Discrepancies between a linear transformation and its matrix -- proposed fixes

Author: Greg Grunberg (GG)

Last updated: 2020-10-25
Note: Output in this notebook makes use of gprinter.py, an unofficial GAlgebra module written by Alan Bromborsky.

Discussion

A linear transformation/outermorphism L should have action $\mathrm{L}\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{n} \mathbf{e}_{i} L_{i j}$ of L on the basis vector \mathbf{e}_{j} if and only if L has an $n \times n$ matrix $\left[L_{i j}\right]$. Traditional mathematical notation numbers the indexes from 1 to n. Indexes in GAlgebra will range from 0 to $n-1$ or will range over the coordinate names. Given the action of L , the Fourier formula $L_{i j}=\mathbf{e}^{i} \cdot \mathrm{~L}\left(\mathbf{e}_{j}\right)$ may be used to find the expansion coefficients. (Although the formula uses the scalar product, its end result $L_{i j}$ does not depend on that product.)

Specific transformations are instantiated by way of a command of the form $L=$ GA.lt (action_list). The j th entry $\left[L_{1 j}, \ldots, L_{n j}\right]$ in action_list specifies both the action $\mathrm{L}\left(\mathbf{e}_{j}\right)$ on the j th basis vector and the entries in the j th column of L 's matrix. For a specific transformation the $L_{i j}$'s are specific real numbers or specific real SymPy symbols. For example, the first test below uses action_list = [[a, c], [b,d]], so in that test L should have action $\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto \mathbf{e}_{x} a+\mathbf{e}_{y} c \\ \mathbf{e}_{y} \mapsto \mathbf{e}_{x} b+\mathbf{e}_{y} d\end{array}\right\}$ on basis ($\mathbf{e}_{x}, \mathbf{e}_{y}$), and L.matrix() should return $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Generic transformations are instantiated by a command of the form $L=G A . l t(' L ')$. The values of the $L_{i j}$'s are not specified but are left general; all that's given to the constructor GA. It as an instantiation parameter is a single character, in this case 'L'. For a generic transformation the return value of L. matrix()[i,j] should be a SymPy symbol which prints as $L_{i j}$.

The problem.

For a specific transformation L the action $\mathrm{L}\left(\mathbf{e}_{j}\right)$ is computed correctly to be $\sum_{i=1}^{n} \mathbf{e}_{i} L_{i j}$, but L.matrix() returns $\left[\sum_{k=1}^{n} L_{i k} g_{k j}\right]$ rather than the correct $\left[L_{i j}\right]$.

For generic transformations L the problem is just the opposite. L.matrix() correctly returns $\left[L_{i j}\right]$ but the action $\mathrm{L}\left(\mathbf{e}_{j}\right)$ incorrectly computes to be $\sum_{i=1}^{n} \mathbf{e}_{i}\left(\sum_{k=1}^{n} L_{i k} g^{k j}\right)$.

A proposed solution.

To fix the problems I suggest modifications to two of the Lt class functions. First modify the matrix(self) method so that it reads

```
def matrix(self) -> Matrix:
    r"""
    Returns the matrix representation :math:`L_{ij}` of
    linear transformation :math:`L`, defined by
    :math:`{{L}\lp {{{\eb}}_{j}} \rp } = {\sum_i} {{\eb}}_{i} L_{ij}`.
    """
    if self.mat is not None:
        return self.mat.doit()
    else:
        if self.spinor:
            self.lt_dict = {}
            for base in self.Ga.basis:
                self.lt_dict[base] = self(base).simplify()
            self.spinor = False
            mat = self.matrix()
            self.spinor = True
            return mat
        else:
            self.mat = Dictionary_to_Matrix(self.lt_dict, self.Ga)
            return self.mat.doit()
```

The above code has four changes relative to the version of matrix (self) which appears in GitHub's It.py module as of 2020-10-25:

1. The current docstring says the entries of L 's matrix are defined by $\mathrm{L}\left(\mathbf{e}_{i}\right)=L_{i j} \mathbf{e}_{j}$, with an implicit summation on the second index of the matrix entries. I've corrected the docstring so that it says $\mathrm{L}\left(\mathbf{e}_{j}\right)=\sum_{i} \mathbf{e}_{i} L_{i j}$, with an explicit summation of the first index of the matrix entries, an equation found in virtually all linear algebra textbooks.
2. The current penultimate code line reads
```
self.mat=Dictionary_to_Matrix(self.lt_dict,self.Ga) * self.Ga.g
```

I have eliminated the post multiplication by self.Ga.g.
3. The current return self.mat (appears twice) has been rewritten as return self.mat.doit(). This forces completion of any pending operations in self.mat before that matrix is returned.
4. The current matrix (self) contains code made non-functional by enclosure within triple doublequotation marks. That code has been deleted.

After the suggested changes the . matrix() method should work correctly for specific transformations.

I also suggest modifying the ___init__ function of the Lt class. Currently that function contains three code lines which read

```
elif isinstance(mat_rep, str): # String input
    Amat = Symbolic_Matrix(mat_rep, coords=self.Ga.coords,
        mode=mode, f=f)
    self.__init__(Amat, ga=self.Ga)
```

I would change those lines to read

```
elif isinstance(mat_rep, str): # String input
    Amat = Symbolic_Matrix(mat_rep, coords=self.Ga.coords,
            mode=mode, f=f)
    dim = len(self.Ga.mv())
    action_list = \
            [[Amat[i,j] for i in range(dim)] for j in range(dim)]
    self.__init__(action_list, ga=self.Ga)
```

The generic transformations should then instantiate correctly, with action and matrix consistent with each other.

Test proposed modifications

I have made the modifications suggested above to my It.py module. The rest of this notebook checks that the modifications accomplish their purpose of bringing into accord a transformation's action and matrix.

In [1]:

```
# Initializations
from sys import version
import sympy
from sympy import *
import galgebra
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
from galgebra.gprinter import gFormat, gprint
gFormat()
Ga.dual_mode('Iinv+')
from galgebra.lt import *
gprint(r'\text{Initializations executed.}\\',
    r'\text{This notebook is now using}\\',
    r'\qquad\bullet~ \text{Python }', version[:5],
    r'\qquad\bullet~ \text{SymPy }', sympy.___version__[:7],
    r'\qquad\bullet~ \text{GAlgebra }',
        galgebra.__version__[:], r'.')
```


Initializations executed.

This notebook is now using

- Python 3.8.3 - SymPy 1.8.dev • GAlgebra 0.5.0.

In [2]:

```
def action(L):
    """Returns as a matrix the coefficients in the basis expansions
    of images of basis vectors by linear transformation `L`. Uses
    the actual action of `L` to compute the coefficients."""
    # Each entry `row` in `rows` will correspond to a row in the
    # matrix. Reciprocal basis vector 'r` determines a row in the
    # matrix, while each basis vector `c` determines a column.
    rows = []
    for r in L.Ga.mvr():
        row = []
        for c in L.Ga.mv():
            row.append((r<L(c)).scalar())
            # Fourier formula is used to calculate appended row entry.
        rows.append(row)
    return simplify(Matrix(rows))
```

The next function takes as its sole argument a linear transformation/outermorphism L and returns information about it and the geometric algebra GA on which it acts.

In [3]:

```
def lin_tfn_info(L):
    - Argument `L` is an outermorphism on some geometric algebra `GA`.
    - Reports geometric algebra on which `L` acts, the metric tensor
        of that algebra, and the reciprocal metric tensor.
    - Reports `L`'s actual action, the corresponding action matrix
        `action(L)`, and the purported matrix `L.matrix()`.
    """
    gprint(r'\text{L.Ga}= \text{}' + GA_name[L.Ga] + r':\quad',
        r'[g_{ij}] = ', L.Ga.g, r',\quad', r'[g^{ij}] = ', L.Ga.g_inv)
    gprint(r'\text{L}:', L, r',\quad',
        r'\text{action(L)} = ', action(L), r',\quad',
        r'\text{L.matrix()} = ', L.matrix())
    gprint('')
    gprint('')
```

For testing purposes we will employ two representations of $\mathbb{G}\left(\mathbb{R}^{2,0}\right)$ and three of $\mathbb{G}\left(\mathbb{R}^{1,1}\right)$. Each representation uses coordinates (x, y) to label points in its underlying manifold. Each representation uses $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ to denote a basis for the tangent space at point-of-tangency (x, y).

- g2a , a model of $\mathbb{G}\left(\mathbb{R}^{2,0}\right)$. Metric is Euclidean. $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ are orthonormal.
- g2b, a model of $\mathbb{G}\left(\mathbb{R}^{2,0}\right)$. Metric is Euclidean. $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ are orthogonal but not orthonormal.
- g2c , a model of $\mathbb{G}\left(\mathbb{R}^{1,1}\right)$. Metric is Minkowskian. $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ are orthonormal.
- g2d , a model of $\mathbb{G}\left(\mathbb{R}^{1,1}\right)$. Metric is Minkowskian. $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ are null vectors.
- g2e, a model of $\mathbb{G}\left(\mathbb{R}^{1,1}\right)$. Metric is Minkowskian. $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ are oblique.

In [4]:

```
a, b, c, d, x, y = symbols('a b c d x y', real=True)
g2a = Ga('\mathbf{e}', g = [[1,0], [0,1]], coords=(x,y))
g2b = Ga('\mathbf{e}', g = [[1,0], [0,4]], coords=(x,y))
g2c = Ga('\mathbf{e}', g = [[1,0], [0,-1]], coords=(x,y))
g2d = Ga('\mathbf{e}', g = [[0,1], [1,0]], coords=(x,y))
g2e = Ga('\mathbf{e}', g = [[0,-1], [-1,-1]], coords=(x,y))
GAs = [g2a, g2b, g2c, g2d, g2e]
GA_name = {g2a:'g2a', g2b:'g2b', g2c:'g2c', g2d:'g2d', g2e:'g2e'}
```


Test of specific transformations.

In the next cell, for each of the five geometric algebras in GAs, a specific linear
 $[\mathrm{b}, \mathrm{d}]])$. Therefore L should have action $\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto \mathbf{e}_{x} a+\mathbf{e}_{y} c \\ \mathbf{e}_{y} \mapsto \mathbf{e}_{x} b+\mathbf{e}_{y} d\end{array}\right\}$ on basis $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$, and it should have matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with respect to that basis. Equality of the matrices action(L) and L.matrix() is what's desired.

In [5]:

```
for GA in GAs:
    L = GA.lt([[a, c], [b, d]])
    lin_tfn_info(L)
```

L. $\mathrm{Ga}=g 2 a: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto a \mathbf{e}_{x}+c \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto b \mathbf{e}_{x}+d \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
L.Ga $=g 2 b: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{4}\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto a \mathbf{e}_{x}+c \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto b \mathbf{e}_{x}+d \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
L. $\mathrm{Ga}=g 2 c: \quad\left[g_{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto a \mathbf{e}_{x}+c \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto b \mathbf{e}_{x}+d \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
L.Ga $=g 2 d: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto a \mathbf{e}_{x}+c \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto b \mathbf{e}_{x}+d \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
L. $\mathrm{Ga}=g 2 e: \quad\left[g_{i j}\right]=\left[\begin{array}{cc}0 & -1 \\ -1 & -1\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto a \mathbf{e}_{x}+c \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto b \mathbf{e}_{x}+d \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Success!

Test of generic transformations.

We now test generic transformations instantiated through a command of the form $\mathrm{L}=\mathrm{GA} . \mathrm{It}$ ('L'). Such a transformation should have action $\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto \mathbf{e}_{x} L_{x x}+\mathbf{e}_{y} L_{y x} \\ \mathbf{e}_{y} \mapsto \mathbf{e}_{x} L_{x y}+\mathbf{e}_{y} L_{y y}\end{array}\right\}$ on basis $\left(\mathbf{e}_{x}, \mathbf{e}_{y}\right)$ and matrix $\left[\begin{array}{ll}L_{x x} & L_{x y} \\ L_{y x} & L_{y y}\end{array}\right]$ with respect to that basis.

In [6]:

$$
\begin{aligned}
& \text { for GA in GAs: } \\
& \text { L = GA.lt('L') } \\
& \quad \text { lin_tf_info(L) } \\
& \text { L.Ga }=g 2 a: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \mathrm{L}:\left\{\begin{array}{l}
\mathbf{e}_{x} \mapsto L_{x x} \mathbf{e}_{x}+L_{y x} \mathbf{e}_{y} \\
\mathbf{e}_{y} \mapsto L_{x y} \mathbf{e}_{x}+L_{y y} \mathbf{e}_{y}
\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}
L_{x x} & L_{x y} \\
L_{y x} & L_{y y}
\end{array}\right], \quad \text { L.matrix }()=\left[\begin{array}{l}
L_{x x} \\
L_{y x}
\end{array}\right.
\end{aligned}
$$

L.Ga $=g 2 b: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{4}\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{c}\mathbf{e}_{x} \mapsto L_{x x} \mathbf{e}_{x}+L_{y x} \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto L_{x y} \mathbf{e}_{x}+L_{y y} \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}L_{x x} & L_{x y} \\ L_{y x} & L_{y y}\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{l}L_{x x} \\ L_{y x}\end{array}\right.$
L. $\mathrm{Ga}=g 2 c: \quad\left[g_{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto L_{x x} \mathbf{e}_{x}+L_{y x} \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto L_{x y} \mathbf{e}_{x}+L_{y y} \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}L_{x x} & L_{x y} \\ L_{y x} & L_{y y}\end{array}\right], \quad$ L.matrix($)=\left[\begin{array}{l}L_{x x} \\ L_{y x}\end{array}\right.$
L.Ga $=g 2 d: \quad\left[g_{i j}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{l}\mathbf{e}_{x} \mapsto L_{x x} \mathbf{e}_{x}+L_{y x} \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto L_{x y} \mathbf{e}_{x}+L_{y y} \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}L_{x x} & L_{x y} \\ L_{y x} & L_{y y}\end{array}\right], \quad$ L.matrix($)=\left[\begin{array}{l}L_{x x} \\ L_{y x}\end{array}\right.$
L. $\mathrm{Ga}=g 2 e: \quad\left[g_{i j}\right]=\left[\begin{array}{cc}0 & -1 \\ -1 & -1\end{array}\right], \quad\left[g^{i j}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}\right]$
$\mathrm{L}:\left\{\begin{array}{c}\mathbf{e}_{x} \mapsto L_{x x} \mathbf{e}_{x}+L_{y x} \mathbf{e}_{y} \\ \mathbf{e}_{y} \mapsto L_{x y} \mathbf{e}_{x}+L_{y y} \mathbf{e}_{y}\end{array}\right\}, \quad \operatorname{action}(\mathrm{L})=\left[\begin{array}{ll}L_{x x} & L_{x y} \\ L_{y x} & L_{y y}\end{array}\right], \quad$ L.matrix ()$=\left[\begin{array}{l}L_{x x} \\ L_{y x}\end{array}\right.$

Success! again.

I have not examined other instantiation circumstances. According to the documentation, GA.lt (mat_rep) should result in a linear transformation when mat_rep is a dictionary, a list of lists, a matrix, a spinor, or a character. (It's the circumstances "list of lists" and "character" which I called a "specific" transformation and "generic" transformation, respectively.)

