
Discrepancies between a linear transformation and its
matrix -- proposed fixes
Author: Greg Grunberg (GG)

Last updated: 2020-10-25

Note: Output in this notebook makes use of gprinter.py, an unofficial GAlgebra module written by Alan

Bromborsky.

Discussion

A linear transformation/outermorphism should have action of on the basis vector

 if and only if L has an matrix . Traditional mathematical notation numbers the indexes from

to . Indexes in GAlgebra will range from to or will range over the coordinate names. Given the

action of , the Fourier formula may be used to find the expansion coefficients. (Although

the formula uses the scalar product, its end result does not depend on that product.)

Specific transformations are instantiated by way of a command of the form L = GA.lt(action_list) .

The th entry in action_list specifies both the action on the th basis vector and

the entries in the th column of 's matrix. For a specific transformation the 's are specific real numbers or

specific real SymPy symbols. For example, the first test below uses action_list = [[a,c], [b,d]] ,

so in that test L should have action on basis , and L.matrix()

should return .

Generic transformations are instantiated by a command of the form L = GA.lt('L') . The values of the

's are not specified but are left general; all that's given to the constructor GA.lt as an instantiation

parameter is a single character, in this case 'L' . For a generic transformation the return value of

L.matrix()[i,j] should be a SymPy symbol which prints as .

discrepancies between linear transformation and its matrix -- proposed fixes 2 of 10

The problem.

For a specific transformation L the action is computed correctly to be , but

L.matrix() returns rather than the correct .

For generic transformations L the problem is just the opposite. L.matrix() correctly returns but the

action incorrectly computes to be .

A proposed solution.

To fix the problems I suggest modifications to two of the Lt class functions. First modify the

matrix(self) method so that it reads

def matrix(self) -> Matrix:

 r"""

 Returns the matrix representation :math:`L_{ij}` of

 linear transformation :math:`L`, defined by

 :math:`{{L}\lp {{{\eb}}_{j}} \rp } = {\sum_i} {{\eb}}_{i} L_{ij}`.

 """

 if self.mat is not None:

 return self.mat.doit()

 else:

 if self.spinor:

 self.lt_dict = {}

 for base in self.Ga.basis:

 self.lt_dict[base] = self(base).simplify()

 self.spinor = False

 mat = self.matrix()

 self.spinor = True

 return mat

 else:

 self.mat = Dictionary_to_Matrix(self.lt_dict, self.Ga)

 return self.mat.doit()

discrepancies between linear transformation and its matrix -- proposed fixes 3 of 10

The above code has four changes relative to the version of matrix(self) which appears in GitHub's lt.py

module as of 2020-10-25:

1. The current docstring says the entries of L 's matrix are defined by , with an implicit

summation on the second index of the matrix entries. I've corrected the docstring so that it says

, with an explicit summation of the first index of the matrix entries, an equation found

in virtually all linear algebra textbooks.

2. The current penultimate code line reads

self.mat=Dictionary_to_Matrix(self.lt_dict,self.Ga) * self.Ga.g

I have eliminated the post multiplication by self.Ga.g .

3. The current return self.mat (appears twice) has been rewritten as return self.mat.doit() .

This forces completion of any pending operations in self.mat before that matrix is returned.

4. The current matrix(self) contains code made non-functional by enclosure within triple double-

quotation marks. That code has been deleted.

After the suggested changes the .matrix() method should work correctly for specific transformations.

I also suggest modifying the __init__ function of the Lt class. Currently that function contains three

code lines which read

elif isinstance(mat_rep, str): # String input

 Amat = Symbolic_Matrix(mat_rep, coords=self.Ga.coords,

 mode=mode, f=f)

 self.__init__(Amat, ga=self.Ga)

I would change those lines to read

elif isinstance(mat_rep, str): # String input

 Amat = Symbolic_Matrix(mat_rep, coords=self.Ga.coords,

 mode=mode, f=f)

 dim = len(self.Ga.mv())

 action_list = \

 [[Amat[i,j] for i in range(dim)] for j in range(dim)]

 self.__init__(action_list, ga=self.Ga)

The generic transformations should then instantiate correctly, with action and matrix consistent with each

other.

Test proposed modifications

I have made the modifications suggested above to my lt.py module. The rest of this notebook checks that the

modifications accomplish their purpose of bringing into accord a transformation's action and matrix.

discrepancies between linear transformation and its matrix -- proposed fixes 4 of 10

In [1]: # Initializations
from sys import version
import sympy
from sympy import *
import galgebra
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
from galgebra.gprinter import gFormat, gprint
gFormat()
Ga.dual_mode('Iinv+')
from galgebra.lt import *
gprint(r'\text{Initializations executed.}\\',

r'\text{This notebook is now using}\\',
r'\qquad\bullet~ \text{Python }', version[:5],
r'\qquad\bullet~ \text{SymPy }', sympy.__version__[:7],
r'\qquad\bullet~ \text{GAlgebra }',

galgebra.__version__[:], r'.')

In [2]: def action(L):
"""Returns as a matrix the coefficients in the basis expansions

 of images of basis vectors by linear transformation `L`. Uses
 the actual action of `L` to compute the coefficients."""

Each entry `row` in `rows` will correspond to a row in the
matrix. Reciprocal basis vector `r` determines a row in the
matrix, while each basis vector `c` determines a column.
rows = []
for r in L.Ga.mvr():

row = []
for c in L.Ga.mv():

row.append((r<L(c)).scalar())
Fourier formula is used to calculate appended row entry.

rows.append(row)
return simplify(Matrix(rows))

The next function takes as its sole argument a linear transformation/outermorphism L and returns

information about it and the geometric algebra GA on which it acts.

discrepancies between linear transformation and its matrix -- proposed fixes 5 of 10

In [3]: def lin_tfn_info(L):
"""

 - Argument `L` is an outermorphism on some geometric algebra `GA`.
 - Reports geometric algebra on which `L` acts, the metric tensor
 of that algebra, and the reciprocal metric tensor.
 - Reports `L`'s actual action, the corresponding action matrix
 `action(L)`, and the purported matrix `L.matrix()`.
 """

gprint(r'\text{L.Ga}= \text{}' + GA_name[L.Ga] + r':\quad',
r'[g_{ij}] = ', L.Ga.g, r',\quad', r'[g^{ij}] = ', L.Ga.g_inv)

gprint(r'\text{L}:', L, r',\quad',
r'\text{action(L)} = ', action(L), r',\quad',
r'\text{L.matrix()} = ', L.matrix())

gprint('')
gprint('')

For testing purposes we will employ two representations of and three of . Each

representation uses coordinates to label points in its underlying manifold. Each representation uses

 to denote a basis for the tangent space at point-of-tangency .

g2a , a model of . Metric is Euclidean. are orthonormal.

g2b , a model of . Metric is Euclidean. are orthogonal but not orthonormal.

g2c , a model of . Metric is Minkowskian. are orthonormal.

g2d , a model of . Metric is Minkowskian. are null vectors.

g2e , a model of . Metric is Minkowskian. are oblique.

In [4]: a, b, c, d, x, y = symbols('a b c d x y', real=True)
g2a = Ga('\mathbf{e}', g = [[1,0], [0,1]], coords=(x,y))
g2b = Ga('\mathbf{e}', g = [[1,0], [0,4]], coords=(x,y))
g2c = Ga('\mathbf{e}', g = [[1,0], [0,-1]], coords=(x,y))
g2d = Ga('\mathbf{e}', g = [[0,1], [1,0]], coords=(x,y))
g2e = Ga('\mathbf{e}', g = [[0,-1], [-1,-1]], coords=(x,y))
GAs = [g2a, g2b, g2c, g2d, g2e]
GA_name = {g2a:'g2a', g2b:'g2b', g2c:'g2c', g2d:'g2d', g2e:'g2e'}

Test of specific transformations.

In the next cell, for each of the five geometric algebras in GAs , a specific linear

transformation/outermorphism L is instantiated by a command of the form L = GA.lt([[a,c],

[b,d]]) . Therefore L should have action on basis , and it should have

matrix with respect to that basis. Equality of the matrices action(L) and L.matrix() is

what's desired.

discrepancies between linear transformation and its matrix -- proposed fixes 6 of 10

In [5]: for GA in GAs:
L = GA.lt([[a, c], [b, d]])
lin_tfn_info(L)

discrepancies between linear transformation and its matrix -- proposed fixes 7 of 10

Success!

Test of generic transformations.

We now test generic transformations instantiated through a command of the form L = GA.lt('L') . Such

a transformation should have action on basis and matrix

 with respect to that basis.

discrepancies between linear transformation and its matrix -- proposed fixes 8 of 10

In [6]: for GA in GAs:
L = GA.lt('L')
lin_tfn_info(L)

discrepancies between linear transformation and its matrix -- proposed fixes 9 of 10

Success! again.

I have not examined other instantiation circumstances. According to the documentation, GA.lt(mat_rep)

should result in a linear transformation when mat_rep is a dictionary, a list of lists, a matrix, a spinor, or a

character. (It's the circumstances "list of lists" and "character" which I called a "specific" transformation and

"generic" transformation, respectively.)

discrepancies between linear transformation and its matrix -- proposed fixes 10 of 10

