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OSS

runs on

RAY

The Modin vision: your python data workflows 
run anywhere at scale

Your favorite data science library

your existing data infrastructure Google
BigQuery

Proprietary

In progress In future

Our vision expands beyond pandas to any data science 
library running at scale on any infrastructure backend that 
you already have. Our goal is to make data teams more 
productive without changing the way they work.

That means meeting users where they are using pandas or 
any other library in the Python data processing ecosystem for 
ML, visualization, and beyond, leveraging whatever data 
infrastructure they already have, whether that’s a database or 
warehouse like Snowflake or BigQuery; a distributed 
computing cluster like Ray or Dask; or anywhere else where 
their data lives.
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Current API coverage

● Coverage of pandas API for “distributed pandas” execution with ray, dask, and MPI:

○ pandas.DataFrame - 90% (>93% based on usage)

○ pandas.Series - 88% (>86% based on usage)

○ pandas.read_* - >42% (>90% based on usage)

● Slightly less coverage for execution on HDK, a backend based on the relational 

HeavyDB

● Coverage via ponder, a closed-source Modin extension, for relational databases: ~40%

● Preliminary numpy API coverage in modin.numpy

Each backend supports each API to a different extent.

We have spent the most effort on execution with ray, dask’s 
distributed, and MPI, all using pandas dataframes to store 
partitions of a dataframe.
These backends support something like 90% of the pandas API if 
we weigh coverage by usage (because many of the 
unimplemented functions are rarely used.)

We also have some support for execution on HDK, a 
high-performance, SQL-based, relational, columnar database 
engine.

Meanwhile, Ponder Data is developing a proprietary extension to 
Modin that uses relational databases for execution and storage. 
Right now ponder covers ~40% of the pandas API on bigquery, 
snowflake, and duckdb

Some of the backends support a few numpy methods as well.

https://github.com/intel-ai/hdk
https://github.com/heavyai/heavydb
https://pypi.org/project/ponder/
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5-year vision: APIs

● 95% pandas and numpy API coverage on the most popular backends

● Substantial coverage for all common interactive data processing modalities

○ Spreadsheet API

○ SQL API to query dataframes with SQL

● modin.pandas and modin.numpy work well with common statistics, plotting, and 

machine learning libraries

Here is our 5-year vision for modin APIs.

We would like to cover 95% of the pandas and numpy APIs on the 
most popular backends. These would probably include the ray, 
dask, and MPI; HDK; and the relational databases that ponder 
supports.

We also want to have good coverage for other common data 
processing modalities, including spreadsheets and the modin SQL 
API.

We want modin.pandas and modin.numpy to work as well as 
pandas and numpy with common statistics, plotting, and machine 
learning libraries

https://github.com/modin-project/modin-spreadsheet
https://modin.readthedocs.io/en/stable/usage_guide/advanced_usage/modin_sql.html
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5-year vision: API execution

● Performance always at least as good as pandas, and better for many methods

● On distributed pandas engines: minimize data movement between workers

● On HDK:  GPU integration and heterogenous execution (e.g. execute on CPUs as well as 

GPUs)

● Query planning and optimization on distributed pandas engines

○ Requires more lazy execution

○ Possibly: choosing to execute queries asynchronously while the user is thinking

● “serverless” execution can scale up and down as the user needs (e.g. keep everything 

on one node until data reaches a certain size)

Here is our 5-year vision for executing the APIs that we support.

First, our primary concern is performance. We want modin to 
always perform at least as well as pandas, and it should do better 
for many methods.

On distributed pandas backends, we need to continue minimizing 
data movement between workers. Data movement between 
workers is usually the main cause of slowness.

On HDK, we want GPU integration and heterogenous execution, 
meaning we can execute a query on both CPUs and GPUs.

To improve performance, we would like to do some amount of 
query planning and optimization. We already do this for lazy 
execution with HDK,
but we don’t attempt it on distributed pandas backends like Ray. 
Query planning requires lazy evaluation so that we can understand 
queries



holistically– Modin on distributed backends is sometimes lazy, but 
we would have to make it more lazy.

Finally, we would like at least one backend to behave in a kind of 
“serverless” way, meaning that the resources can scale up and 
down as the user needs. For example,
while the data is small, it may be best to keep everything on one 
compute node, and only add another node, when the data is 
sufficiently large.
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Challenges

● Bugs due to mismatches with pandas

● performance is poor on distributed pandas backends for some common methods

○ merge, sort_values, pivot, groupby transforms

● Lazy execution is important for performance, lazy and async execution can be useful…

● … but these have disadvantages

○ Bugs and users errors might only appear at execution time

○ Users can be surprised when a simple method call looks slow because it triggers 

execution

○ Measuring performance is not straightforward

Here are some of the problems we face right now.

First, there are quite a number of open bugs due to mismatches with 
pandas. Some come from subtleties of trying to decompose a single 
pandas method in a distributed
way. Sometimes a method that makes sense for the whole frame only 
makes sense in one partition. e..g here. Sometimes, the metadata for one 
partition will depend on results of methods
in other partitions, e.g. here. 

Users are also not satisfied with the performance of some common 
methods. We have partially implemented some kinds of merge, and 
there’s a lot left to improve their performance. We
have made some progress with a new shuffling approach to methods that 
move data across all the partitions like sort_values and groupby 
transforms. There is more work to be done for
those, though.

To get good performance for scripts that chain methods, we need more 

https://github.com/modin-project/modin/issues/4858
https://modin.readthedocs.io/en/stable/usage_guide/benchmarking.html
https://github.com/modin-project/modin/issues/4164
https://github.com/modin-project/modin/issues/4690


lazy execution. However, lazy and async execution change the user 
experience in ways that are unexpected or hard to understand.
There are some bugs that we can’t detect until execution, e.g. if a 
user-defined function raises an error. Also, currently users often think an 
operations was really fast because it’s happening asynchronously
or not happening at all.
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Opportunities for collaboration at this summit

● Users commonly want to use modin with other libraries for statistics, machine learning, and 
visualization that already work with pandas and numpy

○ Some do not work at all, some work partially

○ Some work inefficiently, e.g. might require materializing all data or iterating through all of it

○ Will the dataframe interchange protocol help?

● We could use modin to execute a different API, perhaps one that is explicitly for lazy execution, like 
polars…

● … or we could use another dataframe library as a backend for modin.pandas
● Understand what the ideal lazy dataframe experience is for users

○ polars, ibis, dask, pyspark.pandas all have some version of this

● Do we think users often care about row order in dataframes?
○ Maintaining order with a relational backend can be complex and slow

○ ibis tables are not ordered, pyspark dataframes not ordered by default for performance

These are some topics that we could benefit from discussing in this 
group.

Often, users want to use modin with other libraries for statistics, machine 
learning, and visualization that already work with pandas and numpy. 
These libraries sometimes
don’t work well with modin dataframes, and sometimes they won’t work 
at all. There can be explicit type checks like isinstance(x, 
pandas.DataFrame), but the libraries
can break in other ways as well. The user can convert their modin object 
to pandas with df._to_pandas(), but that might be expensive.

We can use the existing modin backends to execute an API other than 
pandas, e.g. one like polars that is explicitly meant for building a query 
without executing it.

We could also use another dataframe library as a backend for 
modin.pandas.

https://modin.readthedocs.io/en/stable/usage_guide/integrations.html


A few different libraries represented here have some API for lazy 
execution. I know polars, ibis, dask, and pyspark.pandas all do that. I 
would like to get people’s thoughts
on doing lazy execution with the pandas API exactly as it is. Should lazy 
execution be the default for Modin?  Is it a pain point that every time 
someone switches between
libraries, they have to learn a new way of writing queries?

I also wonder what we think as a group about order in dataframes. 
Maintaining order when using a relational backend can be complex and 
slow. As far as I know, ibis dataframes
are not ordered, pyspark dataframes are not ordered by default, and I 
think the rest of the libraries here are ordered. Order matters for things 
like point updates (e.g. 
df.iloc[0, 4] = 5) and if users care about determinism, e.g. head() should 
always print the same rows. Do we think users care about those?
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Thank you!

Mahesh Vashishtha
mahesh@ponder.io


