Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 288 lines (230 sloc) 12.204 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
"""
Provides a means for mapping an existing class to a column family.

.. seealso:: :mod:`pycassa.types`

In addition to the default :class:`~pycassa.types.Column` classes,
you may also define your own types for the mapper. For example, the
IntString may be defined as:

.. code-block:: python

>>> class IntString(pycassa.Column):
... def pack(self, val):
... return str(val)
... def unpack(self, val):
... return int(val)
...

"""

from pycassa.types import Column
from pycassa.cassandra.ttypes import IndexExpression, IndexClause

__all__ = ['ColumnFamilyMap']

def create_instance(cls, **kwargs):
    instance = cls()
    instance.__dict__.update(kwargs)
    return instance

class ColumnFamilyMap(object):
    """ Maps an existing class to a column family. """

    def __init__(self, cls, column_family, columns=None, raw_columns=False):
        """
Maps an existing class to a column family. Class fields become columns,
and instances of that class can be represented as rows in standard column
families or super columns in super column families.

Instances of `cls` are returned from :meth:`get()`, :meth:`multiget()`,
:meth:`get_range()` and :meth:`get_indexed_slices()`.

`column_family` is a :class:`~pycassa.columnfamily.ColumnFamily` to
tie with `cls`. This :class:`ColumnFamily` should almost always have
`autopack_names` and `autopack_values` set to ``False``.

If `raw_columns` is ``True``, all columns will be fetched into the
`raw_columns` field in requests.

"""
        self.cls = cls
        self.column_family = column_family
        
        self.raw_columns = raw_columns
        self.dict_class = self.column_family.dict_class
        self.columns = self.dict_class()
        
        for name, column in self.cls.__dict__.iteritems():
            if not isinstance(column, Column):
                continue

            self.columns[name] = column

    def combine_columns(self, columns):
        combined_columns = self.dict_class()
        if self.raw_columns:
            combined_columns['raw_columns'] = self.dict_class()
        for column, type in self.columns.iteritems():
            combined_columns[column] = type.default
        for column, value in columns.iteritems():
            col_cls = self.columns.get(column, None)
            if col_cls is not None:
                combined_columns[column] = col_cls.unpack(value)
            if self.raw_columns:
                combined_columns['raw_columns'][column] = value
        return combined_columns

    def get(self, key, *args, **kwargs):
        """
Creates one or more instances of `cls` from the row with key `key`.
The fields that are retreived may be specified using `columns`, which
should be a list of column names.

If the column family is a super column family, a list of `cls`
instances will be returned, one for each super column. If
the `super_column` parameter is not supplied, then `columns`
specifies which super columns will be used to create instances
of `cls`. If the `super_column` parameter *is* supplied, only
one instance of `cls` will be returned; if `columns` is specified
in this case, only those attributes listed in `columns` will be fetched.

"""
        if 'columns' not in kwargs and not self.column_family.super and not self.raw_columns:
            kwargs['columns'] = self.columns.keys()

        columns = self.column_family.get(key, *args, **kwargs)

        if self.column_family.super:
            if 'super_column' not in kwargs:
                vals = self.dict_class()
                for super_column, subcols in columns.iteritems():
                    combined = self.combine_columns(subcols)
                    vals[super_column] = create_instance(self.cls, key=key,
                            super_column=super_column, **combined)
                return vals

            combined = self.combine_columns(columns)
            return create_instance(self.cls, key=key,
                                   super_column=kwargs['super_column'],
                                   **combined)

        combined = self.combine_columns(columns)
        return create_instance(self.cls, key=key, **combined)

    def multiget(self, *args, **kwargs):
        """
Like :meth:`get()`, but a list of keys may be specified.

The result of multiget will be a dictionary where the keys
are the keys from the `keys` argument, minus any missing rows.
The value for each key in the dictionary will be the same as
if :meth:`get()` were called on that individual key.

"""
        if 'columns' not in kwargs and not self.column_family.super and not self.raw_columns:
            kwargs['columns'] = self.columns.keys()
        kcmap = self.column_family.multiget(*args, **kwargs)
        ret = self.dict_class()
        for key, columns in kcmap.iteritems():
            if self.column_family.super:
                if 'super_column' not in kwargs:
                    vals = self.dict_class()
                    for super_column, subcols in columns.iteritems():
                        combined = self.combine_columns(subcols)
                        vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
                    ret[key] = vals
                else:
                    combined = self.combine_columns(columns)
                    ret[key] = create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
            else:
                combined = self.combine_columns(columns)
                ret[key] = create_instance(self.cls, key=key, **combined)
        return ret

    def get_count(self, *args, **kwargs):
        """
Count the number of columns for a key.

.. deprecated:: 0.6.0
Use :meth:`pycassa.columnfamily.ColumnFamily.get()` instead.

"""
        return self.column_family.get_count(*args, **kwargs)

    def get_range(self, *args, **kwargs):
        """
Get an iterator over instances in a specified key range.

Like :meth:`multiget()`, whether a single instance or multiple
instances are returned per-row when the column family is a super
column family depends on what parameters are passed.

For an explanation of how :meth:`get_range` works and a description
of the parameters, see :meth:`pycassa.columnfamily.ColumnFamily.get_range()`.

Example usage with a standard column family:

.. code-block:: python

>>> pool = pycassa.ConnectionPool('Keyspace1')
>>> usercf = pycassa.ColumnFamily(pool, 'Users')
>>> cfmap = pycassa.ColumnFamilyMap(MyClass, usercf)
>>> users = cfmap.get_range(row_count=2, columns=['name', 'age'])
>>> for key, user in users:
... print user.name, user.age
Miles Davis 84
Winston Smith 42

"""
        if 'columns' not in kwargs and not self.column_family.super and not self.raw_columns:
            kwargs['columns'] = self.columns.keys()
        for key, columns in self.column_family.get_range(*args, **kwargs):
            if self.column_family.super:
                if 'super_column' not in kwargs:
                    vals = self.dict_class()
                    for super_column, subcols in columns.iteritems():
                        combined = self.combine_columns(subcols)
                        vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
                    yield vals
                else:
                    combined = self.combine_columns(columns)
                    yield create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
            else:
                combined = self.combine_columns(columns)
                yield create_instance(self.cls, key=key, **combined)

    def get_indexed_slices(self, instance=None, *args, **kwargs):
        """
Fetches a list of instances that satisfy an index clause. Similar
to :meth:`get_range()`, but uses an index clause instead of a key range.

If `instance` is supplied, its values will be used for each
:class:`IndexExpression` where the name matches one of the instance's
attribute names. This makes packing the values in the :class:`IndexExpresssion`
simpler when possible.

See :meth:`pycassa.columnfamily.ColumnFamily.get_indexed_slices()` for
an explanation of the parameters.

"""

        if 'columns' not in kwargs and not self.column_family.super and not self.raw_columns:
            kwargs['columns'] = self.columns.keys()

        # Autopack the index clause's values
        if instance is not None:
            new_exprs = []
            for expr in kwargs['index_clause'].expressions:
                new_expr = IndexExpression(expr.column_name, expr.op,
                        value=self.columns[expr.column_name].pack(instance.__dict__[expr.column_name]))
                new_exprs.append(new_expr)
            old_clause = kwargs['index_clause']
            new_clause = IndexClause(new_exprs, old_clause.start_key, old_clause.count)
            kwargs['index_clause'] = new_clause

        keyslice_map = self.column_family.get_indexed_slices(*args, **kwargs)

        ret = self.dict_class()
        for key, columns in keyslice_map:
            if self.column_family.super:
                if 'super_column' not in kwargs:
                    vals = self.dict_class()
                    for super_column, subcols in columns.iteritems():
                        combined = self.combine_columns(subcols)
                        vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
                    ret[key] = vals
                else:
                    combined = self.combine_columns(columns)
                    ret[key] = create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
            else:
                combined = self.combine_columns(columns)
                ret[key] = create_instance(self.cls, key=key, **combined)
        return ret

    def insert(self, instance, columns=None, write_consistency_level=None):
        """
Insert or update stored instances.

`instance` should be an instance of `cls` to store.

The `columns` parameter allows to you specify which attributes of
`instance` should be inserted or updated. If left as ``None``, all
attributes will be inserted.

"""
        insert_dict = {}
        if columns is None:
            columns = self.columns.keys()

        for column in columns:
            if instance.__dict__.has_key(column) and instance.__dict__[column] is not None:
                insert_dict[column] = self.columns[column].pack(instance.__dict__[column])

        if self.column_family.super:
            insert_dict = {instance.super_column: insert_dict}

        return self.column_family.insert(instance.key, insert_dict,
                                         write_consistency_level=write_consistency_level)

    def remove(self, instance, columns=None, write_consistency_level=None):
        """
Removes a stored instance.

The `columns` parameter is a list of columns that should be removed.
If this is left as the default value of ``None``, the entire stored
instance will be removed.

"""
        if self.column_family.super:
            return self.column_family.remove(instance.key,
                                             super_column=instance.super_column,
                                             columns=columns,
                                             write_consistency_level=write_consistency_level)
        else:
            return self.column_family.remove(instance.key, columns,
                                             write_consistency_level=write_consistency_level)
Something went wrong with that request. Please try again.