
∂φσ
∂ξ

)
, (5.8a)

N+
σ

∣∣
ξ=0

= j+
n,σ, N+

σ

∣∣
ξ=Lσ

= j+
σ,e + CLi

dLσ
dt

cσ|ξ=Lσ(t), (5.8b)

with the associated electrochemical reactions given by

j+
n,σ = m+

n,σ exp

(
λ

2
(Φ− φσ)

)
−m+

σ,ncσ exp

(
−λ

2
(Φ− φσ)

) ∣∣∣∣
ξ=0

,

(5.8c)

j+
σ,e = m+

σ,ecσ exp

(
λφσ

2

)
−m+

e,σ exp

(
−λφσ

2

) ∣∣∣∣
ξ=Lσ(t)

. (5.8d)

The electrons are governed by

Ce−
∂cσ
∂t

= −∂N
−
σ

∂ξ
N−σ = −

(
∂cσ
∂ξ
− λcσ

∂φσ
∂ξ

)
, (5.8e)

N−σ
∣∣
ξ=0

= −j−n,σ, N−σ
∣∣
ξ=Lσ

= −j−n,σ + Ce−
dLσ
dt

cσ|ξ=Lσ(t), (5.8f)

with the electrochemical reactions given by

j−n,σ = −m−n,σ exp

(
−λ

2
(Φ− φσ)

)
+m−σ,ncσ exp

(
λ

2
(Φ− φσ)

) ∣∣∣∣
ξ=0

,

(5.8g)

j−σ,e = −m−σ,ecσ exp

(
−λφσ

2

) ∣∣∣∣
ξ=Lσ(t)

. (5.8h)

The initial concentration of both interstitials and electrons is given by

cσ
∣∣
t=0

= 1. (5.8i)

Finally the SEI thickness is given by

dLσ
dt

= −j−σ,e, Lσ
∣∣
t=0

= 0. (5.8j)

5.4.5 Pseudo steady-state model

We now develop a pseudo steady-state version of the SEI model (5.8) for
which we later consider various asymptotic limiting cases. To develop
this model we rescale our spatial coordinates onto a fixed domain
and the take the limit of a rapid timescale of transport within the SEI
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relative to the SEI growth timescale. Since we investigate effects on the
timescale of SEI growth, the model that we develop is pseudo steady-
state in the sense that transport of species within the inner SEI is in
steady state but the domain itself is growing. We first scale

ξ = Lσ(t)ξ̂, (5.9)

so that ξ̂ ∈ [0, 1]. Under this transformation, the partial derivatives
become(

∂

∂ξ

)
t

=
1

Lσ(t)

(
∂

∂ξ̂

)
t

,(
∂

∂t

)
ξ

=

(
∂

∂t

)
ξ̂

− ξ̂

Lσ(t)

dLσ
dt

(
∂

∂ξ̂

)
t

(5.10)

where the subscript indicates the variable that is being held fixed when
the partial derivate is taken. Therefore (5.8) becomes as follows. The
lithium ion interstitials are governed by

CLi

(
∂cσ
∂t
− ξ̂

Lσ(t)

dL

dt

∂cσ

∂ξ̂

)
= − 1

Lσ(t)

∂N+
σ

∂ξ̂
, (5.11a)

N+
σ = − 1

Lσ(t)

(
∂cσ

∂ξ̂
+ λcσ

∂φσ

∂ξ̂

)
, (5.11b)

N+
σ

∣∣
ξ̂=0

= j+
n,σ, N+

σ

∣∣
ξ̂=1

= j+
σ,e + CLi

dLσ
dt

cσ|ξ̂=1, (5.11c)

with the associated electrochemical reactions given by

j+
n,σ = m+

n,σ exp

(
λ

2
(Φ− φσ)

)
−m+

σ,ncσ exp

(
−λ

2
(Φ− φσ)

) ∣∣∣∣
ξ̂=0

,

(5.11d)

j+
σ,e = m+

σ,ecσ exp

(
λφσ

2

)
−m+

e,σ exp

(
−λφσ

2

) ∣∣∣∣
ξ̂=1

. (5.11e)

The electrons are governed by

Ce−

(
∂cσ
∂t
− ξ̂

Lσ(t)

dL

dt

∂cσ

∂ξ̂

)
= − 1

Lσ(t)

∂N−σ

∂ξ̂
, (5.11f)

N−σ = − 1

Lσ(t)

(
∂cσ

∂ξ̂
− λcσ

∂φσ

∂ξ̂

)
, (5.11g)

N−σ
∣∣
ξ̂=0

= −j−n,σ, N−σ
∣∣
ξ̂=1

= −j−n,σ + Ce−
dLσ
dt

cσ|ξ̂=1, (5.11h)
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with the associated electrochemical reactions given by

j−n,σ = −m−n,σ exp

(
−λ

2
(Φ− φσ)

)
+m−σ,ncσ exp

(
λ

2
(Φ− φσ)

) ∣∣∣∣
ξ̂=0

,

(5.11i)

j−σ,e = −m−σ,ecσ exp

(
−λφσ

2

) ∣∣∣∣
ξ̂=1

(5.11j)

The initial concentration of both interstitials and electrons are given by

cσ
∣∣
t=0

= 1. (5.11k)

Finally the SEI thickness is given by

dLσ
dt

= −j−σ,e, Lσ
∣∣
t=0

= 0. (5.11l)

We now take the limit of a rapid timescale of transport within the SEI
relative to the SEI growth timescale, which is supported by the values
reported in Tables 5.4 and 5.2. This reduces our problem to a pseudo
steady-state problem. To do this, we introduce a single small parameter
ε such that

CLi = O(ε), Ce− = O(ε)

and take all other dimensionless parameters in the model to be O(1).
We note in passing that the parameter values for the dimensionless reac-
tions rates in Tables 5.4 and 5.2 suggest that some of the electrochemical
reactions occur many orders of magnitude faster than transport of both
lithium ion interstitials and electrons through the SEI, which lead to
these reactions being in equilibrium. However, for now, we study the
case where electrochemical reactions and transport processes occur
on a similar timescale and leave further reductions for later. We then
make regular asymptotic expansion in each of the model variables of
the form

cσ = c(0)
σ + εc(1)

σ +O(ε2),

and take ε → 0. At leading order in ε, (5.11) becomes the following,
where we have dropped the asymptotic order superscript. The lithium
ion interstitials are governed by

∂N+
σ

∂ξ̂
= 0, (5.12a)

N+
σ = − 1

Lσ(t)

(
∂cσ

∂ξ̂
+ λcσ

∂φσ

∂ξ̂

)
, (5.12b)

N+
σ

∣∣
ξ̂=0

= j+
n,σ, N+

σ

∣∣
ξ̂=1

= j+
σ,e, (5.12c)
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with the associated electrochemical reactions given by

j+
n,σ = m+

n,σ exp

(
λ

2
(Φ− φσ)

)
−m+

σ,ncσ exp

(
−λ

2
(Φ− φσ)

) ∣∣∣∣
ξ̂=0

,

(5.12d)

j+
σ,e = m+

σ,ecσ exp

(
λφσ

2

)
−m+

e,σ exp

(
−λφσ

2

) ∣∣∣∣
ξ̂=1

. (5.12e)

The electrons are governed by

∂N−σ

∂ξ̂
= 0, (5.12f)

N−σ = − 1

Lσ(t)

(
∂cσ

∂ξ̂
− λcσ

∂φσ

∂ξ̂

)
, (5.12g)

N−σ
∣∣
ξ̂=0

= −j−n,σ, N−σ
∣∣
ξ̂=1

= −j−n,σ (5.12h)

with the associated electrochemical reactions given by

j−n,σ = −m−n,σ exp

(
−λ

2
(Φ− φσ)

)
+m−σ,ncσ exp

(
λ

2
(Φ− φσ)

) ∣∣∣∣
ξ̂=0

,

(5.12i)

j−σ,e = −m−σ,ecσ exp

(
−λφσ

2

) ∣∣∣∣
ξ̂=1

(5.12j)

Finally the SEI thickness is given by

dLσ
dt

= −j−σ,e, Lσ
∣∣
t=0

= 0. (5.12k)

In making this expansion, we have removed the time derivatives
from the problems for the fluxes of lithium ion interstitials and elec-
trons. Therefore, the initial condition on the lithium ion interstitial
and electron concentration is no longer required. We have neglected
the transient effects of the lithium ion interstitials to obtain a pseudo
steady-state model. To capture transient effects and in particular the
transition from the initial conditions, we can consider a short time
problem by rescaling time with the lithium ion interstitial diffusion
timescale but we shall not consider this analysis. On this timescale, the
full complexity of (5.11) is recovered with the exception that the SEI
thickness is fixed.

To simplify the analysis in the following sections, we re-write (5.12) as
a system of algebraic equations for the fluxes, boundary concentrations,
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and boundary potentials, coupled to a single ODE for the SEI thickness.
To do this, we add (5.12b) and (5.12g) to get

−2
∂cσ

∂ξ̂
= Lσ(N+

σ +N−σ ), (5.13)

and then integrate with respect to ξ̂, to obtain

cσ = cσ
∣∣
ξ̂=0
− Lσ

2
(N+

σ +N−σ )ξ. (5.14)

We also subtract (5.12g) from (5.12b) to obtain

−2λcσ
∂φσ

∂ξ̂
= Lσ(N+

σ −N−σ ). (5.15)

We then multiply the left hand side of (5.13) by the right hand side of
(5.15), and the right hand side of (5.13) by the left hand side of (5.15),
divide through by cσ, and integrate with respect to ξ̂, to get

φσ = φσ
∣∣
ξ̂=0

+
1

λ

N+
σ −N−σ

N+
σ +N−σ

log

(
cσ

cσ
∣∣
ξ̂=0

)
. (5.16)

Equations (5.14) and (5.16) are exact expressions for cσ and φσ and we
can determine them after we have obtained asymptotic expressions
for the remaining variables. Evaluating (5.14) and (5.16) on ξ̂ = 1 then
gives

cσ
∣∣
ξ̂=1

= cσ
∣∣
ξ̂=0
− Lσ

2
(N+

σ +N−σ ), (5.17a)

φσ
∣∣
ξ̂=1

= φσ
∣∣
ξ̂=0

+
1

λ

N+
σ −N−σ

N+
σ +N−σ

log

(
cσ
∣∣
ξ̂=1

cσ
∣∣
ξ̂=0

)
. (5.17b)

The problem is therefore reduced to an algebraic problem for cσ
∣∣
ξ̂=0

,
cσ
∣∣
ξ̂=1

φσ
∣∣
ξ̂=0

, and φσ
∣∣
ξ̂=1

.

5.5 A S Y M P T O T I C R E D U C T I O N O F P S E U D O S T E A D Y- S TAT E S E I

M O D E L

In this section, we consider six limiting cases of (5.12) in which simple
algebraic expressions for SEI growth can be derived. The first case
corresponds to applying a large positive potential difference across the
layer, (φ∗s,n − φ∗e,p) � 0, and the second to applying a large negative
potential difference across the layer (φ∗s,n − φ∗e,n)� 0. In the third case,
we take the timescale for the transport of lithium ion interstitials and
electrons within the SEI to be short in comparison to the timescale
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for the electrochemical reactions to occur. We refer to this third case
as the reaction-limited case. In the fourth case, we take the timescale
for the transport of lithium ion interstitials and electrons to be much
longer than the timescale for the electrochemical reactions. We refer
to this case as the diffusion-limited case. In the fifth case, we will as-
sume that the timescales of electron transport through the SEI and the
lithium intercalation reaction at the graphite–SEI surface to be longer
than the other timescales in the model. We refer to this case as the elec-
tron diffusion and lithium intercalation reaction (graphite–SEI) limited
case. In the sixth case, we will assume that the timescales of electron
transport through the SEI and the lithium intercalation reaction at the
SEI–electrolyte surface to be longer than the other timescales in the
model. We refer to this case as the electron diffusion and lithium interca-
lation reaction (SEI–electrolyte) limited case. Consulting the parameter
values in Tables 5.4 and 5.5 suggests that the diffusion-limited case
is the limit that is most consistent with the reported parameter val-
ues. However, it should be noted that SEI parameters are notoriously
difficult to obtain so these values are only estimates. Throughout this
section, we assume that the pseudo steady-state approximation (5.12)
holds.

5.5.1 Large positive potential difference

We first consider the case in which a large positive potential difference
is applied across the layer. This corresponds to taking

Φ = 1, λ→∞.

We cannot simply make a regular asymptotic expansion in this limit.
Therefore, we first consider balancing the model equations in order to
inform our asymptotic expansions. We assume that the flux of lithium
through the cell is O(1) and show this to be the case later. Given this,
we balance (5.12d) by taking

φ
∣∣
ξ̂=0

= 1 +O
(

1

λ

)
.

We also balance (5.12e) by assuming that the concentration on the
SEI–electrolyte boundary is exponentially small

cσ
∣∣
ξ̂=1

= O(exp (−λα)),

where we will determine α shortly in terms of the leading-order com-
ponent of φσ

∣∣
ξ̂=1

. By taking these balances in the lithium reactions, we
then have from (5.12j) that

j−se = O(exp (−2λα)) (5.18)
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Informed by these balances, we make the following asymptotic expan-
sions

cσ
∣∣
ξ̂=1

= exp(−λα)

(
c(0)
σ

∣∣
ξ̂=1

+
1

λ
c(1)
σ

∣∣
ξ̂=1

+O
(

1

λ2

))
N−σ = exp (−2λα)

(
N−(0)
σ +

1

λ
N−(1)
σ +O

(
1

λ2

))
j−n,σ = exp (−2λα)

(
j
−(0)
n,σ +

1

λ
j
−(1)
n,σ +O

(
1

λ2

))
with all other variables in the model expanded as

cσ
∣∣
ξ̂=0

= c(0)
σ

∣∣
ξ̂=0

+
1

λ
c(1)
σ

∣∣
ξ̂=0

+O
(

1

λ2

)
,

etc. Substituting these expansions into (5.12e), we can now see that

α =
φ

(0)
σ

∣∣
ξ̂=1

2
(5.19)

chosen such that the term

m+
σ,ec

(1)
σ

∣∣
ξ̂=1

exp (−λα) exp

λφ(0)
σ

∣∣
ξ̂=1

2

 exp

φ(1)
σ

∣∣
ξ̂=1

2


is O(1).

At O(1), (5.17b) is

φ(0)
σ

∣∣
ξ̂=1

= 1− α (5.20)

where the factor of α on the right hand side arises from the term

log

c(0)
σ

∣∣
ξ̂=1

exp (−λα)

c
(0)
σ

∣∣
ξ̂=0

 = log

c(0)
σ

∣∣
ξ̂=1

c
(0)
σ

∣∣
ξ̂=0

− λα.
Therefore, given (5.19) and (5.20), we obtain

φ(0)
σ

∣∣
ξ̂=1

=
2

3
, α =

1

3
. (5.21)

At O(1), (5.17a) gives

N+(0)
σ =

2c
(0)
σ

∣∣
ξ̂=0

Lσ
. (5.22)

The graphite–SEI electron transfer reaction (5.12i) at O(1) is

0 = −m−n,σ exp

φ(1)
σ

∣∣
ξ̂=0

2

+m−σ,nc
(0)
σ

∣∣
ξ̂=0

exp

−φ(1)
σ

∣∣
ξ̂=0

2

 (5.23)
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and therefore we have

c(0)
σ

∣∣
ξ̂=0

=
m−n,σ

m−σ,n
exp

(
φ(1)
σ

∣∣
ξ̂=0

)
. (5.24)

Now at O(1) the graphite–SEI lithium intercalation reaction (5.12d)
becomes

j
+(0)
n,σ = m+

n,σ exp

−φ(1)
σ

∣∣
ξ̂=0

2

−m+
σ,nc

(0)
σ

∣∣
ξ̂=0

exp

φ(1)
σ

∣∣
ξ̂=0

2

 . (5.25)

Substituting (5.12c), (5.22), and (5.24) into (5.25), we obtain

2c
(0)
σ

∣∣
ξ̂=0

Lσ
=
m+

n,σ(m−n,σ)1/2

(m−σ,n)1/2
(c(0)
σ

∣∣
ξ̂=0

)−1/2

−
m+
σ,n(m−σ,n)1/2

(m−n,σ)1/2
(c(0)
σ

∣∣
ξ̂=0

)3/2.

(5.26)

By making the transformation

c(0)
σ

∣∣
ξ̂=0

=
4m−n,σ

L2
σ(m+

σ,n)2m−σ,n
ĉ2, (5.27)

we get an algebraic equation for ĉ,

ĉ4 + ĉ3 = a (5.28)

where

a =
L4
σm

+
n,σ(m+

σ,n)3m−σ,n

16m−n,σ
. (5.29)

Algebraic expressions for the four solutions to (5.28) can be obtained
using the formula for the roots of a quartic polynomial. However we
do not present these expressions here because they are long and do
not offer insight. Two of the solutions have an imaginary component
for positive real values of a and so we discard these as non-physical.
The third solution is negative, which corresponds to a nonphysical
negative values of (c

(0)
σ )1/2 in (5.26). The remaining physical solution is

presented in Figure 5.2.
To determine φ(1)

σ

∣∣
ξ̂=1

and c(0)
σ

∣∣
ξ̂=1

, we consider the O(1) component
of the SEI–electrolyte lithium reaction (5.12e), which is given by

j
+(0)
σ,e = m+

σ,ec
(0)
σ

∣∣
ξ̂=1

exp

φ(1)
σ

∣∣
ξ̂=1

2

 . (5.30)
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Figure 5.2: The positive real solution of (5.28) as a function of a.

Then using (5.22), we have

c(0)
σ

∣∣
ξ̂=1

=
2c

(0)
σ

∣∣
ξ̂=0

m+
σ,eLσ

exp

−φ(1)
σ

∣∣
ξ̂=1

2

 . (5.31)

Now, (5.17b) at O(1/λ) is

φ(1)
σ

∣∣
ξ̂=1

= φ(1)
σ

∣∣
ξ̂=0

+ log

c(0)
σ

∣∣
ξ̂=1

c
(0)
σ

∣∣
ξ̂=0

 . (5.32)

Substituting (5.31) into (5.32) yields

φ(1)
σ

∣∣
ξ̂=1

=
2

3
φ(1)
σ

∣∣
ξ̂=0

+
2

3
log

(
2

m+
σ,eLσ

)
. (5.33)

Since we now know both c(0)
σ

∣∣
ξ̂=1

and φ(1)
σ

∣∣
ξ̂=1

in terms of ĉ, we can
calculate the SEI growth reaction rate, which is determined by the
O(exp(−2λα)) component of (5.12j) as

j
−(0)
σ,e = −m−σ,ec

(0)
σ

∣∣
ξ̂=1

, (5.34)

which upon substitution of the previous calculated terms is

j
−(0)
σ,e = −m−σ,e

2c
(0)
σ

∣∣
ξ̂=0

m+
σ,eLσ

2/3(
m−n,σ

m−σ,n

)1/3

(5.35)
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Finally, we can now determine the leading-order contributions to
both φσ and cσ by using (5.14) and (5.16). We have

cσ =
LσN

+(0)
σ

2
(1− ξ) +O

(
1

λ

)
, (5.36)

φσ = 1 +
φ

(1)
σ

∣∣
ξ̂=1

λ

+
1

λ
log

 LσN
+(0)
σ

2 (1− ξ) + c
(0)
σ

∣∣
ξ̂=1

exp
(
−λ

3

)
c

(0)
σ

∣∣
ξ̂=0


+O

(
1

λ

)
,

(5.37)

where we have included the exponentially small boundary concentra-
tion within the log term to prevent blow up of φσ at ξ̂ = 1. Away from
ξ̂ = 1, this term is insignificant and so we can add it whilst retaining
O(1/λ) accuracy. To demonstrate that this addition also retains O(1/λ)

in a small boundary layer of size O (exp(−λ/3)), we consider

ξ̃ := (1− ξ̂) exp

(
λ

3

)
, ξ̃ = O(1).

We then have that

1

λ
log


(
LσN

+(0)
σ

2 ξ̃ + c
(0)
σ

∣∣
ξ̂=1

)
exp

(
−λ

3

)
c

(0)
σ

∣∣
ξ̂=0

 = −1

3
+O

(
1

λ

)
.

Therefore, we can see that within the boundary layer we obtain the
same solution up toO(1/λ) regardless of whether we append the value
on the right boundary.

In Figure 5.3, we compare the asymptotic and numerical solutions for
the fluxes and boundary values for a range of values of λ with all other
parameters taken to be O(1) values. We observe that the asymptotic
solution excellently recovers the numerical solution for sufficiently
large values of λ. In Figures 5.3 (b), (d), and (f) we plot the absolute
errors of each of the solutions alongside a dotted line to indicate the
scalings of the errors. From this we observe that the errors in N+

σ ,
cσ
∣∣
ξ̂=0

, φσ
∣∣
ξ̂=0

, and φσ
∣∣
ξ̂=1

are O(exp(−λ/3)), whilst the errors in N−σ
and cσ

∣∣
ξ̂=1

are O(exp(−λ/3)/λ). This is significantly better than the
O(1/λ) errors that our asymptotics predicts for some variables and
suggests that many of the higher-order terms in the expansion are
zero (for this particular set of parameters). For completeness, we also
compare the asymptotic and numerical solutions for the concentration
and potential within the SEI in Figure 5.4. We again observe excellent
agreement in the two solutions, with the measured errors being of size
10−7–10−6 and the predicted asymptotic error being exp(−λ/3) ≈ 10−6.
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Figure 5.3: Comparison of asymptotic (from §5.5.1) (dashed in (a), (c), (e))
and numerical (5.12) (solid in (a), (c), and (e)) solutions where all
parameters except λ are taken to be O(1): (a) predicted values of
lithium flux and graphite–SEI boundary conentration; (b) absolute
errors with dotted line exp(−λ/3) for reference; (c) predicted val-
ues of electron flux and SEI–electrolyte boundary concentration;
(d) absolute errors with dotted line exp(−λ/3)/λ for reference; (e)
predicted boundary potentials; (f) absolute errors with dotted line
(5× 10−2) exp(−λ/3) for reference.
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Figure 5.4: Comparison of asymptotic (from §5.5.1) and numerical (5.12) con-
centrations and potentials within the SEI for λ = 40. Note that
exp(−λ/3) ≈ 10−6.
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5.5.2 Large negative potential difference

We now consider the case of a large applied negative potential differ-
ence, (φ∗s,n − φ∗e,n)� 0. This corresponds to taking

Φ = −1, λ→∞.

In this case, we take the lithium-ion and electron fluxes to be O(λ). We
then create an O(λ) balance in (5.12d) by taking

φσ
∣∣
ξ̂=0

= −1 +
2 log(λ)

λ
+O

(
1

λ

)
.

Similarly, we balance (5.12j) by taking

φσ
∣∣
ξ̂=1

= −2 log(λ)

λ
+O

(
1

λ

)
.

By introducing these log(λ)/λ terms in the expansions of the boundary
potentials, we must then balance (5.17b) atO(log(λ)/λ), which informs
us to make the following asymptotic expansions

N+
σ = λ

∞∑
i=0

i∑
j=0

log(λ)j

λi
N+(i,j)
σ ,

N−σ = λ
∞∑
i=0

i∑
j=0

log(λ)j

λi
N−(i,j)
σ ,

φσ
∣∣
ξ̂=0

= −1 +
2 log(λ)

λ
+
φ

(1,0)
σ

∣∣
ξ̂=0

λ
+
∞∑
i=2

i∑
j=0

log(λ)j

λi
φ(i,j)
σ

∣∣
ξ̂=0

,

φσ
∣∣
ξ̂=1

= −2 log(λ)

λ
+
φ

(1,0)
σ

∣∣
ξ̂=1

λ
+

∞∑
i=2

i∑
j=0

log(λ)j

λi
φ(i,j)
σ

∣∣
ξ̂=1

,

cσ
∣∣
ξ̂=0

=

∞∑
i=0

i∑
j=0

log(λ)j

λi
c(i,j)
σ

∣∣
ξ̂=0

,

cσ
∣∣
ξ̂=1

=

∞∑
i=0

i∑
j=0

log(λ)j

λi
c(i,j)
σ

∣∣
ξ̂=1

.

Here the order of magnitude of the terms (from large to small) is

λ, log(λ),
log(λ)

λ
,

1

λ
,

log(λ)2

λ2
,

log(λ)

λ2
,

1

λ2
, . . .
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After making these expansions, (5.17a) at O(λ), O(log(λ)), and O(1)

gives

N−(0,0)
σ = −N+(0,0)

σ (5.38a)

N−(0,1)
σ = −N+(0,1)

σ (5.38b)

c(0,0)
σ

∣∣
ξ̂=1

= c(0,0)
σ

∣∣
ξ̂=0
− Lσ

2

(
N+(1,0)
σ +N−(1,0)

σ

)
(5.38c)

and the electrochemical reactions (5.12d), (5.12e), (5.12i), and (5.12j) at
O(λ) give

j
+(0,0)
n,σ = −m+

σ,nc
(0,0)
σ

∣∣
ξ̂=0

exp

φ(1,0)
σ

∣∣
ξ̂=0

2

 (5.39a)

j
+(0,0)
σ,e = −m+

e,σ exp

−φ(1,0)
σ

∣∣
ξ̂=1

2

 (5.39b)

j
−(0,0)
n,σ = −m+

n,σ exp

φ(1,0)
σ

∣∣
ξ̂=0

2

 (5.39c)

j
−(0,0)
σ,e = −m−σ, ec

(0,0)
σ

∣∣
ξ̂=1

exp

−φ(1,0)
σ

∣∣
ξ̂=1

2

 . (5.39d)

Then using (5.12c), (5.12h), and (5.38a) we can use (5.39a) with (5.39c)
and (5.39b) with (5.39d) to obtain

c(0,0)
σ

∣∣
ξ̂=0

=
m−n,σ

m+
σ,n
, c(0,0)

σ

∣∣
ξ̂=1

=
m+

e,σ

m−σ,e
. (5.40)

Therefore (5.38c) gives

N+(1,0)
σ +N−(0,0)

σ =
2

Lσ

(
m−n,σ

m+
σ,n
−
m+

e,σ

m−σ,e

)
. (5.41)

Equation (5.21) at O(1) gives

0 = −1 +
2N

+(0,0)
σ

N
(1,0)
σ +N

−(1,0)
σ

log

c(0,0)
σ

∣∣
ξ̂=1

c
(0,0)
σ

∣∣
ξ̂=0

 . (5.42)

Substituting (5.40) and (5.41) into (5.42) then gives

N+(0,0)
σ =

m−n,σm
−
σ,e −m+

e,σm
+
σ,n

Lσm
−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

) . (5.43)
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We now use (5.38a), (5.39), and (5.43), to obtain

φ(1,0)
σ

∣∣
ξ̂=0

= 2 log

 m+
e,σm

+
σ,n −m−n,σm

−
σ,e

Lσm
−
n,σm

−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)
 , (5.44a)

φ(1,0)
σ

∣∣
ξ̂=1

= −2 log

 m+
e,σm

+
σ,n −m−n,σm

−
σ,e

Lσm
+
e,σm

−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)
 , (5.44b)

which concludes the leading-order solution. We now continue to the
next order in the expansion to increase the solution accuracy. Firstly,
(5.17a) at O(log(λ)2/λ), O(log(λ)/λ), and O(1/λ) gives

N−(2,2)
σ = −N+(2,2)

σ , (5.45a)

c(1,1)
σ

∣∣
ξ̂=1

= c(1,1)
σ

∣∣
ξ̂=0
− Lσ

2

(
N+(2,1)
σ +N−(2,1)

σ

)
, (5.45b)

c(1,0)
σ

∣∣
ξ̂=1

= c(1,0)
σ

∣∣
ξ̂=0
− Lσ

2

(
N+(2,0)
σ +N−(2,0)

σ

)
. (5.45c)

At O(log(λ)2) the electrochemical reactions (5.12d), (5.12e), (5.12i), and
(5.12j) give

0 = −1

2
m+
σ,nc

(0,0)
σ

∣∣
ξ̂=0

exp

φ(1,0)
σ

∣∣
ξ̂=0

2

φ(2,2)
σ

∣∣
ξ̂=0

, (5.46a)

0 =
1

2
m+

e,σ exp

φ(1,0)
σ

∣∣
ξ̂=1

2

φ(2,2)
σ

∣∣
ξ̂=1

, (5.46b)

0 =
1

2
m−n,σ exp

−φ(1,0)
σ

∣∣
ξ̂=0

2

φ(2,2)
σ

∣∣
ξ̂=0

, (5.46c)

0 = −1

2
m−σ,ec

(0,0)
σ

∣∣
ξ̂=1

exp

−φ(1,0)
σ

∣∣
ξ̂=1

2

φ(2,2)
σ

∣∣
ξ̂=1

, (5.46d)

and therefore we have

φ(2,2)
σ

∣∣
ξ̂=0

= 0, φ(2,2)
σ

∣∣
ξ̂=1

= 0. (5.47)
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Now at O(log(λ)) the electrochemical reactions (5.12d), (5.12e), (5.12i),
and (5.12j) give

j
+(1,1)
n,σ = −1

2
m+
σ,n

(
2c(1,1)
σ

∣∣
ξ̂=0

+ c(0,0)
σ

∣∣
ξ̂=0

φ(2,1)
σ

∣∣
ξ̂=0

)
× exp

φ(1,0)
σ

∣∣
ξ̂=0

2

 ,
(5.48a)

j
+(1,1)
σ,e =

1

2
m+

e,σφ
(2,1)
σ

∣∣
ξ̂=1

exp

−φ(1,0)
σ

∣∣
ξ̂=1

2

 , (5.48b)

j
−(1,1)
n,σ = −1

2
m−n,σφ

(2,1)
σ

∣∣
ξ̂=0

exp

φ(1,0)
σ

∣∣
ξ̂=0

2

 , (5.48c)

j
−(1,1)
σ,e = −1

2
m+
σ,e

(
2c(1,1)
σ

∣∣
ξ̂=1
− c(0,0)

σ

∣∣
ξ̂=1

φ(2,1)
σ

∣∣
ξ̂=1

)
× exp

φ(1,0)
σ

∣∣
ξ̂=1

2

 .
(5.48d)

Substituting (5.12c), (5.12h), (5.38b), (5.40), and (5.44) into (5.48a) and
(5.48c) gives

c(1,1)
σ = 0. (5.49)

We can then substitute (5.12c), (5.12h), (5.38b), (5.40), (5.44), and (5.49)
into (5.48a) and (5.48b) to obtain

φ(2,1)
σ

∣∣
ξ̂=1

= φ(2,1)
σ

∣∣
ξ̂=0

. (5.50)

Then substituting (5.12c), (5.12h), (5.38b), (5.40), (5.44), and (5.50) into
(5.48b) and (5.48d), we obtain

c(1,1)
σ

∣∣
ξ̂=1

= 0. (5.51)

It now just remains to determine, φ(2,1)
σ

∣∣
ξ̂=0

, and N+(1,1)
σ . Upon substi-

tution of our previously derived expressions into (5.21) at O(log(λ)/λ),
we obtain

0 = 4 +
φ

(2,1)
σ

∣∣
ξ̂=0

2
. (5.52)

Therefore, we have

φ(2,1)
σ

∣∣
ξ̂=0

= −8, φ(2,1)
σ

∣∣
ξ̂=1

= 8. (5.53)

Finally, substituting (5.44) and (5.53) into (5.48b), we get

N+(1,1)
σ = −4N (0,0)

σ , (5.54)
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which concludes our first-order analysis.
In summary, our combined leading- and first-order solution is

cσ
∣∣
ξ̂=0

=
m−n,σ

m+
σ,n

+O
(

1

λ

)
, (5.55a)

cσ
∣∣
ξ̂=1

=
m+

e,σ

m−σ,e
+O

(
1

λ

)
, (5.55b)

N+
σ = (λ− 4 log(λ))

m−n,σm
−
σ,e −m+

e,σm
+
σ,n

Lσm
−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)
+O(1),

(5.55c)

N−σ = − (λ− 4 log(λ))
m−n,σm

−
σ,e −m+

e,σm
+
σ,n

Lσm
−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)
+O(1),

(5.55d)

φσ
∣∣
ξ̂=0

= −1 +
2 log(λ)

λ

+
2

λ
log

 m+
e,σm

+
σ,n −m−n,σm

−
σ,e

Lσm
−
n,σm

−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)


− 8 log(λ)

λ2
+O

(
1

λ2

)
,

(5.55e)

φσ
∣∣
ξ̂=1

= −2 log(λ)

λ

− 2

λ
log

 m+
e,σm

+
σ,n −m−n,σm

−
σ,e

Lσm
+
e,σm

−
σ,em

+
σ,n log

(
m+

e,σm
+
σ,n

m−n,σm
−
σ,e

)


+
8 log(λ)

λ2
+O

(
1

λ2

)
.

(5.55f)

We also write the expressions for the through-SEI concentration (5.13)
and potential (5.15). For the through SEI concentration, we have

cσ = cσ
∣∣
ξ̂=0

+
(
cσ
∣∣
ξ̂=1
− cσ

∣∣
ξ̂=0

)
ξ̂ +O

(
1

λ

)
, (5.55g)

and for the through-SEI potential we have

φσ = φσ
∣∣
ξ̂=0

+
2

λLσ

N+
σ −N−σ

cσ
∣∣
ξ̂=0
− cσ

∣∣
ξ̂=1

log

(
cσ
∣∣
ξ̂=1

cσ
∣∣
ξ̂=0

)
+O

(
1

λ

)
. (5.55h)

We now compare our asymptotic solution (5.55) with the numerical
solution to (5.12). In Figure 5.5, we compare the solutions for the fluxes
and boundary concentrations and potentials for a range of values of λ
and Φ = −1. We observe excellent agreement between the numerical
and asymptotic solutions for sufficiently high values of λ. In Figure 5.5
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Figure 5.5: Comparison of asymptotic (§5.5.2) (dashed in (a), (c), (e)) and
numerical (5.12) (solid in (a), (c), (e)) solution where all parameter
except λ are taken to be O(1): (a) predicted values of lithium and
electron fluxes; (b) absolute errors in fluxes; (c) predicted values
of boundary concentrations; (d) absolute errors in concentrations
with dotted line 1/λ for reference; (e) predicted values of boundary
potentials; (f) absolute errors in potentials with dotted line 1/λ2

for reference.
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(b), (d), and (f), we observe that the asymptotic errors for the fluxes are
at most O(1), the asymptotic error in the boundary concentrations is
O(1/λ), and the asymptotic error in the boundary potentials isO(1/λ2)

as predicted in (5.55). We also see better performance in the prediction
of N+

σ , which suggests that the O(1) lithium flux may be zero for
this particular parameter set (however we have not confirmed this).
For completeness, we also present the through-SEI concentration and
potential profiles in Figure 5.6. Here, we again observe good agreement
between the asymptotic and numerical solutions with errors consistent
with the asymptotic O(1/λ) error.
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Figure 5.6: Comparison of asymptotic (§5.5.2) and numerical (5.12) concen-
trations and potentials within the SEI for λ = 500. Note that
1/500 ≈ 10−3
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5.5.3 Reaction-limited growth

In this section, we consider the case of reaction-limited growth. To do
this, we introduce a parameter m such that

m+
n,σ = mm̂+

n,σ, m+
σ,n = mm̂+

σ,n, m+
σ,e = mm̂+

σ,e,

m+
e,σ = mm̂+

e,σ, m−n,σ = mm̂+
n,σ, m−σ,n = mm̂+

σ,n,

m−σ,e = mm̂+
σ,e,

with each of the ‘hat’ terms being O(1). We also assume that all other
parameters in the problem are O(1). We make regular asymptotic ex-
pansions of the form

N+
σ = N+(0)

σ +mN+(1)
σ + . . .

in each of the variables and then take the limit m→ 0.
At leading order in m, the electrochemical reactions (5.12d), (5.12e),

(5.12i), and (5.12j) give

j
+(0)
n,σ = j

+(0)
σ,e = j

−(0)
n,σ = j

−(0)
σ,e = 0 (5.56)

and therefore we also have

N+(0)
σ = N−(0)

σ = 0. (5.57)

Then at leading order in m, (5.17a) and (5.17b) give

c(0)
σ

∣∣
ξ̂=1

= c(0)
σ

∣∣
ξ̂=1

, φ(0)
σ

∣∣
ξ̂=1

= φ(0)
σ

∣∣
ξ̂=0

. (5.58)

At O(m), the electrochemical reactions (5.12d), (5.12e), (5.12i), and
(5.12j) give

j
+(1)
n,σ = m̂+

n,σ exp

(
λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
− m̂+

σ,nc
(0)
σ

∣∣
ξ̂=0

exp

(
−λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
,

(5.59a)

j
+(1)
σ,e = m̂+

σ,ec
(0)
σ

∣∣
ξ̂=1

exp

λφ(0)
σ

∣∣
ξ̂=1

2


− m̂+

e,σ exp

−λφ(0)
σ

∣∣
ξ̂=1

2

 ,

(5.59b)
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j
−(1)
n,σ = −m̂−n,σ exp

(
−λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
+ m̂−σ,nc

(0)
σ

∣∣
ξ̂=0

exp

(
λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
,

(5.59c)

j
−(1)
σ,e = −m̂−σ,ec

(0)
σ

∣∣
ξ̂=1

exp

−λφ(0)
σ

∣∣
ξ̂=1

2

 . (5.59d)

Using that N+
σ = j+

n,σ = j+
σ,e and N−σ = −j−n,σ = −j−σ,e we equate (5.59a)

with (5.59b) and (5.59c) with (5.59d) and use (5.58) to find

c(0)
σ

∣∣
ξ̂=0

=

√
m̂+

n,σ(
m̂−σ,e + m̂−σ,n exp (λΦ/2)

)
×

√(
m̂+

e,σ + m̂+
n,σ exp (λΦ/2)

)(
m̂+
σ,n + m̂+

σ,e exp (λΦ/2)
) (5.60a)

φ(0)
σ

∣∣
ξ̂=0

=
Φ

2
+

1

2λ
log

((
m̂+

e,σ + m̂+
n,σ exp (λΦ/2)

)(
m̂+
σ,n + m̂+

σ,e exp (λΦ/2)
))

+
1

2λ
log
(
m̂−σ,e + m̂−σ,n exp (λΦ/2)

)
.

(5.60b)

Substituting (5.60) into (5.59) we then get

N+(1)
σ =

(
m̂−n,σ

)1/4(
m̂+

e,σ + m̂+
n,σ exp (λΦ/2)

)1/4
×
(
m̂+

n,σm̂
+
σ,e exp (λΦ)− m̂+

e,σm̂
+
σ,n
)(

m̂−σ,e + m̂−σ,n exp (λΦ/2)
)1/4

× exp (−λΦ/4)(
m̂+
σ,n + m̂+

σ,e exp (λΦ/2)
)3/4 ,

(5.61a)

N−(1)
σ =

m̂−σ,e(m̂−n,σ)3/4 exp (−λΦ/4)(
m̂−σ,e + m̂−σ,n exp (λΦ/2)

)3/4
×
(
m̂+

e,σ + m̂+
n,σ exp (λΦ/2)

)1/4(
m̂+
σ,n + m̂+

σ,e exp (λΦ/2)
)1/4

(5.61b)

which concludes our analysis. In summary, we have

N+
σ = mN+(1)

σ +O(m2), (5.62a)

N−σ = mN−(1)
σ +O(m2), (5.62b)

cσ = c(0)
σ

∣∣
ξ̂=0

+O(m), (5.62c)

φσ = φ(0)
σ

∣∣
ξ̂=0

+O(m), (5.62d)
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where the concentration and potential are constant within the inner SEI
up to terms of size O(m). In Figure 5.7, we compare our asymptotic so-
lution (5.62) with the numerical solution of (5.12). We observe excellent
agreement between asymptotic and numerical solutions for each of the
variables with the errors scaling as predicted in (5.62).

5.5.4 Diffusion-limited growth

We now consider the case in which the timescales for diffusion of
lithium ion interstitials and electrons through the inner SEI layer are
significantly longer than the timescales of the electrochemical reactions.
We again introduce the parameter m such that

m+
n,σ = mm̂+

n,σ, m+
σ,n = mm̂+

σ,n, m+
σ,e = mm̂+

σ,e,

m+
e,σ = mm̂+

e,σ, m−n,σ = mm̂+
n,σ, m−σ,n = mm̂+

σ,n,

m−σ,e = mm̂+
σ,e,

with each of the ‘hat’ terms beingO(1) and also take every other param-
eter in the model to be O(1). We then take the limit m→∞. However,
we first consider balancing the model equations to inform our asymp-
totic expansions. We shall assume that the fluxes areO(1). On the ξ̂ = 0

boundary, this is achieved by balancing the forward and backwards re-
actions by simply having cσ

∣∣
ξ̂=0

= O(1) and φσ
∣∣
ξ̂=0

= O(1). However,

on the ξ̂ = 1 boundary, (5.12j) only contains a forward reaction and so
a balance cannot be achieved in this way. Instead, we consider

cσ
∣∣
ξ̂=1
∼ mα, φσ

∣∣
ξ̂=1
∼ β log(m), (5.63)

which upon substitution into (5.12e) and (5.12j) gives

O(1) = m̂+
σ,em

1+α+βλ/2 − m̂+
e,σm

1−βλ/2, (5.64a)

O(1) = −m̂−σ,em
1+α−βλ/2. (5.64b)

We choose to balance the forward and backward reactions in (5.64a)
and we balance the left and right hand sides of (5.64b). We then have
the conditions

1 + α+
βλ

2
= 1− βλ

2
, 0 = 1 + α− βλ

2
(5.65)

which give

α = −2

3
, β =

2

3λ
. (5.66)

With these balances the first non-zero component of (5.12e) is O(m2/3),
which is a balance of the forward and backwards reactions.
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Figure 5.7: Comparison of asymptotic (5.62) (dashed in (a), (c), (e)) and nu-
merical (5.12) (solid in (a), (c), (e)) solution where all parameter
except m are taken to be O(1) and Φ = −1: (a) predicted values
of lithium and electron fluxes; (b) absolute errors in fluxes with
dotted line m2 for reference; (c) predicted values of boundary con-
centrations; (d) absolute errors in concentrations with dotted line
m for reference; (e) predicted values of boundary potentials; (f)
absolute errors in potentials with dotted line m for reference.
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Informed by this balance we make the following asymptotic expan-
sions

cσ
∣∣
ξ̂=0

= c(0)
σ

∣∣
ξ̂=0

+
1

m
c(1)
σ + . . .

φσ
∣∣
ξ̂=0

= φ(0)
σ

∣∣
ξ̂=0

+
1

m
φ(1)
σ + . . .

cσ
∣∣
ξ̂=1

= m−2/3

(
c(1)
σ

∣∣
ξ̂=1

+
1

log(m)
c(2)
σ

∣∣
ξ̂=1

. . .

)
φσ
∣∣
ξ̂=1

=
2

3λ
log(m) + φ(0)

σ

∣∣
ξ̂=1

+
1

log(m)
φ(1)
σ

∣∣
ξ̂=1

+ . . .

N+
σ = N+(0)

σ +
1

log(m)
N+(1)
σ + . . .

N−σ = N−(0)
σ +

1

log(m)
N−(1)
σ + . . .

(5.67)

and then take m→∞.
At O(m), (5.12d) and (5.12i) give

0 = m̂+
n,σ exp

(
λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
− m̂+

σ,nc
(0)
σ

∣∣
ξ̂=0

exp

(
−λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
,

(5.68)

0 = −m̂−n,σ exp

(
−λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
+ m̂−σ,nc

(0)
σ

∣∣
ξ̂=0

exp

(
λ

2
(Φ− φ(0)

σ

∣∣
ξ̂=0

)

)
.

(5.69)

From which we obtain

c(0)
σ

∣∣
ξ̂=0

=

√
m̂−n,σm̂

+
n,σ

m̂−σ,nm̂
+
σ,n
, (5.70)

φ(0)
σ

∣∣
ξ̂=0

= Φ +
1

2λ
log

(
m̂+

n,σm̂
−
σ,n

m̂−n,σm̂
+
σ,n

)
. (5.71)

Now at O(log(m)), (5.17b) becomes

2

3λ
= − 2

3λ

N
+(0)
σ −N−(0)

σ

N
+(0)
σ +N

−(0)
σ

. (5.72)

Therefore we must have

N+(0)
σ = 0. (5.73)

Then from (5.17a) at O(1) we obtain

N−(0)
σ =

2c
(0)
σ

∣∣
ξ̂=0

Lσ
. (5.74)
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Equation (5.12e) at O(m2/3) and (5.12j) at O(1) give

0 = m̂+
σ,ec

(1)
σ

∣∣
ξ̂=1

exp

λφ(0)
σ

∣∣
ξ̂=1

2


−m+

e,σ exp

−λφ(0)
σ

∣∣
ξ̂=1

2

 ,

(5.75)

N−(0)
σ = −m−σ,ec

(1)
σ

∣∣
ξ̂=1

exp

−λφ(0)
σ

∣∣
ξ̂=1

2

 . (5.76)

Solving (5.75) for c(1)
σ

∣∣
ξ̂=1

and φ(0)
σ

∣∣
ξ̂=1

and using (5.70) and (5.74) then
gives

c(1)
σ

∣∣
ξ̂=1

=

(
2

m̂−σ,eLσ

)2/3(m̂+
e,σm̂

−
n,σm̂

+
n,σ

m̂+
σ,em̂

−
σ,nm̂

+
σ,n

)1/3

, (5.77a)

φ(0)
σ

∣∣
ξ̂=1

=
2

3λ
log

(
m̂+

e,σm̂
−
σ,e

2m̂+
σ,e

√
m̂−σ,nm̂

+
σ,n

m̂−n,σm̂
+
n,σ

)
. (5.77b)

We now develop an expression for the first non-zero component of the
lithium flux. To do this, we consider the O(1) component of (5.17b)
which is given by

φ(0)
σ

∣∣
ξ̂=1

= φ(0)
σ

∣∣
ξ̂=0
− 1

λ
log

c(1)
σ

∣∣
ξ̂=1

c
(0)
σ

∣∣
ξ̂=0

− 4

3λ

N
+(1)
σ

N
−(0)
σ

. (5.78)

We then solve (5.78) for N+(1)
σ and use the expressions that we have

derived for the other variables to obtain

N+(1)
σ =

3

2Lσ

√
m̂−n,σm̂

+
n,σ

m−σ,nm
+
σ,n

(
λΦ + log

(
m̂+

n,σm̂
+
σ,e

m̂+
e,σm̂

+
σ,n

))
. (5.79)

Finally, at O(1/ log(m)), (5.17a) gives

N−(1)
σ = −N+(1)

σ . (5.80)



5.5 A S Y M P T O T I C R E D U C T I O N O F P S E U D O S T E A D Y- S TAT E S E I M O D E L 167

In summary, we have

cσ
∣∣
ξ̂=0

= c(0)
σ

∣∣
ξ̂=0

+O
(

1

m

)
, (5.81a)

φσ
∣∣
ξ̂=0

= φ(0)
σ

∣∣
ξ̂=0

+O
(

1

m

)
, (5.81b)

cσ
∣∣
ξ̂=1

= m−2/3c(1)
σ

∣∣
ξ̂=1

+O
(

1

m2/3 log(m)

)
, (5.81c)

φσ
∣∣
ξ̂=1

=
2

3λ
log(m) + φ(0)

σ

∣∣
ξ̂=1

+O
(

1

log(m)

)
, (5.81d)

N+
σ =

1

log(m)
N+(1)
σ + o

(
1

log(m)

)
, (5.81e)

N−σ = N−(0)
σ +

1

log(m)
N−(1)
σ + o

(
1

log(m)

)
, (5.81f)

cσ = (m−2/3c(1)
σ

∣∣
ξ̂=1
− c(0)

σ

∣∣
ξ̂=0

)ξ̂ + c(0)
σ

∣∣
ξ̂=0

+O
(

1

m2/3 log(m)

)
,

(5.81g)

φσ = φ(0)
σ

∣∣
ξ̂=0

+
1

λ

(
N

+(1)
σ −N−(1)

σ

log(m)N
−(0)
σ

− 1

)
log

 cσ

c
(0)
σ

∣∣
ξ̂=0


+O

(
1

log(m)

)
.

(5.81h)

Where a big-O notation error is reported, we have continued our
asymptotic expansion in a computational algebra package to confirm
this error. Where a little-o error is reported, we have not continued the
expansion to determine the error.

We now compare our asymptotic solution (5.81) with the numerical
solution of (5.12). Our results for the six variables in the algebraic
version of the problem are presented in Figure 5.8. We observe good
agreement between our asymptotic solution and the numerical solution
with the magnitude of the errors scaling as we would expect from our
asymptotic errors predicted in (5.81). For N+

σ , and N−σ we expect (but
have not rigorously confirmed) that the error decays a rate similar to
(1/ log(m))2 and have therefore provided this as a reference on the error
plot. For φσ

∣∣
ξ̂=1

, the slow error decay is a result of the log-dependent
errors. Continuing to significantly higher values of m will reduce this
error but the convergence of the numerical solution to (5.81) could
not be achieved. For completeness, we present the concentration and
potential within the SEI for m = 1000 in Figure 5.9. We again see
that the concentration and potential profiles predated by our solution
capture the numerical solution up to errors of the magnitude predicted
in (5.81).
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Figure 5.8: Comparison of asymptotic (5.81) (dashed in (a), (c), (e)) and numer-
ical (5.12) (solid in (a), (c), (e)) solution where all parameter except
m are taken to be O(1) and Φ = 1: (a) predicted values of lithium
and electron fluxes; (b) absolute errors in fluxes with dotted line
(1/ log(m))2 for reference; (c) predicted values of boundary con-
centrations; (d) absolute errors in concentrations with dotted lines
m−2/3/ log(m) (upper) and 1/m (lower) for reference; (e) predicted
values of boundary potentials; (f) absolute errors in potentials with
dotted lines 1/ log(m) (upper) and 1/m (lower) for reference.
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Figure 5.9: Comparison of asymptotic (5.81) and numerical (5.12) concentra-
tion and potential within the SEI for m = 1000, Φ = 1 and all other
parameters O(1). Here the expected errors are m−2/3/ log(m) ≈
10−3 for the concentration and 1/ log(m) ≈ 10−1 for the potential.
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5.5.5 Electron migration with graphite–SEI intercalation reaction

We now consider the case in which the SEI growth is limited by migra-
tion of electrons through the SEI but lithium intercalation is limited by
the reaction on the graphite–SEI boundary. This corresponds to taking

m+
n,σ = m̂+

n,σ/m, m+
σ,n = m̂+

σ,n/m, m+
σ,e = m̂+

σ,e,

m+
e,σ = m̂+

e,σ, m−n,σ = mm̂+
n,σ, m−σ,n = mm̂+

σ,n,

m−σ,e = mm̂+
σ,e,

with each of the ‘hat’ terms being O(1), every other parameter in the
model to be O(1), and taking the limit m → ∞. The analysis is very
similar to that of the diffusion-limited growth case so we just state the
leading-order solution which is

cσ
∣∣
ξ̂=0

=

√
m+

e,σm
−
n,σ

m+
σ,em

−
σ,n

exp

(
−λΦ

2

)
, (5.82a)

cσ
∣∣
ξ̂=1

=

(
2m+

e,σ

Lσm
−
σ,em

+
σ,e

)2/3(
m−n,σ

m−σ,n

)1/3

exp

(
−λΦ

3

)
, (5.82b)

φσ
∣∣
ξ̂=0

=
Φ

2
+

1

2λ
log

(
m+

e,σm
−
σ,n

m+
σ,em

−
n,σ

)
(5.82c)

φσ
∣∣
ξ̂=1

=
Φ

3
+

2

3λ
log
(
Lσm

−
σ,e
)

+
1

3λ
log

(
m+

e,σm
−
σ,n

m+
σ,em

−
n,σ

)
, (5.82d)

N−σ =
2

Lσ

√
m+

e,σm
−
n,σ

m+
σ,em

−
σ,n

exp

(
−λΦ

2

)
, (5.82e)

N+
σ =

(
m+

e,σm
−
σ,n

m+
σ,em

−
n,σ

)1/4

exp

(
−λΦ

4

)
×

(
m+

n,σ

(
m−n,σm

+
σ,e

m−σ,nm
+
e,σ

)1/2

exp

(
λΦ

2

)

−m+
σ,n

(
m−n,σm

+
e,σ

m−σ,nm
+
σ,e

)1/2

exp

(
−λΦ

2

))
,

(5.82f)

where we have recombined m with the ‘hat’ terms. This asymptotic so-
lution and the numerical solution of (5.12) are compared in Figure 5.10.
We observe good agreement between the two solutions with the errors
scaling with at least m−2/3.
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Figure 5.10: Comparison of asymptotic solution (5.82) (dashed in (a), (c), (e))
and numerical solution to (5.12) (solid in (a), (c), (e)) where all
parameter except m are taken to be O(1) and Φ = −1: (a) pre-
dicted values of lithium and electron fluxes; (b) absolute errors in
fluxes with dotted line m−2/3 for reference; (c) predicted values
of boundary concentrations; (d) absolute errors in concentrations
with dotted lines m−2/3 for reference; (e) predicted values of
boundary potentials; (f) absolute errors in potentials with dotted
lines m−2/3 for reference.
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5.5.6 Electron diffusion and SEI–electrolyte intercalation reaction

We also consider the case in which SEI growth is limited migration of
electrons through the SEI and lithium intercalation is limited by the
reaction on the SEI–electrolyte boundary. This corresponds to taking

m+
n,σ = m̂+

n,σ, m+
σ,n = m̂+

σ,n, m+
σ,e = m̂+

σ,e/m,

m+
e,σ = m̂+

e,σ/m, m−n,σ = mm̂+
n,σ, m−σ,n = mm̂+

σ,n,

m−σ,e = mm̂+
σ,e,

with each of the ‘hat’ terms being O(1) and also take every other pa-
rameter in the model to be O(1). We will then take the limit m → ∞.
The analysis is very similar to that of the diffusion-limited growth case
so we again simply state the leading-order solution, which is

cσ
∣∣
ξ̂=0

=

√
m−n,σm

+
n,σ

m−σ,nm
+
σ,n
, (5.83a)

cσ
∣∣
ξ̂=1

=

(
2m+

n,σ

Lσm
−
σ,em

+
σ,n

)2/3(
mn,σ

mσ,n

)1/3

exp

(
λΦ

3

)
, (5.83b)

φσ
∣∣
ξ̂=0

= Φ +
1

2λ
log

(
m+

n,σm
−
σ,n

m+
σ,nm

−
n,σ

)
, (5.83c)

φσ
∣∣
ξ̂=1

=
2Φ

3
+

2

3λ
log
(
Lσm

−
σ,e
)

+
1

3λ
log

(
m+

n,σm
−
σ,n

4m+
σ,nm

−
n,σ

)
,

(5.83d)

N−σ =
2

Lσ

√
m−n,σm

+
n,σ

m−σ,nm
+
σ,n
, (5.83e)

N+
σ =

(
2

Lσm
−
σ,e

)1/3

exp

(
λΦ

6

)
×
(

1

m−n,σm
+
n,σm

−
σ,nm

+
σ,n

)1/6

×

(
m+

n,σm
+
σ,e

(
m−n,σ

(m+
σ,n)2

)1/3

exp

(
λΦ

2

)
−m+

e,σ
(
m−n,σm

+
σ,n
)1/3

exp

(
−λΦ

2

))
.

(5.83f)

Here, we have recombined the ‘m’ and ‘hat’ terms. As before, we
compare our asymptotic solution (5.83) with the numerical solution of
(5.12) in Figure 5.11. We observe good agreement between the solutions
with the error in the electron scaling as m−2/3 and the errors in the
other terms (with the exception of φσ

∣∣
ξ̂=1

) decaying at a faster rate. The

errors in φσ
∣∣
ξ̂=1

decay slightly slower than m−2/3.
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Figure 5.11: Comparison of asymptotic solution (5.83) (dashed in (a), (c), (e))
and numerical solution to (5.12) (solid in (a), (c), (e)) where all
parameter except m are taken to be O(1) and Φ = 1: (a) pre-
dicted values of lithium and electron fluxes; (b) absolute errors in
fluxes with dotted line m−2/3 for reference; (c) predicted values
of boundary concentrations; (d) absolute errors in concentrations;
(e) predicted values of boundary potentials; (f) absolute errors in
potentials.
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5.6 VA L I D AT I O N O F A R E D U C E D S E I M O D E L

In this section, we compare the reduced SEI model that we developed
in the electron migration with graphite–SEI intercalation reaction limit
(5.82) with experimental data and set it within the context of the ad-hoc
zero-dimensional SEI growth models from the literature. A similar
study could be undertaken for the other reduced-order models that
we have developed. However, we chose to investigate this particular
candidate because it recovers a square-root of time SEI growth depen-
dence, an exponential dependence upon the potential drop across the
layer (which we expected would recover SoC dependence), and retains
a Butler–Volmer-like structure for the intercalation reaction. We begin
by dimensionalising the model and writing it in terms of measurable
electrochemical properties as well as variables that are employed in full
lithium-ion cell models such as the DFN. We then adopt the experimen-
tally motivated battery model developed in [82] to compare our SEI
model with experimental data that captures the time, temperature, and
SoC dependence of capacity fade within a lithium-ion cell. We follow
this with a discussion of how our SEI model compares to other ad-hoc
SEI models in the literature and conclude that our model is one of only
two growth models that can well recover observed cell capacity fade.

5.6.1 Redimensionalisation

We begin by redimensionalising (5.82). Here, we are only concerned
with two quantities, the intercalation flux N+

σ and the electron flux N−σ .
Applying the scalings in (5.7), we obtain

N∗+σ =
1

F ∗

(
m∗+e,σm

∗−
σ,nc

∗
e,n

m∗+σ,em
∗−
n,σ

)1/4

× exp

(
− F ∗

4R∗gT
∗ (φ∗s,n − φ̂∗e,n)

)

×

[
m∗+n,σc

∗
s,n

(
m∗−n,σm

∗+
σ,e

m∗−σ,nm
∗+
e,σc∗e,n

)1/2

× exp

(
F ∗

2R∗gT
∗ (φ∗s,n − φ̂∗e,n)

)

−m∗+σ,n(c∗s,n,max − c∗s,n)

(
m∗−n,σm

∗+
e,σc
∗
e,n

m∗−σ,nm
∗+
σ,e

)1/2

× exp

(
− F ∗

2R∗gT
∗ (φ∗s,n − φ̂∗e,n)

)]
,

(5.84a)
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N∗−σ =
2D∗−σ
L∗σ

√
m∗+e,σm

∗−
n,σc∗e,n

m∗+σ,em
∗−
σ,n

× exp

(
− F ∗

2R∗gT
∗ (φ∗s,n − φ̂∗e,n)

)
.

(5.84b)

The key measureable electrochemical quantity is the OCP of the nega-
tive electrode with respect to a lithium reference electrode. As a step
towards this, we first write (5.84a) in terms of the OCP of the negative
electrode vs. the potential in the electrolyte, Û∗n (c∗s,n, c

∗
e). By taking the

intercalation reaction to be in equilibrium (N∗+σ = 0, Û∗n (c∗s,n, c
∗
e) =

φ∗s,n − φ̂∗e,n), (5.84a) gives

Û∗n (c∗e,n, c
∗
e,n) =

R∗gT
∗

F ∗
log

(
m∗−σ,nm

∗+
e,σ(c∗s,n,max − c∗s,n)c∗e,n

m∗−n,σm
∗+
σ,ec∗s,n

)
. (5.85)

Following a similar approach to that taken in §2.4.1, we can then write
(5.84a) as

N∗+σ =
2

F ∗
(m∗+n,σm

∗+
σ,n)1/2(c∗s,n)1/2(c∗s,n,max − c∗s,n)1/2

×
(
m∗+e,σm

∗−
n,σc

∗
e,n

m∗+σ,em
∗−
σ,n

)1/4

× exp

(
− F ∗

4R∗gT
∗ (φ∗s,n − φ̂∗e,n)

)

× sinh

(
F ∗

2R∗gT
∗ (φ∗s,n − φ̂∗e,n − Û∗n (c∗s,n, c

∗
e,n))

)
.

(5.86)

To write our expressions in terms of the OCP relative to a lithium
reference electrode, U∗n (c∗n), we use (2.13). Mathematical models of
full cells are also written in terms of the electrochemical potential in
the electrolyte, φ∗e , instead of the true potential in the electrolyte, φ̂∗e
(see §2.4.1 for more details). We write (5.84) in terms of φ∗e instead of
φ̂∗e using (2.12). Finally, to be consistent with our formulation of full
cell models in earlier chapters, we write the reduced SEI model as
interfacial current densities defined to be

j∗n := F ∗N∗+σ , j∗σ = −F ∗N∗−σ . (5.87)

Following this process, (5.84) becomes

j∗n = j∗0,n sinh

(
F ∗η∗n

2R∗gT
∗

)
, (5.88a)

j∗σ = −2F ∗D∗−σ
L∗σ

c∗σ,ref exp

(
− F ∗

2R∗gT
∗ (φ∗s,n − φ∗e,n)

)
, (5.88b)
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where

j∗0,n = m∗n(c∗s,n)1/2(c∗s,n,max − c∗s,n)1/2
(
c∗σ,ref

)1/2

× exp

(
−
F ∗(φ∗s,n − φ∗e,n)

4R∗gT
∗

)
,

(5.88c)

η∗s,n = φ∗s,n − φ∗e,n − U∗n (c∗s,n), (5.88d)

are the intercalation exchange current density and intercalation over-
potential. Two lumped constants have been introduced here

m∗n = 2(m+
n,σ)1/2(m∗+σ,n)1/2 (5.88e)

which is an effective reaction rate similar to that introduced in §2.4.1
with units of A m−2 (m3 mol−1)1.5, and

c∗σ,ref =

√√√√m∗−n,σm
∗
Li,em

∗+
e,σ

m∗−σ,nm
∗
e,Lim

∗+
σ,e
, (5.88f)

which has units of mol m−3 and corresponds to the concentration of
electrons (and lithium-ion interstitials) at the graphite–SEI interface
when φ∗s,n = φ∗e,n. As an aside, the actual electron concentration at the
graphite–SEI interface is obtained from

c∗σ,ref exp

(
− F ∗

2R∗gT
∗ (φ∗s,n − φ∗e,n)

)
.

From the structure of (5.88), we can see that the standard Butler–Volmer
relation for intercalation (introduced in §2.4.1) is only slightly modified
with the exchange current density now dependent upon the concentra-
tion of lithium-ion interstitials at the graphite-SEI interface instead of
the concentration of lithium-ions in the electrolyte. As a result, this in-
troduces a potential dependence to the exchange current density which
was not previously present. The main characteristics of the SEI growth
reaction, j∗σ, are that it is proportional to the diffusivity of electrons
within the SEI as well as the concentration of electrons at the graphite–
SEI interface, and inversely proportional to the thickness of the SEI.
Since the concentration of electrons at the graphite–SEI interface is de-
pendent upon the potential difference across the SEI, this introduces an
SoC dependence into the model. Additionally, the inverse proportion-
ality to the SEI thickness results in a square-root of time decay of the
SEI growth rate, which is often reported in capacity fade experiments
[15], [63]. These characteristics make the model a promising candidate
for capturing SEI growth accurately.



5.6 VA L I D AT I O N O F A R E D U C E D S E I M O D E L 177

5.6.2 Experimentally motivated model

To compare our SEI model with the experimental data from [35], we
require some model of the lithium-ion cell. The experimental results in
[35] demonstrate that it is crucial to employ the graphite OCP measured
for a particular cell to accurately predict capacity fade. This quantity
is provided in [35] as a function of SoC, i.e. U∗n (SoC). However, the
physics-based models that we have previously been using require
the graphite OCP as a function of the surface concentration of the
graphite particles, U∗n (c∗s,n). It is not immediately clear how to convert
from SoC to c∗s,n without knowledge of the concentrations at SoC= 0, 1.
Further, we are not provided with many other key parameters for this
particular cell that are required in full physics-based models. To avoid
these difficulties, we employ the experimentally motivated approach
taken in [82] to perform our comparison. This is approach involves
making several ad-hoc assumptions to link our model to the concepts
of ‘capacity’ and ‘SoC’.

We first assume that the capacity loss of the cell is equal to the
lithium lost due to SEI formation. It should be noted that the loss of
lithium and the capacity fade is not necessarily equal. This is because
the loss of lithium results in stochiometric offsets between the elec-
trodes which cause the upper and lower voltage limits (from which
capacity is defined) to correspond to different balances of the electrode
concentrations [10]. However, in [10] these offsets appear small so this
is likely a reasonable first assumption. The capacity of the cell is then
given by

∂Q∗

∂t∗
= A∗j∗σ, Q∗

∣∣
t∗=0

= Q∗0, (5.89a)

whereQ∗ is the cell capacity (in Coulombs),Q∗0 is the initial cell capacity,
and A∗ is the total surface area of the negative electrode.

The second assumption is that during storage the SoC of the cell
decays at the same rate as the relative capacity Q∗/Q∗0 of the cell. The
thinking here is that when the capacity fades by a particular amount,
the same amount of charge stored in the cell must also be lost. The
factor of Q∗0 converts the total stored charge into SoC (referenced to the
initial capacity of the cell). Therefore, we have

∂SoC
∂t∗

=
A∗

Q∗0
j∗σ, SoC

∣∣
t∗=0

= SoC0, (5.89b)

where SoC0 is the SoC at the beginning of the experiment.
In the experimental procedure in [35] a checkup experiment was

performed after 1.9 months, 3.8 months, 6.5 months, and 9.5 months
of storage to measure the capacity of the cells. After this checkup, the
cells were returned to the initial SoC but this is now the SoC measured
with respect the newly measured capacity of the cell, Q∗, instead of the
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initial capacity of the cell, Q∗0. Within the model, we account for this
resetting of the SoC using

SoCreset = SoC0
Q∗

Q∗0
. (5.89c)

Numerically, we simply update the SoC during storage with (5.89b),
read out Q∗ at the allotted checkup times, apply (5.89c), and repeat
until the end of the experiment.

We describe the evolution of the thickness of the SEI using (5.6h)
but assume that a small layer of SEI of thickness, L∗σ,0, has formed on
the short timescales that we have previously, neglected. Therefore, we
have

∂L∗σ
∂t∗

= − V̄
∗
σ

F ∗
j∗σ, L∗σ

∣∣
t∗=0

= L∗σ,0. (5.89d)

We also assume that the intercalation reaction is almost in equilibrium
(we will justify this assumption more formally later) so that φ∗s,n−φ∗e,n ≈
U∗n (SoC), such that (5.88b) becomes

j∗σ = −2F ∗D∗−σ
L∗σ

c∗σ,ref exp

(
− F ∗

2R∗gT
∗U
∗
n (SoC)

)
. (5.89e)

Equations (5.89) then forms a closed system of ordinary differential
equations which we solve numerically. Values for each of the param-
eters except c∗σ,ref, L

∗
σ,0, and V̄ ∗σ are provided in Tables 5.1 and 5.2. We

shall modify these values only slightly taking L∗σ,0 = 1 nm instead of
15 nm. We also take V̄ ∗σ and c∗σ,ref to be fitting parameters. To capture
the temperature dependence of the SEI growth rate, we assume that
the diffusivity of electrons within the SEI follows an Arrhenius relation
of the form

D∗−σ = D∗−σ,ref exp

(
E∗D,σ

R∗g

(
1

T ∗ref
− 1

T ∗

))
, (5.89f)

where we shall take T ∗ref = 323.15 K (50 ◦C) and will employ E∗D,σ as an
additional fitting parameter.

5.6.3 Comparison with experiments

In [35], calendar ageing (long-term storage without charge/discharge)
is studied at different temperatures across 16 different SoCs. The ca-
pacity of these cells was measured at the start of the experiment and
then after 1.9 months, 3.8 months, 6.5 months, and 9.5 months, giving
the time dependence of capacity fade. Three types of lithium-ion cell
with graphite negative electrodes were studied but we shall only con-
sider the cell with a Nickel-Cobalt-Aluminum (NCA) positive electrode.
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Since the study of capacity fade is conducted on full cells, degradation
mechanisms other than SEI formation are also likely occurring within
the cell. However, for our comparisons, we will proceed with the as-
sumption that SEI is the only degradation mechanism and comment
on where this assumption is appropriate in light of our comparison
results.

We employ least squares to fit (5.89) to the experimental data from
[35], treating V̄ ∗σ , c∗σ,ref, and E∗D,σ as adjustable parameters. All other pa-
rameters are taken from Tables 5.1 and 5.2 and we take L∗σ,0 = 1 nm. We
first hold the temperature fixed at 50 ◦C and fit V̄ ∗σ and c∗σ,ref to the full
set of SoC and time dependent experimental results (as displayed in
Figure 5.12 (b)) to find c∗σ,ref = 0.967 mol m3, V̄ ∗σ = 1.16×10−5 m3 mol−1.
We then hold these values fixed and adjust E∗D,σ such that our model
fits the SoC and temperature dependent data (as displayed in Fig-
ure 5.12(c)). Doing this, we find the value E∗D,σ = 41 851 J mol−1.

In Figure 5.12, we compare the capacity fade prediction from our SEI
model with experimental data. For SoCs greater than 0.2, our model
excellently recovers the SoC, temporal, and temperature dependence
of the experimental results. In particular, the model captures well the
sudden reduction in capacity that occurs around SoC=0.6. This reflects
the step change in the OCP at around SoC=0.6. The mostly flat regions
of the OCP also give rise to similar rates of capacity fade in both the
experimental and model results.

At low SoCs, our model fails to capture the capacity fade predicted
by experiment. It is possible that the model we adopted for resetting
the SoC (5.89) is not accurate at low SoCs. Experimentally, the OCP
will shift as a function of SoC as lithium is lost [10]. However, we do
not fully account for these shifts. Experimentally remeasuring the OCP
at each checkup may help reduce this uncertainty. Another possible
reason is that there are additional degradation mechanisms that are
important at low SoC. In [82], a linear rate of degradation representing
any other unidentified mechanisms is introduced in conjunction with
an SEI growth model. For demonstration purposes, we also do this by
replacing (5.89a) and (5.89b) with

∂Q∗

∂t∗
= A∗j∗σ − γ∗, Q∗

∣∣
t∗=0

= Q∗0 (5.90a)

∂SoC
∂t∗

=
A∗

Q∗0
j∗σ −

γ∗

Q∗0
, SoC

∣∣
t∗=0

= SoC0, (5.90b)

where γ∗ is a fitting parameter with units of A that encompasses other
degradation mechanisms. By treating γ∗ as an additional fitting param-
eter alongside V̄ ∗σ and c∗σ,ref, for the data for 50 ◦C after 9.5 months, we
obtain the results in Figure 5.13. Here, we observe a much improved
performance at capturing capacity fade at low SoCs. Therefore our
SEI model is consistent with the hypothesis that other degradation
mechanisms drive degradation at low SoCs.
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Figure 5.12: Fit of (5.89) to experimental data from [35]: (a) Negative elec-
trode OCP as a function SoC reported in [35]; (b) Time and
SoC dependence of capacity fade at 50 ◦C; (c) Temperature and
SoC dependence of capacity fade after 9.5 months of storage.
The fitted parameter values are c∗σ,ref = 0.967 mol m−3, V̄ ∗

σ =

1.16 × 10−5 m3 mol−1, E∗
D,σ = 41 851 J mol−1 and the initial SEI

thickness was taken to be 1 nm. All other parameter values are
from Tables 5.1 and 5.2.
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Figure 5.13: Comparison between (5.89) with (5.90) and experimental data
from [35] at 50 ◦C after 9.5 months. Fitted parameter values are:
c∗σ,ref = 1.68 mol m−3, V̄ ∗

σ = 8×10−9 m3 mol−1, and γ = 1.4×10−5.



5.6 VA L I D AT I O N O F A R E D U C E D S E I M O D E L 181

5.6.4 Relation to zero-dimensional SEI growth models

In §5.3 we discussed the ad-hoc zero-dimensional models of SEI growth
that have been developed in the literature. A numerical comparison of
these zero-dimensional SEI growth models was provided [82] but we
will discuss the key features of each here to demonstrate similarities
and differences with our asymptotically derived SEI growth model.
There are four models that we will discuss. The first is solvent diffusion-
limited growth. In this case, solvent molecules in the electrolyte are
slow to transport through the outer SEI layer to the reaction site. There-
fore, the rate at which they do so determines the SEI growth rate. The
model that is commonly written is (see [66], [87])

j∗solvent = −
F ∗D∗solc

∗
sol

L∗σ
, (5.91)

where D∗sol is the diffusivity of solvent molecules within the outer SEI,
c∗sol is the concentration of solvent in the bulk electrolyte, and L∗σ is
the thickness of the outer SEI. Here the rate of growth is inversely
proportional to the thickness of the SEI and therefore can replicate
the square root of time dependence of capacity fade observed exper-
imentally [15], [63]. However, this model crucially does not contain
a dependence upon the potential difference across the SEI. Therefore,
it cannot recover the SoC dependence observed in the experimental
results of [35].

The second common SEI growth mechanism is reaction-limited
growth. Here, solvent molecules and electrons are available in abun-
dance at the reaction site and it is the SEI reaction itself that determines
the growth rate of the SEI. The model that is commonly written down
is (see [69], [71])

j∗reaction = j0,σ exp

(
F ∗η∗σ
R∗gT

∗

)
(5.92)

where j∗0,σ is the SEI exchange current density (a constant),

η∗σ = φ∗s,n − φ∗e,n − U∗σ − r∗σL∗σ(j∗n + j∗reaction) (5.93)

is the SEI reaction overpotential, U∗σ is the SEI OCP, and r∗σ is the SEI
resistivity. Unlike the solvent diffusion-limited growth model, this
model will give rise to an SoC dependent growth rate. However, since
the SEI resistivity is typically small, the growth rate is only weakly
dependent upon the thickness of the SEI. As a result the model predicts
a linear capacity fade [71] which contrasts with the slowing rate of
capacity fade observed experimental in [15].

Electron-migration-limited growth assumes that transport of elec-
trons through the inner SEI determines the growth rate of the SEI. This
the same case that we consider in the development of our asymptotic
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SEI growth model. However, the commonly written ad-hoc model dif-
fers significantly from the model that we have derived. This ad-hoc
model takes the form (see [82], [87])

j∗electron = κ∗σ
η∗σ
L∗σ

, (5.94)

where κ∗σ is the conductivity of the SEI,

η∗σ = φ∗s,n − φ∗e,n − U∗σ (5.95)

is the SEI overpotential, and U∗σ is the OCP of the SEI growth reaction.
The model is inversely proportional to the thickness of the SEI and so
recovers the observed square root of time capacity fade rate of [15].
Additionally, this model contains a potential dependence and therefore
will produce an SoC dependent capacity fade. The SoC dependence
of the capacity fade predicted by this model was studied in [82]. It
was found that this model does not fit well to the SoC dependence of
the experimental capacity fade data of [35] even when only a single
temperature and checkup time was considered.

A final novel model of SEI growth was proposed in [82] to explain the
SoC dependence of capacity fade. In this model, the authors propose
that diffusion of lithium ion interstitials (which carry electrons to the
SEI reaction site) is the limiting mechanism in SEI growth. The model
that they develop takes the form

j∗inter = −
F ∗D∗Li,i

L∗σ
c∗Li,i,0 exp

(
− F ∗

R∗gT
∗ (φ∗s,n − φ∗s,e)

)
, (5.96)

where D∗Li,i is the diffusivity of lithium ion interstitials in the inner SEI,
and c∗Li,i,0 is the concentration of lithium ion interstitials in the inner
SEI when φ∗s,n = φ∗e,n. This model is very similar in structure to our
asymptotic expression for SEI growth, with the only difference being a
factor of 1/2 within the exponential.

In summary, of the ad-hoc zero-dimensional SEI models, it appears
that only one model, lithium ion interstitial growth, is consistent with
the available capacity fade data. Since both our SEI model and the
lithium atom interstitial model can explain the available data fairly
well, are of very similar forms, and accurate parameter values are diffi-
cult to obtain for these models, it is difficult at this stage to determine
which model is a more accurate representation of the true physical
process. One benefit of our approach, however, is that we have consis-
tently developed an associated intercalation reaction. Of the available
literature, we have not observed any other models that attempts to do
this for growth limited by processes within the inner SEI.
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5.7 D Y N A M I C L O A D S

We now introduce our SEI model into a full physics-based model of
a lithium-ion cell motivated by those derived in §3. This allows us
to study the effects of dynamic load profiles on cell degradation and
therefore suggest ways to use a cell that reduce degradation. We begin
by introducing our model in dimensional form and then introduce
scalings to write it in dimensionless form. After introducing our model,
we study the cases of a fixed throughput, fixed depth-of-discharge
(DoD), and SEI growth during a realistic drive cycle. We also develop a
map of ‘safe’ and ‘dangerous’ operating conditions for degradation in
lithium-ion cells. Throughout this section, we employ notation that has
been previously introduced in this thesis.

5.7.1 Dimensional model

We will employ the simplest physics-based model of a lithium-ion
cell because this illustrates the key extensions that must be made to
include SEI growth into a full cell model. This also allows our model
to be computationally inexpensive so that we can efficiently compute
degradation over periods of a year whilst still resolving the effects of
cycling on the timescale of hours. We arrive at this model by taking
the limit of fast diffusion within the active material particles in the
SPM (3.21). In taking this limit, the concentration within each particle
become uniform and we can replace the diffusion equation within
each of the particles with a single ODE. Therefore, the evolution of the
concentrations within the particles is described by

∂c∗s,n

∂t∗
= − 3j∗n

F ∗R∗n
, c∗s,n

∣∣
t∗=0

= c∗s,n,0, (5.97a)

∂c∗s,p

∂t∗
= −

3j∗p

F ∗R∗p
, c∗s,p

∣∣
t∗=0

= c∗s,p,0. (5.97b)

We note that lithium can only enter or leave the negative particle via
the intercalation reaction, j∗n. The SEI formation reaction therefore does
not directly consume lithium from the particle. However, lithium may
be transported from the particle into the electrolyte and then consumed
by the SEI formation reaction. We capture this effect by noting that the
SEI consumes a portion of the applied current. Therefore, across the
surface of the negative electrode particles, we have

j∗n + j∗σ =
I∗

a∗nL
∗
n
. (5.97c)

As before, the SEI thickness is given by

∂L∗σ
∂t∗

= − V̄
∗
σ

F ∗
j∗σ, L∗σ

∣∣
t∗=0

= L∗σ,0. (5.97d)
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On the positive electrode, only the intercalation reaction occurs and
therefore we simply have

j∗p = − I
∗

a∗pL
∗
p
. (5.97e)

The model is then closed with our derived expressions for the negative
electrode intercalation and SEI reactions (5.88), which we restate here
for clarity

j∗n = j∗0,n sinh

(
F ∗η∗n

2R∗gT
∗

)
, (5.97f)

j∗σ = −2F ∗D∗−σ
L∗σ

c∗σ,ref exp

(
− F ∗

2R∗gT
∗ (φ∗s,n − φ∗e,n)

)
, (5.97g)

where

j∗0,n = m∗n(c∗s,n)1/2(c∗s,n,max − c∗s,n)1/2
(
c∗σ,ref

)1/2

× exp

(
−
F ∗(φ∗s,n − φ∗e,n)

4R∗gT
∗

)
,

(5.97h)

η∗s,n = φ∗s,n − φ∗e,n − U∗n (c∗s,n), (5.97i)

and we have taken φ∗s,n = 0 as the reference potential. Other key vari-
ables, such as the terminal voltage, can be recovered by trivial modifi-
cations of the expressions presented for the SPM (3.21) however, these
are not important for this study. Equations (5.97) form a model of the
full lithium-ion cell that is spatially independent, which dramatically
reduces computational costs. However, the introduction of the SEI side
reaction results in an additional algebriac constraint (5.97c). Therefore
(5.97) is a system of differential algebriac equations (DAEs).

5.7.2 Nondimensionalisation

We now nondimensionalise (5.97) to improve numerical performance.
Without doing this, the large exponential dependence within the alge-
braic constraint (5.97c) can result in convergence issues. For the full cell
variables, we employ the scalings in (3.1) as well as the dimensionless
parameters defined in Tables 3.3 and 3.4. We introduce the following
scalings for variables associated with SEI growth as follows

L∗σ = L∗σ,0Lσ, j∗σ =
2F ∗D∗−σ c∗σ,ref

L∗σ,typ
exp

(
−
F ∗U∗n,ref

2R∗gT
∗

)
jσ, (5.98)
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and introduce the dimensionless parameters

V̄σ =
2V̄ ∗σD

∗−
σ c∗σ,ref exp

(
−F ∗U∗n,ref

2R∗gT ∗

)
τ∗d

(L∗σ,0)2
, (5.99)

Cσ =
τ∗σ
τ∗d

(5.100)

where τ∗d is the discharge timescale defined in Table 3.2 and

τ∗σ =
2c∗s,n,maxL

∗
σ,0

D−∗σ a∗nc
∗
σ,ref exp

(
−F ∗U∗n,ref

2R∗gT ∗

) (5.101)

is the timescale for the SEI formation reaction. With these scalings,
(5.97) becomes

∂cs,n

∂t
= −3jn

an
, cs,n

∣∣
t=0

= cs,n,0, (5.102a)

∂cs,p

∂t
= −

3jp

apγp
, cs,p

∣∣
t=0

= cs,p,0 (5.102b)

∂Lσ
∂t

= −V̄σjσ, Lσ
∣∣
t=0

= 1, (5.102c)

jn +
1

Cσ
jσ =

I
Ln
, (5.102d)

jn =
1

Crn

c
1/2
s,n (1− cs,n)1/2 exp

(
−1

4
(φs,n − φe,n)

)
× sinh

(ηn

2

)
,

(5.102e)

jσ = − 1

Lσ
exp

(
−1

2
(φs,n − φe,n)

)
, (5.102f)

ηn = φs,n − φe,n − Un(cs,n), (5.102g)

φs,n = 0, (5.102h)

jp = − I
Lp
. (5.102i)

In the remainder of this section, we will make use of the parameter
values from the fit in Figure 5.12 as well as those in Tables 2.1, 2.2, 5.1,
and 5.2. As a result, we have

V̄σ =
0.0109

C
, Cσ = 590290.95C (5.103)

where C is the C-rate. There is one remaining unknown parameter, Crn
the coefficient in our updated intercation reaction (5.102e). We have
scaled this equation in exactly the same way as we did in §3. Since
the coefficient in the original intercalation reaction, which we will
label Crn,std, was determined experimentally, we will simply relate this
parameter to our new parameter through equating the two exchange
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current densities at a reference state of φ∗s,n − φ∗e,n = U∗n (c∗s,n,ref), where
c∗s,n,ref is the concentration in the negative electrode at this reference
state. We shall take cs,n,ref = 0.5. Doing this gives the value

Crn = 0.033C. (5.104)

This is related to the standard prefactor by

Crn = Crn,std exp

(
−
Un(cs,n,ref)

4

)
. (5.105)

To properly obtain this parameter value, we would require access to
the raw experimental data for the exchange current density. Since we
do not have this, we have adopted the approach presented above to
obtain a parameter value of the correct order of magnitude.

5.7.3 Results

We now solve (5.102) numerically using PyBaMM. We start by imposing
a sinusoidal input current of the form

I∗app(t∗) = I∗max sin (2πω∗t∗) (5.106)

where Imax is the maximum amplitude of the applied current, and ω∗ is
the frequency of the applied current. The first case that we study is that
of a fixed total throughput of current through the cell. This corresponds
to the condition∫ t∗final

0
|I∗app(t∗)|dt∗ = a∗, (5.107)

where t∗final > 0 is the final time of the simulation and a∗ > 0 is constant.
This is enforced by taking

I∗max =
a∗2
√

2π√
4πt∗final −

1
ω∗ sin

(
4πω∗t∗final

) . (5.108)

By considering this case we remove the concern that the different
usage conditions that we consider lead to different rates of degradation
because the cell is being used more (rather than how it is being used).
We then choose a∗ such that an applied current with a frequency of
ω∗ = 1/(1 h) discharges the cell from cs,n = 0.8 to cs,n = 0.2 in 30 min.
We display our results for a frequency of ω∗ = 1/(10 min) for initial
conditions of cs,n = 0.2, 0.4, 0.6, 0.8 and a frequency of ω∗ = 1/(1 h)

for initial conditions cs,n = 0.8 in Figure 5.14. We choose to investigate
only one case with a frequency of ω∗ = 1/(1 h) because the cell would
fully discharge at lower intial stoichiometries and the case we studied
was representative of the key behaviour.
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Figure 5.14: SEI growth results for the input current (5.106) with (5.108) for a
selection of initial conditions and frequencies (as indicated in (b)):
(a) Predicted SEI thickness through time; (b) Negative particle
stochiometry profiles in first hour; (c) SEI growth rates during
the first hour of cycling (i.e. for 1 nm thick SEI layer). Colouring
is consistent across (a), (b), and (c).

In Figure 5.14 (a), we present the predicted thickness of the SEI
during a twelve-month simulation of SEI growth. For all frequencies
and initial conditions, we observe the characteristic slowing growth
rate as the thickness of the layer increase. We also observe a strong
dependence on the initial conditions of the cell. By referring to the
negative particle stoichiometries in Figure 5.14 (b) in conjunction with
(a), we can see that higher negative particle stoichiometries correspond
to a thicker SEI. This aligns with the calendar ageing results for high
SoCs in the previous section. For the current with a period of 1 hour
(blue), less time is spent at higher negative particle stoichiometries
than the currents with a period of 10 minutes that are initially at cs,n =

0.6, 0.8 (red, purple). However, it also spends less time at low negative
particle stoichiometries than the currents with a period of 10 minutes
that are initially at cs,n = 0.2, 0.4 (yellow, green). Therefore, we observe
a medium rate of growth for this case. By referring to Figure 5.14
(c), we confirm that negative particle stoichiometry (and therefore
the negative OCP) is the main determinant of relative SEI growth
rates (i.e. a higher stochiometry leads to more growth than a lower
stoichiometry). However, we also observe that the rate of growth is
highly dependent upon the applied current. In particular, charging
the cell leads to much higher growth rates than discharging the cell.
Therefore, whilst important, stochiometry is not the sole determining
factor in the growth rate of SEI upon the application of dynamic loads.
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To investigate further the dependence of the SEI growth rate on
the magnitude of the applied current, we consider the case in which
we hold the depth of discharge, that is the maximum and minimum
values of cs,n obtained during a cycle, fixed and vary the magnitude of
the current. To do this, we now apply a current I∗max and then set the
frequency through

ω∗ =
3I∗max

π(cs,n,0 − cs,n,min)c∗s,n,maxa
∗
nL
∗
nF
∗R∗nL

∗
yL
∗
z

, (5.109)

where cs,n,0 is the initial stochiometry in the negative particle and cs,n,min

is the desired minimum stochiometry. The relation (5.109) is derived
by assuming that the intercalation current density is approximately
equal to the applied current averaged across the electrode and then
integrating the negative particle concentration equation with respect to
time from t∗ = 0 to t∗ = 1/(2ω∗).
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Figure 5.15: Average SEI growth rate over the first cycle (with SEI film of
thickness 1 nm) for the input current (5.106) with (5.109) and
two cases: cs,n,0 = 0.6 with cs,n,min = 0.5 and cs,n,0 = 0.4 with
cs,n,min = 0.3. (a) Negative particle stochiometry; (b) Average SEI
growth rate over first cycle.

In Figure 5.15, we consider two cases: cs,n,0 = 0.6 with cs,n,min = 0.5

and cs,n,0 = 0.4 with cs,n,min = 0.3 for (5.106) with (5.109). In both cases
the DoD is the same and therefore the total current throughput is also
the same. The concentration profiles throughout a single period as
displayed in Figure 5.15 (a). In Figure 5.15 (b), we present the average
rate of SEI growth during a cycle as a function of the applied current.
For both set of initial conditions we observe an increasing rate of SEI
growth for higher applied current. Therefore the harder you drive
the cell the greater the degradation. For this particular case, we also
interestingly see that for high enough currents the stochiometry (and
the associated OCP) become relatively less important compared to
internal resistances in the cell. We can observe this effect by comparing



5.7 D Y N A M I C L O A D S 189

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

c s
,n

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.150

0.175

0.200

0.225

Po
te

nt
ia

l[
V

]

(b)

∆φ∗n U∗n η∗n

0.0 0.2 0.4 0.6 0.8 1.0
ω∗t∗

5

10

SE
Ig

ro
w

th
[n

m
/y

ea
r]

(c)

Figure 5.16: SEI growth rate over the first cycle (with SEI film of thickness
1 nm) for the input current (5.106) with (5.109) and I∗max = 1 A
and two cases: cs,n,0 = 0.6 with cs,n,min = 0.5, and cs,n,0 = 0.4 with
cs,n,min = 0.3. (a) Negative particle stochiometry; (b) Breakdown
of surface potential difference into components; (c) SEI growth
rate.
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Figure 5.17: SEI growth rate over the first cycle (with SEI film of thickness
1 nm) for the input current (5.106) with (5.109) and I∗max = 10 A
and two cases: cs,n,0 = 0.6 with cs,n,min = 0.5, and cs,n,0 = 0.4 with
cs,n,min = 0.3. (a) Negative particle stochiometry; (b) Breakdown
of surface potential difference into components; (c) SEI growth
rate.
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Figure 5.16 for an applied current with I∗max = 1 A and Figure 5.17 for
an applied current with I∗max = 10 A.

For the 1 A case, we can observe in Figure 5.16(b) that the size of
the reaction overpotentials are small relative to the difference in the
OCPs and for the most part the potential difference across the negative
particle surface is determined by the OCP. This OCP then drives the
observed SEI growth rate presented in Figure 5.16(c) with a lower
potential corresponding to higher growth rates. Here we also observe
that the overpotentials are such that they increase the surface potential
difference during discharge and increase it during charge giving rise
to higher SEI growth during charge. In contrast to the 1 A case, in the
10 A, we can observe in Figure 5.17 (b), that the reaction overpotentials
contribute significantly more to the surface potential difference. For this
particular case, we observe that the overpotentials associated with the
cs,n,0 = 0.6 with cs,n,min = 0.5 case are smaller than those in the cs,n,0 =

0.4 with cs,n,min = 0.3. As a result, the surface potential difference is
lower for the cs,n,0 = 0.4 with cs,n,min = 0.3 case for much of the critical
charge portion of the cycle. In turn, we then observe a higher rate
of SEI growth in Figure 5.17 (c) during charge and leads to a higher
average SEI growth rate. The reaction overpotential is, in general, a
function of SoC and applied current, with the exact form given from the
intercalation reaction (5.102e) and the SEI growth reaction. Therefore,
this result does not apply generally.

To summarise the dependence of the SEI growth rate upon stochiom-
etry and the applied current, we consider (5.102d)–(5.102g) in isolation
of the rest of the model. We set the SEI thickness to be 1 nm but note
that growth rates for other thickness can be approximated well by
simply scaling the growth rates here by (1 nm)/L∗σ, where L∗σ is the
desired SEI thickness because Cσ � 1. We then perform a parameter
sweep through cs,n and I∗max. The growth rate results are presented in
Figure 5.18 (b). Here, we observe that typically larger values of cs,n

and more negative values of I∗app (corresponding to charging) give rise
to greater rates of SEI growth. The main exception to this is that very
low states of charge result in large SEI growth rates. This is because
of the form of the intercalation exchange current density, j∗0,n which
approaches zero as cs,n approaches zero and leads to high resistances.
By comparing Figure 5.18 (a) and (b), we can see that steps in the OCP
(e.g. at 0.2, 0.5, and 0.9) correspond to steps in the predicted growth
rate. These steps remain a key feature across different currents.
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Figure 5.18: SEI growth predicted by (5.102d)–(5.102g) with a 1 nm SEI film: (a)
OCP of graphite vs negative particle stochiometry; (b) SEI growth
rate vs applied current and negative particle stochiometry.
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Finally, as an indication of how the model might be used to ex-
plore degradation in other environments, we consider SEI growth in
a more realistic situation by applying a US06 drive cycle profile to
(5.102). Our results are presented in Figure 5.19. We again observe that
the SEI growth rate is highest during charging (through regenerative
braking during the drive cycle) and lowest during discharging. From
Figure 5.19 (c) we observe that the OCP does not vary over the time-
frame of the drive cycle. Therefore, the variations in growth that we
observe over the drive cycle are the result of changes in the reaction
overpotential at different currents. It remains to be seen if this predicted
behaviour is observed in reality.
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Figure 5.19: Full cell model with SEI growth (5.102) run with drive cycle
input: (a) Applied current from US06 data; (b) SEI growth rate;
(c) Negative electrode surface potential difference (negative OCP
indicated by green dashed line). Points of high SEI growth are
indicated by red dashed lines.



194 M AT H E M AT I C A L M O D E L L I N G O F T H E S E I

5.8 S U M M A RY

In this chapter, we have introduced a detailed continuum model of the
SEI influenced by DFT calculations. We then performed an extensive
asymptotic analysis to develop a set of simple models valid in various
limiting cases. Following this, we re-wrote one of these asymptotically
reduced models in terms of known electrochemical quantities and
then verified this model by comparing it to experimental data to con-
firm that this model can recover the SoC, temporal, and temperature
dependence of the capacity fade of lithium-ion batteries. Finally, we
incorporated this validated SEI model into a simplified model of a full
lithium-ion cell that is inspired by the full cell battery models that we
derived in §3. This allowed us to study SEI growth under the imposi-
tion of different dynamic load profiles. The SEI growth rates observed
in our numerical experiments were highly dependent upon the poten-
tial difference across the surface of the negative particles and in turn
the negative OCP and intercalation overpotential. Depending upon
the applied current, the relative importance of the OCP and reaction
overpotential changed. We mapped out this dependence in Figure 5.18,
which serves a guide to ‘safe’ and ‘dangerous’ operating conditions for
degradation. To accurately model SEI growth it is critical to capture the
negative OCP and intercalation overpotentials correctly. Since we have
made the assumption of fast diffusion in the particle in the chapter, our
simple full cell model does not accurately capture the particle surface
concentration. Therefore, the results within the dynamic load section
should be viewed only qualitatively and as a demonstration of princi-
ple. Ongoing collaborations are taking place to include SEI growth into
PyBaMM so that SEI growth can be studied within the context of more
detailed cell models. The approach, however, remains the same as that
taken here.
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C O N C L U S I O N S

In this chapter, we first summarise the main results obtained within
this thesis. We follow this with a brief discussion of possible future
work on this topic and then conclude with some closing remarks.

6.1 S U M M A R Y O F R E S U LT S

This thesis has been directed towards addressing two key challenges
in the development of the understanding of degradation in lithium-
ion batteries. The first is the development of mathematical models of
lithium-ion batteries that can be employed to simulate the performance
of a full lithium-ion efficiently. The second challenge is the development
of accurate models of the key degradation mechanisms. We addressed
the first of these challenges in Chapters 3 and 4 of this thesis and we
addressed the second challenge in Chapter 5. To allow the work in this
thesis to be taken on and employed by others in the battery community,
all of the models developed in this thesis were implemented within an
easy-to-use open-source battery modelling software called PyBaMM.

In Chapter 2, we introduced the standard one-dimensional model of
a lithium-ion battery, referred to as the Doyle–Fuller–Newman (DFN)
model. Then in Chapter 3, we simplified the DFN model by consid-
ering the limit of a long electrolyte diffusion timescale relative to the
discharge timescale. We derived the classical SPM and a new model
that accounts for an additional electrolyte correction, which we referred
to as the SPMe. We quantified the asymptotic errors in terms of key
ratios of parameters and then provided a full numerical comparison
of the models that we derived. We found that the SPMe offers an or-
der of magnitude reduction in solve time compared to the DFN with
only a small increase in error. Further, the solve time of the SPM was
comparable to the SPMe but the SPMe offered a significant increase
in accuracy. We then considered ad-hoc variants of the SPMe from the
literature and compared their performance with that of our asymp-
totic SPMe. We found that our asymptotic SPMe performed better than
these model and identified that the reason for this improvement lay
in the failure of ad-hoc models to recognise that the single particle in
the SPMe represents a theoretical averaged particle and not any one
particular particle. As a result, the overpotential terms in our model
were written with reference to electrode-averaged quantities whereas
those of ad-hoc models were written with reference to particular points
in the lithium-ion cell. In addition to this, we also identified the cause
of a discrepancy between the SPMe and DFN, which occurred when
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the OCP had a large second derivative. In response to this, we pro-
posed a further extension to the SPMe that corrected this behaviour
and identified the additional computation effort required to address
the discrepancy.

In Chapter 4, we turned our attention to three-dimensional effects in
lithium-ion pouch cells. Here, we proposed a three-dimensional ther-
mal model of a lithium-ion pouch cell inspired by the one-dimensional
DFN model. We then took the limit of high conductivity in the cur-
rent collectors to derive a model with a 2+1D structure (2D current
collectors with a 1D through-cell model at every point). We provided a
numerical comparison of the full and reduced model, and found that
the results were equivalent up to errors of a similar size to numerical
errors. Henceforth we adopted the 2+1D model. We then proceeded
by considering lower-order truncations of the asymptotic expansion
in this same limit. At leading order, we then recovered the standard
one-dimensional DFN model and then at first order we obtained an
‘in-between’ model that accounted for some of the higher dimensional
effects but utilised just one averaged through-cell model. We then
considered different combinations of the asymptotic limits taken in
this chapter and the asymptotic limits taken in Chapter 3 to develop
a suite of reduced-order models of a lithium-ion pouch cell. We pro-
vided a full numerical comparison of this suite of models. We found
that in general the computational budget should be allocated towards
a more detailed through-cell model instead of models that account
for higher-dimensional effects. However, when thermal effects are in-
cluded accurately capturing higher dimensional effects can be essential.
In which case, we found that a model such as the SPMeCC offers a good
balance between numerical simplicity and accuracy. We also found that
thermal effects could not be properly captured by using the classical
SPM because electrolyte Ohmic heating accounted for a significant
proportion of the heat generation in the cell.

Finally, in Chapter 5, we developed a detailed electrochemical model
of the inner SEI based upon observations in DFT simulations. We then
conducted asymptotic analysis for several physically relevant limits
to simplify this model. We choose to consider one of these limits in
detail, namely the limit of slow electron migration with a slow lithium
intercalation reaction on the graphite–SEI interface, and re-wrote the
model in terms of measurable electrochemical quantities. Upon doing
this, we adopted a simple experimentally motivated model of a lithium-
ion battery to allow us to compare our SEI model with experimental
capacity fade data for calendar aged cells. We found that our model
could recover the temporal, thermal, and SoC dependence of capacity
fade excellently for medium to high SoCs. However, at low SoC our
model failed to capture capacity fade adequately, which we conjectured
to be the result of other degradation mechanisms. We then combined
our work on full cell models from Chapter 3 and the work developing
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the SEI growth model to incorporate SEI growth into a simple model
of a full lithium-ion cell. We then studied the effect of dynamic load
profiles on the rate of SEI growth. Here, we found that SEI grows
greatest at high SoCs and high charging currents, a finding that is
highly relevant for mitigating degradation caused by the fast charging
of electric vehicles.

6.2 F U T U R E W O R K

The study of degradation in lithium-ion batteries is a highly complex
topic with many of the degradation mechanisms still little understood.
A few of the key mechanisms that we haven’t touched upon in this
thesis are

• lithium plating

• dendrite formation

• loss of active material (through mechanical cracking)

• current collector dissolution

• binder decomposition.

Each of these mechanisms can be included as an extension to the full cell
models that we introduced in Chapters 2 and 3. Throughout this thesis,
we have assumed that diffusion in the particles is governed by Fick’s
law. However, there is evidence to suggest that the particles more likely
behave as phase-changing material and so it is of interest to consider
extensions for different particle physics. From including SEI growth
into a full cell model, it is apparent that there is a clear separation of the
discharge timescale and the timescale for SEI growth. A multiple scales
based approach to solving this problem would therefore likely offer a
more efficient approach to simulating long-term degradation than the
direct numerical approach we adopted. Such an approach would also
be of interest for efficiently modelling other degradation mechanisms.

6.3 C L O S I N G R E M A R K S

The work in this thesis has been motivated by the need to understand
degradation in lithium-ion batteries. To this end, we addressed two
key challenges within this topic: the development of efficient mathe-
matical models and the development of accurate models of key degra-
dation mechanisms. To address the first of these challenges, we have
developed a suite of reduced-order models of a lithium-ion battery,
characterised the domain of applicability of each model, and further
implemented these models within an easy-to-use open-source battery
modelling software so that these models are readily available for use
by other researchers and industry. In the second of these challenges,
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we choose to focus our attention on modelling the key degradation
mechanism: SEI growth. This model was able to accurately recover the
SoC, thermal, and temporal dependence of SEI growth. We were then
able to employ the model to provide insights into operating conditions
that give rise to higher rates of degradation.

Whilst much work remains for a full understanding of the degrada-
tion of lithium-ion batteries to be achieved, we have made significant
contributions to the required mathematical framework. Further, we
have promoted a collaborative approach to research through the de-
velopment of open-source software, which we believe is essential to
tackle this complex problem.



A
P Y B A M M

With lithium-ion batteries emerging as a key technology of the 21st cen-
tury and the battery modelling research community growing rapidly
[57], there is a need to bring together battery research in a coherent way.
To address this need, PyBaMM’s mission is as follows:

PyBaMM’s mission is to accelerate battery modelling re-
search by providing an open-source framework for multi-
institutional interdisciplinary collaboration.

By being open-source, PyBaMM removes two important factors that
can hinder software collaboration. The first factor is the cost of usage. It
is not uncommon for there to be limited licenses available in university
departments for commercial software and many start-ups cannot afford
the costs of commercial software. The second factor lies in the ability
to modify source code. By allowing this, researchers are not limited by
the functionality deemed most important by a commercial software
development team and can instead add features as they require.

PyBaMM offers improved collaboration and research impact in bat-
tery modelling by providing a modular framework through which
either existing or new tools can be combined in order to solve con-
tinuum models for batteries. For example, PyBaMM can easily be
adapted to incorporate new models, alternative spatial discretisations,
new time-stepping algorithms, and new experimental protocols. Any
such additions can then immediately be used with the existing suite of
models already implemented, and comparisons can be made between
different models, discretisations, or algorithms with variables such
as hardware, software and implementation details held fixed. Simi-
larly, additional physics can be incorporated into the existing models,
without needing to start from scratch to study each new effect. This fa-
cilitates the simultaneous study of a range of extensions to the standard
battery models, for example by coupling together several degradation
mechanisms.

A.1 I M P L E M E N TAT I O N A N D A R C H I T E C T U R E

PyBaMM’s architecture is based around two core components. The first
is the expression tree, which encodes mathematical equations symboli-
cally (see Figure A.1). Each expression tree consists of a set of symbols,
each of which represents either a variable, parameter, mathematical
operation, matrix, or vector. Every battery model in PyBaMM is then de-
fined as a collection of symbolic expression trees. The expression trees
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in each model are organised within Python dictionaries representing
the governing equations, boundary equations, and initial conditions
of the model. An example of implementing a simple diffusion model
using expression trees is provided in Appendix A.4.

+

* *

*

Figure A.1: Models are encoded and passed down the pipeline using a sym-
bolic expression tree data-structure. Leafs in the tree represent
parameters, variables, matrices etc., while internal nodes repre-
sent either basic operators such multiplication or division, or
continuous operators such as divergence or gradients.

The second core component of PyBaMM’s architecture is the pipeline
process (see Figure A.2). In the pipeline process different modular
components operate on the model in turn. The pipeline is constructed
using Python classes, so that users have full control over the entire
process, and can customise the pipeline or insert their own components
at any stage. Figure A.2 depicts a typical pipeline with the following
stages:

1. Define a battery model and geometry using PyBaMM’s syntax.
This generates a collection of expression trees representing the
model.

2. Parse the expression trees for the battery model and geometry,
replacing any parameters with their provided numerical values.
For convenience, parameter values may be provided in a csv file.

3. Mesh the geometry and discretise the model on this mesh with
user-defined spatial methods. This process parses each expression
tree converting variables into state vectors, and spatial operators
(e.g. gradient and divergence) into matrices (accounting for the
boundary conditions of the model).
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4. Solve the model using a time-stepping algorithm. PyBaMM of-
fers a consistent interface to a number of ODE and DAE solvers
(including SciPy [95] and SUNDIALS [28], [29], [47]). One of the
main benefits of PyBaMM’s expression tree structure is that it
provides the capability to automatically compute the Jacobian for
any model, using symbolic differentiation, which significantly
improves the performance of the numerical solvers.

5. Post-processes the solution. Built-in post-processing utilities pro-
vided access to any user-defined output variables at any solution
time or state. Additionally, PyBaMM includes several visualisa-
tion utilities which allow for easy plotting and comparison of any
of the model variables (for example output, see Figure A.3).

An example of employing the PyBaMM pipeline process to solve a
model is provided in Appendix A.5.

1. Model

2. Parameter

Values

3. Discretisation

4. Solver

5. Post-process

/ Visualisation

Mesh

Figure A.2: PyBaMM is designed around a pipeline approach. Models are
initially defined using mathematical expressions encoded as ex-
pression trees. These models are then passed to a class which sets
the parameters of the model, before being discretised into lin-
ear algebra expressions, and finally solved using a time-stepping
class.

A.2 Q U A L I T Y C O N T R O L

Tests in PyBaMM are performed within the unittest framework. We
follow a test-driven development process, and unit tests are imple-
mented for every class with unit test code coverage consistently above
98%. In addition, a smaller set of integration tests are implemented to
ensure the end-to-end reliability of the code. The integration tests con-
sist of tests that check every model in PyBaMM can be processed and

https://docs.python.org/3/library/unittest.html
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Figure A.3: Interactive output of inbuilt visualisation. The user can select the
time at which to view the output using the time-slider bar at the
bottom. For a given list of variables and solved models, such plots
are automatically generated.

solved for a set of default inputs, convergence tests between reduced-
order and full-order models, convergence tests for each spatial method,
and tests for each solver type. PyBaMM is developed using git version
control, with all unit and integration tests being run using GitHub
actions for Linux (Ubuntu 18.04), macOS Big Sur and Windows 10
every time a pull request is made and every night. The main PyBaMM
repository contains a selection of Jupyter Notebooks that serve as a
“getting started” documentation for PyBaMM, and a useful set of exam-
ples on how to use PyBaMM for different tasks such as creating a new
battery model, running the existing models, or changing the default
parameters. These are tested along with the main PyBaMM code to
ensure they are up to date. To ensure contributions to the code are of
high quality, all pull requests are peer-reviewed by other contributors
and must be approved before being merged into the main code branch.
Further to ensure stability, PyBaMM has a working develop branch
and a stable master (release) branch. More information can be found
within the CONTRIBUTING.md file in the PyBaMM repository.

A.3 AVA I L A B I L I T Y A N D I N S TA L L AT I O N

PyBaMM can be run on any Linux, MacOS, and Windows systems that
has Python 3.6 or higher installed. PyBaMM is available on PyPI, the
standard python package repository and can, therefore, be installed
simply using pip install pybamm. In addition to a simple local install,
PyBaMM is also available to use within a browser via Google Colab.
Making PyBaMM simple to install and easy to try within a browser has
had the effect of lowering the barriers to usage of the software. This

https://github.com/pybamm-team/PyBaMM/tree/master/examples/notebooks
https://github.com/pybamm-team/PyBaMM/blob/master/CONTRIBUTING.md
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increases the numbers of possible users within the battery research
community. For more information, please see the PyBaMM GitHub
repository.

A.4 C R E AT I N G A M O D E L

In this section, we present an example of how to enter a simple diffusion
model in PyBaMM. This model serves as a good representation of the
types of models that arise in battery modelling because it contains most
of the key components: spatial operators, parameters, Dirichlet and
Neumann boundary conditions, and initial conditions.

We consider the concentration of some species c, on a spatial domain
x ∈ [0, 1], and at some time t ∈ [0,∞). The concentration of the species
is taken to evolve according to a nonlinear diffusion process with the
concentration being fixed at x = 0 and a constant inward flux of species
imposed at x = 1. Mathematically, the model is stated as

∂c

∂t
= ∇ · (D(c)∇c) in 0 < x < 1, t > 0, (A.1a)

c = 1 at x = 0, (A.1b)

D(c)
∂c

∂x
= 1 at x = 1, (A.1c)

c = x+ 1 at t = 0, (A.1d)

where D(c) = k(1 + c) is the diffusion coefficient and k is a parameter,
which we will refer to as the diffusion parameter.

In Listing A.1, we provide the PyBaMM code implementing (A.1).
Note that operator overloading of ∗ and + allows symbols to be in-
tuitively combined to produce expression trees. A more detailed and
up-to-date introduction to the syntax is provided in the online exam-
ples available on GitHub.

The model is now represented by a collection of expression trees and
can, therefore, be solved by passing it through the pipeline just like
any other model in PyBaMM. Additionally, extending the model to
include additional physics is simple and intuitive due to the simple
symbolic representation of the underlying mathematical equations. For
example, we can add a source term to the governing equation (A.1a) by
only modifying one line of code (line 10 of Listing A.1) and still obtain
useful properties of the model such as the analytical Jacobian.
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Listing A.1: Defining a model in PyBaMM.

1 # 1. Initialise model
2 model = pybamm.BaseModel()
3
4 # 2. Define parameters and variables
5 c = pybamm.Variable("c", domain="unit line")
6 k = pybamm.Parameter("Diffusion parameter")
7
8 # 3. State governing equations
9 D = k * (1 + c)

10 dcdt = pybamm.div(D * pybamm.grad(c))
11 model.rhs = {c: dcdt}
12
13 # 4. State boundary conditions
14 D_right = pybamm.BoundaryValue(D, "right")
15 model.boundary_conditions = {
16 c: {
17 "left": (1, "Dirichlet"),
18 "right": (1/D_right, "Neumann")
19 }
20 }
21
22 # 5. State initial conditions
23 x = pybamm.SpatialVariable("x", domain="unit line")
24 model.initial_conditions = {c: x + 1}

A.5 S O LV I N G A M O D E L

We now consider an example of solving a PyBaMM model by passing it
through the pipeline process. Here, we solve the Doyle-Fuller-Newman
(DFN) model, which is the standard model of a lithium-ion battery
[21]. The code is presented in Listing A.2. Please see the PyBaMM
documentation for more detailed and up-to-date examples.

The common interface of all PyBaMM models makes it easy to per-
form the pipeline process as illustrated here upon multiple models or
the same model with different options activated. Therefore, comparing
the results of different models, mesh types, discretisations, and solvers
then becomes straightforward within the PyBaMM framework.

A.6 C O M PA R I S O N W I T H C O M S O L

Here we give a brief comparison of the numerical solution of the stan-
dard 1D DFN model obtained using PyBaMM with that from COMSOL,
to give an estimate of the effect of the different in spatial discretisa-
tion methods and time-stepping routines used by the two software
packages.

In Figure A.4, we present the computed terminal voltage and volume-
averaged temperature across a range of C-rates. Panels (c) and (d)
show the differences between the two solutions. It can be seen that the
difference in the terminal voltage is no more than O(10−4) V. Similarly,
the difference in the computed average cell temperature is also at most
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Listing A.2: Solving a model in PyBaMM.

1 # 1. Load model and geometry
2 model = pybamm.lithium_ion.DFN()
3 geometry = model.default_geometry
4
5 # 2. Process parameters
6 param = model.default_parameter_values
7 param.process_model(model)
8 param.process_geometry(geometry)
9

10 # 3. Set mesh
11 mesh = pybamm.Mesh(
12 geometry,
13 model.default_submesh_types,
14 model.default_var_pts
15 )
16
17 # 4. Discretise model
18 disc = pybamm.Discretisation(
19 mesh, model.default_spatial_methods
20 )
21 disc.process_model(model)
22
23 # 5. Solve model
24 t_eval = numpy.linspace(0, 0.2, 100)
25 solution = model.default_solver.solve(model, t_eval)

O(10−4) K . At low to moderate C-rates, a large spike in the difference
is observed towards the end of the simulation where the OCV in highly
non-linear. Both meshes were refined until the solutions converged, but
the differences still persisted, which leads us to believe the discrepancy
is due to slight differences in the time-stepping strategy and approach
used to couple the micro- and macro-scale problems.

To investigate the influence of the mesh size in the PyBaMM imple-
mentation of the DFN model a number of simulations were performed
with an increasing number of finite volumes per domain. Table A.1
shows the normalised root mean square (RMS) error in the potentials,
concentrations, voltage and temperature obtained by solving the model
in PyBaMM as the number of finite volumes N is increased. The RMS
error was computed with respect to the solution obtained using COM-
SOL’s “extremely fine" mesh (45 elements in each electrode, 11 elements
in the separator), which was typically solved in around 70s.
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Figure A.4: Comparison of (a) the terminal voltage and (b) the temperature
obtained from the solution of the 1D DFN model from PyBaMM
and COMSOL for a range of C-rates. The differences in the voltage
and temperature between the two solutions are shown in panels
(c) and (d), respectively. Note the logarithmic scale in panel (c).
Here we used 128 finite volumes per domain in the PyBaMM
model and the COMSOL model was solved on an “extremely fine”
mesh (45 elements in each electrode, 11 elements in the separator).
Both time-stepping routines used a relative tolerance of 10−6.
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N φ∗s,n φ∗s,p − V ∗ φ∗e c∗s,n,surf c∗s,p,surf c∗e V ∗ T ∗ Solution time [s]

4 2.56× 10−2 6.59× 10−2 6.06× 10−3 8.62× 10−3 3.72× 10−3 2.53× 10−3 4.60× 10−3 2.86× 10−5 0.1712
8 6.86× 10−3 1.64× 10−2 1.75× 10−3 2.57× 10−3 9.51× 10−4 6.47× 10−4 1.37× 10−3 8.53× 10−5 0.1925
16 2.05× 10−3 4.11× 10−3 6.32× 10−4 9.43× 10−4 2.56× 10−4 1.75× 10−4 4.04× 10−4 2.45× 10−6 0.3027
32 8.78× 10−4 1.03× 10−3 3.48× 10−4 5.50× 10−4 8.26× 10−5 6.30× 10−5 1.40× 10−4 7.74× 10−7 0.6790
64 6.27× 10−4 2.71× 10−4 2.78× 10−4 4.64× 10−4 4.00× 10−5 4.26× 10−5 7.43× 10−5 3.60× 10−7 2.119

128 5.76× 10−4 1.08× 10−4 2.61× 10−4 4.45× 10−4 2.98× 10−5 3.87× 10−5 6.80× 10−5 2.59× 10−7 7.49

Table A.1: Normalised RMS difference between the PyBaMM and COMSOL solution of the 1D DFN model for a selection of model variables. The
tabulated quantities for a variable ψ were computed as RMS(ψPyBaMM − ψCOMSOL)/RMS(ψCOMSOL). Here N is the number of finite volumes per
domain in the PyBaMM model. The PyBaMM solution was compared to the COMSOL solution on an “extremely fine" mesh (45 elements in
each electrode, 11 elements in the separator). Both time stepping routines used a relative tolerance of 10−6.
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