
1 Summary
Our current implementation of Lammps handles non-metallic units in some ways precariously, in others
simply wrongly.

The precariousness comes from the fact that the 'units' attribute of the input.control object of a
Lammps job is updated only when the potential is assigned to the job (automatically based on some units
property of the potential object). Currently, other aspects of the input, such as those written by calc_md
and calc_minimize , rely on this units attribute to properly convert from pyiron units
(https://pyiron.github.io/source/faq.html) to Lammps units (https://lammps.sandia.gov/doc/units.html). Thus,
if these are called in an a-typical order (i.e. calc before setting the potential), errors follow. It is certainly
canonical to set the potential first, but there are no rules and certainly no safety checks making sure it has
been done this way.

The wrongness comes from the fact that, while carefully accounted for in most (now all?) of the calc
methods, units are either ignored or hard-coded into the output interpretation. Thus, while the input is in
pyiron units, and the output at the moment is ok for "metal" units, all other outputs have at least some non-
pyiron units.

The rest of the notebook simply demonstrates these claims.

I'll use water and "real" units as an example, because there we have a public example notebook
(https://github.com/pyiron/pyiron/blob/master/notebooks/water_MD.ipynb) from which I'll draw heavily, e.g.
to set up a cell of water. (I also found that one of the statements in this notebook doesn't hold, although it's a
fairly low-priority statement.)

In [1]:

executed in 2.44s, finished 15:53:49 2019-12-02

In [2]:

executed in 1.06s, finished 15:53:50 2019-12-02

/Users/huber/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWa
rning: Conversion of the second argument of issubdtype from `float` to `np.float
ing` is deprecated. In future, it will be treated as `np.float64 == np.dtype(flo
at).type`.
 from ._conv import register_converters as _register_converters

Out[2]:
Module Git head

0 pyiron_mpie d7f60587f8482d09931c3373c848b038308db07b

1 pyiron cd2d24374c041808a175a8f8933eee308afe715e

import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
from pyiron.project import Project
import ase.units as units

pr = Project("tmp")
pr.remove_jobs(recursive=True)
pr.get_repository_status()

In [3]:

executed in 169ms, finished 15:53:50 2019-12-02

In [4]:
executed in 3ms, finished 15:53:50 2019-12-02

2 Order dependency
Let's show that invoking job.potential = X and job.calc_md in the wrong order is a problem.

"real" units are extremely similar to "metal" units, differing only in the time, energy, velocity, force, and
pressure.

In [5]:

executed in 5ms, finished 15:53:51 2019-12-02

In [6]:

executed in 3.26s, finished 15:53:54 2019-12-02

In [7]:
executed in 3ms, finished 15:53:54 2019-12-02

created units= metal
structure set units= metal
potential set units= real
calc set units= real
The job normal_order was saved and received the ID: 113

density = 1.0e-24 # g/A^3
n_mols = 27
mol_mass_water = 18.015 # g/mol

Determining the supercell size size
mass = mol_mass_water * n_mols / units.mol # g
vol_h2o = mass / density # in A^3
a = vol_h2o ** (1./3.) # A

Constructing the unitcell
n = int(round(n_mols ** (1. / 3.)))

dx = 0.7
r_O = [0, 0, 0]
r_H1 = [dx, dx, 0]
r_H2 = [-dx, dx, 0]
unit_cell = (a / n) * np.eye(3)
water = pr.create_atoms(elements=['H', 'H', 'O'],

positions=[r_H1, r_H2, r_O],
cell=unit_cell)

water.set_repeat([n, n, n])

potential = 'H2O_tip3p'

water.plot3d()

temperature = 300
n_steps = 2000
n_print = 10
time_step = 1
time = np.linspace(start=0, stop=n_steps, num=int(n_steps/n_print) + 1, endpoint=True

job_normal_order = pr.create_job(pr.job_type.Lammps, 'normal_order')
print('created\t\tunits=', job_normal_order.input.control["units"])
job_normal_order.structure = water.copy()
print('structure set\tunits=', job_normal_order.input.control["units"])
job_normal_order.potential = potential
print('potential set\tunits=', job_normal_order.input.control["units"])
job_normal_order.calc_md(temperature=temperature, n_ionic_steps=n_steps, n_print=n_print
print('calc set\tunits=', job_normal_order.input.control["units"])
job_normal_order.run()

job_normal_order.animate_structure()

In [8]:

executed in 3.19s, finished 15:53:57 2019-12-02

First, we see that the input in the control really is wrong. The 'normal' order, where we define the potential
before setting the calculation type correctly shows the timestep and thermostat damping timescale in fs,
which are both "real" units and pyiron units. However, if we happen to declare the calculation and potential in
the opposite order then the thermostat and timestep are locked in at their "metal" unit values, which are in ps
instead of fs!

In [9]:

executed in 9ms, finished 15:53:57 2019-12-02

This obviously has an impact on the run. For instance, below we see that with the wrong order the
thermostat is much to strong (very rapid convergence to target temperature) and we simulate much less time
than we intended (timescale of oscillations still perfectly clear). And, of course, simulating so short a time
means that the 'wrong order' simulation hasn't actually had a chance to relax, and it's energy output remains
much higher than we'd like and expect.

created units= metal
structure set units= metal
calc set units= metal
potential set units= real
The job wrong_order was saved and received the ID: 114

Normal input:
fix___ensemble = all nvt temp 300 300 100.0
timestep = 1

Wrong order input:
fix___ensemble = all nvt temp 300 300 0.1
timestep = 0.001

job_wrong_order = pr.create_job(pr.job_type.Lammps, 'wrong_order')
print('created\t\tunits=', job_wrong_order.input.control["units"])
job_wrong_order.structure = water.copy()
print('structure set\tunits=', job_wrong_order.input.control["units"])
job_wrong_order.calc_md(temperature=temperature, n_ionic_steps=n_steps, n_print=n_print
print('calc set\tunits=', job_wrong_order.input.control["units"])
job_wrong_order.potential = potential
print('potential set\tunits=', job_wrong_order.input.control["units"])
job_wrong_order.run()

The order really did change the input
print("Normal input:\n\tfix___ensemble = {}\n\ttimestep = {}".format(

job_normal_order.input.control["fix___ensemble"],
job_normal_order.input.control["timestep"]

))
print("Wrong order input:\n\tfix___ensemble = {}\n\ttimestep = {}".format(

job_wrong_order.input.control["fix___ensemble"],
job_wrong_order.input.control["timestep"]

))

In [10]:

executed in 298ms, finished 15:53:57 2019-12-02

In [11]:

executed in 281ms, finished 15:53:58 2019-12-02

As an aside, the example notebook claims that a time step of 1 fs is too high and uses 0.01 fs instead.

I don't think this is at all the case, and the example should be updated at some point:

In [12]:

executed in 2m 42s, finished 15:56:40 2019-12-02

Out[10]: Text(0,0.5,'Temperature [K]')

Out[11]: Text(0,0.5,'Potential energy')

The job normal_order_slow was saved and received the ID: 115

plt.plot(time, job_normal_order.output.temperature, marker='o', label='normal order'
plt.plot(time, job_wrong_order.output.temperature, marker='s', label='wrong order')
plt.legend()
plt.xlabel('Time [fs]')
plt.ylabel('Temperature [K]')

plt.plot(time, job_normal_order.output.energy_pot, marker='o', label='normal order'
plt.plot(time, job_wrong_order.output.energy_pot, marker='s', label='wrong order')
plt.legend()
plt.xlabel('Time [fs]')
plt.ylabel('Potential energy')

rescale_time = 100
job_normal_order_slow = pr.create_job(pr.job_type.Lammps, 'normal_order_slow')
job_normal_order_slow.structure = water.copy()
job_normal_order_slow.potential = potential
job_normal_order_slow.calc_md(

temperature=temperature,
n_ionic_steps=n_steps*rescale_time,
n_print=n_print*rescale_time,
time_step=time_step/rescale_time

)
job_normal_order_slow.run()

In [13]:

executed in 244ms, finished 15:56:40 2019-12-02

In [14]:

executed in 235ms, finished 15:56:40 2019-12-02

3 Output parsing
Next, let's demonstrate that we account for units only on the way in, and not (properly) on the way out. Both
"metal" and "real" units agree with pyiron units for a good deal of output, so this is a little tricky.

To demonstrate the point, we'll run an NPT ensemble and look at pressure, since "metal" and "real" use bar
and atm, respectively, while pyiron uses GPa. Now, in fact, pyiron/lammps
/base/LammpsBase.collect_output_log does convert units back to pyiron! But it hard-codes in the
metal transition by calling pressures *= 0.0001 # bar -> GPa (line 543 at time of writing).

However, bar at atm are not identical; rather 1 bar = 0.986923 atm. So if we run NPT targetting a non-zero
pressure for both a "metal"-using job and a "real"-using job (i.e. water), we should see that the metallic job
hits the target pressure more less spot on, while the water underestimates by the ratio of atm to bar.

Indeed, this is exactly what we see below. ...And most other properties don't have any conversion for output.

Out[13]: Text(0,0.5,'Temperature [K]')

Out[14]: Text(0,0.5,'Potential energy')

plt.plot(time, job_normal_order.output.temperature, marker='o', label='dt = 1')
plt.plot(time, job_normal_order_slow.output.temperature, marker='s', label='dt = 0.01'
plt.legend()
plt.xlabel('Time [fs]')
plt.ylabel('Temperature [K]')

plt.plot(time, job_normal_order.output.energy_pot, marker='o', label='dt = 1')
plt.plot(time, job_normal_order_slow.output.energy_pot, marker='s', label='dt = 0.01'
plt.legend()
plt.xlabel('Time [fs]')
plt.ylabel('Potential energy')

In [15]:

executed in 4ms, finished 15:56:40 2019-12-02

In [16]:

executed in 1m 10.1s, finished 15:57:51 2019-12-02

In [17]:

executed in 39.2s, finished 15:58:30 2019-12-02

In [18]:

executed in 4ms, finished 15:58:30 2019-12-02

In [19]:

executed in 402ms, finished 15:58:30 2019-12-02

The job npt_water was saved and received the ID: 116

The job npt_Al was saved and received the ID: 117

Out[19]: Text(0,0.5,'Pressure')

temperature = 300
n_steps = 40000
n_print = 100
time_step = 1
time = np.linspace(start=0, stop=n_steps, num=int(n_steps/n_print) + 1, endpoint=True
pressure = 50

job_npt_water = pr.create_job(pr.job_type.Lammps, 'npt_water')
job_npt_water.structure = water.copy()
job_npt_water.potential = potential
job_npt_water.calc_md(

temperature=temperature,
n_ionic_steps=n_steps,
n_print=n_print,
time_step=time_step,
pressure=pressure

)
job_npt_water.run()

job_npt_Al = pr.create_job(pr.job_type.Lammps, 'npt_Al')
job_npt_Al.structure = pr.create_ase_bulk('Al', cubic=True).repeat(4)
job_npt_Al.potential = job_npt_Al.list_potentials()[0]
job_npt_Al.calc_md(

temperature=temperature,
n_ionic_steps=n_steps,
n_print=n_print,
time_step=time_step,
pressure=pressure

)
job_npt_Al.run()

def pressure_tensor_to_mean(pressures):
return np.mean(np.diagonal(pressures, axis1=1, axis2=2), axis=-1)

plt.plot(time, pressure_tensor_to_mean(job_npt_water.output.pressures), marker='o',
plt.plot(time, pressure_tensor_to_mean(job_npt_Al.output.pressures), marker='s', label
plt.legend()
plt.xlabel('Time [fs]')
plt.ylabel('Pressure')

In [20]:

executed in 119ms, finished 15:58:30 2019-12-02

In [21]:

executed in 7ms, finished 15:58:30 2019-12-02

Water pressure = 49.300583936991394 +- 0.10872091056588776
Al pressure = 50.001873204879345 += 0.039081594852438784

Water pressure / Al pressure = 0.9859747400859471
bar/atm = 0.9869232667160128

n_equil = 10
n_samples = (n_steps / n_print) - n_equil

water_P = pressure_tensor_to_mean(job_npt_water.output.pressures)[n_equil:]
water_P_ave = np.mean(water_P)
water_P_std = np.std(water_P)
water_P_stderr = water_P_std / np.sqrt(n_samples)

Al_P = pressure_tensor_to_mean(job_npt_Al.output.pressures)[n_equil:]
Al_P_ave = np.mean(Al_P)
Al_P_std = np.std(Al_P)
Al_P_stderr = Al_P_std / np.sqrt(n_samples)

print("Water pressure = {} +- {}".format(water_P_ave, water_P_stderr))
print("Al pressure = {} += {}".format(Al_P_ave, Al_P_stderr))

from scipy.constants import bar, atm
print("Water pressure / Al pressure \t = {}".format(water_P_ave/Al_P_ave))
print("bar/atm \t\t\t = {}".format(bar/atm))

