diff --git a/tutorials/cardiac-hemodynamics-assesment/experiments/pretraining_base.yml b/tutorials/cardiac-hemodynamics-assesment/experiments/pretraining_base.yml index af8c015..150d4dc 100644 --- a/tutorials/cardiac-hemodynamics-assesment/experiments/pretraining_base.yml +++ b/tutorials/cardiac-hemodynamics-assesment/experiments/pretraining_base.yml @@ -11,7 +11,7 @@ MODEL: NUM_LEADS: 12 TRAIN: - EPOCHS: 10 + EPOCHS: 1 LR: 0.001 SEED: 123 DEVICE: "cuda" diff --git a/tutorials/cardiac-hemodynamics-assesment/images/embc_heart_tutorial_fig.png b/tutorials/cardiac-hemodynamics-assesment/images/embc_heart_tutorial_fig.png new file mode 100644 index 0000000..5ee2387 Binary files /dev/null and b/tutorials/cardiac-hemodynamics-assesment/images/embc_heart_tutorial_fig.png differ diff --git a/tutorials/cardiac-hemodynamics-assesment/interpret.py b/tutorials/cardiac-hemodynamics-assesment/interpret.py deleted file mode 100644 index ace3cb4..0000000 --- a/tutorials/cardiac-hemodynamics-assesment/interpret.py +++ /dev/null @@ -1,187 +0,0 @@ -# interpret.py - -import torch -import numpy as np -import neurokit2 as nk -from captum.attr import IntegratedGradients -from scipy.ndimage import binary_dilation - - -def multimodal_ecg_cxr_attribution( - last_fold_model, - last_val_loader, - sample_idx=0, - ecg_threshold=0.70, - cxr_threshold=0.7, - zoom_range=(3, 3.5), - lead_number=12, - sampling_rate=500, -): - """ - Computes model attributions for multimodal (ECG + CXR) input using Integrated Gradients. - - This function selects a sample from the provided validation loader and computes the attributions - (importance scores) for both ECG and CXR modalities using Captum's Integrated Gradients. - It returns all relevant arrays and data needed for downstream visualization, including normalized - attributions, important indices, and segment data for zoomed-in views. - - Parameters - ---------- - last_fold_model : torch.nn.Module - Trained multimodal model that accepts both CXR images and ECG waveforms as input. - last_val_loader : DataLoader - PyTorch DataLoader for the validation dataset. Each batch should yield (CXR, ECG, label). - sample_idx : int, optional - Index of the sample in the validation set to interpret (default is 0). - ecg_threshold : float, optional - Threshold (0-1) to consider ECG attributions as important (default is 0.70). - cxr_threshold : float, optional - Threshold (0-1) to consider CXR attributions as important (default is 0.70). - zoom_range : tuple of float, optional - Start and end (in seconds) for zoomed ECG visualization window (default is (3, 3.5)). - lead_number : int, optional - Number of ECG leads (default is 12). - sampling_rate : int, optional - Sampling rate of the ECG waveform in Hz (default is 500). - - Returns - ------- - dict - Dictionary containing: - - label : int - True class label for the selected sample. - - predicted_label : int - Model's predicted class for the sample. - - predicted_probability : float - Probability of the predicted class. - - ecg_waveform_np : np.ndarray - 1D numpy array of the processed ECG waveform. - - full_time : np.ndarray - Time axis (seconds) for the full ECG. - - full_length : int - Number of time points in the (possibly trimmed) ECG. - - important_indices_full : np.ndarray - Indices in the full ECG considered important by attribution threshold. - - segment_ecg_waveform : np.ndarray - Zoomed ECG segment. - - zoom_time : np.ndarray - Time axis (seconds) for the zoomed ECG segment. - - important_indices_zoom : np.ndarray - Important indices within the zoomed ECG segment. - - zoom_start_sec : float - Start time (seconds) of the zoomed window. - - zoom_end_sec : float - End time (seconds) of the zoomed window. - - xray_image_np : np.ndarray - CXR image as a numpy array. - - x_pts, y_pts : np.ndarray - Coordinates of important points in the CXR image (after dilation). - - importance_pts : np.ndarray - Attribution values at (x_pts, y_pts). - - ecg_threshold : float - The threshold used for ECG attributions. - - cxr_threshold : float - The threshold used for CXR attributions. - """ - # Gather all batches (as in your code) - batches = list(last_val_loader) - all_xray_images, all_ecg_waveforms, all_labels = [ - torch.cat(items) for items in zip(*batches) - ] - - # --- Select Sample --- - xray_image = ( - all_xray_images[sample_idx] - .unsqueeze(0) - .to(next(last_fold_model.parameters()).device) - ) - ecg_waveform = ( - all_ecg_waveforms[sample_idx] - .unsqueeze(0) - .to(next(last_fold_model.parameters()).device) - ) - label = all_labels[sample_idx].item() - - # --- ECG Preprocessing --- - ecg_waveform_1d = all_ecg_waveforms[sample_idx].cpu().numpy().ravel() - ecg_smoothed = nk.ecg_clean(ecg_waveform_1d, sampling_rate=sampling_rate) - ecg_smoothed_tensor = ( - torch.tensor(ecg_smoothed.copy(), dtype=torch.float32) - .unsqueeze(0) - .unsqueeze(0) - .to(next(last_fold_model.parameters()).device) - ) - - # --- Prediction --- - last_fold_model.eval() - with torch.no_grad(): - logits = last_fold_model(xray_image, ecg_waveform) - probabilities = torch.softmax(logits, dim=1) - predicted_label = torch.argmax(probabilities, dim=1).item() - predicted_probability = probabilities[0, predicted_label].item() - - # --- Integrated Gradients --- - integrated_gradients = IntegratedGradients(last_fold_model) - xray_image.requires_grad_(True) - ecg_waveform.requires_grad_(True) - attributions, _ = integrated_gradients.attribute( - inputs=(xray_image, ecg_smoothed_tensor), - target=predicted_label, - return_convergence_delta=True, - ) - attributions_xray = attributions[0] - attributions_ecg = attributions[1] - - # --- ECG Attribution --- - attributions_ecg_np = attributions_ecg.cpu().detach().numpy().squeeze() - norm_attributions_ecg = (attributions_ecg_np - attributions_ecg_np.min()) / ( - attributions_ecg_np.max() - attributions_ecg_np.min() + 1e-8 - ) - ecg_waveform_np = ecg_smoothed_tensor.cpu().detach().numpy().squeeze() - full_length = min(60000, len(ecg_waveform_np)) - full_time = np.arange(0, full_length) / sampling_rate / lead_number - important_indices_full = np.where( - norm_attributions_ecg[:full_length] >= ecg_threshold - )[0] - - zoom_start = int(zoom_range[0] * 6000) - zoom_end = int(zoom_range[1] * 6000) - zoom_time = np.arange(zoom_start, zoom_end) / sampling_rate / lead_number - segment_ecg_waveform = ecg_waveform_np[zoom_start:zoom_end] - segment_attributions = norm_attributions_ecg[zoom_start:zoom_end] - important_indices_zoom = np.where(segment_attributions >= ecg_threshold)[0] - zoom_start_sec = zoom_start / sampling_rate / lead_number - zoom_end_sec = zoom_end / sampling_rate / lead_number - - # --- CXR Attribution: Points --- - attributions_xray_np = attributions_xray.cpu().detach().numpy().squeeze() - norm_attributions_xray = (attributions_xray_np - np.min(attributions_xray_np)) / ( - np.max(attributions_xray_np) - np.min(attributions_xray_np) + 1e-8 - ) - xray_image_np = xray_image.cpu().detach().numpy().squeeze() - - binary_mask = norm_attributions_xray >= cxr_threshold - dilated_mask = binary_dilation(binary_mask, iterations=1) - y_pts, x_pts = np.where(dilated_mask) - importance_pts = norm_attributions_xray[y_pts, x_pts] - - return { - "label": label, - "predicted_label": predicted_label, - "predicted_probability": predicted_probability, - "ecg_waveform_np": ecg_waveform_np, - "full_time": full_time, - "full_length": full_length, - "important_indices_full": important_indices_full, - "segment_ecg_waveform": segment_ecg_waveform, - "zoom_time": zoom_time, - "important_indices_zoom": important_indices_zoom, - "zoom_start_sec": zoom_start_sec, - "zoom_end_sec": zoom_end_sec, - "xray_image_np": xray_image_np, - "x_pts": x_pts, - "y_pts": y_pts, - "importance_pts": importance_pts, - "ecg_threshold": ecg_threshold, - "cxr_threshold": cxr_threshold, - } diff --git a/tutorials/cardiac-hemodynamics-assesment/notebook.ipynb b/tutorials/cardiac-hemodynamics-assesment/notebook.ipynb index 657535d..5cd67c8 100644 --- a/tutorials/cardiac-hemodynamics-assesment/notebook.ipynb +++ b/tutorials/cardiac-hemodynamics-assesment/notebook.ipynb @@ -11,51 +11,94 @@ { "metadata": {}, "source": [ - "# Cardiac Hemodynamics Assessment\n", + "# Cardiothoracic Abnormality Assessment\n", + "![](images/embc_heart_tutorial_fig.png)\n", "\n", - "In this tutorial, we demonstrate how to use low-cost, non-invasive modalities—**Chest X-ray (CXR)** and **12-lead Electrocardiogram (ECG)**—to assess **Pulmonary Arterial Wedge Pressure (PAWP)**, a key indicator of cardiac hemodynamics. The goal is to reduce reliance on high-cost or invasive methods such as **Cardiac MRI** and **Right Heart Catheterization (RHC)**, enabling early screening of **pulmonary hypertension (PH)** and **heart failure (HF)**.\n", + "In this tutorial, we demonstrate how to use low-cost, non-invasive modalities **Chest X-ray (CXR)** and **12-lead Electrocardiogram (ECG)** to assess **Cardiothoracic Abnormalities**.\n", "\n", - "This notebook is based on the work of **Suvon et al. (MICCAI 2024)**, which introduced a tri-stream pre-training method using a **multimodal variational autoencoder (VAE)** to learn both modality-shared and modality-specific representations. The resulting model, **CardioVAE**, is implemented in the [PyKale](https://github.com/pykale/pykale) library. Here, we provide a concise example of how to pre-train and fine-tune this model.\n", + "## 📌 Problem Formulation\n", "\n", - "---\n", + "We will use a multimodal dataset derived from MIMIC-CXR and MIMIC-IV-ECG, which contains approximately 50K paired CXR and ECG samples. In this tutorial, we pretrain a multimodal **CardioVAE** model using \\~49K CXR-ECG pairs via a tri-stream pretraining method. We then fine-tune this pretrained CardioVAE model on a smaller subset (\\~1K paired samples) with binary labels: **Healthy** and **Cardiothoracic Abnormality**. Lastly, we demonstrate how to interpret the trained CardioVAE model on both the CXR and ECG modalities.\n", + "\n", + "This notebook is based on the work of **Suvon et al. (MICCAI 2024)**, which introduced a tri-stream pretraining strategy using a **Multimodal Variational Autoencoder (VAE)** to learn both modality-shared and modality-specific representations for assessing **Pulmonary Arterial Wedge Pressure (PAWP)**—a critical indicator of cardiac hemodynamics. The resulting model, **CardioVAE**, is implemented in the [PyKale](https://github.com/pykale/pykale) library. Here, we provide a concise example of how to use this model through PyKale's APIs—from pretraining and fine-tuning to model interpretation.\n", + "\n", + "\n", + "## 🎯 Objectives\n", + "\n", + "1. Understand the roles of CXR and ECG in evaluating cardiac and thoracic health, and the benefits of multimodal modeling with these low-cost modalities.\n", + "\n", + "2. Learn the standard PyKale workflow for pretraining, fine-tuning, and interpreting the CardioVAE model.\n" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "## ⚙️ Environment preparation" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "### Package installation\n", + "\n", + "The main packages required for this tutorial are:\n", "\n", - "### **Objectives**\n", + "- **pykale**: An open-source machine learning library developed at the University of Sheffield, focused on biomedical and scientific applications. It supports multimodal learning, domain adaptation, and interpretability.\n", "\n", - "1. **Load** a preprocessed subset of 50K paired multimodal dataset from **MIMIC-CXR** and **MIMIC-IV-ECG**. Due to resource constraints in Colab, we use a reduced version of the dataset. The full preprocessing pipeline is also shared for reference.\n", + "- **wfdb**: A toolkit for reading, writing, and processing physiological signal data, especially useful for ECG waveform analysis.\n", "\n", - "2. **Pre-train** the CardioVAE model using a small subset of the paired data. This step illustrates how to run the tri-stream pretraining pipeline and save the resulting model.\n", + "- **yacs**: A lightweight configuration management library that helps organize experimental settings in a structured, readable format.\n", "\n", - "3. **Load** a separate, labeled subset of paired CXR+ECG data for fine-tuning. Labels represent **healthy** versus **cardiothoracic abnormality** cases.\n", + "- **pytorch-lightning**: A high-level framework built on PyTorch that simplifies training workflows, making code cleaner and easier to scale.\n", "\n", - "4. **Fine-tune** the pre-trained CardioVAE model on the labeled subset to adapt it for a downstream classification task.\n", + "- **tabulate**: Used to print tabular data in a readable format, helpful for summarizing results or configuration parameters.\n", "\n", - "5. **Interpret** the fine-tuned model using **Integrated Gradients** from the Captum library to identify and visualize modality-specific salient features.\n", "\n", - "**Note:** Please make a shortcut of https://drive.google.com/drive/folders/1N7-fMWsdK-tuB76SdC-GF1njYYGx0Z-i?usp=sharing in your MyDrive." + "**Additional Notes for Colab**\n", + "Some non-critical dependencies (e.g., `torch-geometric`) may face version conflicts when installing `pykale` on Colab. These are handled manually in the below installation step. Also an autometic crash and reset has been added as after installing this depedencies you need to restart the session. **Dont run this block again if you already did once" ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "# Setup\n", + "import os\n", + "\n", + "!pip uninstall --quiet -y torch torchvision torchaudio torchdata\n", "\n", - "As a starting point, we will install the required packages and load a set of helper functions to support the tutorial workflow. To keep the output clean and focused on interpretation, we also suppress unnecessary warnings.\n", + "!pip install --quiet torch==2.3.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121\n", + "!pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-2.3.0+cu121.html\n", "\n", - "Several helper scripts are included to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook’s working directory:\n", + "!pip install --quiet --user \\\n", + " git+https://github.com/pykale/pykale@main \\\n", + " yacs==0.1.8 wfdb pytorch-lightning tabulate captum neurokit2\\\n", + " && echo \"pykale,yacs and wfdb installed successfully ✅\" \\\n", + " || echo \"Failed to install pykale,yacs and wfdb ❌\"\n", "\n", - "- **`pretraining_config.py`**: Defines the base configuration settings for pretraining **CardioVAE**, which can be customized or overridden using external `.yml` files.\n", + "# This code crashes the Colab runtime, triggering an automatic reset.\n", + "os.kill(os.getpid(), 9)" + ], + "cell_type": "code", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "### Setup\n", "\n", - "- **`finetune_config.py`**: Defines the base configuration settings for the fine-tuning stage. These can also be overridden with `.yml` configuration files.\n", + "As a starting point, we will mount Google Drive in Colab so that the data can be accessed directly. You might be prompted to grant permission to access your Google account—please proceed with the authorisation when asked.\n", "\n", - "- **`remap_model_parameters.py`**: The original CardioVAE model (MICCAI 2024) used a different naming convention for model parameters. Since the model has now been integrated into the **PyKale** library with a unified API, this script remaps the original pre-trained model weights to the new parameter names for compatibility.\n" + "Next, we will install the required packages and load a set of helper functions to support the tutorial workflow. To keep the output clean and focused on interpretation, we also suppress unnecessary warnings." ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "# Connect with your google drive for data laoding\n", + "# Connect with your google drive for data and model loading\n", "from google.colab import drive\n", "\n", "drive.mount(\"/content/drive\")" @@ -86,7 +129,7 @@ "\n", "if \"google.colab\" in str(get_ipython()):\n", " sys.path.insert(0, site.getusersitepackages())\n", - " !git clone --single-branch --branch heart-tutorial https://github.com/pykale/embc-mmai25.git\n", + " !git clone --single-branch https://github.com/pykale/embc-mmai25.git\n", " %cp -r /content/embc-mmai25/tutorials/cardiac-hemodynamics-assesment/* /content/\n", " %rm -r /content/embc-mmai25" ], @@ -97,62 +140,22 @@ { "metadata": {}, "source": [ - "## Packages\n", - "\n", - "The main packages required for this tutorial are:\n", - "\n", - "- **pykale**: An open-source machine learning library developed at the University of Sheffield, focused on biomedical and scientific applications. It supports multimodal learning, domain adaptation, and interpretability.\n", - "\n", - "- **wfdb**: A toolkit for reading, writing, and processing physiological signal data, especially useful for ECG waveform analysis.\n", + "### Configuration\n", "\n", - "- **yacs**: A lightweight configuration management library that helps organize experimental settings in a structured, readable format.\n", - "\n", - "- **pytorch-lightning**: A high-level framework built on PyTorch that simplifies training workflows, making code cleaner and easier to scale.\n", - "\n", - "- **tabulate**: Used to print tabular data in a readable format, helpful for summarizing results or configuration parameters.\n", - "\n", - "- **captum**: A model interpretability library for PyTorch, providing tools such as Integrated Gradients to explain model predictions.\n", - "\n", - "- **neurokit2**: A user-friendly library for physiological signal processing, especially for extracting and analyzing ECG features.\n", - "\n", - "---\n", - "\n", - "### Additional Notes for Colab\n", + "To maintain a clean and modular notebook design, **CardioVAE** uses dedicated configuration files for both pre-training and fine-tuning. This setup ensures a clear separation between code and experimental settings, enhancing reproducibility and flexibility across different tasks and datasets.\n", "\n", - "Some non-critical dependencies (e.g., `torch-geometric`) may face version conflicts when installing `pykale` on Colab. These are handled manually in the installation step. \n", - "#**Note:** If you're running this notebook for the first time in Colab, be sure to **restart the runtime after installation** to properly load all libraries.\n" + "Configuration parameters can be overridden using external YAML files (e.g., `experiments/pretraining_base.yml`, `experiments/finetune_base.yml`)." ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "!pip uninstall --quiet -y torch torchvision torchaudio torchdata\n", - "\n", - "!pip install --quiet torch==2.3.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121\n", - "!pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-2.3.0+cu121.html\n", - "\n", - "!pip install --quiet --user \\\n", - " git+https://github.com/pykale/pykale@main \\\n", - " yacs==0.1.8 wfdb pytorch-lightning tabulate captum neurokit2\\\n", - " && echo \"pykale,yacs and wfdb installed successfully ✅\" \\\n", - " || echo \"Failed to install pykale,yacs and wfdb ❌\"" - ], - "cell_type": "code", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "source": [ - "## Pre-training Configuration\n", - "\n", - "To reduce code clutter in the notebook, we use a dedicated configuration file—`pretraining_config.py`—which defines the default parameters for pre-training **CardioVAE**. These defaults can be easily customized by providing an external `.yml` configuration file, such as `experiments/pretraining_base.yml`.\n", "\n", - "This setup enables clear separation between code and experiment settings, making the workflow more modular and reproducible.\n", + "#### Pre-training Configuration\n", "\n", - "Refer to the provided configuration files for detailed customization instructions. \n", - "A breakdown of each configurable option is described in the sections that follow.\n" + "Default settings for the pre-training stage are defined in `pretraining_config.py`. These include data paths, model architecture, and optimizer parameters. \n", + "This modular structure allows easy experiment tracking and customisation by simply editing the associated `.yml` file." ], "cell_type": "markdown" }, @@ -161,11 +164,18 @@ "source": [ "from pretraining_config import get_cfg_defaults\n", "\n", - "cfg = get_cfg_defaults()\n", - "cfg.merge_from_file(\"experiments/pretraining_base.yml\")\n", - "print(cfg)\n", + "cfg_PT = get_cfg_defaults()\n", + "cfg_PT.merge_from_file(\"experiments/pretraining_base.yml\")\n", "\n", - "# laoding" + "# ------ Hyperparameters to play with -----\n", + "cfg_PT.MODEL.LATENT_DIM = 128\n", + "cfg_PT.TRAIN.EPOCHS = 1\n", + "cfg_PT.TRAIN.LAMBDA_IMAGE = 1\n", + "cfg_PT.TRAIN.LAMBDA_SIGNAL = 10\n", + "# User can change this to try different batch size.\n", + "cfg_PT.DATA.BATCH_SIZE = 128\n", + "\n", + "print(cfg_PT)" ], "cell_type": "code", "outputs": [ @@ -174,7 +184,7 @@ "name": "stdout", "text": [ "DATA:\n", - " BATCH_SIZE: 32\n", + " BATCH_SIZE: 128\n", " CXR_PATH: /content/drive/MyDrive/EMBC_workshop_data/cxr_features_tensor_1000.pt\n", " ECG_PATH: /content/drive/MyDrive/EMBC_workshop_data/ecg_features_tensor_1000.pt\n", " NUM_WORKERS: 2\n", @@ -188,9 +198,9 @@ " DATA_DEVICE: cpu\n", " DEVICE: cuda\n", " DEVICES: 1\n", - " EPOCHS: 10\n", - " LAMBDA_IMAGE: 1.0\n", - " LAMBDA_SIGNAL: 10.0\n", + " EPOCHS: 1\n", + " LAMBDA_IMAGE: 1\n", + " LAMBDA_SIGNAL: 10\n", " LR: 0.001\n", " SAVE_PATH: cardioVAE.pth\n", " SCALE_FACTOR: 0.0001\n", @@ -203,20 +213,105 @@ { "metadata": {}, "source": [ - "# Data Loading and Preprocessing\n", "\n", - "Both image and signal data typically require common preprocessing steps such as resizing, normalization, tensor conversion, and interpolation before being fed into a deep learning model.\n", + "#### Fine-tuning Configuration\n", "\n", - "In this tutorial, we use a **preprocessed subset (first 1000 samples)** of the paired CXR and ECG data to demonstrate the pretraining process. This helps reduce complexity and avoids the time-intensive process of loading and preprocessing the full dataset.\n", + "Fine-tuning parameters are managed in `finetune_config.py`. These include learning rate, loss weights, number of epochs, model checkpoint paths, and other task-specific options. \n", + "External YAML files like `experiments/finetune_base.yml` enable flexible adjustments for different downstream tasks or datasets.\n" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "from finetune_config import get_cfg_defaults\n", "\n", - "However, we also provide the CSV files containing subject IDs for the entire 50K paired dataset. If you wish to pre-train the model on the full data, you can use the **PyKale API** to load samples directly from the CXR and ECG directories with preprocessing included.\n", + "cfg_FT = get_cfg_defaults()\n", + "cfg_FT.merge_from_file(\"experiments/finetune_base.yml\")\n", "\n", - "To keep this tutorial lightweight and runnable in environments like **Google Colab**, the full-data loading functionality is commented out by default but can be easily enabled.\n", + "# ------ Hyperparameters to play with -----\n", + "cfg_FT.FT.EPOCHS = 10\n", + "cfg_FT.FT.HIDDEN_DIM = 128\n", + "# User can change this to try different batch size.\n", + "cfg_FT.DATA.BATCH_SIZE = 32\n", "\n", - "---\n", + "print(cfg_FT)" + ], + "cell_type": "code", + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "DATA:\n", + " BATCH_SIZE: 32\n", + " CSV_PATH: /content/drive/MyDrive/EMBC_workshop_data/chexpert_healthy_abnormality_subset.csv\n", + " CXR_PATH: /content/drive/MyDrive/EMBC_workshop_data/cxr_features_tensor_last_1000.pt\n", + " DATA_DEVICE: cpu\n", + " ECG_PATH: /content/drive/MyDrive/EMBC_workshop_data/ecg_features_tensor_last_1000.pt\n", + " NUM_WORKERS: 2\n", + "FT:\n", + " ACCELERATOR: gpu\n", + " CKPT_PATH: /content/drive/MyDrive/EMBC_workshop_data/CardioVAE.pth\n", + " DEVICE: cuda\n", + " DEVICES: 1\n", + " EPOCHS: 10\n", + " HIDDEN_DIM: 128\n", + " KFOLDS: 5\n", + " LR: 0.001\n", + " NUM_CLASSES: 2\n", + " SEED: 42\n", + "INTERPRET:\n", + " CXR_THRESHOLD: 0.7\n", + " ECG_THRESHOLD: 0.7\n", + " SAMPLE_IDX: 101\n", + " SAMPLING_RATE: 500\n", + " ZOOM_RANGE: [3, 3.5]\n", + "MODEL:\n", + " INPUT_DIM_ECG: 60000\n", + " INPUT_IMAGE_CHANNELS: 1\n", + " LATENT_DIM: 256\n", + " NUM_LEADS: 12\n" + ] + } + ], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "## 🧹 Data Preparation\n", + "\n", + "This tutorial uses separate data pipelines for **pre-training** and **fine-tuning**, both based on paired chest X-ray (CXR) and ECG signal features. Each stage follows standard preprocessing steps—such as resizing, normalization, interpolation, and tensor conversion—tailored for resource-constrained environments like **Google Colab**.\n", + "\n", + "PyKale API for Data preparation:\n", + "\n", + "- `kale.loaddata.signal_access.load_ecg_from_folder` provides a convenient function for loading ECG waveform data stored in a directory structure. It supports automatic parsing and conversion of ECG signal files into PyTorch tensors, with options for standard preprocessing such as normalisation, resize, interpolation, and resampling. This enables streamlined integration with deep learning pipelines.\n", + "\n", + "- `kale.loaddata.image_access.load_images_from_dir` offers an easy-to-use utility for loading image datasets from directory hierarchies. It supports standard image formats and returns PyTorch tensors, performing essential preprocessing steps such as resizing and normalisation. This function is suitable for image classification, computer vision, and multimodal learning tasks.\n", + "\n", + "- `kale.loaddata.signal_image_access.SignalImageDataset` defines a unified dataset class designed for paired signal (e.g., ECG) and image (e.g., CXR) modalities. It facilitates synchronized access to multi-source data, providing ready-to-use PyTorch datasets that can be directly utilised for multimodal training, evaluation, and downstream applications.\n", + "\n", + "\n", + "**Note:** Please create a shortcut to the following Google Drive folder in your **MyDrive**: \n", + "👉 [Google Drive Link](https://drive.google.com/drive/folders/1N7-fMWsdK-tuB76SdC-GF1njYYGx0Z-i?usp=sharing) \n", + "\n", + "There's no need to download the data manually. After mounting your Google Drive in the setup section, you will be able to directly access all datasets and pretrained models." + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "### Pre-training Data Loading\n", + "\n", + "To accommodate the resource constraints of platforms like **Google Colab**, this tutorial uses a lightweight version of the dataset consisting of the **first 1,000 preprocessed samples** from the full 50K paired CXR and ECG dataset. This significantly reduces runtime and memory requirements, allowing for rapid experimentation without the overhead of full-scale data loading and transformation.\n", + "\n", + "The complete preprocessing pipeline, implemented using the PyKale API, is provided for reference. Additionally, CSV files containing subject IDs for the full dataset are provided. Users interested in training on the complete 50K dataset can leverage the **PyKale API**, which supports direct loading of raw CXR and ECG features with integrated preprocessing.\n", "\n", "**Note:** \n", - "Please ensure the shared folder **`EMBC_workshop_data`** is added as a **shortcut to your Google Drive (My Drive)** to access the required files.\n" + "- For ease of use in Colab, the full-data loading functionality is **commented out by default**. It can be re-enabled for local or high-resource environments. \n", + "- To access the required files, ensure that the shared folder **`EMBC_workshop_data`** is added as a **shortcut to your Google Drive (under “My Drive”)**.\n" ], "cell_type": "markdown" }, @@ -244,15 +339,13 @@ "import numpy as np\n", "import torch\n", "\n", - "set_seed(cfg.TRAIN.SEED)\n", + "set_seed(cfg_PT.TRAIN.SEED)\n", + "\n", + "ecg_tensor_PT = torch.load(cfg_PT.DATA.ECG_PATH, map_location=cfg_PT.TRAIN.DATA_DEVICE)\n", + "cxr_tensor_PT = torch.load(cfg_PT.DATA.CXR_PATH, map_location=cfg_PT.TRAIN.DATA_DEVICE)\n", "\n", - "ecg_tensor = torch.load(cfg.DATA.ECG_PATH, map_location=cfg.TRAIN.DATA_DEVICE)\n", - "cxr_tensor = torch.load(cfg.DATA.CXR_PATH, map_location=cfg.TRAIN.DATA_DEVICE)\n", - "print(\"ECG tensor shape:\", ecg_tensor.shape)\n", - "print(\"CXR tensor shape:\", cxr_tensor.shape)\n", - "# Prepare train and val datasets using your provided method\n", - "train_dataset, val_dataset = SignalImageDataset.prepare_data_loaders(\n", - " ecg_tensor, cxr_tensor\n", + "train_dataset_PT, val_dataset_PT = SignalImageDataset.prepare_data_loaders(\n", + " ecg_tensor_PT, cxr_tensor_PT\n", ")" ], "cell_type": "code", @@ -262,55 +355,137 @@ { "metadata": {}, "source": [ - "# Multimodal pretraining" + "### Fine-tuning Data Loading\n", + "\n", + "For the fine-tuning stage, we use the **last 1,000 paired CXR and ECG samples** from the full 50K dataset derived from **MIMIC-CXR** and **MIMIC-IV-ECG**. Corresponding disease labels are obtained from MIMIC-CXR, which includes 12 cardiothoracic abnormality classes along with a \"No Finding\" label representing healthy cases.\n", + "\n", + "To formulate a binary classification task, all abnormality classes are grouped into a single **Cardiothoracic Abnormality** category, while the \"No Finding\" label is treated as **Healthy**. The resulting label mapping is as follows:\n", + "\n", + "- `0` → **Healthy** \n", + "- `1` → **Cardiothoracic Abnormality**\n", + "\n", + "This fine-tuning subset is explicitly selected to ensure no overlap with the samples used during pre-training, thereby simulating a realistic downstream evaluation setting.\n", + "\n", + "Unlike the fine-tuning strategy reported in *Suvon et al., MICCAI 2024*, which relied on a private in-house dataset, this approach is fully reproducible using publicly available data from MIMIC-CXR and MIMIC-IV-ECG." ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "## Multimodal Variational Autoencoder Pretraining\n", + "import torch\n", + "from torch.utils.data import TensorDataset, DataLoader, random_split\n", + "import pandas as pd\n", "\n", - "We implement a **multimodal variational autoencoder (VAE)** using **PyKale** and **PyTorch Lightning** to jointly learn representations from paired **Chest X-ray (CXR)** images and **ECG** signals. \n", - "This framework enables **unsupervised pretraining** that captures the underlying relationships between these two clinically relevant modalities.\n", + "# Set seed for reproducibility\n", + "torch.manual_seed(cfg_FT.FT.SEED)\n", "\n", - "---\n", + "# Load data\n", + "ecg_tensor_FT = torch.load(cfg_FT.DATA.ECG_PATH, map_location=cfg_FT.DATA.DATA_DEVICE)\n", + "cxr_tensor_FT = torch.load(cfg_FT.DATA.CXR_PATH, map_location=cfg_FT.DATA.DATA_DEVICE)\n", + "label_df = pd.read_csv(cfg_FT.DATA.CSV_PATH)\n", + "labels = torch.tensor(label_df[\"label\"].values, dtype=torch.long)\n", "\n", - "### Key Steps\n", + "# Combine tensors into a single dataset\n", + "dataset = TensorDataset(cxr_tensor_FT, ecg_tensor_FT, labels)\n", "\n", - "#### 🔧 Model Architecture\n", - "We instantiate the `SignalImageVAE`, which contains **parallel encoders and decoders** for each modality. These are fused into a **shared latent space**, allowing the model to learn both modality-specific and modality-shared representations.\n", + "# Split into train/val\n", + "val_ratio = 0.2\n", + "num_samples = len(dataset)\n", + "num_val = int(val_ratio * num_samples)\n", + "num_train = num_samples - num_val\n", "\n", - "#### ⚙️ Trainer Setup\n", - "We use the `SignalImageTriStreamVAETrainer` to manage the **multistream training process**, handling:\n", + "train_dataset_FT, val_dataset_FT = random_split(\n", + " dataset,\n", + " [num_train, num_val],\n", + " generator=torch.Generator().manual_seed(cfg_FT.FT.SEED),\n", + ")\n", + "\n", + "# DataLoaders\n", + "train_loader_FT = DataLoader(\n", + " train_dataset_FT,\n", + " batch_size=cfg_FT.DATA.BATCH_SIZE,\n", + " shuffle=True,\n", + " num_workers=cfg_FT.DATA.NUM_WORKERS,\n", + ")\n", + "val_loader_FT = DataLoader(\n", + " val_dataset_FT,\n", + " batch_size=cfg_FT.DATA.BATCH_SIZE,\n", + " shuffle=False,\n", + " num_workers=cfg_FT.DATA.NUM_WORKERS,\n", + ")" + ], + "cell_type": "code", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "## 🧠 Model Definition\n", "\n", - "- Joint and individual modality reconstructions \n", - "- ELBO loss computation \n", - "- Logging and evaluation\n", + "We use the **PyKale** library to implement a modular multimodal variational autoencoder (VAE) for learning joint representations from **ECG** and **CXR** data. The architecture includes modality-specific encoders and decoders, a PoE-based fusion mechanism, and task-specific heads for reconstruction and classification.\n", "\n", - "All hyperparameters—including learning rate, batch size, latent dimension, and modality-specific loss weights—are defined in a **central configuration file** to ensure full reproducibility.\n", + "### 📥 Embed\n", "\n", - "#### 🚀 Training Execution\n", - "The training loop is executed using **PyTorch Lightning’s `Trainer`**, which manages:\n", + "The embedding module is composed of independent encoders for each modality and a fusion mechanism to obtain a shared latent representation.\n", "\n", - "- Automatic GPU/CPU selection \n", - "- Epoch scheduling \n", - "- Checkpointing and logging \n", + "#### Signal Encoder \n", + "The ECG signal pathway uses `SignalVAEEncoder` from `kale.embed.signal_cnn`. \n", + "This encoder captures high-level temporal features from preprocessed ECG waveforms and maps them to a latent space suitable for downstream fusion and representation learning.\n", "\n", - "Model weights are saved after training for later **fine-tuning** or **evaluation**.\n", + "#### Image Encoder \n", + "The image pathway uses `ImageVAEEncoder` from `kale.embed.image_cnn`. \n", + "This encoder captures high-level spatial features from preprocessed CXR's and maps them to a latent space suitable for downstream fusion and representation learning.\n", "\n", - "#### 📁 Configuration\n", - "All major parameters (data paths, batch size, learning rate, number of epochs, etc.) are defined in a **YAML or Python config**. \n", - "This enables reproducible and modifiable experimentation, especially useful for scaling to larger datasets or different tasks.\n", + "#### ️ Feature Fusion \n", + "Encoded modality-specific features are combined using a **Product-of-Experts (PoE)** approach, implemented in `kale.embed.feature_fusion`. \n", + "The PoE fusion computes a joint posterior over the latent space by aggregating information from each modality, enabling coherent multimodal representation.\n", "\n", "---\n", "\n", - "> **Note:** \n", - "> To run this tutorial successfully on **Google Colab** without GPU or memory errors, some hyperparameters were adjusted: \n", - "> - `latent_dim` was reduced from **256** to **128** \n", - "> - `max_epochs` was set to **10** for quick training \n", - "> \n", - "> For better performance and stable representations, we recommend training for **at least 100 epochs** with a latent dimension of **256** in a full-scale environment.\n" + "### 🔮 Predict\n", + "\n", + "#### Reconstruction (Pre-training) \n", + "During pre-training, the model reconstructs both modalities using decoders from the shared latent representation:\n", + "\n", + "- `ImageVAEDecoder` from `kale.embed.vae_decoder` for CXR reconstruction \n", + "- `SignalVAEDecoder` from `kale.embed.signal_cnn_vae` for ECG waveform reconstruction \n", + "\n", + "The model is trained to minimise the **Evidence Lower Bound (ELBO)**, encouraging informative and disentangled latent representations.\n", + "\n", + "#### Classification (Fine-tuning) \n", + "For downstream classification tasks, we reuse the pretrained encoders as feature extractors. \n", + "The `SignalImageFineTuningClassifier` from [`kale.pipeline.finetune`](https://github.com/pykale/pykale/blob/main/kale/pipeline/finetune.py) adds a lightweight classification head on top of the shared latent space for supervised learning. \n", + "This setup is optimised for clinical prediction tasks, such as binary or multi-label disease classification.\n" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "## Model training\n" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "### 🛠️ Multimodal Pretraining\n", + "\n", + "We pretraind a CardioVAE model using the `SignalImageVAE` class from **PyKale** to jointly model paired CXR and ECG data. The goal is to learn **shared and modality-specific representations** in an **unsupervised** manner via reconstruction.\n", + "\n", + "We instantiate `SignalImageVAE` from [`kale.embed.multimodal_encoder`](https://github.com/pykale/pykale/blob/main/kale/embed/multimodal_encoder.py), which includes:\n", + "\n", + "- A **signal encoder-decoder** built on `SignalVAEEncoder` for ECG waveforms\n", + "- An **image encoder-decoder** built on `ImageVAEEncoder` for CXR images\n", + "- A **Product-of-Experts (PoE)** fusion module for combining modality-specific latent vectors into a shared latent representation\n", + "\n", + "To pretrain, we use `SignalImageTriStreamVAETrainer` from [`kale.pipeline.multimodal_trainer`](https://github.com/pykale/pykale/blob/main/kale/pipeline/multimodal_trainer.py) to:\n", + "\n", + "- Perform **joint and single-modality reconstructions**\n", + "- Optimise the **ELBO loss**, balancing image and signal modalities\n", + "- Manage logging, and reconstruction-based validation\n" ], "cell_type": "markdown" }, @@ -322,37 +497,96 @@ "from kale.embed.multimodal_encoder import SignalImageVAE\n", "\n", "model = SignalImageVAE(\n", - " image_input_channels=cfg.MODEL.INPUT_DIM_CXR,\n", - " signal_input_dim=cfg.MODEL.INPUT_DIM_ECG,\n", - " latent_dim=cfg.MODEL.LATENT_DIM,\n", + " image_input_channels=cfg_PT.MODEL.INPUT_DIM_CXR,\n", + " signal_input_dim=cfg_PT.MODEL.INPUT_DIM_ECG,\n", + " latent_dim=cfg_PT.MODEL.LATENT_DIM,\n", ")\n", "\n", "# PyKale trainer instance (all from config)\n", "pl_trainer = SignalImageTriStreamVAETrainer(\n", " model=model,\n", - " train_dataset=train_dataset,\n", - " val_dataset=val_dataset,\n", - " batch_size=cfg.DATA.BATCH_SIZE,\n", - " num_workers=cfg.DATA.NUM_WORKERS,\n", - " lambda_image=cfg.TRAIN.LAMBDA_IMAGE,\n", - " lambda_signal=cfg.TRAIN.LAMBDA_SIGNAL,\n", - " lr=cfg.TRAIN.LR,\n", - " annealing_epochs=cfg.TRAIN.EPOCHS,\n", - " scale_factor=cfg.TRAIN.SCALE_FACTOR,\n", + " train_dataset=train_dataset_PT,\n", + " val_dataset=val_dataset_PT,\n", + " batch_size=cfg_PT.DATA.BATCH_SIZE,\n", + " num_workers=cfg_PT.DATA.NUM_WORKERS,\n", + " lambda_image=cfg_PT.TRAIN.LAMBDA_IMAGE,\n", + " lambda_signal=cfg_PT.TRAIN.LAMBDA_SIGNAL,\n", + " lr=cfg_PT.TRAIN.LR,\n", + " annealing_epochs=cfg_PT.TRAIN.EPOCHS,\n", + " scale_factor=cfg_PT.TRAIN.SCALE_FACTOR,\n", ")\n", "\n", "trainer = pl.Trainer(\n", - " max_epochs=cfg.TRAIN.EPOCHS,\n", - " accelerator=cfg.TRAIN.ACCELERATOR,\n", - " devices=cfg.TRAIN.DEVICES,\n", + " max_epochs=cfg_PT.TRAIN.EPOCHS,\n", + " accelerator=cfg_PT.TRAIN.ACCELERATOR,\n", + " devices=cfg_PT.TRAIN.DEVICES,\n", " log_every_n_steps=10,\n", ")\n", "\n", "trainer.fit(pl_trainer)\n", "\n", "# Save model state dict\n", - "torch.save(model.state_dict(), cfg.TRAIN.SAVE_PATH)\n", - "print(f\"Saved model state dictionary to '{cfg.TRAIN.SAVE_PATH}'\")" + "torch.save(model.state_dict(), cfg_PT.TRAIN.SAVE_PATH)\n", + "print(f\"Saved model state dictionary to '{cfg_PT.TRAIN.SAVE_PATH}'\")" + ], + "cell_type": "code", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "### 🎯 Multimodal Fine-tuning\n", + "\n", + "For downstream classification, we fine-tune a shallow classifier on top of a **pretrained CardioVAE encoder**. The encoder is loaded from `SignalImageVAE`, pretrained with reconstruction loss, and used as a fixed or partially trainable **feature extractor**.\n", + "\n", + "We use `SignalImageFineTuningClassifier` from [`kale.pipeline.finetune`](https://github.com/pykale/pykale/blob/main/kale/pipeline/finetune.py), which wraps:\n", + "\n", + "- A **pretrained encoder** from `SignalImageVAE` \n", + "- A **classification head** (single or multi-layer MLP) \n", + "- A **training step** that supports standard supervised learning with cross-entropy loss\n" + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "import torch\n", + "import pytorch_lightning as pl\n", + "from kale.embed.multimodal_encoder import SignalImageVAE\n", + "from kale.pipeline.multimodal_trainer import SignalImageFineTuningTrainer\n", + "from kale.utils.remap_model_parameters import remap_state_dict_keys\n", + "\n", + "# Load and remap checkpoint\n", + "checkpoint = torch.load(cfg_FT.FT.CKPT_PATH, map_location=cfg_FT.FT.DEVICE)\n", + "checkpoint = remap_state_dict_keys(checkpoint)\n", + "\n", + "pretrained_mvae = SignalImageVAE(\n", + " image_input_channels=cfg_FT.MODEL.INPUT_IMAGE_CHANNELS,\n", + " signal_input_dim=cfg_FT.MODEL.INPUT_DIM_ECG,\n", + " latent_dim=cfg_FT.MODEL.LATENT_DIM,\n", + ")\n", + "pretrained_mvae.load_state_dict(checkpoint, strict=False)\n", + "pretrained_mvae.to(cfg_FT.FT.DEVICE)\n", + "pretrained_mvae.eval()\n", + "\n", + "model_pl = SignalImageFineTuningTrainer(\n", + " pretrained_model=pretrained_mvae,\n", + " num_classes=cfg_FT.FT.NUM_CLASSES,\n", + " lr=cfg_FT.FT.LR,\n", + " hidden_dim=cfg_FT.FT.HIDDEN_DIM,\n", + ")\n", + "\n", + "trainer = pl.Trainer(\n", + " max_epochs=cfg_FT.FT.EPOCHS,\n", + " accelerator=cfg_FT.FT.ACCELERATOR,\n", + " devices=cfg_FT.FT.DEVICES,\n", + " log_every_n_steps=10,\n", + " enable_checkpointing=False,\n", + " logger=False,\n", + ")\n", + "\n", + "trainer.fit(model_pl, train_dataloaders=train_loader_FT, val_dataloaders=val_loader_FT)" ], "cell_type": "code", "outputs": [], @@ -361,27 +595,39 @@ { "metadata": {}, "source": [ - "## Finetuning Configuration\n", + "### 📈 Evaluate\n", "\n", - "To keep the notebook clean and modular, we use a dedicated configuration file—`finetune_config.py`—that defines the default parameters for fine-tuning **CardioVAE**. \n", - "These defaults can be customized using an external `.yml` file, such as `experiments/finetune_base.yml`.\n", + "After training, we extract key validation metrics using PyTorch Lightning's built-in `callback_metrics`. These metrics provide a quantitative summary of model performance on the validation set.\n", "\n", - "This setup ensures reproducibility and flexibility across different downstream tasks and datasets.\n", + "We report the following:\n", "\n", - "Please refer to the provided configuration files for detailed instructions on how to adjust parameters such as learning rate, number of epochs, loss weights, and model paths.\n", + "- **Accuracy**: Proportion of correct predictions \n", + "- **AUROC**: Area under the Receiver Operating Characteristic curve, measuring ranking quality \n", + "- **MCC**: Matthews Correlation Coefficient, a balanced metric even for imbalanced classes\n", "\n", - "A breakdown of each configurable option is provided in the following sections.\n" + "The metrics are printed in a tabulated format using the `tabulate` library for clear presentation.\n" ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "from finetune_config import get_cfg_defaults\n", + "from tabulate import tabulate\n", + "\n", + "# Get validation metrics\n", + "val_metrics = trainer.callback_metrics\n", + "acc = val_metrics[\"val_acc\"].item() if \"val_acc\" in val_metrics else float(\"nan\")\n", + "auc = val_metrics[\"val_auroc\"].item() if \"val_auroc\" in val_metrics else float(\"nan\")\n", + "mcc = val_metrics[\"val_mcc\"].item() if \"val_mcc\" in val_metrics else float(\"nan\")\n", "\n", - "cfg = get_cfg_defaults()\n", - "cfg.merge_from_file(\"experiments/finetune_base.yml\")\n", - "print(cfg)" + "# Print metrics\n", + "table_data = [\n", + " [\"Accuracy\", f\"{acc:.3f}\"],\n", + " [\"AUROC\", f\"{auc:.3f}\"],\n", + " [\"MCC\", f\"{mcc:.3f}\"],\n", + "]\n", + "print(\"\\n=== Validation Summary ===\")\n", + "print(tabulate(table_data, headers=[\"Metric\", \"Value\"], tablefmt=\"fancy_grid\"))" ], "cell_type": "code", "outputs": [ @@ -389,36 +635,17 @@ "output_type": "stream", "name": "stdout", "text": [ - "DATA:\n", - " BATCH_SIZE: 32\n", - " CSV_PATH: /content/drive/MyDrive/EMBC_workshop_data/chexpert_healthy_abnormality_subset.csv\n", - " CXR_PATH: /content/drive/MyDrive/EMBC_workshop_data/cxr_features_tensor_last_1000.pt\n", - " DATA_DEVICE: cpu\n", - " ECG_PATH: /content/drive/MyDrive/EMBC_workshop_data/ecg_features_tensor_last_1000.pt\n", - " NUM_WORKERS: 2\n", - "FT:\n", - " ACCELERATOR: gpu\n", - " CKPT_PATH: /content/drive/MyDrive/EMBC_workshop_data/CardioVAE.pth\n", - " DEVICE: cuda\n", - " DEVICES: 1\n", - " EPOCHS: 10\n", - " HIDDEN_DIM: 128\n", - " KFOLDS: 5\n", - " LR: 0.001\n", - " NUM_CLASSES: 2\n", - " SEED: 42\n", - "INTERPRET:\n", - " CXR_THRESHOLD: 0.7\n", - " ECG_THRESHOLD: 0.7\n", - " LEAD_NUMBER: 12\n", - " SAMPLE_IDX: 101\n", - " SAMPLING_RATE: 500\n", - " ZOOM_RANGE: [3, 3.5]\n", - "MODEL:\n", - " INPUT_DIM_ECG: 60000\n", - " INPUT_IMAGE_CHANNELS: 1\n", - " LATENT_DIM: 256\n", - " NUM_LEADS: 12\n" + "\n", + "=== Validation Summary ===\n", + "╒══════════╤═════════╕\n", + "│ Metric │ Value │\n", + "╞══════════╪═════════╡\n", + "│ Accuracy │ 0.663 │\n", + "├──────────┼─────────┤\n", + "│ AUROC │ 0.726 │\n", + "├──────────┼─────────┤\n", + "│ MCC │ 0.326 │\n", + "╘══════════╧═════════╛\n" ] } ], @@ -427,1246 +654,196 @@ { "metadata": {}, "source": [ - "# Data Loading and Preprocessing\n", - "\n", - "Similar to the pretraining stage, we prepare paired CXR and ECG data for fine-tuning. \n", - "However, unlike the original fine-tuning example in **Suvon et al. (MICCAI 2024)**—which used a private in-house dataset—we use a **publicly available** small subset from **MIMIC-CXR** and **MIMIC-IV-ECG**, with binary labels:\n", - "\n", - "- **Healthy** → `0` \n", - "- **Cardiothoracic Abnormality** → `1`\n", + "## 🔍 Model Interpretation\n", "\n", - "This subset is carefully selected to ensure it is **not included in the original 50K samples** used during pretraining, thereby simulating a real downstream evaluation scenario.\n" + "We interpret the fine-tuned model using the multimodal_signal_image_attribution interpretation method from PyKale, which builds on Captum's Integrated Gradients to generate visual explanations for both CXR and ECG inputs.\n", + "This method helps identify which regions in each modality, such as specific waveform segments in ECG and spatial regions in CXR, contributed most to the model’s prediction. This improves both transparency and clinical interpretability.\n" ], "cell_type": "markdown" }, { "metadata": {}, "source": [ - "import torch\n", - "import pandas as pd\n", - "\n", - "X_ecg_tensor = torch.load(cfg.DATA.ECG_PATH, map_location=cfg.DATA.DATA_DEVICE)\n", - "X_image_tensor = torch.load(cfg.DATA.CXR_PATH, map_location=cfg.DATA.DATA_DEVICE)\n", - "df = pd.read_csv(cfg.DATA.CSV_PATH)\n", - "labels = torch.tensor(df[\"label\"].values, dtype=torch.long)" - ], - "cell_type": "code", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "source": [ - "# Multimodal Fine-tuning and Evaluation\n", - "\n", - "## Cross-Validation Split\n", - "\n", - "To assess classification performance in a **robust and unbiased** manner, we use a **Stratified K-Fold (SKF)** cross-validation strategy. \n", - "This ensures that each fold maintains the original class distribution (e.g., healthy vs. abnormal), which is especially important in medical datasets where class imbalance is common.\n", - "\n", - "All cross-validation hyperparameters are defined in the config for full reproducibility:\n", - "\n", - "- **`cv_strategy`**: The cross-validation method \n", - " - *Options*: `\"skf\"` (Stratified K-Fold) \n", - " - *Default*: `\"skf\"`\n", - "\n", - "- **`num_folds`**: Number of folds \n", - " - *Default*: As defined in config (e.g., `5`)\n", - "\n", - "- **`random_state`**: Seed for reproducibility \n", - " - *Default*: As defined in config (e.g., `42`)\n", - "\n", - "---\n", - "\n", - "## Model Definition\n", - "\n", - "For downstream classification, we adopt a **transfer learning setup**, where a pretrained **multimodal VAE** is used as a **feature extractor**. A shallow classifier is then fine-tuned to predict binary patient status:\n", - "\n", - "- **Healthy (`0`)** \n", - "- **Cardiothoracic Abnormality (`1`)**\n", - "\n", - "The classifier is implemented as a **PyTorch Lightning module**, where a lightweight classification head is added on top of the frozen or partially trainable encoder.\n", - "\n", - "All model-related hyperparameters are defined in the config for reproducibility:\n", - "\n", - "- **`feature_extractor`**: Pretrained multimodal VAE (`SignalImageVAE`)\n", - "- **`classifier_head`**: Single hidden layer or linear layer for binary classification\n", - "- **`optimizer`**: Adam optimizer (e.g., learning rate = `0.001`)\n", - "- **`epochs`**: Number of fine-tuning epochs (e.g., `15`)\n", - "- **`metrics`**: Accuracy and AUROC are reported for each fold\n", - "\n", - "---\n", - "\n", - "## Full Pipeline Overview\n", - "\n", - "The complete fine-tuning pipeline is managed using **PyTorch Lightning**, with cross-validation handled via `sklearn.model_selection.StratifiedKFold`.\n", - "\n", - "For each fold:\n", - "\n", - "1. The pretrained **CardioVAE** model is loaded.\n", - "2. A new classification head is initialized.\n", - "3. The model is trained and validated on the corresponding train/validation split.\n", - "\n", - "This setup ensures both **reproducibility** and **fair performance evaluation** across all folds.\n" - ], - "cell_type": "markdown" - }, - { - "metadata": {}, - "source": [ - "from tabulate import tabulate\n", - "from torch.utils.data import DataLoader, TensorDataset\n", - "from sklearn.model_selection import StratifiedKFold\n", - "import numpy as np\n", - "import torch\n", - "import pytorch_lightning as pl\n", - "from kale.embed.multimodal_encoder import SignalImageVAE\n", - "from kale.pipeline.multimodal_trainer import SignalImageFineTuningTrainer\n", - "from remap_model_parameters import remap_state_dict_keys\n", - "\n", - "# Cross-validation setup\n", - "skf = StratifiedKFold(n_splits=cfg.FT.KFOLDS, shuffle=True, random_state=cfg.FT.SEED)\n", - "fold_results = []\n", - "\n", - "for fold, (train_ids, val_ids) in enumerate(skf.split(np.zeros(len(labels)), labels)):\n", - " print(f\"\\n--- Fold {fold+1} ---\")\n", - "\n", - " train_dataset = TensorDataset(\n", - " X_image_tensor[train_ids], X_ecg_tensor[train_ids], labels[train_ids]\n", - " )\n", - " val_dataset = TensorDataset(\n", - " X_image_tensor[val_ids], X_ecg_tensor[val_ids], labels[val_ids]\n", - " )\n", - "\n", - " train_loader = DataLoader(\n", - " train_dataset,\n", - " batch_size=cfg.DATA.BATCH_SIZE,\n", - " shuffle=True,\n", - " num_workers=cfg.DATA.NUM_WORKERS,\n", - " )\n", - " val_loader = DataLoader(\n", - " val_dataset,\n", - " batch_size=cfg.DATA.BATCH_SIZE,\n", - " shuffle=False,\n", - " num_workers=cfg.DATA.NUM_WORKERS,\n", - " )\n", - "\n", - " # Load and remap checkpoint\n", - " checkpoint = torch.load(cfg.FT.CKPT_PATH, map_location=cfg.FT.DEVICE)\n", - " checkpoint = remap_state_dict_keys(checkpoint)\n", - "\n", - " pretrained_mvae = SignalImageVAE(\n", - " image_input_channels=cfg.MODEL.INPUT_IMAGE_CHANNELS,\n", - " signal_input_dim=cfg.MODEL.INPUT_DIM_ECG,\n", - " latent_dim=cfg.MODEL.LATENT_DIM,\n", - " )\n", - " pretrained_mvae.load_state_dict(checkpoint, strict=False)\n", - " pretrained_mvae.to(cfg.FT.DEVICE)\n", - " pretrained_mvae.eval()\n", - "\n", - " model_pl = SignalImageFineTuningTrainer(\n", - " pretrained_model=pretrained_mvae,\n", - " num_classes=cfg.FT.NUM_CLASSES,\n", - " lr=cfg.FT.LR,\n", - " hidden_dim=cfg.FT.HIDDEN_DIM,\n", - " )\n", - "\n", - " trainer = pl.Trainer(\n", - " max_epochs=cfg.FT.EPOCHS,\n", - " accelerator=cfg.FT.ACCELERATOR,\n", - " devices=cfg.FT.DEVICES,\n", - " log_every_n_steps=10,\n", - " enable_checkpointing=False,\n", - " logger=False,\n", - " )\n", - "\n", - " trainer.fit(model_pl, train_dataloaders=train_loader, val_dataloaders=val_loader)\n", - "\n", - " if fold == cfg.FT.KFOLDS - 1:\n", - " last_fold_model = model_pl\n", - " last_val_loader = val_loader\n", - "\n", - " val_metrics = trainer.callback_metrics\n", - " acc = val_metrics[\"val_acc\"].item() if \"val_acc\" in val_metrics else float(\"nan\")\n", - " auc = (\n", - " val_metrics[\"val_auroc\"].item() if \"val_auroc\" in val_metrics else float(\"nan\")\n", - " )\n", - " mcc = val_metrics[\"val_mcc\"].item() if \"val_mcc\" in val_metrics else float(\"nan\")\n", - "\n", - " # Print metrics for this fold\n", - " print(f\"Accuracy: {acc:.3f}\")\n", - " print(f\"AUROC: {auc:.3f}\")\n", - " print(f\"MCC: {mcc:.3f}\")\n", - "\n", - " fold_results.append((acc, auc, mcc))\n", - "\n", - "# Final summary\n", - "accuracies, aucs, mccs = zip(*fold_results)\n", - "table_data = [\n", - " [\"Accuracy\", f\"{np.mean(accuracies):.3f} ± {np.std(accuracies):.3f}\"],\n", - " [\"AUROC\", f\"{np.mean(aucs):.3f} ± {np.std(aucs):.3f}\"],\n", - " [\"MCC\", f\"{np.mean(mccs):.3f} ± {np.std(mccs):.3f}\"],\n", - "]\n", - "print(\"\\n=== Final Cross-Validation Summary ===\")\n", - "print(tabulate(table_data, headers=[\"Metric\", \"Mean ± STD\"], tablefmt=\"fancy_grid\"))" - ], - "cell_type": "code", - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "--- Fold 1 ---\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Sanity Checking: | | 0/? [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFXbBvB7k5AGCaFIh4D03qUJhCqCgEgTKQIKqFRFBKSKCmJFVLAg7ZUuKEVB6dJ7ld57D6EkpJ7vj3wzzu7O7s5udjPJzP27rlxsnX3YszNzzjOnWIQQAkREREREREREROnIT+8AiIiIiIiIiIjIfJiUIiIiIiIiIiKidMekFBERERERERERpTsmpYiIiIiIiIiIKN0xKUVEREREREREROmOSSkiIiIiIiIiIkp3TEoREREREREREVG6Y1KKiIiIiIiIiIjSHZNSRERERERERESU7piUIiIi0pnFYkFUVJTVY+PHj4fFYsGmTZt0iSkzioqKgsVices9s2fPhsViwezZs30TFJEbihYtiqJFi+odBhERUbphUoqIiEgDi8Xi9E/vpIaUxHL2Z5v4kly+fBkjRoxA9erVkSNHDmTJkgV58uRB06ZN8fXXXyMmJkb1fVevXsWYMWNQp04d5M6dG1myZEH27NlRtWpVvPXWWxkiobZp0yZYLBaMHz/e55914cIFWCwWUyQV0vN79UUMRYsWtdo3/Pz8kD17dtSuXRtTpkxBYmKi9wMmIiIiOwF6B0BERJSZjBs3TvXxKlWqpG8gDjRs2NBh8kktWTJjxgwMGDAA8fHxqFy5Mrp06YIcOXLg7t272Lp1K4YMGYIPP/wQd+7csXrfjz/+iMGDB+PJkycoU6YM2rVrhzx58uDx48c4efIk5s6di+nTp+Pdd9/FZ5995oP/qb25c+ciNjY2XT6LjGHw4MGIiIhAcnIyLl26hGXLluHtt9/G+vXrsXLlynSPZ/369en+mURERHpiUoqIiMgNevYM0SIqKkpzjPPmzUOfPn2QI0cOLF26FK1atbJ7zbZt29C/f3+rx+bOnYt+/fohR44cWLhwIdq2bWv3vgcPHuCHH37ApUuXPPp/eKJIkSLp9llkDEOGDLFK1o4ZMwZVqlTBqlWrsHnzZjRs2DBd4ylevHi6fh4REZHeOHyPiIjIi5zNCZOR5ol6+PAhBg0aBABYuHChakIKAOrVq4ddu3bJ92NiYjBkyBAAwKJFi1QTUgAQHh6OYcOG4auvvnIZy6NHjxAYGIh69epZPR4XF4fg4GBYLBb873//s3pu+vTpsFgsmDlzpvyY7ZxSPXv2RKNGjQAAH3zwgdVwLbUy2LhxI6KiohAWFobw8HC0atUKx48fdxm/K8phZnv37kWLFi2QPXt25MiRA+3bt8fly5cBAOfOncPLL7+Mp556CiEhIWjUqBEOHTpkt72ePXvCYrHg3Llz+PLLL1GmTBkEBwejUKFCePvtt/HgwQPVOPbt24f27dsjT548CAoKQmRkJN566y1cv37d6Wd88803qFSpEkJCQhAVFaXpe42JicFnn32Gxo0bo1ChQggMDMRTTz2FNm3aYMeOHarxSUNM79y5g759+yJ//vwICgpC+fLlMWvWLLv43ClbrUqUKCEnovbs2WP3/IkTJ9CzZ08ULlwYgYGByJs3L1555RWcPHlSdXunTp1C+/btkSNHDmTNmhV169bFH3/84XAuM0fHj/j4eHzyySeoWLEiQkNDER4ejvr162Px4sV2r5WGkfbs2RMXLlzAyy+/jNy5cyM4OBg1atTAqlWr7N6TkJCAqVOnolq1asiRIwdCQ0NRtGhRtG3bFuvWrdPwzREREXmGPaWIiIhM6Ndff8W9e/dQu3ZtNG/e3Olrg4KCrN4XHR2NunXrolmzZi4/JyDAdVUjW7ZseOaZZ7Br1y48fPgQYWFhAFJ7acXHxwNIHdbUvXt3+T3SMKcmTZo43O6LL74IAJgzZ47dsEbbhv+qVauwfPlyPP/883jjjTdw7Ngx/Pnnn9izZw+OHTuG3Llzu/x/uLJnzx5MnjwZDRs2RJ8+fXDkyBEsW7YMR48exfLly/Hss8+iTJky6NGjBy5evIhly5ahWbNmOHfuHLJly2a3vbfffhv//PMPOnXqhLZt2+Kvv/7ClClTsGXLFmzduhXBwcFW/7/27dtDCIEOHTogMjIS+/btw/Tp07F8+XJs3boVxYoVs/uMwYMHY8uWLWjVqhVatmwJf39/1KxZ0+X3evz4cYwaNQoNGjRAq1atkCNHDly6dAkrVqzA6tWrsXLlSrRo0cLu8+7fv4969eohMDAQHTp0QHx8PJYsWYLevXvDz88Pr776KgD3ytZTWbJksbq/Zs0avPTSS0hMTETr1q1RokQJXLlyBcuWLcMff/yBjRs3olq1avLrT5w4gbp16yI6OhqtWrVCpUqVcO7cObRr1w4tW7bUHEdCQgKee+45bN68GWXKlEH//v0RGxuLX3/9FZ07d8bBgwcxceJEu/ddvHgRzzzzDJ5++ml0794d9+7dkxPJ69atk5N6QGqSb8GCBahQoQJ69OiBkJAQXLt2DVu3bsWaNWvQtGlTD75BIiIiDQQRERG5BEAAEOPGjbP7mzVrlvy6yMhIERkZqbqNcePGCQBi48aNdttu2LChptc6Ir2+YcOGqjGOGzdO7NixQ3597969BQAxatQoTduX9OrVSwAQo0ePdut9rowZM0YAEKtWrZIfGzFihPD39xeNGzcWhQoVkh9PTk4WOXPmFE8//bTVNho2bChsqzYbN26Uy03NrFmzBADh7+8v1q1bZ/XciBEjBAAxefJkTf+H8+fPCwB25S/FAED88ssvVs9J5ZAjRw7x0UcfWT03YcIEAUBMmTLF6vFXX31VABC5cuUSFy5ckB9PTk4WL730kgAgJkyYID/+8OFDkTNnTuHn5yf++ecfq2198sknAoBo1qyZ6mcUKFBAnDt3zu7/6up7vX//vrh9+7bd45cvXxb58+cXZcqUsXtO+o5ee+01kZSUJD/+77//Cn9/f1G2bFm3YnAmMjJSABDnz5+3evzEiRMiNDRUABB79+6VH793756IiIgQuXLlEv/++6/Ve44cOSKyZs0qqlatavV448aNBQAxbdo0q8f//PNP+f+qPHZIcdn+fiZOnCgAiOeff14kJibKj9+8eVP+f2zbtk1+XPodAhDjx4+32taaNWvkbUnu378vLBaLqF69utX3Lrlz547dY0RERN7CnlJERERu+OCDD+wea9iwIXr27Jn+wajYvHkzNm/erPpcREQEateuDQDykK1ChQq5tf0bN24AAAoWLGj33P379zFlyhS7x7XMcdWkSRN8+OGHWL9+vTyUcP369ahevTpeeuklDBgwAKdOnUKpUqVw8OBB3Lt3D+3bt3crdmdefvllu15Xffv2xSeffILdu3d75TOeffZZdO3a1eqxV199FTNnzkT27NkxYsQIq+d69OiBsWPH4uDBg6rbGzx4MCIjI+X7fn5++Oyzz/D7779j5syZGDNmDABg+fLluHfvHrp06YL69etbbWPo0KH4/vvvsXbtWly6dMluXq733ntPtQeVK9mzZ1d9vFChQujQoQO++eYb1c8LDQ3Fl19+CX9/f/mxcuXKoV69evjnn3/w6NEj1V5jnpoyZYrVROdLly5FbGws3n33XVSvXl1+3dy5c3H//n18++23KFeunNU2KlSogD59+mDKlCk4duwYypUrh8uXL2PDhg0oUaIE+vXrZ/X6559/Hk2bNtU8LG7mzJmwWCz48ssvrXoe5smTB2PGjMHrr7+OGTNmoG7dulbvi4yMxOjRo60ee+6551CkSBGr37TFYoEQAkFBQfDzs5/ZI1euXJriJCIi8gSTUkRERG4QQugdglPjxo3TbTL2+/fvqybttMRTp04dhISEyMPyYmJisH//frz33nto3LgxgNQkValSpbBhwwYAkB/3hho1atg9VrhwYQBAdHS0zz6jQIECAFJXb1QmYoD/En9XrlxR3Z7aJNxPP/00ChcujAsXLuD+/fuIiIjA/v37Aah/XwEBAWjQoAEuXLiAAwcO2CWJnnnmGQ3/M3Xbtm3D119/jR07duDWrVtISEiwev7q1at2n1eyZEmEh4fbbUtZFt5MSn399dd2j40fP95ulU1pHqxDhw6p/p5PnToFIHXYYrly5eREYp06dVQTPc8++6ympNTDhw9x5swZFCxYEGXKlLF7XirTAwcO2D2n9psCUr9L5bxe4eHhaN26NVauXIkqVaqgffv2qF+/PmrVqoXQ0FCXMRIREaUFk1JEREQmlD9/fgCpiQF35MuXDwBw7do1u+eKFi1qlbQrVKiQ5u0HBgbKDfXbt29j+/btSE5ORpMmTVC2bFnkz58f69evx5tvvon169fDYrF4NSkVERFh95jUKyU5Odkrn6HWe0j6DGfPJSYmqm4vb968qo/ny5cPFy9eRExMDCIiIhATEwPgvzK3JT1+//591W154rfffkOHDh0QHByMZs2aoXjx4siaNSv8/PywadMmbN68WZ4vTEmtHADvl4Xk/PnzKFq0KJ48eYKDBw/ijTfewAcffCDPwyS5e/cuAOCnn35yur1Hjx4BgPydOyojR4/bSkvZOfsuU1JSrB5btGgRJk+ejPnz58sJueDgYHTo0AGff/655niJiIjcxdX3iIiIvMjPzw9JSUmqz6k1HPXy7LPPAvhvwnCtpBXy3H2fFo0bN4YQAuvXr8f69esRHBwsf17jxo2xceNGxMfHY8uWLShfvjzy5Mnj9Rgyk5s3b6o+Lg2xlBJd0r/S47akoZxqiTHlaobuGDNmDAIDA7F37178/vvv+OKLLzBhwgSMHz8epUuX9mibvhQcHIzatWtj9erVCAsLw5tvvmmVeJW+m0OHDkEI4fBPmohd6u3lqIwcPW4rLWXnjpCQEIwfPx6nTp3CpUuX8Msvv+DZZ5/FL7/8gg4dOqRp20RERM4wKUVERORFOXLkwM2bN1V7t+zdu1eHiNR16NABOXPmxI4dO1wOI1L2aOnQoQMiIiKwfft2ryempDmd1q9fjw0bNqBu3bryCnJNmjTBvXv3MH36dDx+/NjpqntK0vAlb/ewyQjU5g47d+4cLl++jKJFi8o9ZapWrQoA2LRpk93rk5KSsGXLFgCwWjnOFVff65kzZ1CuXDmULVvW6vGUlBRs3bpV8+ekJQZP5M+fH++//z4eP35sNYRPmotN+q5cqVKlCoDUYX+2vZIAaP4OwsLCULx4cVy9ehWnT5+2e37jxo0A3Cs7VwoXLoyuXbvir7/+QokSJbB161a5pxgREZG3MSlFRETkRc888wySkpIwa9Ysq8dnz56Nbdu26RSVvbCwMEydOhUA0LlzZ/z111+qr9u5cyfq1Kkj38+ePbs8mXmnTp2watUq1ffFxsY6HHbmSLVq1ZA9e3YsX74c//77r1XiSRqqN2nSJKv7rkiTNF+6dMmtWDKDr7/+GhcvXpTvp6SkYNiwYUhJSUGvXr3kx1988UXkzJkTCxYswM6dO622MWXKFJw/fx5Nmza1m9/JGVffa9GiRXH69Gmr3kZCCIwfPx7Hjh3T/DlpicFTAwcORN68eTF79mw5EdSrVy9ERETggw8+UJ34PiUlxSrpV6RIEURFReHMmTP44YcfrF67Zs0azZOcA0Dv3r0hhMCwYcOsEnB37tzBhx9+KL/GU7dv38aRI0fsHn/8+DEePXqEgIAABAYGerx9IiIiZzinFBERkRcNHDgQs2bNkuc+Kly4MA4ePIgdO3bghRdecJjE8ZZNmzY5nFg8IiICQ4YMke937doVcXFxGDBgAFq0aIEqVaqgbt26yJEjB+7evYsdO3bg0KFDyJ07t9V2Xn31VcTHx2PQoEFo3bo1ypYti3r16iFPnjx49OgRrly5gr///huPHj1CgwYNNMfu7++PqKgoLF++HACsklKRkZEoXrw4zp49C39/f9VJvtWULl0aBQsWxMKFC5ElSxZERkbCYrGge/fuVivXZUb16tVDlSpV0LlzZ2TPnh1//fUXDh06hOrVq+O9996TX5ctWzbMnDkTHTt2RMOGDdGxY0cUKVIE+/btw99//418+fLZJU5ccfW9vv3223jjjTdQtWpVtG/fHlmyZMG2bdtw7NgxeVLttPJV2YaGhmLEiBF4++23MXbsWCxYsAC5cuXCr7/+inbt2qF27dpo0qQJypcvD4vFgsuXL2PHjh24e/cunjx5Im/nu+++Q7169fDWW2/hzz//RKVKlXDu3DksXboUbdu2xfLly1UnQbf17rvvYvXq1Vi+fDkqV66Mli1bIjY2FkuWLMGtW7fw3nvvycNxPXH16lVUrVoVFStWRKVKlVC4cGE8ePAAq1atwo0bNzBo0CCEhYV5vH0iIiKnBBEREbkEQGg9bW7ZskXUr19fhISEiLCwMNGyZUtx6NAhMW7cOAFAbNy40W7bDRs2tHrM0WsdkV7v7C8yMlL1vZcuXRLvvfeeqFq1qsiePbsICAgQuXPnFlFRUeKrr74SMTExqu+7fPmyeP/998UzzzwjcuTIIQICAkR4eLioVKmS6Nevn9i0aZOm2JWmTp0qAIjw8HCRlJRk9Vzfvn0FAPHMM8+ovrdhw4aqZbR7927RuHFjER4eLiwWi9X3OmvWLAFAzJo1S3WbamXjyPnz51W/540bNwoAYty4cQ7f8+qrr2r+/FdffVUAEGfPnhWff/65KF26tAgKChIFChQQgwcPdlheu3fvFi+++KLInTu3yJIliyhcuLB44403xNWrV+1eK33G+fPnHf5/nX2vQqR+t5UrVxahoaEiV65c4sUXXxSHDx92az9wFY+rGByJjIx0+v+Li4sTBQoUEBaLRRw6dEh+/Pz586J///6iRIkSIigoSISFhYnSpUuLbt26id9++81uO8ePHxft2rUT2bNnF6GhoaJ27dpi1apV4rPPPhMA7N4TGRmpup/GxcWJjz/+WJQvX14EBweLbNmyiXr16on58+fbvdbVb8p2P4mOjhYffPCBaNSokShQoIAIDAwU+fLlEw0bNhTz588XKSkpqtshIiLyBosQGXxtayIiIiKS9ezZE3PmzJFXjqPMp2vXrpg/fz5OnDiRISd+JyIiSi+cU4qIiIiIyMtSUlJUV81bv349Fi1ahHLlyjEhRUREpsc5pYiIiIiIvCwhIQGFCxdGo0aNUKZMGQQEBODff//F2rVrERgYiO+++07vEImIiHTHpBQRERERkZdlyZIFb7zxBjZs2IBdu3YhNjYWuXPnRseOHTFixAhUrVpV7xCJiIh0xzmliIiIiIiIiIgo3XFOKSIiIiIiIiIiSndMShERERERERERUbrjnFI2UlJScO3aNYSFhcFisegdDhERERERERGR7oQQePjwIQoUKAA/P+/0cWJSysa1a9dQuHBhvcMgIiIiIiIiIspwLl++jEKFCnllW4ZJSv37778YP3489u3bhxs3biA0NBTlypXDsGHD0Lp1a83bCQsLA5D6JYeHh/sqXCIiIiIiIiKiTOPBgwcoXLiwnDfxBsMkpS5evIiHDx/i1VdfRYECBRAbG4ulS5eiTZs2+OGHH9C3b19N25GG7IWHhzMpRURERERERESk4M2pjixCCOG1rWUwycnJqF69Op48eYITJ05oes+DBw+QPXt2xMTEMClFRERERERERATf5EsMvfqev78/ChcujPv37+sdChERERERERERKRhm+J7k8ePHiIuLQ0xMDFasWIHVq1ejc+fOeodFREREREREREQKhktKDR06FD/88AMAwM/PDy+99BK+/fZbh6+Pj49HfHy8fP/Bgwc+j5GIiIiIiIiIyOwMN3xvyJAhWLt2LebMmYPnn38eycnJSEhIcPj6SZMmIXv27PJf4cKF0zFaIiIiIiIiIiJzMvRE5wDQvHlz3L9/H7t27VKdIV6tp1ThwoU50TkRERERERER0f/jROce6NChA/bs2YNTp06pPh8UFITw8HCrPyIiIiIiIiIi8i3DJ6Xi4uIAADExMTpHQkREREREREREEsMkpW7dumX3WGJiIubOnYuQkBCUK1dOh6iIiIiIiIiIiEiNYVbf69evHx48eIAGDRqgYMGCuHHjBubNm4cTJ07giy++QLZs2fQOkYiIiIiIiIiI/p9hklKdO3fGzz//jOnTp+Pu3bsICwtD9erVMXnyZLRp00bv8IiIiIiIiIiISMHwq++5yxezyRMRERERERERZWZcfY+IiIiIiIiIiAyBSSkioszi0SOAnVuJiIiIiMggmJQiIsoMPv8cCAtDyiuv6B0JERERERGRVzApRUSUCaSMGQMA8Fu4ENi5U+doiIiIiIiI0o5JKSKiTMDvyZP/7lSqpF8gREREREREXsKkFBFRJhBbtCgAICEgAAgN1TcYIiIiIiIiL2BSiogoM/BLPVxzmnMiIiIiIjIKJqVMrnjx4vj000/1DoOItLJY9I6AiIiIiIjIK5iUMrlz585h+PDheodBRK6I1D5S7ClFRERERERGwaQUEVEmYElM1DsEIiIiIiIir2JSiogoo0tMRPCVKwCAICaniAwh9t9/cbxNG2DHDr1DISIiL/nggw9g4VQLRG5hUorIiB480DsC8qY9eyBVb1jNITKGB3XqoOzKlUDdunqHQj6WkpKC1157DefPn9c7FCLysRkzZugdAlGmw6QUkcGklC4NkT07xOuv6x0KeQuvuBEZTr6HD/+7IzhbnJFdvXoVS2fOxIihQ/UOhYh8jL2kiNzHpBSRkTx6BL9Tp2ABYPn5Z72jIW8JDNQ7AiLypZQUvSMgHwratw/XAXz1xx9AbKze4RCRD12+fFnvEIgyHSalzCw5GfsA/AsA9+7pHAx5BRs2xmR71S0+Xp84iMg3eOw2tFz9+iEEQIGEBGDaNL3DISIiylCYlDKzgQNRDUA5AIiK0jcW8g42bMzhf//TOwIi8qbkZL0jIB/yv3Xrvzv37+sWBxGln0QuTEOkGZNSZqZs2B45ol8c5D1JSXpHQOnh0SO9IyAiIiIiBxYvXqx3CESZBpNSZsYMvvGwp5Qx2fai4KTIRMbCfdo8WNZEppDCOjmRZkxKmRlXhyDKnNioISLKnHj8JjIFwX2dSDMmpUyMh0qiTMJ2WCYrOkTGwp7LREREZFJMShERZTbsEm4K77z9Nizs0WoOv/6qdwSUXnj8JiIissKkFJGR/Puv3hEQkTdcvYo+U6ZgFwA8fKh3NORr0dF6R0BEvnD7NlCgABAUBLz0kt7REBFlSExKERkJh4AYE5eLN59Jk1AWwDMAMGaMzsGQz3FILpExXbkCXL8OJCRA/Pab3tEQkacOH0ZKq1YQ33+vdySGxKQUkZFNm6Z3BETkiQ0b/rt99Kh+cVD6YFKKyJhu3JBvcjC2uXCic2MRzz4Lvz//hOXNN4G7d/UOx3CYlCIyEtv5Z9at0ycO8i1WdIzPT3F65rxSxnPpkt4REFF6CAjQOwLSCZNSxmJRTqVw/bp+gRgUk1ImxkOlCXBCVWOwLcczZ/SJg/TBpJTx/PKL9X0eq4mMyd9f7whIJ0xKGdidO3pHYDhMSpkYmzkmEB+vdwTkC/fu6R0B+Rors8Zm23uCiUciYwoM1DsC0gmTUgbGuV69jkkpIiPj1XcioownKEjvCEgvbKiaC3tKmdaTJ0/0DoF8he0rr2NSysQsPFgSZQ5JSXpHQOmNPWeMrXx5vSMgvTApRWQK/fv31zsE8hX2lPI6JqWIiDK6xES9IyAiIm/gappERERWmJQiMhJOvGdMo0db32e3YSIiooyPvV6JjIc9Xr2OSSkiI1EuVwqwMmQU167pHQHpiZUf42GZmhfL3lx4EYmIyCUmpYiM5Pp1vSMgX7Cd/43JRiKizIlJKXO5cEHvCIiIMjwmpYiM5MgR6/us/BqD7eo9LFfja9Xqv9udO+sXB6UP7tNExvS//+kdARFRhsekFJGR2HYTZ48aY8iWzfp+SIg+cVD6yZnzv9u5c+sXB6WPY8f0joCIfIE92M0lNhZvAWikdxxEmQyTUkRGYnu1nVffjaluXb0jIF/jvmtstuV78aI+cVD648UicylfXu8IKD199x2+A7ABQDG9YyHfWbZM7wgMh0kpIiNhZdeYEhOt77OciYyFSUgiY+K+bS7vvSff7K5jGORjP/+sdwSGw6QUEVFGl5xsfZ9JKeNjQ4bImLhvm0tSkt4RUHoqWVK+eVTHMMjHeBz3OialiIyMyQtjyJdP7whIRw8ePtQ7BCIi8sTjx3pHQOmp0X+zSZ3VMQyizIZJKSIjCwzUOwLyBialTO06J8o1Hl5lNQ/bsrZdkISM7eZNvSOg9KTY33mUJ9KOSSkiI2PDxxhse7wVKKBPHJR+uO8SGdPatXpHQOmJSUjT4lncwDgSxeuYlCIiyuhsK7VlyugTB+mDlR8iIiIifcTH6x2B4TEpRWQkwcF6R0BERK6wJ5x52JZ1q1b6xEH64L5uLixvY1q9Wu8IDI9JKRMTvPpuPOXK6R0BpYdixfSOgHyNFVtzYXmbR1yc3hFQegoJ0TsC0gmP6gZy44beERgek1ImlhIWpncIRKSFn82hmhPYG9+hQ/JNv8REHQMhn7BNQsXG6hMHpTuxf7/eIVB6sj1fJyXpEwcReS53br0jMDwmpUwsKTlZ7xCISAtOlGo+S5bIN/P++quOgRBRmtgkIC337+sTB2UMf/2ldwSUTthTykCYTPY5JqVMLJkNXePjEE2iTC+AjVjj4/A9ImOyrYclJOgTB6UPHsuNybYjB8vZ65iUMjPuUESZg+3wPTIXJpeNx3Z+Cp6PjYurNpES93WizIeji3yOLR0Te8KV2oyPlR8iooxn7Fi9I6D0wp4x5mZb12a9zDRY0gbCi4M+x6SUiSUEBekdAvkah/0QZXpcKdWAHj+2vh8QoE8c5Hvcf82tbFnr+0xKGRvL15hsz9nkdUxKERmJbeV371594iDvYiXH1NikNaDoaOv7tWrpEwcR+Zbt8Huez4kyH87D7HNMSpkYJzo3oCxZ9I6AiLxM+PvrHQL5WrNmekdAvsKeUuaWmKh3BKQTph+JtGNSysSePHmidwjkbS1aWN9n4tFwWMkxnzs1augdAvlaYKDeERCRL+zfr3cERJRW7OHoc0xKmRh3LwOqVEnvCMgX3n5bvvlIxzBIH79v26Z3CORrrPAaF1dPNbetW63vJyXpEwelDx7LjYnl6nM8U5oZdzDjY2XYGGrWxBIARwF00zsWSncPHjzQOwTytkKF9I6A0ku2bEjiRPYk4fHcNNjKMhAOw/Y5niVNjAdLE2BSyhgiItBJ7xiIyHtKlwauXNE7CkonNwAwDUlkArzgT+QRtlhNjIdNE2BSioiISFcJHLJFEva4MA22swyE+63PscVqYlvy5tU7BPI1XrEhIsp4FBXcWwBQvLhuoZDvcV1ckrFeRpT5cL/1OSalTOwfJqWIiIh0dQsASpXSOwzyoV/0DoCI0geTF8bEcvU5JqVM7GpIiN4hEBGRC+w0bnyCFV5D2653AESU7nhUJ9KOSSkTYyXYBFJS9I6AvKRLly56h0B64VwGhsfzsbGxdEnGfd3Yzp7VOwLyBdbDfI5JKRNjJZgo80jiRLmm5cfKkOGl8AICEVHmt3WrfLOwjmGQl7HN7HNMSpkYK8EmEBendwTkJUuWLNE7BCIi8gCbM0TmU0zvAMh3/P31jsBwmJQiIiIi0hF7LhMREWUSycl6R2A4TEqZGCvBRESZgB9P1UbH8zGRSXBfNw0OvCfSjjVdE2Ml2JieKG6LOnV0i4OIvIMnagPiPGFERIZ2XO8AiDIRw9R19+zZgwEDBqB8+fLImjUrihQpgk6dOuHUqVN6h5ZhMSllTGeUd0JD9QqDiLyER2oDsjn/8nxMZBJMSBtb7dryzfM6hkFeFhlpfT9LFn3iMLAAvQPwlsmTJ2Pbtm3o2LEjKlWqhBs3buDbb79FtWrVsHPnTlSoUEHvEDOcXLly6R0C+ZiwWNh9mCiTu337tt4hEBGRNzApZWwFC+odAflCgQJWd9m+8j7D9JR65513cPHiRUydOhWvv/46Ro8ejS1btiApKQmffPKJ3uFlSN26ddM7BPIBHiSJDGDAAPnmUR3DIB+xaZiypxQRkQEoVjbnUd1A2LvZ5wyTlKpbty4CAwOtHitZsiTKly+P48c5qpfM4wvF7ZQ+fXSLg4g8J4YPx2IA4wCs1TsY8j5FfeU0WME1Ol4sIhl7Shnbb7/JN1nSRNoZJimlRgiBmzdvInfu3HqHkiHZVYIV2X3KvOYA6A+gD4CUtm11joaIPBEdGorOACboHQj5xiefIPH/b07WNRAiSlc5cugdAaWT7HoHQN6TLx+S9I7B4AydlJo3bx6uXr2Kzp07O3xNfHw8Hjx4YPVnWkxKGUIKgGkAZoBdh4kyq+TkZL1DIF+qUAEvlyuHSgB2gT2liEyjUCG9I6B0wlaVgRQqJF9IIt8wbFLqxIkT6N+/P+rUqYNXX33V4esmTZqE7Nmzy3+FCxdOxyj1ZVcJZpdiw2FDh4goYzoXGIgj/387NjZW11jIt1i7IjIfJqWItDNkUurGjRto1aoVsmfPjl9//RX+/v4OXzty5EjExMTIf5cvX07HSPVll7Bw8j0REVH6sfAigeH9+++/8u3//e9/OkZCvlY/KkrvEIiIiDKsAL0D8LaYmBg8//zzuH//PrZs2YICNks42goKCkJQUFA6RZexsBeN8bGMjUkIwaSFwbHnjPElJv43GCCFw+cNLbZOHWDTJr3DoIyA9TLTYC2NSDtDJaWePHmC1q1b49SpU1i3bh3KlSund0gZGhMWxscyNiYmpYzv4MGDeodA6YjHamNL4vGayHR4VCfSzjDD95KTk9G5c2fs2LEDS5YsQZ06dfQOKcNjJZgoc+K+a3zsOWMu3KeNjeVLss2b9Y6AiCjDMUxPqaFDh2LFihVo3bo17t27h19++cXq+W7duukUWcbFSpLxsYyJiDI+JiGNjedikv3+OzBypN5REBFlKIZJSklDHVauXImVK1faPc+klD1WkozJYrHIZcsyNiaWq/GxjI2vZMmSOH36NACWt9GxfEmWnKx3BETkAR7Ffcsww/c2bdoEIYTDPyKzUP7e+ds3jlq1asm316xZo2MklB647xqflJAi4+P+bGKDB1vff+EFfeKgdMeZ5IyLZet9hklKkfsePnyodwhEpJGyUXP16lUdI6H0wEYskXFwbzaxjz7SOwIi8oInitspWbLoFodRMSllYm+99ZbeIZCX2TZk2bA1DvaAMxeWsbmwvI2N5Wti2bLpHQHphHu9sUxV3D5Sr55ucRiVYeaUIiImpYxMWZacFNn4WMZExsFzMcksHPhjFixpY/kGwEak9ujJER+PZTrHYzTsKWVixYsX1zsE8jImpYyLPaXMhWVMZByff/653iFQRsFjO1GmdA/APwA2AXjA4Xtex6SUib377rt6h0BexoasObCcjY9lbGy8gEBEZGw8qhNpx6SUiVksFmz7/9vXdY2EvK1QoUIA2NAxEvaUMhcO3yMiIspcknLnlm/f0jEOosyGSSkTE0LgWQDNARTROxjyCilZUa1aNav7lPkxKWUuTEoZG/dhcxkwYIDeIVBGwTmlDO3WggX4FUAvAPd1joV8h+dw7+NE54S1egdAXiMdJP38mG82GialzIVlbGwcvmcuLF8ic0goUQId9Q6CfI7HdO9jy9XEhBDw9/fXOwzyItukFA+axsGklLmwjImIMj+7YzmP7YZmW97x8fE6RUKUuTApZWJCCFjYjdhQpJPhH3/8AQBYv369nuGQFzFJYS4cvmds7CllLixf82LZm4tteV+9elWnSMjb6tevL9/mfu19TEqZWFJSEpKSkvQOg7xIOkhKV2auXLmiZzjkRewpZS4sY2Nj+ZqLEAKTATwE0FvvYChdsaeUufCCg3GFhYXJt1mu3seklIkNHjxY7xDIy3gyNK4jR47It1muxseeUubCfdr4RgCIADBL5zgofdkdy7mvGxrr4calLEuONPI+JqWIDOT+/ftW93kyNCaWq/ExKWVsbLiYS0xMDACAe7X5sKeUufBYblwcseBbTEoRGUhISIjVfTZsjYknQ+OLiIjQOwTyIe7D5jJ//ny9QyCd2O7rnFbB2HjBwbj+/vtv+TbL1fuYlCIyMB40iTKnwoUL6x0CERGlkRACLyvun2jcWLdYyPeYlDIuXuj3LSaliAyEJ0PjKl68uHyb5Wp8LGNjY/kSmYMQAosBNAFQDsCTHDl0joh8ac+ePXqHQOmA53DvC9A7ACLyHR40jYnlanwsY3NheRMZkxACAsAGvQOhdHH9+nWr+zy2G0dgYCASEhIAsFx9gT2liAyEPaWMi2VpLk+ePNE7BPIhHquJzIH7trk0b97c6j7L3zhq1aol3+ZQPu9jUorIQGxPfjxoGgdX/TCXOXPm6B0C+ZDtPvz48WOdIiEiX2I9zFxYPyPyDJNSRAbCk6FxnT9/HmUBrAJQbcsWvcMhH+vataveIVA6qFChAgDg888/1zkSIvIF1suIjIH7sm8xKUVkIL/++qvVfV6hM5a/AbQC0OyPP4CrV/UOh3zI399f7xDIh6TKbbdu3XSOhIh8iUN1zYXla1zKsmX7yvuYlCIykDt37ugdAvlQIeWda9f0CoPSASu2xvbgwQMAwPz583WOhIh8icdyIuPhfu19TEoRSpYsKQ8hoMzNz896l+ZBk4go4wkKCgIAvPbaazpHQkS+xJ5S5sLyNS7O7epbAXoHQPqrXLmyfNWWMjfbpBS7lxJlTqzwmENgYKDeIRCRDzEpZS4sb+Pavn27fPvIkSM6RmJM7ClFsFgsPGgaBHtKERkT92VjYXkSmQOTFETGExcXp3cIhsOklIm1bdsWAJNSRmKblCKizMn2mMxej0REmY/tsZv1bWNj+RJ5hi1YEytevDjKlCkDgAdRo2K5GpjFoncElI64LxsLy5PIHLivm8uWLVus7rP8ibRhUsrEhBCwWCywsHFrGLYnv+zZs+sUCfkcKzqGxiEfxiaVJ8+/RMbGY7m5LF++3Oo+y5tIG050bmJSUmrRokV6h0JeIp38ypUrh2PHjqFy5co6R0REnpgyZYrVfVZsiYgyHx67zY3lT6QNe0qZmJSUIuPx9/fXOwTyNe67hrZhwwar+6zYGgt7SplLpUqVUK9ePb3DIB0kJydb3ef8gMZme67mXK9E2nBPMTEmpYxHOhlKJ0E2ZA2M+66hcXJcY2NSylxy5cqFwoUL6x0G6YBJKHORju1dunQBwGM8kVZMSpkYk1LGY9vQYUOWKHNiUsrYpPJkuZoD61vmxTmlzEUqX2nEAsubSBsmpUxMCMFupQbDnlJExsCGjLFt3LgRAPDzzz/rHAmlByalzIvHbnNhPZzIM8xImFhKSgorSQZjezIkY1Ct1HDfNTQmpYwtJiYGABAdHa1zJJQemJQiCY/lxsZ6OJFnuMeYGCtJxsPhe8bEOSmI+zJR5sWe6ebFCwzmwp5SRJ7hGdLEbt++jcuXL+sdBnlRaGgoACBv3rwAeDI0CpYj8TdgLCxPc2HPdCJzkC4iMilF5B4mpUzs119/xZ07d/QOg7yocuXKAIB3330XAJCYmKhnOOQlrNQQfwPGIpWndAHh1Vdf1TMc8jH2TDcv9pQyF9ueUuzpTqQNk1Im1qFDBxQrVkzvMMiLpJNhYGAgAOCdd97RMxzyEs4pRWzIGIvUUPH390e+fPnw9NNP6xwR+VJKSgqH75kUk1LmIpXv2bNnAQDffPONnuEQZRo8Q5pYWFgY8uXLp3cY5EW2c0qdO3dOz3DIS1iJJf4GjEV5rGYPGuNLSkpClixZ9A6DdPT2228DAPLnz69zJORL/v7+AIBHjx4BAE6fPq1nOORlzZs31zsEw2JSysTYyDEervphTNxXiYyFi1KYC8vXvKSyL168OADg6NGjeoZDPvbmm28CAF544QUA3PeNJDw8nEkpH2LL1eR4hdaYmJQyFs5JQKzYGotyMlyLxcLyNQHWt8wtOjoaADBq1CidIyFfCgoKAvDfNBqsvxkH5wb0rQC9AyD9cOcyHtur72QMqg3WuLj0D4R0w6SFsXD4nrlI5V2vXj1cu3ZN52goPUllLw3rYpLC2GzLm+du43j48CGSk5P1DsOw2J3CxHigNB4mpYxJdV9dsCD9AyHd8HhtLBy+Zz4WiwUlS5bkXJ4mc+bMGQDApUuXADApZXRMShnbqlWr9A7BsJiUMjkmL4yFJz9jUi1XTppraJUqVbK6z33bWEqUKAEAaNOmDYfvmQAvGJnX33//DQDYsmULAB7LjU4q34CA1MFI7FljLG3bttU7BMNiUsrEOHzPeFjxNSbVSiwrtobWs2dPq/vHjh3TJxDyiTx58gAAoqKimJQyAWV9i2VtTtJcnyx/Y5N6wnG4pvEEBgYiODhY7zAMi0kpE+OJkShzYFLKfIQQCAsLk+//8ccfOkZD3sY5pcxHKmvWvczFdlVklr+xcQ4x41Luu126dNExEmNiUsrE/v33X5w4cULvMMiL2FPKmFipMR+pZ0X37t3l+2Qc0j7N3jPmoDw3s6zNhUkKc7FNQpJxSPWyatWqITw8XO9wDIer75nYgQMH9A6BvIyVXWNiTynzSUlJgZ+fH5MWBqVsuDBRYQ7sFWdOXNTAXFjexsbjuO8wjUvy3BaU+bGnlDExKWU+0hU5DvkwJg7fM5dDhw7hu+++A8B92Wxs62XsKWVs7CllXOzx6lvcYwjDhw9nN0SDYSPHWHjyM5+UlBSrhAV/A8bC4Xvm9PjxY5w5c0bvMCgdSfs6LzCYA8vbmJKSkpCcnIwHDx4wKeUjTEoRAB40jWLFihUAmJQyGtX9s2HD9A+E0o0QAn5+fnLFllfXjUV5xfXChQuYNGmSzhFReliwYAGio6P1DoPSESc6NxfbOcRY3sawefNmAMBnn30GgOXqC0xKETO+BjJjxgy9QyAfkPbPi02b/vdgwYI6RUPpgT2ljI1DPIjMgdMqmAvnlDIm5QVC7su+wdoQMSllQDxgGou0fyaHhuocCaUXqacUK7bGxIYqkTnYDtUlY+Ox3Ziknm8PHz5ku9lHuPoe8cBJlMHx5Gc+tj2lyFjYUCUyB+7r5iKtnJsjRw4AQO7cuXWOiLzhzp07AIDExERcuHABwcHBOkdkPGlKSt2+fRtLly7F8ePH8fjxY3no0O3bt3H+/HlUrFgRISEhXgmUfIuNXmPhkBBj2b9/P4DUKzQy7rOGJq2+R8bE4XtE5lCxYkUAQO3atbFt2zadoyFfk87dTZo0AQD06NFD54jIG4oUKSLfvnnzJm7evKljNMbkcW3o559/RtGiRdG/f3988803mDVrlvzczZs3UadOHcyfP98rQZJvsRui8eTMmRMAMGLECJ0jIW9Yu3YtAODmrVs6R0LpSZmU4jHaWDjEg8gcypQpAwB49tlndY6E0oOUlOKx3Vik8gwMDNQ5EuPyKCm1du1a9O3bF6VKlcJvv/2GN9980+r5ChUqoHz58vj999+9ESP5GA+cxiOEQP78+dlT0SC4ao/5XL9+HdeuXeOcUgbFIT1E5sAEtLnYJqV47ibSxqPhe5MnT0b+/PmxefNmhIeH48CBA3avqVSpEnbs2JHmACl9cLlx42EPOOOQhu+dPXv2vwdZtob2ww8/AGBDxqjYUCUyByagzYU9pYyJ52zf86in1N69e/HCCy8gPDzc4WsKFSqEGzdueBwYpZ/FixcjPj4e0dHReodCXiKdFJmUMoaIiAgAQGBQkL6BkG64LxsL55QiMgdpX69SpQoAYOTIkTpGQ742duxYJCQkyPd57jYWJqV8x6PaUEJCArJmzer0Nffv35eXT6SMqXbt2njttdewdetWAKkT1JNx8MBpHNJEqfny5dM5EkpvHLppTOw9QWQO0rE7ICAAoaGhyJs3r84RkS/du3cPADh8z2DYU8r3PEpKFS1aFPv27XP6ml27dqF06dIeBUXpQ1pyXMIDp/GwTA2MZWsKrNgaEyu4ROag3NfZg908eO42Fp6zfc+jpFTbtm2xZcsWLFmyRPX5WbNm4fDhw2jfvn2agiPfEkJYDR3ggdNYWPkxDqkcWZrmxX3ZWFjBJTIHqVekn58f62UmwqSUsfCc7XseJaXee+89FClSBF26dEHnzp3lCc2//fZbdO7cGX379kXJkiUxcOBArwZL3sWeUsbGA6dx8GRoXixzY+I+bT5Dhw7VOwTSge2+zro2UebFc7bveLT6Xo4cObB582b06NHDqrfUoEGDAAD169fH/PnzXc47RfpiTynjknvWsEyJMjU2ZIzp0qVLAFjBNQNp3y1TpozOkZAebIfvkbnw3G0MoaGhAICZM2eiU6dOOkdjTB4lpQCgSJEi2LRpEw4fPowdO3bg7t27yJ49O2rXro3q1at7M0byEfaUMp6IiAjcv38fYWFh7CZuRMoK7f8PCSBjk47RKSxvQ5Eu4pF5MCFhThy+Z2779+/XOwTyAmm/LVKkiM6RGJfHSSlJpUqVUKlSJW/EQumMPaWM54033sDPP/+M8PBwVn4MRCrHFCalTKdChQoAgMKFC+scCfmCxWLBM888g6CgIL1DIR/hedjcONG5uX3//feYPn263mFQGnHIve95NKdURvTo0SOMGzcOLVq0QM6cOWGxWDB79my9w8rQUlJSmJQyGCEEwsPDAfDAaSTycEwmpUynbdu2AIDKlSvrHAn5gsViQYECBRAWFqZ3KOQjysbMt99+i8DAQJ0jovTEOaWIjINtK9/R1FNqwoQJHm3cYrFgzJgxHr3XXXfu3MGECRNQpEgRVK5cGZs2bUqXz83MbIfvcUfL/Dgk05ikcjyWLx9iExMBPz90KVpU36AoXbAhYw4sX+NiTxlzU5Z/TEwM3n//fQwbNkznqIjIHTxu+56mpNT48ePtHnPU8FVWoNMzKZU/f35cv34d+fLlw969e1GzZs10+dzMzHb4HmV+yjJl5dc48uTJAwBIbNgQ8/fsgZ+fH7oUK6ZzVJQemJQyNqmuRMbHpJQ5KeeUAoCkpCQ9wyEiD3D4nu9pSkpt3LjR7rGvvvoKf/75J7p27YqoqCjky5cPN27cwMaNGzF//ny0atUKQ4YM8Xa8DgUFBSFfvnzp9nlGcOzYMTRu3FjvMMiLlA2ca9eu4e7duzpHRN5QtmxZAECvXr2wd+9eNmqIDCI5OZmJCoNTu3BL5sHGLFHmx/3Y9zQlpRo2bGh1f+7cuVi7di127tyJatWqWT336quvYsCAAWjQoAFeeukl70VKPvHtt9/qHQJ5kXL43pMnT/DTTz/hxx9/1Dkq8hZeaTcf9pQyNqkXBcvXuDinkLmxMUtkHBaLBc8++yyOHTumdyiG49HYra+++gqdO3e2S0hJatSogU6dOuGrr75KU3DpIT4+Hg8ePLD6MwNWioyJQzKNiY0a82nSpAnKly/PMjcBNlaNbc+ePQCA9evX86KCCV24cAEA93OizEx53C5XrhyefvppHaMxJo9arydPnkT+/PmdvqZAgQI4efKkR0Glp0mTJiF79uzyn1mW3WalyJhsJzonY+BEueaTLVs2REZGyvdZ5sbFfdrYzpw5AyB1ygSen81n5MiRAMALhkSZmDQXHI/hvuPRETI8PBzbtm1z+pqtW7ciW7ZsHgWVnkaOHImYmBj57/Lly3qHlC4cTU5PmRt7ShnT/fv35ds8IZqHlIQEeHw2OpavebCsiYzrpZdeQqlSpfQOg7zsww8/BAA8fvyYF5J8xKPWa6tWrbBlyxa8++67ePjwodVzDx8+xNChQ7Ft2za0bt3aK0H6UlBQEMLDw63+iDIrruRkTF27dgXABLKZ2A7ZfP/99/UMh3yIx2xjs12Vmsdvc+J+bg5ZsmQxzagbM9m3bx8AIDY2lsdxH/EoKTVp0iQULVoUX331FQoXLoyoqCh07twZUVFRKFy4ML766isUK1YMEydO9Ha85CXKnemLL74AkHogpcyNw/eMTdlzhoxNasBK5X369GmdIyJfYQXX2JTHbB6/iYyN9XBj8vf3B/Df4iTkfR4lpfLkyYPdu3fjtddeQ1JSEv755x8sWbIE//zzD5KSktCnTx/s2rULefLk8Xa85CXKCnCNGjUAsLJkBBy+Z2zsKWUe7PVobM2aNQMA5MqVCwD3aTPgPm1uLHtzYD3cmKQyZY9X3wnw9I25cuXCjz/+iGnTpuHEiROIiYlB9uzZUaZMGQQEeLzZNPn2229x//59XLt2DQCwcuVKXLlyBQAwcOBAZM+eXZe4MiK1nYk7WObHSq/x8WRoHuwZZ1zPPvssjhw5gsDAQJaxwaldTOC5msiY2FPKmKSklFS+rId7X5qzRwEBAahQoYI3Ykmzzz//HBcvXpTvL1u2DMuWLQMAdOvWjUkpBU50bkwpKSm8QmNgTFKYh+2cUmQ8Utmygmts0oXaxMREu/mlyDxY3ubAnlLGpExKkW/o06XJRy5cuKB3CJmGWlKKMj9WdI2NCWTzyGz7shACSUlJSE5O1juUTCE0NBSFChXCkydPkCtXLqSkpODJkyd6h2VK/v7+CAgI8Nn+pjanFI/h5pOZjufkOfaUMibb4ziP4d7nUVKqcePGml5nsViwfv16Tz6CfIzD94wpszVkyT1STynuq8b3559/AsgcDZmEhARcv34dsbGxeoeSadSrVw+VK1fG+fPn0blzZyQnJ+P8+fN6h2VaoaGhyJ8/PwIDA72+bV4EJDIP9pQyJtvjOOvh3udRUmrTpk1On5cKiyffjIvD94yJw/eMj8dVc8no5Z2SkoLz58/D398fBQoU4BxJGt28eRPR0dEoVqwYAgICkJSUhGLFiukdlukIIZCQkIDbt2/j/PnzKFmypNfPoWpDcVnfMh8eF83BtqdUly5ddIyGvIVTKvieR0kpR+MpY2JisGfPHgwfPhylSpXCL7/8kqbgKH1wBzMOJoONTTopskFjHhl9f05ISEBKSgoKFy6M0NBQvcPJNAICAuDn54fg4GD4+/sjJSUFwcHBeodlSiEhIciSJQsuXryIhIQEn5YDLwISGZsQAv7+/gCAatWqISIiQt+AyCvYU8r3vHo5KHv27GjatCnWrl2LzZs344svvvDm5smLOHzPmJRXaBo0aCAvO07GwZMhZUTsoUmZmS9/v8rE8q5duwAAd+7c8dnnUcaU0S8wkHfY9pRifc0Y+vfvDwBo2rQp6+E+4pOzcM6cOdGyZUvMmDHDF5snL+AcB8akHMseERHhk/kxSD/sCWc+LG9zYAXXHJYsWQIAOHXqlM6RUHrjsdwclPVwJi+MQ+rxxh7NvuOzS0Ph4eG4dOmSrzZPaSQdJH/66Se7xyjzUiYteDI0Hg7fMx82ZIwvPj4ejx490jsMO7GxsWjfvj3Cw8NhsVhw//59vUPKlDiHJ5F58OKhMXH4nu/5JCkVFxeHP/74A3ny5PHF5skLpJ1JqmwqH6PMSznROU+KxiNVdrivEqVdz5495RUtlX8tWrSwet2BAwfQsWNH5M2bF8HBwShZsiT69Olj19tl6dKlaNy4MXLkyIGQkBCULl0avXv3xoEDBxzGULt2bYwePdrqse+//x4WiwWzZ8+2i7d+/fpp+0+7Yc6cOdiyZQu2b9+O69evI3v27On22UYSFhYGIHV+Gem87GhuVjIu1snMwbYezvqaMfCiv+95NNH53LlzVR9PSkrC5cuXMX/+fJw5cwbvvvtumoIj3+HwPWOyvULDg6axSI1mIvKOFi1aYNasWVaPBQUFybdXrVqF9u3b47nnnsO8efNQvHhx3Lp1C0uWLMGYMWOwaNEiAMDw4cPxxRdfYNCgQfjggw8QGRmJ27dvY/Xq1Rg5ciTWrFlj9RnSsblRo0ZYsGCB1XMbN25E4cKFsWnTJvTs2VN+fNOmTXj11Ve9+d936uzZsyhbtiwqVKjg8TaSk5NhsVhMPedYzpw5AQDDhg3DX3/9BYDnZjPJnTu31RxiVapU0S8Y8jkmL4yL9W/f8igpJV1dtCXteH5+fujWrRs++uijtEVHPsMlio2JJ0NzYLkSeUdQUBDy5cun+lxsbCx69eqFli1b4rfffpMfL1asGGrVqiUPZ9u5cyc+/fRTfP311xg0aJD8uiJFiqB69eoO91eLxYJGjRrhk08+sWq0bt68GWPHjsWnn34qP3b+/HlcvHgRjRo1QnJyMvr27YsNGzbgxo0bKFKkCN566y0MHjwYAPD333+jTZs2uHHjhtXKT4MHD8aRI0ewYcMGAMDWrVsxcuRI7N27F7lz50a7du0wadIkZM2aFVFRUdi8ebMcZ8OGDbFp0yZER0dj8ODBWLlyJeLj49GwYUNMnToVJUuWBADMnj0bQ4YMwdy5czFixAicOnUKZ86cQVRUFF5//XWcOnUKy5YtQ65cufDNN9+gTp06eP3117F+/Xo8/fTTmDlzJmrUqKG1+DIVPz8/9kw3oW7duuGvv/6CxWJB06ZN5SQlGZOypxQZB9tXvufRXjNr1izMnDnT7m/OnDlYsWIFrly5gjlz5iBLlizejpe8TNnzgjtY5sduw8YWGhqKxMRExMTE6B0KpRPuw/r566+/cOfOHbz33nuqz0sJnwULFiBbtmx46623VF/n7OpqvXr1EBAQgH379gEAjh07hri4OLz22mu4e/cuzp8/DyC191RwcDDq1KmDlJQUFCpUCEuWLMGxY8cwduxYvP/++1i8eDEAoEmTJoiIiMDSpUvlz0lOTsaiRYvQtWtXAKm9oFq0aIH27dvj8OHDWLRoEbZu3YoBAwYAAJYtW4Y+ffqgTp06uH79OpYtWwYg9aLk3r17sWLFCuzYsQNCCLRs2RKJiYnyZ8XGxmLy5MmYMWMG/v33X3kqh6+++gr16tXDgQMH0KpVK3Tv3h09evRAt27dsH//fhQvXhw9evQw3G9eeRGQ9S3zYWPWXFjexsRy9T2PekqlZ/dx8o3k5GT5NrsjGoftQZOMoX///vj9998RFhaGX3/9Ve9wKB1JK71069ZN50jcExsbixMnTqTrZ5YpUwahoaFuvWfVqlXIli2b1WPvv/8+3n//fZw+fVrerjOnTp3C008/jYCA/6pUX375JcaOHSvfv3r1qtWcTEIICCGQNWtWlC9fXk5Kbdq0Cc8++yyCgoJQt25dbNq0CcWKFcOmTZtQp04deWjhBx98IG+rWLFi2LFjBxYvXoxOnTrB398fL7/8MubPn4/XXnsNALB+/Xrcv38f7du3BwBMmjQJXbt2xZAhQwAAJUuWxNSpU9GwYUNMnz4dOXPmRGhoKAIDA+WeZKdPn8aKFSuwbds21K1bFwAwb948FC5cGL///js6duwIAEhMTMS0adNQuXJlq++pZcuW6NevHwBg7NixmD59OmrWrCm/b/jw4ahTpw5u3rzpsPdaZqRMSkkXjdigMQ/Wy8yFF4eNiRPY+57Hc0pVqVIFlSpVcviaI0eO4MCBA+jRo4fHwZHv/O9//wMA/PHHH+jfvz8AVpKMwLbbMMvUOJ566im9QyAdWCwWFC5cGMWKFdM7FLecOHEC1atXT9fP3LdvH6pVq+bWexo1aoTp06dbPSYNr0nL8bN3795o06YNdu3ahW7dutlt6+bNm/Lt6tWrY926dQBSk1JRUVEAIA+Z69WrFzZt2oQ+ffrI7/nuu+8wc+ZMXLp0CXFxcUhISLCaq6Zr166oXbs2rl27hgIFCmDevHlo1aqV3Lvr0KFDOHz4MObNmye/RwiBlJQUnD9/HmXLlrX7Px0/fhwBAQGoVauW/FiuXLlQunRpHD9+XH4sMDBQtX6ofCxv3rwAgIoVK9o9duvWLUMmpQCuvmdGnOvTXJi8MCb2lPI9j+eUGj9+vNOk1IoVKzB27FgmpTIoaS6Mhw8fspJkIDxoGhPnKKDMti+XKVNG7v2Tnp/prqxZs6JEiRKqz5UqVQpAaoKtTp06DrdRsmRJbN26FYmJifK0BREREYiIiMCVK1dcxlC9enXMnDkTV69exaZNm+RFYho2bIgffvgBZ8+exeXLl9G4cWMAwMKFC/Huu+/iiy++QJ06dRAWFobPPvsMu3btkrdZs2ZNFC9eHAsXLsSbb76J3377zWo1v0ePHqFfv35Wc2BJihQp4jJmZ0JCQlQbZcopHaTn1R4z2sp0asP3jPZ/JMe++eYb+TaTFcbHnlLGxOSy73mUlNJCWnGFMiZl2bCcjIPdxI2JSSlzy4wV29DQULd7LWU0zZs3R+7cufHpp59aTXQuuX//PiIiItClSxd88803mDZtmjzZuDsqVaqELFmyYNq0aXjy5Incw6xmzZq4ffs2Zs6ciaxZs+KZZ54BAHn4nHIOq7Nnz9ptt2vXrpg3bx4KFSoEPz8/tGrVSn6uWrVqOHbsmMOEnJqyZcsiKSkJu3btkofv3b17FydPnkS5cuXc/n+bDVdPJYCNWaNj8sKYlOV65swZnDp1SueIjMdnrZxTp04hR44cvto8eYnyYMkDZ+bH4XvGxKSU+YSFheGLL74AwASzL8XHx+PGjRtWf9JKeFmzZsWMGTPwxx9/oE2bNli3bh0uXLiAvXv34r333sMbb7wBAKhTpw6GDh2KoUOH4p133sHWrVtx8eJF7Ny5Ez///LPVXEJqgoODUaFCBXzzzTeoV68e/P39AaQOg6tdu7b8uNSrqGTJkti7dy/++usvnDp1CmPGjMGePXvsttu1a1fs378fH3/8MTp06CDPRwWkzt+0fft2DBgwAAcPHsTp06exfPlyeaJzNSVLlkTbtm3Rp08fbN26FYcOHUK3bt1QsGBBtG3b1v0v3yQ40TlJMuMFBnKPbU8pMgZlUmr58uU6R2NMmntK9e7d2+r+77//jgsXLti9Ljk5GZcuXcKWLVusrspRxqLWU4onysyPw/eMKSUlhZUbk7Etc+7LvrFmzRrkz5/f6rHSpUvLk7S3bdsW27dvx6RJk/DKK6/gwYMHKFy4MBo3boyPPvpIfs/nn3+OZ555BtOnT8fMmTMRGxuLvHnzokGDBtixYwfCw8OdxlGjRg0cOHBAnk9K0rBhQ2zcuBGNGjWSH+vXrx8OHDiAzp07w2KxoEuXLnjrrbewevVqq/eWKFECzzzzDHbv3o0pU6ZYPVepUiVs3rwZo0aNQv369SGEQPHixdG5c2encc6aNQuDBw/GCy+8gISEBDRo0AB//vknV1t2Qm1OKTInlr/xsR5uTCxH39OclFLORWCxWHDw4EEcPHhQ9bUWiwW1atXCV199ldb4yEeUiSieJI2DJ0NjYk8p8xFCcF4KH5s9e7ZV3caRGjVqYOnSpS5f16lTJ3Tq1MntOAICAtC3b1/8+OOPds+NGzcO48aNs3osKCgIs2bNwqxZs6wenzRpkt37lfNM2apZsyb+/vtvh8/bJrIAIEeOHJg7d67D9/Ts2RM9e/a0e1ztIqbtb7po0aKG/J0re0p9+OGH6N69u10ilMzDiL9x+g/ra8bF9rJvaU5KnT9/HkDqwfTpp5/GkCFDVOdO8Pf3R44cOZA1a1bvRUk+I4RAdHQ0AGDjxo2oUaOGzhFRWrDbsDEpExRkDsqeUtyXjS1v3ry4ceOG3mGQjyiTUtLk+dIQTTIXXmAwPl4cNiZ24vA9zUmpyMhI+fa4cePQqFEjq8coc1FWkqSE4+LFizFs2DA9w6I04gSLxsQrb+Zjm4jkvmws2bNnl2+zomsOnFOKuK8bH1ffM6YffvgBjx8/1jsMQ/No9T3bruSU+QQEpBZ91qxZeZI0EJ4MjYlJKfNhr0ciY1Cb6JzMi/UyY2OPGmOS5pkk39GUlLp06RIAoGDBgvD395fva1GkSBHPIiOfqlKlCgBg7Nix2L59OwCeKI2A3YaNiUkp82GvR+Njw8Uc1K6uc382J9bLjI8Xh4k8oykpVbRoUVgsFhw/fhylSpWS77tisViQlJSU5iDJ+6SDZLZs2eSyTElJ0TMk8gLbpBQZA1ffMx9WbImM4c0335Rvc/ieufE8bny8oETkGU1JqR49esBischzIEj3KfOSElB+fn4sSwNRNmQvXLiAbdu26RwReYOyXEuVKoVTp07pHBH5GhPM5sKGi3Fdu3YNAJCQkMB92YTKli0rT3APcF83Og69N6YWLVpgzZo1eodhaJqSUrZLJmtZQpkyNrWkFHtKZX7KhiwTUsahrOR07doV06dP1zki8jVOdG4ebLiYQ0JCgnyb+7N5ZMuWDXnz5gXAXq9mwGk0jCkyMhLVq1fXOwxD4yQlJqVMSkl44Mz8bBuyZAzKcmUD1viUEyMr/yXj4PnWPKRjt7KnFMvfPGyH37Psjc12DlCWtzFwAnvfY+vVpJRJKengyQNn5se5h4yJlRxz4UUDIuPo0aMHAKB48eI8P5uQ7UUlHsuNTZm8OHz4MHbv3q1zROQNTEr5nqbhe7179/Zo4xaLBT///LNH7yXf4vA9Y+JB05g46bW5qPWUYpkbD4/V1iwWC3777Te8+OKLeofiVTVq1MC8efMQEREhP8b92TyU5++zZ8/ixo0bOkdEvqQs7+joaERHR+scEXmD8qL/qFGj8PHHH+sckfF4NKeUVkxKZVyc6NyYOHzPmJQnQ+6vxmfbU4pl7hs9e/bE/fv38fvvv+sdimqS4sKFCyhWrBgOHDiAKlWqePXzNm3ahEaNGiE6OtoqWeLodZLcuXOjZs2amDx5MipWrOjVmK5fv44cOXJ4dZsZBY/f5qU8fx89elTnaMjXeHHYmJTlWrRoUbvHKO00JaXOnz/v6zgonXF4iDFx+J4xpaSkICDgv8M191Vj4/HZXNSO2cpJsTOCkydPIjw8HNeuXcOwYcPQqlUrnDlzBoGBgV77jHz58nltWxmJ2r7L/dk8eLHQXGynWyBj4Nyuvqdpr4mMjPT4jzImtUYPZX7M2hsTlxg2F050ro+oqCgMHDgQQ4YMQY4cOZA3b1789NNPePz4MXr16oWwsDCUKFECq1evlt+zadMmWCwW/PHHH6hUqRKCg4NRu3Ztux4RS5cuRfny5REUFISiRYti5syZVs+3bt0aH374IXr06IHw8HD07dsXxYoVAwBUrVoVFosFUVFRAIA9e/agWbNmyJ07N7Jnz46GDRti//79VtuzWCyYMWMG2rVrh9DQUJQsWRIrVqwAkNoDS+r9lCNHDlgsFvTs2dPpd5MnTx7ky5cP1apVw5AhQ3D58mWcOHFCfn7r1q2oX78+QkJCULhwYQwaNAiPHz+Wn79+/TpatWqFkJAQFCtWDPPnz0fRokUxZcoUq5iVvdaOHDmCxo0bIyQkBLly5ULfvn3x6NEj+fmePXvixRdfxOeff478+fMjV65c6N+/PxITE+XXTJs2DSVLlkRwcDDy5s2LDh06OP1/+oLtalzSY2QOTFKYC+vhxqS2H/M47l08SpqUMiklVXSlyTgp82Llx5g40bm5sKeUfubMmYPcuXNj9+7dGDhwIN5880107NgRdevWxf79+9G8eXN0794dsbGxVu8bNmwYvvjiC+zZswdPPfUUWrduLSdH9u3bh06dOuHll1/GkSNHMH78eHz99ddYunSp1TY+//xzVK5cGQcOHMCYMWPkCXLXrVuH69evY9myZQCAhw8f4tVXX8XWrVuxc+dOlCxZEi1btsTDhw+ttvfBBx+gU6dOOHz4MFq2bImuXbvi3r17KFy4sPzZJ0+exPXr1/H1119r+n5iYmKwcOFCAJB7SZ09exYtWrRA+/btcfjwYSxatAhbt27FgAED5Pf16NED165dw6ZNm7B06VL8+OOPuHXrlsPPefz4MZ577jnkyJEDe/bswZIlS7Bu3TqrbQLAxo0bcfbsWWzcuBFz5szB7Nmz5Skn9u7di0GDBmHChAk4efIk1qxZgwYNGmj6f3qTWlKKzIP1MnNheRtTcnKy3cVh1su8S9PwPUe2bt2KWbNm4cCBA4iJiUH27NlRrVo19OzZE88++6y3YiQfkBo9FotFnk+iQIECOkZE3sArNMbE1XvMxRATndeoAaT3hL758gF796ZpE5UrV8bo0aMBACNHjsQnn3yC3Llzo0+fPgCAsWPHYvr06Th8+DBq164tv2/cuHFo1qwZgNTEVqFChfDbb7+hU6dO+PLLL9GkSROMGTMGAFCqVCls3boVP/30E9577z15G40bN8bQoUPl+/7+/gCAXLlyWQ1ta9y4sVXMP/74IyIiIrB582a88MIL8uM9e/ZEly5dAAATJ07E1KlTsXv3brRo0QI5c+YEkNoDytmcUpJChQoBgNz7qU2bNihTpgwAYNKkSejatSuGDBkCAChZsiSmTp2Khg0bYvr06bhw4QLWrVuHPXv2oEaNGgCAGTNmoGTJkg4/b/78+Xjy5Anmzp2LrFmzAgC+/fZbtG7dGpMnT0bevHkBpPb0+vbbb+Hv748yZcqgVatWWL9+Pfr06YNLly4ha9aseOGFFxAWFobIyEhUrVrV5f/V29TOy5lufyaPcVoFc+FwTWNKSUmRz8ncn33D46TUwIEDMW3aNLsT68GDBzFr1iz0798fU6dOTXOA5BvKK/FSGbKSlPklJiZazT1ExsDhe+ZiiInOb9wArl7VOwq3VapUSb7t7++PXLlyWU3oLSVDbHv51KlTR76dM2dOlC5dGsePHwcAHD9+HG3btrV6fbVq1TB37lwkJyfLj0kJG1du3ryJ0aNHY9OmTbh16xaSk5MRGxuLS5cuOfy/ZM2aFeHh4U57JzmzZcsWhIaGYufOnZg4cSK+//57+blDhw7h8OHDmDdvnvyYEAIpKSk4f/48Tp06hYCAAFSrVk1+vkSJEk4nNT9+/DgqV64sJ6QAoF69ekhJScHJkyflcihfvrzcUACA/Pnz48iRIwCAZs2aITIyEk8//TRatGiBFi1ayMMZ0xOH75kbkxTmIYTAhQsXcPbsWb1DIS/j8D3f86j1+s033+C7777D008/jTFjxiAqKgr58uXDjRs3sHHjRnz00Uf47rvvULp0afTv39/bMZMXSDuSn5+f3ADizpX5JScnMyllQBy+Zy62PaWUj2Uaekxa7YXPzJIli9V9i8Vi9ZhUJtJ50xukbSoTMM68+uqruHv3Lr7++mtERkYiKCgIderUsZscXe3/4mncxYoVQ0REBEqXLo1bt26hc+fO+OeffwAAjx49Qr9+/TBo0CC79xUpUgSnTp3y6DO1cPZ/DAsLw/79+7Fp0yb8/fffGDt2LMaPH489e/Zo6h3mLZwg19w4nMs8pGPPwoULsWDBAp2jIW/ixWHf86j1+v3336NAgQLYu3ev1Yk9MjISPXv2RJs2bVCxYkVMmzaNSakMSjl8j1fujIOVH2NSdv/nydD4DNFTKo3D6DKbnTt3okiRIgCA6OhonDp1CmXLlgUAlC1bFtu2bbN6/f79+1G0aFGrXj62pDmblL2pAGDbtm2YNm0aWrZsCQC4fPky7ty541a8jratRf/+/TFp0iT89ttvaNeuHapVq4Zjx46hRIkSqq8vXbo0kpKScODAAVSvXh0AcObMGURHRzv8jLJly2L27Nl4/PixnKzbtm0b/Pz8ULp0ac2xBgQEoGnTpmjatCnGjRuHiIgIbNiwAS+99JIb/+O0URu+xfqWeXD4nnlwvzYu9pTyPY9ar+fOnUP79u0dXmnKmTMn2rdvj3PnzqUlNvIh6SSpTEpR5qc8aA4bNkznaMhb2FPKXAzRU8pkJkyYgPXr1+Po0aPo2bMncufOjRdffBEAMHToUKxfvx4ffvghTp06hTlz5mDevHl4/fXXnW4zT548CAkJwZo1a3Dz5k3ExMQASJ2z6X//+x+OHz+OXbt2oWvXrggJCXEr3sjISFgsFqxatQq3b9+2WtXOldDQUPTp0wfjxo2DEALDhw/H9u3bMWDAABw8eBCnT5/G8uXL5UnJy5Qpg6ZNm6Jv377YvXs3Dhw4gL59+yIkJMRh/aNr164IDg7Gq6++iqNHj2Ljxo0YOHAgunfvLg/dc2XVqlWYOnUqDh48iIsXL2Lu3LlISUlxK6nlDRy+Z24cvmce0n6tx9x15FtqPaV4HPcuj46SuXLlkq+yORIYGIjcuXN7FBT5HncuY1KWa+7cuZ3O2UGZh+3+yn3V2NR6SrHMM7ZPPvkEgwcPRvXq1XHjxg2sXLlSridVq1YNixcvxsKFC1GhQgWMHTsWAwcORIcOHZxuMyAgAFOnTsUPP/yAAgUKyPNS/fzzz4iOjka1atXQvXt3DBo0CHny5HEr3oIFC+KDDz7AiBEjkDdvXrtV7VwZMGAAjh8/jiVLlqBSpUrYvHkzTp06hfr166Nq1aoYO3as1eIpc+fORd68edGgQQO0a9cOffr0QVhYGIKDg1W3Hxoair/++gv37t1DzZo10aFDBzRp0gTffvut5hgjIiKwbNkyNG7cGGXLlsX333+PBQsWoHz58m79X9OKq++ZG3uwm4d0nh48eDAAoEGDBqyHG4Ta6nvkXR4N33vxxRexYsUKTJw40W48PwAkJCRgxYoV8lVCyngyUjfEkSNH4p9//rEb3kDuY/LCmDgnibko5/wDWOa+Mnv2bKv7mzZtsnvNhQsX7B5TO64+++yzOHr0qMPPat++Pdq3by/fP3HihFW5rlixQh7apvT666/b9aiqWrUq9uzZY/WYbYJLLcb79+9b3R8zZoy8IqAjUVFRqtsqXLgwEhMT5fs1a9bE33//7XA7+fPnx59//infv3LlCm7dumU15M/2cypWrIgNGzY43KZt+QHAlClT5NvPPvusapmmN66+Z24cvmcetr2cy5Qpg9jYWD1DIi9Rrr4n4XHcuzxK3U+cOBHZs2dH06ZNsX37dqvV27Zt24amTZsiR44cmDhxoleDJe/JSD2lPvnkE2zfvl2XzzYaDvMyJparuSjn/AOAa9eu4fbt23qGRD5khgbrhg0bsGLFCpw/fx7bt2/Hyy+/jKJFi6JBgwZ6h+ZzHL5nbhy+Zx4cem9cnOjc9zzqKVWlShUkJCTg+vXrqF+/PgICApA7d27cuXMHSUlJAFKvilWuXNnqfRaLhctkZhAZKSlF3sOeUsbEcjUX255Sd+/e5Wo+lKklJibi/fffx7lz5xAWFoa6deti3rx5qr3tjYY9Xc1Nef5+++23sWzZMp0jIl+xTUqxvmYcGWmEkVF5lJRKSUlBlixZ5JVmJMr5AwD7wmLhZRxMShkTkxfGxNX3zMW2p5TeDh8+jPPnz8tzGtF/HA1vc0VtSJeRPffcc3juuef0DkMXXH3P3JTlnyVLFgQEeNT0okyASSnjYrvZ9zw6MqrNsUCZCzO+xsSklDFx+J652E50rjep1zN/d94j9SpXMluiyiw4fM/c2FPOPJiUMi4O3/M9putNyraRyx3MGGxXh+DJ0Bh4MjQXtXkpyFji4+MzTNKRfIur75kbLyqZh1pSioxB2b6ScF/2LtaITEotKcWdK/NjTyljYqXWXDJaTykt+Jt0X1hYmN4h0P/z5e+Xq++ZG4ffmwcnOjcu5ep73I99I009pQ4fPoxDhw7hypUrVksDSywWi8vlhkkfnOPAmHjQNCbb7v/cV43NdqLzjEyaqDo2NhYhISE6R5N5KOeW4bFaf9Ky7b6YeF1t+BaP4ebB87d5cPiecXHaG9/zKCl17949dO/eHWvWrAHguFAyc1Lqxo0bCA8P1zsMn2FPKWNiTylj4vA9c8loE5074+/vj4iICNy6dQsAEBoamini1psQAklJSXjy5AkSEhIAAE+ePMkUiUgjEUIgNjYWt27dQkREhHxRx5vYU8bc2NPZPJiUMi5OdO57HiWlhgwZgtWrV6Np06bo1q0bChYsaLjVJLZs2YJSpUrpHYbPKK/cAPodOOPj49P9M42MSSljsu3ZyHI1tszUUwoA8uXLBwByYopcu3XrFuLi4vD48WM8fvwYd+7cwfnz5zNNmRtNRESE/Dv2Ng7fMzcmJc2Dc0oZFy8O+55HmaRVq1ahbt26+Pvvv70dT4bRt29fvPbaa3qH4TMZpaeU2rBP8hyvyBkTT4bmYttTqkaNGsiVK5eeITllsViQP39+5MmTh8d0jbp164Zu3brhzTffxKpVq/Duu+9i//79CA0N1Ts008mSJYtPekhJuPqeuWWketn8+fMRHR2N/v376xaDkaldUOK+bgwcvud7HiWlkpOTUbduXW/HkqFIjQKjyiir7xn9e05vGamn1PDhwzFw4EAUKlRItxiMIqNUardu3Yr69eujbt262Lp1KxNkPmJbsc2dO7du8zUdOnRI82v9/f192rg3kitXriA2NhbBwcFITEzExYsXERgYiODgYIfvefLkCXr27Imvv/4aefPm9Uocd+/eRXh4uE/mUqJUXH3P3NTmFNNDYmIiunbtCgBISEjA22+/rVssRsXhe8Zlu7o5eZ9H/cSrVauGc+fOeTsWSkcZpaeUMinFBFXaZYSklBAC0dHR+PTTT1G4cOF0/3wjygjlCgDLly8HAGzfvh3Jycm6xGAGtj2l9CzzX3/9Vb7NMvceT3rPbN26FYsWLcLUqVO9Fkfu3LnRo0cPr22P7HH4nrlllPN3YGCgfPudd97RJQajy0jnbvIu9pTyPY+SUmPGjMGqVauwdetWb8dD6SSjJKWUjRw2eNTdvn0bDx8+1PRa27kL9CjTGTNmIGfOnOn+uUaWUa60fv755/Jtnoy1S0pKcuv1tj2ltJT5w4cPsWvXLveDcyEuLs4uLko7T5JSvpprbNWqVV7dHlnLSKvvvfPOO8iWLZsun21WnBPSPLzRU2r79u2YP39+muKIjY3FkiVLAAD//vsvYmJi0rQ9IxNCaCojtdXNtZbt8uXLce3aNc+DNAmPajaNGzfGwoUL0a5dO/Tq1QvffPMN5s6dq/qXmd28eVPvENz24MEDVKlSBffv33f6urRkfIUQmpMkrigba+423IyqXbt2+Oeff+T7efLkQbly5TS919Mrcp9++qnXkljKnhX0n507d3r83owyfE9JWn2VnDt79iyyZMmC9evXa36P2up7rsr8tddeQ+3ata1eJ4RA06ZNcffuXTej/o8yKcULB87dunULx48f1/RaT5JSvlqV8dGjR17dnllMmjQJ69atc/m6jDTR9VdffYXHjx/j+vXrusZhJhnlohJ5rlOnTvj9999dvi6tE50PHjwY9erVk4dZeqp79+7o1KkTLl68iAoVKqBmzZpp2p6R+fn5oWXLli5fl5a5XV988UXN7Tgz8ygplZCQgOXLlyM6Ohpz5szB4MGD0atXL6u/nj17olevXt6ON11llvHW8fHxaN++Pa5cuYKvv/4ahw4dQsmSJZ2+Jy09pYYPH47w8HCvXF1VzlfCBk/qCe33339H9+7drR6/cuWK5vd7cjIcPnw4gNSD88cff6z5fWqMvACCp1avXo06depg0aJFHr3f0x5wgwcP9vgzXTlx4oRPtms0p0+fBgCrRLMrUvLBnQTzyZMnAVgn93ft2oX169dj0KBBbsWsdOTIEbu4SF3lypU1VzzT0lNq165diIyM9OrqtRkh0Z3ZvP/++2jWrJnL16Vl+N7IkSPRoUMHj+JzpkCBAhg/frzXt0v2PL2oJITAm2++iR9//JHHXp0tWbIEnTt3dvm6tEx0fv/+fa8NzV62bBkA4MyZMwD+q4eQNam+pOUiq6edOaR9l73VXPNoovORI0dizpw5KFeuHDp37owCBQogIMCjTWVoCxYsSHMXyvRw4MABLFu2DAULFkSOHDkAAHfu3HH6nrQkpX788UcAqQfpF154wcOoUz333HPybfaUgtzIuHTpEiwWi8seb7ZsGzpayzQkJETuETF69GiMGjXKrc8l527cuAEAePnll+WKzbp169C1a1dcu3bN5eTQnl6hmTp1KqZOnaqpMuWKsscMAFy4cCHN2zQDaQLpS5cuaX6P2vA9V/uy9BtKSEiQP1N6LC3Dabds2SLfZsPIOWk/P3r0KCpUqOD0tZ4kpaSKs5T4v3Xrltfm7fv2228xcOBAr2yLrKVlovNPPvnEa3HY9v7/4IMPmJhKB572lEtKSsL3338v337rrbd8Eh+pS0pKQlJSklwPT0hIcPmetAzf80Ub6NatW17fppHExsZqfq2n9fDHjx8DAPLly+decA788ccfWLlyJZo1a4b27dt7ZZsZhUc9pRYuXIiKFSti//79GDNmDF577TW8+uqrqn/ke4sXLwaQ2gDRuhx3WpJS9erVA5A6TvnevXtuRmsdgxJ7SqUebJT+97//ufV+T5NSJUqUcOtzyD1qSaeJEyfi1q1bmk6Kyv01Li5OU+Vo+/bt7gfqhG2FeNq0aV7dvhHFx8fL++Ds2bM1v8+TyVKl34ey90x0dLTVdtKKSSlriYmJePnll+0SjhUrVnT5Xk+SUl9//bXd53sLe7g69/7772PkyJEevdcbE51L9by08FajiFLrq1IS2hXb4XvOyj4+Ph4rV64EAFy8eFF+3J1VUMk7WrVqhZCQEKsLM64SR2lJSmmp12mhTD6/8sor8m0pOWJGCQkJ+Pjjj+2+Y3fanZ72lLp8+TIAaD5euPLCCy/ghx9+8EkPWr15lJS6f/8+mjdvbrWSA+nnq6++ApDa8NWaaVdLSmlVvXp1AMC+ffvQs2dP7YHakE68EvaUsu/eWaRIEbfeb1v51XoyDAoKcutz3MGGLFRXK5VOhuHh4S7fr9xfhw0bBsD5FbCHDx/KyWMAGD9+fJqvmLmTVKFUOXPm1DS8x5YnFVvp9yFVulJSUuSeqN4amsULB9ZOnDiBRYsWITIyEk+ePHHrvZ4kpWyPFd4cvsfJzp2bNGmSx72WvDHReefOnbF06VKPPp+8b9SoUcifP7+c+HdEmkRZ6+IEEyZMQJs2bbB582ar/VsaoUDpR0rUd+rUSX7M1TCvtMwp5a3j+ZAhQ1Qf/+GHH7yy/cxoxowZGD16tNViPYB1ItBVWyU5Odmj4/ipU6cAAGXLlnUrZjPyKClVtmxZTpKYAZw+fRoLFy6U7/v7+6N06dIAgJdeesnpez3tKXXw4EGrCXttE0vuePHFF63us8ED5M+f3+q+sky0nNw8GSawc+dO7N271+HnphWTjanDJABYDaNz53tRu0Lj7KraG2+8Yff5vhia486QNAC4d+8enn76aZw/f97rsWQ0iYmJbnUNV5KOhbYrvTijTEqtW7fOa1fllLQscPHkyROXw8eNwPYYGRISgjx58rj1fq1JqaSkJOzfvx+DBw+2etybSSkgtfczeZ+3JjpPy3GTdXbvEEIgPj4ekydPBuB6aLS7Fxiki0dRUVGqdQRP62YHDx706H1kTdnzSI0ni5RIvHX8dXScMHMbq3///gBgNzXJgwcP5Nu2U1TYUlt9Twup51qBAgU0v0ert99+21BtLI+SUkOHDsXvv/8uZ/+MTJosLiPZsmULNm7ciFKlSqFLly7y435+fggJCQHgOiPraVKqatWqXh8WJNGyOllKSopXhyxkNLarINkeJF2t7OTOFVmpUVSnTh275zw9yKldaUjLEE+jUc69p5yTydVv350rrYB1t3+JLxJB77zzjtPnk5OTrSZE37lzJ86fP281l5xR2Sbsq1atit27dyNnzpwuk1XSfqQc9qm1p1RkZKTdXAPBwcFuxS6xXcJYy8pyrVu3xlNPPeXR52UWMTEx8PPzQ6VKlawed6c3ojtJqQkTJqB69ep2DUt3e2epxaDkah4sSj2mnTt3zq3j8ddffy0vRCDxJLkwbNgwbN++3aohpZUvGkSZlRBC81Cmo0ePWiV/p0yZ4tbx1N2Jr5W95dXOE35+fh7NEVm1alW332NGFosFFosFP/30k+rzri7MeDp87+HDh2jdurVdLJ4wchvJ27788kv5tqueUp4O35Mmm/dF8mjKlCmYN2+e17erF4+SUgULFkSLFi1Qq1YtjB8/HitXrsQ///yj+pfZZcRJxBo0aIDGjRvbPZ6cnOzWnFLKA5474559pX379naNIFsdOnQw9LBR24qSbaXEVaPHnYaOs6sCnp7U1HrvcK6S/6SkpGDx4sWwWCxWv/Vs2bK5fJ87jSC1ysyePXu0B6qRq+EkEydORNmyZeUhDlLXdyOvBPPvv//i77//ttuXU1JSMG3aNERHR7tM7khXNN2Z6Nz296FMdHrao6ZgwYJW9yMjI12+Z926dR59VmYQFxeH7777Dnfv3k3ztty5gCAlNGwTnUePHoXFYrHr6arFunXr8PPPP7v9PrPr2LEjKlSo4FZ9SdlDQeuwj59++kn1OF6vXj2XqyvbUvZud1dycjKmTp1qqIbu9OnTkS1bNpeJKSEEKlasaNVD0d3RAWorqTpTrVo1+baj+NydX8zMcwl5qm/fvh69z5NFSuLj4zVN46DV/v37PX6vEAIzZsxw2WvIKJR1b1fHOE8nOpcWI9m8eXOaE0hqibO0TKOT0XiUlIqKisJvv/2GmJgYTJgwAS+++CIaNWqk+pdZaZmo1BdiYmJgsVjw119/uf3eb775BkuWLAEAfPzxx05fq9bzwtOk1OrVqz16nxrbRpCt3377zWuflRHZXgl/7bXXrO67agy5k5Ry1lDNmjWrq1Adfr4td64OdOvWTe4Wn9mdPHnSbvXOv//+W7VS6+o7sk0iu+JoNdSpU6fi8OHDdqsw+Yr0e5YqxZ722MlMKlSogOeeew49evSwelwIIfeOa968udNt2PaU8iQppeRJt3214X9Gaph64rPPPsOAAQOwa9cul691lQh0Z0iXo+NDnz59AAB//vmny3hsNWvWTH4/qRNCYPr06VYNtN9++y1NDTatx3FnC0m4Oz+gq4t9zvz2228YPHgw5syZAwDYsWOH1yZk1otUZ3XVY1U63h0+fBgpKSlISkpSPc46W4nW3UUrlMfqSZMmOY1PKw7dTD+e9JQaPXq0w+cCAwPT3CNW8uuvvzp8Ljo6GmfPnsXhw4fRp08ffPTRRw5fm5SUhB07dnglJj3cuHED/fr1w82bN1GjRg35cXeSUhIt7WZle75bt25uRmvN6KspqrdcXBg7dqzXVvPJqBYvXqzLpGTSyWPBggWqQ1ycNS6ePHlit3qbI54M33M0R8mOHTvw/PPPa/pcb4mNjcUzzzyDxYsXo1y5cun62Vr9/vvvaN68OUJDQzW/x3Z1JVuDBg1yOl+YO3NKeetEJ0lOTkaOHDnsHr958yYeP37sMtEVGxsrX0UYPny4V2PTQ61atRATE2M1B8Hdu3flREPVqlVx4MAB+XZ0dDQiIiJUt+XuyVBttT8AVld83UlCe7rKhxSH1KiWEnLvv/++R9vLzIQQ2Lx5M4DUIa1xcXHycGtb3ugppeRut/Hr16+rDvcZPHgwFi1ahNy5c7vcxpUrV1CoUCG3Pjejk5IRWnqeBQcHOy0zd3pKuUqCjBs3DmPHjnUZkxYnT56U56Y0u127duGtt97yyfxsrvZnb84BlJaVsKXf3pMnT3D+/HnUrVsXgHfnnUxv0qT+a9asQffu3R2+Tkq+7dixw+E5FUht0BctWlT1ObXhe84o6/hNmjTBhg0b5PuLFi3StA1n23RHaGgovv/+e7sLLOSYJxOdf//99w6fS0xMRHR0tN18s57YvXu3w+dq1aqF06dPy72snF0A//jjjzF+/HhcuXLFZUeCjOD27dtW96XvMm/evChWrJj8uDtJKam34s6dO/HCCy84fM+JEyfsLhpNnToVgwYN0v4fUEjLBYEnT57g7t27GbrMPOopNX78eIwbN87p35gxY1ClShUvh5t+lBXy9Fw9TDqAOWpEeKungSer7zVs2FD18Q8//BDJycmYOHGi3c7vK2fOnMG///6L8uXLp8vnuevWrVto164d6tev7/K10uosWly9etXltrT2lPJ2UmrXrl2qjbX333/f5fA0AE4rh5mR7UqKQOrwJ6ly+/DhQ6sT4hdffOFwW+4O33NWgZZo/c3Fx8d7vOqTNJ/YM888AwDy/FLeHFv/8OFDtG/fPsPPXXbkyBGr+5UrV3b4Wnd7So0YMQKHDx9Wfa5ixYpuf9+OjuMbNmxA8eLFNW3DFw15X7h48SKuXLmi6bXSRSNHldewsDDNF7PUeko5KmNvNEiUnM0HWrNmTU3bOHPmjJxkNSpp/hhXKxM62vckzz33nNwQkM6Rs2bN8kKE2qQlgTRhwgQAqUkVVyvN+YIQAqNHj9a8j9qS9rOIiAgkJydbDR13NdRYa49iZ+dbteF7WntK2a54+/LLLwNwf7VkR0kpV0nzuLg4fPjhh259VkZx9epVrF27Nt0/1zYppXxMzdatW+3mkrWVHr1jpP1Cmq/OWSJTmp9Uy8InGYGjRM6HH35o1VvSVcJHufqe9B246oX4+++/2z1mu2CJVo8ePcJ3332n+pyW9lzXrl0z/IVCj5JSzly8eBFjxoxBkSJFMuR8TJ7wZFJJT0mVXUfjTrU2Llx99570lHJWkV20aBFGjRolr3Dga1OmTEmXz/GU9JvRMra7WLFi8PPz88oks2lNSil7brg7D01a5y1QdgfOzFdhbVksFnketBw5cmDmzJkAYNczSq2XmcRbPaWUtCYlpUkaPSEdM2yTHN4c/rF8+XIsW7Ys3Sd7/Pzzz+32WXeSP87m1XK3p9TkyZNVG4w5cuRARESE20kpZ5+l9Xyo5Teo1aVLlzB+/HifHBeKFi0qz/ngijSEyVFl/OHDh8iVK5embbnTUypLliwut+dsCJEtZ/u01oZGyZIlERUVpfkzJcnJyS6XVfe2Q4cOeZRAk86Bzo7NgOvzVc6cOVGqVCkAkPdTV4kub0nrxSflbyUtIyQqVKjg0fujo6Px8ccfo1+/fppeHxMTYzVMSZryISYmBqNHj5bLAXB8LBNCYOvWrShRooSmz3TU4xVwbzW25ORkOQkIOD5HuFs3c5RgOHfunMP3SG2R2NhYzJ8/P1PUyZYsWQKLxYL4+HgUKlTIbph8zZo1NfXydaRXr16qCwMpuTt8z1VCCvDeJPVaLvxKdTUt9cv0Xs3v9OnTmhbEsuVouH3+/PmteiFr6Snlzup7vXv39mhovSNhYWH49NNPVZ/T0iFEGkmlpaONxWLB66+/7l6AXuCVpFRycjKWLVuGFi1aoHjx4vj4449x/fp1NGnSxBub152vDsZffvklVqxYYfWYt3qvuOrZ4G5SSnkwu3//vt3zXbt2BeD+JJCeUl5lzAhDSS9duoSnnnpKPjCo9ZJxRFopzRvLwaYlKbVq1SqMGzdOvj9s2DC3P9tTMTExVlccpk+f7vG2fOX+/ft46qmnPErSJCYmIiAgwKpL9N27d60aO86GobrbU+ro0aMuX6OlMgSkLSllOzefdEL35txE0u84veerGjZsmN0+661kmztX151VMJ577jkEBAQgMTERDx8+RJkyZTTNL+PpvqycONub5fH666/jgw8+cPvK7OXLl9G5c2dN5eKqF6qSs+9w69atmrbhTk8pR3PEKdnOP+jMsWPHnD6/b98+zdty16xZs/D888/7bBVfNVWqVPEogSY1/l1NFC4lKx1RHr+l3rHuDN+YNWsWFi5caPWYq3lDJa56GGnd1y0Wi+o8MuvWrZN7pMybN8/hghrKY+WlS5ccfk5SUhImTZokJ9KlfUOtcXf69GnUqlXLKrnUr18/dOzYUT6/KXtC/O9//7N6v1ovBgBYsWKFpl7uEmeNc7WJrx1xdwJzrRz15nCWdJPOq9euXUPXrl3h5+eX7kkId0m9zdUS9IcOHcLevXudDktzti/8+eefCA0N1TQ5PqD9gpKWCw7unI+dXZzQ0sNOKndnnyntU+l5DN+/fz9KlSqFOnXquF0/cbRfNWnSxOr4oBwqq0ZtonNHsTx+/BizZs3Cli1bAADLli2zen7EiBGIiIjw2iIEWhLV0mtctdOl9qseC6GkKSl17tw5jBw5EoUKFULHjh2xdu1a5MqVC6NHj8a5c+c8mqw7I5ESLd5YacdWcnIyhg4dirZt2yIlJQUjRozAihUr5KytsysvatxtALiTlEpOTsYvv/wCIHUYTvbs2d36LFsxMTFWBwJvrArmqGH26NEju14CX375pcurlFevXpXn+9Hi6aefxp07d+TtKhN3EydOBJDaQEprl321ecZs2VZ6tE503qpVK6ul3L/55huPVxhyl20jKb163Lly9OhR+TuYM2cO7ty5g5IlS7p9UpSGaNomgpT7kquKrbS/duzY0eXnXb582eVrtHYJT0uiRTm8Njk5WV69zZs9paTfsZZEnCfWrl3rdCJSJdvjirPJQp2Rfgtarso5S/AtXLgQAQEBSEpKQpcuXXDy5En07t3b5ed7mpRSXlkrV64cHjx4gJSUFJw9exZHjhzxeFEMqdHr7oq+H330ERYvXuwyCQOk9rj77bffNM2n5Gyo7cCBAzXF5k5PKS29ztxJWrua081Zr8Pr16/b/R6PHDmiuQeddNxxdfyxWCxe7W3nCa3Hqa+++srp88r6ljTHpDs9o6OiotC5c2erx7Qek1xdFXd23vn888/l22fPnlU9Lzdr1kzukdKtWzd5qLYj+/fvR2RkJGbOnIlq1arZJXhnzZqF999/X+4d4uzYV6pUKezevduqkSU1QKXfuPI3pDXxrHWo4MiRIwE47yHrzgUGXw1B11JvtKV2gVzrKl9TpkzxSs9/d0k9YqQ6t5Kr6WQSEhKcDqtq0KABsmbN6nJyfLWJ7Z359ttv7R7buHGj3WNah5L+8MMPDp/TskCDdMwTQmDx4sWqHRzOnj0LAHKvf0cuX77sNB7Jhg0b5KkdHKlevbp8W8tCI0pFihQBAKtekkBqT0lleboazuvOiAVp0TFJu3btrD5r8uTJiImJQc6cOV3/BzRwp0OL2nyhSlrP5a6GrXvC7aRUUlISlixZgmbNmqFUqVLysIGXXnoJQgi0bdsWEyZM0LR0dEYn9VxwJ5Hw+PFj3Llzx+qx7du3y1lSaZJ4ZeN0xowZmDx5Mtq2bSv/sNQOHs4aH7Y7myvuJKWUO5KzifKA1B3D1Qp5ERERVpNea03AOZtMztFcB2FhYfI4fCD1/z106FC0bt3a4baOHTuGQoUKWS3N64pUsXv33XcBWCelRo0aJcevpUHoTFhYmMPnHE2w6KhclQ01qTFpW+lQ6xUnuXbtGiwWizwswtnKHq54qzeixWKxqwSsWLFCTqq649ixY6hYsSL8/PxgsVgwZMgQ+TlPVghMTk62+50qk0fOGgfKXhVSWbn7ndnOT6FlyWOLxYIBAwY4fY2zhpsyxvj4eDmB5Kqxd/bsWbur2kBqr0Lb90rbnDp1qvzYkiVLHF6BGjhwICwWi9XxNCkpSW5YJCQkyPMF3Lx5E82bN8fHH3+sqcuz7bxRzib3f+ONNxw+Z9uQARyXt6vGfZYsWZCUlCT3VNDyu/HWFfHs2bOjTp06KFGiBCpVqoSWLVvi+PHjdudINfPnz7e7cqlMemmZi+/HH38EYP3bUFKe2/r374+XXnoJp06dcji8TFkxdsTZXGFK7vSU0nLRKUuWLIiKitLUA8dVT0VnSRbl8CIgdX+pVKmS5otV0vneWU9N6ffnjfk8bRMG69evx6ZNmzS911vJc3d6MAP2Mael16GrfdlRQiUlJcWqt7SzRKyj96tdKJD2oddeew0HDhywW6FWWuzl6NGjuHTpkqayUv4fpe/1m2++AeD+UDfb7Tnz4osvAnAvKeWMHokcR9TaIFrrUW+//bZqz38hBKKjo/H99987vVjqKjngirIjgdah62XLlpV/M2qCgoKQNWtWzT2ltM4ppXYcVOvVqXURK2er4jk7nklzDUnlLoRA586dVRe5kf5vri4EFilSxKqek5iYKMfw4MED+Xtp0qSJWwuLuRpCaat27doAUnsxK8/PMTExiIuLk3sid+rUyel23OkppZb4UWvreusc405SSnlebdWqFVq2bGn1vKMepLbc6U2qleak1OnTp/Hee++hYMGCePnll7F+/XpUrVoV33zzDa5fv26XFdRDfHw8hg8fjgIFCiAkJAS1atVK00R30onp+PHjmt+TLVs2q94mAFCvXj20b98eycnJciVZ2YtMOVbeWbd5Z13ubLtlulrpzJ2Mr7tDCl0lrmxpvcLr7KCcL18+u4amRJnpVzZCbJNn8fHxGD16tObJ0x8/fix/N1Ll5N69e4iPj7frXXflyhWnCR6l1q1bIzAw0KrrpHTl2llF3t2klHK4h9Rd08/Pz2oVJ2cnYKmb8PLlywG4vmriLneXsVZ2JVb+n9u2bYvu3bvDYrHg5MmTdu/79ddfVT/L2VVL6QqpM23atHH5mr1798q3XSWltJ4M1ajNCbF9+3ZYLBaXxzdXSQ9n+6WyQRAfHy9fgXHVKC5RogR69OhhFfOqVatQtGhRu3kRRowYAQDyRMI3btxAp06dMGzYMPz999+YO3cuAOCTTz5B0aJF5SuTyiG2WbJkkSsRAwcOxNNPPw2LxYJ8+fLJr5k3b57Lq3nSZzkjJcSdHffUeko5Km/pKqAai8Ui95SSKl516tTBgwcPHJbBuXPn0rSEvC3b80G5cuWcVkA3bNiA48ePo2vXrnZTAEhXi3/55Rf4+flpbig7atiqXZEG4HA1WUe9QJRXg7Ve+VT2lFI+pkbLEHU/Pz9s3rzZacMKgOox0B3PPvus1X13J12WKua2yQglV+fKixcv4sKFC7h+/brV7+vJkyd2xytl/SUmJgZNmzZFo0aNMHPmTJfzcLnqFaEk9R5Q487xWwhhN6QnLUkpV/UxR0kbV73UXJ1/ihUrhooVK7rsdaT8jpcuXWqVzIiMjES7du1cfqaz84nWOd7i4+MRHh6OrVu3aj63SuXk6twNaJtjyNH/w3afA1J7Pzn7zQGpF9bUelZrWczAUb3/2Wef9XgRi9mzZyNnzpx48803sX79ely7dk0u7/379+PEiRMYMWIEmjVrZlc/j42Ntbuwtnz5cquLhRLlxT+t0xQ4m18LSB1C7c7wPa1zStkm4GyT/hKtw7OdDQfU0k6Xvi/b73rLli1yT2fp9+isjqu84CpNa1K2bFnkypULCQkJyJ49OwYMGODxnM0WiwVxcXHy9CfOSCuZZsmSBQcPHoQQAv369cOjR48wdepUOXHpapi82nHcEUe/kzfffNNlvJ7Q0gtOmk9NuW//+eefWL16tdVvVOpp6M7K8d6iOSlVunRpfPHFF/D398c777yDI0eOYM+ePejfv7/LSSDTS8+ePfHll1+ia9eu+Prrr+Hv74+WLVtqnuPBVosWLQCkJi+0/JCUJxS1g9D+/fvl19h2xZZIjQG1Srvt5OWvvPKKvDKG7eR9rhI97vSUcjcppWWMtJLtUCNPVvCTDiqfffaZ/JjaSUa547700ktWzy1YsEB1noZp06apdn/Oli0bQkJCEBMTIzdex48fj+DgYLtJOZcsWSJXtF1VeFauXIn4+HjUqFFDfqx+/fro1q2b0xOio27DWipY3bp1k28ru+hPnDgRq1evVl2BRTqAp3UltYkTJ6qO5S5YsCCEELh9+zYGDhzo8v+h3P8cde8tU6aMnBg+fvw4Zs+ejY4dO9pdKQBc70MWi8Vpjw/b+eJcnfC8lZSSnm/WrJn8WN68eR1OlunuPBZvvfWW1T6uNs/P22+/DYvFYtVAHDlypPzaW7duaarYShWWa9euyckc23ilcu/SpQuA/ypTO3bswHPPPScvhz5y5EirCszjx4/l8f7Af8cdR/PH9OjRA2XLlkWtWrWskpLKcrCdK0WtUdu7d2+UKlXK6XHSnSEfzrpix8TEyHNKSXOD5c6dG9mzZ7fa55WKFy+Otm3bWj3m7bkCpf3myJEjVgtoxMXFoUmTJlbzq6klKKTEpNST48mTJ06HrEo932y5u9S5owaOct/WMmm6o3lm1Mo4Pj5edR976623APyXKNPau0MtiexOHcnZ52gZXildPLC92i2t8rlgwQKX5VK0aFEUK1YMBQoUQK1ateTHX3jhBeTNm9fqtcoyUy4s8dprr8lX0NUcPnwY7733nnxfeaxQ46yXiztzAqpNyK6W+CtatKim+f5cDbnS0phRM2bMGKuLvrbHE+lYuGrVKqfnbuU8lq6Gvip7FSh7hDga7p+UlKSpRzCQek56+PAhvv76a81JKWm/d3axwp05hhwlpb7//nu7x/7++2+XE7GXL19etQe7lmOFo3r/tm3bNK8GanvcVV4ciI2NRcGCBVGhQgUkJSWhevXqKFu2rFyun332GU6cOCEnrXr06IFevXrh0KFD8jZefPFFuWedsveH8gKlN1eIy5o1Kx48eOC09527K+dKNm7ciNu3b2PMmDEAPL/Iq7wosmjRIruh62oXA9q3by8nj6WLfLYaNGgg15OlZIVtz+EuXbrIbVflxU7p+zp79iwePXok78fTpk1T7YmldPPmTYfDbkNDQ1G0aFGX36/UflGuAh4WFmaVvLRYLC6HzypX33NVD3c0r/C0adOcfoYjro7T7rTTT548iV27dlm1X5S9IKW6uXJ1cFuuVh30mNDIYrEIf39/0bt3b7Fjxw6Hr+nTp4/WTXrVrl27BADx2WefyY/FxcWJ4sWLizp16mjeTkxMjAAgYmJixJUrVwQA+U8pKSlJxMXFqb4XgLh586bYvXu3GDx4sPzYJ598YrU9tb9y5coJAKJixYp2sdm+dunSpSIlJUVcvnxZdO7cWQAQxYoVU43XVpcuXUSjRo3k+3nz5hUffvih6mtPnTolbzM0NFQ1FuXf8OHDnX627ev37NljdT8oKEjT+9T+mjRpIm7duiU++ugjsWPHDqvvQu31jx49krffqFEju+cTExPl2ytWrBCrVq2yi+f1118X3bp1EwBEzZo1VT8nf/78Vtt09v/6+eefhRD//aYBiNu3b4t+/fqJatWqOfxeExISBAAxZ84cIYQQ8+bNEwDE48eP7V6bkpJi9ZkLFixw+V2vXLlSTJw4UX7N7t27BQDx1ltvaSqfvXv32sURHR2tqVwBiI0bNzr8vwshxPr16+XXzpw5U6xYsUK0bdtWdVtq8drat2+fy5h27NghDh06JO7evWv3ftvXWiwWu8cWLVokf48LFy50+H+zWCzihx9+EEIIsW7dOgFAnD17VvW10rbbtWsn316/fr3DMurYsaPDz3X03X3++efy/bp162p6n6NtqQkPDxcAxEsvvSQAiP79+zt8n/RYzpw5hRBCvPzyy5rKu2DBggKA/H06ep2rv/j4eCGEEFevXrV77p9//rF7bMGCBS7//0uXLhUA5N9Vly5dRFRUlOprq1SpohrXkydPhBBCdOrUyerx8ePHO/18tW2dPn1a9f+s5b3Oyl66/fPPP4vFixeL7du3u3zf7du3re5LvxW1/4/ab6ZLly6q29Hy22zfvr3qa7/77jv59uHDh+XbKSkpqttJSkoSQOpxSggh/vrrLwFAXLhwQfN3On36dAFANG/eXPX55ORk1c/+7LPP7F574MAB8eKLL2raN2fMmOEwpnz58smv27Fjh5g1a5YoUaKEOHLkiPy49Ht98cUXhRCp+83GjRvFu+++q7kcbF/Ts2dPq8eVlOcFtb/vv/9e02ckJydr+k2radOmjXjhhReEEEKuU8yaNUv1tStWrHBalm+//bamz3T0/wAgJk+eLN8+f/685vd5sm8D9nU8R9+bq+2uXLlSrFmzRnXfFUKI48ePO3xviRIlnH72tWvX5N9ly5YtXcYydepU8e+//7osh5s3bwoAYvny5UIIISZNmiRy5cql+trff//d7e/H3bIHICpVqiTfLlu2rN37jhw5IqZOner0/y/9hjZt2uTwc6W24o4dO6zOe2n5PfXr108IIURkZKTV84sWLVJ977x58+yeU/rll1/s3vPmm2+qxjBw4EABQIwdO9bhd3706FGr//vYsWNFwYIFXZaRrVu3bll9/qBBgxxuQ3Lv3j3V/2eTJk3kx9Tqe66+f2nfkLb5zjvvCCC1LuHo/yLVrwCIc+fOiTNnzsj379+/r/o5EydOFHnz5hVCCHHx4kWr99SuXdthfF27dhVXrlxx+v3afsfly5e3ei5nzpxi0qRJTr/f0NBQMWXKFCGEEPXr1xdA6rlfjbLtP2rUKKffd2xsrNPPFcK+bNX+1qxZ43QbuXLlsnp9x44d5dujR48WCQkJQgghOnToIACIyMhIIYQQDx8+FGvXrhUpKSkiJiZGJCcny3UWIDVf4i2ak1IfffSRKFasmLBYLMLPz0+ULVtWTJ48WVy7dk1+jZ5JqWHDhgl/f3+7L2fixIkCgLh06ZKm7SiTUo8fP3b4g5Yau0KkViirV69u9drnnnvO4wMwkHrSsGX7GmWCRGrwrlmzRowcOVIAzhu5nTt3Fk2aNJHv58uXT0yYMEH1tcpKtpTIKlKkiAgMDFSNffDgwU6/Y9vX79+/X/UE4Op97vxJjQDbvz///FMcOHDArW2lNR7bA5Dt8//8848QQlglxOLi4sTQoUNFqVKlHH6vcXFxAoD43//+J4QQYv78+QKwTrxJzp8/b/WZ8+fP1/xdS6QGt7TP277O9gAIpCZh0lKmp06dkt978eJFcfv2bbFv3z75/y79zZo1y+l2bJNy0v9LqgjMnj1bhISEuIxHahAWKVJE/t6FECI+Pl7T/+fo0aPycWbevHkOyxaA+Omnn4QQ/zWyzpw54/C1AETDhg3FsGHDBOA8KQVANG3a1O6kfuPGDYflv2HDBtXfhJZyVSbnHImIiHBZft999514+PCh1eMff/yxqFu3rt3rHe3/AKyS0Z78Jh8+fCiEEFYneOm3IYQQr732mnjmmWfkx5UNNEeWLFkiAIjo6GghhBCvvPKKaNiwoeprlcfhixcv2m37lVdecRi7GrXX2f6epWSK0ty5c9363pQXDaS/jRs3On1Py5YtxerVqx0+v3r1aof/l5kzZ4o6depojk8pOTlZxMfHyxVR27/3339fvn3kyBH5tlTJsyUd22fPni2EEOLvv/8WgHqCwNk+cPz4cfHaa6+pPn/nzh3Vz1ZLSh08eFC+qOHstzF79myrC1/OvjdHj0vHJMC6oVGrVi2H2+zdu7e8jcuXLzv8XNvP0pJI0rofOCsLZ9sRQogXXnhBtGnTRghhn5C0pbYPKNnui//++6/Dz7Vt2Ep/mzZtElu2bBEAxPHjxzX9/9350/q9S39SPd3V34gRI5x+987eW6NGDadlNmXKFAFAVKhQwWUcFy5cECkpKeLEiRMuy166uP3nn38KIYT45JNP5AsothYvXiyA1H332WefdblPARD37t2zO+65KsMyZco4/H05Shi4+t0fPXpUTtZIjzdu3DjNvyXbspXaNcrnL1++LD799FO3tieJioqye/7JkydizJgxIigoyOo9UjLGWXlL7aVdu3YJIYQYN26c06TUK6+8onrBSa0clMl9Ndu2bZNf+/TTT8uPK4/trVu3tnufO2Xx6NEj+Xg8dOhQeRvK9rL0O5b+lMlbAHYdPmz/9u7da/dYpUqVxIABA6zKxFm52v7fAgICHP6fV61aJUqWLCneffddp99vcHCwmDp1qhBCiD///FMA/7XXnH2nt2/ftnpO7YK3M8q2oPQnXRyybYeriY+PF6dOnVK9MG77V7p0aTm/IR2npDrkRx99JL+uadOm8m1vJqU0D98bNWoUzp07h9WrV6Ndu3Y4e/YsRowYgSJFiqBVq1Y+W8pUqwMHDqBUqVIIDw+3elzq2i6NKXWH7Th+ZZdXaR4dIHVst+1cUGldeVBL91rlpGlS1/GwsDB5GIqzCe88Hb4ndZU9ffo0Hjx4oDohX8mSJVW3s3LlStVu+Y66tV+/ft3p/BjuDBt1NOyib9++Doc1OTN8+HC33yNxNbGd2vjm4OBgl5MsOlqxS61cbVfEsB3XrWV/+fTTTwGkzltgOyHtyJEjVZd93rlzp8vtOlOqVClYLBbkz58fkZGReOqpp1C9enW7oQOuVvxQK/PHjx/Lw5R69uyp2l3WdsLkv//+G0DqUIXu3bvLc94ohyO+/PLLWLt2reqQ3OLFi8vl5Wifl8pP61h2Sc6cOTWvXrVu3TqrYRRA6j7uSKNGjezm+1FSzgNiq1KlSlb3T548ieHDh6No0aLyRPXKYTZqPv30U/Tv399uW6NGjVJdptjZku7KeYW0frdK0pAL2/dK8/rNmDHDajiplvlh3JlTSnkeUPsNuRo2quRodbzAwECr+2rzQLg7FE5tslJX8zH9+eefDud7AlLngnL0u+3du7fDc6I09NORwYMHIygoyGoIV/HixfHpp59i9+7dVt+78ljoaJiHp0OtlSvVWiwWlClTBr169VJ9raPPVjsuO1vpLiUlBe+99x5u3LiBnj17OhwKKXG0StTChQuxbNkyq2GWyvOBs+OJNJTFYrE4rF8o47dYLKhTp47m45+ruaNsh+adPn0au3fvhhDC5Uq+AKzmD3NV1gsWLJBvFytWDMWLF7d63nZfdFYnyJMnj91jsbGxaNiwoXwc8nT4njOufiO2XK0GKXE2Aa+z8xUAu+/Rdt5V6djgbPLmkiVL4vr164iMjJTntJE4msZAGtKqZSEY6VwSEhKiOlxUbVqCNm3aWB0T69at6/A8Jg2Ltv3tKX9D7s4JC6SeDypUqIAJEyZYDQ/esGGD2+cFNcrhgj/88IPdMaxw4cIeL4qgNmQyKCgIEyZMsPsutMwX6M4iJUBq/UNtbju1IbsVK1bEH3/8odq+FEJYtZeUi64opwpQTgviiWzZssnHY6kecOXKFav9yXbCcNt9ytXiYWoxHj58GIcPH3ZrTkTl9267fyrLtm7dusiVK5fdXMC2lO1maZi+7fFYjW1btVq1apqHCAP/TSWkFBYWhmvXrjmdtuDVV19FtWrVEBQUhFKlSmn6zJMnT8r5DWnoq/T7VK74un//fs3xu8Pt1feee+45/Prrr7h8+TImTpyIyMhIrF69Gl26dIHFYsHBgwedTtbtK9evX1cd5yw95mjiVmnyXeWfxDZZEhAQYDc+Wet4dVdsx/07m7hRqpQpGyPSxIVhYWFyZUNKIKlRrvwDaEtKffLJJ6hYsSKA1B0xKChItULmKKHRpk0b1RW1bCsLkl69emHQoEHyd2G7ouPx48ddzvMgcVRh0br0r1KNGjXkhIwnXCWlHE1Sny1bNq8lpWwrd8r5hwD1yqxE2p40X9C2bdvsfq+FChVCaGgohBAYOnSo/LhyPgA1VapUUV2C1pbtfES271FOIK5GLY5s2bK5nHTR1ZwX0olPSqoUKlQICxYsQNOmTeXfTM6cObFmzRq0bdsWwcHB8nHGUaXKtgErcXWCyZkzJ5o2bQogdS4tAE5XnbSdENbVGHVpbi41zuZPkVZ5AVKTjGXKlMGnn35qNd+TowmIpTk0pHkPtDZ+PFkSWyvpt2+7bzqaIF553HZUCXJnTilp7oLQ0FDky5cP8fHxVuP93UlKqc2tZjs3GqB9xZhXXnlF82cD2leuc0ZKXLuTYHQ26Tbw30ITSqdPn8awYcNQs2ZNOTkNpM4HKTUCXCWl3Fm8oGfPnqqV9Xr16qm+fvbs2ar1iEWLFtk9Jn1nSh999BGSk5Nx8eJFfPbZZ06XS1fKly+f6nGyS5cuaN++PRYuXKj6Pq1zvzg6LtkeP925AOJqXhPbVTVLlCgh17m0rJjmzkqLyuPqpEmTVOsuyqR/lixZcOfOHc2LE0jHH+lfte/T3aSSLUdlnFbO5m5ytQK17crFL730ktUE4q4uBO/cuROHDh2yWvxC+d05qrNLx1/p/OrsWC4dVx3NN6i20II0H1yvXr3w+PFjpxejpbaB7bleeXxzVPdz1q5r0KCBfNt2lWy1Or+7lPW9jRs3qq7u7mguJDXKBIWzcrddLU35f3N07pa2p+XcnZCQgOvXr6vWd4KDg3Ho0CG7JPwLL7ygmqQ4ffq01X7n6LxftGhR1cfVOLuYB6QesxMSElzOo2g7h7I0b5a7/vnnH0RGRmputzmbt1SZYMyRIweyZs2KWbNmObwwB7i3QFidOnXQs2dPCCEcXhxRnqNWrVqFDz74wO41H3/8sWo51K5dG/nz57dbWE1p7ty5OHDggMPnJWq/lZCQECQmJiI+Pl71eVfzb3nK7aSUJE+ePBgxYgTOnDmDtWvXokOHDsiSJQv27t2LZ555BlWrVsV3333nzVidiouLU80su7oaNGnSJGTPnl3+c7Vz7dy506ry89NPP6Uh6v/YnjBts7rKBlvdunUBWM+ML1V+Q0JCrCYnmzBhgupOo7xyB2hLSr388st2z2XNmhVJSUlWjZQZM2aobscR5eRzkrNnz8qfK30XthnpvHnzqq5KokbLaiNapTXp6mrlMUcrPGXNmtXpSiKOlh5WK1flBKmnTp3C008/bfW8s4kspfKQGh7t2rWza6QqD2K9e/eWb9tO1m9rz549qidcraSVEz2dfF2tMrhy5Up88803LldeU5KORWqTVb799tt47rnn5MSgq55S7jRglb2Exo8fjyZNmkAIIU+GvWzZMoeJTdvfjVrvgcmTJ8u3lSdD29gdHW+bN29uNRGxq6vbttRW2vGF1157DY0aNZLvqzXkJdJvXzpeScflbdu2qb4+KChI7tHr6FjgTsVW8vjxY4SEhCAwMNCq4eTuwhO21BKZ0gTQMTExqFq1qsMVcFwlezIyZTJdrVKpTOJs2rQJbdq0QXx8PLJkySKvHKVWyQT+23fd6SklVaJ37dpl1WPKkVGjRqkmrNSSpcHBwXa/sTFjxuCjjz6SJ5p31Bt+woQJePDggVVjVlrh0h2uVg1MK9ueoEqrV69G69atHe6zzijPdY7KT+tCFcrG2qxZs9CxY0fV5KryvXFxcShQoIC8+qhW0jlKLSmlrA989NFHmnr5KPmi91VaKc/fw4YNQ5YsWazidPR/XLJkCYQQqFWrll2SQpmQdJSoly4ISYlPZ8ly2wuLH374od2+NH36dNX3zp49G8uWLXO4bSC1B/ukSZPskgLKi3GO6pjVqlVzuF1XFxszmg0bNqBKlSrYvHmz0x5WtufOypUrywm9r776SvU97kx07up7q1Spkqbk+po1a+z2Y9tzllRf07oa4dSpUx1e8JA8ePDA6UIrWqm1AdV07doVQOoiSJ9//rnL1zu7OGo7qkpK/HzyyScO3+POgkN37951ufKncpGO1q1bY/z48XYdXZS9k5SkVZc96d1vS629JNVjg4ODHS5g4otF7jxOSik1adIEixYtwpUrV/Dpp5+iZMmSOHToEAYNGuSNzWsSEhKielVS2lFtTyaSkSNHIiYmRv6z7Qpnu+pQ8+bNNXcJ10KqGNjuPNevX8f8+fNx7949nDhxwiq7LZ24lP8nqcIaFhaGAQMGyI+PGzdOtdLhTsb33XffBeB42Im/vz+yZMlilZHV2pVW2chVKlGihBxfYmIidu/e7XYD1lOJiYkeDfdUio6OdjgESVl5kcry7bffdrnNbNmy2SUAldzpKSUdhKKjox0Oh3CUJJH2M+lzcufObfcbk1bHAqx/N7ZZfdt9SVp2V6TOd4e//vrLrZ4effr0sbrvrMeXGrWhLS+88AIGDBiA0qVLA3C+IoX0nUnfr1rixna/k+6nNSm1ZcsWq0qEWiNF+n7V2J6Y1JabVq5GpUyk2165io2NVb1yPWvWLLeXkFdytVS8LUfHfVd++uknbNiwQf4ddurUyeHxUUosSc9LyyQ7WmUlODhYXprZVU8ad1fwcfR53vD48WO738S2bdtw8OBBlysFtWvXDj///DNSUlKsjg1abd682aoC5w7lqjJqlAk8pS+//FK+bXucUu4HQGoFd/ny5fKFE+k7d5Ro8aSnlNQr+JlnnrHrMeUoSbVnzx789NNP8m9Uy2ptSocOHXJ45fjHH3/EV199hVGjRslDCfTganU5IPU3MH78eKevWbVqlXyRy1FPTTX58+eXG6/OjuFa6lsfffSRfLtnz54OG1XKns5xcXFy+W7cuNFhDAUKFLCqk0sxnz592mkvtf79+zvcRxxRW8VYq7QO8XdEucLk5MmTMXPmTOzbtw+vv/66VQJa6euvv3Y6FF3ZmHZUL3NnOFdycjIsFov82tGjR9utLOist7yjobPKeEeMGIEWLVpgzZo18uPKaQm0Xuh197XpxVlDWeqJu337dhw6dAjDhw9XrfNJbFc1B/47Fzj6jTs6tqvR0qnB1ZDBq1ev4vnnn7cbAmt77JCOLbZJKUcryw8cONBlXe3SpUtOh7y5ugAvkS7iuKKMdejQoXbHur1791q1pZyVrW1SSuLo+COEUE1K2bp//z7Kly+PU6dOuUxKqfnpp588HoqqpLaN1q1bu1yxU+JqKCMAq9ULvcUrSSlJ7ty58e677+LEiRPYsGGDy3kavCl//vyqSxRKjznK5kpXrZV/Si+88ILDpR21Ul6hsV3aUqpc2g61i4uLQ9euXZErVy67uWikxqMyiz9p0iT8/vvvyJs3r12PIrUToNqcUmoWL16Mw4cPA3DdwKtSpYp8e/369YiJicGsWbMcLuep3Obu3bvtEgjKpJSzBomzYYqeCAgI0Jy5VztpAanDt8aOHav6nLLysm7dOgD/HZRty65///7yfEnSsD5HVzrcSUop43TEUYXYNvEC2J9clb8V5YnNtuKm/N2pNWqaN2+u+cQG2PfqcDSEyhEtwzLPnTvnMkEhfUfKhFqjRo3QsGFDh40od4ZyAfbl2rx5c6v7Wq6gjBw5Ur6tPMEfOHAA77zzjtVrnf2OpB5qkri4ONSvX1++v3HjRnTv3h0FChRI01V0R1eNHNHazVv5u9m6datbV5+kMpeGwP7www84ffq0XWUvJiYGe/fuRe7cueXji6N9WWvFVsuFH0dJSKVLly65PM+FhobanR+l+Bw1yKTjWkhICHr37g2LxaL5YpVtj1Hb+VS0/L8Ax8PDJa6SVoB9Y8/RxRSJq9+4Jz2lnM0doUxSNWzY0Oq5vn37ynPsOeq5pTRp0iT59qZNm1Tn/gJSLwAMGTJE/g2oXaw7ePBgmirYtsuZq3E1p8e4ceMcDiN1NDzF9mKkM35+fvj5558BOO6h684cnu5S9mht3Lix3KPddnj1Tz/9ZFVXks5N/fr1Q+PGjR1uPyIiArVr10bTpk1RrVo1p3MueYOyrudJjzstlMfTn3/+GV9++aV8vFFepBs0aJDmi9DuDNV1VPZJSUkuP+/ff/91+NywYcPk266WbFfWy1q1agXAdS+aO3fuWC0jrxy27E3SBSFXSTY1ly5dQtmyZXH79m0MHToUkyZNwubNm7F161a5Z5t0HNy1a5fVEK9ff/3V6jvIli0bHj16ZHUMc1WndDcJCdhfTLWlNhw6JSUF/fr1k9sQyrm8APs6g9QDRzkf7r59+/D99987/WzpIpJa4tbZRY6TJ09qvqDsaHSILdueW7ZtlJo1a2LKlCmwWCy4cOGC0+1Kv3+pnir1aHRUl5HK0Hb/tC3bjz76SD5veZKUArQPZbelbM9NnDjR7vkVK1bg9OnT2Lp1q7xvSb27bdnWI9KLV5NSSlFRUZoqe95SpUoVnDp1ym5OGKkiq0yYuCs8PNxltnrXrl04fvw4zp49a9frRdljoECBAhBCYMiQIejRo4fVAV7rsDC1g17WrFnRtm1b1derXTnTWklSjgV2lFlW07x5c0RERKB3795WjVNb0kGrZs2advFL8Um9ChwZOHCgw660jtj2uLCdHFl54HHWGFDrDSLt4LVr1wYAu26m0oR9QOrQOSC1/C5fvmyXwPv222/lMflSUsrRlTK1IT+A+gmxb9++Hk94KCWPlBVwaXJ9NcqeGrYVN+U2bIewuvLGG2/YPeaqoarcx15//XUA9vNpSaKiohwmFh2REhRSgkn5OwoPD8emTZscJsiVCSIlrUkpV3NAKb3yyisYO3asVXlIsV++fNlpV301tr/JuLg4hISE4LvvvsO6desQFRWFuXPnOt2GoyGjyqSCVAEDYNUjVE1KSorVVVNnvy9p7i1ncTgiVWKk8gsPD1e9GhUeHo7q1asD+K9C5GjYm9aKrZYhT86G782ZMwdvvfUWIiMjVRP/thUb5TngxIkTcnxqv71ixYrJ8w5s3rxZflxrQ0M5EanaOeTWrVuaJkiuUaMGrl+/bnUBQUrArVy5Up5ge/Xq1ciXL5/VJK158+ZFx44dNcWr5Gpf9KSnlKvGqtR7Rq3eJe2fag1n2/n4pMo5kHolVMtE3o7kzp07TcMLypYti507dzqdG8S2YSL1aJWMHz9ejkE5dBhITeKo7R/Kholy3sply5ZZJe0kUj0mvZJSyp4Fthdifv31V0RHR8uJMoltA035/3Y0B6O0r/r7+2Pt2rXYt2+f3QUIZ/UjJX9/f7nn6Z49ezTV2aQhKt7kaO4h6Xjjbo98qTe0Oz2lHElOTna5n2vdn1xNRaJM5krnK6k+6kiuXLmQK1cujBo1Clu3bnV6odrRPG1qC5EA/y188c8//8hD520vVKslOZSJ63fffRfZsmXDsWPHkDt3bnz++ecYMWIEGjRogHr16rmcd6p9+/Z2c7pmzZrV6ju37blmy52h99K558MPP3S6TdsFdoDUxMWPP/6oqaeoI7bDB9Xqu3PnzoUQwq4d06lTJ4fnuSJFiric401JrW352WefaXqvoykClCMaPvjgA6u2tkQIIQ9Nk9pkjmg9Z3/xxRfybUedFpSUPRYlrn4PjijbtbZDdJWx1KtXD3ny5IEQAoGBgYiPj7c7XziafknZNlBbvCnN3FytL8PauXOnACA+++wz+bEnT56IEiVKiFq1amneTkxMjOoSh2pLyCv/bEmPDxgwwOq+ralTp8rLO9q+19Hf0aNHRcOGDR0uNy2EENOnT5dff+/ePbvnW7ZsKV588UX5fpEiRcTo0aMd/j+0/lQcxXzt2jXVx5X/74cPH1otuar299ZbbzmMJ0+ePE7fu3TpUgGkLocrhBDHjx+Xn1OWrxBC3L59W74fFxdnt60tW7aIkydPiqNHjwogdSn2b7/9VgAQ9+/fl2N68uSJfPupp56y+z6l5U3nzp3r8rtdv369AFKXUlcjLZUtLT3866+/Oix/rWV6584dh7/3H3/8UQCpy3U3bNhQfu7w4cNW23j48KH8XNmyZcVXX30l7t27J06fPm21TeV35She5d/gwYNFXFycePLkifxYQkKCCAgIEABE9+7dxYEDBzT9hpWv0Xq8UFu6e9GiRaJDhw7y/VOnTmnalrP4Hjx4IID/lkKWlvI+duyY0+9Ii5CQEPn1vXr1Et99953Yv3+/pmOc7WcKIcSRI0dE9uzZBQDRo0cP1fd0795dABBffPGF1fulpc5btmwpAMjL106dOlXExcWJlJQUIYQQkyZNEgDEunXr7GLs2LGjpnhtlxYfNWqUpu9N7XvZv3+/1XNa/PHHHwKAaNGiherzP/30k3xcEkKInj17ijp16jiNx5EhQ4bIr2nRooV8u3jx4k6PlwDEpUuXnH7m2rVrHb73xo0b8lLQ0jFXCOulo9X+IiIiVH97hQsXlu8/99xzqvEoX6/2vezYsUMsX77c4XclhPryy+7uWydPnnT6Wmm57yVLlgghhNi8ebMAIE6cOOHw+86dO7fLz7V9j/RXtWpV1ccPHDhg997Vq1c7/b+/8847Do/Vtq+Vfr/SfWXZHzt2zOFn/PPPP2Lv3r1Oty393bp1y+p+dHS0fHvnzp1W27hw4YJYuHChuH79urh+/brqdqXjqzv7s7QEenR0tOrzUVFRomvXrvJ9f39/MX36dKffnzPx8fEia9asLn+nzrZ39+5dq+dnzJghChUqJK5fvy4/FhcXp/r50vM//fSTXdxqfyVLlnS6HUf77s6dO8Xt27ddHjPU/mJiYuTjLABx8OBBUbBgQfHo0SNNMWste+n30qVLF9Xnd+/eLQCIQ4cOCSGE+Pzzz0V4eLjd61JSUkSrVq1EaGio0897+eWX3f4upL81a9bI29m7d6/8+KRJk4QQqedvtfdly5bNYTxqr8+fP7/o16+ffD8xMdHle1z91qTtKO8r69qJiYny8caR2NjYNJd3UlKSACA6dOig+vw///wjAIiTJ08KIYT46KOPxFNPPWX3uujoaNGlSxfV70eNbay2+6+W/4vtc9OmTZMfk45PWt4fHx8vRo4cafeZUVFRdu8ZPny4/Pz58+et2gpq+7z0J9V7tZSPso6j9nf+/HmX36+r/7tUP50zZ44QQsjnr61bt1q9rn///vJ2Nm3apOlz8+XLZxXvm2++Kfbs2SOSk5Pt/i8//vijXX6iSZMmVvtIQkKC1f2vv/5atR1oq1ixYgKAmDBhgjhz5ozqd6lsUznKl6SFYZJSQgjRsWNHERAQIIYNGyZ++OEHUbduXREQECA2b96seRvOvmR3DgDt2rUTs2fPlu+fPXtWrF27VvUzpZOkRFn5tv17/vnnNf0/lA3LGzdu2D3fokUL8dJLL8n3IyMjxahRoxz+nx2dcB29XutffHy81fsdnRSlvw0bNjj8zpOSksT7778vatSooXrAvHnzpnjy5InVCUC5rZSUFPmkpjwY2P6/3nzzTU3fha3Dhw//X3v3HR5F1f4N/LshlZJA6DUJ0gRBFEQ6KAjKQ5OqWMAHRVEpoqioSFEQfqIiIIqKICqIoAKiSFF4KFJFVBBEeu+QEAOp5/2D9wyzu7O7s5vNzs7M93NdXOzObLmTycycuec+5zh9Tk5OjihVqpQSmy/vvvuuACDuvfdezfWHDx8WAMTy5cuFEEJJwp0/f97ttb4O8mryxKW+4JcnMdffcb9+/dzerz5Ayn+9e/cWAwcOdFqWm5vrMYavvvpKfPDBB06vHzlypObPk5aWJrZs2aKskw1ab3/DDRo0cDro6+X6c5UtW9bp+f79+/36HC3ymDR//nwhhBDr168XAMSuXbs8xvLcc8/p+l51AkAmSJ9++mldxzjX7xRCKAlBAKJy5cqa7+nTp48AIH755RflAlKdKMjLyxPp6eni3Llz4rbbbnNqeEppaWlOFyonTpwQ77zzjpJclvuAp3gPHDggTp8+rTwfO3asrt+X1u9FXvjKhI8eMtlbv359zfUzZswQDodDef7II4+Ixo0be43HE3ksfO+998SkSZOctrWvf1pkUhGA00Wf1ntl8qVQoUJOn5Gbm+vxRs+zzz4rAIgZM2YIAOKdd94RQlxL8N933326EiJCXEvKT5w40ePvxRvXmKpWrao8btmypa7PqFSpkoiOjtZcd+HCBQFALFy4UAhx/ULGW1Kqdu3aAcdfpUoVzeVatJLt6n+LFi3S9b0lSpRQln/33XfKha/6u0ePHi1OnjwpLl265JQM0XLo0CGnY576tR9//LHT89WrV2smcfX8rt555x1d5yS1b775RgAQ586d01zfsmVL8eCDDyrPIyMjxfTp0z3G4ukCXc3XjVJf21rrog+AqFmzpvLY00X+mDFjBHD9RtKxY8e8fren5LunOO+8804BOLcP5fp9+/aJy5cvi2LFigkASkJX63O8JYflccbTP3Xi2xuZdPL0dytvmP/5559CCCHeeustzaTUjz/+6PVzJE83ePX8O3TokPI5rm1tIYSYO3eu5vs8/V0LcX27zJs3T6xevVq8/fbb4t9//1XO7atWrXJ7z6lTp8SxY8eEENfOBd72M9cY1c/1JHPU/C0u8KRt27YCgOjTp4/bujVr1ggA4p9//hFCCDFu3DjNGwr+fq9rrOr2i96fxXXd559/riyT16fe3p+VlSUyMjLc4lG3t13J37k8H7hem9WrV0/z53PdVs2bN/f4He3bt/f6u9BzfeXrZ5fFCZ999pkQ4npRw7p165xe99xzzymfI/d5vd/r+q9Ro0Zuy2bNmuX2/pycHPHpp58KAOLy5ctKsYs/f9NCXDu2yMIe2UYBIFq0aKG5XZiU8uHKlSviueeeE+XKlRMxMTHitttuc7ozoIc/SakhQ4YIAGL48OHB+hGEEEI89thjHv9ItRoyWtQnnEceeUTk5OQ4rW/Xrp1Tpj85OVm89NJLbp8jP2PYsGG6vtffk6SrI0eOeHxtVFSUU4LDlzp16oh27dopr3f9HQhx7a7Tk08+6fVnUT/u3r27ZvWAHq5JqS+//NKvA8eBAwcE4FwNqLVenly8NZT9+V6ZlOrdu7fP7alVbafVEJDJOF8nUVcnT55UKtK++eYbZfkbb7zh9aS1e/durw2YjRs3KnHMmzdPVyxCCNGsWTOnn8H1Yv/w4cO6Psfb70A27mRVxYYNGwRwrWJS6zMAiG+//VbX9w4YMMBtO9SvX1/XviqEEE2bNtXcT4BrlThaihYtKgDvDRm9/D3xytfLu0byuacKB1fffvuteOihh8ScOXOUO2Vr164VQgjx4IMP6k5YqKv7tLz//vtOiZz//ve/mhV8evaf4cOHC+DaXTuZ2FZXyPlzfBZCiCeeeEJZL48x6mM0AOWiKy8vT0ycOFG5AHElqz+Ba4kT4NpdzSZNmrjdrPElMTFRANcuqvPL2+/E23FG6zO0yKSkPIbJpNTu3budXqc+dsqqlEDjl5Wzvrav+lio9c9Twtf1ez0ZO3asUjXi6s8//3S6mafnZ5Sef/558eqrr+p6r9bn6P3717JkyRIBaN8AFEKI5s2bO1WORkVFiffee8/pNbLt06ZNm6DE7utn8VU14s/P7ymWzz77TACeK4ZdXy9vIJ86dcrt9zN79myxdOlSp2VnzpwRQggxZ84csXfvXqVqbsWKFcpr4uLixPfff+/23RMmTPD6s2slU7Ts2LHD6+/rl19+EcD1m0hvvfWWKFasmNvr1AkCX/zZ7p625969e53WzZw50+n5c889Jzp27Og1CS3EtXOZTFQUhDlz5ojZs2e7JUNckwF6qX9G1xtweqkrjl3JG+fyhuT48eMLJCmlvpGqd99t3bq1AKD0slG/XvbA2L17t66bqeo2hK/k4IULF5TvnDVrlvI+9TVZx44dnW7+CCHEihUrxF9//aXcxPJk7Nixbj9/iRIl/N6u8vVa3yVvgn7xxRdCCCH27NkjgOvtP6l///7K55w4ccKv79Xzz9NnyraYupePv8dwT3EJIUSNGjWURH1GRobIyMhgUioU/ElKCaGvZNRf6i5qrv/03i11PeG4HsDbtm0revXqpTxPSUkRI0aMcHqNvMsNXEvA6aE+4Ph7khTi+u9f65/MqKtL7/W46aabRNu2bXW/Xjp27JjydxCMHVx9J1jPCcSVLBtWd3lUk93hfv75ZyHEtQtoeZByVaJECd0VXzIp1bhxY5/b01PFSSB/C94cP37cr9f7om6gu+4H3rh2D3T95+li3NVtt90mAO0787JM++uvvxZCXG/kut6FUX+vry5K0u+//x7wviqEc9WMawyejlUdO3YUgHbXIX/5+7dz6tQppVGhfr+/d1yFcE8C9+jRQ9x111263qvuhqDlvffeE1FRUcrz/v37i0aNGrm9Ts/+I7s7bt26VdmX81Mp1bdvX2W96531vLw80apVK7eGmjey61NeXp7XLum+5OTkiLFjx2refPCXt9+J+oJXz2dokQ1HmTz21CVXJi/1dO9Wkwk6b/88Je/UF9la/3bs2OHxe5OSkgQAkZiY6Fe8gQCudQcPxufk95z0ww8/eD3eN23a1KmKOCoqSkybNk0zjsmTJwcldvU/2ZVIzVc3VX+SY55iCuZrg61WrVpef/6pU6fq+hz1MBBaZGWzTDi//fbbmt3hCjoppT6fCHG9sj6/f/uhNnXqVKdeHv5S/4zq86C6ktGXTp06efw9yS7tssvY+PHjRcmSJb3G4W/cgZ675bqvvvrK7TP13piTZEWYv38rubm5onTp0m7ds11j9MfWrVuD8rcsX6+VxJaVpfKmtaekVLdu3ZTP8TYkidb3Ll++PKDtKoTzOUi+dtmyZbp/di3Lly93a5OoFURSqsAGOreiPXv24LXXXsOBAweUwRAjIyPzNZCnFm/T2OudycZ1GnDXGLWmKHalnoVi3rx5ur43P4PuAd6nL5eD+pYrV86vKYr//PNPrFy50u9YKlas6Nfg7r74ml7VFzkApqcZL/yZfS82Nlb37/Duu+8GoG82Bm+DKnviaxIBLZ4GCw+UesBOOduhHvXr10fdunU9rtc7c4+ciGH37t1u6wIZFNnbOq3P9sXTZAXeZhfxNCvWggUL8Nlnn+Vr8gmpS5cumrOMeFK2bFnNmbj0zhKjJo9VL7/8MiZPnoyFCxf6nKFUkn8XrrPJSMEcGPmZZ57BnDlz0KBBA2UgZk8zRenx6aefKo9dZ4lxOBxYs2aN18ktXPXs2RNCCDgcjoCOH1KhQoUwcuRI3ftcoDxNjOCJ1nbTO7uinEHL379PPbOWefp78nYO9nW8k4P9+5qcJBiEELpm59NL74y7WuT2qVSpkuZ6f/ZnrXOAJ/fee6/P1+Tl5WkOOuzrb+rtt9/WHYcW19nAvNE7yU8w+ZoU5bbbbtP1Oerfo9agxXoHOvfnOqJBgwaaM7L58/n5bY8a5emnn3abnCFQ8jzYuHFjZUIhPbztO3J7q9vhgZ671UaMGIEKFSo4TcoSqF69ejkN/L1p0yavM3FrufnmmwP67oiICJw5c0aZ9MXVb7/95vfxICkpyeO6QK5J5Wy1anrb4RcvXlQeB3sfW7Jkicd18rytnnSoZcuW+fq+du3aFcxg5l4wKeWHmjVr4pVXXkFKSorm7ErB8sILLygz6bjSmvlFi+uO4noQ1dNIUs+SlJ9pnT3p2rWr27KoqCiP03gGOltcMOTl5eX7d5CfRq/ahAkTNJd7avy4btfU1FSf0wWrpaSkQAiBihUr+nytnNHOVd++fT2+59NPP0XHjh11x1NQ/v77bwwfPhy1a9f2630//PADvvnmG811ei+QN2zYAADo37+/27pAklJyJj1f9M40p56BSm3cuHEAtP+2PSUOY2Nj/Ur8ebNo0SKPsxbqMWTIkIDfKxsBW7ZsUWZc1Xsh5nA40Lx5c6eZBdWEEH4lpbZv3+5xXUxMDB566CE4HA70799fmRo6UOrE2+OPP56vz7Iy2VDWOmfLbel6oei6jeUMQr5mBnJ1//33o3v37l5f4+l8ppWUkjMSPvjgg14vrgcMGIDTp0/jzjvv9CPa8OCaUJ4+fbru93qaeU3S2p898dT206JnBrtAb5oGekElZ0Vt3bq1z9dmZmZi27Ztfs/2Ggyus6y5qlq1qq7PUc9ufc8997itl/uZ3A7BSFJs27YNU6ZM0fU7lqySlMovrX3G19+CK283T7Taa8FISo0fPx7Hjx/HrFmzAv4MdaJVPWum1sy7vsgkVrCvy+rXr+/38cDbLHda+6QnmzdvBqCd/NFKNgLaSan777/f4yyTWk6dOoVXX30V7dq18/o615lW1eT+rJ591lfiPRwxKRWGYmNj0aVLFzz00ENu69TTNXvjekHoenGsJynVoUMH5bE/JzBZWeOL1gW7w+FQDgyujNzBHA5HvivioqKicOTIEZw5cybf8fhz9931te+//z4A4Oeff/brO/VUgXiqLJs9e7bH93Ts2BHfffedX7EUhBo1auD//u///H5fpUqVPN6x1lvhIH8/Wo2jQJJSvk5ukpzOOlCFCxdGcnIy0tPTcejQIad13rZ5uJg8eXLADUati3f1BYov69evV6ZbduVvpZSnqjRXhQsXxowZM7xWu0ieqmPVjR6rWrFihebysWPH6v4MuS+//PLLbuv0VkpJgdwE8/WZrlN8S1p/1zJ57evGhMPh8FrpHc5c2y0DBw7U/d6zZ896Xe/P/uxPBUJSUpJfFR6uevfu7XFdoFWLU6dORV5enq72WnR0tMeKiYL2wgsvuC1TV/4WK1ZM1+dUr17d6fnBgwednvu7r/vjscce0/1a17aItzZ9QkJCwDGFO60bQXornCU9lVK+trfec7YrT9WYaqdOndJcrk62eLr574+0tDTlhqqRHA6Hx79Zf26QeEuw6a14vHjxIlJSUtCkSRPd31u2bFmMGTNG9+u1eKtwNhMmpcLYxIkT3Zbp/cNzPWgGkpRSV0rJO7Z6LFu2TFdVjT/dLIy4k1YQKleunO9EAACn0ltJbj9fJ0O53t9Gp54yWG/bVOug6083TDPS2/CQf99NmzZ1W+dpu3pLUujtdurrBKuHTEYdP37caXkw/s7DWbAaAVpVFv4mpfzt3uVtux88eBC7du3yeMGqFe/69etx6dIlv2IIZ5666I0cOVL3Z6j/Pp5//nmnda6VUp72aXnRGUgXBG/Vkl26dEGXLl0012n9Xcs76aEu5Q+ljz/+OOD3+roAycvLczofa+3PDzzwAADtriPeqD/X9e/Mly+//NLjOl/VX3pjCldayQnZvRnQf3yPiIjASy+9pDy/7777nNa7nr/Vyzx9t156Egu33347pk6dio0bNzot95SU6tChA3bs2OF3LGbxn//8x21ZfiqlXCtOtZIXWtu7II+lZcuW1Vyubm8H8vfmqlixYgEn14LN9aao5K2KypW3dpE/3ff87QoZDFapfGRSKoxpJQ0C/cPTOnD6aiR5e78vO3bs8Dk2grcDwCOPPOL0/PXXX/fr+82kSpUqfr+nTJkybuPCaJWJA+4HTfk6f/+WIiMjsXjxYq+v8bZN1Q03yUpVF1pjbult7MhkntZFgt7tKgXjDpg/ZDzNmzcP6fcaTevCa+bMmX5/zrJly9yWaSWltMTHx6NmzZp+70feGqRFihRB7dq1PX6nVpfHZs2aWfrueiBKlCihPH7zzTed1untap2YmIgbbrghoHGyvJ3PvX2eVtVAhw4dcObMmYDHEQlnQ4YMQadOnfJ1cVWzZk0lkake00PSk2S+evUq7rrrLiQnJ/v13XI/nTx5slN1u16eugu6VgBZjVYiP9Bzp7oqzPXY6rqvnzt3DhkZGW6fEUgSsFq1arjxxhvx+eefe3zN+++/j6efftqtOtZTW61Tp05+/w2aSUREhFt3aH+Pr+prG9d2uKyW9tV9Lz/jOgbT+vXrjQ4hKIoXL46MjAzk5uZqju3mL9dqMz1JqdzcXKSlpTmd+/Nj9erVOHfuHBo1aoRt27Z5fa1rEj2Y4yGHEpNSYUzrpBnouESu3Up8jVniehD196BdqlQpt66G6iqQW2+91etYMK4JDKtkgbX4U4X23//+V3l85coVp3V6K2pOnDgBILDy4c6dO3td7+0OqdbfczAqdcKFa3c1Xwk8LVqD2Os5Gaofaw1qG4gpU6Zg9erVADzfeQOAYcOGOT1/++23DRm4Nhyo90+9PA1u7ythAVy7cRFIFY23hIWvKocBAwbg22+/9fs77cbTOHOA/i4emZmZAZ/7RowY4bHbn7fKuujoaPzzzz9OY1JFR0dbtvJx8uTJSreW9u3bA/A8bqM3sju8p2O4r6TU5cuXA0rsqs8HgXS505pw4o8//ijwCQOM5jrBihAi4HOnOinlOr6f674ub7CmpaUpr/n333+Vqsjz58/79d1//fWXUmWnxdu5G3BvB1q5rS3pTdB5smXLFuXx1atXndbpHeh8z549ANxvwOvhepNeb1dTLb7+PswkLi4OERERaN++Pa5evaqZ/NXrrbfecnqup/ueTGTl5wad+rjUunVrlCxZEps3b/bZzdk1KaV3/OlwY50rQgvSaqgGevDRunvjrZGkzuK/8cYb+Rq3AABeffVVpxkzfv31V9SrV8/j6z0NAGxFegebBq7PQAi4nwz1dAm5ePGi8hmuZeZGsNIJUV3xFh8f7zOBp5eepJT6LmuwEn2DBg1SBlL11lCVgyBLZ86csUx321DQutGgt/teTk5OQDMHeuvmo+ccc8cdd/j9nXbj7U6l3u57WVlZAV8kNm7cWJklWK1SpUpuiWRX1apVc3pNfmZFNBM5+Yq/3XmAa0l8AOjWrZvbOj0TF6Snpwd009G14t1fWhdQesacM7vExESnISqAwLY74N/A15L6ubrreyCzEXvSvn17nzMVt2nTxul5oL8DM8tPm8lTjwVvlVJy4pikpCR88sknfn+n6zGmVatWuid8cW0vWOnGsFpMTIzfY4WpTZo0yWkMSa0KOMD5nP3aa68BuDaDYKA+/PBDAO7tal9c2wlmrWq25l+jRcTHx+dr+k/1wc61UkrrTryaOuHx4osvep1yU48xY8agXLlyGDRokK5uPq6NK72ziZlF48aNlcf+zA6hviPnmszS081L3e+6Z8+e+gN24U8iTU19odarVy+nJJvZqfcnf8aeceVwOJwGw9eTlFLvr4He4fZ2l1hPX3vJDOOJhAM5hs3gwYOxadMmp3V6klJXrlwJOCklZ8PUqhbQkwRJSEgIaMYeM2natGm+ZnYEPFck6R00NTMzM+hjdhw9elTXtlPHZvWqGUlWuQQy0668yXbgwAG3dXr250CTUrLSqVmzZgElD2USWian/Bng3ezKlCmDXr16KTMGBtptzXX8V3V71dO+rj5PBmN2Ni3eZj0GrlXruFZ0mnHGrkCoJ7XJT5tFT1LK1fLlywH4NzGKmtZ4Z+PHj9f1XtdrKT0Dp9vJu+++qzweNWqU8ljP7HvyWKpVfarXXXfdhUaNGrlVavni+jfBpBQFncPhcDpwvvfee369X10W6isp5dpIcu0aFijXuy5TpkzxOL28N+HS/zpYevTooTx+8MEHg/KZerrvqe8cBHoizsjIUE6qat4q36Qnn3xSiWn+/Pl+DUJoBkIICCHw3HPP+f1e9fY4duyY8lhPUkq9fwSyXW+44Qb8/PPPHrufebt4dh2HI1gVYmaQnp4ecKm2OinsemHg6/i8bds2FC5cGP/++29ASSng2oxhBw4cQHp6ekD7YWpqakDfaxYbNmxwaujrbfSrqbu8qSuP9FZK5af7npbDhw/rfq26utouiebnnnsOFSpUwMMPP+z3e70lD/V23wskKVWrVi0IIXDbbbcFlJSSF1mtWrWCEALTp0/3+zPMbP78+crNMdmFzt99fcCAAU7P1ZVPepJSckiFYPOV7KpZs6bbxaxVZvHyZfjw4cpjf49v6kHKfY0pBbhvB3kT0Z+Z4dTkOeG2224DcH2ihSNHjuDkyZM+36+OJ1wGKg8Xnm7W67mRJIsNPE2Uokd8fDw2b97sd7JQvd8KIQIe6sdoTEqFOfUdSnlBHwijklJ79+4NeCaPTz/9VHms7n9vBfIi8NFHHw1a+azrhY7rciA4FWdxcXGoW7euU+Jk1KhR+P33332+d/z48QHfHbI69XZSb0N/K6X8/Xtau3Yt1q1bh4oVK6Jjx44A3KfG9faZruvUVYBWV6RIkYBnnVMniF0HXvV1fF6wYIHyONCkVKlSpZCQkIAiRYoE1DCVFSFyHB6rmjt3Lt59992AqqbUFZPvvPOO8lhvpdTnn3+OtWvX+v29anJsu6lTp/o1qYY/Yx1aRY0aNXD8+PGAZk/yVl2lZ2KZtLS0fA9OG+iMXrt378a8efPy9d1WEBkZiStXruDFF1/0632uwxCoE7p6JjUINDmhdvLkSZw9e9Zpmeu4rnrYJQGt5u9YkN9//73SBd5TpZS3MaXkjaxAt7s8XxcpUgTHjh1T/l4rV65s+RmtC5qnXiB62uHyutmIxG6g7cBww6RUmMvvH5ocfNPfMaXkzuVvdZarChUqBFxGqL5bmd/ug+FGzpbVqVMnv9978eJFzeV6Dppvv/2239/nScWKFZVGsKfp4105HA7L9mHPr6pVqyqPtUr7vVVV5Ccp1aJFC+VELD9bPchxIJ9JvqmrGpYvX+40KKev47O6gjYYjZFVq1Y5JU30kOOYBXLhYyb3338/Bg8eHNB7PXWF0tPV+s8//wzoO1117twZQgili5JeFStWDMr324XWrHuSr/1ZCIHU1NR8z2AZHR0d0P5Yq1Yt23Tb8iU2NtbvxIxrQlJd+eraLpOzl8rtf+HChYBjVStXrpxTxeugQYMCGtuxoLoShqNRo0Zh6tSpaNGihV/vS0lJwf333w8AbuOS6RlTSvYgCaQiE7jednA4HKhYsWJA7bNAEu92pie5LK+bjZosoH379njqqacM+e5g4ZVGmJM7QqADf1euXBkA8MEHH7h9rrdGkuxiJ8tCjTJ37lykpKSEfJr7gta4cWPs3bs3oK5OxYsXx7PPPus2Dbyn5IWa6wxx+VWyZEkA9hqYvqC47o+SnmTjwoULlcf5Gf9FNlTUU9oWK1ZM9xhZdmrQuspPJSvgfKzVO9A5EJyk1I033oihQ4f69Z7+/fsDCF73YzvR09VaT3fogvbss8/me1wtuyhTpozHdb7254yMDOTk5ATlQnH37t22Pg4bwTUR+N133ymPXc/frpXEgY7P6U3RokXx5ptv6n79xo0bleO/lSaf8WX06NF+J+slmRhy7aqlZ0yptLQ0lC9fPuCqtGCc848dO4bLly/n+3OsKCMjA48//rjTMj3b9dKlS4iPjzfsJu6PP/6IadOmGfLdwcKkVJhLSUlBkyZNsHTp0oDeLxsnW7dudVrurZF09uxZ5Q5vfmYvCIb7778fBw4csOQ0tdWrVw/4vadOncLff//t9Y6cp3FKAHidQtgfI0aMQEJCgmVKR42k3h/VXRz1bFd1Eik/XUBatWqFr7/+Go8++qiyLC0tjYkHH4QQ+a4qVXfhC3VSKhByPItgzhZlF3q77xlt0qRJAY2lZUfqGetcK2dcZ9+Ty6S9e/cCsN7YmXbRunVrp+EM1q9frzz2VWGhnjk3GHbv3o2zZ8/61WZu3Lgx3n77bfzxxx+2mHkxGDwNcaJnTKnLly/nq50mE2L5Gcy6SJEiph13qKDFxcUhJSXFqW2jZ/a9ixcvsj2UT+HdIiIUKVIEv/zyS8BdJKpVqwYAeOmll5yWe7voUTeMjE5KkbYvvvgCADBz5kxlmd7BcwHn7j/50aFDB1y6dCnsL67MQJ1cUO+DepJSskpn/PjxePXVVwOOweFwoFu3bn5XW506dcppcFfSR31HXc3b8Xnfvn1Or3Xtmh0qAwYMwO7du526nZK7N954w22ZP8dqMh+tcWa8JZnlxCfnzp0LWgyHDx92O1ZQwfHU3dWfm4X//PNPvuOoVatWQGPaOBwOJqT8ULt2beWxuuJIT/e9tLQ0Zaa2QERHR2PXrl1Ba8eTu6ioKKeEsetYYZJrUkp9g5j8xytJi3M4HJozsnhrJKnv8tllJg6zkSXf6rs1/lzoWLHyzOzUlTZNmzZVHvvTqB06dKghY4OULVsWFSpUCPn3mp0cWN6Vr0pWtWBeyPrD4XBYfjypYHDdXoC+rgCS3q6zZDw5WPjcuXOdlmvtz1J2drYyaYB6Vt78qlKlCrvVG0TdpcuffV3eRKbwV7hwYWVMWPVETHJSA3U7PNiVUsC1pFggs22SPtHR0U4TQ+nZj5mUyj8mpWwgKirKbdY1bxc96uwwK6XCk5z5Qz24qj/JCyalwk/r1q01l3O72o+3i1jX2SvloKkUnrT2Uz0zpUp2GuPF7L7++msA12bVVQ+A7G32PXXSkvuyNaiT9b7O30wcmtczzzwDwHmiGT1d7+fPn69MQkXhyeFw+N1j4bfffmMhRz4xKWUD/ialfv31V2U5k1LhSZaQqpNSchYXT5VS6go4Ji/MQ89MXRK7UZrP2rVr3Za5Hp8B7f1YvZzCk1ZXWF8NXPU2teMU7WYlp2oHnG8yeGtvqbc1Z8AzNzlB0NSpU5VlvsaUkv9zNjTzOXHiBABg5cqVyjJvN5TIPGTXSNmlVs/se3v37sUPP/wQogitiVcwNuApKeXpzp16oDaWh4YneWBUJ6WGDx8O4PqJUpLbVf03wO0a/uRJ0NdMXbIhTOakNWuXt4tY9V1Z+VoKX+qklGti0dMFy4cffqg8btu2bQFGR8E0duxY5fGePXuUx64DnXvan5mUMrfmzZu7LfOWgBZCKF03+/btG6IoKVjq168PAMrEUMC1SmZviYsjR46EJDbKH1npmpqaCsC/brgUOCalbODcuXN4++23nZZ5ayRxZwt/KSkpAIBKlSopy+RsfnIARdfkhWtiksKb3F6+qio+/fRTAO5TTZM5aJV7e0tKuc76w0qp8KbejjIBoTfRPHDgQNSoUSNksVL+eBr0X+/EMqx0tQ45AYW3i9mvvvpKecwZjM1Ha6a1vLw8pxsRrt33jBoDkvwjJyiRY0T5mn1PPu/cuXNI47QangFt4ty5c0531PU2kig8dejQAQCcZvDo06cPgOuzgrgmF4M99TAVLL1JqdKlSwPQbiBR+FN3+ZG8HZ8PHjwIALjtttsA8GIm3KkvUGRC0VOXXEnOrnrnnXeGIkQKEvV2bNOmjfLYW2W6a+UjWYOcWdXb+VtWSQFAnTp1Qhwh5ZfW8Ca+xpSSN6Fmz55d4PFR4G655RYA1/dfPbPvAc6THJD/mJSykSFDhiiP9SSl2Dc2/C1btkx57Gv2PVZKmUtGRgYA30mpCRMmAOD4b2blb6XU+vXrAQAjRowAwGRkuNNKSnmqlHLtitm1a9cQREgFQT1lfG5urmb1RG5urlItI280kbmVK1cOALB8+XIAnrvqCiGc9vd+/fqFJkAKGq2JCXyNKSX3dyYhw5u8WShv5uvtvqc+7pP/mJSykfnz5yuP9SSlWrZsGdoAyS+FCxdWqiUA/UmpF154IZRhkh8+//xz5fH06dMBeE9KqWdi4+D15lSiRAk8/PDDTl1xvR2fW7VqhdjYWHTt2hWLFi1Cr169Qh4z6afejq6VUnKd/F9u46effhoAq+DMKDc3F7Vr11a6bwGe9+epU6di4sSJAIApU6aEPFYKvlOnTgEAZsyYAUD/wNccNsN8oqKi0KpVK6dzsK8xpcaMGQMAuHTpUkhipMCcP38eADBp0iQA3tvh8gYywAkL8otJKRtRV8p4u+iRZaVa3UoofGRkZGDr1q3Kc19JKZnxb9euXSjDJD888MADqFevHoDrAy16m31P3SWT45GYV7Vq1XDs2DGnUnFPx+fx48fj6tWrcDgc6NKlCy9mwpx6AGOZlJIJC7nt5LaW23/atGmhDJGCKCIiAkWLFnVrb2lVSm3btk1ZxpsK1iDHFUtKSgLgOSklhHAbH5DMp2jRok7tMF9jSknJycmhCI8CJLtVy+thT7PvAdfb6jfeeKMy+D0FhlcxNuJ64PR00bNixQoAvEtrNr6SUjLzz7Glwtujjz4KAPjggw8AeB8UWb0ttaaeJ3N49913AQDvvfceAO/HZ3knnswhKSkJO3bsAHA9KSVnaZOzp8ptnZuby4HrLSAqKkpJPKanpyM1NdVp2ni5P5csWVJZptWNl8xnzpw5AIABAwYAcD+WS+rz90svvRS6ACmooqOjdV9bAUCvXr0QFRWFatWqhTRO8k/lypWdnnurlJLbf8aMGbw5nE/87dmIusTQ24Fz1KhRyjIKf7Lx6ysptXjxYgCcdjrcPfzww07Pt2zZAsB9+7ompdgt07xkwnj79u0AfDdsyVzkXVc5q56skJFd5dWVUpcvXzYgQgqmDRs2KHfYZRJZjjEkCSHQokUL5TkrpayhWbNmKF26tHK89tZ9r2bNmgCAV199NbRBUtAIIXD8+HHlubftfezYMXz11VccGsUEbr/9dqfnrrPvSUII5fzOGwv5x6SUDchZBNS8XfRkZWUhJSUlZPFRYGRySY495CspNW7cOABgeWmYK1q0qNPzkSNHAoByseopKXXjjTeGKEIqKOoxh/SMQ0LmULZsWQDXqxldj9XqpJT6AofMLTU1VfPOuXqgc4kXNNYRGxurJJy9dd/LyclBREQEE5ImtmjRIvz+++/Kc9cxpdTnbll9w+0d/lzbXN4GOpf7Ordr/jEpZQNPPPGE8tjb3Ru57sqVK5zJywQaNGgAAPjll18AuF/oSK4VFvHx8SGIjgLlacpZb2NKyS63ZE6PPfYYAKBYsWIAtLt8sFLKvOQMieXLlwfgvk/LfT4vL08Zy5ENXPM7f/68ZkJZtrfUg6FzuATrOH36NF577TVlhj1PSamlS5e6zbhJ5uY6ppSkPn9HRUWFMiTKJ/VMmXLbqvdjJqWCh0kpG1BPNfvjjz8C8J2U4l278CcTEnJWRW+ZfNkFjMxl2rRpbmXDWidDJpHNTY4l1bBhQwDsvmc1srEqj9mu48SpK6VkVwD1GERkTufOndOdlGI1pHXI/XzLli1ex5RaunRpqEOjAuYtCal+DZnHxYsXPQ50ru6+x6RU/jEpZQPqWfQ6dOgAgJVSVuB6N8bbyXD8+PEhjY2CY9CgQShdujQA9259AHDkyBEA4Cw+JhcVFYW4uDglybht2zbs27dPWc+klLnJO+PyYtW1gauVlCpSpEiow6Qg2b17NwBgyJAhyrb/6KOPlPXy3KyeoY+sZ+rUqeyKbXHvvfeeU+VTXl6e0zZmUsq8+vTpAwCYOXOmru57LObIPyalbIpJKfNzHRDbW1JKDnJO5iBPhgDw8ssvAwCqV68OwHm7ypNglSpVQhwhBVtsbKySkPjrr79w8uRJZZ08PjMxZU4RERGIjIxUklIyGSG7bKln32MD1/zkjYQDBw4o+6x6NietSimynuzsbKxbtw6XLl1SlmklKci8oqKikJ2drWzXnJwcp664WknI77//PmTxUeDOnDkD4FoPI2+z77H7XvAwKWVDK1eu1Mzmy5Pk1atXmZQygccff9zpuZ6yYTIHdXVjoUKFnKri1NtVXtyqX0/mdPHiRY8zKPIi1vzUU4d369YNAFC1alUAzpVS8+bNA8DqRzMrWbIkgGvVbvJiRqu9lZOTg9jYWJ6jLWrx4sVYsmSJ5jpuc2twHR9q4sSJ2L9/v9vruL3NZ8qUKQCujRGnZ/Y9JqXyj0kpm5AD6QLXkhkcU8p6PM36oT4ZNmvWLORxkf/kSQ5wHzhTa6BzJqWsQ6tLD5NS5hcdHa3cUW3RogUiIyOVAdDVSakKFSoAcK6sIXNKSkpyGz8McN6fOcC5dcn9XY3d96zl7NmzXtfz5rB5VapUCQCwa9cuzr4XIkxK2YQ6KZWTkwMhBLvvWczVq1edkhlaJ8Ply5eHPC7y35dffqk89lYB9+CDDwLgbC5WojX4rWtS6tlnnw11WJRP6enp2LZtGwD3fVqdlJIN4YSEhNAHSUG1Zs0azQFy5f6cnZ3NpJTNqM/fFStWxKhRowyOiPJj7NixymOtxJN6e5cqVQoAcOjQoZDERvkjx3GtUaOGz9n3IiMjNWddJP8wKWVDpUuX5phSFtGyZUvl8fPPP++0TispxQaw+eTk5HhMSl24cAEAK6WsRFa/qcnjsywhb9y4cajDonzKycnBggULAHhPSslKOSaarcFX9z1uZ3tx7X7P7W9u6rFdtbpcq7d3iRIlMHz4cCQlJYUsPgqc3HZ79+71OPven3/+iatXr7JKKkiYlLIJefcVuHbR4y0ptX37dpYYm8TatWsBXLsL74k6KcUGkDk8+uijyuOtW7ciIyNDea6VbOR2tY777rsP5cuXR48ePZRlrpVSTC6b19mzZ70mpbKyslCoUCHNaeTJPNq0aYPevXuz+x55xKSU+U2bNk15rNUOV19LZWVl8QaiSXnqvjdmzBhkZmYyKRUkbPXYRPny5ZXHp0+f9th9b/To0QCADz74INQhUj7IWSLUtBKLvNAxh/r16yuP586d67SOSSnrK126NMqVK6c8l9tcVkqxTNy8Tp48iezsbKfxwVyTUrxwMb/Y2FhcuXKF3ffICSulrMXhcODdd98FAKebh66EEDh8+DD27NkTqtAoiJYtWwbA+VwtMSkVPLxCtSE5MJ967BLZSBozZoxRYVEA3nzzTQDek1IcYNF8vJ3gmJSyposXLyqP//jjD6SmpjqtZ6WUNeTm5uK5555z6qYpk4y5ubnIzs5mUsoC4uLi8Pfffyv7setNIiEEUlNTcfnyZSPCowI0efJkj+uYlLKehg0bAriWlGrbti06dOigrHNtr3399dehD5AC1rVrV9xzzz2YM2cOgOtJKXmDELg2ni8nBwsOJqVs5MSJE07PN2zYoDxWd98j83jooYcAAMOHD3dbx6SUea1evdrjOq3tyu625le8eHGn55999pnymN33rMNbBWtubi6ysrJ4oWoBP/30E/7++280atQIgPaYUlOmTMGlS5cMipAKypAhQzyuY1LKegoXLgwA+PXXX1GoUCGnBIXc3rKypkqVKqEPkAK2aNEipUoKuH6uVlc6MykVPExK2Uj58uXxn//8B/Hx8QC0G0nS1q1bQx4f+a9kyZIAgPXr17utUzd+GjZsiAEDBoQ0Ngqct0Qik43W1atXL83lrgOds/ueeckLGDWOO2I96spH4Nq04hJvAlJeXh7y8vJ4g8EC5DH94YcfhhDC7doKuJ7EUM/WR+Yjk1JyJsUHH3yQSakgYlLKZiIjI5UZItR3aFwbSbIclcKbukHTs2dPp2oLdfIiJyeHF7Im4jqTohqTUtb1v//9T3M5K6WsQ2t2RUlWTzApZX61a9d2eq4eg0Tuz23atOFYJDbjmqRgpZT5qW805Obmara1ee42pxIlSjg9l9s2KioKcXFxaNiwIZNSQcSklM1ERkYqB9B27dopy2UjqWzZskaFRvlUrFgx1KpVS3muTl54OlFSeKpfvz6++eYbAO4JYialrOv06dOay10rpdiwNa+6deu6LVPv0+y+Zw1//fWX03OtyvRy5crh9ttvD3VoZCD5dyCT09zXzU+dlMrLy3Nqa7smIdkON5cXX3wRxYsXR1xcHADt4ziTUsHDpJTNREZGKgNv9u/fX1kud66OHTuykWRSWjMqyuW5ubm8kDUZ2XgpXbo0mjdvrixnUsq6+vXrp7nctVKKDVvz0Rr3T3JNSrFSyvwOHz7s9Fy9TdVJZu7L1jRq1Cjl8U033eS2nkkp6yhWrJjyOC8vT7Mdnp2dDYDnbrOJjo7GpUuXMHToUFStWtVpnTyOX758mddXQcKklM2odxz19KXqix7uXOZSo0YNANfKhrVOhnIdT4bmIrdldna2x2QjWcu///6ruZzd98yvbdu2Htepj9XsvmcNVapUcapGT0lJUR7L7c2bRdY1evRo5fHOnTuVx3Lby2E0rl69GtK4KPjUiUXXtjYrpcxtxowZAIDjx487tcOB6+2y77//HitXrjQiPMthUspm1A0grTJEJqXM5+WXXwZw7c6b1sxOHFPKnOQJcNWqVZqNHCalrGfBggXKY3W3TVZKmV/jxo2dnt9www1ur2H3PWtRJxe19mfeLLIfef6Ws18vXLjQyHAoyDxVSvGGkjnt2bMHADBnzhzs27fPaR1nvQ4+JqVshkkp65EXMJmZmU4nw6NHjwK4NrU878iaj/piZfXq1cpjJqWsSz2mX3JysvJYHp8nT54MADh06FBoA6N8k7PeSpUqVVIeu3bf4+DX1qBOLrpeqDIpZU9yX5cV7sOGDTMyHAoS2YXP10Dn3N/NxfW87UoIgTp16uCpp54KUUTWxqSUzTApZT2eklJy0OQtW7aw8WtCrqXCEpNS1vX6668rj7WmlZbdQNRdr8mc9u7dqzzmmFLWpN6OWkkptrfsoVu3bm7L5BhDcgBlMreJEyeiUKFC2Lx5M37//XdlObvvmdtDDz3kcZ08jufl5fGcHSRMStmMVjcg+ZiNJHOSB8MffvhBs6ImLy+P3fdMyNP2khc3TEpZj7oB5FotI4RQZtfU6vpF5nLy5EnlsfpczKSUdai3o2vbi5VS9qEeT8514Gt21bWGiIgIZXbcbdu2KcuZlDK3CRMmeFwnj+PZ2dncj4OESSmbUSec1Bc2TEqZl6cLGNeBzrldzcVXpVReXl4ow6EQUCei5FhxwPXj8z333AMAuPXWW0MeGxU8IQQyMzOZlLIIdt8jQLuHAmffs5Z169ZpLmdSytyKFi3qcR2TUsHHpJTNqE+OSUlJymN1I4nJC3PxNP5IiRIllP/Z+DUfdSWFmnpWPrIuuf8C14/PmZmZcDgcPEZbDLvvWZOn7nsAmJSyEa3jtTx/81huDWXKlPG6XiYhPd1sJPNhUir4uHfYjKcToLpSio0kc/F0AdOiRQsAwGOPPcbGrwn9/fffmsvlBSzHFbI2dSNHHp/37NkDIQRnfTGpAQMGaG47JqWs6dKlS8pjreES1qxZw0kLLKxw4cIAgLvvvltZxu571nT16lXlsdYwKZ9++ikAYPHixaENjAoMk1LBx6SUzehJSvHOjbl4uoCRd2QcDge3qwk98sgjmstlI0c2gtSDY5P5DRw4EIBz2bjr7HtkTjNmzEDHjh3dlnNMKWtasGCB5nL1ALmbNm0KcVQUKqtXr0b//v1Rvnx5ZZlr9z22y6zhypUrymPXrrrA9SQkK6XMp2TJkprLmZQKPu4dNuPpDjuTUubla0ypvLw8VkqZUPHixTWXy0bNokWLAABpaWkhiohCYfr06RBCOO3X8vhM5uftOCwrpdjAtQZfNwHJ2ho1aoSPP/7YaZlsl/3www9Oz8nc6tSpozzWmjlXjgf56KOPhjYwyjd1paOa+rqZ5+zgYFLKZjw1hJiUMq/Dhw9rLlfP0saklPmop4ouUqSI8lg2cvbs2QMAOH78eGgDo5DjRax1yOPyvffe67ZOCIErV66wUsoiPI33yP2ZVqxYAcC52xeZ17Bhw5THWkkpOTGNp2MCha+PP/4Y8fHxOHjwoNNy9SD2vL4KDialbIZJKeu5+eabNZfLi5+8vDxuVxNS33n55JNPlMfyRCinmX7qqadCGxiFnDw+9+nTx+hQKJ9k47VmzZpOy+U2/uuvvzBt2jQjQqMg85RwkNu6UKFC6NevX2iDIkPJ83eFChUAAKVKlTIyHAoSX93yOLC9ecXGxiI1NRXJyclu63jdHFxMStlMZmam5nImpczLU6NGfYcmLy+PmXyTUd9tcx30Grh+ceupvztZR0REBIQQSExMRL169YwOh/JBXrzIMWUkdfVMu3btQh4XBV/VqlU1l8ttXaVKFZQrVy7EUVE4uO+++wB47qZP5vPQQw8B8D6mFK+vrIPXzcHHpJTNvP322wCArl27Oi3nzmVe6m5eavLEmJOTA8D7WCYU3lauXOn0PCIiQmnkcLtaH4/P1iETT/JcLMmLl3LlyqF58+Yhj4uC78cff9Rcrh7onMdve5H7eW5uLhwOB8eUshB585BJKXuQk0gB3K7BwqSUTZ05c8bpOS96zMtT2TBPhtbRqFEjp+fqkyEvaqyPx2frkGOLaOE2tpakpCTN5erEBGfjsheOQ2NdgwYNAgDUrl1bWabe3gDb4VbicDh4fRVk/C3alGv3AF70WI9rpVRGRoaR4VA+3HnnnU7PmZSyFx6frYPjOtrLu+++i4YNGzotk9uaE5DYV15eHhOSFiOTUTfddJPbOialrIdJqeDjEdFmtm3bBuB6f3bJ4XBwQGyLkXdo/vzzTwDA6NGjDYyG8sO1uiIiIkJp5LBha31MWFiHp0opbmNrGjx4MJo2beq0jEkp+2KVnHVFR0dj3bp1ThNVuPZY4P5uHUxKBR9/izbToEEDzTu1bBBbk8PhUMac4uC55hUfH+/0nJVS9qLuAsDjs7n98ccfmsvVF6vcp62NY0oRu+9Zk+t4gOy+Z11MSgUff4sEgEkpq4qIiFAGX+TU0+Zz+fJl7NmzB4mJiU7LOdC5PfH4bH779+8H4J5oBjimlF2oK6VYLWMv6lmRue2tb9WqVQCAzz77DAAr262ESang495BAJiUsopbb73V6XlERAQyMzMBXCstJnMpWrSo23gkACul7IaVUtbTp08fp+c8B9sLu+/ZE7vv2cvOnTsBALt27QLApJSVcPa94OPeQQDYILaKiRMnOj13OBxKUkpWTJH5qe/Q8KLGPrKzs3l8toiYmBin5w6HA7m5uRBCcBtbHMeUInbfswfXbcyklLUwKRVc3DsIAJNSVtGgQQOn5+pKKSalrEM90DkbttbHSinriY2NdXrOu672wTGl7IuVUvbiun/L7U/mx5vDwccjIgFgUsrs7rnnHgDuiScmpazJ4XDg3LlzAHjnzU6ys7O5H5tcrVq1AAD33nuv2zqOT2EP6qQUL1LtiVVy9iDbZ0WKFEGpUqUMjoaCiWNKBR+vZggAk1Jmt2TJEuzcuRNFixZ1Wu5wOJCVlQWASSkriYiIwKFDhwDwDo0dsFLKOsqVKwcAuPHGG52Ws4FrH6yUsi9ZDblv3z7eULIBnruti5VSwccjIgFgUsrsIiMjUadOHbflERERyhTksjFE5qe+u86GrX1wTCnzu/322wFcu3OulpGRgVGjRgFgUsrqZHsrOztbuWlE9lChQgUA124S8txtH6yMsx52uQ8+SxwRT548iRdffBF33HEHihUrBofDgTVr1hgdlqlw57KmiIgInD59GoD7RRCZl7oxy4at9fFuq3W8/vrrOHr0qNcLFG5ja3M4HEhLSwMAPP/88wZHQ6EkK9ZZJWcPXbp0AQBUr16dx3WLcTgcOHnyJAAox3PKH0tczfz999+YOHEijh8/jrp16xodjimx64A1ORwO1KxZEwBQokQJg6OhYGGllD2xUsr8IiMjUalSJa+v4cWqtam71ct2F9mDPHfn5eXx3G0DTZs2BQCULFmSx3UL2rdvHwDgwoULBkdiDZY4IjZo0ADnz5/H3r17MWzYMKPDMSVWSllTREQE+zxbkDopxYFyrU9uYyal7IHb2Np4zKYdO3Yo40KSdbHK2bocDgduuukmAMDNN99scDTWYIk9pFixYkaHYHpMSlkTt6s1RUREIDY2FvHx8UaHQiHAhq29cBtbmxxTCgA++OADg6OhUGJC0l7UN5R4Y9ha9u/fj/379wPgTf9gsUSlFAUHu+9ZDyulrEkmG7lN7YWVUvbAbWxtDocDubm5AK7Pxkj2wKSUvfCGkj2wLR4ctt9DMjMzkZmZqTy362BlHFPKmiIiIpSxK3jQtI6IiAjk5ORwTAqbYPc9e+E2tjZ1BTPPy/bCpJS9qM/d0dHRBkdDBYXH8eAIu5ZPXl6e7ilyY2Ji8n2Af+ONNzBmzJh8fYYVMCllTbLx63A4mMCwEHnc44nQXpiUsgduY+uTlVI8L9uLPHeXKFECN954o8HRUEFTV0rFxcUZHA0VFLbFgyPszoZr165FXFycrn9///13vr9vxIgRSE1NVf4dPXo0CD+F+TApZU2y+x4PmNYiL2R4QWMP7AJgL9zG1sZKKftSH8u57a2P52574L4cHGG3h9SqVQuzZs3S9dry5cvn+/tiYmIQExOT788xOyalrCkiIgJXrlzhNrUYVkrZEyulrK1KlSo4cuQIt7HFMSllX0xK2QsHOrcHbtvgCLuWT7ly5dCvXz+jw7AdztJmTTLZyAOmtciGDiul7IF3W62vYcOGyviW3MbWph7onMdwe2FSyl547rYH7svBwT2EFKyUsh7ZfS82NtboUCiI5IUMT4T2wkop62K1sn2wUopyc3O57W1AJqVOnjyJhIQEg6OhgsJ9OTgs0/J5/fXXAQC7du0CAHz22WdYv349AOCVV14xLC6zYKWUNcmkVJEiRYwOhYKIlVL2sm/fPgBAVlYWj88WpU5KsYFrber2Fo/h9iLP3Xl5edzPbUA9GdeePXsMjIQKEvfl4LBM63bkyJFOzz/55BPlMZNSvqkPnLzosQ6Hw8HGjwWxUspeZs6cqTzm8dmaeGPIPtTd93gMtxd1W5sJSevL7wzxFL6SkpJw+PBhADyOB4tlWj5CCKNDMDUmpaxJNnrS09MNjoSCiZVS9qI+v/H4bE3svmcfixcvVh7zYsZe1G1tbnvrY1LKuurWrcukVJDxioYAMCllVXK7XrlyxeBIKJhYKWUvTEpZH5NS9sQbC/bCpBSRNfC6Ofh4NiQA3Lmsig1ea2KllL0wKWUP7L5nP0xM2AuTUvbCSinrUre/2RYPDv4WCQCTUlYlD5S1a9c2OBIKJrm/slFrD3l5ecpjHp+tiZVS9sSLGXthUspe1Nu7evXqBkZCwSa3bWRkJJOPQcKzIblhg9g6mLywJnkhwwsae4iJiVEe8/hsTRzo3J6OHTtmdAgUQkxK2Yt6e999990GRkLBJtvfPF8HD69oCAArpayKYw9ZE5ON9jJlyhTlcVRUlIGRUEFhpZQ9nTlzxugQKISYlLIXzrZoXUxKBR/3EALApJRV8aBpTayUspfSpUsrj7kvW5PD4UBubi4AbmM7adOmjdEhkEGYlLI+JiGtizeHg49XNASAB06r4kHTmrhd7UWdfGTCwpp4DrYnbmt7Ue/n6rECyZpYKWVdvOkffNxDCAAPnFbF7nvWxEope2Elq31ERERw0FQb4THcXtT79pw5cwyMhEKBNxusa/78+QDYJgsmng0JAJNSVsVMvjXJ7cqLV3tgpZT1qWfyIWt75plnlMc8htsLt7e98NrK+njODh7uIQTA+cDJk6Z1sJuXNcnGzapVqwyOhEKBlVLWx6SUffBC1b7YvrYXVkpZH8/ZwcOzIblhI8k62H3Pmrg97YWVUtbHpJR9MCllX0xK2Yt6e+fk5BgYCRUUtseDh2dDAsBGktXxQsdauI/aCyulrI9JKftQH795LLcXJqXsRb29J0yYYGAkVFB4zg4eng0JALvvWdWWLVsAMJNvNdxH7UV94Xrx4kUDI6GCwqSUffAmoH3x3G0v3N7Wx3N28PBsSACADRs2GB0CFSAmpayFDR17UW/vY8eOGRgJFZSffvoJABu4dsCkFJE9sK1mfTxnBw/PhgQAWLt2rdEhUAHiQZPIvNQXrkwwWxuP1dbHynT74va2FyGE0SFQAfvjjz+MDsEymJQiNzExMUaHQEHGC1lrYbWMvaSnpyuPmbSwNm5f6+OYUvbFpJS95OXlGR0CkWnwbEhueNK0HialrOXQoUNGh0AhdOXKFeUxkxbWduDAAaNDoALG7ntE9sCkFJF+PBsS2cCXX35pdAhEFCD1hSuTUkTmxqQUkT3Ex8cbHQKRafBsSEREFMaYlCKyjtisLJwHcAVAxNatRodDRAUkOjra6BCITINJKSIiojCmrqxgV1wic+v5zTdIBBALIKpbN6PDIYPwWG4vgwYNMjoEorDGpBQREVEY4zh/RNZR8sKF60/OnTMuEDLU7bffbnQIFEKsmiLyjkkpIiKTioqKMjoECgH1tNIJCQkGRkJERMHArtj2wu1N5B2TUkREJsVBNO2nVatWRodAREHCGkj7qlKlitEhUAhxUgMi77iHEBGZFLt1ERGZS1ZWltEhUBh46aWXjA6BQohjiBF5x6QUEZFJMSllD+rue0Rkbunp6UaHQGGA3e/thUkpIu+YlCIiMqmSJUsaHQKFAJNSRNZR3egAKCzccMMNRodAIXTfffcZHQJRWGNSisgG2Jfdmt555x2jQyAiIiI/sdLZXpKTk40OgSis8UqVAAAPPPCA0SFQAWJSypqKFi1qdAhEROSHy0YHQEQhx3a4tVStWtXoECyHewgB4CxeVseTIZF5FStWzOgQiChI9hsdABGFHCvjrOWzzz4zOgTL4ZUqkQ0wKUVkXvXr1zc6BCIKklyjAyCikGNSylqaNm2KqKgozJw50+hQLCPS6AAoPDBpYW0xMTFGh0BERGR7mUYHQEQhx6SU9WRlZRkdgqUwE0EAeLC0qieeeAIA8P777xscCRUE7rdEROYyW/2kZk2DoiCiUCpUqJDRIRCFNSalCAAvbq2qePHiAICyZcsaGwgREfl0xx13GB0CFbCPAHwJYBsALF9ubDBERERhgEkpAsCklNVx+1oTxxoispYRI0YYHQIVsEqVKuF+ALcBQFKSwdEQEREZj0kpAgAIIYwOgQrA8OHD8cQTT6B58+ZGh0JB9NBDDwEAihQpYnAkRBRMHN/R+oYPH250CERERGGFA50TWVhiYiLHk7KgWbNmYcaMGUaHQSG0d+9e5OZy3i6rY1Wr9XEb29vq1auRkJBgdBgUItu3b8epU6eMDoMo7DEpRURkMoUKFUJcXJzRYVAIVa9e3egQKASYsCCyttatWxsdAoXQLbfcYnQIRKbAOnECAERGMj9JRERkhMGDBwO4Nt4Q2cOECROMDoGIiCgsOAQHE3KSlpaGhIQEpKamIj4+3uhwQub48eOoVKkSqlWrhn/++cfocIiIiGzl1KlTKFeunNFhUAE7ePAgatWqhQMHDqBixYpGh0NEROSXgsiXsDyGAACFCxcGwC4iRERERmBCyh5SUlKQmZlpdBhERERhg933CMC1MWoAoEyZMgZHQkRERERERER2wEopAgDEx8fj66+/xl133WV0KERERERERERkA0xKkaJbt25Gh0BERERERERENsHue0REREREREREFHJMShERERERERERUcgxKUVERERERERERCHHpBQREREREREREYUck1JERERERERERBRyTEoREREREREREVHIMSlFREREREREREQhx6QUERERERERERGFHJNSREREREREREQUckxKERERERERERFRyDEpRUREREREREREIcekFBERERERERERhRyTUkREREREREREFHJMShERERERERERUcgxKUVERERERERERCEXaXQA4UYIAQBIS0szOBIiIiIiIiIiovAg8yQybxIMTEq5OH/+PACgcuXKBkdCRERERERERBRezp8/j4SEhKB8FpNSLhITEwEAR44cCdovmQpeWloaKleujKNHjyI+Pt7ocEgnbjdz4nYzJ243c+J2MyduN3PidjMnbjdz4nYzp9TUVFSpUkXJmwQDk1IuIiKuDbOVkJDAncOE4uPjud1MiNvNnLjdzInbzZy43cyJ282cuN3MidvNnLjdzEnmTYLyWUH7JCIiIiIiIiIiIp2YlCIiIiIiIiIiopBjUspFTEwMRo0ahZiYGKNDIT9wu5kTt5s5cbuZE7ebOXG7mRO3mzlxu5kTt5s5cbuZU0FsN4cI5lx+REREREREREREOrBSioiIiIiIiIiIQo5JKSIiIiIiIiIiCjkmpYiIiIiIiIiIKOSYlPr/MjMz8cILL6BChQqIi4vD7bffjpUrVxodFnmRnp6OUaNG4e6770ZiYiIcDgdmz55tdFjkw9atW/H000+jTp06KFKkCKpUqYJevXph7969RodGXuzatQs9e/ZE1apVUbhwYZQqVQotW7bEd999Z3Ro5Kdx48bB4XDgpptuMjoU8mDNmjVwOBya/zZt2mR0eOTD9u3b0blzZyQmJqJw4cK46aabMGXKFKPDIg/69evncX9zOBw4fvy40SGSB//88w/uu+8+VKpUCYULF0atWrUwduxYZGRkGB0aefHrr7/i7rvvRnx8PIoVK4Z27dphx44dRodFKv5cZ+/evRt33303ihYtisTERDz00EM4e/asX98XGYSYLaFfv35YuHAhhg4diurVq2P27Nno0KEDVq9ejebNmxsdHmk4d+4cxo4diypVquDmm2/GmjVrjA6JdJg4cSI2bNiAnj17ol69ejh16hSmTZuGW2+9FZs2beKFcpg6fPgwLl++jL59+6JChQrIyMjA119/jc6dO2PGjBkYMGCA0SGSDseOHcP48eNRpEgRo0MhHQYPHozbbrvNaVm1atUMiob0WLFiBTp16oRbbrkFI0eORNGiRbF//34cO3bM6NDIg8cffxxt27Z1WiaEwBNPPIHk5GRUrFjRoMjIm6NHj6JRo0ZISEjA008/jcTERGzcuBGjRo3Cr7/+isWLFxsdImnYvn07mjdvjsqVK2PUqFHIy8vD9OnT0apVK2zZsgU1a9Y0OkSC/uvsY8eOoWXLlkhISMD48eORnp6OSZMm4c8//8SWLVsQHR2t7wsFic2bNwsA4s0331SWXblyRdxwww2iSZMmBkZG3ly9elWcPHlSCCHE1q1bBQAxa9YsY4MinzZs2CAyMzOdlu3du1fExMSIBx54wKCoKBA5OTni5ptvFjVr1jQ6FNKpd+/e4s477xStWrUSderUMToc8mD16tUCgFiwYIHRoZAfUlNTRdmyZcW9994rcnNzjQ6H8mHdunUCgBg3bpzRoZAH48aNEwDEzp07nZY//PDDAoC4cOGCQZGRNx06dBAlSpQQ586dU5adOHFCFC1aVHTr1s3AyEhN73X2wIEDRVxcnDh8+LCybOXKlQKAmDFjhu7vY/c9AAsXLkShQoWc7vTHxsaif//+2LhxI44ePWpgdORJTEwMypUrZ3QY5KemTZu6Zc2rV6+OOnXqYPfu3QZFRYEoVKgQKleujEuXLhkdCumwdu1aLFy4EJMnTzY6FPLD5cuXkZOTY3QYpMPcuXNx+vRpjBs3DhEREfj333+Rl5dndFgUgLlz58LhcKBPnz5Gh0IepKWlAQDKli3rtLx8+fKIiIjQX6FBIbVu3Tq0bdsWJUuWVJaVL18erVq1wtKlS5Genm5gdCTpvc7++uuv0bFjR1SpUkVZ1rZtW9SoUQNfffWV7u9jUgrAb7/9hho1aiA+Pt5peaNGjQCAfVyJCpgQAqdPn0apUqWMDoV8+Pfff3Hu3Dns378f77zzDpYtW4Y2bdoYHRb5kJubi0GDBuHRRx9F3bp1jQ6HdHrkkUcQHx+P2NhY3HHHHdi2bZvRIZEXq1atQnx8PI4fP46aNWuiaNGiiI+Px8CBA3H16lWjwyOdsrOz8dVXX6Fp06ZITk42OhzyoHXr1gCA/v37Y8eOHTh69Cjmz5+P999/H4MHD2Y39TCVmZmJuLg4t+WFCxdGVlYWdu7caUBUFIjjx4/jzJkzaNiwodu6Ro0a4bffftP9WRxTCsDJkydRvnx5t+Vy2YkTJ0IdEpGtfPHFFzh+/DjGjh1rdCjkw7PPPosZM2YAACIiItCtWzdMmzbN4KjIlw8++ACHDx/GqlWrjA6FdIiOjkb37t3RoUMHlCpVCn/99RcmTZqEFi1a4JdffsEtt9xidIik4Z9//kFOTg66dOmC/v3744033sCaNWswdepUXLp0CfPmzTM6RNJh+fLlOH/+PB544AGjQyEv7r77brz22msYP348lixZoix/+eWX8frrrxsYGXlTs2ZNbNq0Cbm5uShUqBAAICsrC5s3bwYATixgIidPngQAj3mUCxcuIDMzEzExMT4/i0kpAFeuXNH8ZcXGxirriahg7NmzB0899RSaNGmCvn37Gh0O+TB06FD06NEDJ06cwFdffYXc3FxkZWUZHRZ5cf78ebz66qsYOXIkSpcubXQ4pEPTpk3RtGlT5Xnnzp3Ro0cP1KtXDyNGjMCPP/5oYHTkSXp6OjIyMvDEE08os+1169YNWVlZmDFjBsaOHYvq1asbHCX5MnfuXERFRaFXr15Gh0I+JCcno2XLlujevTtKliyJ77//HuPHj0e5cuXw9NNPGx0eaXjyyScxcOBA9O/fH88//zzy8vLw+uuvKwkOXnebh9xWvvIoepJS7L4HIC4uDpmZmW7LZam1VokhEeXfqVOn8J///AcJCQnK2G4U3mrVqoW2bdvi4YcfVvr+d+rUCUIIo0MjD1555RUkJiZi0KBBRodC+VCtWjV06dIFq1evRm5urtHhkAbZXrz//vudlstxiTZu3BjymMg/6enpWLx4Mdq3b+805g2Fny+//BIDBgzAxx9/jMceewzdunXDzJkz0bdvX7zwwgs4f/680SGShieeeAIvvfQS5s6dizp16qBu3brYv38/nn/+eQBA0aJFDY6Q9JLnvGDkUZiUwrXyMpmdVZPLKlSoEOqQiCwvNTUV99xzDy5duoQff/yR+5lJ9ejRA1u3bsXevXuNDoU0/PPPP/jwww8xePBgnDhxAocOHcKhQ4dw9epVZGdn49ChQ7hw4YLRYZJOlStXRlZWFv7991+jQyEN8jzmOvBymTJlAAAXL14MeUzkn0WLFiEjI4Nd90xg+vTpuOWWW1CpUiWn5Z07d0ZGRoZf49lQaI0bNw6nT5/GunXr8Mcff2Dr1q3KpBA1atQwODrSS3bb85RHSUxM1FUlBTApBQCoX78+9u7dq8ziIMm+rfXr1zcgKiLrunr1Kjp16oS9e/di6dKlqF27ttEhUYBk6W5qaqrBkZCW48ePIy8vD4MHD0ZKSoryb/Pmzdi7dy9SUlI4lpuJHDhwALGxsbyTHKYaNGgAwH1MFDk2KbvPhr8vvvgCRYsWRefOnY0OhXw4ffq0ZtVodnY2AHDW0jBXokQJNG/eXJl8ZdWqVahUqRJq1aplcGSkV8WKFVG6dGnNSVi2bNniVw6FSSlcu9Ofm5uLDz/8UFmWmZmJWbNm4fbbb0flypUNjI7IWnJzc9G7d29s3LgRCxYsQJMmTYwOiXQ4c+aM27Ls7GzMmTMHcXFxTCyGqZtuugnffvut2786deqgSpUq+Pbbb9G/f3+jwyQXZ8+edVv2+++/Y8mSJWjXrh0iIth8C0dyDKKZM2c6Lf/4448RGRmpzBZG4ens2bNYtWoV7r33XhQuXNjocMiHGjVq4LfffnOr1J43bx4iIiJQr149gyIjf82fPx9bt27F0KFDeX4zme7du2Pp0qU4evSosuynn37C3r170bNnT92fw4HOAdx+++3o2bMnRowYgTNnzqBatWr49NNPcejQIbeGBYWXadOm4dKlS8pdyO+++w7Hjh0DAAwaNAgJCQlGhkcann32WSxZsgSdOnXChQsX8Pnnnzutf/DBBw2KjLx5/PHHkZaWhpYtW6JixYo4deoUvvjiC+zZswdvvfUWKzfCVKlSpdC1a1e35ZMnTwYAzXVkvN69eyMuLg5NmzZFmTJl8Ndff+HDDz9E4cKFMWHCBKPDIw9uueUW/Pe//8Unn3yCnJwctGrVCmvWrMGCBQswYsQIdlMPc/Pnz0dOTg677pnE8OHDsWzZMrRo0QJPP/00SpYsiaVLl2LZsmV49NFHub+FqbVr12Ls2LFo164dSpYsiU2bNmHWrFm4++67MWTIEKPDIxU919kvvfQSFixYgDvuuANDhgxBeno63nzzTdStWxePPPKI7u9yCI5OC+Bad6KRI0fi888/x8WLF1GvXj289tpraN++vdGhkRfJyck4fPiw5rqDBw8iOTk5tAGRT61bt8b//vc/j+t5SApPX375JWbOnIk///wT58+fR7FixdCgQQMMGjSI3RxMqHXr1jh37hx27txpdCikYcqUKfjiiy+wb98+pKWloXTp0mjTpg1GjRqFatWqGR0eeZGdnY3x48dj1qxZOHHiBJKSkvDUU09h6NChRodGPjRp0gQHDhzAiRMnOPGKSWzZsgWjR4/Gb7/9hvPnzyMlJQV9+/bF888/j8hI1l6Eo/379+PJJ5/E9u3bcfnyZWWbDRs2DNHR0UaHRyp6r7N37dqFYcOGYf369YiOjsZ//vMfvPXWW27jK3rDpBQREREREREREYUcO20SEREREREREVHIMSlFREREREREREQhx6QUERERERERERGFHJNSREREREREREQUckxKERERERERERFRyDEpRUREREREREREIcekFBERERERERERhRyTUkREREREREREFHJMShERERERERERUcgxKUVERERERERERCHHpBQRERGFvdmzZ8PhcGD27NlGh+KX8+fPIzExEU8++aTRoYSlfv36weFw4NChQ36/VwiBm2++GS1atAh+YERERBQSTEoRERFRSDkcDr/+mS0RpTZq1ChcuXIFr7zyitGhWI7D4cDYsWOxfv16LFy40OhwiIiIKACRRgdARERE9jJq1Ci3ZZMnT0ZqaiqGDBmC4sWLO62rX78+UlJS0LhxY5QvXz5EUebfkSNHMGPGDDzyyCOoUKGC0eFYUpcuXXDjjTfi5ZdfRvfu3eFwOIwOiYiIiPzApBQRERGF1OjRo92WzZ49G6mpqRg6dCiSk5M135eQkFCwgQXZjBkzkJOTg379+hkdiqX17dsXL774In766Se0bdvW6HCIiIjID+y+R0RERGHP05hSycnJSE5ORnp6Op555hlUrlwZcXFxqF+/PhYtWgQAyMnJwbhx41C9enXExsbihhtuwLRp0zx+1/Lly9GhQweUKlUKMTExuOGGGzB8+HBcunRJd7xCCMyaNQuVK1dG06ZN3dafPn0azz33HGrWrIkiRYqgePHiqFmzJvr164cDBw7kO6Zjx45h8ODBqF69OuLi4pCYmIhGjRrhtddec3vtr7/+iu7du6NMmTKIiYlBUlISnnzySZw8edLtteoxoGbMmIG6desiNjYWZcuWxYABA5CamqoZz6pVq9CiRQsUKVIEiYmJ6Nq1K/bs2ePx97dkyRK0adMG5cuXR0xMDCpUqIBWrVph+vTpbq+97777AAAzZ870+HlEREQUnlgpRURERKaWnZ2Nu+66CxcuXECXLl2QlZWFefPmoXv37lixYgWmT5+OzZs345577kFMTAwWLFiAQYMGoXTp0ujdu7fTZ40ZMwajR49GYmIiOnbsiDJlyuCPP/7ApEmT8MMPP2Djxo2Ij4/3GdOuXbtw8uRJJWGilpGRgWbNmmH//v2466670KlTJwghcPjwYSxevBg9evRA1apVA45p27ZtaN++PS5cuICWLVuiW7duyMjIwF9//YXRo0dj5MiRymuXLl2K7t27QwiBHj16ICkpCb/++ivef/99LF68GOvXr0dKSorbz/D8889j+fLl6NSpE9q1a4fVq1fjo48+wr59+/Dzzz87vXbhwoXo3bs3oqOj0bt3b5QvXx7r169HkyZNUK9ePbfP/vDDD/H444+jXLly6NSpE0qVKoUzZ87gjz/+wKxZs9wGjU9KSkLFihWxatUqCCHYhY+IiMhMBBEREZHBkpKSBABx8OBBzfWzZs0SAMSsWbM039exY0dx9epVZfnatWsFAFGiRAnRsGFDcfHiRWXd/v37RVRUlKhfv77TZ/38888CgGjSpInT69XfP3ToUF0/z/vvvy8AiEmTJrmtW7JkicfPyszMFGlpaQHHlJmZKZKTkwUA8cUXX7h9/tGjR5XHly9fFomJiSIiIkKsXbvW6XUTJkwQAMRdd93ltLxv374CgKhcubI4fPiwsjw7O1u0aNFCABCbN292+47IyEixdetWp88aOnSoAOC23W+99VYRHR0tTp8+7Rb/2bNn3ZYJIUTXrl0FALFr1y7N9URERBSe2H2PiIiITG/y5MmIiYlRnrdo0QIpKSm4ePEiJk6c6DR4etWqVdGsWTPs3LkTubm5yvIpU6YAAD766CO3wdb79euH+vXr44svvtAVz5EjRwDA68DscXFxbsuio6NRrFixgGP67rvvcOjQIXTu3Bl9+vRx+/xKlSopjxcvXowLFy6gd+/eaNGihdPrnn32WSQnJ2PlypXKz6L26quvokqVKsrzyMhIPPLIIwCALVu2uH1Hnz590LBhQ6fPGD16tMdxwiIjIxEVFeW2vFSpUpqvL1euHABoxkpEREThi933iIiIyNSKFy+OG264wW15hQoVcPDgQTRo0MBtXcWKFZGTk4NTp06hYsWKAICNGzciKioKCxYswIIFC9zek5WVhbNnz+L8+fMoWbKk15jOnz8PAChRooTbulatWqFixYqYMGECtm/fjg4dOvr0LbQAAAYLSURBVKBZs2aoX78+ChUq5PRaf2PatGkTAOCee+7xGh8AbN++HQBw5513uq2LjIxEy5YtcejQIfz2229OCSgAbgkmAKhcuTIA4OLFi27f0apVK7fXJyQkoH79+vjf//7ntPyBBx7As88+i9q1a+O+++5Dq1at0KxZM5QuXdrjz5KYmAgAOHfunMfXEBERUfhhUoqIiIhMzVu1jaf1cl12dray7Pz588jJycGYMWO8fl96errPpJSsgrp69arbuvj4eGzatAmjRo3CkiVLsHz5cgDXqoCefPJJvPLKK0qVkL8xyYHPZaLNGzkouadqLrlcazB116ot4PrvVF19Jr+jbNmymt8hK5zUhg0bhlKlSmH69OmYMmUKJk+eDIfDgVatWuHNN9/UTIhduXIFgHb1GREREYUvdt8jIiIiwrXkVYkSJSCE8PovKSnJ52eVKVMGwPWKKVeVKlXCzJkzcebMGezcuRNTpkxByZIlMXbsWIwdOzbgmGSy6Pjx47p+XgA4deqU5no5+56npJ8e8r2nT5/WXO/pux9++GFs2rQJ58+fx/fff4/+/ftj7dq1aN++Pc6ePev2evl7lr93IiIiMgcmpYiIiIgANG7cGBcvXsSuXbvy/VlyVrk9e/Z4fZ3D4UCdOnUwaNAgrFy5EgCwaNGigGNq3LgxAGDZsmU+X3vLLbcAANasWeO2LicnB+vWrQMA3Hrrrbq+W4t8r2sXPeBaFdWOHTu8vr948eLo0KEDPvroI/Tr1w8XLlzA2rVr3V63Z88eREREoG7dugHHSkRERKHHpBQRERERgGeeeQYA8Nhjj+HEiRNu6//9919lzCZfWrRogUKFCmm+fteuXZqVQ3JZ4cKFA46pU6dOSE5OxpIlSzBv3jy31x87dkx53LVrVyQmJmLevHlucU6ePBkHDx5E27Zt3caT8keXLl1QokQJzJ07F9u2bXNaN3r0aKV7n9rq1ashhHBbfubMGQDOvx8AyMzMxI4dO3DLLbdodiskIiKi8MUxpYiIiIgAtGnTBhMmTMCIESNQvXp1dOjQASkpKUhPT8fhw4fxv//9D82bN8ePP/7o87MSEhLQpk0brFmzBhcvXnQa8HzlypUYPnw4mjRpgho1aqBMmTI4duwYFi9ejIiICAwfPjzgmKKjo7FgwQK0a9cOffr0wYwZM9C4cWNcvXoVu3fvxk8//YScnBwAQNGiRfHJJ5+gZ8+eaNWqFXr27IkqVarg119/xYoVK1CuXDnMmDEjX7/TokWL4sMPP1Rm+OvduzfKly+P9evXY+fOnWjZsqVb5dO9996LokWLonHjxkhOToYQAuvWrcPWrVvRoEEDtG3b1un1a9asQVZWFrp3756vWImIiCj0mJQiIiIi+v9eeOEFNGvWDFOmTMH69euxePFiJCQkoGLFihgwYAD69Omj+7OefPJJrFixAl9++SUGDhyoLG/fvj2OHDmCtWvXYvHixUhLS0P58uVx1113YdiwYWjatGm+YmrYsCF27NiBCRMmYNmyZfjll19QrFgxVKtWzWm8KuBaJdOGDRswfvx4LF++HKmpqShXrhyeeOIJjBw5EhUqVAjgt+isR48e+PHHHzFmzBh89dVXiImJQcuWLbFx40ZMmDDBLSk1YcIELF++HNu3b8cPP/yA2NhYJCUlYeLEiRg4cKAyCLz06aefIjo6Gv379893rERERBRaDqFVH01ERERE+ZKbm4u6desiOjoav/32GxwOh9EhWc6ZM2eQnJyMPn364OOPPzY6HCIiIvITx5QiIiIiKgCFChXCpEmT8Pvvv+Obb74xOhxLGj9+PAoVKoTXXnvN6FCIiIgoAExKERERERWQDh064N1338XVq1eNDsVyhBAoX748PvvsM5QvX97ocIiIiCgA7L5HREREREREREQhx0opIiIiIiIiIiIKOSaliIiIiIiIiIgo5JiUIiIiIiIiIiKikGNSioiIiIiIiIiIQo5JKSIiIiIiIiIiCjkmpYiIiIiIiIiIKOSYlCIiIiIiIiIiopBjUoqIiIiIiIiIiEKOSSkiIiIiIiIiIgq5/weKmnXFOn+/QQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "**Zoomed-In ECG Segment:** Focuses on a specific time window (e.g., 3 to 4 seconds) for fine-grained inspection of high-attribution waveform regions." + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ + "fig, ax = plt.subplots(figsize=(12, 5))\n", + "fig.patch.set_facecolor(\"white\")\n", + "ax.set_facecolor(\"white\")\n", + "\n", + "# Plot zoomed-in ECG segment\n", + "ax.plot(\n", " result[\"zoom_time\"],\n", - " result[\"segment_ecg_waveform\"],\n", + " result[\"segment_signal_waveform\"],\n", " color=\"black\",\n", " linewidth=3,\n", " label=\"ECG Waveform\",\n", ")\n", + "\n", + "\n", "for idx in result[\"important_indices_zoom\"]:\n", " stretch_start = max(0, idx - 6)\n", - " stretch_end = min(len(result[\"segment_ecg_waveform\"]), idx + 6 + 1)\n", - " axes[1].plot(\n", + " stretch_end = min(len(result[\"segment_signal_waveform\"]), idx + 6 + 1)\n", + " ax.plot(\n", " result[\"zoom_time\"][stretch_start:stretch_end],\n", - " result[\"segment_ecg_waveform\"][stretch_start:stretch_end],\n", + " result[\"segment_signal_waveform\"][stretch_start:stretch_end],\n", " color=\"red\",\n", " linewidth=6,\n", " )\n", - "axes[1].set_xticks(np.linspace(result[\"zoom_start_sec\"], result[\"zoom_end_sec\"], 11))\n", - "axes[1].set_xlim([result[\"zoom_start_sec\"], result[\"zoom_end_sec\"]])\n", - "axes[1].set_yticks([])\n", - "axes[1].set_xlabel(\"Time (seconds)\", fontsize=\"x-large\")\n", - "axes[1].set_ylabel(\"\")\n", - "axes[1].set_title(\n", + "\n", + "\n", + "ax.set_xticks(np.linspace(result[\"zoom_start_sec\"], result[\"zoom_end_sec\"], 11))\n", + "ax.set_xlim([result[\"zoom_start_sec\"], result[\"zoom_end_sec\"]])\n", + "ax.set_yticks([])\n", + "ax.set_xlabel(\"Time (seconds)\", fontsize=\"x-large\")\n", + "ax.set_ylabel(\"\")\n", + "ax.set_title(\n", " f'Zoomed-In ECG Segment ({result[\"zoom_start_sec\"]:.2f}s – {result[\"zoom_end_sec\"]:.2f}s)',\n", " fontsize=\"x-large\",\n", ")\n", "\n", - "# 3. CXR with points (\"X\")\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "cell_type": "code", + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo/pJREFUeJzs3Xd4VMXXwPGz6QkJoffee0eQIlVAunRFerUhXekgiKgoIAqiSBNQmiCCdBAE6R2kE3onkN533j94sz82W7K72ZLy/TzPfeDOzJ17tmV3z87M1SillAAAAAAAAABO5ObqAAAAAAAAAJDxkJQCAAAAAACA05GUAgAAAAAAgNORlAIAAAAAAIDTkZQCAAAAAACA05GUAgAAAAAAgNORlAIAAAAAAIDTkZQCAAAAAACA05GUAgAAAAAAgNORlAIAwE4aNmwoGo3G1WEADvP06VPJli2bvPfee64OBalYZGSk5MmTR9555x1XhwIASOVISgEADBQpUkQ0Go1FW+/evV0dbpqWeF/fuHHDYedITJaZ2yZPnmz02CNHjki/fv2kdOnSEhAQIN7e3lK4cGHp1KmTrF69WhISEowed/z4cRk8eLBUqFBBAgMDxdPTU3LmzCn169eXCRMmyKVLl6y6Dc+fP5eJEydKlSpVxN/fX7y9vSV//vxSu3ZtGTFihJw8edLauyVDSmnidNKkSRIVFSXjx4/XK9+3b5/06NFDKlSoINmzZxcfHx8pWrSotG3bVnbt2mXVOZYsWWL2ufrDDz8YPS4qKkomTZokpUuXFh8fH8mVK5d06dJFLly4YPPtdbbLly9LpkyZRKPR2JTQCQ4OlqFDh0qRIkXE29tb8uXLJ3379pU7d+6YPObOnTvSt29fyZcvn3h7e0uRIkVk6NCh8uzZM5tvh5+fn4wZM0ZWrlwpR48etbkfAED65+HqAAAAqc/QoUPl+fPnJusjIyPlm2++kYSEBKlQoYLzAkOK9OrVS4oUKWK0rmHDhnr7cXFxMmTIEPnhhx/E3d1dGjRoIK1atRJvb2+5c+eO7N69W9atWycdO3aUtWvX6o6LjY2VIUOGyIIFC0Sj0UidOnWkUaNGkjlzZnn+/LkcP35cPv/8c5k+fbps2LBB2rRpk2zc9+7dk7p168qNGzekWLFi0r17d8mRI4c8e/ZMjh8/LrNnzxZfX1+pWrVqSu4eJOPWrVuyYMEC6dOnj+TLl0+vbvfu3bJ7926pVauWNG7cWDJlyiS3bt2SjRs3yp9//injx4+XqVOnWnW+du3aSZUqVQzKa9SoYVAWExMjr7/+uhw4cEBq1KghH330kdy+fVvWrFkjmzdv1sWWmsXHx0uPHj3Ezc2234yfPn0qderUkcuXL0vjxo2lW7ducvHiRVm8eLFs3rxZDh48KMWKFdM75tq1a1KnTh159OiRtGvXTsqUKSNHjhyROXPmyNatW+XAgQOSPXt2m+IZNGiQTJkyRcaNGyfbt2+3qQ8AQAagAACwglarVZ06dVIiojp16qS0Wq2rQ0o1GjRooKx9ay1cuLASERUUFOSYoNT/4tqzZ4/FxwwYMECJiKpYsaK6ePGiQX18fLxatmyZ6tSpk1557969dcedO3fOaN83btxQAwcOVEuXLrUoln79+ikRUX379jX6fLt37546fvy4RX1ldLY8RxONHTtWiYg6cOCAQV1UVJTRY+7cuaNy5cql3Nzc1L179yw6z+LFi5WIqMWLF1sc2/Tp03V/kxISEnTlGzZsUCKiypUrp1eeGk2ZMkV5eXmpOXPmKBFR3bt3t+r4gQMHKhFRw4cP1ytP7K958+YGxzRr1kyJiPr222/1yocNG6ZERA0aNMj6G/KSwYMHK41Goy5fvpyifgAA6RdJKQCAVcaPH69ERFWtWlVFREQY1D9//lx98sknqlSpUsrb21tlyZJFNWvWTO3YscNofwkJCWr+/PmqRo0aKlOmTMrPz0/VqFFDzZs3z+iXSBFRDRo0UA8ePFB9+vRRuXLlUn5+furVV19V+/btU0opFR4erkaOHKkKFSqkvLy8VLly5dTq1atN3qaVK1eqhg0bqsDAQOXt7a3KlCmjpk6dqqKjo422//XXX1W1atWUj4+Pypkzp3rnnXfU3bt37ZqUSrydjx8/VgMGDFB58uTR3ZZFixZZdQ5rk1L79+9XIqKyZcuWbCLh5fto7969SkRU9uzZ1f3795M9T1xcnEXxlC1bVomIOnnypEXtE0VERKjp06erypUrKz8/P5UpUyZVu3ZttXLlSqPto6Oj1aRJk1TRokWVl5eXKlKkiBo3bpyKjo7WPR4vmzRpku5+XblypapWrZry9fVVefPmVcOGDdPdN7t27VINGjRQAQEBKkuWLOqdd95RT548MRrD7du31fvvv6+LIVu2bKpNmzbqyJEjBm1fPv+aNWtUzZo1la+vr8qaNavq2rWrunPnjq5tUFCQEhGjW9LbZYxWq1V58+ZVBQsWTLZtUu3bt1ciovbv329Re2uTUlqtVhUqVEiJiLp+/bpBff369ZWIqN27d+uV79u3T7Vu3Vrlz59feXl5qdy5c6tatWqpyZMnW3Reezp69Kjy8PBQU6dOVXv27LE6KRUWFqZ8fX1VpkyZVGhoqF5dQkKC7u/MtWvXdOVXr15VIqKKFCli8Lc2NDRU9/c4PDxcV67VatWSJUvUq6++qnLkyKG8vb1VgQIFVLNmzdRvv/1mENfff/+tRER98sknFt8WAEDGwppSAACL/frrrzJt2jTJkyePbNy4Ufz8/PTqnz9/LnXq1JEZM2ZIYGCgDB06VDp27CgHDx6UZs2ayYIFCwz67NGjh7z77rvy8OFD6d+/vwwcOFAeP34s7733nvTo0cNoHM+fP5e6devKyZMn5a233pKOHTvKsWPHpHnz5nL69Glp0qSJ/PHHH9K6dWvp1auX3Lp1S7p27SqHDh0y6Ktv377y9ttvy9WrV6Vjx47y/vvvS7Zs2WTChAnSokULiY+P12s/a9Yseeutt+T69evSs2dP6dOnj5w9e1bq1KmTojVYzN3OgwcPSqdOnaRXr15y79496du3ryxdutSu53rZjz/+KCIiAwcOlLx585pt6+3trfv/Tz/9JCIvpu3kyZMn2fN4eFi2ikDi9KHLly9b1F7kxX1Xr149GTt2rLi7u0vfvn2lV69e8vjxY3n77bcN1kRSSknHjh1lypQp4uHhIR988IG0adNGlixZIt26dTN7rrlz5+rW3Xr33Xcle/bsMmvWLBk0aJCsX79e3njjDcmWLZsMHDhQypYtK8uXLze6XtCJEyekSpUqMm/ePCldurR8+OGH0qZNG9m3b5/Uq1dP/vrrL6PnnzdvnrzzzjtSpEgRef/996VChQqyatUqadq0qcTExIiISJYsWWTSpElSuHBhEXmxNlTiZsm6cOfPn5f79+9L3bp1k237skePHsnhw4fF29tbSpcubdWxp06dktmzZ8uMGTPkl19+Mbku0rVr1+TWrVtSqlQpKVq0qEH9G2+8ISIvphgm2rp1qzRs2FD2798vTZo0kREjRkj79u3F29tb5s2bZ1WcKRUVFSU9evSQKlWqyCeffGJTH4cOHZKoqCipW7euBAQE6NW5ublJ8+bNRURkz549uvLE/zdr1sxgymBAQIDUrVtXIiMj9f5ujhs3Tnr37i0PHjyQLl26yPDhw6Vp06Zy9+5dWbNmjUFcr7zyinh6esqOHTtsul0AgAzA1VkxAEDacPjwYeXj46N8fHzUoUOHjLZJnD4ycOBAvWlWly9fVpkzZ1ZeXl56I4JWrlypG3UVFhamKw8PD1fVq1dXIqJWrFihdw75/9EdgwYN0vt1f9myZUpEVNasWVXr1q31phPt27dPiYhq3769Xl+JIzLefPNNFRkZqVeXOApl9uzZurKgoCDl6empsmbNqnc7EhISVIcOHXSxWcPcSCkRUf369VPx8fG68vPnzyt3d3dVtmxZi8+ROFKqV69eatKkSUa3l0c2FStWTImIydFtphQtWlSJiNq5c6dVxyVn7ty5SkRUQECAGjVqlNqxY4fJkUaJevXqpUREffHFF3rlUVFRqnnz5kqj0eiNvEp8/tSvX1/FxMToyp89e6ZKly5tdqRU5syZ1X///acrj46OVuXKlVNubm4qW7Zs6u+//9bVJSQkqKZNmxqM/IqLi1PFixdX3t7eeu2VUuru3bsqX758Kk+ePHoj0xLPHxAQoM6cOaN3zFtvvaVERK1atUqv3Nbpe/Pnz1ciombOnGm23dGjR9WkSZPUuHHjVK9evVS2bNmUu7u7mjdvnsXnSnxdJt3c3d3VoEGDDKYKbtq0SYmIat26tdH+1qxZo0REdenSRVeW+Ho9deqUQfvHjx9bHKs9DBkyRHl7e6vz588rpZRNI6W+++47JSLqgw8+MFr/1VdfKRFRo0eP1pWNHDnS7GP6/vvvKxHRe+yyZcum8ufPb3SUrKn7rUqVKsrNzc1gBBcAAEoxfQ8AYIHbt2+rvHnzKhFRy5cvN9omJiZG+fn5KX9/f/X06VOD+sRpf1OmTNGVJX4537Ztm0H7nTt3KhFRjRo10isXEeXn52fwBSc+Pl55eHgYTFFJVKRIEVWkSBG9sipVqigPDw/17Nkzg/bx8fEqe/bsqmbNmrqyadOmKRFREydONGh/7do15ebmZteklJ+fnwoJCTE45rXXXlMiopfIMycxEWFuezlB4uvrq0REXbhwwarbYu64kydPGiTCrJmeNWbMGOXj46MXc5EiRVT//v0NEgtPnjxR7u7uqkaNGkb7O3XqlBIRNWrUKF1ZkyZNlIiovXv3GrRfvny52aTU+PHjDY6ZMmWKEhHVo0cPg7olS5YoEVFLlizRlSWufTRy5EijMc+ePVuJiNq8ebPB+ceNG2fQfvfu3UpE1IgRI/TKbU1KjRkzxmiSOKnE5FXiFhAQoJYtW2bVuf7++281d+5cdenSJRUREaHu3bunVq9erYoXL65ERL311lt67VesWGE2ibN9+3YlIqpZs2a6ssSk1KVLl6yKzd527typNBqNXvLUlqTUZ599ZvK5oJRSP/74o+4Hg0SJ68b99NNPRo9JXENs+vTpurJs2bKpIkWKmJzabEyLFi1s+nsCAMgYuPoeAMCsyMhIadeundy/f1/GjBkj3bt3N9ru0qVLEhkZKXXr1pVs2bIZ1Ddu3FimTZsmJ0+e1JWdOHFC3NzcDK78JiLSoEEDcXd312ufqFSpUgZTVNzd3SV37twSERFhcIUpEZH8+fPL4cOH9W7X6dOnJUeOHDJ79myjt8nb21vvcvInTpzQxZZUsWLFpGDBgnLz5k1d2fPnz432PXToUMmSJYvRc76sZMmSkjlzZoPyggULiojIs2fPxN/fP9l+Eu3Zs8fofe0Mp06dkilTpuiVNWjQwKKpYxqNRqZPny6jR4+Wbdu2yaFDh+TEiRNy+PBhWbhwoSxevFjmz58vAwYMEBGRo0ePSkJCgmg0Gpk8ebJBf3FxcSIieo/tyZMnxc3NTerUqWPQvl69embjM3Y1uMSr01WvXt2gLn/+/CIietPRDh48KCIiN2/eNBrzlStXdDG3bNky2fO//Byxh6dPn4qISNasWc22Gzx4sAwePFiio6MlKChIfvjhB+nZs6ccOHBAfvjhB4vO1aBBA73XmJ+fn3Tu3Flq164tlStXll9//VU+/vhjqVy5ss23p3v37vL7779LrVq1pGvXrtKoUSOpW7euFChQwKLjTb22E2XJkkWGDh2abB+9e/eWWrVqyYgRI6yI3nW6d+8uc+fOlXLlykmXLl2kQYMG8uqrr0pgYKDJYxLfD548eeKsMAEAaQhJKQCASUop6dWrl5w4cULat28vn332mcm2ISEhIiIm1yBKLH/+/LneMdmyZRMvLy+D9h4eHpIjRw559OiRQZ2pL0AeHh5m615eH+rZs2eilJLHjx8bJEtMSbyNuXPnNlqfJ08eg6SUsb579+5tUVLKVJvEtZgSEhKS7cMWefPmlevXr8vdu3elTJkyFh+XJ08eCQoKknv37hkc17t3b10C6urVq1KyZEmr48qSJYt07dpVunbtKiIiERERMmPGDJk2bZp8+OGH0rZtW8mdO7cugXL06FE5evSoyf7Cw8N1/098Lhpb58rU453I2HMusR9zdYnJMZH/JX2MrctjKuZExp4n9n6O+Pr6iohIdHS0Re19fHykbNmyMmfOHImJiZEFCxZI06ZNpVOnTjbHULBgQWnZsqWsWLFC9u3bp0tKJd7Hia/PpBLLX76fOnToIJs2bZKvv/5aFi1apFvvrnr16vL555/L66+/bjYWU6/tRIULF042KTV8+HB5+vSp7Ny5U9zd3c22TY4t94Etx8yaNUuKFSsmixcvlhkzZsiMGTPEw8NDWrZsKV9//bWUKFHCoJ+oqCgR+d9zCACAl7HQOQDApEmTJsnatWulUqVKsnz5ctFoNCbbJn7BefDggdH6+/fv67VL/H9wcLDel/NE8fHx8uTJE6MjhewhMY6qVauKejGd3eSW9JiHDx8a7TPpbS9SpIjR/ooUKeKQ22QviSODdu3aZdVxiYtgW3ucrTJlyiRTp06VevXqSUxMjBw4cEBE/vc4DRs2zOzj+vKiz5kzZ5bg4GCDhe1FTD/e9pQY8x9//GE25kmTJjk8FmNy5colIv9LnlkjcaHxv//+O8Vx5MyZU0ReJCQTJS6gbmoh/MRRZqVKldIrb9WqlezevVuePXsmu3btkmHDhsn58+eldevW8t9//5mNw9RrO3G7ceNGsrflxIkTEhUVJWXKlBGNRqPbGjVqJCIiK1asEI1GI1WqVEm2L1vuA1uOcXd3l6FDh8rp06fl4cOHsm7dOnnzzTdl48aN0qJFC93C+i9LfM4kPocAAHgZSSkAgFG//fabTJ06VXLlyiUbN26UTJkymW1funRp8fPzk9OnT+uNhkqUmACoVq2arqxq1aqi1Wpl3759Bu337dsnCQkJeu3tyd/fX8qXLy/nz5+X4OBgi45JjGXv3r0GddevX5fbt2/bNUZXGThwoIi8uApfcgmZl7+E9u/f3+Lj7ClxKmdiAvGVV14RNzc3+eeffyzuI/G5+O+//xrU7d+/3z6BmlG7dm0REatitkXiiBxrR1BVqlRJREQuXrxo9Tnv3r0rIpZfbdGcxCm4L0/RLV68uBQqVEguX74sQUFBBsds2bJFRF5MITYmU6ZM0rhxY/nmm29k7NixEhsbqzvGkTp06CD9+vUz2BKnZxYvXlz69esnHTp0SLav2rVri6+vrxw4cEDCwsL06rRarWzfvl1ERJfwevn/27dvF61Wq3dMWFiYHDhwQPz8/HTPzaRy5colHTp0kNWrV0vjxo3l2rVrcu7cOYN2ly5dkuzZs1s8NRIAkLGQlAIAGDhy5Ij06dNHvLy8ZP369brLyJvj5eUl3bt3l7CwMJkwYYJe3bVr1+Tbb78VT09P6dGjh668b9++IiIyZswYiYyM1JVHRkbqLo3er18/e9wko4YPHy6xsbHSt29fo4m0Z8+e6daREnmxnoqnp6fMnTtXbySEVquVUaNGGXyxS6vq1q0rAwYMkKdPn0qLFi10IyZeptVq5ddff9V7PBPXiHry5Ik0b95cb82mlxm7r8356quv5Pz580br9u/fL3v27BEPDw959dVXReTFl+Xu3bvLsWPHZOrUqUYTMNeuXdNLYPTs2VNERMaPHy+xsbG68pCQEJk6dapV8dqiXbt2Urx4cfn+++/lr7/+Mtrm4MGDeq8TW2TPnl1ERG7dumXVcfXr1xd3d3c5dOiQ0fojR44YLb927ZpMnz5dRF6MTHrZ/fv35eLFiwbTx44dO2bQj1arlc8//1wOHjwoOXLkkBYtWujqNBqNDB48WERERo8erfc6/OOPP+Sff/6RcuXK6a1TtW/fPrOj4vz8/IzeHnuaOHGiLFy40GAbNWqUiLxINC1cuFAmTpyod9zFixcNkoP+/v7So0cPiYiIMFiT7LvvvpMbN25I8+bNDZJ5zZo1kxs3bsj333+vd8ykSZMkIiJCevTooftB4uXRiC+Li4vTJfaT3m9BQUHy8OFDadiwodmRtgCAjIs1pQAAesLCwqR9+/YSHR0tNWvWlO3bt+t+ZTemSJEiurWCZsyYIf/884989913cvToUWnUqJE8efJEVq9eLWFhYfLdd99J0aJFdce+/fbb8scff8jq1aulfPny0r59e9FoNLJhwwYJCgqSrl27mlxY3R769u0rx48fl3nz5knx4sWlefPmUqhQIQkODpagoCDZt2+f9OnTR7dAc5EiRWTGjBkyYsQIqVq1qnTt2lUCAwNl27Zt8vz5c6lUqZKcOXPGYfGm1JIlS0xOoapSpYq0b99et//999+Lu7u7/PDDD1K2bFlp2LChVK5cWby9veXu3buye/duuXPnjsEaQQsWLBAvLy/58ccfpUKFClKnTh2pWrWqZM6cWZ4+fSpXrlyRv//+W9zc3JJdQDzRihUrZPTo0VKmTBmpXbu25M2bVyIiIuT8+fOye/duUUrJ119/rVtcXOTFF/ErV67IxIkT5ZdffpF69epJ7ty55d69e3LhwgU5evSo/Prrr7rnY8+ePeW3336TrVu3SoUKFaRt27YSFxcn69atk5o1a8qlS5fEzc1xv+V5enrK77//Ls2bN5dWrVpJnTp1pEqVKuLn5ye3b9+Wo0ePyvXr1+X+/fspSpg0adJE1qxZIx06dJCWLVuKr6+vFC5cWC+5aExgYKA0adJE/v77b3n27JnBgufNmjWTXLlySdWqVaVgwYISHx8v165dk61bt0p8fLx8+OGHBus0jRkzRpYuXSqLFy/WW/C+Zs2aUqFCBalcubLkz59fQkJC5MCBA3Lu3Dnx8/OTFStWGEzrHT58uGzatEnWrl0rtWrVkiZNmsitW7dkzZo14ufnJ4sWLdJ7/IYMGSJ3796VunXrSpEiRcTLy0uOHz8uu3fvlsKFC0u3bt1svIcdr2zZsiIielOLRUSmT58uf//9t3zzzTdy6tQpeeWVV+TChQvyxx9/SK5cuQwSTyIi8+bNkzp16siQIUNk165dUrZsWTl8+LDs2bNHSpUqpbeOYFRUlNSrV09KlCgh1atXl8KFC0t0dLTs2LFDLly4IG3bttXFlijxvaNjx472vhsAAOmFA6/sBwBIg4KCgvQu6Z7c1qBBA73jnz17pkaPHq1KlCihvLy8VGBgoGratKnatm2b0fMlJCSo77//XlWvXl35+voqX19fVa1aNfXdd9+phIQEg/bGzpmocOHCqnDhwkbrGjRooEy97f3555+qVatWKmfOnMrT01Plzp1b1axZU40bN87oZcxXrlypqlatqry9vVWOHDlU9+7d1d27d82ew5TChQsrEVFBQUF65eZuZ69evYweY0piXOa2Xr16GT320KFDqm/fvqpkyZIqU6ZMysvLSxUoUEC1b99erVq1yuhjpJRSR48eVQMHDlRly5ZVAQEBysPDQ2XPnl3VqVNHjR07Vl28eNGi2JVS6sSJE2rq1KmqUaNGqkiRIsrHx0d5e3urYsWKqbffflv9888/Ro+LiYlRc+fOVa+++qrKnDmz8vLyUgULFlSNGzdWs2bNUk+ePNFrHxUVpSZMmKCKFCmivLy8VOHChdXYsWPVnTt3lIiodu3a6bWfNGmSEhG1Z88eg3MvXrxYiYhavHixQd2ePXuUiKhJkyYZ1D18+FB9/PHHqnz58srX11dlypRJlShRQnXs2FH98ssvKi4uzqLzJ76Okz6u8fHxasyYMapo0aLKw8PD7PMsqQ0bNigRUfPmzTOomzNnjmrVqpUqVKiQ8vX11d3XnTp1Ulu3bjXaX+LzOOl9NHLkSPXaa6+pvHnzKm9vb+Xr66tKly6t3n//fXXt2jWT8UVERKgJEybo/vbkyJFDderUSZ0/f96g7apVq1S3bt1UiRIlVKZMmVRAQIAqX768Gjt2rHr06JFF94ejJD4/unfvbrQ+8TVrzNOnT9WQIUNUoUKFlKenp8qTJ4/q06ePun37tsnz3bp1S/Xu3VvlyZNHeXp6qkKFCqmPPvpIBQcH67WLjY1VX3zxhWrRooUqWLCg7u9frVq11Pz581VMTIxB36+++qrKmTOn0ToAAJRSSqNUkp9ZAAAAoLNjxw5p1qyZfPLJJ/L555+7OhyXSUhIkIoVK4qXl5ecPHmS6Vgw68yZM1K5cmWZOnWqjB8/3tXhAABSKdaUAgAAEJF79+4ZlD19+lS3vtmbb77p7JBSFXd3d5k5c6acPn1afv/9d1eHg1Ru4sSJUrBgQRkxYoSrQwEApGKsKQUAACAv1iU6ffq01KlTR3LmzCl37tyRLVu2SHBwsAwaNEheeeUVV4foci1btpQ5c+ZIdHS0q0NBKhYZGSlVq1aVoUOHiq+vr6vDAQCkYkzfAwAAEJHVq1fL/Pnz5fz58/L8+XPx8fGR8uXLS79+/aRfv35MVwMAALAzklIAAAAAAABwOtaUAgAAAAAAgNORlAIAAAAAAIDTOXyhc61WK/fu3ZOAgADWYgAAAAAAAEgDlFISFhYm+fLlEzc3x4xpcnhS6t69e1KwYEFHnwYAAAAAAAB2dvv2bSlQoIBD+nZ4UiogIEBEXtyIzJkzO/p0AAAAAAAASKHQ0FApWLCgLq/jCA5PSiVO2cucOTNJKQAAAAAAgDTEkUsxsdA5AAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAJAaXbwo8tFHIlWrijRuLDJunKjgYPnll19k6NChcvDgQVdHCABAimiUUsqRJwgNDZXAwEAJCQmRzJkzO/JUAAAAQPpw7NiLRFRYmEFVMxHZISJubm7y33//SenSpZ0eHgAg/XNGPoeRUgAAAEBqopRI585GE1IiIttFpLCIaLVa+eKLL5waGgAA9kRSCgAAAEhNjh8XuXHDbJN5///v4sWLHR4OAACOQlIKAAAASE1OnUq2ST0R8XB4IAAAOBZJKQAAACA1efgw2SaZRaSQ4yMBAMChSEoBAAAAqYkFSSkREb///zc6OtpxsQAA4EAkpQAAAIDU5MEDi5pl+v9/H1qYxAIAILUhKQUAAACkJsHBFjVLHCl1//59x8UCAIADkZQCAAAAUpPYWIuaJY6UemDhyCoAAFIbklIAAABAahITY1GzxJFSJKUAAGkVSSkAAAAgNbFypBTT9wAAaRVJKQAAACA1sTAplThS6tGjR46LBQAAByIpBQAAAKQmVo6Uio6OdlwsAAA4EEkpAAAAIDWxcqRUjIVrUAEAkNqQlAIAAABSEytHSpGUAgCkVSSlAAAAgNTEyqvvkZQCAKRVJKUAAACA1ISRUgCADMLD1QEAAAAAeEkySamHIrJARE78/z4LnQMA0iqSUgAAAEBqoZRIXJzZJh+KyJqX9mNiYiQ+Pl4iIyMlc+bMDg0PAAB7YvoeAAAAkFokk5ASEUk6juro0aNSokQJCQwMlK5du4pWq3VMbAAA2BlJKQAAACC1sGA9KWMtbt68KSIiq1evlq1bt9o5KAAAHIOkFAAAAJBaWLBoeXJpq8OHD9snFgAAHIykFAAAAJBa2DhS6mWXL1+2TywAADgYSSkAAAAgtbDDSCmSUgCAtIKkFAAAAJBaREcn2yQqmfrLly+LUso+8QAA4EAkpQAAAIDU4t69ZJskl7YKDw+X+/fv2yceAAAciKQUAAAAkFp89VWyTZIfSyXy7NmzlMcCAICDkZQCAAAAUoutW5NtYklSKsaCtakAAHA1klIAAABAKrBhwwaL2pGUAgCkFySlAAAAgFRg5hdfWNTOkqRUbGxy1+gDAMD1SEoBAAAAqcDdc+csamdJuomRUgCAtICkFAAAAOBiz58/F+/wcLv1R1IKAJAWkJQCAAAAXOz+4cPSyY79kZQCAKQFJKUAAAAAF/PbsEGm2bE/klIAgLSApBQAAADgYvZeljwyMlI2bNgg+/fvF6WUnXsHAMA+PFwdAAAAAJDRxWo0FrW7JiLu7u6SkJBgtt3AgQN1/586daqMHz8+JeEBAOAQjJQCAAAAXCzWwtFMh7Nnl7Vr11rV94QJE+TBgwe2hAUAgEORlAIAAABczNLpe28fOCBt27a1uv8dO3ZYfQwAAI5GUgoAAABwsWit1rKGpUuLm5v1H+FPnz5t9TEAADgaSSkAAADAxWIsmb7n42Nz/5cuXbL5WAAAHIWkFAAAAOBi0ZYkpVJwFb3IyEibjwUAwFFISgEAAAAuFmPJ9L0UJKViYmJsPhYAAEchKQUAAAC4WFRCQvKNSEoBANIZklIAAACAi1m00HkKklLR0dE2HwsAgKOQlAIAAABcjJFSAICMiKQUAAAA4GKR8fHJN7JkNJUJJKUAAKkRSSkAAADAxRgpBQDIiEhKAQAAAC4WYclIqRRgTSkAQGpEUgoAAABwMYum76UAI6UAAKkRSSkAAADAxSJiYx3af0xMjKgUTP8DAMARSEoBAAAALubokVJKKYmLi5NDhw7JvXv3HHouAAAsRVIKAAAAcLFwB4+UEhGpXLmyvPrqq5I/f35Zu3atw88HAEBySEoBAAAALhZmyZpPXl66/3p7e1t9josXL+r+P2TIENFqtVb3AQCAPZGUAgAAAFxIq9XKv8eOyePkGvbtq/tv48aNU3TO+/fvy6lTp1LUBwAAKUVSCgAAAHChAwcOiIjI3uQaNmqk++8333yjV1WoUCGrz/vw4UOrjwEAwJ48XB0AAAAAkJHNnTtXRETGi8jrIhJorFGrViIdO+p2y5QpI1u3bpVffvlFKleuLH5+fvLBBx9Ydd7o6GibYwYAwB4YKQUAAAC4kEajERGRSyLSQkT2v1wZECDy8cciK1eKuLvrHde8eXNZvny5jBo1yqY1pkhKAQBcjZFSAAAAgAtFRUXp/n9IROqLyF8LF8obzZqJZM8u4ueXbB8eHtZ/rCcpBQBwNZJSAAAAgAsopaRLly7y559/GtSFBQSIFCxocV8kpQAAaRFJKQAAAMDJEhISpGDBgnL//n2j9c2aNbOqP/ckU/ssQVIKAOBqrCkFAAAAONn69etNJqRKlCghWbJksao/W0ZKvTxtEAAAVyApBQAAADjZ1q1bTdZ9+OGHVvfH9D0AQFpEUgoAAABwskuXLpms8/Lysro/klIAgLSIpBQAAADgZOamznl6elrdH0kpAEBaRFIKAAAAcDKSUgAAkJQCAAAAnM5cQsiWpJQtU/5Y6BwA4GokpQAAAAAnM5eUsiXBlC1bNquPefbsmbz33ntSuXJl6du3rzx//tzqPgAASAnrx/kCAAAASBF7T9/Lnj271cds3rxZ9/8zZ86IRqORn3/+2ep+AACwFSOlAAAAACez9/Q9W5JSSe3atSvFfQAAYA2SUgAAAIATKaXsPn3P29s7JSGJiMjNmzdT3AcAANYgKQUAAAA4UVxcnCilTNbbMlLKHgICAlxyXgBAxkVSCgAAAHCi5K56Z2tSauHChaLRaEREpGbNmlK4cGGrjtdqtTadFwAAW7HQOQAAAOBE5qbuidielOrXr59Uq1ZN7t+/L02aNJEyZcpYdXxkZKQopXSJLQAAHI2kFAAAAOBEySWlbFlTKlHVqlWlatWqIiJmpwgao5SSmJgY8fHxsfn8AABYg+l7AAAAgBM5avpeUrZMx4uIiLDLuQEAsARJKQAAAMCJHDV9LylbklKRkZF2OTcAAJYgKQUAAAA4kSOn773M2ul7IiSlAADORVIKAAAAcCJnTd+zJSnF9D0AgDORlAIAAACcyFnT97y9va0+Ji4uzi7nBgDAEiSlAAAAACdKLinl7+9vl/PY0g9JKQCAM5GUAgAAAJzIXFKqePHi4uPjY5fzkJQCAKR2JKUAAAAAJzK1ppSHh4esWLHCbufJlCmT1cfEx8fb7fwAACSHpBQAAADgRElHSpUrV07+/PNPuXHjhtSqVctu52GkFAAgtSMpBQAAADjRpUuX9PYLFCggrVu3lvz589v1PA0aNLD6GJJSAABnIikFAAAAONG3336rtx8UFOSQ8wwaNMjqY5i+BwBwJpJSAAAAgAvZa2HzpPz8/OT06dNWHcNIKQCAM5GUAgAAAFyocuXKDuu7UqVK8vHHH1vcnqQUAMCZSEoBAAAAThIbG2tQNmTIEIeec8aMGXLv3j3Zs2dPsm2ZvgcAcCYPVwcAAAAAZBRhYWEGZfZe4NyYvHnzSkhISLLtGCkFAHAmRkoBAAAATmIsKRUQEOCUc3t6eibb5sqVK06IBACAF0hKAQAAAE5iLCmVKVMmp5zbkuTXzJkzpWXLltK3b1+5deuWE6ICAGRkTN8DAAAAnCRpUsrf31/c3JzzO3FgYKBF7bZs2SIiImfPnpUjR46IRqNxZFgAgAyMkVIAAACAk4SHh+vtO2vqnoiIt7e3Ve2PHTsmBw8edFA0AACQlAIAAACcJiYmRm/fx8fHRZFY5uzZs64OAQCQjpGUAgAAAJwgLCxMJk2apFfm5eXlomgsExER4eoQAADpGEkpAAAAwMFmzpwpmTNnlpMnT+qVp/akVNLphgAA2BNJKQAAAMCBrl69KqNGjTJa5+np6dRYRo8ebVV7klIAAEciKQUAAAA40PHjx03WOXuk1CeffGJVe5JSAABHIikFAAAAOFBkZKTJOmcnpbJmzWpVe5JSAABHIikFAAAAOJC5xcJdsabUG2+8YXFbFjoHADgSSSkAAADAgcyNlHL2mlIiIv3797e4LSOlAACORFIKAAAAcKDUNlKqQ4cO8uuvv8rAgQOlXLlyZtsyUgoA4EgkpQAAAAAHSk1rSiXq1q2bLFiwQDp16mS2XVxcnJMiAgBkRCSlAAAAAAdKbdP3Xubt7W22PjY21kmRAAAyIpJSAAAAgAOltul7L0suKcVIKQCAI5GUAgAAABwoNU7fS5Q7d26z9SSlAACORFIKAAAAcKDUnJTq2LGj2XqSUgAARyIpBQAAADiQuel7rl5TytfXV2bPnm2ynjWlAACORFIKAAAAcKDUPFJKRKRp06Ym6xgpBQBwJJJSAAAAgAOZGyml0WicGIlx5kZrkZQCADgSSSkAAADAgcyNlAoICHBiJMaZG61FUgoA4EgkpQAAAAAHMpeUypcvnxMjMc7cSKnY2FhRSsmzZ8+cGBEAIKMgKQUAAAA4kLnpe+XLl3diJMYll5SqUaOGZMuWTerUqSOhoaFOjAwAkN6RlAIAAAAcRCllcqRU1apVpUaNGk6OyFCmTJnM1p84cUJERA4ePCgTJ050RkgAgAxCo5RSjjxBaGioBAYGSkhIiGTOnNmRpwIAAABSlZiYGPHx8dEre/vtt6VQoUIybNgwyZUrl4si02fNgusO/voAAEglnJHP8XBIrwAAAADkyZMnBmVffvml5M+f3wXRmPbTTz/JgAEDLGqrlEoVVw0EAKR9JKUAAAAAB9m9e7fefqZMmSR37twuisa0fv36iYeHh2zcuFHWr19vtm1ERIT4+/s7KTIAQHrGmlIAAACAg9y4cUNvv379+uLhkfp+F9ZoNNK7d2/56aefkm0bEhLihIgAABkBSSkAAADAQZJerS5nzpwuisQy5q7El4ikFADAXkhKAQAAAA4SFhamt5/aL/zj5eWVbBuSUgAAeyEpBQAAADhI0pFSqT0p5e3tnWwbklIAAHshKQUAAAA4SNKRUgEBAS6KxDKWXFUv6W0CAMBWJKUAAAAAB0lrI6UsERcX5+oQAADpBEkpAAAAwEHSY1IqNjbW1SEAANIJklIAAACAg0REROjtZ8qUyUWR2A9JKQCAvXi4OgAAAAAgPVFKybp16+TOnTty69YtvTofHx8XRWU/MTExrg4BAJBOkJQCAAAA7OjTTz+VyZMnG63z8vJybjAOwEgpAIC9MH0PAAAAsKPly5ebrPP29nZiJLb58ccfzdaTlAIA2AtJKQAAAMCOrl69arIuLSSl+vTpY7aepBQAwF5ISgEAAAB2Eh8fb7Y+LSSlPDw8pEePHibrSUoBAOyFpBQAAABgJ6GhoWbr00JSSsT82lckpQAA9kJSCgAAALCT58+fm61PD0kprr4HALAXklIAAACAnWSEpBQjpQAA9kJSCgAAALATklIAAFiOpBQAAABgJ+Hh4WbrzSV7UhOllMk6klIAAHshKQUAAADYSUREhNn6tDJSKmvWrCbrwsLCnBgJACA9IykFAAAA2ElySSlPT08nRZIyzZs3N1m3cePGZK8yCACAJUhKAQAAAHaSXFJKo9E4KZKUqVatmjRr1sxk/dKlS50YDQAgvSIpBQAAANhJckmptEKj0cgff/whixcvlgYNGhjUT5gwwQVRAQDSGw9XBwAAAACkF+klKSUi4uPjI7179xYvLy/Zu3evXh2LnQMA7IGRUgAAAICdJHf1vbTI39/foCw+Pt4FkQAA0huSUgAAAICdpKeRUokyZcpkUBYXF+eCSAAA6Q1JKQAAAMBOgoODTdYtXLjQiZHYj7GRUgAA2ANrSgEAAAB2cvv2bYOyQoUKSfPmzaV79+4uiCjlfH19XR0CACCdYqQUAAAAYCe3bt3S2//rr7/k5s2b8uOPP4qPj4+LonKM119/Xf79919XhwEASMMYKQUAAADYQVxcnDx69EivrGDBgi6Kxn5KlixptHznzp1y6dIluXz5crpLuAEAnIORUgAAAIAdhISEGJTlyJHDBZHYl6+vr7Rr185o3e3bt+XQoUNOjggAkF6QlAIAAADs4Pnz5wZlWbJkcXocjvDxxx+brDt8+LATIwEApCckpQAAAAA7SJqU8vLySjfT2ry8vEzWPXjwwImRAADSE5JSAAAAgB0kTUqll1FSIuaTUk+ePHFiJACA9ISFzgEAAIAUiI+Pl4sXL8qNGzf0ygMDA10TkAOYS0o9fvzYiZEAANITklIAAACAjaKiouS1116TY8eOGdRllKQUI6UAALZi+h4AAABgo7Vr1xpNSImI+Pv7OzkaxzGXlHr69KkTIwEApCckpQAAAAAbjRs3zmSdr6+vEyNxLG9vb5N10dHRTowEAJCekJQCAAAAbBQZGWmyLj0lpcyNlCIpBQCwFUkpAAAAwAEySlIqJibGiZEAANITklIAAACAjTJlymSyzs/Pz4mROJanp6fJuujoaFFKOTEaAEB6QVIKAAAAsJG5qWvpaaSUu7u7yTqllMTHxzsxGgBAekFSCgAAALBRaGioybr0lJRKDutKAQBsQVIKAAAAsEFcXFyGGSmVHNaVAgDYgqQUAAAAYIOwsDCz9RkpKcVIKQCALUhKAQAAADYwN3VPJGMlpRgpBQCwBUkpAAAAwAbJjZQyd2W+tMjNzfRXB0ZKAQBsQVIKAAAAsEFwcLDZ+ly5cjkpEuf46aefTNYxUgoAYAuSUgAAAIANnjx5YrY+T548TorEOd5++2157733pHjx4gZ1jJQCANjCw9UBAAAAAGnR48ePzdant6SUj4+PfP/99yLyYhTYy7efpBQAwBaMlAIAAABskNxIqfQ2fe9lfn5+evuRkZEuigQAkJaRlAIAAABsYC4p1b17d/Hy8nJiNM6VdBH3iIgIF0UCAEjLmL4HAAAA2CBpUmrw4MFSunRp8fX1lb59+7ooKudIOlKKpBQAwBYkpQAAAAAbJE1KFS1aVIYOHeqaYJyMkVIAAHtg+h4AAABgg6RJqRw5crgoEudLmpT6+OOPXRQJACAtIykFAAAA2CBpUipnzpwuisT5Hj58qLcfFRUlCQkJLooGAJBWkZQCAAAAbJA0KZU9e3YXReJ8x48fNygLDw93QSQAgLSMpBQAAABgpYSEBIN1lAIDA10UTepAUgoAYC2SUgAAAICVjC3sHRAQ4IJIXKN169YGZWFhYS6IBACQlpGUAgAAAKxkLAHj7+/vgkhcY8yYMQZljJQCAFiLpBQAAABgJWMJmIw0UqpOnToGZYyUAgBYi6QUAAAAYKWkCRhvb2/x9PR0UTSuUaRIEb19RkoBAKxFUgoAAACwUtKkVEaaupco6W1mpBQAwFokpQAAAAArJU3AZKSpe4mSJqUYKQUAsBZJKQAAAMBKz54909sPDAx0USSu4+Pjo7cfGxvrokgAAGkVSSkAAADAQjExMTJ//nwZMWKEXnmePHlcFJHreHl56e2TlAIAWMvD1QEAAAAAaUW/fv1kxYoVBuV58+Z1QTSulTQpFRMT46JIAABpFSOlAAAAAAuEhIQYTUiJZMyklLe3t94+I6UAANYiKQUAAABY4MiRIybrypQp48RIUgem7wEAUoqkFAAAAGCBoKAgk3UdOnRwYiSpA9P3AAApRVIKAAAAsEBISIjR8vfee0/8/f2dHI3rMX0PAJBSJKUAAAAAC5hKSlWrVs3JkaQOTN8DAKQUSSkAAADAAsaSUl5eXtK8eXMXRON6JKUAAClFUgoAAACwgLGk1LfffisFChRwQTSux5pSAICUIikFAAAAWCBpUuqjjz6SQYMGuSga12NNKQBASpGUAgAAACzw/Plzvf3ixYu7JpBUgul7AICUIikFAAAAWODZs2d6+9myZXNRJKlD0qTUxo0bJTQ01EXRAADSIpJSAAAAgAWCg4P19jN6Uirp9D0RkRo1akhcXJwLogEApEUkpQAAAAALJB0plTVrVhdFkjokHSklInLlyhXZunWrC6IBAKRFJKUAAACAZERHR0tkZKReWUYfKeXr62u0fO3atU6OBACQVpGUAgAAAJKRdJSUCEmpgIAAo+VKKSdHAgBIq0hKAQAAAMlIup6UiEiWLFmcH0gqYiop9fTpUydHAgBIq0hKAQAAAMlIOlIqc+bM4uHh4aJoUgdTSaknT544ORIAQFpFUgoAAABIBlfeM0RSCgCQUiSlAAAAgGSQlDLE9D0AQEqRlAIAAACSkTQplTVrVhdFknqYSkqFhIRIXFyck6MBAKRFJKUAAACAZCRdU4qRUi+SUv7+/kbrjC0MDwBAUiSlAAAAgGQwfc+Qu7u7DBo0yGgd60oBACxBUgoAAABIBtP3jPvqq69kx44dBuUkpQAAliApBQDIsLRarZw4cUJCQ0NdHQqAVI6RUsZpNBpp2rSpFC9eXK+cxc6RkcTGxsrPP/8so0aNkj179rg6HCBNISkFAMiQYmNjpXbt2lK9enXJmTOn/Pbbb64OCUAqxppS5uXIkUNvn5FSyEg++ugj6d+/v8ycOVOaNGkiq1atcnVISIZSSjZs2CADBgyQ0qVLy6effsrfLRchKQUAyJB+/PFHOXr0qIi8SFD16dNH7t+/7+KoAKRWjJQyL0uWLHr7jEBFRnHz5k1ZsGCBbl8pJd26dZOTJ0+6MCqYEx8fL126dJE333xTFi5cKJcvX5ZJkyZJs2bNJDY21tXhZTgkpQAAGU5wcLBMnDhRryw6Olp69+4tSild2fXr12Xnzp0SEhLi7BABpDIPHz7U28+ePbuLIkmdfH199fajoqJcFAngXD///LPeZ4dEEyZMcEE0sMTcuXNl7dq1BuUnT56UdevWGX084TgkpQAAGc73339vMBVHRGT79u3i5uYmvXv3lqFDh0qJEiXk9ddfl5IlS/KLJ5CBhYaGSnh4uF5Z/vz5XRRN6kRSChnVunXrjJbv2rWL10Eqo9VqZezYsTJ8+HCTbd5++23x9fWV3r17S0xMjBOjy7hISgEAXGLr1q1SvHhxKVKkiGzcuNGp5965c6fZ+qVLl8qcOXN0v5Q9fvxYxowZ44zQAKRC9+7dMyjLly+fCyJJvUhKISO6ceOG/Pfff0broqOjZdmyZfLo0SNG3thRXFycDB06VDQajWg0GunRo4fFI9oXLVokn3/+ebLtYmJiZOnSpTJp0qSUhgsLkJQCANhdXFyc7NixQw4fPmz0g1hoaKi89dZbcv36dbl586Z06dLF6EikyMhImTx5sgwZMkRu3Lhhl9hiYmLk8OHDVh+3bds2m44DkPbdvn1bbz9r1qwGSZiMjqQUMqLNmzebrR88eLDkzp1bxo4d66SI7OPJkyepNpE2fvx4mTNnjm5/+fLlMnToUKNtIyMjZfXq1bJ27Vr56aefZMCAAQZtqlSpIt7e3kaP/+KLL+z2+ROmkZQCANiVVquVjh07SrNmzaR27dpGf2Vat26dPH/+XLcfExMjH330kUE/b7zxhkyZMkXmzp0rVatWNflrpDUOHjyoNxxbo9HIV199ZdGxnTt3TrUf0sxJSEiQn3/+WT7//HO5c+eOq8MB0pykf3uKFi3qokhSL5JSyIiSS0olmjFjhmzYsCHZdkop2bVrl9SvX180Go0MHz5cwsLCUhil5Z49eyZNmzaVnDlzSu7cueXq1atOO7clrly5IrNmzTIoX7FihYSGhsry5ctl+PDhcujQIdFqtdK+fXvp2rWrdO7cWQYOHGi0zyVLlsiiRYska9asRus/++wzu94GGKEcLCQkRImICgkJcfSpACBdiI6OVlqt1tVh2Gzr1q1KRHSbm5ubunTpkl6bPn366LUREaXRaNSjR49M9iMiqnr16jbdN3fu3FFDhw5VRYoUMeizSpUqSimlpkyZYlBnbDt16lTK7iAn02q16p133tHFHxgYqI4fP+7qsIA0ZcCAAXp/B3r16uXqkFKdCRMm6N1HnTt3dnVIgEOFhoYqHx8fvef9ihUrVPPmzY1+fsicObMKCwsz2d/27duNHmfrZx9rabValTt3boPzHzt2zOHntlS7du1Mfj6rV6+eRZ/jXt7OnDmj6zs4OFgtX77coE3p0qVdeItdzxn5HEZKAUAqMnLkSPHz85NChQrJkSNH7Nr33r17ZeTIkXZZv+nRo0cmL5mb9GomWq1WbySSVquVHTt2GBynlJIvvvhCbt26JQkJCbJs2TKDNsePH7f6VzutViutWrWS2bNnGx2C3a1bNxER+eSTT+Sjjz4ST09PXV2rVq0M2h84cMCq87vaypUrZfny5br9kJAQadSokcH9+OzZMxk8eLA0btxYVq1a5ewwgVTt0qVLevtly5Z1USSpFyOlkNF89913Eh0drdt3d3eXN954Q5YvXy6FChUyaB8aGmpyZNWKFSukWbNmRuuOHz8ubm5uotFopFWrVnLx4kX73IAkfvrpJ4OrjIqIdO3aVeLj4x1yThHRLePQpEkTk2t+3rt3Tzw9PeWPP/4w2c/+/futOu/PP/8sFStW1O1nzZpVunfvLnv37tVrd/nyZaeOVsuQHJbu+n+MlAIAyxw5ckTvl5m8efOqiIgIu/R96NAh5e7urut71apVNvWTkJCgevfurUREBQQEqN27dyullFq/fr2aMmWK2rBhg8qcObPRX6OmT5+uJk2apD766COrf8l6efvuu+/U4cOH1Ycffqj69OmjFi1apFasWKFu3bplNOZjx46Z7MvNzU3dvXvX7G3u1KmT3jE9e/a06b5zlISEBDV//nzVsmVL1bdvX93tuXTpkurbt6/Z+3LdunW6ft599129ug0bNrjqJgGpTt68efVeH7///rurQ0p1Zs2apXcfNWnSxNUhAQ5VunRpved827ZtdXW3bt1S7733nsH77siRIw362bRpk9Wfhc6dO2fX2xIUFKT8/f1Nnm/r1q12PZ9SSoWHh6vOnTsbnKtr164qODhY7dmzR508edLgc1hKt3z58qn58+ebjCsqKkrvM7OIqH/++cfutz+tcEY+h6QUAKQSX3zxhcEb54oVK+zS91tvvWUwFNmWoeArVqwwSJwlnbLh6C1v3rzKy8vLoDxTpky6JNnLjN2viVvLli2Tvc3fffed3jGlSpWy+n5zpGHDhhncLlNTB4xt8+bNU1qtVmXPnl2vvHLlyhad/969e2rChAlq6tSpusTgokWLVOfOndWcOXNUbGysA2894HhLliwxeN2cPXvW1WGlOj/88IPefVSnTh1Xh4QMJiEhwWnLH9y5c8fg78KBAwcM2iV9j27YsKFBm6RJb0u3iRMnqj/++CPFtzkkJESVLVvW7LmyZMmiNm3apGJiYlJ0LqWUunLliho0aFCKPw/Onj1b1axZ0+L2Y8aMUQ8ePLAoxkqVKukdO2fOnBTf7rSKpBQAnZs3b6ro6GhXh4EUiI+PV8ePH1dPnjwxWt+1a1eDN1B3d3cVFxdn0/nu3Lmj7ty5o8LCwoy+OVuyNtLz589Vnz59VMOGDdXYsWPN/oqWWragoCC929CsWTOj7by8vCxaJ+Ho0aMGx+7du1evTWxsrJoxY4aqV6+eyp49uypfvryqU6eOOnjwoFWPmSUOHDigpk2bprZs2aLOnj2rNBpNiu+zoUOHGi1/9OiRGjNmjOrVq5f6999/DWJJSEhQNWrU0LXPnj27mj9/vl4f/fr1s/t9ADjLb7/9ZvS1ERkZ6erQUp2lS5fq3UdVq1Z1dUjIQM6cOaNKliypPDw81NChQ1VCQoLNfd27d09t3rxZbdy4UW+ty5etXLlS7/keGBio4uPjDdpt3LhRr11AQIBebElHGCZumzdvVmPGjLH4fdzYe7SlXn31Vas+M5gamW6Jq1evKjc3txR/bqldu7aKi4tT9+7dM/hRLfHxePlziLWfpZOufZqR1xEkKQVAJSQkqDZt2igRUT4+PuqXX35xdUiwQVRUlKpSpYoSefFrk7ERPSVKlDD6xvvrr79afT5LFu0eMGBAsv106NAhxR8czG01atRQMTExqkWLFibbdO3a1arES6FChVR4eLhS6sWi8b6+vnr1efLkUYMGDVJHjx616L6Mi4tT+fLl0+sjU6ZM6vr160oppSIiInSPbdLN399f184e/vrrL5s/zAUEBKgdO3ak6MPg1q1bVVRUlLp06ZJKSEgwmrBLunl4eJhd2BVIzQoVKmTwnC5YsKCrw0qVVq9erXc/ZfTFgeE8Wq1WVatWTe/5991331ndz9OnT1WjRo0MXvNfffWVQdty5crptWnRooXRPu/evWvQ34ULF5RSL374M/a+eePGDd3x4eHhRi8Ok3QrXLiw1aOYgoKCjPZVsGBBdevWLaN//xI3S0ccJTV69OgUf3bs1KmTev78ua7PvXv3qhw5cujq7XExl7lz5+qds1y5cinuM60iKQVArVu3Tu+PokajUXv27HF1WLDAmTNn1L///qsSEhLUTz/9pPc45suXT92/f18NGzZMdezY0eDKTi9vlkwxe5kliYLEZEHSUUWJHjx4YNUUMGMJkOvXr6tVq1aZbffzzz8rpV4kdvr06aNy5cqlV1+rVi0VHh6e7NpISbd58+YppV58UEn6+jE1Us2c2bNnGz3PrFmzlKenp9lY7PXrWnx8vMnEZXKbr6+v+uOPP5RSSkVGRqqAgIAUfyisWbOmxeuDbd682S73AeBsxp7PTZs2dXVYqdKff/6pdz8VKlTI1SEhg1i0aJHR12pCQoJ68uSJ2rRpk/rzzz+THeFo7spuJUuWVPXq1TM5XWzq1Kkm+036w9bSpUtNjmI3d9XKESNGmH2vtWa01L59+0z2c+TIEaWUUn///bfJHwVHjx6t6yvxR6pz587pjRYLDQ1VX331lcqVK5fq0aOH+u+//8xeIa9MmTJmb1+VKlXUf//9Z/T2REVFqZMnT9ptLdaDBw8afH58ORGWVkRFRakvvvhC5c2bV/Xp00dt375dV/fgwQM1YMAAVa9ePbVw4UKT00BJSkFHq9WqnTt3qjVr1qhnz54ppZTasWOH6tWrlxo7dqx6+vSpawOE3cTFxal169ap+fPnq7t376p+/foZ/FHOnj07r6lU7ssvv9Q9Xh06dFDdu3c3eByzZctmcQJg7969Fg89TlyI3JJt6NChesfev39fDR48OEXJity5c6udO3fq+oyPj1dz5841+CBXpUoVk7/qHTx4UG3fvl334SYyMlI1aNDA4FyTJk0y+OAg8r8FdidOnKhXbut0kvj4eKuHtyduvr6+dnm9Jk1Qm9s0Go36+OOP1c2bN9WdO3cM7ucnT56k6DG2dhs+fHiKbz/gbJGRkUafz5MmTXJ1aKnSzp079e6nnDlzujokZADx8fGqQIECRl+rxkb6aDQaVa1aNfXBBx/oRlUrpdS8efNS9D535coVkzG2b99er23iDAhj2+PHj032ExcXp1asWGHwA17iZmxElzH79+9X3t7eRvuoX7++XltTUwi9vb3VggULjNblyZNHPXjwwOBz28ujmUzdd9euXdNbB7VWrVrqp59+StF0TFtER0cbrF/6ckInLUhISDCZBEy6kLuIqGXLlhntJ90mpbRarTp79qx6+PCho0/vdInTGuy9yN7LfxDy5MmjtmzZojcFo3r16iohIUH9888/asaMGYykScM++eQT3eNqbv2eJUuWuDpUmBAXF2eXkShJtxw5ciS7DlRISIjy8/MzenyVKlWM/gq1atUq3a+J+fPnTzaOqlWrqlu3bqnPPvtM1axZU1WpUkWNGTNG3bhxQ8XExJj9+/fkyRM1evRoNXbsWKt/cQoJCVHt2rVTbm5uytPTU40aNUp3rpkzZxrEefHiRVW3bl29shEjRlh1zpfdunVLZcmSxabHbuHChTafN1HS2/Ly5uXlpQ4ePKh+++039eWXX+oN/Tdl4MCBdn+OmtoqVaqU4tsPOJuxhYxF7H/Vq/TiwIEDeveTv7+/q0NCOnPixAn16aefqk2bNune/7dv327ze1Pi1XQ3b96cove4sWPHmo076VQwU5ulV73VarVGb3e7du2SPfbRo0d66y0l3ZJOfUtISDC57pU9tnv37ll0m12hdu3aerF++umnrg7JKklHrya3VaxY0Wg/6TIpFR0drerXr6+78Z9//nmKz3Hs2DG1ePFidfXqVTVp0iTdl4aePXuazTbb28mTJ3Uv8ooVK6qbN2/apd+YmBiDNVGMba+99prefuKlvkNDQ+0Wiy3u3LmTogXx0rvg4GC1ceNGdf/+fRUeHq58fHws+sPRo0cPV4eeYd26dUu9++676v333zf62jpz5kyK3qALFChgco2lmjVrmo0t6ZXiErfBgwcrrVarrl+/bnRNoYYNG5q9Sp2IqDfeeEMtXLjQ6EKezhQbG2uQ+DL22jGWgPvrr79SdG5Tix4nbl26dFGxsbEGUwDq1q2bovNevHjR7HnHjx9vdZ///vuv0b7Mre+Vki09/hCF9O3s2bMGz+OVK1e6OqxU68SJE3r3lbu7u6tDQjoREhKiihYtqvf8Wrx4sdJqtSl+b7pw4YJ68803DcorVKhg0fFNmjRRUVFRZuNP7j1cxLbvxEkvLuDt7a33Xvv48WM1bdo0VblyZTVt2jT19OlTk58TCxUqlOwamHXq1LHr5wJLr/LrKkkvAmPtchqOdPfuXbV582aTC/ErpdT7779v9WNibL3VdJmUMpYpvnTpksX9Xb16VY0ZM0bNmTNH/fXXX8nesY0bN3bUTVOHDh1Sb775pqpdu7ZasGCBQVKoa9eudjnPsWPHbH6x9+nTRzf08K233rJLPKZotVq1adMm9fnnn6vDhw+rhIQEveGXI0eOdOj5jQkJCVHffvutqlevnvr6669VcHCwWrJkiZo5c6ZN68rY26NHj3QjUzw9PVXnzp0tfmxz585tl8uywjKxsbHq66+/Vnny5NF7HBJHKZ47d059/fXX6vDhw0YvH27pVqpUKXXhwgW1ZcsWk21MfSkKDw9XuXPn1mvr6+urzp8/r9euS5cuFseTeAlgVyeiLJHcm689FtzWarUmF5FfunSprt369esN6rds2WLzed99912D1/+vv/6qPv74Y7Vy5Uqbh7V/+OGHBu8Z4eHhqkmTJnrlxYoVM7sOhLu7u/r1119V9erVVa5cudTkyZMNRnrasmA/4EpJ11zJnDmzq0NK1S5cuGDwtyE2NtbVYSEdMDay19vb2+Bqr7ZsnTp1Unnz5tUrK1mypEpISFDh4eHq66+/Nrmu0vjx4y16jmu1WrOLhs+ZM8em++Xhw4cGU8wmT56slDK+iHqFChUMLmCTP39+iz8bpXREWdLthx9+sOl2O0vSHyKzZs3q9GmEL4uPj1d//vmnypkzpy6mbNmyqRMnThi01Wq1qmDBglY/JsZ+RE1XSakiRYqoqVOnqldeecXgxjdt2lRFRUWp/fv3m1wbSavVGnx4tnRLXKwtUVhYmNqzZ4+6e/eu2djDwsJUcHCwbv/58+fqwIED6tmzZ+revXsmp8i8vO3bt0/1799fdejQQW3bts3i++3kyZPq888/V+vXr1cff/yx3V781apVUwkJCery5cvJZvXNiY6O1o0EKFmypNq3b5/B1RSqV69ucP4OHTqo999/X1WtWlX169dPby63vYWFhalSpUqZvC9y5cql7t+/77DzWyKlj23ZsmXNZsiRvEOHDql58+ap06dPm2wTHByssmbNavJx+PHHH3UfCjw8PAyuyGLJVr9+fXX27Fndm11cXJzJNQPKlCljdIqcsZFOu3btMmhnTaLb2BtdahUeHm52kcyk6ySkxKFDh/RGZn3wwQd69TExMUbXThg8eLBVibGEhASj733vvfeeXW6HVqtVv/zyi+rbt69asGCB3ofr58+fq7179+quuJco6WgIEVFvv/22Qd+tWrXSa5N0dGdwcLCaPHmymjRpEqOokCr98ccfes/hwoULuzqkVO3GjRsGfxtY/xIpFRoaavFnFnd3d7Vy5coUf19KvDpeops3b6r58+erDRs2qB9//FF9/PHHyS6nkFT//v2Nnqt06dIpWvbFmnVEjW0LFiyw6nzJLbZu6VayZMlU/4PnrVu3DOK29nG3VUJCgtqyZYtq3bq1Rffn1atX9Y7//fffDdr07Nkz2X40Go3BlMp0lZSydPP09FR79uxR4eHhqlevXkrkxS9T9lqfZciQIbrsopeXl94v24kSEhJ0GXlPT081a9YstWvXLr35t+bm4prbLl++rLZt26b69u2rxo0bp549e6bi4uLU0qVL1dixY9WJEyfUyZMnjS4+5ogtMTMfGxtrkBDUarUm/0hOnjzZbjH8999/6vTp03ZPEE2fPj3Zcw8bNsyu57RGfHy8yQX/jG3t27dXtWrVMijPmjWrU6eppicrVqzQuy/XrFlj0ObcuXN2e65nzZpVLViwQH3xxRd6U+hq1apldH2lb775xuzr5mXR0dEqe/bsem3eeOMNk7fd2FD1pNvt27dTfic7mbFFzxO3RYsW2fVcZ86cUXPnzlUbN240+svZe++9ZzSOUqVKWfz3ztS6T7t377brbbFWUFCQateunSpWrJhq166d0b9BxtagyJIli/r6669VRESEwY8G1oyaBpxh8eLFes9RWy+UkFE8evTI4DVv62XjgUTW/ICb+Ll+27ZteqN7E5cwUMrwqrzG3qccMRpm9erVRs939uzZFPV76tSpFH02tXaNvODgYKPfy2NjY1VcXJzeZ5+sWbOqb7/9Vn3zzTd6VyDMly9fmvnRs1ixYga31dFiYmIMfthLbmvTpo3SarXq999/17vYUuJWqFAhFR8fr5YuXao6d+6spk+frkJCQoxOLU2aH8mQSSlXbMOGDVPVqlVTfn5+qlOnTgZfVB29JR1G6eytfv36elN+vv/+ezV8+HDdyJDJkyer+/fvqyFDhjg0Do1Go8aMGWOX511CQoIqX758sucsWbKkRb9OxMTEqI0bNxqdZ2urpNNxkm6ZMmVSpUuXViIv1nh5+vSpOnz4sNEhxKNGjbJbXBmJsbnxSS8X3KlTpxQ/t9evX6+CgoL0nmuJo0MPHjxo8sOPVqtVn3/+uapRo4ZBnzNmzNBr+/fffxu0Mfd8ffLkiWratKnJmF955ZUU3LOuZeqXIGf/InfhwgWTV7fp37+/Cg4OVgMHDlQtW7Y0utaVqSsBVaxY0aXDxy119epVk1MeTG1BQUGuDhvQSfrDgCOXhEgPjF3intc0LBEVFaVu375t8N4WHR1tdqR60i3p8devX1eXL182OJ+xq/kmbq1bt3bIbQwJCdGbdiUiqkSJEnbp29ztMbe5ubnZ9Hli06ZNuumITZs2Nfjs/PDhQ3Xq1CmjUxsfPXpk8dWkUwNjV0Hv1q2b1f2sXr1aValSRYm8WCrh2bNnJtv+8MMPNj2eid8bjW3ff/+9yfO1bdtWr22bNm306klKWbllypRJ9e3bVx0+fNhg3Zf0svXs2VNNnDhRvfHGG2ry5MnqyZMndp3elxo2c9OozImNjbX46hYvb8ld6SI+Pl5v2umECRNsiu9lp0+fTvbL2t9//620Wq2Kjo7WS2YMHjzYoG3RokXtfsXH9C4hIcHo/d6yZUs1adIkuz2fGzZsaJfHJunjXrduXRUVFaVu3LihEhIS1NixY/XqLf1F/8KFC6pSpUq64zw9PVXLli0tunpbamVseuKhQ4dcEsvOnTtVtWrVDOLx9fVVFStW1CubOXOm7rly9epVoxc9KFKkiNEP2KnVyJEjbXrdTJkyJdUP60f6N2HCBL3nZceOHV0dUqoWHx9v8FpOOqoXSOrcuXOqSJEiSuTFD+UvL0uxZ88eg+dU0rUzE7fOnTtbfE5zn/N+//13R9xMpZRSR44c0V1MpFOnTnZLznz77bc2vdcOGTLE5nOam1GTnpi6gp01I71++eUXg+MLFy6sQkNDjbZv1qxZso9d0tkR5rZs2bKZXTpizpw5Ro9bvny5UiqdJ6U++eQTVbNmTZu/6FWoUEENGzZMN2VAq9XqvbDPnj1r07ouKdnatGmjduzYoVq2bOmQ/vPmzasiIiKM3s83b95U58+fV8ePH1fh4eGqT58+Jn+hT+2bqfVykpPcmmNvvfWWat68uUF5cr98btu2Ta+9m5ubunLlitXxJbp8+XKy94G5S7qGhYWpwoULGxyTlr6opgZBQUE2PT9r1Kihnj17ZtGbQbFixew2dcGSCzu8vI0YMcKq/qOjo1V0dHSa+vXKnC+++EIFBgaqfPnyqZ9++snV4aj9+/db/NgZW49PxPaFUF3p+fPnKlOmTDa91sz9qgc4wwcffKD3nOzfv7+rQ0r1ki66fPDgQVeHhFRMq9XqRo8kbo0aNdJ9Fhk3bpxeXbVq1ZRSSjVq1MjgPSPxquOWuHXrltG1gb28vAxG/aQFERERRt9H27Rpox48eKAOHDigN31O5MXyOCm9+EtGYOoKj0lnLJhy7969ZD/nJCQkqF27dql//vlHPXnyxOxno8DAQHX8+HGllOU//K1du9ZsjI8fPza5VFLnzp3TZ1KqZMmSasGCBUqr1aqQkBCjQ+JMbcWLF1fffPONycRMUs+ePVPDhw+36cOwpdtrr71msO5KWFhYihJupra9e/dadd9rtVp16dIldeHCBXX8+HGLL22akq148eLqzz//VH379lXlypVTH3/8sYqMjFRnz55VXbp0URUqVFCVKlVK9kuKtb9SPH782Ohl7kVeJJF27Niha/v555/r1fv5+Zn9Ij5s2DCDPn/44Qel1WrVhQsX1NWrVy1+kZr6Yjpq1Ch1/vx59fHHH6sZM2YkuwC8Vqs1+KXIlkvJZmSmfvkwt/n4+OiGOa9bt87k2m8+Pj6qS5cudl2TKSoqSmXOnNniWI1NB4NrJR0ebc02ePBgV4dvszFjxth0m7NkyeLq0JHBvf3223rPydGjR7s6pFSvRIkSevfZsmXLXB0SUrHDhw8b/fu/cOFCpZQyWEv1448/Vkq9WFT/5VHe48aNs/oH7a1btxpcJfadd96x+210locPH6ratWsrEVHNmjVTt27d0qt/9uyZ3o9eqeEHu7QiKirK4DnavHnzZI/TarVmcwKVKlVSWq022atiP336VGm1WoOrrt+6dcvsd2p/f3+1f/9+i27jTz/9ZPZ7uUg6SUr9/PPPJtvs2LFDTZkyRS1ZssRg2l2PHj3U5s2b1caNGw0eCGtiWLt2rZo1a5aaP3++WrhwoZo4caJNH5KbNm2qhg0bprp06aKWLFli8g+gVqtVu3btUsOGDVP9+/e3KSH0xhtvqL/++ksFBQXZZf0QrVarlixZot588001atQolS1bNpu/IImImjt3rtJqtSosLEwtWrRIbdy40ao3hP/++8/gF5CkW48ePUxeXS4oKEiNGzdO9evXz+y6P0mn2xlbiDPp1J74+HgVHR2tjhw5YrTPt99+W73xxht6ZUuWLNHrIyEhQY0ePVpVqVJFTZgwQUVGRhqd61ugQAH15MkTi++3RH369NHrp1y5clb3kZFNmTLFque7RqMxuJLdf//9p3r06KEaNmyoZs+ercLCwlRcXJzD1vsZMGCARbHWrl07Taw5lNFs2LDBpr+1Go1G3blzx9Xh2ywuLk59+eWXJhftNLcWRmq/XDTSt8RpNokbP/4kL+mVosaOHevqkOBAoaGhNn8/U8r0NKV27dqpa9euGZS//COzUirF08cuXryo6tevr0ReXHTGls/jaUl4eLj666+/1JkzZ1wdSpqzZs0aveeih4eHOnnypNljLBkln/Tq9Um3mjVrmj3HoUOHDEbBibxIsFrzOCckJJhMoCV+500XSSlLb0RISIg6cOCA2rNnj8MvuRgdHa1++eUXVa9ePYNF9OrWrasOHTqkEhIS1PHjx9V///2Xoi95Wq1WbdmyRXXt2lW1aNFCjR8/Xo0aNUo32qVUqVJqyZIl6tSpU+r333+3eDRYSkRERKhVq1ap999/X/Xu3VsdOnRI/fzzz6pv376qb9++6uuvv1bNmzdXAQEBytfXVxUuXFg1bNjQIY+LuQWXe/fubdA+KCjIoisy9u7d2+goqJIlS+q1a9y4se6N7cSJE0anx1m6DRs2TN27d8/gylOvv/660S+bx44ds+k+S3r1EI1Gk+wIq4wuMjJS/f777+r48eMGv+aa25o0aaL27Nnj6vDVoUOHko21efPm6f5DVVoVGxtr03qHr7/+uqtDt5srV66oKlWqKDc3N9WzZ08VFRWllHox5T7p1fhEXoy+BVwl6UUmGFmQvKRXHR00aJCrQ4IDaLVa9cEHHyg3NzeVN29etX79eqv7uHTpksn3vcKFC6v+/fvrlfn4+OjeM+yNz89IztOnT40ujePh4aHeeecdg4XLTU37s3ZLbu1jpV4s49OuXTtVrlw5NX36dJuTtbdv31YNGzY0GUuGSkohYwoPD1c5cuQw+SI4e/as+uuvv9TMmTPV9evXk532uWnTJrO/3Ji6zPqHH36odwlZR28pGQUQGRlpMGWRtRtMi46OVmXLljX5WPTt29egLDVeor5du3YGcWbJkkU1aNBArVq1ytXhIRm//fab3mM3b948FRkZqX777Tfl6+tr8Nh6enpmqNd1jx49jL4+K1SoYNEHM8Cekv5AxXMweUnXOOnZs6erQ4IDJF3nMiAgQD18+NCqPiZPnmzVZ2bWdIOrJb34xctb0qmfI0aMMGgzaNAgNX36dIuf8676+3n37l2SUsi49u7da/KKGtZsH330UbLnunr1qlXr8zhiq1WrVorvs6SL+c+fPz/FfaZXK1euNPlYlC9fXmm1WjV//nyVM2dO5evrq7766itXh2xUWFiYmj59uurXr59au3ZthrjySXpz5MgRNXnyZLV7926Dups3b6r//vtPffbZZ2rAgAHq33//dUGErmNs3YbEzd3dXXdxE8AZkq7VYenaHBlZ0i9t1lwRDWlDQkKCweLkIqJ+/PFHi/s4d+6c1Z+b7blOJ2CLmJgYvbXMXt40Go26e/euun37tnrttdeMttmxY4fZEYKJW86cOdVHH32UoqmxKZV0PTeSUshQgoODTa47YsnWo0cPi7+k//rrr1b1PXbsWLsmpRIvs5kSb731lsHth3G9evUy+VjMnTtX1y42NjZNXnkFSC/at29v8rVatmxZtW7dOtWmTRv1ySef8FqFw0RGRho8/1Lj6NnUJukogNatW7s6JNjZ9u3bjf59bt++vdnjrl27ZvMFP/Lly+ekWweYZ+v6oCKi4uPjlVarNbrGsMiLNYtTy4/N//zzj8HVVB2Zz3ETIBXJmjWrbNq0Sc6cOWPVcT169JB58+bJ4sWLRaPRWHRMly5dpHHjxha13bdvn0yePFmyZ89uUJcrVy75+eefrYq3YsWK0rlzZ6uOMaZ27dp6++vXr5eIiIgU95veHD16VJYuXWq0LkuWLNKjRw/dvqenp/j6+jorNABJTJ06Vby8vIzWXbhwQTp27Ch//vmnzJgxQ1577TUnR4eM4v79+wZluXLlckEkaUvS98+oqCgXRQJH2bBhg9HynTt3SmxsrNG6w4cPS/HixWXjxo1G6wsXLiwTJkwwec7KlStbHSfgCK1bt5YGDRpYfdzDhw/F3d1dNBqNLFiwQLy9vfXqvby8ZPr06RZ/j3W0evXqybFjx+Stt95yyvlISiFVqlixokybNi3Zdg0bNpTnz5/LsmXL5N133xV3d3eLz+Hm5iZ//fWXDBo0yGSbZcuWSUREhNSvX188PT1l/vz54u/vr9fm888/l759+4pSSlatWqVX5+vrK99//71eWf369WXHjh0mv3RZo3PnzuLm9r+XcXh4uPz+++8p7jc9iYyMlEaNGpmsX7NmjQQGBjoxIgDmVKhQQW7evCn9+vVLtu2xY8fkyy+/dEJUyGju3Lmjt+/v7897hQVISqVvSinZsmWL0brw8HA5cOCAQfnevXsNfkRNaubMmdK/f3+9z7Qvq1KlitWxAo7g7u4uO3bskD///FOaNGli0TH79u3T+1GjQYMGEhQUJO+++64UK1ZMChcuLCtXrpTChQs7KmybVKxYUVauXCn79u1z/MkcNgbr/zF9D7aKj49XI0eOVDlz5jQ6xLFRo0Z2u0rh+fPn9a7m9/777xu9ap9SSj179kytWbNGjRgxQq1atcpgmGVUVJT68ssv1ZAhQ9SFCxeUUkpdv35dffrpp2rZsmUqNjbWLjEnSrxM58tbcpcotYfdu3ercePGqe3btzv8XMYEBQWp3377Td25c8do/c2bN1Xt2rVNDqEdMWKECg4OdnLUAKyRkJCQ7HD4XLlypZrh7kg/VqxYofc8K1OmjKtDShOWLl2qd79VrVrV1SHBjpJbD2fkyJFq7ty5qlixYqpmzZrq1KlTqmXLlmaPeXkNT1NLePz1118uvNWAaQcPHjT53G7btq3J75NpiTPyOSSlkCY8fvxYXbt2TSn1Ihlx6NAhFR8fb/fzXLlyRV25csXu/TrSqlWrDP4IFipUSIWGhtrtHD///LNq1KiRGjlypHr69KmaPXu23vm2bNlit3NZGs/LVx5s166dQbKvefPmRt8gSpcuraKjo50aLwDb7d+/P9nE1G+//ebqMJHOfPHFF3rPsaZNm7o6pDRh9erVJPPSsa+//tqqNXTKli1rcMGAl7dp06bp9b9x40aDNu7u7iohIcFFtxhIXuPGjQ2et5UqVUo3P5g5I5/D9D2kCTly5JBixYqJiEiRIkWkVq1aVk3Vs1SJEiWkRIkSdu/Xkdq2bWuw1tWtW7dk2bJldun/n3/+kX79+smePXtk5syZ0r59e4PpMt98841dziUicu3aNXnzzTdFo9GIRqORnTt3yvr166Vfv37y2WefyePHj2X48OGi1Wp1x/zxxx+SK1cu6dKli/Tp00d27twp27ZtM9r/F198YTCPG0DqVadOHalfv77ZNt26dZNz587p9k+ePCmDBg2Szp07y4kTJxwdItKh27dv6+0XKFDARZGkLUmn70VGRrooEjjCTz/9pLef+NnclAsXLhisdbpo0SJRSolWq5Vx48bp1bVs2dLgc/gPP/xgclofkBp8+umnevsajUb+/vvvVLM+VFqgUUopR54gNDRUAgMDJSQkRDJnzuzIUwEZ1saNG6Vdu3YG5cHBwZI1a9YU9d2xY0eL1qk6ePBgsmsGJCc+Pl7Kli0rV69eTVE/powZM0amT5/ukL4BOM6jR49k/vz5sn//filTpozs2LFDLl26ZNDu5MmTEhAQIFWqVJHw8HBd+RdffCGjR492ZshI49588029BZ3Hjx8vU6dOdV1AacSuXbukadOmuv2cOXPKo0ePXBgR7OX69etSvHhxvbLNmzdL586dLU4+litXTs6fP2+2zalTp6RDhw7y8OFDGTBggHzzzTckpZDq3b59W06ePCnlypVLcwMckuOMfA6vcCAdaNu2rXzyyScG5T/++KPefkJCgsycOVM3Cql+/fri6+srPj4+0qBBA72RBiIvruZn6cLp48ePt/0G/L/Dhw87LCH1yy+/kJAC0qhcuXLJpEmTZMeOHTJ37lyTI0GrVq0q7dq100tIiYh8/PHH8sEHH4hGo5EcOXLIjh07nBE20rCkC50zUsoyfn5+evssdJ5+JP27mStXLmnRooUMHTrU4j7eeOONZNtUqVJFrl+/Ls+fP5fZs2eTkEKaULBgQWnbtm26S0g5CyOlgHQiPDxcAgICDMr79esnxYsXl6FDh8q4ceNk1qxZZvvRarWi0WgkKipKcufOLWFhYRad38PDQ7Zu3SparVYaNGhg09UFP/jgA4OrFaaUh4eHHDp0SKpXr27XfgG4lqkRopbavXu32StzImPLmzevPHjwQLe/adMmadWqlQsjShtOnDih937r6ekpsbGxLowI9pJ0KtLbb78tK1askLi4OGnatKlFV+iKiIgwSFwCSN0YKQXAYv7+/kYTOj///LOMHTtW/Pz8kk1IiYi0atVKxo0bJ35+fhYnpEReTL1r2rSpNGvWTLy9vWXAgAGyc+dOGT58uCxdulQSEhLk6NGjUqFCBQkICDCYfx0SEiJLliyx+HwiIi1atJBFixaZXSNq8+bNJKSAdKht27YyYsQIm49fuHChHaNBehIbGysPHz7UK2OklGWSvh/HxcXprQGJtGnLli0GZc2aNRORF4nHP/74Q/r27St58uSRihUryoYNG6RHjx567adNm0ZCCoBRjJQC0pGYmBjJmTOnVckkW2k0Gknpn481a9ZIp06dRERk6dKl0rt3b73+Z86cKdHR0eLr6ytbt26V7du36+rbt28vv/32m3h7e8uhQ4fk888/ly1btkhcXJyIvFgL65tvvpFChQqlKEYAqVdUVJTNX3KyZcsmT5480f36r5SS9evXy8GDB6VVq1bSsGFDi/t69OiRRERESNGiRW2KBanLjRs3DB7Lp0+fSrZs2VwUUdpx9epVKVmypF5ZVFSU+Pj4uCgi2EOWLFkkJCREr+zOnTuSP39+s8etXLlStm/fLo0bN5YePXqw8DOQBjkjn0NSCkhnvv32W/noo4/s3u/u3bslJCRExo4dK/7+/jJr1iy5efOmdO/ePUX93r59WwoUKCCtW7eWzZs368rbtGkjGzdu1Gt77949+e233yR//vzSuXNn1hkAIFqtVkqWLCnXr1+3+tg5c+bIkCFD5MyZM1K5cmW9usmTJ8ukSZOS7WPu3LkycuRIiY2NlYEDB8qCBQusjgOpy549e6Rx48a6fV9fX4mIiOALtQVu375t8GPQ8+fPJTAw0EURpX8hISFy5swZqVmzpkOSf2vXrpXOnTvrldWoUUOOHj1q93MBSH1ISgGwyfLly6Vnz55mRzK9++67UqVKFWnXrp3kyZPHbH/vvfee0amBSilp3769QfLIGuPHj5eOHTtK1apV9cqXL1+e4oQXgIwhOjpa8uXLJ8+ePdOV7dixQ9auXZuiJNGqVaukS5cuJuuvX78uZcqU0Y3QFBE5c+aMVKxY0eZzwvXmzZsn77//vm6/SpUqcvLkSRdGlHY8evRIcufOrVf28OFDyZUrl4siSt/Onj0rtWvXlsjISClUqJD8+++/yY5eslaTJk1k9+7demWsDQVkHKwpBcAm77zzjmzdulXat29vUJcrVy7ZtWuXzJs3TwYOHCi5c+eW69evm/x17eOPPza5+LhGo5HPP/88RbFOmzbNICHl7e0tbdq0SVG/ADIOHx8f+eGHH3QXWBg8eLA0adJEfvjhB4mPj5dbt27Jxo0bzSaYjOnatasULFhQVq9eLfHx8bryxIT/y1OGE7Vo0SKFtwau9t9//+ntlytXzkWRpD3G1niMiYlxQSTpW2hoqIwfP14qVaokkZGRIiJy69YtKVCggDRs2FAvQZ8SERERsnfvXr2yt956i4QUALsiKQWkU82aNZP169eLUkpOnTolY8aMkRUrVsj9+/f1piWIiBQtWlQ2btwoLVu2FF9fX135zp07ZcaMGWbPU65cOfn6669F5MWH0SlTpsiVK1cMEk3WaNOmDSMrAVilS5cu8vDhQ7l165bMnz9fN9XK3d1dChYsKG3atJHly5dbfcW+O3fuSNeuXaVLly5y48YNady4sfj6+kqDBg2MXgr93r17sn//fomIiNBLZCX16NEjmTdvnqxevdqqhaDDwsKcsm5gRqSUkq+++srgh5iyZcu6KKK0h6SUbZRSsnjxYvnoo49k165dIvJiavK2bdtk8eLFEhwcrGsbFBQkzZo1k88++8xoX3v37pVs2bJJQECAXLx4MUVxHT9+XBISEvTKfvrppxT1CQBJMX0PgB6tVivBwcGSI0cOq44LCwuT2NhYyZ49u64sPj5eNBqN/Pvvv3LixAl59dVXpUaNGlKuXDm5dOmSyb4uXbokpUqVsvk2AIApp06dSlHS3BqJCf8KFSrolT979kxq1qwp165d05Vt3rxZWrZsaba/tWvXSt++fSUsLEzGjRsn06ZNc0jcGdWWLVuMPgbr1q2TDh06uCCitEer1Yq7u7te2blz56R8+fIuiiht+Oqrr2T06NG6/UWLFsnWrVtl9erVIiKSP39+uXDhggwbNkx+/vlni/stX768nD171ub10L788kv5+OOPdftVq1aVEydO2NQXgLTJGfkcD4f0CiDNcnNzszohJSISEBBgUObh8eJPTP369aV+/fq68lWrVsmbb74pQUFBBsfMmjWLhBQAh6lSpYrUq1dP9u/fb1C3aNEi8fT0NLiUua2CgoKkYsWK8ujRI1myZIlcvXpV+vXrJ3/99ZdeQkpEpFWrVvL777+LUkoaNmxocKU3rVYrH374oW6U1GeffSavvfaa7rLsSLl9+/YZLU+aVIRpbm5u4unpqTetlZFShpRScvPmTcmZM6esX79eLyElItK3b1+9/bt370r58uXl9u3bVp3n/PnzcvnyZSldunSybWNjY3VToBMdOnRIb7927dpWnR8ALMH0PQBOV7lyZd3w8pe9+uqr8uGHH7ooKgAZxW+//SZNmjTR7Xfv3l2uXbsmffr0kXfeeUcOHDggVapUsdv5cuXKJaNHj5Yff/xRatWqZXKdvg4dOkjHjh2lfPny8uTJE72606dPy4MHD/TKli1bZrcY8WLqZVL58+eXkiVLuiCatCvpFD6SUv+zatUqyZ8/v7i5uUnRokXF39/f4iS4tQmpRMYS8C8LDw+Xpk2biq+vr1SpUkVCQkJE5EXi7ODBg3ptSUoBcASSUgBcomDBgnLw4EHp2bOn1KtXT3799VfZv3+/wbB/ALC3/Pnzy86dO0UpJUopWb58uRQrVkxXX6dOHTl58qSsXbvWov7atWsnb7zxhsXnT5pwSurBgwcGU3QWLlxo0G7Pnj0WnxPJM5aU+uijj2ye+pRRkZQy7uLFi9K9e3ejz7OU+PnnnyUuLk63hmhSv/zyi8mrMd+9e1cCAgJk165dotVq5fTp05IlSxa5dOmSHDt2zCARXqtWLbvGDgAiJKUAuFCpUqVk6dKl8s8//0i3bt3EzY0/SQBSj44dO8qZM2fMtsmfP7/MmTNHfvnlF6lYsaLdzr18+XLdQukPHz6URYsWGbS5d++e/Prrr3Y7Z0Z3//59vf3WrVvLsGHDXBRN2kVSyrgFCxYYLBqeUvv375e+ffvqlkuoXLmyzJkzR6/N3r175fvvv5fQ0FC98ps3b0qhQoWM9vvpp5/KzJkz9cry5cvHqEEADsE3QAAAABMqVqwo586dk06dOknPnj3l9u3bopSSiIgI2b9/v1y4cEEKFy4s2bNnl9OnT8vEiROlSJEiFvefdBpzonPnzsmPP/4oIi+m6UVHRxttN2HCBFmxYoXRERKwTtIRbB9++KHuyz4sR1LKkFJK/vjjD7v2GRQUJHXr1jUo79Spk/j4+OiVffjhhxIYGCi1a9eW0NBQWbhwoRQpUsTklT937NghW7du1SsbMmQIPx4CcAj+sgAAAJhRvnx5WbNmjSxdulQKFCggIiJ+fn5St25dvYs8aDQamTJligQFBcndu3eTXVx42LBh8vTpU4mLi5N58+YZ1G/fvl1ERDZt2mSyj2vXrsk777wj1atXl6VLl9py8/D/nj9/rrefNWtW1wSSxiVNSplKqGYkgwcPNnpxl0QajUZOnTolhw8fllGjRunK8+bNK3///bfkzp1br/3w4cNNJr/z5csn8+fPN1p3+PBhCQwMlAEDBpiN9/HjxwYjq7p162b2GACwFUkpAAAAO8uXL58cP35cDh48KM+fPxellHzwwQe6+po1a8q0adNE5MWVSt99910ZP368Xh979+6VY8eOmbwq3Mu0Wq0MHz5coqKi7HtDMojo6GiDET1ZsmRxTTBpHCOl9G3dulU36jFRoUKF5O2339btjx8/XipXriyvvPKKfPnll6KUkvDwcLlx44Y0aNBApk6dqmubLVs2+eijj8yes3fv3lK2bFm73YbAwECTU/0AIKVISgEAADhApkyZpHbt2hIYGCgiInPnzpXt27fLb7/9Jnv27BE/Pz+99j179tTbf/78udSsWVOvzNvbW959912j5wsODpZz587Z8RZkHElHSYmQlLIVSSl9xi5S0LZtW/nll1/k4MGDcurUKZkyZYpBm0yZMomXl5eIiPTv31/+/PNPmT59uvz7778WJYg6duxocYxvvfWW9OnTx2R9xYoVWfAfgMOQlAIAAHCS119/Xbp27SqZMmUyqCtRooSUKFHC7PGdOnWSGTNmSOPGjY3W//fff3aJM6MxlpRKTCbCOiSlXoiNjZWPPvpI1q1bZ1A3cOBAcXNzk9q1a0vlypWTTfhoNBpp3bq1jBkzJtlpwYmGDBmiS2qZkytXLlm2bJl88skn4unpabRNpUqVLDonANiCpBQAAEAqoNFodFP6TJk9e7ZkzpxZtm3bJm3atDGoP378uKPCS9eSJqX8/Pws+kIPQySlXpgwYYJ8++23BuXr16+365U6TcmZM6c8evRIZs6caTaRdeLECfHw8JBSpUrJjBkzjLZp0aKFo8IEAJJSAAAAqUXXrl1l0KBBRusmTJggOXLkEJEX61Bt2LDB4Mvili1b7H7Z+Yzg0aNHevumroqI5JGUenGbFyxYYFDeqVMnad++vdPiCAwMlBEjRsjFixdFKSWbNm3SGw11/PhxyZ8/v26/f//+Rq842bp1a6fECyBjIikFAACQinz22Wd6XxQTJV1Lys3NTSZMmKBXdvXqVfn3338Njj19+rTs3LlTYmNj7RtsOnH37l29fWP3PyyTUZJSjx49klGjRkmLFi3kww8/lLCwMF3dsWPHJCQkxOCYb775xpkhGmjVqpU8e/ZMgoKCRCkl1apV06vPnDmzwQjMWbNmsZ4UAIciKQUAAJCKZM+eXfbu3Sv9+vUTNzc3admypVy9elXy5s1r0PbVV1+VMmXK6JW1bt1aatasKR988IFER0fLN998I1WqVJHXX39dvL29ZevWrc66KWlG0qRUvnz5XBRJ2pcRklKrV6+W3Llzy8yZM2Xbtm3y3XffSceOHUUpJSIiBw4cMDjm6dOnUrBgQWeHaiBTpkxSpEgRk/Xz5s2T+vXrS7Zs2WTUqFHy/vvvOy84ABmS4fhMAAAAuFTx4sVl4cKFRq/c9TKNRiPNmjWTixcv6spCQ0Pl2LFjcuzYMVm4cKHEx8frHfPGG2/IxYsXLV4wOSM4evSo3j5JKdul96RUcHCw9OvXz6B8x44dsnv3bmnSpIns379fr+7dd99NM1NC8+TJI/v27ROlFCOkADgFI6UAAADSsPr165usi4mJMbrGFKMf/ic+Pl727NmjV5Z0WhMslzQpNWvWLLl//76LorG/rVu3Snh4uNG69evXy5EjR+TPP//UK69bt64zQrMrElIAnIWkFAAAQBrWoEEDo4sTm7Nr1y758ccfHRRR2nL//n2Ji4vTK+NqY7ZLmpQSERk1apQLInGMXbt2maw7f/680edOWkxKAYCzkJQCAABIw3LmzClffPGF1ccNGjRIunbtKlFRUQ6IKu24c+eO3r63t7fR9btgGWNJqRUrVrggEvtbvny5LFq0yGT933//Lc+ePdMry58/vxQuXNjRoQFAmkVSCgAAII0bPny4fPrpp1Yft3r1apkyZYoDIko7kialChQowNSlFDCWlBJ5sRZTWnb37l3p0aOH1cd99tlnPJ8AwAySUgAAAOnA+PHjZcGCBfL222/LoEGDxNPTU1fXuXNnOXTokOTPn9/guCVLluiuGpaRHDhwQGrVqiVdunTRKy9QoICLIkoffHx8jJZfuXLFyZHY17JlywzKAgMDzSacqlatKr169XJkWACQ5nH1PQAAgHRAo9HIwIEDZeDAgSIi0q9fP9m7d680a9ZMKlWqJCIily9fluzZs0t0dLTuuIcPH8q+ffukQYMGBn0qpeTYsWPi6ekplStXTjcjPuLj46VHjx4SFBRkUEdSKmX8/PyMlj98+NDJkdjPyZMnZezYsQblPXr0kK1bt8rVq1eNHtemTRtHhwYAaR4jpQAAANKhmjVrysiRI3UJKZEXCYObN28atJ00aZJB2YULF8TNzU1eeeUVqVq1qnzyyScOjdeZzpw5YzQhJUJSKqVM3X+PHj1yciT2cffuXaNXY6xatapMmzZNevbsafLY8uXLOzI0AEgXSEoBAABkILly5ZJZs2bple3fv1+34LlWq5W7d+9KuXLl9Np8+eWXotFoxN/fXyZOnJimp/wdPXrUZJ2xKY6wXKFChYyWP3782MmR2Iexhc2bNm0qx48fl8DAQBk9erTJhcwbNWrk6PAAIM0jKQUAAJDB9OnTR28/ISFB9u/fL6+//roEBASYHS0UEREhU6dOlXr16qXZxJS5UTtJk3GwTrFixYyWp9WRUrt37zYo++6773RTWb29veX69esGbapXry45c+Z0eHwAkNaRlAIAAMhgAgMDpXTp0nplzZo1k507d0pkZKRFffz777/y008/GZQfOHBAxowZIwsWLJDw8HC7xGtvT58+NVlnbKoWLJczZ07p1q2bQXlaTUqdO3dOb//TTz81eO24ubnJjBkz9MqM3QcAAEMsdA4AAJABVa1aVS5dupSiPgYNGiRXr16VevXqSatWreSff/6Rxo0b60ZQDR48WE6dOiWVK1e2R8h2YyopVa1aNcmaNauTo0l/li9fLlevXpVjx47pytLi9L0nT57IkydP9MpMJZtGjRoljx8/lj///FMaNWokQ4YMcUaIAJDmMVIKAAAgA6pdu7ZF7WrVqiUrV640maz56quvpF27duLh4SGNGjUymNI3ceLEFMdqb6aSUqNHj3ZyJOmTu7u7fPjhh3plaXGk1MWLF/X2vby8pGjRokbburm5ycyZM+XSpUvyww8/iJeXlzNCBIA0j6QUAABABtS/f38pWLCgyXp3d3eZP3++HDp0SN566y158uSJ0fV1krN7926Ji4uzKcZdu3ZJly5dZNiwYfLw4UOb+kj06NEj2blzp9y9e1e2bNliUP/dd99J165dU3QO/E/S9ZTSQ1KqZMmS4uHBRBMAsCeSUgAAABlQpkyZZO/evVK2bFmDujfeeEP++ecfGTx4sK7Mzc1NGjVqJJs2bbLqPOHh4bJs2TKrjomOjpY33nhDmjZtKmvWrJHZs2fLwIEDrerjZUeOHJFy5crJ66+/bnQR982bN8v7779vc/8wlCtXLr39x48fp7mF8S9cuKC3b+y1AgBIGZJSAAAAGVTRokVl//798vbbb0vWrFmlS5cuEhERIX/99Ze8+uqrRo9p1aqVXLt2TXLnzm3xeYYNGyYPHjywuP3MmTNl69atemUbN260ebTNiBEjzC5uXr58eZv6hWlZsmTR24+Pj5eoqCjXBGOjAwcO6O2XKVPGRZEAQPpFUgoAACADy5Ytm6xYsUKCg4Nl1apV4ufnl+wxxYoVkytXrsiAAQOM1ufLl09vPywsTDp27CgJCQnJ9q2Uki+++MJo3ezZs2Xfvn2i1WqT7SdRXFyc7N+/32ybQoUKWdwfLJM5c2aDsrCwMBdEYpt//vlHDh8+rFfGSCkAsD+SUgAAALBaQECA/Pjjj6KUks2bN8urr74qbdu2lStXrkhQUJDUqVNHr/2///4rHh4eMn36dLP9btiwQcLDw43Wff7559KgQQOpW7euRQkuETG4elpSn3zyiWg0Gov6guWMJaVCQ0NdEIltvv32W4Oy1HYVSQBIDzTKwZO7Q0NDJTAwUEJCQoy+OQEAACD9OX/+vFSoUMFkXbly5YzWtW3bVv78889k+2/atKns2LHDaN2OHTtk48aNUq5cOSlUqJC0bt3aZD9hYWHi7++f7PlgPS8vL71F7o8dOybVq1d3YUSWK1++vPz333+6/dKlS8uFCxdIYALIUJyRz+HyEQAAALC78uXLS6VKleTMmTMGdbt375Zy5cpJbGysaDQa8fT0lIiICBk1apRFCSkRkZ07d8quXbukSZMmeuUHDx6UZs2aWdRH1qxZSUg5UObMmfXW8kor0/e0Wq1cu3ZNr2zBggUkpADAAZi+BwAAAIcwNVXvww8/FI1GI97e3lKqVCk5fvy4fPbZZzJ//ny9dl5eXlKrVi2T/a9atcqgbM2aNRbHV7RoUYvbwnpJf1VPK9P3bt++LTExMXplLHIOAI5BUgoAAAAO0apVK7l69arZNjdu3JBRo0bJihUrDOpatmwpO3fulPnz50vOnDkN6n/55ReDsrNnz1ocX+PGjS1uC+sFBATo7aeFkVLR0dHy7rvv6pUFBARIrly5XBQRAKRvJKUAAADgMMWLF5e7d++Ku7u7yTZ79uyRW7duGZT37NlT/P39ZfDgwXLv3j3x9fXVq0+8UuCJEyfkzJkzcvXqVdm5c6dFcfn4+MigQYOsuCWwVlobKRUVFSVNmzaVLVu26JWXLFmSqXsA4CAkpQAAAOBQ+fLlkxkzZlh1TKNGjaRdu3a6fQ8PDzl+/Lhem+DgYBk8eLBUr15dKleuLCVLlky236JFi0rt2rVl06ZNUqJECatignXSUlJq+vTp4ufnJwcOHDCoM7UoPwAg5UhKAQAAwOFGjhwpN27csLj9pk2bxM1N/6NqwYIFDdotWLDA4j7nz58v169fl4MHDxoskA77S5qUSq3T986ePSvjx483Wc9zBQAch6QUAAAAnKJw4cJy4sQJ6dGjh9l2GzZs0E3Ne5m/v79kyZLF5vNXrVrV5mNhvaRrSqXWkVKLFy8WpZTJ+tdff92J0QBAxkJSCgAAAE5TtWpVWbZsmWi1WpkwYYJB4mL27NnStm1bk8eXLl3apvMWKFBAatasadOxsE1amb5nbjH+evXqSf78+Z0YDQBkLCSlAAAA4HQajUY+/fRTCQ0NlZiYGPnvv/8kISFBPvroI7OLSlepUsXqc3l7e8u3335rMB0QjpUWpu89efJE/vzzT6N1LVq0kJ9//tnJEQFAxsI7MwAAAFzKy8tLypYta1HSqH79+hb12aZNGzl27JisW7dOrl+/Lm+++WZKw4SVko6Ce/78uWsCMeHq1atSsWJFo3Xdu3eXLVu2SKlSpZwcFQBkLCSlAAAAkGa0b99ecuTIkWy7Vq1aSfXq1aVDhw6SL18+J0SGpPLkyaO3HxQU5KJI9IWGhsrQoUOlZMmS8uDBA4N6Nzc3+eKLL1wQGQBkPCSlAAAAkGZkypRJFi9eLB4eHibblC5dOtnF1OF4Sdf/unHjhkRFRbkomv8ZP368zJkzx2R9XFwc60gBgJOQlAIAAECa0rp1azl37pxMmzZNNmzYIHfv3pWmTZuKiEiTJk1k165dRq/eB+cqWbKk3r5SSu7eveuiaP5n7ty5Juvq1avH2mMA4ESmf2ICAAAAUqnSpUvLuHHjdPs7duwQpZTZRdLhXP7+/uLu7i4JCQm6Mlcvdp7cSK127do5KRIAgAgjpQAAAJBOkJBKXTQajcFi565OSl25csVknb+/v3Tv3t2J0QAASEoBAAAAcIjUlpS6dOmSybr9+/dL3rx5nRgNAICkFAAAAACHSCtJqd27d0vlypWdHA0AgKQUAAAAAIfw9/fX2w8PD3dRJC8YS0qVKFFC6tWr54JoAAAkpQAAAAA4RGoaKRUeHi7Lly83KP/jjz/E09PTBREBAEhKAQAAAHCI1JKUUkpJt27dDMq3bdsm5cqVc0FEAAARklIAAAAAHCRTpkx6+1FRUS6J499//5XNmzcblJcuXdoF0QAAEpGUAgAAAOAQPj4+evvR0dEuiWPbtm0GZe7u7lKwYEEXRAMASERSCgAAAIBDpIakVFRUlEybNs2gvFq1auLmxtchAHAl/goDAAAAcAhXJ6UiIyOlcuXKopQyqPvkk0+cGgsAwBBJKQAAAAAO4eqk1PLly+XKlStGyzt06ODUWAAAhkhKAQAAAHAIVyelRo4cabT8tddec2ocAADjSEoBAAAAcAhXJ6Xi4+ONlufNm9epcQAAjCMpBQAAAMAhXJ2U8vDwsKocAOBcJKUAAAAAOIQrk1LR0dESFhbmtPMBAKxHUgoAAACAQ7gyKXX37l2j5ZMmTXJaDAAA80hKAQAAAHCI1JaUKlSokAwcONBpMQAAzGMyNQAAAACHcGVS6s6dOwZl58+fF39/f6fFAAAwj5FSAAAAABwiNSWlmjZtSkIKAFIZklIAAAAAHCI1Td8rUKCA084NALAMSSkAAAAADpGaRkqRlAKA1IekFAAAAACH8Pb21tuPjo4WpZRTzr1p0ya9/fz58zvlvAAAy5GUAgAAAOAQSUdKiYjExsY6/Lzbtm0zOA8jpQAg9SEpBQAAAMAhjCWlNm7c6PDzLl682KCsRo0aDj8vAMA6JKUAAAAAOISxpFSXLl2MJo3s6dy5cwZlefLkceg5AQDWIykFAAAAwCGMJaVERCZOnOiwcyYkJMiVK1f0ytatW+ew8wEAbEdSCgAAAIBDmEpK3blzRxISEhxyzsePHxusJ/Xqq6865FwAgJQhKQUAAADAITw8PMTNzfhXjmvXrjnknA8ePNDbd3Nzk1y5cjnkXACAlCEpBQAAAMAhNBqNaDQao3Vnz551yDmTJqVy5col7u7uDjkXACBlSEoBAAAAcBhT0/SMLUZuD/fv39fbZ4FzAEi9SEoBAAAAcLrbt2/bvc9t27ZJ37599cpISgFA6kVSCgAAAIDTJR3RlFL37t2T9u3bG5STlAKA1IukFAAAAACns3dS6p9//pHo6GiDcpJSAJB6kZQCAAAA4HT37t2za3+mpgPmzZvXrucBANgPSSkAAAAADjN69Gij5Q8fPpSwsDC7nYekFACkPSSlAAAAADjMBx98IDlz5jRat2vXLrudx1RSqmDBgnY7BwDAvkhKAQAAAHCYggULyvnz5+WPP/4QHx8fvbqNGzfa7TymklIFChSw2zkAAPZFUgoAAACAQ+XMmVPatm0r/fv31yu/ePGi3c5hLCnl6+vL9D0ASMVISgEAAABwiiZNmujtmxrdZK2YmBh5+PChQfmgQYPE3d3dLucAANifh6sDAAAAAJAxJF3f6f79+xIfHy8eHin7WnL37l2DshUrVshbb72Von4BAI7FSCkAAAAATpF0Kl1CQoI8e/Ysxf02b95cb9/f31/eeust0Wg0Ke4bAOA4jJQCAAAA4BQBAQEGZRERESavzpecBw8eyIYNG+Tq1at65Xny5CEhBQBpAEkpAAAAAE7h5+dnUBYZGWlTXxs2bJAOHTqIUsqgrkSJEjb1CQBwLqbvAQAAAHAKd3d38fb21iuLiIiwqa9Ro0YZTUiJiPTo0cOmPgEAzkVSCgAAAIDTZMqUSW//77//luDgYKv6uHXrlsGUvUQNGjSQt99+2+b4AADOQ1IKAAAAgNMkTUqNHj1aChcuLHv37rW4jzNnzpise++992yODQDgXCSlAAAAADiNsXWlwsPDpWHDhrJs2TKL+rh27ZrJuoIFC9ocGwDAuVjoHAAAAIDTJB0p9bJevXpJgwYNpHDhwgZ1GzdulN27d0ulSpXkypUrJvsoUKCAXeIEADgeSSkAAAAATmMuKSXyIvn04Ycf6pXNnz/foml5bm5ukidPnhTFBwBwHqbvAQAAAHCa5JJSx44dMygbP368RX3nyZNHPD09bYoLAOB8JKUAAAAAOI2xNaVe9vz5cxERiY2NFaWUREREWHx1vty5c6c0PACAE5GUAgAAAOA0yY2Uunv3rnTu3Fl8fHykWLFi4u/vb3HfSqmUhgcAcCLWlAIAAADgNMklpY4fPy7Hjx8XEZEbN25Y1XdoaKitYQEAXICRUgAAAACcJrmkVEq8+eabDusbAGB/JKUAAAAAOE1ya0rZyt3dXd59912H9A0AcAym7wEAAABwGnuOlHrzzTelXbt2curUKenWrZsUL17cbn0DAByPpBQAAAAAp7FnUqpAgQLSq1cv6dWrl936BAA4D9P3AAAAADiNPZNS+fPnt1tfAADnIykFAAAAwGkCAgLs1hdJKQBI20hKAQAAAHCawoUL260vklIAkLaRlAIAAADgNCVKlLBbXySlACBtIykFAAAAwGmyZs1qt9FSJKUAIG0jKQUAAADAqWbMmCG+vr4iIjJs2DCbFz+356LpAADnIykFAAAAwKm6desmt2/flnv37sk333wj0dHRyR7z2muviUaj0e23aNHCkSECAJyApBQAAAAAp8uePbvkzZtXREQSEhKSbV+jRg359ttvJV++fFKzZk35+uuvHR0iAMDBSEoBAAAAcKksWbIk2yYwMFA++OADuXv3rhw5ckTKlSvn+MAAAA5FUgoAAACAS73yyivJtgkODnZCJAAAZyIpBQAAAMClPvvsM739oUOHGrRhZBQApD8kpQAAAAC4VI0aNWTOnDlSsWJF6datm4wfP16GDx+uq/fx8ZFOnTq5MEIAgCNolFLKkScIDQ2VwMBACQkJkcyZMzvyVAAAAADSiaioKJk1a5bcvHlTBg0aJNWqVXN1SACQoTgjn0NSCgAAAAAAAHqckc9h+h4AAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnI6kFAAAAAAAAJyOpBQAAAAAAACcjqQUAAAAAAAAnM7D0SdQSomISGhoqKNPBQAAAAAAADtIzOMk5nUcweFJqadPn4qISMGCBR19KgAAAAAAANjR06dPJTAw0CF9OzwplS1bNhERuXXrlsNuBBwvNDRUChYsKLdv35bMmTO7OhzYiMcxfeBxTB94HNMHHsf0gccxfeBxTB94HNMHHsf0ISQkRAoVKqTL6ziCw5NSbm4vlq0KDAzkyZgOZM6cmccxHeBxTB94HNMHHsf0gccxfeBxTB94HNMHHsf0gccxfUjM6zikb4f1DAAAAAAAAJhAUgoAAAAAAABO5/CklLe3t0yaNEm8vb0dfSo4EI9j+sDjmD7wOKYPPI7pA49j+sDjmD7wOKYPPI7pA49j+uCMx1GjHHltPwAAAAAAAMAIpu8BAAAAAADA6UhKAQAAAAAAwOlISgEAAAAAAMDprEpKzZ8/XypVqiSZM2eWzJkzy6uvvipbtmwx2X7JkiWi0Wj0Nh8fH702SimZOHGi5M2bV3x9faVp06Zy5coV224NLOKIx7F3794GbVq0aOHom5KhWfs4iog8f/5c3n//fcmbN694e3tLqVKl5K+//tJr8/3330uRIkXEx8dHatWqJUeOHHHkzcjwHPE4Tp482eD1WKZMGUfflAzN2sexYcOGBo+RRqORVq1a6drw/uh8jngceX90Plv+rs6ePVtKly4tvr6+UrBgQRk2bJhER0frteH90bkc8Tjy/uhc1j6GcXFx8umnn0rx4sXFx8dHKleuLFu3bjVox2vRuRzxOPJadL0ZM2aIRqORoUOHmm23Zs0aKVOmjPj4+EjFihUNvjva5fOqssLGjRvV5s2b1eXLl9WlS5fU2LFjlaenpzp37pzR9osXL1aZM2dW9+/f120PHjzQazNjxgwVGBioNmzYoE6fPq3atm2rihYtqqKioqwJDVZwxOPYq1cv1aJFC702wcHB/9fevQdFeZ1/AP9y28UKcpHbgsgtyBiLojIqIjIjKJXEYrwEB2oltZqITeMlpjbVgqZR0tjW0FSHGMVOx8iExAqNJqgoEhS8QIiAIQ2IUo2AIlHRAILP74/82LrZhbCw7FL5fmaYYc8577vPu0/OnjfH8x6McTmDlr55bG1tleDgYImOjpaCggKpqamRvLw8KS0tVbfJyMgQhUIhe/bskYqKClm2bJnY29tLfX29sS5r0OmPPCYlJcmYMWM0+uONGzeMdUmDkr55bGxs1MhPeXm5WFhYSHp6uroNx0fj6488cnw0Pn3zuG/fPlEqlbJv3z6pqamRnJwcUalUsnr1anUbjo/G1x955PhoXPrm8JVXXhF3d3c5dOiQVFdXy44dO8Ta2lpKSkrUbdgXja8/8si+aFpnz54Vb29vGTt2rLz00ktdtjt16pRYWFjIH//4R7l48aJs2LBBrKyspKysTN3GEPerek1K6eLg4CDvvvuuzrr09HSxs7Pr8tiHDx+Km5ubvPnmm+qyb775RpRKpezfv7+voZEe+pJHke9uumNiYgwfGOmluzzu3LlTfH19pa2trcvjJ02aJCtXrlS/7ujoEHd3d9m6davBY6Wu9TWPSUlJMm7cuH6Kjnqquzx+31/+8hextbWV5uZmEeH4OJD0JY8iHB8Hiu7yuHLlSpkxY4ZG2Zo1ayQ0NFT9muPjwNDXPHJ8NL3ucqhSqeTtt9/WKJs3b57Ex8erX7MvDgx9zSP7ouncvXtX/P395ejRoxIeHt7tpNSzzz4rTz31lEbZ5MmT5fnnnxcRw92v9npPqY6ODmRkZODevXsICQnpsl1zczO8vLzg6emJmJgYVFRUqOtqampQV1eHyMhIdZmdnR0mT56MwsLC3oZGejBEHjvl5eXBxcUFAQEBWLFiBRobG/szdHpET/KYnZ2NkJAQrFy5Eq6urvjxj3+MLVu2oKOjAwDQ1taG4uJijf5obm6OyMhI9kcjMUQeO3311Vdwd3eHr68v4uPjUVtba4xLIPT8e/VRu3fvxqJFizB06FAAHB8HAkPksRPHR9PpSR6nTp2K4uJi9SNAly5dwuHDhxEdHQ2A4+NAYIg8duL4aBo9yWFra6vWFiFDhgxBQUEBAPbFgcAQeezEvmgaK1euxFNPPaXRj7pSWFio1S4qKkrd3wx1v2rZ45b/r6ysDCEhIWhpaYGNjQ3++c9/4sknn9TZNiAgAHv27MHYsWNx+/ZtbNu2DVOnTkVFRQVGjBiBuro6AICrq6vGca6uruo66h+GzCMA/OQnP8G8efPg4+OD6upqvPrqq5g9ezYKCwthYWFhzEsbVPTJ46VLl3D8+HHEx8fj8OHDqKqqQmJiIh48eICkpCTcvHkTHR0dOvtjZWWlMS5n0DJkHgFg8uTJ2Lt3LwICAnD9+nVs2rQJYWFhKC8vh62trTEvbVDRJ4+POnv2LMrLy7F79251GcdH0zFkHgGOj6aiTx7j4uJw8+ZNTJs2DSKC9vZ2vPDCC3j11VcBgOOjCRkyjwDHR1PQJ4dRUVH485//jOnTp8PPzw+5ubk4cOCA+h/e2BdNx5B5BNgXTSUjIwMlJSU4d+5cj9rX1dV1ey9qsPtVfZZ6iXy3n8lXX30l58+fl/Xr14uTk5NUVFT06Ni2tjbx8/OTDRs2iMh3zygCkK+//lqj3cKFC+XZZ5/VNzTSgyHzqEt1dbUAkGPHjhkqZNJBnzz6+/uLp6entLe3q8v+9Kc/iZubm4iIXLt2TQDI6dOnNY5bt26dTJo0qf8uggyaR12amppk2LBhPX4EiXqnt9+ry5cvl8DAQI0yjo+mY8g86sLx0Tj0yeOJEyfE1dVVdu3aJRcuXJADBw6Ip6enbN68WUQ4PpqSIfOoC8fH/qdPDhsaGiQmJkbMzc3FwsJCRo0aJYmJiWJtbS0i7IumZMg86sK+2P9qa2vFxcVFPv/8c3XZDz2+Z2VlJe+9955G2d/+9jdxcXEREcPdr+r9+J5CocATTzyBiRMnYuvWrRg3bhzeeuutHh1rZWWF8ePHo6qqCgDg5uYGAKivr9doV19fr66j/mHIPOri6+sLJyenbttQ3+mTR5VKhVGjRmn8y/zo0aNRV1eHtrY2ODk5wcLCgv3RBAyZR13s7e0xatQo9sd+1pvv1Xv37iEjIwNLly7VKOf4aDqGzKMuHB+NQ588bty4EYsXL8Yvf/lLBAYG4plnnsGWLVuwdetWPHz4kOOjCRkyj7pwfOx/+uTQ2dkZBw8exL1793DlyhVUVlbCxsYGvr6+AMC+aEKGzKMu7Iv9r7i4GA0NDZgwYQIsLS1haWmJkydPIjU1FZaWllpbgQDf3Y92198Mdb/a6z2lOj18+BCtra09atvR0YGysjKoVCoAgI+PD9zc3JCbm6tuc+fOHZw5c6bH+zeQYfQlj7pcvXoVjY2N3bYhw+suj6GhoaiqqtK4Mfv3v/8NlUoFhUIBhUKBiRMnavTHhw8fIjc3l/3RyPqSR12am5tRXV3N/mhkPflezczMRGtrK372s59plHN8HDj6kkddOD6aRnd5vH//PszNNW+JOyf+RYTj4wDSlzzqwvHR+HrynWptbQ0PDw+0t7fjww8/RExMDACwLw4gfcmjLuyL/S8iIgJlZWUoLS1V/wQHByM+Ph6lpaU6txQICQnR6G8AcPToUXV/M9j9ao/XVInI+vXr5eTJk1JTUyMXLlyQ9evXi5mZmRw5ckRERBYvXizr169Xt9+0aZPk5ORIdXW1FBcXy6JFi8Ta2lpjqV9KSorY29tLVlaWXLhwQWJiYvgnr/uZofN49+5defnll6WwsFBqamrk2LFjMmHCBPH395eWlhaTXONgoG8ea2trxdbWVn71q1/Jl19+KR999JG4uLjIH/7wB3WbjIwMUSqVsnfvXrl48aIsX75c7O3tpa6uzujXN1j0Rx7Xrl0reXl5UlNTI6dOnZLIyEhxcnKShoYGo1/fYKFvHjtNmzZNYmNjdZ6T46PxGTqPHB9NQ988JiUlia2trezfv18uXbokR44cET8/P41HDzg+Gl9/5JHjo3Hpm8OioiL58MMPpbq6WvLz82XGjBni4+MjTU1N6jbsi8bXH3lkXxwYvv/43vdzeerUKbG0tJRt27bJF198IUlJSWJlZSVlZWXqNoa4X9VrUuoXv/iFeHl5iUKhEGdnZ4mIiFD/x9h5UUuWLFG/XrVqlYwcOVIUCoW4urpKdHS0lJSUaJzz4cOHsnHjRnF1dRWlUikRERHy5Zdf6hMW6cnQebx//77MmjVLnJ2dxcrKSry8vGTZsmUcHPqZvnkUETl9+rRMnjxZlEql+Pr6yuuvv66xN5GIyF//+ld1vidNmiRFRUXGuJxBqz/yGBsbKyqVShQKhXh4eEhsbKxUVVUZ65IGpd7ksbKyUgBotHsUx0fjM3QeOT6ahr55fPDggSQnJ4ufn59YW1uLp6enJCYmavwPlAjHR2PrjzxyfDQufXOYl5cno0ePFqVSKcOHD5fFixfLtWvXtM7Lvmhc/ZFH9sWB4fuTUrruc95//30ZNWqUKBQKGTNmjBw6dEij3hD3q2YiXaxnJSIiIiIiIiIi6id93lOKiIiIiIiIiIhIX5yUIiIiIiIiIiIio+OkFBERERERERERGR0npYiIiIiIiIiIyOg4KUVEREREREREREbHSSkiIiIiIiIiIjI6TkoREREREREREZHRcVKKiIiIiIiIiIiMjpNSRERERERERERkdJyUIiIioj7Zu3cvzMzMsHfvXlOHopfGxkY4OjoiMTHR1KEMSAkJCTAzM8Ply5f1PlZEMG7cOISFhRk+MCIiInpscFKKiIiI1MzMzPT6+V+biHpUUlISvv32W2zYsMHUoTx2zMzMsHnzZhQUFOCDDz4wdThEREQ0QFmaOgAiIiIaOJKSkrTKtm/fjtu3b+Oll16Cvb29Rl1QUBB8fHwwZcoUqFQqI0XZd7W1tUhLS8Nzzz0Hd3d3U4fzWIqJicHo0aPxu9/9DvPnz4eZmZmpQyIiIqIBhpNSREREpJacnKxVtnfvXty+fRurVq2Ct7e3zuPs7Oz6NzADS0tLQ3t7OxISEkwdymNtyZIlWL9+PXJzcxEZGWnqcIiIiGiA4eN7RERE1Cdd7Snl7e0Nb29vNDc3Y/Xq1fD09MSQIUMQFBSEgwcPAgDa29vx+uuvw9/fH9bW1vDz88Pbb7/d5Xvl5OQgOjoaTk5OUCqV8PPzw7p16/DNN9/0OF4RQXp6Ojw9PTF16lSt+vr6erz88ssICAjA0KFDYW9vj4CAACQkJODSpUt9junq1av49a9/DX9/fwwZMgSOjo6YNGkSXnvtNa22xcXFmD9/PlxcXKBUKuHl5YXExERcv35dq+2je0ClpaUhMDAQ1tbWcHV1xfLly3H79m2d8Rw7dgxhYWEYOnQoHB0dMXfuXFRWVnb5+WVnZyMiIgIqlQpKpRLu7u4IDw/Hjh07tNouWrQIALB79+4uz0dERESDF1dKERERUb958OABZs6ciVu3biEmJgZtbW3Yv38/5s+fjyNHjmDHjh04c+YMZs+eDaVSiczMTLz44otwdnZGbGysxrk2bdqE5ORkODo64umnn4aLiwsuXLiAbdu24fDhwygsLMSwYcN+MKaKigpcv35dPWHyqPv37yM0NBTV1dWYOXMm5syZAxHBlStXkJWVhQULFsDX17fXMZ0/fx5RUVG4desWpk+fjnnz5uH+/fu4ePEikpOTsXHjRnXbjz76CPPnz4eIYMGCBfDy8kJxcTF27tyJrKwsFBQUwMfHR+saXnnlFeTk5GDOnDmYNWsWTpw4gV27dqGqqgrHjx/XaPvBBx8gNjYWCoUCsbGxUKlUKCgoQEhICMaOHat17nfeeQfPP/883NzcMGfOHDg5OaGhoQEXLlxAenq61qbxXl5e8PDwwLFjxyAifISPiIiINAkRERFRN7y8vASA1NTU6KxPT08XAJKenq7zuKefflpaWlrU5fn5+QJAHBwcJDg4WJqamtR11dXVYmVlJUFBQRrnOn78uACQkJAQjfaPvv+qVat6dD07d+4UALJt2zatuuzs7C7P1draKnfu3Ol1TK2treLt7S0AZN++fVrn/89//qP+/e7du+Lo6Cjm5uaSn5+v0S4lJUUAyMyZMzXKlyxZIgDE09NTrly5oi5/8OCBhIWFCQA5c+aM1ntYWlrKuXPnNM61atUqAaCV9wkTJohCoZD6+nqt+G/cuKFVJiIyd+5cASAVFRU664mIiGjw4uN7RERE1K+2b98OpVKpfh0WFgYfHx80NTXhjTfe0Ng83dfXF6GhoSgvL0dHR4e6PDU1FQCwa9curc3WExISEBQUhH379vUontraWgDodmP2IUOGaJUpFArY2tr2OqZ//etfuHz5Mn76058iLi5O6/wjRoxQ/56VlYVbt24hNjYWYWFhGu3Wrl0Lb29vHD16VH0tj/r973+PkSNHql9bWlriueeeAwCcPXtW6z3i4uIQHByscY7k5OQu9wmztLSElZWVVrmTk5PO9m5ubgCgM1YiIiIa3Pj4HhEREfUbe3t7+Pn5aZW7u7ujpqYGEydO1Krz8PBAe3s76urq4OHhAQAoLCyElZUVMjMzkZmZqXVMW1sbbty4gcbGRgwfPrzbmBobGwEADg4OWnXh4eHw8PBASkoKSkpKEB0djdDQUAQFBcHCwkKjrb4xFRUVAQBmz57dbXwAUFJSAgCYMWOGVp2lpSWmT5+Oy5cv47PPPtOYgAKgNcEEAJ6engCApqYmrfcIDw/Xam9nZ4egoCCcPHlSozw+Ph5r167Fk08+iUWLFiE8PByhoaFwdnbu8locHR0BADdv3uyyDREREQ1OnJQiIiKiftPdapuu6jvrHjx4oC5rbGxEe3s7Nm3a1O37NTc3/+CkVOcqqJaWFq26YcOGoaioCElJScjOzkZOTg6A71YBJSYmYsOGDepVQvrG1LnxeedEW3c6NyXvajVXZ7muzdS/v2oL+O9n+ujqs873cHV11fkenSucHrVmzRo4OTlhx44dSE1Nxfbt22FmZobw8HC8+eabOifEvv32WwC6V58RERHR4MbH94iIiGjAs7Ozg4ODA0Sk2x8vL68fPJeLiwuA/66Y+r4RI0Zg9+7daGhoQHl5OVJTUzF8+HBs3rwZmzdv7nVMnZNF165d69H1AkBdXZ3O+s6/vtfVpF9PdB5bX1+vs76r9/75z3+OoqIiNDY24tChQ1i6dCny8/MRFRWFGzduaLXv/Jw7P3ciIiKiTpyUIiIiogFvypQpaGpqQkVFRZ/P1flX5SorK7ttZ2ZmhjFjxuDFF1/E0aNHAQAHDx7sdUxTpkwBAHz88cc/2Hb8+PEAgLy8PK269vZ2fPrppwCACRMm9Oi9dek89vuP6AHfraIqLS3t9nh7e3tER0dj165dSEhIwK1bt5Cfn6/VrrKyEubm5ggMDOx1rERERPR44qQUERERDXirV68GACxbtgxff/21Vv29e/fUezb9kLCwMFhYWOhsX1FRoXPlUGfZj370o17HNGfOHHh7eyM7Oxv79+/Xan/16lX173PnzoWjoyP279+vFef27dtRU1ODyMhIrf2k9BETEwMHBwe89957OH/+vEZdcnKy+vG+R504cQIiolXe0NAAQPPzAYDW1laUlpZi/PjxOh8rJCIiosGNe0oRERHRgBcREYGUlBT89re/hb+/P6Kjo+Hj44Pm5mZcuXIFJ0+exLRp0/DJJ5/84Lns7OwQERGBvLw8NDU1aWx4fvToUaxbtw4hISEYNWoUXFxccPXqVWRlZcHc3Bzr1q3rdUwKhQKZmZmYNWsW4uLikJaWhilTpqClpQVffPEFcnNz0d7eDgCwsbHBnj17sHDhQoSHh2PhwoUYOXIkiouLceTIEbi5uSEtLa1Pn6mNjQ3eeecd9V/4i42NhUqlQkFBAcrLyzF9+nStlU/PPPMMbGxsMGXKFHh7e0NE8Omnn+LcuXOYOHEiIiMjNdrn5eWhra0N8+fP71OsRERE9HjipBQRERH9T/jNb36D0NBQpKamoqCgAFlZWbCzs4OHhweWL1+OuLi4Hp8rMTERR44cQUZGBlasWKEuj4qKQm1tLfLz85GVlYU7d+5ApVJh5syZWLNmDaZOndqnmIKDg1FaWoqUlBR8/PHHOH36NGxtbfHEE09o7FcFfLeS6dSpU9iyZQtycnJw+/ZtuLm54YUXXsDGjRvh7u7ei09R04IFC/DJJ59g06ZNeP/996FUKjF9+nQUFhYiJSVFa1IqJSUFOTk5KCkpweHDh2FtbQ0vLy+88cYbWLFihXoT+E5///vfoVAosHTp0j7HSkRERI8fM9G1BpuIiIjoMdbR0YHAwEAoFAp89tlnMDMzM3VIj52GhgZ4e3sjLi4O7777rqnDISIiogGIe0oRERHRoGNhYYFt27bh888/x4EDB0wdzmNpy5YtsLCwwGuvvWbqUIiIiGiA4qQUERERDUrR0dF466230NLSYupQHjsiApVKhX/84x9QqVSmDoeIiIgGKD6+R0RERERERERERseVUkREREREREREZHSclCIiIiIiIiIiIqPjpBQRERERERERERkdJ6WIiIiIiIiIiMjoOClFRERERERERERGx0kpIiIiIiIiIiIyOk5KERERERERERGR0XFSioiIiIiIiIiIjI6TUkREREREREREZHT/BxG9QzKssor8AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "execution_count": null + }, + { + "metadata": {}, + "source": [ + "**CXR Attribution Map:** Shows a heatmap over the input CXR image, with highlighted areas corresponding to regions above a configurable percentile threshold (e.g., top 25%). This helps reveal where the model focused attention in the spatial domain." + ], + "cell_type": "markdown" + }, + { + "metadata": {}, + "source": [ "x_pts = result[\"x_pts\"]\n", "y_pts = result[\"y_pts\"]\n", "importance_pts = result[\"importance_pts\"]\n", - "cxr_thresh = result[\"cxr_threshold\"]\n", - "axes[2].set_facecolor(\"white\")\n", - "axes[2].imshow(result[\"xray_image_np\"], cmap=\"gray\", alpha=1)\n", - "sc = axes[2].scatter(\n", + "cxr_thresh = result[\"image_threshold\"]\n", + "\n", + "fig, ax = plt.subplots(figsize=(6, 6))\n", + "fig.patch.set_facecolor(\"white\")\n", + "ax.set_facecolor(\"white\")\n", + "\n", + "# Show base CXR image\n", + "ax.imshow(result[\"image_np\"], cmap=\"gray\", alpha=1)\n", + "\n", + "# Overlay attribution points\n", + "sc = ax.scatter(\n", " x_pts,\n", " y_pts,\n", " c=importance_pts,\n", @@ -1679,10 +856,14 @@ " linewidths=0.7,\n", " edgecolor=\"black\",\n", ")\n", - "cbar = plt.colorbar(sc, ax=axes[2], fraction=0.04, pad=0.04)\n", - "cbar.set_label(\"Importance (0.7–1.0)\")\n", - "axes[2].axis(\"off\")\n", - "axes[2].set_title(\"CXR: Important Regions\", fontsize=\"x-large\")\n", + "\n", + "# Add colorbar for importance\n", + "cbar = plt.colorbar(sc, ax=ax, fraction=0.04, pad=0.04)\n", + "cbar.set_label(f\"Importance ({cxr_thresh:.2f}–1.00)\")\n", + "\n", + "# Final formatting\n", + "ax.axis(\"off\")\n", + "ax.set_title(\"CXR: Important Regions\", fontsize=\"x-large\")\n", "\n", "plt.tight_layout()\n", "plt.show()" @@ -1693,9 +874,9 @@ "output_type": "display_data", "data": { "text/plain": [ - "
" + "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAACU8AAAHqCAYAAAA+3y3qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4VNXWh3/TZ9ITQm+hKCBIUxBBqgUVURQUlItgL1e9iteC5YJivfp57f0KKFdEUbEgoFKkiIoIqEhTegslhbTp+/sD93HNnn0mk5BkIFnv88wzmVP2WXuffSYzOW/WsgghBBiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYeoY1kQHwDAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMkwhYnmIYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYpk7C8hTDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMHUSlqcYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhqmTsDzFMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMEydhOUphmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmHqJCxPMQzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAxTJ2F5imEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGYOgnLUwzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzD1ElYnmIYplZgsVgwYMCAiGWTJk2CxWLB4sWLExLT8ciAAQNgsVgqtM/UqVNhsVgwderU6gmKYSpATk4OcnJyEh0GwzAMwzA1SGU+wzLM8cShQ4eQlZWFm2++OdGhMMcwQgh06dIFffv2TXQoDMMwDMMwDMMQxo0bB4vFgm3btiU6FIZhYsDyFMMwNYbFYon5SLR8I2WrWA9V0JLs3LkT9957L0455RRkZmbC4XCgQYMGOOuss/Dcc8+hsLBQu9/u3bvx4IMP4vTTT0d2djYcDgfS09PRrVs33HzzzceE+LV48WJYLBZMmjSp2o+1bds2WCyWOiG/1OS4VkcMOTk5EdeG1WpFeno6evXqhWeffRaBQKDqA2YYhmGYWo76+zXWY9y4cYkO97hGjnV1/uFSSl2xHmafw3744Qdcc801aNeuHVJTU+FyudCyZUuMGDEC77//PkKhkHa/VatW4cYbb0SnTp2Qnp4Oh8OB+vXro2/fvnjwwQexcePGCvWhoKAA//rXv9C1a1ekpKTA5XKhadOm6NWrF+68806sXr26osNSJzlawW/ixIkoKyvDAw88ELF8yZIlGDNmDDp16oR69erB7XajVatWuPDCC7FgwYJKHWvatGno2bMnUlJSkJ6ejgEDBuDzzz833T4UCuE///kPOnfuDI/Hg6ysLJx//vn49ttvK3X8mmD27NkYOXIk2rdvj8zMTHg8Hpxwwgm4/PLL8eOPP1aorfL+jjBv3jztfnl5ebj99tuRk5MDl8uFJk2a4Oqrr8auXbsq3S+LxYKHH34Yy5Ytw6xZsyrdDsMwDMMwTFWwYcMG3HrrrcZ3E6fTiSZNmmDIkCH473//C5/PZ2z73//+FxaLBeedd55pe0OGDIHFYsHLL79sLJN/36YPh8OBJk2a4JJLLsGSJUuqrD818R3yWCHWvbBjPQYpKdFHUlISTjrpJNx55504cOBA1QfLMEytwZ7oABiGqXtMnDhRu7xr1641G4gJ/fv3N/1QppN63nzzTdxyyy3w+Xzo0qULLr/8cmRmZuLQoUNYtmwZbr/9dkyePBkHDx6M2O/111/HP/7xD3i9XrRv3x4XX3wxGjRogJKSEmzcuBFvv/02XnnlFfzzn//EU089VQ09jebtt99GaWlpjRyLqR384x//QEZGBkKhEHbs2IGPPvoId9xxBxYsWIDPPvusxuOp7E0ihmEYhjkWuP3221FQUGC6vrS0FM888wxCoRA6depUc4ExR8XYsWNN/zlA/d4RCARw22234dVXX4XNZkP//v0xZMgQuFwu7Nq1CwsXLsSHH36I4cOHR8gRfr8ft912G1577TVYLBb07t0bAwcORFpaGgoKCrBq1So8/vjjeOyxxzB79mwMHTq03Lj37NmDPn36YNu2bWjdujVGjx6N7Oxs5OfnY9WqVXj22Wfh8XjQrVu3oxkephx27NiB1157DVdddRWaNGkSsW7hwoVYuHAhTjvtNAwaNAjJycnYsWMHPv30U3z22Wd44IEHMHny5LiP9c9//hP/93//h2bNmuG6666D3+/He++9h6FDh+KFF17ALbfcErG9EAKjRo3CrFmz0K5dO9xyyy3Iy8vDzJkz0a9fP3z44Ye46KKLqmQcqpJPPvkEK1euRI8ePdCkSRM4nU78/vvv+PjjjzFz5ky8/vrruPbaayvUptl13rZt26hlhw4dQu/evbFp0yYMGjQIo0aNwoYNGzBlyhTMmTMHK1asQOvWrSvVt4suuggdOnTA/fffj+HDh3NWPoZhGIZhEsLDDz+Mhx56COFwGKeffjrGjh2LlJQU5ObmYvHixbj22mvxyiuvGOL6Nddcg08//RSffvopXnrpJfz973+PaO+VV17BF198gfPOO0+bjbVly5bGPxiVlpZi1apV+PjjjzF79mzMnDkTl156abX3mTm2uOiii4x7jrm5ufjiiy/wzDPP4MMPP8SqVatQr169Go3n8ccfx7333oumTZvW6HEZhqkggmEYpoYAIKrrbQeA6N+/f8SyiRMnCgBi0aJFcbUht584cWLcx50+fboAIDIzM8Xnn3+u3WbZsmWiS5cuEcumTZtm7Dd79mztfoWFheLf//63uOWWW+KOpzpYtGhRzHGZMmWKACCmTJly1MfaunWrACBatmx51G0d65Q3rsd6DC1bthQAxNatWyOWb968WSQnJwsAYvHixVUTKMMwDMMwIhwOixEjRggAYsSIESIcDic6pGOG/v37V/h7htlnmapExhXv9xEhhLjuuusEAHHyySeLDRs2RK0PBoPi7bffFiNGjIhYPm7cOGO/X3/9Vdv2tm3bxPXXXy+mTZsWVyzXXHONACCuvvpq7Xzbs2ePWLVqVVxt1XUqM0cl9913nwAgli9fHrWurKxMu8+uXbtEgwYNhNVqFXv27InrOMuXLxcARJs2bUReXp6xfOvWrSIrK0u4XK6o6+Xdd98VAETv3r0jYvnhhx+E0+kU9evXF4cPH47r+DWJ2bj9/PPPwuVyifT0dOHz+eJqq6J/dxBCiOuvv14AEOPHj49Y/txzzwkAYvDgwXG3peOJJ54QAMRXX311VO0wDMMwDMNUhkcffVQAEM2bNxffffeddpvPPvtMDBgwIGJZbm6uqF+/vkhKSor4LrRx40aRlJQk6tWrJ/bu3Ruxj/z7tnpvSAghHn/8cQFA5OTkHH2nRM18hzxWMBvT4yGGsWPHau9XlZWViS5duggAYtKkSVUTJMMwtQ4u28cwzDFHTk6O6X9my5T4x0I5u6KiItx2220AgPfeew9DhgzRbtenTx98//33xuvCwkLcfvvtAICZM2ea/iduWloa7rrrLvznP/8pN5bi4mI4nU706dMnYnlZWRncbjcsFgveeeediHWvvPIKLBYL3nrrLWOZWk5i3LhxGDhwIADgoYceikh1qjsHixYtwoABA5Camoq0tDQMGTIE69evLzf+8qDl5X788Uece+65SE9PR2ZmJoYPH46dO3cCALZs2YJRo0ahfv368Hg8GDhwINauXRvVnkzdumXLFjzzzDNo37493G43mjVrhjvuuAOHDx/WxrFq1SoMHz4cDRo0MEqn3Hzzzdi7d2/MY7zwwgtGGYsBAwbENa6FhYV46qmnMGjQIDRr1gxOpxP169fHhRdeiBUrVmjjk6lsDx48iOuvvx6NGzeGy+VCx44dMWXKlKj4KnJu46Vt27bo378/AGDlypVR6zds2IBx48ahefPmcDqdaNiwIa644grTEjKbNm3C8OHDkZmZieTkZPTu3Rtz5szB1KlTteU+zd4/fD4fnnjiCZx88slISkpCWloa+vbti/fffz9qW1k+cty4cdi2bRtGjRqF7OxsuN1unHrqqdqyJX6/H88//zy6d++OzMxMJCUlIScnBxdddBG+/vrrOEaOYRiGYWLzr3/9C7NmzUK3bt0wbdq0qGwihYWFmDBhAtq1awe3243MzEwMHjzY9PdQOBzGq6++ih49eiAlJQXJycno0aMHXnnlFYTD4ajt5eeM3NxcXH311WjYsKHxu3np0qUAgJKSEtx1111o2bKl8Rnkgw8+MO3TjBkzMHDgQGRkZMDtdqNDhw545JFHIso3UN577z2ccsop8Hg8aNCgAcaMGYM9e/bEO4RxUZHPU1XN8uXL8cYbbyArKwvz589Hu3btorax2WwYM2YMpk+fbixbsmQJpk6dinr16uHLL79Ex44dte23bNkSr732Gq644oq44pFl12699VZt9prGjRuje/fuUctLS0vx+OOPo2vXrkhOTkZKSgpOP/10zJgxQ3scn8+HSZMmoXXr1nC5XGjVqhUeeOAB+Hw+bakG+p1wxowZOOWUU5CUlIQmTZpg/PjxxvxZuHAhBgwYgLS0NGRmZmLMmDE4dOiQNoZdu3bhlltuMWKoV68eLrzwQu3nWXr8WbNmoWfPnkhKSkJWVhZGjRqF3bt3G9vKz5XffPMNgMhS9vGUoBBCYMqUKWjevDl69+4dtd7tdmv3a9q0KXr37o1wOIwtW7aUexwAePXVVwEA999/PzIzM43lOTk5+Pvf/w6fzxd1DbzyyisAgEceeSQilh49emDkyJE4cOBAVPm4n3/+GZdffrlRrq5+/fro3r07br/99hor/W02bieffDI6dOiAwsLCaivnUVxcjHfeeQfJyclRZTtvueUWtGzZEvPnz486b59++inOPPNM4z2pSZMm6N+/f0TZGsmoUaMAHCl/wzAMwzAMU5Ns27YNkyZNgsPhwBdffIHTTjtNu90FF1wQVd64QYMGeOONN1BaWoq//e1vCAaDCAaD+Nvf/obS0lK8/vrraNSoUdyxXHPNNUZMalWQqqQqvyvTv3nPmTMHvXv3RnJyMjIzMzFixAhs3rxZG8PevXvx97//HTk5OcZ9hEsuuQSrVq2KeYx58+ZhwIABSE9PN5bJ737ffPONacn5qVOnYvjw4WjdujU8Hg/S0tLQp0+fiO+pFHnfKRgM4rHHHsMJJ5wAl8uF5s2b45577oHf74+Kr7wYKorb7cbo0aMB6O9b5OXlYcKECejQoQM8Hg/S09Nx5pln4ssvv9S2J+/zNWvWDG63G+3bt8czzzyDLVu2GPcWKPJ+ka7s4/vvv49+/fohPT0dHo8HJ598Mh5//HHt30bk/Q85p1q0aAGXy4W2bdviySefhBAiap+KfJdgmLoOl+1jGIapJLNmzUJeXh569eqFc845J+a2LpcrYr/8/Hz07t0bZ599drnHsdvLf6tOSUlBz5498f3336OoqAipqakAjtyAkR+wFixYgDFjxhj7yPJmZ555pmm7w4YNAwBMmzYtqpyhKqh8/vnn+OSTT3DeeefhxhtvxG+//YYvvvgCK1euxG+//Ybs7Oxy+1EeK1euxJNPPon+/fvjuuuuwy+//IKPPvoIv/76Kz755BOcccYZaN++Pa688kps374dH330Ec4++2xs2bIFKSkpUe3dcccdWLJkCS677DJcdNFFmD9/Pp599lksXboUy5Yti/ij+ueff47hw4dDCIERI0agZcuWWLVqFV555RV88sknWLZsGVq1ahV1jH/84x9YunQphgwZgvPPPx82mw09evQod1zXr1+P+++/H/369cOQIUOQmZlplOCYO3cuPvvsM5x77rlRxysoKECfPn3gdDoxYsQI+Hw+fPDBB7j66qthtVoxduxYABU7t5XF4XBEvJ43bx4uueQSBAIBDB06FG3btsWuXbvw0UcfYc6cOVi0aFHEDbgNGzagd+/eyM/Px5AhQ9C5c2ds2bIFF198Mc4///y44/D7/Rg8eDC++eYbtG/fHn//+99RWlqKWbNmYeTIkVizZg0ee+yxqP22b9+Onj17onXr1hgzZoxRgkQKUVI+A458+ZkxYwY6deqEK6+8Eh6PB3v27MGyZcswb948nHXWWZUYQYZhGIY5wowZM/DII4+gUaNG+PTTT5GUlBSxXv7+/+2339CjRw/cfvvtOHjwIN5//32cc845eOWVV3DDDTdE7DNmzBi8++67aN68Oa699lpYLBZ8/PHHuPnmm7Fs2TL873//i4pDHic1NRWXX3458vLy8N5772Hw4MFYsWIFbrjhBuTl5eGCCy5AIBDAjBkzMHLkSDRv3hy9evWKaOvqq6/GlClT0KxZMwwfPhwZGRn47rvv8OCDD2LBggX46quvIj4H/+c//8H48eORkZGBK6+8EhkZGZg/fz569+6N9PT0Khzt+D9PVTWvv/46ABjSVizo94s33ngDAHDDDTfEdTMhnu8XAIwyBps2bYq7xHpBQQEGDRqE1atXo3v37rj66qsRDocxf/58XHHFFVi3bh0eeeQRY3shBIYPH445c+bghBNOwC233IJAIICpU6di3bp1MY/1wgsvYO7cuRg2bBgGDBiAL7/8Ev/5z3+Ql5eHiy66CKNGjcKQIUNw/fXX49tvv8X06dNx8OBBzJ07N6Kdn376Ceeccw7y8vIwePBgXHLJJTh48CBmz56NM844Ax9//LH2s+fLL7+MTz/9FBdeeCH69++P77//HjNnzsTatWuxZs0auFwuZGRkYOLEiZg6dSq2b98eUcI+ns/c69atw969ew0ZJl7279+P77//Hi6XSyvh6Vi4cCEAaL9jnHfeeZg8eTIWLlyIhx56CADg9Xrx7bffIikpCX379tXu884772DhwoW46qqrABwRp0477TRYLBZceOGFaNWqFQ4fPozff/8dL7/8Mh555JGo7xA1yaZNm7Bx40ZkZ2eXew2qLFu2DD/++CNCoRBycnJw5plnar8Df/fddygrK8M555xjfG+XWK1WDB48GK+//joWLVpklO57/fXXjet76NChyM7Oxv79+/Hzzz9jypQpUaVrWrZsiaZNm+Lrr7+GEIJL9zEMwzAMU2NMmTIFgUAAo0aNKrfUPP1OI7noootw9dVX46233sLDDz8M4Mg9gXHjxuGSSy6pdFzqZ8xx48Zh2rRpmDJlSpTkUhmq8rsyAHz00UeYO3cuLr74YgwYMABr1qzBhx9+iEWLFuHbb7+N+Iy/detWnHHGGdizZw8GDRqEyy+/HDt37sQHH3yAOXPm4MMPP8QFF1wQdYxZs2Zh3rx5xv2c7du3o2vXrpg4cSIeeuihiFKIQGTJ+ZtuugkdO3ZEv3790LhxYxw6dAhffPEFxowZg40bN5qWDr/iiiuwdOlSnHfeeUhLS8MXX3yBf//739i/f7/xjxrxxnA0qPNh+/btGDBgALZt24a+ffvi3HPPRUlJCT7//HOce+65eO2113DdddcZ23u9XgwaNAg//fQTunXrhtGjR6OwsBCPPvqoIczFy3333YfHH38c2dnZuOKKK5CSkoK5c+fivvvuw/z58/Hll1/C6XRG7BMIBDB48GDs2bMH5513Hux2O2bPno17770XXq834ntnRb9LMEydJ6F5rxiGqVPgz7J9EydOjHrQFJotW7Y0LdtmlhIfVVi2r3///toYJ06cKFasWGFsf/XVVwsA4v7774+rfclVV10lAIgHHnigQvuVx4MPPigARJQPvPfee4XNZhODBg0SzZo1M5aHQiGRlZUlWrduHdGGrpxEvGX7bDab+PrrryPW3XvvvQKAePLJJ+Pqg1nZPhkDADF9+vSIdfI8ZGZmikceeSRi3cMPPywAiGeffTZiuUzdWq9ePbFt2zZjeSgUEpdccokAIB5++GFjeVFRkcjKyhJWq1UsWbIkoi1ZEuHss8/WHqNJkyZiy5YtUX0tb1wLCgrEgQMHopbv3LlTNG7cWLRv3z5qnRyja665RgSDQWP5unXrhM1mEx06dKhQDLEwS1O8YcMGkZSUJACIH3/80Viel5cnMjIyRL169cS6desi9vnll19EcnKy6NatW8TyQYMGCQDi5Zdfjlj+xRdfGH1V0+/q3j8ee+wxAUCcd955IhAIGMtzc3ONftAyKHIeQpPCd968eUZbkoKCAmGxWMQpp5wSMe6SgwcPRi1jGIZhmHj5/vvvhdvtFm6327TkgSwBdf3110eUV9u0aZNIS0sTTqcz4ne2LLXVrVs3UVRUZCwvLi4Wp5xyigAg/ve//0UcQ/5uvOGGG0QoFDKWv/3228ZnsQsuuCCiHNaSJUsEADFs2LCItuTnx4svvliUlpZGrJOfyennt61btwqHwyEyMzMj+kE/u1X0zxtmn2Uq+nkqFvKz9dixY02/X9CyE61bt65Uqa1WrVoJAFGfxY+WF154QQAQqamp4q677hJfffVVuZ9r5Gdg9fN/WVmZGDx4sLBYLGL16tXGcjl/+vbtG1EmLT8/X7Rr1y7m97y0tDTx22+/Gcu9Xq846aSThNVqFVlZWRElpEOhkDjrrLMEgIjjBwIB0aZNG+FyuaJKTu/evVs0adJENGrUSHi93qjjp6amip9//jlin8svv1wAEDNnzoxYXtmyfa+88ooAIJ5++umY261cuVJMnDhR3H///WLs2LEiKytL2Gy2qM/RZhQXFwsAIiUlRbv+wIEDAoBo0KCBsezXX38VAESnTp1MYwIgevbsaSwbP368AKAtXZ+Xlxfx3lITfPXVV2LixIliwoQJYtSoUSI5OVl4PB5tfGbI+aA+XC6XeOCBB6JKXr744osCgLjlllu07T311FMCgLj77ruNZd27dxdOp1Pk5uZGba/7ziiEEMOGDRMAor57MQzDMAzDVCfy77lvvPFGpds4fPiwaNWqlbDZbMJms4mcnBzTUtCxyvZNnjzZ9POqWWm3WJT3HbIqvysDEJ999lnEumeffVYAEIMGDYpYfs455wgAUfdGli9fLmw2m8jKyor43i+PYbFYxNy5c7V9NRtTye+//x61zOfziUGDBgm73S527doVsU5+H+revbs4dOiQsby4uFi0adNGWK3WqJKM5cVghtm5LS0tFSeffLL2+1X//v2FxWIRM2bMiFien58vunTpItxut9i3b5+xXN53GjVqVMTn/R07dojs7Gzj7wC6uOj8+fbbb40Sl7T/gUBAXHDBBQKAePTRRyPakfPwvPPOi/h7Sm5urkhPTxfp6enC7/cbyyvzXYJh6jIsTzEMU2Po/qAoH/RDUKLlqViP//znP8b25513ngAgXnnllbjaj2e//Px87U2VeFi8eLEAIO644w5jWY8ePUTPnj2NP9Bu3LhRCCHEqlWrBABx3XXXRbRxNPLU6NGjo9Zt2bJFABDDhw+Pqw/lyVNnnHFG1D7ffPONAI7ULlfFlW3btgkAYty4cRHL5QdVKkhJ/vjjD2G1WiNqoU+fPl0AEJdffnnU9oFAQOTk5AgAYvv27VHHUMUttU+VEZduvfXWqOMJceQ6SEpKEoWFhVH79OvXTwCI+KJUFfLUP/7xDzFx4kTxwAMPiCuvvFIkJycLAOKf//xnxPbyy92LL76obe/222+P+OP+jh07BADRtm1b7U0UefMrHnmqbdu2wmKxiPXr10e18+abbwoA4qqrrjKW0Xmok6FatGgh6tWrZ7wuLCwUAETv3r2jbo4wDMMwzNEgpWkgWiCX+Hw+kZSUJFJSUiL+CCl54IEHBADx0EMPGcvk79H58+dHbf/1118LAGLgwIERy+XnDPWP1sFgUNjtdgFA/PHHH1Ht5eTkRHyuEkKIrl27CrvdLvLz86O2DwaDol69eqJHjx7GskceeUQAEP/617+itpef3apSnqrI56lYyM/WsR5U5PF4PAKA9jNLLGLtt3r16pj/uBKLcDgsJkyYINxud0TMOTk54tprrxVr1qyJ2P7gwYPCZrOJU089VdvemjVrBABx1113GcvOPPNMAUB88803UdvLz+Bm3/N0/4zy0EMPCQBizJgxUeumTp0qAIipU6cay2bPnq397CqRn2HnzJkTdXzdP9EsXLhQABB33nlnxPLKylMTJkwQQLTMqCIlK/lITU0Vb7/9dtzH2b17twAgmjZtql3v9/sFAOF0Oo1ly5cvFwBEnz59tPts2rRJABAnnniisUzKU7r3nkRwzz33RIxbo0aNxLx58yrUxkcffSTeeustsWXLFlFWVia2b98u3njjDdGwYUMBQEyYMCFi+0cffdR0/gghxOuvvy6AIzKspHv37iIpKUnk5eXFHdeNN94oAJjeEGMYhmEYhqkOOnToUCWfQahEFKst+fftli1bGt937rrrLjFw4EABHPmHC/pPs5I9e/aI9evXi4KCgrhjKu87ZFV8V5b9VgUp2V6bNm0EAOMfwnfu3CkAiBYtWkQIM5K//e1vAoCYNm1a1DFUcUvtU2XEpQ8//DDqeEL89X1I949C//rXvwQQLYsdrTx10UUXGXPipptuEs2bNxcARL9+/URJSYmxvfyeOmLECG178jvjSy+9ZCyTwpc6F4T46+8X8chT1157rQAgXnvttah2Nm7cKKxWq2jVqlXEcjkPN2/eHLXPlVdeKQCIX375xVhWme8SDFOX4bJ9DMPUOEJTc/dYYuLEiUdVO/loKCgoMMogUOKJ5/TTT4fH4zHK8RUWFuKnn37C3XffjUGDBgE4UqrvxBNPNEoyyOVVwamnnhq1rHnz5gCA/Pz8ajtGkyZNABxJ52qz2SLWNW3aFACwa9cubXv9+/ePWta6dWs0b94c27ZtQ0FBATIyMvDTTz8B0I+X3W5Hv379sG3bNqxevRotWrSIWN+zZ884eqZn+fLleO6557BixQrs378/ovY3AOzevTvqeCeccALS0tKi2qLnQlfCsLI899xzUcsmTZoUkRoWAFasWAEAWLt2rXY+b9q0CcCRcoUnnXQS1qxZA+DIvLZarVHbn3HGGfj666/Lja+oqAi///47mjZtivbt20etl+d09erVUet0cwo4MpayPwCQlpaGoUOH4rPPPkPXrl0xfPhw9O3bF6eddlpUWSWGYRiGiZfS0lJcdNFF2Lt3LyZMmIDRo0drt9u4cSNKS0vRp08fZGVlRa0fNGgQHnnkkYjfdT/99BOsVqs25X3//v1hs9m0vxtPPPHEqDJTNpsNDRs2RElJiVFiitK0aVN8//33Ef1au3YtsrOz8eyzz2r75HK5sH79+oh4ZWwq8rPb9u3bjWUFBQXatm+//XZkZGRoj0mp6s9TixYtqrLyAhVlzZo1Ud8v+vfvH1dpCovFgsceewx333035s+fj++++w4//fQTvv/+e7z55puYMmUKXnnlFaN8wcqVKxEKhWCxWLSf9wKBAABEnNvVq1fDarWid+/eUdufccYZMeOL9d3glFNOiVqn+24gP9Nt375dG/PmzZuNmNXSfTXx/efQoUMAgMzMzJjb3Xjjjbjxxhvh9XqxdetWvPrqq7jyyiuxfPlyvPrqq1USS1UwcuRIPPfccxg2bBhGjBiBs846C3369EGbNm3ibqO878YV+S7/xBNP4IknnkBJSQk2bdqEp59+2ihReP/998fVxsUXXxzxukWLFrj22mvRvXt39OrVC08//TTGjx9/VGXsR48ejTvvvBMnnXQSRo0ahf79+6NPnz6oX7++6T7y98HBgwcrfVyGYRiGYZhEUFZWhieffNJ4/cEHH2hLS1O2b98e9b0nMzMTCxcu1JYgb9y4cYXLNMeiKr4rU3TffW02G8444wz88ccfWL16NVq2bGl8b+/bt6+2/PWgQYMwffp0rF69GldeeWXEuqO5b7Fjxw48+eSTWLBgAXbs2IGysrKI9bt379buVxPfoSSffPIJPvnkk4hlZ599NubMmRMxVvI7YWFhofa7xIEDBwD89T328OHD+OOPP9C8eXNtKfbyvsdSYt13OvHEE9GsWTNs3boVhYWFSE9PN9alp6ejbdu2UfvoxrIy3yUYpi7D8hTDMEwlkR+uzT4ImtGoUSMAwJ49e6LW5eTkRMhlzZo1i7t9p9NpCCUHDhzAt99+i1AohDPPPBMdOnRA48aNsWDBAtx0001YsGABLBZLlcpTuhtRdvuRXzOhUKhKjkE/IKrHiLVO3qhRadiwoXZ5o0aNsH37dhQWFiIjIwOFhYUAYPqFSi4vKCjQtlUZPv74Y4wYMQJutxtnn3022rRpg+TkZFitVixevBjffPMNfD5f1H5mNwSr+lxItm7dipycHHi9XqxZswY33ngjHnroIbRu3RpjxowxtpM3ft54442Y7RUXFwOAMeZm58hsucrRnLtYYxkOhyOWzZw5E08++STeffddQxxzu90YMWIEnn766bjjZRiGYRjgyD8bjB07Fj/99BOGDRuGRx991HTbyvyuKywsRFZWFpxOZ9T2drsd2dnZ2L9/f9Q63ectuU+sdcFg0Hidn58PIQQOHDig/acBHeV9LpCf3SRm/5Awbty4uOSpmv48JWncuDG2bNmC3bt3a6VvMxo1aoStW7diz549UfuNGzfOEKV+//13nHDCCRWOKyMjAyNHjsTIkSMBACUlJXjiiSfwyCOP4NZbb8WFF16Ihg0bGp/3Vq5ciZUrV5q2Jz/vAX/NRTm2lPI+P1XFdwMZ8wcffBDzWDRmSU18//F4PAAAr9cb1/ZutxsdOnTAc889B5/Ph9deew1nnXUWRowYEXM/OV7yWlORy2mfK7NPz549sXTpUjz66KOYNWsW3nnnHQBAu3btMHHiRFx++eXl9rG8943K/CNUcnIyunXrhv/973/Iy8vDgw8+iHPOOQc9evSocFuS7t27o2fPnli+fDlWrFiBoUOHAqjcuEn56uWXX8bzzz+PZ599FhaLBf3798dTTz2lvQklb2DJOcQwDMMwDFMTNG7cGOvXr6/wPRPK3XffjQ0bNuAf//gHvvnmG7z11lsYNmyY8XlKR//+/bF48WIAQF5eHj788EPccsstGDp0KFauXFnpv9HHS1V8V6bE+u4L/PWZMRH3LbZs2YKePXsiPz8fffv2xTnnnIP09HTYbDZs27YN06ZN0963AGrmO5RkypQpGDduHEKhELZs2YIHH3wQM2fOxE033YQ333zT2E5+J/zqq6/w1VdfmbYnvxMePnwYwNHftwDiO387duxAQUFBxDyqyN8sKvNdgmHqMtGpHBiGYRKM1Wo1/dCo+5CXKKRBLjM9xUufPn0qtV88DBo0CEIILFiwAAsWLIDb7TaON2jQICxatAg+nw9Lly5Fx44d0aBBgyqP4XgiNzdXu3zfvn0A/vrSI5/lcpW9e/dGbEexWCyViu3BBx+E0+nEjz/+iNmzZ+P//u//8PDDD2PSpElo165dpdqsTtxuN3r16oW5c+ciNTUVN910U4QgKMdm7dq1EEfKBmsfY8eOBQAj24PZOTJbrnI0564ieDweTJo0CZs2bcKOHTswffp0nHHGGZg+fXq5N6sYhmEYRmXixImYNWsWOnfujOnTp8f8PFGZ33Xp6enIy8vTCubBYBAHDx7UZl6qCmQc3bp1i/mZgP5DgdynvM9uEvkPCepD91+hxxLH4vcLHcnJyZg8eTLOOOMM+Hw+LF++HMBf5+mOO+6IeV4XLVpktJWWloa8vDzt9794P+8dDTLmTz75JGbMalbVmkJ+X5N/0K8I5513HgAYN5FikZycjKZNm6K4uNh4z6DIDFwnnniisaxNmzaw2WzYsmWL9vzp9gGOZJb9/PPPkZ+fj+XLl+PBBx9Ebm4urrjiirgyy8b7vlFZzj33XAgh8M033xx1W/K/uUtKSoxl8ruczLyrYjZuV155Jb777jscOnQIc+bMwTXXXIMlS5Zg8ODBxn/DU+Scqevf+RmGYRiGqVkq+51G8uWXX+Kll17CySefjCeffBLvvPMOXC4XrrvuurgzamZlZeG6667DM888g127duHmm2+uVCyJ5Fi+b/HMM8/g0KFD+O9//4vFixfj+eefx+TJkzFp0iQMHjy4Um1WJzabDSeccALeffddnHbaafjvf/+LTz/91Fgvx+a5556L+T1jypQpAKruvgU9dnXfu6jodwmGqcuwPMUwzDFHZmYmcnNztTdzfvzxxwREpGfEiBHIysrCihUryv0jLzXtR4wYgYyMDHz77bdVfoPjzDPPBHDky8nChQvRu3dvuN1uY11eXh5eeeUVlJSUGNuWhyxbVl3/YZ9IdH8Q37JlC3bu3ImcnBzD4O/WrRsA/Y2HYDCIpUuXAjjy38XxUt64/v777zjppJPQoUOHiOXhcBjLli2L+zhHE0NlaNy4Me677z6UlJRE3GTq1asXABhjVR4ynfKKFSuisjwBiHsMUlNT0aZNG+zevdu4EUGRN+8qcu7Ko3nz5hg9ejTmz5+Ptm3bYtmyZZW64cUwDMPUTd577z1MnjwZDRo0wKeffork5OSY27dr1w5JSUlYu3at9h8NdL/runXrhnA4jCVLlkRtv2TJEoRCoSr93UhJSUlBx44dsW7dOuTl5cW1j4wl1me32sD1118PAHj99dfL/YMr/X5x7bXXxr1fVSLLUkhhpWfPnrBarXF/3gP+movffvtt1Lqq+swbi4p+Rq0slf3c3blzZwDAhg0bKnxM+d/+uqxeOmRW4nnz5kWtmzt3bsQ2wJF/nujduzdKS0u146fbh+JyudC7d288/PDDeP755wEgqqxGIqjouJkRCASMMhy0TEuvXr3g8XiwfPlyFBUVRewTDofx5ZdfAgAGDhyobTcjIwPnn38+3njjDYwbNw55eXna9/INGzbAarXi5JNPPqp+MAzDMAzDVISrrroKDocDH374IX777beY26rZifLy8oz9p0+fDpfLhU6dOmHy5MnIzc3FTTfdVKFYbrzxRnTs2BEff/yx8Q8fxwu6776hUMj4jiTvV8jnZcuWaf+hobJ/+7ZarTHvWwDA8OHD44q7ssSKobLtPffccwCAe+65x2i7ot8J09LS0Lp1a+zevRvbtm2LWl+R77Gx7jv9/vvv2LVrF1q1ahVXBu14iPe7BMPUZVieYhjmmKNnz54IBoOGyS2ZOnXqMfUhNzU11fgj78iRIzF//nztdt999x1OP/1043V6ejqeffZZAMBll12Gzz//XLtfaWmpabk5M7p374709HR88sknWLduXYQgJf9o/fjjj0e8Lo969eoBOFLHurbx3HPPRZR4CYfDuOuuuxAOh3HVVVcZy4cNG4asrCzMmDED3333XUQbzz77LLZu3YqzzjoLLVq0iPvY5Y1rTk4ONm/eHJG9SQiBSZMmlfvFs6piqCy33norGjZsiKlTpxrC0lVXXYWMjAw89NBD+OGHH6L2CYfDEV8SWrRogQEDBuD333/Ha6+9FrHtvHnz4vqvdMnVV18NIQTuuuuuiC9cBw8exOTJk41tKsuBAwfwyy+/RC0vKSlBcXEx7Ha7tiwSwzAMw6j88MMPuOqqq+B0OvHxxx+jZcuW5e7jdDoxevRoFBUV4cEHH4xY98cff+D555+Hw+GIKKcrf+9NmDABpaWlxvLS0lLce++9AIBrrrmmKrqkZfz48fD7/bj66qu1wld+fr4hHQDA6NGj4XA48MILL0T8cZJ+dqsN9OnTB9dddx0OHTqEc889Vyt+h8NhzJgxI+J89u/fH+PGjcPBgwcxePBgrF+/Xtt+RbP4PvXUU1i3bp123bJly7Bo0SLY7Xbju06DBg0wevRo/Pjjj5g8ebL2D91//PEHtm7dary+8sorAQAPPPAA/H6/sbywsND4nFadXHTRRWjTpg1eeuklfPHFF9ptVqxYEXGdVIbKfu7u27cvbDZb1HcQie5zNXBknB977DEAwJAhQyLW7d27Fxs2bIgqG3fjjTcCAB599FHk5+cby7dt24aXXnoJLpcr4jsSAOMG1gMPPBBRWnDlypWYOXMm6tevH3FT5dtvvzXKyVGk9JeUlKTtT1Xi8/mwdu1a7bqVK1fi1Vdfhc1mw7nnnhuxbseOHdiwYUPEXCgqKsLGjRuj2vH7/bj99tuxY8cOtG/fPqIURkpKCsaMGYOSkpKoEoMvvvgitm3bhsGDB0cIV4sWLdJm1ZLlVdVx8/l8WLNmDbp161ZlN1oYhmEYhmHiIScnB5MmTYLf78eQIUNM/xl+3rx5RqZUyY033og9e/bgkUceMf6JAADuvPNO9O3bF7NmzcL06dPjjsVmsxkln++///6IdWafiY8VFi5cGHXf6MUXX8Qff/yBgQMHGn8raNasGc4++2xs27bNuOck+f777/Huu+8iMzMTF198cYWOX69ePdN/UpIZnVXhZ/78+RHl8I6WWDFUltNOOw0XXHABNmzYgLfffhsAcOqpp6Jv37746KOP8NZbb2n3++WXX4zP3sCR77HhcBgTJkyI+Jy+c+fOqPMQC/m3mUceeSQiA1QoFMI///lPhMPho/7bTEW/SzBMXefo/o2KYRimGrj11lsxZcoU3HTTTViwYAGaN2+ONWvWYMWKFbjgggtMZaOqYvHixVF/xJRkZGTg9ttvN16PHj0aZWVluOWWW3Duueeia9eu6N27NzIzM3Ho0CGsWLECa9euRXZ2dkQ7Y8eOhc/nw2233YahQ4eiQ4cO6NOnDxo0aIDi4mLs2rULX375JYqLi9GvX7+4Y7fZbBgwYIDxH7tUnmrZsiXatGmDP/74AzabDf3794+rzXbt2qFp06Z477334HA40LJlS1gsFowZMyauG3rHMn369EHXrl0xcuRIpKenY/78+Vi7di1OOeUU3H333cZ2KSkpeOutt3DppZeif//+uPTSS9GiRQusWrUKX375JRo1ahQl+JRHeeN6xx134MYbb0S3bt0wfPhwOBwOLF++HL/99huGDh2Kzz777Kj7X13nNikpCffeey/uuOMO/Otf/8KMGTNQr149zJo1CxdffDF69eqFM888Ex07doTFYsHOnTuxYsUKHDp0KOKmy0svvYQ+ffrg5ptvxhdffIHOnTtjy5Yt+PDDD3HRRRfhk08+gdVavgf+z3/+E3PnzsUnn3yCLl264Pzzz0dpaSk++OAD7N+/H3fffbeRUroy7N69G926dcPJJ5+Mzp07o3nz5jh8+DA+//xz7Nu3D7fddpuRmYFhGIZhzCgqKsKwYcPg9XrRo0cPfPnll0YGEh05OTkYN24cAOCJJ57A0qVL8eKLL2LlypUYOHAgDh48iPfffx9FRUV48cUX0apVK2PfK664Ap988gnef/99dOzYEcOGDYPFYsHs2bOxdetWjBw5EqNHj662vl599dVYtWoVXn75ZbRp0waDBw9GixYtkJeXh61bt2LJkiW46qqr8Oqrrxp9feKJJ3DnnXeiW7duEZ/dCgoK0LlzZ/z888/VFu/RMnXqVNPSaV27dsWwYcOM1y+99BJsNhteffVVdOjQAQMGDECXLl3gcrmwe/duLFy4ELt27YoqC/zaa6/B6XTi9ddfR6dOndC7d29069YNaWlpOHToEDZv3ozFixfDarXG/bnnf//7H+6++260b98evXr1QuPGjVFSUoJ169Zh4cKFEELg//7v/9CkSRNjnxdffBGbN2/Gv/71L7zzzjs444wz0LBhQ+zZswfr16/HypUrMWPGDGM+XnnllXjvvfcwb948dOrUCRdeeCECgQA+/PBD9OjRAxs3bozr815lcTgc+OijjzB48GAMGTIEvXv3RteuXZGUlISdO3di5cqV2LJlC/bu3XtUf1Q+88wz8cEHH+CSSy7B+eefD4/Hg5YtW0ZIcDrS09Nx5plnYvHixcjPz0dmZmbE+nPOOQcNGjRAt27d0Lx5cwSDQfzxxx+YN28egsEgbr31Vpx99tkR+0yYMAHTpk3DlClTjPcQAOjduzfGjx+PZ555Bp07d8aIESPg9/sxc+ZM5OXl4YUXXogqfTlq1Ch89NFHmDVrFrp164ahQ4fi0KFDmDlzJkKhEN54442IEqD//ve/sXDhQvTt2xetWrVCSkoK1q1bh7lz5yIzM9PIvladlJWVoWvXrujcuTM6deqEZs2aobS0FOvXr8fChQsBHBEH27dvH7HflVdeiW+++QaLFi3CgAEDABwpjdehQweceuqp6NChAxo3bowDBw5g0aJF2Lp1K7KzszFjxoyoOfzYY49h8eLFeOaZZ7BmzRr07NkT69evxyeffIIGDRrgpZdeitj+4osvRkpKCnr16mWUJV26dClWrlyJU045BWeddVbE9osXL4bf79dmA2AYhmEYhqlu7rvvPgSDQTz00EPo0aMHevfujVNPPRUpKSnIzc3FkiVLsHnz5gjB/J133sEHH3yAfv364c4774xoz2q1Ytq0aejcuTNuvfVWDBgwAM2aNYsrlksuuQRdu3bFN998g/nz5xtl5cw+Ex8rDB06FBdffDEuvvhitG3bFmvWrMHcuXORlZWFl19+OWLbV199FX369MFdd92FL7/8Eqeeeip27tyJDz74AFarFVOmTKnw36bPPPNMvPfeexg6dCi6d+8Oh8OBfv36oV+/frj55psxZcoUXHrppRgxYgSaNGmCX3/9FfPmzcNll12GmTNnVskYxIrhaHj44YcxZ84cPPTQQxg9ejScTifeffddDBo0CNdccw2ef/55nHbaacjIyMCuXbvw888/49dff8WKFSuMkth33303Zs+ejffeew8bN27EOeecg8LCQrz//vvo168fZs+eHdf32N69e+Puu+/Gv//9b3Tq1AkjRoxAcnIy5s6di19//RVnnHEG7rrrrqPqb0W/SzBMnUcwDMPUEABEvG87S5cuFX379hUej0ekpqaK888/X6xdu1ZMnDhRABCLFi2Kart///4Ry8y2NUNuH+vRsmVL7b47duwQd999t+jWrZtIT08XdrtdZGdniwEDBoj//Oc/orCwULvfzp07xX333Sd69uwpMjMzhd1uF2lpaaJz587ihhtuEIsXL44rdsrzzz8vAIi0tDQRDAYj1l1//fUCgOjZs6d23/79+2vP0Q8//CAGDRok0tLShMViiRjXKVOmCABiypQp2jZ158aMrVu3asd50aJFAoCYOHGi6T5jx46N+/hjx44VAMQff/whnn76adGuXTvhcrlEkyZNxD/+8Q/T8/XDDz+IYcOGiezsbOFwOETz5s3FjTfeKHbv3h21rTzG1q1bTfsba1yFODK2Xbp0EUlJSaJevXpi2LBh4ueff67QdVBePOXFYEbLli1j9q+srEw0adJEWCwWsXbtWmP51q1bxd///nfRtm1b4XK5RGpqqmjXrp3429/+Jj7++OOodtavXy8uvvhikZ6eLpKSkkSvXr3E559/Lp566ikBIGqfli1baq/TsrIy8eijj4qOHTsKt9stUlJSRJ8+fcS7774btW15c0q9TvLz88VDDz0kBg4cKJo0aSKcTqdo1KiR6N+/v3j33XdFOBzWtsMwDMMwFPn7J96H+js/Pz9f3H333aJt27bC6XSK9PR0cdZZZ4n58+drjxcKhcRLL70kTjnlFOHxeITH4xHdu3cXL774ogiFQlHbx/qcYfb7Vwjzz5dCCPHZZ5+JIUOGiPr16wuHwyEaNmwoevToIe6//36xfv36qO3fffdd0a1bN+FyuUR2drYYPXq02L17d8xjmGH2WaYyn6fMkHHFeph93vjuu+/E1VdfLU444QSRnJwsnE6naNasmRg2bJiYOXOm9hwJIcTKlSvF9ddfLzp06CBSU1OF3W4X9erVE7179xb33Xef2LBhQ1yxCyHETz/9JCZPniwGDhwocnJyhNvtFi6XS7Ru3VpcccUVYunSpdr9fD6feOGFF8Tpp58u0tLShNPpFM2bNxeDBg0S//nPf8TBgwcjti8rKxMPPvigyMnJEU6nU7Rs2VLcd999YteuXQKAuOiiiyK2j/U9L9Z3k1jfKXJzc8U999wjOnbsKDwej0hOThZt27YVw4cPF++8844IBAJxHd/sc2QwGBQTJkwQrVq1Ena7vULfkWbPni0AiJdffjlq3XPPPSeGDBkiWrRoITwejzHWI0aMEPPmzdO2J+ex2fe3KVOmiFNPPVUkJSWJlJQU0a9fP/HZZ5+ZxhcIBMQzzzwjOnXqJNxut8jIyBDnnXeeWL58edS28+fPF+PGjRMdOnQQaWlpIikpSZx44oni1ltvFdu2bYtrPI4Wv98vJk+eLM466yzRtGlT4XK5hNvtFm3atBFjxowR3333nXY/eT3T815YWChuvfVWcdppp4mGDRsKh8MhkpOTRefOncU999wjcnNzTeM4dOiQuO2220SLFi2Ew+EQjRo1EldddZXYuXNn1LavvPKKGDZsmGjVqpXweDwiMzNTdO3aVTz55JPi8OHDUdtffvnlwul0xjw+wzAMwzBMdfPbb7+JW265RXTs2FGkpqYan3nOPfdc8eabbwqv1yuEEGL79u0iPT1dpKWlxfxM+MYbbwgA4uyzzzb+3io/48f6bP3pp58KAOLUU081lpX3mVhHZb5DVvS7Mv0+89lnn4levXqJpKQkkZ6eLi655BKxceNGbVu7du0SN954o/HZsl69euKiiy4SP/zwQ9S25d3PEeLI96PLL79cNGjQQFit1qjvUcuXLxcDBw4UGRkZxt/ZP/74Y9PvXLG+s5vFU14MZsRzbi+55BIBQDz//PPGssOHD4tHH31UdO/eXSQnJwu32y1ycnLE+eefL1577TVRXFwc0UZ+fr649dZbRePGjYXT6RTt2rUTTz/9tPj+++8FAPGPf/xDG5fu7wkzZswQffr0ESkpKcLlcomTTjpJPPLII6KsrCxq21hzSvddtaLfJRimrmMRQpOrjWEYhmFqMePGjcO0adOwdevWqP+eZo4PRo8ejXfffRcbNmxAu3btEh0OwzAMwzAMU8V89dVXOOecc3DvvfcapcfrIqFQCCeffDKcTidWr14Ni8WS6JCYY5j9+/cjJycHV1xxRZWWTWEYhmEYhmGqn6lTp+Kqq646ZjNiMeXzxhtv4Prrr8err76KG264IdHhMAxTQaov9znDMAzDMMxREA6HsW/fvqjlCxYswMyZM3HSSSexOMUwDMMwDHOcs2fPnqhlhw4dwr333gvgSJmBuozNZsPTTz+NtWvX4qOPPkp0OMwxzmOPPQabzYbJkycnOhSGYRiGYRiGqbXovsfu2LEDkydPht1ux9ChQxMQFcMwR4s90QEwDMMwDMPo8Pv9aN68OQYOHIj27dvDbrdj3bp1+Oqrr+B0OvHSSy8lOkSGYRiGYRjmKBk/fjzWrl2L3r17o379+ti1axfmzp2LvLw83HDDDejZs2eiQ0w4559/Pp577jl4vd5Eh8Icwwgh0LhxY7zzzjto3LhxosNhGIZhGIZhmFrL8OHDEQgEcMoppyAjIwPbtm3D559/jtLSUjz++ONo0qRJokNkGKYSsDzFMAzDMMwxicPhwI033oiFCxfi+++/R2lpKbKzs3HppZfi3nvvRbdu3RIdIsMwDMMwDHOUXHLJJcjNzcVnn32GgoICuN1udOzYEddccw2uueaaRId3zHDbbbclOgTmGMdiseCee+5JdBgMwzAMwzAMU+sZM2YM3nnnHXz44YcoLCxESkoKTjvtNNxyyy245JJLEh0ewzCVxCKEEIkOgmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGYY4clS5bgqaeewqpVq7B37158/PHHGDZsWMx9Fi9ejPHjx2PdunVo3rw5HnjgAYwbNy5im5deeglPPfUU9u3bhy5duuCFF15IaAZya8KOzDAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzDMMUlJSQm6dOmCl156Ka7tt27diiFDhmDgwIFYs2YNbr/9dlx77bWYP3++sc3MmTMxfvx4TJw4ET/99BO6dOmCwYMHY//+/dXVjXLhzFMMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMw5hisVjKzTx1zz33YM6cOfj111+NZaNGjUJBQQHmzZsHADjttNPQo0cPvPjiiwCAcDiM5s2b49Zbb8W9995brX0ww56Qo9ZiwuEw9uzZg9TUVFgslkSHwzAMwzAMwzDHJEIIFBUVoUmTJrBaj82EuPzZnmEYhmEYhmHi43j4fM8wDMMwDMMwxyterxd+v7/K2hNCRP3N2+VyweVyHXXbK1aswFlnnRWxbPDgwbj99tsBAH6/H6tWrcKECROM9VarFWeddRZWrFhx1MevLCxPVTF79uxB8+bNEx0GwzAMwzAMwxwX7Ny5E82aNUt0GFr4sz3DMAzDMAzDVIxj+fM9wzBMvPA/UFUBzRsAowbDunEbnFnJ8CanAGkpSNmyDcEyP7wntgZWrQcWrTqyfctGwGVnw7J1F0T7VkiyhNC0ngP7DnpRZHUjxRZGZkk+djoygZ37gLe/OLJfg0xgzBA0P7gL53T24N3fnSjLykLng1vg94WwIasFsH4bMPdboGNroFMb4LMlQKkvYUPDMEztoCYLvHm9XrRqVR/79hVXWZspKSkoLo5sb+LEiZg0adJRt71v3z40bNgwYlnDhg1x+PBhlJWVIT8/H6FQSLvNhg0bjvr4lYXlqSomNTUVwJEviWlpaQmOhmEYhmEYhmGOTQ4fPozmzZsbn5+PRfizPcMwDMMwDMPEx/Hw+Z5hGIapQXbuB2Z+ifDIc+DfuA0uAD4Axa1zkLJlG9ybtsB7Socj227ZDVx2NmwbtsBeLxW+wyUozUxDQe5hDG1rxYztAsUhK5oVF6FtGvB780bATcOBDxeailMBfwgbsloCG7bBOv87hAefDjSqh/R9e1GS4kH4lJNg+e5XWDSZV8yoiFQXa1u6Tv58NMKerj3gL7EjHsHDLA66r+7neOPWxVCR+CpLRdo221ZdHu92lYmhqkjEMZnqxe/3Y9++YuzceRfS0o4+M9Thwz40b/5U1N+9qyLr1PEMy1NVjPwlkZaWxjdYGIZhGIZhGKYcjuX/5uTP9gzDMAzDMAxTMY7lz/cMwzBMDbMj1xCoAmYCVc+OwOmdYftl0xFxKjkVSPbAs3UHDjRvgg+2AWdnF2PRNmBDdg7aiEK0EkXYWj8TuOESNN/xBwZ3ScL/NjtRlpX5pzgVxvrMlrBs3A77Vz8gdO7pQIdWyN69CyI9BTizF5zb98GVlASLxWI8AHMR6WjW0eUWiwVWqzXqZ5vNZmxDxSSdDKU7Lm1TEg6HIYRAOBw29lfb0MUiH3R/uZ/apizVqx6bxqs7rmwnFArFJVGpslY8cpDuuGp7apxmcdMxDIfDxmtdm2bPurjLO79my+Ptf2XWVWY7puZITXMhNc191O3IM1tdf/du1KgRcnNzI5bl5uYiLS0NHo8HNpsNNptNu02jRo2qPJ54YXmKYRiGYRiGYRiGYRiGYRiGYRiGYRgmBjpB5HiDyhBmfakKYcJoe9cBhGd+jfDIsxDYtB1uWOCF5YhAdWA/3B4bvAELrG2bwRcQQGoSUrftQKDUDzQMImC3YdUP+zH2FA+m7rLij9QMtLIUo1WqwNbDVgTb5eB/vxeiLCsDnQ9tRSggsD6zBWybd8K16CcEBp8O0b4lGuzZDYvDiQP1GyB1/XZk7imAvX59WK1W4wFES0jl/RzPdnSZzWaD3W6HzWaD1Wo1nl0ulyEwyXNgs9mM/VQRSP4s45V9kPsAQDAYRDgcht/vN/anIhQA4/h2ux0Oh8OIj+4fDAYRCoWifqbH1clb9Hj0uEIIBINBBINBBAIBY50qG6ltCZIlTCdG6V6bCUzqA0BUrPRnKXnJuIPBoPZY6n5UutLFGEueihW/Wb/jGZN4t63IMqbmEOLIoyraqU5OP/10fPHFFxHLvvrqK5x++ukAAKfTiVNOOQULFizAsGHDABy5BhcsWIBbbrmleoOLActTDMMwDMMwDMMwDMMwDMMwDMMwDMMwJlBZpiLZb4414pG/aPajo2nXyIq05wDErIUIjRiEwOYd8FgsKHM5UdykCdKKD8Nhs6EoJQUAkPbHNgTKAvCe2ArWVRtg3bgNh0YNxuzVe3FV98N4a78TW50pOEEE0C07hNUHHUB2PXQ9sAWBILAuszlsm3chafFq+M7qgeCJLdAodx/gcGJ/g/pI3leAnD2HYa9XD06nM0JkUh+6rE7qg4pXunVUnpKSktPpNI4tH0lJSUYcErvdHtFGKBQCEDnvqDRF+2KxWODz+RAMBuH1eo1sSVJ8oseQMbndbrhcLjgcDgBHyoQFg0H4/X4EAgEEg0H4fD6EQiGEQiFDBpPHpmMBwDiePCYVibxeL/x+P8rKyox18WaKkq+pnKTbTpWjdJKUKkrRMaIPKY35fD74/X74/f6INun+6kOVquhciaePOtErXtFKt45e37GyfsXKzlUTHI/vr7WZ4uJi/P7778brrVu3Ys2aNcjKykKLFi0wYcIE7N69G2+//TYA4MYbb8SLL76Iu+++G1dffTUWLlyI999/H3PmzDHaGD9+PMaOHYtTTz0VPXv2xLPPPouSkhJcddVVNd4/CctTDMMwDMMwDMMwDMMwDMMwDMMwDMMwDIDKCVSx2rLs2g/8KVD5cw/BleaG3x/C4aQ0OMNB2KxHMqF409Phb5oM66oNsC9bCwBwvPclDo46Bx+vz8O4wXZM/yWMzcUONA0FUT8JOFhmwcZ6zVBWFoJt0044v16JsjNPRejE5sjevRtBmxWHsrPh2nUQmcvXwevxwG63IxwOG8KRlH9oRigZe3nylNlrWtrObDytVitCoZCR5YmKXECklCO3CYfDRptSdLJarYbgJPH7/QiFQhGCkhSDdIIY3YYut9lsxjqaDUvKU7TPZhIOlYlkf6lYReWg8qQiucwsc5IuuxqVhmgmL112LDUemnFKymNU2lLlK9lHKkuVJ3np+kf3U+Ups/6WJzkdbea8qhIrAZajKovAXyX3jradivDjjz9i4MCBxuvx48cDAMaOHYupU6di79692LFjh7G+VatWmDNnDu644w4899xzaNasGd58800MHjzY2GbkyJE4cOAA/vWvf2Hfvn3o2rUr5s2bh4YNGx5V344GlqcYhmEYhmEYhmEYhmEYhmEYhmEYhmHioDzxoa6hyhH0Nf3ZtvsAxPK1CJ3ZE9bDJXD5ffBmZsFvcyCjpABBqw3F2VlAbp4hTgGA5UABbF9+h4PD+mPpRi9ubF6G57dnYXepHe1SA8hIFthc7AKcATi++gH+M09FqF1LZO/ahbDFirwGDeHYmYvUxWsR+FOUohINlZyA6BJxqjBEswapJevkfmqGMlXYoRmjgCMl8mjWJilfyWea/SgUCkWU29PJPkIIBAIBhEIhozQelXrkcVXxhy6j40DlMBm/en7NxCQqbdFnmuHJLOtUrGXlPceSucweOpGKCl9SYKPtqtvq+hRvhqdYfYxHnqrIseJ576JzWu5TVaVLy5OqYmX4S9T77rFQtlUkqGzfgAEDYo771KlTtfusXr06Zru33HJLQsv0qbA8xTAMwzAMwzAMwzAMwzAMwzAMwzAMY4JZNpu6TrzilMViQbhFQ4T7dIF9226EWjVBIOgGLIAr5MfhpHSIsID9YB6CackI9u0K+9I1AIBw/UyEBvdC04N74GvdBG9sdyDJCVhCIWwsdiDDKdDA5sd+hwPe20cBgSDq7dqFkAUoaNwY1u374PryB/j/FI5kxqlAIBBROk/KSGrpPrPMUwCitjXbhrZjtVrh9XqNcn12ux0+n89oR41JCk9UNqJxyuxZUq6RGafkczAYjJDELBYLXC4XbDYbnE5nlAAVCASMZypuSXGIIrNU0ZKCUjaSmbCocETFLlpSUL2+dNcWFbPksSh0uXqN6iQpVShTy/XROEtLS40Shio60UrtUzyClG6ZGn95belex7O9bsxrShQqT8iqyix4R0tVymPMsQnLUwzDMAzDMAzDMAzDMAzDMAzDMAzDMHFgJiNU5U31WO3VtEigiyNeaUoSbtEQwYsHwLF5O+yZKSgr9gIpHiSVFMNqs8DncgAWIKmgAKG9B1DSrR2CAKwbtiN4+dlocWgPBnf24J1th+FNz8AJ4WJ0amTBx7uTUOCzoLXwwmIXyLW4kGQPIwygoEnTI+LU3BUIK5mhqIgiRReZVUktRxePGGWWncqspJ+Ummw2W0QpPVmKz263w+FwGDHROKkIRbMiyf7IrE46GYj2SY2ZCkRCiAjpSZWfJPS1up8scafKRPI4Uqwyyzolt6VzKp5MTrG2U0UnnfREH1QAk5m/1PmtyzxlliUqVqxmcVe0z7ptynvPqK7sTvR605VjpNeSur1KeRJVvPEezfvqsSRyMdUDy1MMwzAMwzAMwzAMwzAMwzAMwzAMwzCVpC5lI6loX8MtGiJ08V/ilDc5BXA5kLx7L0obN4AQFtgPFyEUEjic0wJp23Yg+fdtKDmlHcKndUSLvdsxuLMH//vdCW9GCk4q3IEdmU3w+07gJE8pNh62YYs7DZl2geYOP/b4XCg9sQ2s67bC8cW3CCOy/JgUlYLBIAKBAGx/lvKz2WyGNCXFIjUDFe0/FaLo9jrBij7TdkOhkJFFSi53Op2w2+1GdihZYo8eV5b0k6KSzJ4EIEoAohKU0+mEzWaDw+GIaNdisRiiEAAjg5VxDhWJSpY+VI9DM175/f4ImUgeS2Z0CgQC8Pl8pqJPrLJ79JnOSzNZSpWRVBGNimNS7AqFQigrKzPmidxGjUVtK1bWKbVPsbJnVSTTVKzlVSlBVXSdJB4Bk7ajjlOs9isqrh6N6MqZp2o/LE8xDMMwDMMwDMMwDMMwDMMwDMMwDMMcJVWZlaS6MpzEatcso1SsTFO69uX6cIuGCF0yEI5N22DPSoU3OQUiNQlp23ciUOqHyM4GbFZgey7cmUnwAjic0wLJe/fB6rSjaaoF55zYAP9b6UNpRga65G1D0B9GsTMIOOzYvyEX7ds3xDqfQHHQAo8dgBCAxYpw43raPtPSczpZQ4orssSfWeYpKjHJPscjT8mfpcBFM0LRDFAWiwV2u92IgT5kWT8pQOlkGzWjj8x0ZbVajTKB8thSqqLtyWc1a5Q6D2g5PVVIMpOn1HVmmYnM+qRbrp6/eB+6DFQ005ROwIoVoxqPWeYldTvaZmVIVEak8krulYcuA5Xc10yQi3csYx2zsiQ685QQRx5V0Q4TDctTDMMwDMMwDMMwDMMwDMMwDMMwDMMw5WBWhupohAdd2ap4ty8vpsqUmaqMMEWllrjEqRIfyk5sBevK32DdthfB4QOBzTvhBlBms6KkZXO0thThrCZWvLMlGWVZyehycAuC/jDWpTeDZf022FZvwMGxF+BQmQWnZ5ZibZELe3xOJIsAGopSbKmXDu81Q+H+72dGbGbPUiKSfVFlJTomdL1cJiUqXZYqnRgiJSaZ0YhuI7NRyfJ+snyfzBZls9mM7FRSgNJlRKLHl9vIzFK07J/D4YAQAi6Xy4hbFZxom/RneXx1H7ovldXUdtX16txTszipc83sejArN6hKdLrMUaFQCIFAwMigFasMn5k4pVJe1qZ4hEbdMeK5tiv6HqAbU/W8VETArMz2ZutixUbXmR0v0eJTVSD+fFRFO0w0LE8xDMMwDMMwDMMwDMMwDMMwDMMwDMPESVWVbqqIoGS2vjKyU3n7V7Z/hvTSrEGEOFWWnAKQjFNlJ7aCddUG2JetBQDYP1yE4PCBCO/MhaV5MtItflgzUvDuRh+8VqBz/TD84QysL0uCZdMOOL78HoGzegCBINJT7fjjYAgWtwUIhVFidQAAWovDUQKVRBUt6CPevse7rS4TVKzxU7NXyTKCDocDTqfTeMgsUToBSc1yJWUtKiXJZypCyUxXUgajMatlC+nx5H4A4HQ6jcxZspyfHAfZtoyJZrrSSWaqnKWKMrp9dPvJB5XMdPNexqj2VwpIOhmLilflneNY2avUeNXtVQlKNx7qcSpDvPOUHkcdS936qsioFasds7FQt4kVR22Qq5ijw1r+JgzDMAzDMAzDMAzDMAzDMAzDMAzDMExFb7BX5ob80d7E12Xa0aGWoaMySjzLdPKKyEhBuG9XODZsPZJxKgTA6fhLnDohJ0KcAgDb7gOwf7Ec4bbNUd93GJe2E9ieG0Cx1YUu7mKIvCKst2TBknsIji+/R/CsHhAdWiFr+w5gy27sd6QiWFiK67L2wVZaii1IA3BEoEJmGnyjzjIdJ92YVURS041nrOOYta1mvFLlKZvNBrvdDofDYZTsi+f8qdmwzDJK6cQt9UHXy33NYpRxylhlpiy1bzpZTPfaLANYrH7r2o/3nOnakRIajUl9yHEwe6jbqHHqsp6Vd15iXafq61hzW9f/eMcu1jmLtw9m5yye96B4H5VpW0es94HqRJbtq4oHEw1nnmIYhmEYhmEYhmEYpmrZtAkYMADYvx8Ih4H69YE33gAuvDDRkTEMwzAMwzAMwxwVFb1pXtM32eMRpnTPum0qfGy7DaHBvWBbvwWOTq3gLQtCNMhC6tYdCPqDKOvQNkqcAgBhsSB8cltk/LwOzr4dMX1FIQJpaWjgL8JWqwuH/TbY9h9EGBYELuwL0bIxsnbuRNgCFGTWh+X3nfA1ro/Z3xXhmtMteHNLEFsy0tA6XIiW/nxsb9oAvuED4f5osekYxJJYqHykkzDiKddHt5fSDBWLZHYpKRy53e6IZ5fLZYhJ8jiyrJyaKUrGrZbGU7NU2e12ox1Z1k9mV6J9U+eUKudZLBYjdtmGxXKk7KDNZovIcCVjlu0Eg8GojFCqxFYZYVHN1kSf6RjQdbK/smyimmlKLUlI16limWxPjV+XZYrGpMtqRdvQlUGk/VT7ZbauKlDnv8wkRvsdCoW0UqKaVUttR46x2f6xYtJl+FK3ocRquyLZ6GoCLttXvbA8xTAMwzAMwzAMwzBM1fH558DQoZHL9u8HLroIeP554NZbExMXwzAMwzAMwzDMcUKl5aUKiFOx5Kl4Y1C3sYTCsMz5Figtgy8lGaJeOuxvfwFfWhKC/brBvmAlbL9tBdS2hYD9yx9QVlIGX8iCsg5tYFu4CiU796DkwgGwBIKwz14Cf+/OECc0/0ucatIM1u174fziW4TrpeHQgFMw44NtcK76Hb7Rg7GlUT1k5+5EVqAAeY0bw392T7i+XhkxBmaZb8rLghNPJh06TlJ4UrMY0SxENFNTrMxF8lxTiSfqXJAYdOKN2oaUmsyylpmVOtSJKKpYJQUs9ZmKVRUpb1hR5PHMysip5zVWRjKdvGQWu64vZmX/qDQWaz2NTxcPPUdyH1Vaqqg8pPaHSnpm8pQqq+kkLvW48tqg5SOByPKS5clgFRXGKiNHcXm/2gvLUwzDMAzDMMcaW7cCrVolOgqGYRiGqRyjR5uvu+02oEEDYOTImouHYRiGYRiGYRjmOKMqs53EyjRVHaKKpaQM4foZEBmpsM9dAUsgiFCvTrD+tBG2P3bH3E+kJsGXlAzHzK8Q6t0FXo8Ltm9/AZJc8PfvDtGykVacAgDrocNwzF2BkrN7wrF+F9zvfgnvyLNwsHFTZG3bhqzdu5HXthkCeYVwrfnd6L+ujBotMRerdBoVouKRp+RymaVJZpVyOByGfCIfusxV8iGzOwUCAUOoCYfDRjzAX5JOMBg0HlTEUcUqKsQAiMiyJLdXZRZ1nRACPp/PkLEizi8ZLxmzHBOa8UonaVVGbqHCDo3PTH5SM4mFQiFDVKL7yrFWM0bpiCUkqQ+1TbMMVTqxTW5Dt5U/60Qxdf94ZCNVMKQlB+V8jRWLek5ppi3Zriz36HQ6jTHwer1R2dDUcZBt0XW6MaTP8aLLHnYsZaJiqhaWpxiGYRiGYY4hxIknAps3Aw0bwrJvX6LDYRiGYZiKsWQJcPhw7G1GjTqy3Usv1UxMDMMwDMMwDMMwxxlHmwklVhYis/VHE4u6je1gIaxffAvLkZWwLVoFS4ztjeXFZXB8tgwWANZPlhxZBiDYviUsTjuytm9H2G5HQZOmEeKUsX+pF85PlxrH8ry/AL6zeyKvTVPU27sb9XbuREGLRgj6Q3Bt3KHNOEUlKl3ZPlWykcvUdWo/deUA1cxWVPyQ5cosFoshIkm5RFc2ju4PAIFAAMFgEF6vF4FAAH6/P2L81fkQCASMeAB9WTW5j05AoiUC1UxBso9q9iYqUemyN5mJQjrU7WSb8nixxDZ1P7qOxkqf5XJaqpGOl1n76v5qVivaj1il/OR2urKKsahI5ik6j2l2KfpsJk/JhxQR6XK1X7IfqjylZkSj/VXFMxmnXKaWhzR7rkiWqmMBLttXvbA8xTAMwzAMcwxh2bz5yA+5uYkNhGEYhmEqwwMPxLfdyy8DV1wB9OlTvfEwDMMwDMMwDMMchxxN5qlYmabieR3vOrqNLl6L2c/ltGlRngUAZKXBtXQNwl1yUJidAev2PXB+sSJmvPJn99cr4bNYkJ+VjsyDB+BZ+QsCJ7YANBKTFD1UgUqXcUonSqlSFY2FCii0PJ8qK0lpSo5pMBiE1WqFz+eDy+WCy+UyHTsqi3i9Xvj9fhQVFSEUChkCFhVfwuEw7Ha7sVxmVlLnDpWqdMgMV/I4apYemk1LSi2ybV3pPtqufI4nMxIVsFSxTGaMMhOo5D4y65QcDyqyyXV0vNWMXbq4dOOlSkAyPnkOVLFHleXofmoGLF12Jnnc8mQhVZjSlZlUrwc6j+Vx5LhRKYxKdjopyuVywel0wuVyRYw7nVN03NRsYrJv9LWMh8amPuiYmI2NmQTH1C5YnmIYhmEYhmEYhmEYpmrYuDH+bW+7DVi1qvpiYRiGYRiGYRiGqWaq6wZ6dYhTsbLhxHvciuxXkT6oWWsi1gGwf/sLwi4HDqekw7ZhO+w//w6Uc0w6Bp4FPyJwUisUtmmKpLIAkn/cCItSeoxKIrRsnyo+mZXoU0UqKiEB0Rmr6PEcDkdE/81koXA4jGAwGCXsUIlE7ltWVoZAIIBAIGAsl9tLmcnpdBrHl6UEqVilSlGqjEIFo1gClJoBSO5Lx4PKXeo5pJKSbo6o26sZrlRhSCe5UYlGFciorKOWHpTbmGXPMpNuYmVPUjNQ6TJTqeIQPX552aVU4U8tv6eb07FKVKqZp+Q42Wy2KNGJziU6Z2w2myEHJiUlGdvZbDaEQiGj7CQdu1jyFN1WjZmOIZW0aKnHWByN3Hq0CHHkURXtMNGwPMUwDMMwDMMwDMMwTNVQVBT/tmvXVl8cDMMwDMMwDMMw1UyiMo/ojmsmDZmtM9tXXW4mCRytOBBrf9N1oTBsv/4B25Y9ce9PhQnXhu2weX2wCREhRumkJipVyXbUsmWqgKJbpu6vtkVlLQBRWXZUpOihK4NHJRAhBPx+v1G6j0KP6Xa7IwQumRHLYrEY0pSMSx5LJ/HQ7VRU0YVKSuqYqedNJyOZZU8yk4VoG+qDZjFS49BlhYq1n1o+T9cvOka67EfqetoPmpGKZpzSjXGsa1dC57N8SGnQLHa6jMpUdG6rx1Vjo9tT6U4e3+FwwOVyRWRLk3OeCk5yfyEEAoFAxPGlZKhmOJP9VWPSjfuxCpftq15YnmIYhmEYhjlWCYeBGOmQGYZhGOaYQgjA641/e5LqnmEYhmEYhmEYhvmLymY2qSpxKt71NYklFIZty57Y25hk1pHCi3PH/iNyCCnNRx+6LFSyHbOsPFQAUo+pk6108UmZRGbkMRO5qBwihRp6DLvdHpHZx2q1wuFwGG263W44nU4kJyfDbrfD5XIZ4pRaei0QCCAUCsFut0dk+JFiChVQdFmnqAxEM/pQQUw+U1lKJ1SZZQPSyVW6OaEKP1SIom2p26nxyzGl/YlH5NNlhFIFICpH0X3U/XWZqmjbugxUdE47HA6jRJ4UlugYqcegxzLrn1oOUe03jUv+LIVBAEaGKY/HA4/Hg+TkZOO4fr8fwWAQfr8fdrsdycnJaNGiBZo3b47CwkIUFxfjp59+gtfrjZLR5Bym84COv7y+HQ6HMa/l9RNLYjyW3heZqoXlKYZhGIZhmGOVBQuAs89OdBQMwzAMEx/FxQhbrbBWRIoKhYA//1jFMAzDMAzDMAxT19EJE+VhJkyZZY+prDAVrzBQWbGgovvFilMnT5kJVbGEKHVbXZvlyVO6bVRUYUYnEMn1usxLtDSZKrJIQUSKM06n08gyZSUSmSzZRwUnABGikG7sqfhk1ic1VjXrjzrGumPo2tRlWaLrVHRzIVYGKylKUWFKLqfxHA3qvFSXqdvFEszM+irFOirKuVyuiFJ9sm01+1l570n0HKgymdnPdE4CQDAYjJqLdD8peLlcLqSlpaFJkyY44YQTkJeXh/z8fGzcuDEq7kAgoL2udM9qiU06FsdaJirBZfuqFZanGIZhGIZhjlUKCxMdAcMwDMPET2oqfOEwPBXZZ9MmoEOH6oqIYRiGYRiGYRimVqMTd+hzZdo72niqc794svyoggwtL0az8KjZpnSyFF1nI//4E0v20bWjy8YjhIgqqaeKMUB0Vh81BomazUcKJ1T+kPJUKBRCOByG1+uFzWYzslHJ8TCTYGRfnE6n0S7N1EMzUFFBShVRVHFKxk6zHKmZoNR1qkClrqOoJfV0QphuXGmmJHqOdP0wo7z1dN5QWUsVf9RlZlmq5LZWq9UQ5ZxOZ0SWMTleaqlHGpOalcvsnNLjq+OlSnxSgJLl+aTIVVpaCiFEhNjndDpht9uN7FF+vx9JSUlo1KgROnXqhNNOOw379+/HgQMH8PPPP8Nut0dln5LLaAlA9dxQuczhcBjz2OfzIRQKRUhY6jljah8sTzEMwzAMwxyrcDkjhmEY5jjC7/fDWtF/XfvtN5anGIZhGIZhGIZhKkGsjDOxlpe3rDrXxaKqBKp4HjTTTCwxSX3Q46vZaszkqVjx0kw/Uuahoo66rdqWFFKk9EQzAFG5Re0zFWZoiTOa9UfKNTqZSWaoov2lQpFELY0n21HRjRXN9ES3o8fVjYluHZVk5FioMhWNQxcXzTal7lsRgSpWBi+zZWrfKDIuOgdoaT4pIlFZUEUtu0jHSJXTKnL9UXGQZjpT5SkpN+muKdoOFQ6tVis8Hg+SkpLgcrngcDjg8/mM/WUJS5sm23msjFLyWFI+VOUys/dXpnbA8hTDMAzDMAzDMAzDMEfN2rVr0a2iO+XmVkcoDMMwDMMwDMMwtRZV0tGtO96oqNil20bN4KNKTjqhI5YcJbc1E63M5CjdcSQ6cUYVd2jmISoL6bIDUSGFtkezQUkhS0ok4XAYfr8/InOUFJXC4TA8Hg+sVitCoRCCwaAhq9DxUEUieRy5ra6sXqyMRfI8yWcqbKnnRHeudKjbUTFNjjHdlkpedO7Qc0flNDkewWAwrhJvscrgqXNOHSOadUvNwiXlOSpJud1uozSflKbUc6VeB/T82Gw2bSYvNSY1ftoH+ZBzVMYmhSkpUMnzrc5DOs7ymMFgECUlJfB6vQgEAkbGNLfbDafTGZHxSmYykwKV7LcuG5p80Ox0Tqcz4lqiGeASieCyfdUKy1MMgCNvOKWlpUhOTk50KAzDMAzDSIqKEh0BwzAMw8TN2rVrcUpFd+KsUwzDMAzDMAzDHGeUl2XmaChPBinv5/LWVWRZZWOr6DYVjT/W/qq4BETLU+U9aDvxSldmEhd9UBGECkiAeTYiuoyKXHa73Si3J8UoKtToSq4BQCAQQDgcNoQfKmkFg0H4fD44nU5jX1Ueo3IJbZuWmwsGg0bGKir+UCmKCkBUEKPHpaiCi9xel0Up1jyTx5MiGT227lzSvuskNhqPLlOWGrtOQqLParz02HQeScFJyklqJif5LKU6KcOZHUfNWqaKQjR2teRirGuFzh8pSsm5S0tmylKSgUDAGE86V6XIBwA+nw9erxc+n8/os8fjMYQxKrUBMPan/VOFNLMsZ+pcV5cxtQ+WpxgAwBtvvIEbbrgB+fn5yMjISHQ4DMMwDMMAwLRpwLXXJjoKhmEYhomLw3l5qOifj/Zs3IgmAwdWSzwMwzAMwzAMwzA1hZmUUBnikYwqIhxVVnqq6LrKClRVJU+p8gZdFo9ApWuPyh+x2qLHou2YHYOWWAOiMxCZ9VMeXwozVESR0pJZFiSZuUduJ+MAECGnBIPBiJipaKSTR6RU4nA4IiQxKStR6YZKWKpQpfaVZkuSyO3jmRdUVqP70/U0BjpnaBzqeKrl63TPYasFAacdLm8gSjpSs2qZZW/yJrvgLCqLWif7Ic+92+02JCIpKEmJSCd+0WNQaF9V2Y+iZkqj14j6TMdExiQzUdEHzUBF5w2drzIev98Pv99vZJ5yOBxwu91wuVxGezKzlRDCKL+nO5c0Cxftn06Uon1SywvWJOLPR1W0w0TD8hQDAJg+fToA4Ndff8UZZ5yR4GgYhqkUH34IfPklcO+9QKtWiY6GYZiqwOdLdAQMwzAMEzcFRUU4CCC7AvvMfvdd3HzjjdUVEsMwDMMwDMMwTMKg8kFlJaV4tq3pm/gVPV55MpeZuKRuo0omavYbAFHyhm6ZKnzINlQhQrdtedKVKlLp2tTFqB6Lljuj2XRoliFa9kyKJ6poJDMU6eQbNX46zlI6UTND0dJvEpoFSgpU4XA4IosQlWFkKTQpZcnMQGbQGNWMV2al8lTxR9cG7a+Mme6rzjn1OPScqeXlytKTsKtNQ+T8tgvuskBUli+zsnGSvBbZKGqYgWY/bAaEiJgbTqcTdrsdLpfLmANSoFPPNc02ReUws3Gj+6n91M1v3XUAIELik1nIZPYnee6lHEfHxW6PVFeklKdm2wqHw/D5fEhNTYXT6UR6ejpKSkrgdDoNUYsej5beo3OZZmyj4piMWcakCnMJlae4bF+1wvIUAwBYunQpAGDOnDksTzHM8UhBATBiBABALF8Oy6+/JjYehmGqBv4EyzAMwxxHHC4qgq2C+/yxaVO1xMIwDMMwDMMwDJNoVNEgnm3jbTOe5RXZtqLr4onXbPvKylP0Z52YpopJcpn6UEUoHWqGHjUDDV2ui1M9jtpOPDKKKm5RQUbNXCVjVgUqdb3Zcp3sosaviicqcjspRUkpRi1xR/enfdWJSrGkpfKIFSMVdtQ4yzuGOnZ0/6AFyK+XgoziMjQ+XIzfO7dAi437kFZQYuxLsyvpYt59cgsEktxocjAPQYcN3sw0pO0/bIh0LpfLyLYkMyyp2aZo6T06lrqMYWrf6Hkyu27oOOjkOvkzFdLU/tIxoHNcJ0VKaHlBKXjZbDZt2T7ZlpyP6jFp7HTM1PcWXf+5bF/theUpBpg8GSEAFgC/fPwx8PjjiY6IYZiKsnu38aNl3boEBsLUKPv2AY0aJTqKGkXWuKZ112sVf6ZGNrDXzo9qv/32G3w+H7p165boUBiGYZgq5PDhw3BUcB9LjP8uZRiGYRiGYRiGOd7QiQX0uaLtVPW2VUFFBatYglEsSUq3vVl5OypN6bJKxdrGTKRSpRMzwUlua7YdbUM+aN8sFotRWozuL8uySTlGLdVntVqNzEJCCPj9fvh8PiO7E30ARzI8qQKMmmVJZuuRco5cLrNDqVmMdOdIHoOWqVPPIY1bzQiknmsZp5ncRKUvXUzqnJGxyTGk5eJovBaLJSoDk9p+1DKbBYWNMhD0JcHT2I3MPC82dWuJE1dvR3phqSGlUemKylQ7u7ZCUcN0tCoqQLh+CnLrZyFrXwFSUwWcTiecTidcLpcxL9Q5I/saCAQizgeV4WjsunmqPtO5CyAikxR9pudVlfHouVPLF8o5TYUndXzV+SUzT8nrJDMzEyUlJfB4PBHykyxnKctSqvNEnYM0WxU9N7rShDX9vmvEDC7bV53UzjtyTMWYORPyV9xJmzcnNBSGYSoJW851CyEiz3ldyU4UCEC4XHAKAeTlAZmZiY6o6vnzS41BWlpi4qhmOnbsCED/3z8MwzDM8UsgEGB5imEYhmEYhmGYOolOFNLd/K9Mm0e7XbyyUzzryutPLFFKtyweeUou12XKoevNZAudMEJfqyJVrL6bSSflrTeTLuRrmjFHPlO5R30t26Dl8KQkoopTVFSimXvk/jIO+Y/LVLaRwoxsV2ImOqkZiKi8pfZZbkfHKt6/F9MxjJVBST2eOo/UdnSCFs1MRJfpRDJLWOCEzbn4rUNjFBYDjbKcQN5hQ6BKKygxbW9H1xwUNUhHq+JChASwKy0dTX/fj8aHyuD2eOB0OuFwOIxSjWqmKd14mM1xs+tDHRPd+VLnlvxZV35Qjg9drrtGZHy68dddL+FwGH6/H+FwGHa7HW6328g8JdtQM0/Ra0A957JNCs2KRfuii4upPbA8xQAkS41dkyKQYZjjAP4lXbfw+xMdQWK44grY5Jevdu1g2b8/wQHVAHl5iY6AYRiGYeImGAxWWJ4K+nzVEgvDMAzDMAzDMExNUZ4EVFl5Kd5jVzfxHMNMjoq1Lt4xinUM+ro8gUq3jkpJVOSItb9aLk+3LpY8peuXzLxDpRi5TMpVDofDiFUSCoUQCoXg9/sRCATg9/uNzFM04w7NqmOxWAzpxf/nvQar1QqHwwG73W5UfgiFQlHHo1ml1L7QDEPy+Ko8pUpMuuXloROnaCYnill5R1Xeov1S96UyGV2newYASziMdptysbpbC+wr8aNRPSdw6HBEBioar9VqxdZOzVDUIA2tiw8jGBbYkZGJevuLcEIZ4MjMNMQg+aD9oVmfaNk5VZqiGcvkfroxpdAsUfJ8BgKBCIHKTJoyk5/os+yPnOv0fKnXISUYDKKkpAShUAhWqxUpKSlISUmB0+mMmHNWq9UQC6VMpcp28tqQbVGBEAAcjr/+0kWFNaZ2wvIUU7cIh4GlS4GTTgLq1090NAxTdfAv6rqFmp2orkCyI1oOHEhgINWImn2joCAhYTAMwzBMRSgsLMTEiRPx/nvvYUYF9/WVllZLTAzDMAzDMAzDMFVJLBFI/Tne9eUtr0jW9orczK+IzFWe1BKvKKV7VsvXxcIsu5C6TpfVRic26TJN6ZZTMUQnRZkdk4oftC2zvqoZoGRJPlrSTWbRoQIHzfwjRSkpgsgHladon+R+cq7Jbfx+P4QQERmOaBYqszlBBRop26gZh9TzJ8fKTMChApPZvKDyEBWK1DbU2LXiEzkWXa+KWbp96WtPSKD76p34qVtz7Cv2o2GWA8grjMhAJY+3pVMzFNZPQ9uSwwgJC3ZkZKFhXik67SlBUnIy7Ha7cS6ogEfHS82CRZ+lfKeWjFTHTz1/dJmazUxXCtFsLGJdL7QUJR1jM1GRltnzer3G/PV4PHC73bDb7RHzQB7DLEY6/9UxlbKiKpmZzcWaQoiqKUbDRUH0sDzF1C2efRa4804EGjaEY9cuwM6XQK1j+XLg2muBK68EJkxIdDQMUz0cPJjoCBJDq1bA2rUAgJJ69ZCc4HAYhmEYhjnCE088geeeew6uSuxrq/JoGIZhGIZhGIZhqgedOEPXlbesovtVVKAya6+i21ck7lhZfei2Ztvpttf1Od6Y4hWmzF7rBJNYx4h17Fh9U4UQWVqPLqfZnaRMJSUYu91urFMFKt2DykxUfqExSElElkOT8ojMehXrnKhiEZW1Yu1nNlbqWJidfyqQ6UQts2xIunUSnWAkMxHR82EmU0nZzR0Ko9vqHVjdrQVyi/1omOU0BKoTVm9DekEp/ujYFIezU3FCaRECIWB7ejoa5JXi1P0+ONPS4HK5TEv0UTmNylNSGJLSFH2mopwuexQV0dRlOlkr1hzXbaNeb1Se0s0L9XqkGbbkPLVYLBFl++g4yLJ+uvlFs5bR+Sb763A4jGtCFSgTifjzURXtMNGwOcLULe68EwDgyM0Fvv0W6NcvwQExVY0YOBCWQAC47z7g5puB9PREh8RUM6JHD+DHH2G58kpg2rREh1Mz3HdfoiNgagrW/xmGYZjjgHfffRcAKlyyD+A/SjAMwzAMwzAMc3xRGQGqvG0luqxHuv100kZ5VERIMotRt95MjNKt0wkU5cUYTzzqMVW5SMoXVCDRCVOqUCVjUiUQWjbNTAbTCVhm2bOowKFmuqLPOpEDgJEtSpbsk8+yvJqUbCS0JJk6x9R5JuUUmc1HlYR0pQh1WYlizS2a6Uk3B9T5rrary1wlxRkgMguVmu1MHRdZQo6KNOFwGD6fD6FQCIE/q4Lo4tQJXJ5QyMhARQWqzd1ykHS4FN4UN04oK0YYVuzISEXTw370KBBwpaZGxGI2R2TcVJair+n5kfH5/X5jzsj5Qfuk9o2Or2473fmhY6teE/RaM8s8JYRASkoKkpKSkJSUBIfDEZEJLTs7G/Xq1YPH44HVaoXH4zEeMvsa7bMs3afOKZmVTc5xKU3p5pTMCKfOG6Z2kdi8YlXIypUrccstt6Bjx45ITk5GixYtcNlll2HTpk1x7V9QUIDrr78e9evXR3JyMgYOHIiffvqpmqNmmOpl7ty5sFgsyM/PT3QoNYaFljP79dfEBVLT1NVMRAAsP/4ICwC8/XbdKXF26FCiI0gMCTb6awTyAb42w1lGGIZhag/5+fnYsWMHAJanGIZhGIZhGIapG+iy5Zgt060ze1CRhz6kECGzAMmHusxsf90jnnjU2HV9Muuf2TFUOamy4xvPOno8NQOV2TiofdPFpR5TbSueMa4oalkxNXOQLvOUmlWovLGK1Xc1A5GubRpnecfSbRfPvDQ7j/HO81hjK/eRoo7T6TQeVPDRHdssHovFAndIoNvqHSjxOJFbbEFqlhMeSwiH66WgWdCLsLDgj5RUNDnsx2mHgvB4PHA6nUbmL7PSdVJUotnB5EOW+qNtyH1pOUda5lEtySfPjXou430f0Y2P7n1KN3Y2mw1JSUlIT09HdnY26tevjwYNGqBhw4Zo3Lgx6tWrh7S0NNhsNgghDNFM7b8cR3ke6bmlz/ThdDrhcrngcrmMjFbyZ7lc7pcQxF+l+47mwamn9NSav1M++eSTWL58OS699FJ07twZ+/btw4svvoju3bvju+++Q6dOnUz3DYfDGDJkCNauXYu77roL2dnZePnllzFgwACsWrUKJ5xwQg32hKkx6oAVOnLkSADAnj17kJmZmeBoEsCWLUCfPomOomYYNSrRERwbPPssMGlSoqOofuqIYBMFfd+uxBfM45La+LvqxBMRBBAod0OGYRjmeGDlypXGz5X5sxELtQzDMAzDMAzDHC/Im/yx1qs/q2KKzGhCM//QUlsyG4uaXSiWABJLDJEyhJq1KFYpLl1/dDGY9THWOvpaPb7ZOJr1jZ4PuZ3MLkWFE7oMiMzwpZM3VAEqXtlMJ2vpxlE3pjRGsyxYqkBjdl7KO6YcA/X4qrwSa77phB6zY9D16jxU52JlkMdxOBxRmZlkZiFdpi31Z7vdHiUjStFLCIFAIBAhGaljQvujZtNKCodxyppdWNWtGX63WdEgzYq0QBg7rSkQISCnMIAzSuywJbu0x6b9kMtknE6n0/iZzkN1HHw+HwKBALxer9EPGXus+WKWRU2VuNTxoPvrrg1VDKXz3WazoXnz5sjJyUH9+vXhdru17Xu9XpSVlaGsrAxCCGRkZCAQCCAQCBjjZ7fbo7KGyXkukeNBS0Cq85uWoZSZyBIBl+2rXmqNPDV+/Hi8++67cDqdxrKRI0fi5JNPxhNPPIHp06eb7jtr1ix8++23+OCDDzBixAgAwGWXXYYTTzwREydONEoQMLWMOiAfFBUVAYg/bWutY948YMyYREdRM+TmJjqCY4O9exMdQc1QV6/puoD6u6k2SmKbNwP48wa71wsoX3wYhmGY44v9+/cbP1c281QwGITdXmv+PMEwDMMwDMMwTC2E3tQvbxsziYVKDUBkeTMpTcnMN2q2IIlOZIgl6ugEJZo5CECUSEWzz+jEpnhFKbN1NA7dGKrHMhN41G0q+ognO1QscUsXmypAUVEsVjt0TGLd09Mdj5ZKA/4qs2YmONG+6WQpma1IFVvodrrsRLpj0GWqqKcT98oTstRt1GtDzl8Zo4xdli4sr011DsjMRna7HeFwOOL6L++cynMgt/OEBdKKfDiQnYyysjAyLWGEwzbAArQpg1EujopXVH7UvV/IjEv03FCk9EOzTKltqXO9PIky1vjp2lQFQXr9mWWhojKVFJ/keXU4HEZf6Dyy2WxITk6G1+uN6IM8Z7TfMhZ6PmkGN3VuSrGKymjxjAtz/FFr/jrZu3fvqGUnnHACOnbsiPXr18fcd9asWWjYsCEuueQSY1n9+vVx2WWXYfr06fD5fHC5XFUeM5NgWD6o/ZSWJjoCpqZJkOld4yj/1cAwxy27dwNt2iQ6iqpl5kzgvvsAlwv43/+Abt0SHVH18sMPQM+eiY6CYZgEcuDAAePnymae8vl8LE8xDMMwDMMwDHNMI2USl8sVIY9QcUXNcCTXq6JCOByOyGIj23a73Ub5LZ3wpIolZpmRVGlGlWRUSYCWfFPLeJll7tFJYrGEIt146LaJJaCZyVmxxkAnM+mWm5UiU2OM1TfaLi3xpsvyRaHCj3quzeJRx0InOKnSCD2G3F6WpHM4HMZ5NsrNud1RY6LKU7rsO2rpt1jZzmhbqpRVUaToJNuR14hsW153OpmLjisdR7m/y+UyJCydjKWTyWRbsu8/52TgcLobJ/u82OxxoyBkQz2bQGOvFd80cmFIsQONAxZDeAqHw/D7/VHjJTNNScnNbrdHzUt6/fr9fiPrlDxfumuBni/6HEto08l76jUon6moJLdRs31Recrn8yEvLw/5+fkAgEAgALfbjXr16sHn88Hr9RrtZmRkwOPxoFGjRsjPzzfOj5zPNMsWEFmiUT7L/smxk8KWfF+k75tM7aVW/3VSCIHc3Fx07Ngx5narV69G9+7do2ztnj174vXXX8emTZtw8sknV2eoDMNUB3VFpGHqHitWJDoCpqao7TeSa+N/Z9AyqvfcA3z5ZeJiqWaE1QqLEBDp6bAUFCQ6HIZhEsThw4eNnwsBTPrzES92HJGnkpOTqzQuhmEYhmEYhmGYqsThcMDpdCIlJSVCiNEJKTqJiiJLZ/n9fiMTr91uN6QI+c8lsn35M6CXjHTiEN0GiCydpZb0ku1TcUA+pDQgs66oGVjUsl3qs0SXpcVMhFK3V+UhtX+0z1TU0AkisQQrM2lKQvtqJnKpIghdrytvpsoo6jFof1VxTT7kcilByflJ96EyEc1alJSUZMw9Ks5JSUfOZ/Vc6OQkiSrl6fpHl+vG2yyzldn80sVH21LPq1o+kPZJHWPgLzHL5XIZJeHodaBrix7755bpOJjuRqeQHwI2hIOAxQp4fFYkpQEdiq2YkxrA+YftaOT/KwuSmm1Kij5UmtLNKXkeA4FARJYmIDJ7nXrt0fjNxpjuazZX1fcbukzuo2Y1k9eP0+lEcnIy0tLSkJ6eboyr1+uF2+1GSkpKxDVB26HvUXK9OjfUa0e+z9G5SUv4qaUayxuX6kaIqskPwzlm9NTqO3L/+9//sHv3bjz88MMxt9u7dy/69esXtbxx48YAgD179pjKUz6fDz6fz3hN/3DMHOPUoaxEmzdvRqdOnRIdRs1Tv36iI2CY6qEOlB1l/mTjxkRHUL18/z3QunWio6g+vvoq0RFUH4cOwSK/vBcWJjgYhmESSSAQMH7OB/AQgHMAROeG1iPlKYZhGIZhGIZhmGMZh8MBj8eDtLQ0WK1WIysJlUBktiGaTUWVqEKhkPEdSN6ol9KLy+Uy9gOgzXRiJvuYyVOxSvrRZXJfVSqR8hQt++X3+41sLKoIY3Yc3fHUbWOtK6+/8QhSquRhtk4dazkeZmNG26Sl1NQMTLSEm2zTTKbSZf+h8pN6fJldx+l0AoDpOZHxORwOOBwOpKWlGXPP7/cbj3A4bGTlsdvtWpFPFXtoH+ScUTNTmWVr0kElpFjzRJcNSZ3LqjCjkwd1spJEXpMyA5XuGHLc5bmQYuXqZqk4kObEySIIWO34zWZHW58Fp3kd+DAjCFuJBY1SBE4qtuKL1CDOKQDq+0IR51CeBypZ6uas7IO8XqWgKc+DWk7SbMzpGJtl6KL9NrsuaZyqtEVLQ9JsX263GxkZGcjKykJWVpYhMNlsNng8HqSnp0e8R8q2pNAm+67OGTUTFpVIqRyqLpPvgToRi6l91Fp5asOGDfj73/+O008/HWPHjo25bVlZmbYsn9vtNtab8fjjj+Ohhx46umCZxFBcnOgIaoxPPvkEF198caLDqHmKihIdAVPd1FU1mtOC1s6MRXWRkpJER1C91OZ5mpub6AgYhjkW2LsXWfv2oR6AQ2TxF4hfnpJl+xiGYRiGYRiGYY5l5M19KTjJ0no0G4mUp6R0QrMQ0TJuMoNKcXExysrKDCkiKSkpIqOKFFB0Zad06CQgM3FB7RuVa+QyCZUKaDYqKZBJOUM+06w5qqRCY9LFrovPTJDSZYtSM06p41LeQ82SYyZKlSdOSKGDiii6bF06MYWiZvaS0Hkl46Il9WhZSCmY6M6z3EeKcFT8kvvTWOizej6ogELPmzwGnRcyThkb7SddpqJmc9ONo07QolmXzMZbCjM+n8+QldTjyPG22+3w+XwRYo2atcliseCnpinYn2pHF0sYAg78YrGitd+CM/1uWO1WjCxxYGZyGUSJBQ2Tw2hXBHyZAZwZBBr6/irHqJa3U0tzUtlRZpyS2afU7FA6Ec0MXSYtHepckD+rr2mbOtFK9lO+j0pXIxgMorCw0BCj5CMvLw+hUAitW7eGw+FAUlISiouLIyRD+d5LoeOnzhv1mtNlftOVq6wpxJ+PqmiHiaZWylP79u3DkCFDkJ6ejlmzZkWkE9Th8Xi0f6z1er3GejMmTJiA8ePHG68PHz6M5s2bVzJypkapzTc0Feqs/bpqVaIjYKqblSsTHQHDVC11LatYmzaJjoCpLHX1swXDMEfIzQWuvRb44guMD4dxG4C3ANwDoABARfIx23Hkj2AMwzAMwzAMwzDHMvIGvxSddDfUdfKULLElS6DJLFO0jJYUIlwuV4RUIiUUWhpQzQqji1MnT6n70G3U7FQ0E4xO0KAl/WhpsEAgYEgbunJ/ZjHR5WpsqmBh9kxjN+uvKnHo5KlYy3WxqT/rSsRJYYdKPjpJQ7ajE1TU7aicJ/sks5jZbLaocyD3pXNJximlG9o2ACN7D91fjclMsqP9offpdRKTLhtXrGxHOulFbV+Nk7ahnh+6ns5rM2lNxicFGlryjbb1Y5Mk7EtxoAtCgMWOX2BBm4ANZ/0pTgFAKoDLilx4P9WLcDHQKAU4oUhgQbYVgw6E0DQUKU/Ra1ONX46/lKZ0pfpiXXe6ZarsZna/ubxrVCdP6UQrtYSflNVkLFRUA464HIFAwBD/HA6H8T4sjyfnn5QZ1T6rcphZJjP1PaS8zGnVheCyfdVKrZOnCgsLcd5556GgoABLly5FkyZNyt2ncePG2Lt3b9RyuSxWGy6XS5u1ijkO4MwtTG2irs7nPyVXg507ExMHUzMcPGj8mHzgQAIDYaoMFnCOX9LSEh0BwzCJoqgI6NoV2LfPWGQHcD2AZgAuQMX+0GAHEvofewzDMAzDMAzDMPEgBQa32w273R4lJlB5ij67XC5DfJA36V0uF5KTk2GxWIwSXDabDWlpacZNfSk/0BJ5OnkgViYY+RxLnCrvn+91GWWodENlKloyy+fzIRQKGXKD7AeNvTwJjB6fxkCFITUDkxwT+T2zPCmqvEessVWXyfhiiT/0tZqVihLrvFLBRApOUnKi/aTlx9TY5BjK8+T3+4223W63Maa6eMzEI1UgosIM3U+VrOg8iqf/FUE3vlJwlJm11GPR8XC73REiDhXGpIzj9XoNiVC29Ut9N3JTbTjFZkEYVqwVwIlBB84JJwOOv44TDofhDglcnGfDR5khoBholGrBiUXAovp2XFJoRz0cES7V64COpbz2zDJO6a55KlRRMUvOE5pdjp4f3fUrH/Ta1AlSdE7QuSwlU9lP+Z7h9/thtVoRDAaNOWm325GRkYH09HQIIVBWVhYxz+X7goyVvlfo5pnuPUmeZ7lOlc9kP5naR62Sp7xeL4YOHYpNmzbh66+/xkknnRTXfl27dsXSpUuNOqSS77//HklJSTjxxBOrK2SGqRHUdIR1hrokFNXVG05JSZGvOWtB7WbZskRHwFQ1/AXj+EX9A0YwCNhr1VcLhmHMePrpCHGKcj6A0QBeAvBMnM05wfIUwzAMwzAMwzDHPvQmv8PhiMrUY7FYjBv/VJ6SD1XikNKPlAaoOCBFGJnxJxQKwWazmZbDU2Wd8mQgM5lCJ1pRdCKV7JOa9cZutxslBwOBAGw2W0RZP51gpDuWTp6i0gUdQyo76GSfWBKV7ri6fXXjpJPLYmXpUftZkf7rsg5R0UNtVyco0VilbBMIBIxjOBwObWzlZXUyi10Xh+5nXRtUalHPldmxqTSky+ylHkMHLU9pdq3IMZfzTx5vUxJQ7LbiVDsQggVrwwInhpw4J5QMi1WffSxJWDAsD5idBaAEaJwGnHLYgmWpYZzltaLenzKQOsfU646+R6jxqv2mohMtCwj8JXbJsdCJm7RdndioK9unLtMdX77neb1eFBcXw263G8KfWpbT4/EY7wO0PKXMxKabO+qcpD+bnWu1nYRmngKX7atOas0djlAohJEjR2LFihX45JNPcPrpp2u327t3LwoLC9GmTRvjzX/EiBGYNWsWPvroI4wYMQIAcPDgQXzwwQcYOnQoZ5aqLRQVJTqChFFYWJjoEBimelAzn7CIwTDMsURtzn27ZUvka5anGKbu8PDDMVefC2B6BZpLAZftYxiGYRiGYRjm2EdKOklJSXA6nYbYRGUANfMULRNFS6jJm/qqQCX3kQKLzKZilqlHtkWlCbqeUp40YiYWUVTRRW5D5TCJjElmovL7/fD5fAgEAigrKzOWybjNZC0zYUqOs9PphMvlisjGIwUhKqCZCVO6jFqx5CqzGGmpRrOx1WXe0glBamz0Wc1iFuuc646vHrOsrMzIWkTHwmazwe12R7WjyzRF+0Ljo5KKFGDodSD/kYpmzKLQ7EFq1iK5Pf1nLLlOl51NLRMYDoeNeUSzyEnk/JXyoyrt0FicTqdxvFKEke8oQ1+rE/scQazxBdBe2HGeJR3CLowxoNesjDdJWHFJvgWzM0PILrYhOc2C04rd2OgOoW/4r+Or17+8xuTDTNyjY2i1WuF0Oo1sevJnOX7y2pTnSwhhZKGSY06vWzk+8r1AvrfJMdbJU+o6OqbBYBC5ubkoKCiAx+OB0+lEdnY23G53hHSWkZFhXO9er9co2+dwOIw+UNlJzfZG54+ZcCnFLDrPEylPMdVLrbnDceedd+LTTz/F0KFDkZeXh+nTI/9c+7e//Q0AMGHCBEybNg1bt25FTk4OgCPyVK9evXDVVVfht99+Q3Z2Nl5++WWEQiE89NBDNd0VprrYvj3y9fffA6NHJyaWGubDDz9MdAgMUz2oH074wwpzvMOZN5jjhR9/jHzN4gPD1A127y53k9EA/laBJtMA3H777Vi4cGFlo2IYhmEYhmEYhql25A1zecOfigPyJjoVnKiUQUUHnUClZhOiN+7VslEUeSwqM5hlpIolU+mOq5Op6Diocoy6H80WI2UGmbFLPvt8PqPUmFk2KiqtUMFCSmfyoeuLLvbyBKl4pSkJnRNqOTVV1FD7qIo46tiq61V5jMpM9Gc6x9Q5QIUd9SG38/v9EeKLlJh0/dKNOX0tx0i2L7fRHV9ti/6sjo9sl15n9BwCf5XV08mHtC/q+aHbyGuLlu3TzRc5XklWKy6zpqHMIvBj8BD62dLR2ZIU0U8p3lCxR7blsloxutSCb5KCsJTacYLVgxMAWO3WiL5QAU2VJ9XxU8dQymBJSUlGaVEZPx0TKdvJcVEzu9Fr1SzzlJl0ps5jGhs9vwCQlJRklE/0+XzYu3dvlCjmcrlgsRzJRJWZmQkAOHToEEpLS433FzoOtA/yPKhyoISec1XmZGoftUaeWrNmDQDgs88+w2effRa1XspTOmw2G7744gvcddddeP7551FWVoYePXpg6tSpaNeuXXWFzNQ0ixdHvt66NSFhMDVIHB9smVpGIJDoCBjm6KhrAqDXm+gImMqybVvka5anGKZu8P33cW8qAMTzaTwVwKJFi7B79240bdq0spExDMMwDMMwDMNUK1TakZlI6A14eePdYrFEZNdV5Q0qPwCIyNAit5fHk+vVGFRRh4oS8jiqPEOz6+gEgXhEIYkqDVDBSycASaTo4ff7EQqFUFpaCr/fj7KyMvj9/gjJgR5LLfUlhSyXy2XIU1R8kfupYoSZlGTW91gCldxXLTemjgl9rZNz1Dhk1jJVpqOCjpRO5DravpRqaHYjdT3NHkTnCZXwZAxqVjFVgqrIgwqHVPyhcapzWm1Dl9VKZhiSr6noJJ/p/KcCE712ddeFnJPqONDrXWY7SkpKgsPhgNPpxN6gF72CNnS2JSMUChmioMzwRa8XOgdsNhuSbDZcYLVhtdULGxyw/XlceU5lNigZG80OZTZn6XuH0+mEw+FAamqqETsVh2Rssm31/Mj2dcKb+r6kE+ro3KJz3Wq1GhIUAOM6z8rKgsfjgc/nQ1FREXbu3ImysjL4fD5jTmRkZCAtLQ2tWrWCx+NBvXr1IqRAmoVOlafoXNJdt1TmOhbEKS7bV73UGnlqsSrGmDB16lRMnTo1anlmZibefPNNvPnmm1UbGHPsoDHPmVqO8oubqYWoN+vVTCgMwxzb1OGSusc9DRtGvmYRjmHqBmo23xisA9Apju1kEeY2bdqgqKhI+x/DDMMwDMMwDMMwxwLlZXVSZQFdFh55M55mDqI/SylChQoGalYXXUkzGg+NXZdpSBW2zPorl8njmWWLosISFQ5kCTQpOzmdTiMDld/vN0r7SUFElXRkW1KYktloqBCh9le3fyzBxEz4UF9LiUkKILqx1v2sG1/ZphRW1BKOqmxCM/bQ7GZqZjNV3KPSVGlpaYSwR+eDnItSzqHCiy7zlNoPOmY0i5GUiNRSk7R0I5Wf1KxFOtTzq46vRGZVUstn0m3knFZLuemEMSrOyZJ3tJxiI5sLje1uQ9SSx1czRtHxVM/32TgibwWDQXi9XgQCAeOcqNcw7b96fuj1Z7VakZycDKfTCY/HYzrP5VjIzF50TCTxCEQ68U3N1EblJCqLJiUlwePxwGazIRgMYteuXSgpKcHhw4cNqctiOSKr5ufno6ysDEIIZGVlITs7G/Xq1YPFYsH+/fsjBDuKzJAnrz21tKaMS81cxWX7ai+1Rp5imHJJTo58befpX+vhLER1j7KyREfAMEdHXRNQfvst0REwlcXjSXQEDMMkgjg+a+378/kGAMtQfvYpKU/5fD7Mnj0bl156aeXjYxiGYRiGYRiGqWZ0mUnU1zqJSZUv6H5UnjLLgEPFDJ0wocpBqmAFIELcUOUanfAFwJAJ1Mw+UtyhWbR046LKEVLiAI6IC6FQCE6n05Cn7HY7AoEAfD5fVF9lv6Q85XQ6o+QX3RjpHmpfdYJOeZIVlZl051sdD3W9PCeqBCWEMAQTOd5qBi6dwKaKUlTaooKSxWKBz+eLiF2NDzgi7gghjPNF4zYT7ug6KquoWZNiSYh0jpllWNOdO7VsIl1Pj6n2g75Wz50aIz0HUpiSUiC9zuicBxAxhvS6Ua9l9b1AZn+S5S3lOVHPAd1HJ/tRAc/tdhvZp4QQEWKU3E9Xbs9MAlTPnbpeHl/OaTlW9H1Sxk0FMJfLheTkZEPgys/PR2lpKco0f5sKBALw+/2wWCxGmb+UlBRDrAqFQobAJs8RPd903ugkKylQ0bmYqOxTQlRNARN2v/SwPcLUXbKyEh0BwzBHC5eJYmobhYWJjqBm4U/oxy/qH0b4/Zhh6gY+X7mbyD8dfQsgF0CjcrZPJT8vWbKE5SmGYRiGYRiGYY5JaLYZh8Nh3IhXM5TIbQFE3ZSnUotOcFEFGnpsKjhQsUQn1NCfqaigSlCqQCKzwtAydLSMlipPyHjV7EeqGCOPKeUD2bbT6QQAuN1uQ+wKBAIRZc68Xq8h3ch+pKSkGOdB7YfMzKPKanIczSSxWDKQKqLQMovqeda1pWapodIFFTXUeGXf5PjS2OU6maFLzWSkilNqW7SEmRR0JDSjkhxjl8tlbEslLHkOzQQ1OgfMpCn1/KhlC9VzIc+BxO12R81tFSqiyTJ86jUo96WZoeg5dzgc8Hg8EWIizUIkM8bprk2aLczpdEZcm3TuSLmsrKzMEKZkvLLknprxTX1PoeNO+0/lJdmenFeqyKXOU5p1jI6L2Xug7rjyfdPhcESIZjS7GZ03TqcTycnJ8Pl8xvuAHD+6H6WsrMx4yMxa+/bti8o0RiVD+ZrOMfpa9pG+v+sycdUUXLavemF5iqm78A1bhjn+2bs30REwTNXy+++JjqBm4d/Fxy8J/ILIMEwCiUOeon9kaAygEH9ll9JB19k5OzDDMAzDMAzDMMc4NJuTKoCoIoQum40usw0tWUb3U7PiSKg0oGbFUQUWKibQtunPVIahQgkVPtQsMfJ4UiqgggzNRiUlAyrM0PbUrDh2u92QRYLBIGw2m5FxR8bocrkiMjOp8hQdN/WcyGOWhypZxSNgqZjJdDophR5XPZYqHNFxpGNLz00sVGFIymnymKFQKGK+SOlFZgqj/TAbYxqPTgik/VPb0c013fk0Gx+z86K7NnSlCG02W5Q8JWU9p9NpWiZTJ9zI68NsHumyZall+aiwp8qKcj9VTqNykCr/qaKl2fuM3F72U5XTqGRE21H3le+Z9EHHyex6UssdyvbkPFT3UeeCnLP0fUx9f6bnXif/6caDjiNT++C/TDJ1h7p2Q5ph6gKa9JkMc1xT20tPqsINX8PHL59/HvmaRTiGqRv4/eVu4lBeXwPggxjbWwDYAISAqFIHDMMwDMMwDMMwxwryxr0UKKhIQGUjik5wUcvfyYxLVFzQZdDR3fg3y/JDt1MzpND91GxEVMiQ0kFSUlJExh0qItD+y4dalk1dToUQOQZUcJCZrqSYQcuVSYHC5XIBQFQJs3A4jNLSUkOK0Z3DeMQnM8HFTMJQoaXaaKkwVbSjx6LnnEo8dKypMKKKRmrpNTULmSrc+Xw+hEIh+P1+Y5zVjEqBQAAOhyOi3CNtk0oxFJ2gp/afineqPKSToY5GVtEJWWr2JiBaPpT7AjDEPjn3gL8kNDm36flRpUVVEJSl6GhMUmKTDyH+KpnocDgi2lbnlHqdyUxL8hqhMhWNRR1Xup1OvJLvc+r1TWORyLlBM07J45rJdHKOUeT7rdPpNMTVQCBgjJHcV16jLpcLTqfTEAKpREXFKjrH5LjQ9w51/tHjJDTzFJftq1ZYnmLqDps3R77mdwWGOf7h6/gIwSDAmRpqBzt2JDqC6mXlysjX5Msmc5zxyy+RrzkTFcPUDeLIPEXlqSuuuAJXn3024PEAaWk44/zzcRgwHkUAaNFPmeKeYRiGYRiGYRjmWESVVlQ5Sv6sZkRS96fb06xT9GZ9LOGG7q+TSsoTg9R9aEYb2baUKLxer1FKz+FwRJQtlCIDzbBE41fFA1WMoOKCmbAkBR0qTthsNoTDYXi93ghRhGZEiiWy0WfdOVLHSRWG1Ne6LD5yXOU63Xwo77iyv6rAQvsTK+uSmpFIHXM5bmo5PZo1zGq1GjJPKBTSZl2j8ok65vSYqkyktqHuF+vcqX2Mdb3JsaT76K5RKoSpApp8LcUf2T7tN808pcZO+0lLJ8pxpoIaFZJ0516HOgflmDidzohrTAqKLpcLbrc7an7J40sxSSf1ybHTXc80ViktSVlMvVZ0faTtBAIBeL1eI9aUlBSjT3JO0rhlWx6PBzabDX6/H2V//rM6lfRof9R5RQUqNSOg3O5oZT7m2IbvtDJ1B/Um3591eBmGOY5heeoILE/VHoLB8rc5niktjXydnJyYOJijR33/5fdjhqkTBEpLozJLqdBPJJMnT0br1q2N18vLa5/lKYZhGIZhGIZhjlFUqYcKJLT0GhU11PJoFFoyjIocZjKImWBQkRv5OnmIyjiyXBnNYOPz+SKkC7fbjaSkJDidTrhcroisTFQIUzPTSOGJik7yuFImoYIDFS6kqOXxeGC3241MVLKkn8yiRDPKuFyucsUa+UzHUh1TKt/I7DVyGxqbTiKR62h2KJ0wpMpBdD+dvEHnkHpM+lqOPc2SQzMUqaKOToiS2akcDgcCgUBUVh61bJsajy4bEZUPpTAkRZzyBDM6R3Til4TKdzTLEo2d7kPHXQo/9NzpRB+1RCXNZqS7JuU6mWFKjr+cvzQDHY1ffe9Rx9VM9KKyGu1rSkoKXC4XUlJSot7LZFx+vz/i+qF9l32Q2Z/Ucy7jdzgchmipSmnq+5d8TUuIer1eFBUVITU1FXa7HdnZ2bDb7UhNTTXGUI55WVmZcS7S09Nht9tRVlaGwsJC49zQ9yBVBKPHVrPF0fioKMryVO2E77QydYdBgyIFKk3KToZhGOYYJisLyMtLdBTViyoX1TaWl3fbnDlu6NIFWLz4r9eceYphaj3BYBAzpk7FleVsR//IYFfkbvmHeDNKa/vvQYZhGIZhGIZhjltoBiRZRkoVc+iNf13GIF2moFjylGxThyoq6Cjv5r6ZQERjokJHMBhEaWmpIS3IDC+yHJeayUUVFKg8QjPvUHGKSjtSfHE4HEYpLprxKzk5GcFgEC6XCz6fz8hUQ0t6qUKQTlxSz7MUKOTPUgCRQo3MviXngloSTieA0bHVnWd6Tui4xSto0GxbVL5S5T7dcYC/ZD6aoUg3x6kEI8+9Tiyk46GbT1TcUsvDxSq5SK8xua1Z2TidIKWLkZ5zKlzpsj7pYrPb7RHjR69ZdT/ab1mKkpbWU/tsJs6p54SOEfBX1jNamo+KS3Keynks95dZ5mRs8nzJ/smYgsEgvF6vMVaqDEVL9umuKTXbnHwvoOdHClyHDx+Gx+NBenq60WY4HIbD4TD6IssayjHOzc1FYWGhkXnKTCSj46Fbbybl0ZKhNY3gsn3VCstTTN1BzW5R20sjLVkCAaAAQGaCQ0kYDRsmOgKGYaqSwYOBGTMAAMUAUhIbTfVw8GCiI6heOnWKfF3b/jujLn3jOHw48jVL6QxT6/n5558Rb+5eO46U41PlqUmTJuHBBx803Y/lKYZhGIZhGIZhjlWkNCJlg0AgYEgAElWUUKUGM3nKbDkVKnTZkyhqRhqzzDdm+6kZV6ikRDMEyaxPVqvVKOXndrsNUYOW5wIQVT4P+Esgof2WMcifaRkuu90Ol8tliCBU8JEZaOQxnU5nhPyjym2xhCrZb/UhMxGp8pScCzKjjTr2qoSjymGqDKMTpXQykprtiYohcrzkmKhyniq3VTR7jjwWlWPMsiXpxl4+m5Wno3KS2gY9XzoRis4f9fzSGKkARqUe3VzVjZtuLKg4pQpUtC2afc3v9xvXFW1b129de2al/eQcoCXo5Lylc1COhxQA5VynYpfMQEflKQDGcvV9R46rPL58pnIavYZVSZReO/K9pqSkBABQv359Yx9aalSII5nm5Lr8/Hzk5eWhpKQkInMefU+TMavnlcp49D2bvqYSWiIQfz6qoh0mGpanmLqD1xv5evfuxMRRU/TvDwDIAPBqQgNJIFyasfZTl0SFWNQ2ASUOSlBL5alTTwWmTUt0FDVHbbuG63L2pTr4PsQwdY38/Hy44tzWAb089fe//x3vvPMONm3apN2P5SmGYRiGYRiGYY5FZIYWl8uFtLQ0JCUlRZS302UxoqKIKsaoWYdodhe5Xs1OpJN+aHs0VjV29WediKXLxgP8VYqMShRyf5/PB7/fD6/XGyHT2Gw2o6SfFDZo1hm1j1SmoRlxHA4HkpKSYLfbIYSIKCUmoVmWpEARDAaNUmjBYNAoRRZLSNMJQFKYkuKWFKWcTmfEayrR6QQl9bxLYYaOpy7rEJWvVGlJLSlHZTEps0m5TIowVNyRkow8r6qAJvsv++t2u41SjbL/MiuYTo6h51UeQ42FjrdO5JIZiVTpio6nel3oxoq253A4Is6dmmFKvTZpuxT1mqMiFo2NjjuVD9UyfbQtitn8iBUblZOk5Ennk9frhd1uR0lJCZKTk5GZmWmcX7md0+mEECJCjpPXsuyHfF9wuVxaiZSOiyoeUeGPZnxSBbxwOIyCggIUFxejpKQETqcTSUlJxnmU41NaWopAIICioiKUlpaiuLg4KvM5lSolalY8et5pXOq51ol2TO2A5SmGqQOMTXQAiYJ/edV+nn8+0REwCaKWKTd/kZ2d6AiqF1WWqm3ylEka9TrB668Djz+e6CgYhqlG/H5/3H9AcAAoA+ByRepWmZmZWLNmDZKSkrT7yf8mZBiGYRiGYRiGOdaQMobL5TJkASpP6bLjUCFIor6mN+11GajoNnJ/dVks4skspMoNsn25jkpeUmjQyU9STJBijVpGjkoRtO1wOByRvYnKU7ItmmVGFZTosVwul3EsKXnYbDZD4FGFNHUsqWRCs0tJ4UYul2IRzfhE21KzB6kiDf3ZTIxTxSma7UZXIlKOv1oyjUpbVPSS0pU8d3I/OoaqIEUzN6kZuuQ+tL+qmGQmOunkKZ2MSEs90jFV5zLNoib7qmYHU7Okye3UOUHPL32tnms6F1RxksaqZqdSr71YY6ZDJ2fS49KsSnIZ/Wc3KR3qhD15XVE5TvZVnnP5Wj1fuvcetY+6vqtZoqT8SGWwYDAYUbbP6/XC7/ejuLjY+FmdU7rxjWcZvS5175U1jeCyfdUKy1NMBGGbDbW26Ir6JlaHbnAutlpxbqKDSAQJ+sXF1CCrVyc6AqYmqQuf5upCHyn8Pn38op47vz8xcTAMU2P4/f4Kle0DgLS0tKh1Ho/HdD+vmi2YYRiGYRiGYRjmGEFm4ElJSUFKSkqUDKPKDaosIYUZn88XJc1QwUWVe2j2E13WJFXOMct6pELjVQUgul4+U7lJCmM0XimSBQIBAEBZWZkxZrK0n5SQpJxDMxVRWUPN4EMzNUnksdUScVLqcZLKJHTsg8Eg/H5/lEwjsVj+KhPodDqN+FVJSM2iJduT/afnSo2bnl+5jkpB6vmh8os8vtvtjhhDuR3N5kPLHNI5SuOW8osQwuhramoqbDYbvF5vxL50ztJzQ+cQPTdSelGlODpXdeIUvWZkG2oMsl01i5fsnyxTJ+ecFIbkcyAQgMvlMgQ5Gr9sg8aklhOUIo8U9NR19JqWfZL9oXIc3Ucdg3jEqVjQ80TlJpo1T2bCSk5OhtvtNq5NmW1NPsvrUc7xQCAQdX5pf1VBUpX76DVDpSQ6jlTWkoKU1+tFcXGxsb0qQMp4qDynynqxzq9aTlC9Dum1qMsGVhNw2b7qheUpJoJ93bujSaKDqC7UD4l16Aa1PTU10SEkBr4pX/upQ9dxTOrKXCdZKnIBNEpcJNVHXZvTffsmOgKmsqjljxcvTkgYDMPUHH6/H/p8UdE4/nyu6H/hBYPBCm3PMAzDMAzDMAxTU+gyjphluQEihQV6U19KA7QMnq5MmE6O0t3Ql3HolpllflEz/piVW1NFH1UqoKXUZAYjdb1cJ8vCSZlHSkq0PJwue1EwGIwSMdQMN+pY6bLayHW03JeaNUyOiZRG5LYyTjUbDxBZVk0tw2d2DnWZu6iIoZtLctxknFRgo+dWjrVOOKPH0sWnZmNSS5qpfYyVhUc9F1Q+ovtSgYgeR8ZPBSq1zCCVEunxqBAm5S6/32/8TDORyXFUyyDSPpldW7Rkozon1Xkg+0qvNV3GLPpaHcNY6GLVZVWS28iHLHFJ5SibzYZQKAS73W48y2uAtq1eB+ox5DPtL5XK1PcW3VjoYpdZqNT+0v3p3FXj0EmidJ7S8VHfc3QZqpjaBctTTAT+jIxEh1BzDB6c6AhqjDrz9r1uXeTrOpRdrM7C57hu0bMn8NZbAIBnAUxJaDBMpVCv2dpWXrUuyW/79kW+5mwxDFPrCQQCcf8BwQ7gmWeeqfAxWJ5iGIZhGIZhGOZ4QJUiAGgz16j7CCHgcrkQDAbh9XoNMYRKSDrxQhUA6DoKvfGvEwSkvCGlIIfDYWSZkVKBFFa8Xq8hVqhxyAw+qlSjZgACYAgqVHaQgpLM+COzPNEMQDKrjy6rjdpvtQwaPQcy2xHwV2l52VYgEIjaz+l0GhmzaKk69bzK82Um86jtquKUTpiT7euEENqOjJ1mq6Kl93QZgah8pK6jbauCCZVVpLRFM3vRTFzyXND5JtuU26hiCp2ncgyl6CQzI8nnUCgEn89nZHuicpjFYjHOHZV65DaBQABWqxWlpaXGNSCzoaWkpBjlGXVZvHRCkq7cHz3/cpzl3zmoLEilMCrlqEIQlYDKw0w20kHnXSAQMM5HIBAwspXJcZTXpRwvWg7S6XQa/aAyqCoL0hjNhDw6lnJsqcSma9NMnKJZruj2umxRqjSlylKq5HgsZJ5KJC+99BKeeuop7Nu3D126dMELL7yAnj17arcNBAJ4/PHHMW3aNOzevRvt2rXDk08+iXPP/atW1qRJk/DQQw9F7NeuXTts2LChWvsRC5anGOCMM4BlywAAhzp1Qk5io6k+fv018nVKSmLiYKqP5csjX9elm9h1lYKCREfA1CStW+ODP3/clsg4qpPa/r6l9q+297cuwZ+rGKbW4/f7MTDObae+/jrOvPbaCh+DprpnGIZhGIZhGIY51qBSgby5rpbfA8zLcckMN1JektKBlHioTKETqGgJNV3mICkbyGNJpOAijy1LmUkJQgoTVMxyOBwIhUIoKSkxJCqJKtyoD9p3Kc3I7DW0bJ8cB5mVJhAIRMRAxRi1fKFcTuPRZQVTM8XQjEpSplLjVYUN9Vi6zDlU0lHL5OmedYKGWbYwKnHp5pROWDObQ2ZiCx0Dub/dfkQjUOU3OqdUwcxsLkh081f+LKUpKUz5/X6jRJwcVyn7ADDmtDxnNEOYEJFZy6hMQ8dLimGynCAtjaibY6pAo8tARbN+6a4HGasshakT6eLJcKRuq4o/NF7d3JLb09KDUmSi2eT8fj9sNltEKU55/cp5QueNThyUy+n40fOhxkjfQ9VSemr8ZhKVbIPKf6qQpp4fehxdhjj1/SURJKps38yZMzF+/Hi8+uqrOO200/Dss89i8ODB2LhxIxo0aBC1/QMPPIDp06fjjTfeQPv27TF//nxcfPHF+Pbbb9GtWzdju44dO+Lrr782Xsv3nUTB8hQD3H47vl62DIUAUk88MdHRVB/FxZGvk5MTE0cCsCX4jabG2LEj8nWnTomJg2FqmrqSHvTss3FZomOoburKuayt1GUZrC73nWHqCC61XGcMzhowoFK/0zjzFMMwDMMwDMMwxypUfpDSg04EUSUAnfQihIDT6TQkEZmFiu6jKwcnJQIpOFABhMpbQLSQI2Upt9ttZJJRy9HpMunITED0+xoVDswEHCqh0GeZsYZmsJF9iCUcqWNKY9GJJjphRB6flguUsarZk9SyhfR49LzTjENSQpGv6XnQYSZPxRJn1PVqFh+6jMZfXkYg2raMXUoMtJSiOpY0AxOd3/S8qVnZqJxCy/PJbFLyuvD5fPD7/cb8U7NayWtRnk81U5TsBxVwqBxEBatgMGi0RWVCnYwo91VFH7kdnRPqOFMxS17DNAOaTtKJFyowyVjUdnTtyTktf6bvCTJjF72uacYumumLZouS51c93/R9S/feKWOUx6Kl/qhYqeuDKpPR9xbark66lM+6cn/HmjyVKJ555hlcd911uOqqqwAAr776KubMmYO33noL9957b9T277zzDu6//36cf/75AICbbroJX3/9Nf7v//4P06dPN7az2+1o1KhRzXQiDuqIUcHEZPhwnPPnG85HDRsmOprqo6ws8rXyy7o246gr8lT79pGv/3wDZxiGOW4g/+1UK1F/H9WxLxi1Gj6XDFO7KSpC188+K3ez5wF0XbAA/dq2rdRhWJ5iGIZhGIZhGOZYRZanKi0tjbiJrwo2VNCg2WuoaCJvujudTggh4PF4DEmJih80gw3NagPAED/os66Un5SCZBk6KglJIYAKTjJe2V5KSopRuk+WIqNClk4OUzPIqFl3gCMiRUlJiRGnXE4zP5llzNFJYvQ4sj113Gk/qchCsxdRsYIKFFJykZnCAoEAfD4fvF4vAoEAysrKjCw96nlQZSg6D8yOJ/tJZS9daTNZQpEKImoWLPlsJjTRmOTcE0JElHCT21EJTpVkzM6VKqJQyYyWt5OZp6QsJee1nL86sUwnxOiyL6nnQS7/f/b+PEqSs7zThn+RGbnWXl3V+97qltRaWrsQRkIY2WL5MNhmYOzBYA0vjBfg2ByzDoMAmxfbGMaMMS+ewVgebI/HgAbM2GYTFhYgCdTa0L50q9Vrde2VW2REZMT3R/cdfeddT2RVt7oqqyPu65w8mRkZy7NFVFXGVb+H9xmlrZmEJ2pnmS7F24vanZ8TceKcZZ1Ku7JtOyoH368cy51EPL6uqQ3ihDzebnRu0/WLS2e8Lp7nIZvNotlsolQqoVQqRUIkgLZ+5dcrepaCVxAEbWMsrqyyXqZzhsOlLS6f8usfT8Pi8hRwauzK7eX5styE4dn5P2bax9zcXNvyQqHQlsoHnEij37t3Lz7wgQ9EyzKZDG666Sbcfffdxv03m00Ui8W2ZaVSCT84ORsa8fTTT2P9+vUoFou47rrr8IlPfAKbN28+02q9YFJiVCgLEXexTRRyCog01PkkxZM/nFKHuCgriqKseFaQYa8op4XKU4qSbPbuxYX33rvgalUAuVJpwWvCl7/8Zfy7f/fv5i3XafsURVEURVEURVmp0E10kjpILDDJU4S8GU836WVaD8kTPPWEjkPpK3QMkgxIKuFpLjzRhcrBU5bibvhLoYfvgwQvmqILMCc40X46JSVxIYNPU8jbjgs7JjHLVHb+LCUMLk+Z9h0nT/H9kxTD5RKSXUzyFBdE4oQuLiFRe9MzvaaEMy4pmcaXRKbl8KklpWTDyxWXGCRFK/7giUBxspAUeqh9eLvytCaeRsTHjSkZiCPLLctgqittJ/vXlAQlt5Hty/vclGAk25DalZ5pOlB5TixGnpJ1lVPdmca16TVPeqJy82sCrcPTpnj6l5zC0FRmk9gmP+8kQ3USpkzXCLk/Xj95bZLtwuVMPg7izr1zkU2bNrW9v/XWW/GRj3ykbdnExARarRbWiBCeNWvW4IknnjDu9+abb8anP/1p3HDDDdixYwfuuOMO3H777ZFQBwDXXnstbrvtNpx//vk4evQoPvrRj+L666/HI488gr6+vrNTwdNE5SmljURLVM880/4+RTf51tbr3S5Cd2BzpipKoknR9YwYGhrqdhGWhv7+bpdAeSEk+fcoRVHSTam0qNV8nIr178TrXvc68/aaPKUoiqIoiqIoygrHJH5IwYJEI1qX5CY+xZWUdgC0TVdGYg1PcOEiA3Bqmqw4GUGKRVIU4PITLxvfDxciKHGJptujZy5vyWnipBQj15GYpCYqL5dNpMRAogNfV4o+pnpLaUzKE1yeajabaDabqFQqqNfr0cPzvGjqRUoxiqubFLqobeVUcVyA4VPNkahC46lQKER9IWUeSnTibW+qq0zooXFGbZ/L5ebVicpGwg/tR8orss+lHGWSlHjfSQmH6uO6btt4MUllfPwslD5mWVb0nQQlUMWJNbK9+DWAH0uej1KQk2JhLpebl7rF6yTbuNM9fXksKRzxMSDbj/ez6bwATqRtNZtNhGEYJdMVi0UUi8U2gZHvM668JjFMCnRSvjOJfYSsD/UvH3N8XdO4pXJxcU2mUpnO8eUgPPk4G/sBgIMHD6Kf3ZeSqVNnymc+8xm87W1vwwUXXADLsrBjxw7ccsst+OIXvxit88pXvjJ6femll+Laa6/Fli1b8A//8A9461vfelbKcbqoPKW0kWh5KsXJU+vklIWKopzb2DaQ8puLpl9mEwH7giKRJLXfFKBLfywqirJMnIY8JSO5TcQJVipPKYqiKIqiKIpyLsC/m5T31WR6CRdEuAhD6/Ib/fS3EpcxTLIEFyD4DX35WZwQYBJJSMoxSSKUFGLb9jzJB2iXSKQ8JVOF+GedUopov1xI4W0h04ikPCUfvO5Ub1NdpGQRBEGULlWv19FsNtFoNNBsNuF5XludJabkHSlPUZnleODLqGx8Ojc5xd5ipj2jNjXJdLK8UtKT47DT+OyU/hOXqsTXM63P+0SOd9N5wccRL5NJpqNt44Q/WZ+F3puOZ2oHuS2X6IB44ShOaOLEtaNJDlxozHQ6DklmnufNm16Ri5WmPqZ14kQpWQbZn3HjTdaHS5dcZpXr8/2Z2oqXP0nT9vX397fJUyZGRkaQzWYxNjbWtnxsbAxrY2ZTGR0dxde+9jU4joPJyUmsX78e73//+7F9+/bY4wwODmLXrl14RgbiLCMqTykAzFZn4pB1S3JdBVaK6qooSoK57z68FkAA4KFul2WpSPr1Wv6h1eEXZUVRFGUFscgvhHwAw8PDZ3wYnbZPURRFURRFUZSVCt1g58IRv6fGhRiZfEKJOUEQRGlHUiCgfcjp6mzbRhiGkajjeV5bipBJ0OHlMaXU5HK5ttSrfD6PbDaLfD7fJkhR+VqtFsrlMlzXRbPZjNJxqCw8HYukBD4lX6f0Gyk+kLxCopDrupHYxdueJ0fx9C5T4o/su3w+3yZP0ToE1aXZbMJxHMzMzMBxHMzOzsLzPDSbzXn1pTQoai/+uUwRMgktNBUkF9uoflKeAtqnV7NtO6qTTFmiMvF98LKQdMUFFj52uCQiRSNq007EpQ/xqeqkWEfnCj3ztuIiHx9TpqkzqS/oeCaBit8fp6kzuTTFp5jkbUapX9RPcszRMfn5zMsp07eIfD4f1U9OA8mlJD6WZJ35Z3IqQ5OUFPfeJBbK41C71et1+L6PQqHQluhmmsrPJGhyaU2Kg3xcyuuIHJumctO5yfuUl0fWh55lXfk+adymhXw+jyuvvBJ33HFHlCYfBAHuuOMOvOMd7+i4bbFYxIYNG+B5Hr761a/iDW94Q+y61WoVzz77LH7t137tbBb/tFB5SgGQ8MQpQv4XcxrqnDa0T08RhprwkmQSMpfyafPf/hu+dvLlNSn6xTRRyDSSpE9TeNVV3S7B8pHW65KipIHPfhZ45zsXtWoLL2xqXU2eUhRFURRFURRlJcPlBbrJz0UGU4ILF6Po5j+JNVxS4fumaf9IquHTtgGn5B5Tugy9N001RsfL5/ORQJXJZFAsFmHbdiQ+kGxA0lYQBPA8D41GA7VaLZKn+PRwUgKRQpcpgSku0caUcETHMLW3FEak5EFtQXXm0pWpDUlScxwHtVoNtVoNjuNEaVOu67YJUjK1SIpxPH1ZCna8rlLoofaME2O4TEQSE+2XBB+a3g/APGmEiylcXqFxIdulUwhHXIqRTPDhx6JpBWk6SCnh8fqb0oC4dCXbx9RmixlzNNaprHT+cQmL2odkSJq+kkt8tD2d51zgC8Mw6hs+tnn9aIxSmfj3JXGJSKbxJNtdtmMneYrv03Rtk+3m+34ke9HUbzIZL+44XPLiZTX1l0lmMpWZi1U05eViZTLeRqbrFvV3mnj3u9+Nt7zlLbjqqqtwzTXX4E//9E9Rq9Vwyy23AADe/OY3Y8OGDfjEJz4BALj33ntx+PBhXHbZZTh8+DA+8pGPIAgCvPe97432+Xu/93t4zWtegy1btuDIkSO49dZbkc1m8Su/8itdqSOg8pQiSIVERbztbd0ugaIoypkhr9VpEeXYH9+3dGm+Y+Xs0QCwuEmgzmFe+tJul0BRFOXMCUPgxS8G7rln8ZsAKC1yij8TKk8piqIoiqIoirJS4TfNuUDFb8jz6eP4DXYuT5DA4nletA6/Ec8lDL4NcCo1iFKKTGlOJvGAnknMKhQKbSlT5XI5Wk4JTySxVCoVACcSoOr1OmZnZyN5yCTTxAk0pnV42TrBxSTZD3J7fize/iSNyUQnLg1JearRaKBarUbylOM4kexD4g+XfEzJQ3xckDzDE69k+pCUg+JEF9qGp09RfbhAJeUpOSUkbR+XPAXMT6uSmPpDCmSyrtTOruvCdd1IoKJ25fXj45fDBT5elk4CEG8/U+oQyVPUr3ys83OazhFKoCL5kAuVsp15O/HjyXWBU+lWJP6Y5ENTP/DXJGnRdqakpDgRK67t4gQqGluu6wIACoWCUWKS2y5GzpPlkuMgTm6S02FSGfk11XRtktInv6ZTWWTy4HLTjUO/8Y1vxPj4OD784Q/j2LFjuOyyy/DNb34Ta9asAQA8//zzbX3jOA4+9KEPYd++fejt7cWrXvUqfOlLX8Lg4GC0zqFDh/Arv/IrmJycxOjoKF7ykpfgnnvuwejo6HJXL0LlKaWNVMlTL+A/os81/FIJuW4XQllewpQkT2WzAIuqTQ2///vA+9/f7VIsP+yX+5Eu/vKkKLHI36Ni5vtWFEU5J/jUp05LnAKAy/bsWdQX33HotH2KoiiKoiiKoqxUZAILTy7iN9SlECWThmh9EnT4zXmaeo22y+VycBwnkidoORdNuPQCzJenSBTK5XLI5XIolUqRPEWJOZSMFARBNCUd7b/RaEQSUaPRiGQSnrBkurcoZREpJci2NSElCdof1cmUyCOn/KK684QgqquUNrgAUqvVUK/XozpTqg6Xp6SIxI/L6yVThbgg16kNaR98mkLZllz84ttweYq3L5e+SMSjfXueh2w2i2aziWw2G7WXaapEPr2arLepT3m5SUribcrrwdsprg1pXZn2xM8/ObUj73suEsntpcAm4e0tp6mkccb7l9qZlvGpO6VsJhOieFubZDFe/jhpcTHnXdy2JvFMjm/+OclTJHjSOKRrpawn77+45Do+dqh/5XXOVEfevoD5emKS0qQ8ZRIYX8h3X+cy73jHO2Kn6bvzzjvb3r/0pS/FY4891nF/f//3f3+2inbWUHlKUVJAy7ZVnlKSyc03A//8z90uxfLzvvelU57iv7Sm9JdT5RwjyVK6ZSW7foqSdoIAeM97Tnuz1//iL76gw9KXjWn9EkpRFEVRFEVRlHMDnizDp6WSqSfywW/Wk0RCQgS/Kc+Tg3hSCpdJaF0pz8iykMhRLBaRz+dRLpej11xcIGFKpgBRMhAtl/JGnKCxUEoOp1OKDpcZZFuSGERtxCUOLm+RvCH7wCRQUTs0m8226QlJrOLPcek1vP1l/eT4iJM+OKbpHfm6UkiRU0XybWTdeXoVTTFHUgt9RiKVbdtGcSeurnHtwUU13pad0pXixhcX5kzta2ozk3DWqU7Ulqay8TElk8b4tG5UZ5kwJvcr24DkKY5Jlot7lvsyiUC8zrwccZ91es/71ZS6x+vIBTwuRcl2kGOn0/VCvpZl5OPFlHi1mGtVtwWq8OTjbOxHmY/KU0obqUqeShN680FJKldfnU55SpKWczwNP6NkHfP57pRjqUh6UtzcXPv7tJybQDrOT0VJE888c0ab5c/Czy0+pYCiKIqiKIqiKMpKgW66U4ITl5lIipDJMjx5iiekkKjCZR2ePAWgLSmH1gmCIJpqj8oQJ57Q9oVCIZpajJKnSIQhMaharUZpS77vR2lOJDiQVNU6+d0elyGkFEGfcwlCCi5xokKc2MGTuHi70HFkubjwQ20ahmGUisP7lCcDUdKW4zio1WpoNpttKU18DMSJPnGpQHwMcalE1j1uPwQXg2RfcKlGtgUJUSRASYGK5B9qq0wmg1arFU1HR+WjffA0L1kf3lZ8ij5+PJ7cxZfLVCgpt/BxJNtAQuOTb0/CIiWs8WPJ6RVNkhDvA5riktqAt0mpVGpLO+NjladUyXNFHos+p+sOlT1OoIp7LyU7eYyF5CmJSdSicUjSJU/gousi7xtqfy5eUdvw80GWj/crlVWWR55PNB65pMW3l2OOjmOS2Wh8mFLJloMwPDtfxevX+WZUnlLaUHkqmVhJv1mtpBe9Zp0gCAAROZp0UtPz73pXt0uwZCSyD+XP2zSdl136Y1FRlCVifPzMtisWF73q5z73OfzWb/3WvOX034mKoiiKoiiKoigrDZ5qwwURLp5w8cKU/GN6lgKUFF8sy2pLoKLtuIAlMQkeJHdwmYPLUZS0RFNuAaeEBjmlGr02iVAm6SEuDcfUxvyZy0JS0umUMENl5OU2SSNc7iGxhadNybbksoeUUWSSjay7KYmMb8/bx9SeMknJNDUiX5+nR1H7cXmK1zFOVpFjkad4ydemMQigbXyaRCFT28nlpn6W25v2S+tKWZFkQJlgxaUvk5TFz2ue2sVlMzpXSXDkUyBKmYv2R2WXyVS8DNTGUj4ztUncuWFKbjLJU53aWpbPhEk8ktvxaRTjytApYStuvyYRUUqFpoQrfsxOCVcLtZdybqPylNI2H7CSTDLax+kjLVJRWuqpKEnh6NHoZbmLxVg2Dh7sdgmWDktM25e0lDRFSTv1+pltVyotetVf+7Vfw9/+7d/ihz/8Ydty05f+iqIoiqIoiqIo3Yanp1CSj7zJzkUSKU9xKcIkCJC4wwUsOhZP5vF9Pzo+X24StCjdhstTVLYgCCJhqtFooNlsRklLlP5C++AJTLJNgM5pQFL+MAkNJqmJ9kVl5tvSOly+kIJVGIbR9IO0XS6XaxPeALRNxUdiDa9rJpNBPp9v6wsuHFEf0Dae5xnHDxfZpMAmkW3D5SU+PihZjNedjxtKm6JxQ0lIrVYLjuO0JZrRuOJpZZTaRQle+XwehUIBhUIB+XweuVyu7fhyXHCBhsa3CdNUiCZM8gztmz/zNiNoyklKnOKCIE+KW0iK4TIZ9QUlSPH9FIvFqH1s20a5XEY+n0exWGwbo7Qd1cU0pSCVJ5/PR+tTSppss4XEnjjJzNR/ce8Xgp8X/Fi8/6gN6DsgLjyZkqBkf3aqkzyvaFzwvqP16cHFNNO1ibcFFxO7gU7bt7SoPKW0/bDS5KlkUlu1CoPdLsRysGNH9PJzAOb/H7uiJJS0XLvFf5wo5yD33NPtEiwtclx+/vPAf/2v3SnLcrNuXbdLoCjK2aTROLPtTkOe6u3txd/8zd9g27Ztbcu79eWToiiKoiiKoihKJ2RiCS3jshCXWOTNfi4E8Zv18nNaxyQsyJv68j0vCz2TUAOgLXGHRBLf99FoNOD7fiSYyGn7uEzFk11MUoMpAcn0MNWB74OLQDJZia8DoE16keIGb0+ZgMTTl+jZdd1IoOJTzS2UXCNFurjvr02ym0RKQlz6MMkx9BnJUZRyRFIZJSJ5nodsNhu1A00DSfWn/ZfLZdi2HclTJFTR1I8kZ8kkLVOCD29b2Va8r+JkOtnecfuR21Lf0rFJEqMpMvn+ZT/y8st+4eXh/U3nAE+tImmHRDYaVySelUqlSFKT55EUovhrOieobnyqO1kvKZrJ87fTmJOfxaVIxS2LEwN5m/H0LlN55DnFz3tqJ3k+8s/kMpMkJ8ejFCSlyLiQoKac26g8pRjn8VSSxZE9e9IhT7EfVM0uFkNRloNHAewG0AJgp2lqsJMESf15ldR6Efv2dbsEy4vjdLsEy0eh0O0SKIpyNjnT5Knt209rdVOsvyZPKYqiKIqiKIqyUjHJHXIaNp5EQ+vKm+6mBJU4eUrKHDLRpdM0X5ZltYk0nuehVqtFKVM8sYekKXpN+yepSh6n0zHj5B/eXoQUnWh9SjSiVB6JFHcILsfQevRMUpgUpvjDcZxIoOJTo8WJQbJPpExjEjRoWjfZjrJ+UtQwSWQEpYsVi8U24YyORclTlCzGpSl6pn339fVFSVNUdp4+RWOKT3NHY0yOTZ5uZRKn5BR0UkqT5wIlfEnJRbYZSUXNZnNemhido7yfaFzI/uXwunIJjsrJE9Bour5Wq4VsNgvXdSOxrVgsIp/PIwgC5PP5tukPO0F1y+Vy0ftWq9UmRMp1+fji1yIpKsWdt/TMJSZZJtMy0znNj83HDm9zLpfKa4NJ1qTl/LUU7WQ9KU1O9r0cj7QP2Xad6q6c+6g8pag8lQLseh3wfSDml8wkopMHKUnns/k8/j/XRQ3AQKMB9PZ2u0hLTxp/RiWtzmvXdrsES0ua/mCybcB1T71PU90VJQ2ciTw1MABcd91pbWKSpyqVCvr7+0//+IqiKIqiKIqiKEtMJ3kFiJ8yi9/wX0gs4ok1JsGEPiOkYEL7IRmDpKlqtQrHcVCr1SKZRN4T5MeifZNEJOtoqpvpc15X2X5cNOHiWZw0ReuYkr3ktG88GYnagOriuu68RCR6JhGl2Wy2rWMqC596jdeJizW83qbEmzj5hI+HuKkQSRICEE1PSOvyKQZ5HaScRPvlU06Wy+VI8KExwKcZlO1hkshIXuLjlctHJuGO3vOycolFylOyzagMNL6pz/n6UvrifSH3aUqhovX4fugcpDanMUBCGm8fnnDWarWQy+XQbDaRz+dRLpfnTf3Jj8kFJJKoaL2464McU6b+l+tRO/H3JpnT9Jk8/03yklxXji0qG31nZDom379JZOTXLtn3lPbF09VIFOTXWrpO8Ic8p7uBTtu3tCTGpKhWq/jkJz+Je++9Fz/+8Y8xPT2Nv/qrv8Kv//qvL7jtbbfdhltuucX42dGjR7E24Tf6dFqE5LPr+98Hjh8H1q/vdlGWlocfjl7+dheLsSJImnARR1rqKZmdxf93UloYAICvfAVYxM+7JJHYno+Z911RVhylUrs8pb9PKkqyOBN56t/9u9P+Zw2TPPXmN78Zd9xxx+kfX1EURVEURVEUZQlZ7I3yOHHIJIvQaymT8Pt2UoCRab1SZOLylGVZ0VR9c3NzkTxFcgBfXx4PaE/6Weh4sq6mdokTgYBTYgOfKk4KLSYJicsTJI5wSYemN+PTFDqOEzudHNWXnvk69DesSRZbSBiJW8/UZiahLg6qu+/7UdIRSR5c+pCpTqa+oQQkSpgqFArGZLC4MsjUH5kOtdjUHin48P3LhCrZntTPUpySUpApvajTfjudA7zMtF8SqviYlOMMQFRG3/ej6RFzuVzbuSL7TUqEdFxaPy7NjZ5leSRx1ymZWiXH7kLXSDn+TduY9hU3bk2fc4mKy1PyuhAEQZuoya8tfB3qG1M5uyZPhWfn1mhab68uRGLkqYmJCXzsYx/D5s2bsWfPHtx5552nvY+Pfexj2LZtW9uywcHBs1PAFYwmTymJ4e//vtslUJTlIQU/m1LL7bd3uwRLy/R0t0uwtKTp96j/9J+AP/7jbpdCUZSl4nSnHb3uOuAznzntw5jkqe9973unvR9FURRFURRFUZTlgG6027bdJkKYZAZCfiZTomi/XMIgkYLfwOfJMrw8XLLhU92RQDI5OYlGo4HZ2dloCjW+PS8Hh0sIceuaXkvZJ06s4OWm6cz4dIf8uLwNSQwjUUZKU1ys8n0fruvCcZxIIuOJMiRISVnHNKUfF16oXHyqOtPUdFRPXm5aJoUiKcrw8SAFMl5HKd3xMcKnYpQCikwZ47KOrD8vR6vVih03vBy8f0wSl0x14mJUXLoUHze8XDxRTCYGmQQ9mQAmx7qpXlKY423Jn7msQ9B4pWPTVH4AoukTafxQIlKhUIieeRKbvI/PZTCaupGPR5kaZ9oH7wOTCLkYwUmWSV7T4mQufnx+vIVSnuR5Qe3Oxw4f+zL9jISoRqMB27ZRLpeRz+dRKpVg23aU6sVTwujaSSKlhtMkk8TIU+vWrYtSou677z5cffXVp72PV77ylbjqqquWoHQrG1PsYCJZvx44cqTbpVCWksOHu10CZblJ8jXrdEhhOyT251XS5aJGo9slUJaKpJ6TipJW2JfpHXnZy4Df/m3gda8DDCLUQsj/9FQURVEURVEURVmpcGFA3szngk9cgpBMEjLJCVxsoc+4bBL3nShPDaJtPM+D4zio1+uRPCRTeOT+eBKSKW2nU2pMnGzRSZ4iyYKEND5Nl9wfl5B4u3Aph9eJZAfXdeG6blsSkZSu+Pb8My5hyDQpLnHx7eISjEgKimtHvh6lbvE6mcYJsPDf1XK7hfpQjjnT/uR2pv1wuHhFjzihSr7vlO7DpSvf99tkOFN/8eksTeesTEWTx5L74+vKpCQ6d0heIuGSn3/0GZXFPZnyT2OApgCUslynPqH+k9P+LdSWpn2Znk3rmpZ3Olbc+OfJVnHXUdM5QctNoh6ty5HnFp9qka5BJE/xaUX5uOzqtH2aPLWkJEaeKhQKZ2V6vUqlEs0pmhYSewNacuONwN/9HQDg39atww3dLY2yFDz9dLdLoCw3ExPdLsHKoEu/pC07afl5xUm6TKWcu3znO+3v03h+KkqSWaw8dcstwC//8hkfJk1/dyuKoiiKoiiKcm5DEgNJPpQYY0pr4a+lpGFKoJLyCC0DME8G4WINn+rOtm3k83m4rotarYbJyUlUKhVUq9VI/uFyAu2bv+fH5YlEQPvfb7wsUq4wyTxx4gUlThWLxXn1NyVO0b4paYhLTVKeIFmKpurjwo6UJ3hSj+u6UWIVCTnNZjMSLKjcJH1Rf3IRK66deNvIfeXz+ahd4uQ8GnMmkY/Kx8cpbSvTuXibUj+TOMITjihpSwpGckzHiV2UskR95rouGo1G2xSKnufN6x86JgmBlBTEE6K4jEXjgY5N23DJJZ/PR/Xj8htPD5Pj1SQumvqHi5FSkKLX/HziUyvSeRWX8OW6bttUinSuc4mQb0/HKBQKkVjGzxUp4nGk8Cfbo5MUJcervDbw81fuk0tLvB9l+/L1pSTGrx/UvrQ+lxzl8WmcVyoVNBoN1Go19PT0oFgsore3N7pG0ZilsWfb9rwpVJVkkBh56mzwspe9DNVqFfl8HjfffDM+9alPYefOnd0u1pKTmuQpRiONX9KnpG/TSpDJIJPGiEid1uUEKUxtSOwVbWSk/f0Xvwj85V92pyxLwWWXAWcwtfI5Q5p+1j7wQLdLoCjKUrJYearZfEGHiZOn6EtfRVEURVEURVGUlQYXAUha6ZTWYnpIkUAm7ZhSePjxuchCQgiJMM1mE7VaLZq2T6Y4dUqw4uWRdTCVdzFTfPHlUkChdJe49WVSEE+CkslRJNDwafRk0hEJJLQ9vefTppHMQ0IPT6Ki5KhWqxXJE9T2svymvjXVk+rAp1PsNF5I0OFpO1LkofX5ulJA4VIcl464jELr8nWkGGOCC04kSHFJistSss2khCePx/uS9w8fj7zduXjG6yclsMXCk4ok8nyVbc6XxclLXAyjvpNpcVx04wKWvGZwWZNLW1KS4kKSibjrGx0zrn6m8bbQuDE5C6b604PqxJP1TOfbYvqY9uM4DoIgiKZBJLGRJCr6rFv/EBji7NwfS9GdjNNC5SkA5XIZv/7rv46Xvexl6O/vx969e/HpT38aL37xi3H//fdj06ZNsds2m0002RfGc3Nzy1Hks0pq5Clezy4WQ1GWhGwW4PJUks9lzvHj3S7BymD37m6XQDlbvOIVwEc/2u1SLB0vfSnwp3/a7VIoS8HLX97tEiiKcjbpsjxF/2GpKIqiKIqiKIqy0uDpPibhwCQOmJJ66G8eKdfIRCRCChlcLCKJwvM81Ot1zMzMoF6vw3Vd47H4PuVx4+pgEiZMyVMm5PYkTRUKhXlSBJd6SF6gNm80GpGMw4UmSpgiWYzLZzyJhoQb13XnSTx8HZ5qxNOsaFo1knEolYaLLPwhk6h4Gg5PJKLjyn7mEhSXzWgKOC6W0d/XtB0lSFE/8XLw/uJ9Q6KITP2i49ExuZBjSiuievO+oakTedvz9uDPfFxJwYn6jMtxtC0vF68ntR1vS74OT4yKu08uRS+TNGRqVym+maQt03jl4hSJkdSerVYrqg8fe3xftD2NAy4Gxklrna43cee5bGvZZ1JUk8Rd70xtL6d0JOmQ0uEWsy9ZBl5Pft5TQlqhUMDg4GCU/kXrkEjVFdSeWlJUngLwhje8AW94wxui96973etw880344YbbsDHP/5xfP7zn4/d9hOf+AQ+eo7f5EyNPMVIRy0FDz0EbNjQ7VIoS0RmsTe4kkYu1+0SrAxSdO2mX20T+/Pqqae6XQLlhbBhA6ZLJQw1Gt0uyfJzwQXdLoGiKGeTk18Id+QTnwBe9KIXdJg4eWpsbAwbN258QftWFEVRFEVRFEVZKngaD0kHcQk/fMo2k1zD92nahxQBuCxD8gxJOJVKBfV6PZKISArh+5Hfqy4kUNHruHaIS6Ph5edClGWdmkKNfy6nWaNEJ5r6jQQJ13XhOE6bBEUyDU+e4dOVceFGJk5JcUUm80j5hU8LSMcgWYlP5Ud15dM7SnjdSd6Q0zbyfjNNe0ZpWCTZ5E7eM5GSnZwmjvbNRRouYfGxSNvzqQulCMSnv+MSEE2ByMUd3hamtCBZTy6i0bpxUo8cwyZxxyR8mcY4P7d5X0hBS24DnPq+g0Qo3k7yukHXEhozvN68n7j4RK9t20axWIRlnZgCksYCLzMXyLLZ7Lx+4Nce3i+yHIupd6f14uQp07kh9xF33aIxsZhydcLU147jROdXPp9HT09PJHR2VZ5SlhT9V84YXvKSl+Daa6/Fd7/73Y7rfeADH8Ds7Gz0OHjw4DKV8OzBLzh/9md/1sWSLDH8wprUm+6dOAfHpqIsyCJ/8VESQhqmpvyHf+h2CZaW666LXiZoMsJTZDK445Wv7HYpukN/f7dLoCjK2WQBMf+5TZuA978fuPLKF3SYuHSp66+/PrmitKIoiqIoiqIo5zQyTYWn/0g5iq9rSsSRrzulushjk6BD4kWr1UK9Xkez2WxL4zHJLqZH3Do8zSeuTlIQMyVS8XLncrm2ZCS+H9u2owefQo5Si/iDZgei1CkSpSihh9ZxHAeNRgONRgOO40Qyj0yWkqk2hOw/EoNkmfjUdFxaMY0PU79KYc6USMSTsviDT2NnSimTfRqXhsblqk59blpO8HKbysYFlU5TU/KHXDdunbhz1oRJolpoG1P/mFLO5MOUZCbHmml8yLbk485xHDSbzUgG5OeP6XpDaWkyPazTOJXi1ELXgsVc4+R+Tf3By2Q6JtAu3vHt+DFN17lO9eBjmabwq9VqaDQakZRK7cevYctJeBYfynw0eaoDmzZtwpNPPtlxnUKhgEKhsEwlWhr4D5P777+/iyVZPtJwQWht3Yrsc8+dWqDTXihKcknhzcXE1jjpgtiaNfgf//7f48m//3v8dwBv7XZ5loBmsdjtIiiKorxwFpCn1m3efFYOE5c89dxzz+G+++7D1VdffVaOoyiKoiiKoiiKcjbgN9kJEpd4UgtPfDLJVp2Ej06SAQkQJEHQMhIp6AY/cEr4MU1lJVNpeF1M5TB9FiecyOWUCpPJZJDP59umGKNyUmqTFHFImiLpqVarwXXdKDmHSzkkULmuO2/6PZ6IxOUb6idT8hSVO07S4dtZlhUlULVaLWSzWXieh3K5HE33BZxKIeLHonLm8/mOYkcnAUiKV9QX/DWfApFPg0bTBfL+k9PfySn/+Lom0cckFJHUJuvNZS8+Bnhd+OdUNt/3o/Woz+T2cp9UN14H/ppERNpnXL3jXsskMdNYabVabZ/xdDX6zNTGMjEsDMNImgrDEPl8HoVCIZKjaP9yzGezWRSLxejckgISP25cveU6i93WNIYX849zsi1JDuXb8r6TY99UTt7PcfWk41ECVavVQk9PD8rlctR33UBn7VtaVJ7qwL59+zA6OtrtYiw5+h+9ySTcsAHg8pT2s5JEdFyni699rdslWHqSLk8BeHbLFnzq5OvJyUmsWrWqq+U526T296q01ltRksoC8lShp+esHCbuy18AOHjwoMpTiqIoiqIoiqKsKEwSjWVZbdNGmT7vJMPETSEWtx85XR9JFFxOiftbyyRryc8Xu2whuYLqRjIJT8oi4pKQaFuaHo+kKJ4uJaUc+pyStzol/PDyyc9NSUhx9ZYyBpepuEzH6yynnZP7MQlzcplczySFyPdxY9AkGsnlnRKa5DpS1jOVJ+4zKR3x9WX78PNCbs+nHjSlDnHk9lKqiStrp/NCClSyzLIt6DWfGpHLe/y9bBcS0fg5xutJdeLXBVrGJStZtk7XJ76O7APTOqb3cdehTuvzsc/bTi6X255O+Th8LNC0oZSax6U/JVmkTp46evQoZmdnsWPHjmje1/Hx8XmS1D//8z9j7969eNe73tWNYi4raTy501hnRUkkmvCSKiwmFvVOTHSxJEtICn4+dfpjXlEURVkhLCBP4eTf0ktJt/6DT1EURVEURVEUxQQXD7icQbJDnNQik29k8pLct5QvSOKg4xYKhUgGIXmoXq/DcZx5Yk5c2hR/jqsnEbe+SfDh2/By2LbdlqxEdaMkJJr+yrKsSEogYapSqUTTk9EUZSRROY4TCVM0DR+l6ci68/KbkoH4dHg83YbXi/qOJBcSdeg5k8lEdZICD+9jLunw43BpKU68o+nC6DgyKYlLOFLMkUk9VBbTMl5mLvJwaUcmRFE6Dz+WnNqSJ/3I+vI24/WQCWIyYYjKVigU2qZT459RUhvfvxyn8nM6v0xCjgnTFHFUd9NUerQ/WofqyY/D5cMgCKLxxq8PlmVFU8rROKXrBO9/edxcLteW4hQnu/G2NNWZb79Y4qQt+swkWfHxY5Lq+LOpvHFCpKw7LZPnl+M4CMMTSVTdJAzPzm0kvTVjJlHy1Gc/+1nMzMzgyJEjAIBvfOMbOHToEADgne98JwYGBvCBD3wAf/3Xf439+/dj69atAIAXv/jFuPzyy3HVVVdhYGAA999/P774xS9i06ZN+OAHP9it6iwbqblxyep5ycwMMD4OJDhZLPuTn3S7CMtPsQh0+YfWiiEt5/WaNcDJ67ySLoq1WreLsDSk5dw9Sac/Ns9V9u7dizd1uxCKoigvFNft/PkyyFO1pP6sVxRFURRFURTlnMQkCfHlC73nwgMtj9u36TNKlSExBDglzJC0YhIGFkqWWUy9+X7jUoBM6/Jyc2FJCkem6fNIkqJEKdd158lT9Bm957ILT34yiRGE/IwLE7I/ubzCBSrev/zBBRxTn/L0HzktG4cLeFx4ihPETNKc7G/T9ITy2AuNF1M7clGLykySDv+MpynJ/UsJzDS1HLUvPVuWhXw+H4lKcto9fiwpmPE+pM9oXJGMJ/tOyoK8f2QynOw/Xgc+FWGnduXwMcrPKz4No23b0blnEiC5zEdilmmaQo4Ukzqd9/LBtzetL5+lyMbPW1kPec7yfS2EPC/l/jl0PlNbdwudtm9pSZQ89Sd/8ic4cOBA9P7222/H7bffDgB405vehIGBAeN2b3zjG/FP//RP+Pa3v416vY5169bhbW97G2699VasWbNmWcreTVIjTzE21+vAb/828A//0O2iLBmWvOFx993A29/encIsF7lcJE89XCzi0i4Xp6t4HnByHu1Eo4kEJ0jhdTyxNb7kEuA73+l2KZaUM/mS5lziyaee6nYRFEVRXjjNZufPl0GempubW/JjKIqiKIqiKIqinA6mqb+ksCRlgU7ii1w3Ts4iwcG27UgMabVakZhD8pCUEvg+6JidvptbKGUq7jOTgEDlJqGFi1Iy4YhStEj+oCmyHMeJHo1GA41Go21qPlqXXtP2XLSJa08JLeMiBu83LlDxdCsp9vD1eZpVJpNBoVCY1z5x8hSXv0zt1kmwWYwcxKc2pOO3Wq1ItpECVtz3uFLY4mOTxKlisThvX7QuyT78c5k2JZOnqF2oPeiZ0pao7flYoIQl6kMqo2xnWpdLe3w9maLF212WhyeRFQqF6DX1BSWImdLo5Lko+5QkMS4e8vpRP+bzeaNUx8uczWajc8l0jeh0zscJn3w9fh2U+4hLgzIJVHKsAGirf9w5T9uYjhd3LvFxwZeHYRhdg7opUClLR6Lkqeeee27BdW677Tbcdtttbcv+4A/+AH/wB3+wNIU6B0ijPAUA+PKXu12C5eX++7tdgqWH/XK5L59Ptzx16BBw/vndLsXSk0DxYjEEPT3IpDyNIUxq369f3+0SLDlJl6dSw2tfC3z9690uhaIoS8XXvtb582WYOrm5kMClKIqiKIqiKIrSBeR0eqbvt0zJK1LCofVI2jEJAyS2cAkJaJc/uPAgtzclqZgkByJOnoqTKXh6DV+XEpW44EHPUiijbXjSFKVKua4Lx3FQr9fRaDSi5CmSYrhwRe1BCUcy8YcLHTzpJy55ySSI8O15clImk4HneW39RvsGEIlE/CGnX5NT4EnJxiR9yXQnLuKYRBk5Fvk+SBoiKYSXkfZpkt5MMhjtm09BR2UkscmyrLaUMBoDXIDj0/TJdqHXvC40HugYfDxw+Jjh027ydjM95DFM5wWJgFziorFCx+R1oLaQqXL0mk9TJ9PU5DM/f+XUhblcrk34k+Oc+pqfP3ycmcaTHFtyjJkkKnmeSTHPdD00TUFJ6/K+MJ2z/NpoWs6PReuRfCbrz9PLuPinJItEyVPKmZEaeSpN/7ls6tOU3aBOrFixWNJe/4TjX3QR8j/+cbeL0VUS+5MrBeeuylMJ4Td+Az/++tdxTbfLoSjK2efkF74dKRSWvBgqTymKoiiKoiiKshIxCQCmdbjUwWUCU/pKnFgAnBJESDyhG/kkTnE55HS+azPJBFLGWGhb2R58PzyFh8QQkywGnJLBeNIPyVM0XV+9Xm+TangiEX/INBhTX5AYwWUILiaZpCku7/Btqa08z5snsMjp63hbkKwiy8fLT2OGJxNJ6YTvm5KMpAQkJT6SfPj+uHBEn9N+AUTPcizLKeRInDMlHPGxwUUVPqZJSuGSjEmeku0GnJK1aJs4eUqeO7yPeLuZ5K1OSUlyXHB5ipeHty2JOrx9+ZiUx6cxL89T3uZBEEQpV9SXtm3PS+/i5afzlbe7XGcx0/rFXdPke75Np+2pHfix46Qnvr+4qfxkP5rOdSmDmq6Hi5nmcKnQafuWFpWnlPTIU//yL90uwfJx6ND8ZWnp55Okq7YGDLGzSoJI2flsotHb2+0iLA179nS7BEuOylMJ4RWvwAOWhWuoP/W6pCjJ4aGHFl7n4MElL4ZzcjpuRVEURVEURVGUlYD8HktKDfyGP0/ooe1IaiHJgaZIM4lTXBShxCkpYPAp4aS80qm8C9XJlGoTJyjw17RvEn2KxSKy2WxU77jUJBKlaHq+er0Oz/PgOE4kT5FMY6o7T6Gh9papORIux8i2MUkfcvo7nq5kEqakWGRKB+LtJyUgKXRxSYOvb5LUKH1KTulGZeOCkhSV+IOPKS770P7z+XwkbMk0IyozTa8ok4NkO3cSB6ns1BY8EYiXn7cb7wu+L1rOzycuSDWbzWiccaGK79MkK/IySXjby3FEZad+9Dwv6sdCoRC9jhORePl5whWNiVarBdu2o33Jc8QkpdE+Te1K1y45HuWYlYKdLDdvG7k9P3c4nfYVd10zfc7HU9y44evR+S/LJFMEleSg8pSSHnkqTWzaNH+Z9nOi8cpl5Or1bhdj+bn+eiDlCUwAUnl+V/v7u12EpeHlL8fRwUGsm5npdkmWBf0D49ym7cqTwuuQoiSWf/u3hdc5enTJi6HJU4qiKIqiKIqirDTivssy3fjnqT1SJuDr8ofpnw759GlSwpDrL/RdW9wxOCZxSh6j03F43UnYMNUPmJ84ZXrmdY0TfOi4vE6dEoNMy+Oks07159vStGg0DRuXrvjUYrJcsmx8rPB2MpWBj7e45by+vFy0X3pPqU0muck05SB/zxO8eD3j+opLM3GYxBe5jZQH+TkjRaW4fuT9xAUz0/o8bYgEHLne6dSP9kUiG28znrbE+1KmQ8nrB5XJ931YlgXP82Dbdtv0hHwf8lw3SXxxfSPfm8ag6dFpn6b1Okmfnc7XTpiub7Q9l6bk9ZCv1617G2F4dr6K16/zzag8pag8pSSH//gfgU9/GgBwR08PfqnLxVlOWlKeSst5bRIFU0BKeje1HFq1KtHylP7ekRxUnlKUhLKY2HGdtk9RFEVRFEVRlJTB5QI+7RslvliWFU2VRdOymabikilHPLVGLueiCiX4SBHFJEOYpqMzSUS0jmk7KaR0kgW4YJDP55HL5aLELHksvg0lTM3NzaFer8NxnCityPd9+L4fTeNH2/D6x4kWUt7hU9FZ1olp8HjbcUx9RuvzFCDZZ4VCIaqTLGvc1HFSlKH+5qKGSRyRY5HankQ0qgOlfvGyUplyuVxb2fgUiLydbNtGsViM+pSSp7gYF4YhfN+H53lRv9G0eDLdS44rnkxFz6bELZ6IRNvTOCG40MVlPVPCEU9RkmlcUoDj5ZSy1kJSkJQJKRGM6kdjhp/DdCxKo+Jlpik8efvTfkmSAhBNI1mv1xGGYZRmRf3Hj8/7iF9vpOTH28/Urlzk42KZaT98fyZpS4poccKUKQHOdAyTYMfHmqwTT6eibU0SYzfQafuWFpWnFL2JmRa6dBFfVnp6opeNNNSXMe8sTst5Lev5q7/anXIsN2np304kuA3q+Xy3i7CkxP1XlXLu0aZXaF8qSjJ45hngPe9ZeL2TXwYvJTptn6IoiqIoiqIoKwm6WZ7L5SJ5QYoWUngy3ZiPS9KJExH4dqakKX4TX6bIyGOY6gScEgmkoLDYffHPSawxCQ9c8mm1Wmg0GtF0fTQ9n0wrojpzsSju+0UpTnVKn5LCRq2Uw6HVvbjwSAUZ9jVXJzmL49kZPLauD7sOTMNutaceyTLx1CCSVEzTs/F+4GUxySUcXvfFSkRceuHyFEk/pj6V7SHrKccIbw++n7hEMdNYoEQlni7VqSw8Rcg0Hrnkw2U7+nx2tB9ObxGrnjna1g+m77VNy53eIsY2rcIFB6aN1wNZbi4yynbjfcinkotLoeL18X0/SkfjgiDQfv5TOfh+TfXs9H6h5Yv5nI8T03Wv0zang2lf/Lhx51k35SllaVF5StEbl2khZf2crtoCx264Adtuv73bxeg+a9Z0uwTKMpHkn10PbdmClz7++Ik3fX3dLcwSkOS+Sxt1AFM48TN3FfsvSUVRzmHK5cWt97u/e9YO+ZrXvAbf+MY35i3X5ClFURRFURRFUVYSlChVKpXQc/IfuXkSDZdl5HReJuEmbko1/jlPo/F9v03eMMlZ9FlcIg6XM2hd/lkcixGxKPmG0rdk2/EUl3q9jmazienpaTSbTTQajbbUHy7N0Pa5XC46juM4kYBFSFlKyle8DjyhCAD8jIUBHxjPWnhiyxB2H6nA8lrz6s1Tmri44xRsPLFhGOvm6sh4PhyEyLaCSDjioh31JW8TnlZGiVBx4gqVR4pZvK/pGCRG8f41iS/UDrQ+pSPRg2RBnrhGx6V+kAJU3LSKcvo4EoFInjOljPF9uq4biV1cbOHb0LkiZSfebnJaTSobiUZhGCKwM8gdm8TUFTvgn7cWI08dMYqGsj3puT5QxuEL1mHT89MnxkC2PQWOl5mOL8tD44PGkGWdmpKPPsvlctH5I+UpSgRrNpvReJTTPPKy0HFpXVNqGrVB3Jg0SUamcddpTMp1TMc3yYBx1zEpqkl5kq/H25a/l4l+3ZKnQp22b0lReUrRm5hpIWX9nLZx/fhb39ouT6nxnGzk+E7ZeAeQ6DoH/Jf2kZHuFUQ5I1oLr5IY3m9ZeC/94Xn55V0ujaIoZ4XF/ty54YazdsiPf/zjKk8piqIoiqIoinLOQDfMSUrgiUl0Q75QKERTaQHzp+qjZylRSAFBpvjwbeVrk3wlE2toOd8XxyQTxK3Lj80Tt+hYfEoxWtd1Xbiui2q1imazCcdxorbjZeRtxmUogsQOAG1Tw8lycQnCJFkEQQDfAh7cPoJds1Xs3JrF/ceAfztvCFf/9AjyaK8TF7yoXE45jwcuXosdcxVs3F3C/qaHqf4Sdj05huzJKfCAE0IKTenH08noWcpffMyYxDz+Xj54+8l2NdFJ/OP74nKObG965uWgaeTowdueRCk+zV+cPCXHAL2WZeXSkSy/Z0jQ5tMq8rplMhm45QKOXLYVI2PT6M1lMLFlFM2RAWy+9ynQWcLHuGy7udUDePKi9dh+bBa1bUM4UGkhA+C8sVpbupNJhJRJUnQs3pfyfOb9bdt2JMFls9m2diYJLk6gon3att12bkq4uLeY+7ELrWO6nvHrnizrYsUlKdDJY8l1pUxmEu9kmZVkofKUkh7J5D3vAT75yW6XonukoZ/TUMcY5p3HaWmLtNRTmUeQ4F9Mk/5zWX4JkjQe4W9++Ze7VYxlodN/wCmKco6y2Kljt249a4e85JJLjMt93z9rx1AURVEURVEURTkbSPmj2WyiXq/Ddd1oqi9K7+EJTPw7MHlzPk6SkcJIpzQWk1ggk1X4dqbv5KSw0OkzLm5Q8g3JGFIU42lFruuiXq+jWq3CdV04jhMrYEhphktSJOXwz6UkwevOZSu+bwAIgwDb9o3jse0j2H7IwZ51edwz2cK9F63D1T89jAIrl+u6kQQVhiEapTwe37MRG+o1bN2cw2NPNzAz1IPtjx2G5/oITkoqVH8SeKhdKE1I1sckjJkEJSlQ8XQomZQTh0yHktKd7Iu4sSGFLpIHuQzFyzUeuMj73jyBSspTcWVwLSAoZNHrLe77Zc/zjFM58n3ztiw1fYw+N4HxHWsx0HQw4jgYH+jBwevOx3n3PxcJVLLOlmVhaqQXT124DpumamgOl9Gqt2AVbVz0/CyAU9+pygQu3k6y72T78XOQlvHzg5aTBOV5XpR4RuOE5E5eD4KLZQtxOmNMClFyPyZ56nSOJ+sg25WvY9pPnNTKr80LlUE5t1F5SknkjUsjo6PdLkF3KRa7XYJlJUjLuD6J3sBOF6m5bgtqn/gEej7wAfwbgNrAQLeLs2SECf/FO63jN2k888wz3S6CoigJZzFf0CmKoiiKoiiKoiwXrVYLnudhbm4OQRCg0WjAdV00m81I7OHSiJRdgPZkk7h/MDSlMNF+TNvFpanIxBq+rUlUkscxvZevc7mcUdKi41KiEklmtVqtLW0qk8nMk2U874RQ02w2o2nH+DRwvL7UzrQfnnLE30sJhcsrAFBoNrHx+QwevmgdLjxawbVrQ9w7ZeO+Szfg2kePIeOfEkno0Sjl8MQ127GhVsX5G2w8fMDD8ZEB7L73WeSaHoIwjEQm2V9UBkoC8n0/EqiobnFyiRTFKF2I0oSkVCWFOjkGTOk+ncaK3K9J5CGBkI5HciH1bxAEeDbrYao3wOX19unyaFzw/uFtl81m4WUsPL1zFIMzDZTGa1EbcBmIC0Vx30fzNuMJVCRCluaa8GfrOLp5BOsn57C21sCx/jKevXIbzn/oYFsCVSaTQT6fx8RgCU+evxqbZxpo9eVRbVlw+2zc8OQU7Kwd1YEfX55XcplMO+PJVTwxi6bzo3UpgYqm4aMpD6l/pFTIoXOrUzvK8cQFo7i0N1lXef2S+6f68Pf8806YpvejcpiQklRcIl6nfSwHoU7bt6SY8xeVVJGam5hpqWcc117b7RIoS0hqzmMl1TT+n/8HWwC8DMke80muG5D85Km0MDMz0+0iKIqScFSeUhRFURRFURRlJUFyBSUmOY6DZrMZJbqQ/MGf48QmuV96jktSWowwYEpFkeKMTCqSKUOm9UzJQiTr0CNuO+DU9IaNRgPNZjMSaUwSmBSUSGaR0ghvG574w2UP2t73/Wi6QNd1o6kW6dH0fRxd3YdypY6NR2fwWH8fnh4PcO2wj1wY4N6L1qIZttpkrEYphydetBPrahVcsD6Le48CY/292HhoAhnfx/jagegf/GWSjql81EZUNj6mqP5xqUmy7Xm7xPV33NiJm7Kv09gzlYcfi9e11WrhWOjiIFwMBoAdhPjumhzczPxkKbkfeu8Wbfz00g0oNlwUmx4mB0tolPPz0rfiZJm48cMftm0jKOQwtX4I26p17KxXcGh0AC1YWFuto95XxFOXbQZYu2azWUwO9+DR81dj03QNfo+NCcuGl8/iRs+BV8xhvL/Q1hckT8WdqyZ5TIqEcjm1s2k8yYQvk1gk2z5OzIsbd6ax1YlO2y90rVvoYdp/3Oed6qCkC02eUvTGZUKp7NiBvmef7XYxukbaxrUmT6WclIz3IAjwfLcLsQy0Xb8S2Lepuj5/9avdLsGSodNpKYqy1Ojvt4qiKIqiKIqirCRIdHEcJ5qOTCbukCDTaDSiZBjbtqMUF36T3iTD0PYmiSUuvYWOz5/5OlLekUlMJLjIFBnTNHwkU9A0fXx9LlZZlhVJSzMzM/A8L0roovV50g8XOlzXjWQiPhWZSYDh8hFJWY7jRPshmYTgaTpReo+dxVxxBLO9/cjmLQwcm8KzG0bgHp7EFauz+PF0Dj++eB123vUE8gCaPQU8eVKcunC9jbuPWZjr78G64zPwizkcuHAD+icrsE62Fx2T6sklLCnX2baNZrPZJvHI9ubb8uQi+tz3feRyOQCYN3WknAaP+pSmXqTj+r4frc8FHomU/fhY4f1DfREEAcJWC/eUPWzyLFTzQOCH+Nft/bjuMSeqD40hPsaCIEDDtvDARWvQU3PRHCqjDgszQz0YOViBbZ86p6id+XiTy7ggROcypZ6dKLeF8aHVCL0Mtq/LojJex6FV/Vg/Pou11TrGest4cs8mXPzYMWQATA6X8fjOEWyersPvzeN41kaQs/DzZQ/NmQweWt+LneONeeckPxd5ch0fN7Lv5HnJE8u4nMevSbSe67rRazqOTEjj5cnn81Hf8XHBrzH8OHECHk/I4v26kLQk24iva0rC4p/xKUPj/qHblCRFdekk4HWT8OTjbOxHmY8mTyldP8mVpeHZz3ym20VYflI8luedx2lpi7TUU5LSeq+kX1CXkuTWLB2s63YBFEVRXiDP/dIvdV7hN39zWcqhyVOKoiiKoiiKoqw04hJ/6D1B8gJPfOHSi5yCrtNx+LH4caQAFfdZp/3EJbLIRCqZzhOXQiMTpyj1hqQUXn/5mqfmSLlIylI8VYemTqRnmbLDBSu+LHp4PkYf3g8/BGZzOWSywODB4zg4sgpPjPm4arAJu+XjqevPx2zJxhPX7cTaagUXrLdxz0lxau2xKVhBiOODveidqmL0+cnYtCxeH153mdDEE6lku5jaSu7XNLY6pU6ZxkGnsWIas6Y0JJm0NeCF+JlKBo8WApTcED0WUGiF+NEFo/Cy849PY80t5HDvRWvR5/jI5zLIOD6OrunH7n1TKDb9trHBx50U1uLGnkx0yngtbP7pARzt7cXegwF2jwAbajUcGR2AH1hYU2ug1lPAo7vXYXyohMfPX4uNU1V4PTaOZ06IUzeVXEzNBPiBVcB54w2MVt15bWu6DnAZkSdV8bQqLs6Z9mdKpOKiIU+k4iJT3HVFHjNO8DSJU6axwp9NY6vTdp2SpOLKslACFd+viRWVSBWemrrvhTz0RpQZTZ5SEn0Duo2bbsL/AfCL3S7HMtEcGel2EbpKSkZ1xLz/zE/LeS1JS73TUk9Ban5eJZykS3DX7NkDPPRQt4ux5KyoPxgVRTmrHL7iCmy9/fb4FW66aVnKofKUoiiKoiiKoigrES4xAGgTFAhKumk0GtFntm23pepwTucGvkyV4p+ZxIM42cV0fNO6VF6ZUkMpM7Qd1Y0kjUqlEglNcho+ElooXYqLZnw93p6UmsNTpnhKFSXtmFKQ+HEpHUu2U98PHkH9lVdjNl9Ab6uB/gPHcHjzWoRHx3DF6hZ+XC3hmRsvxprxCezamMPdR4HqYC9WH50EQmB8VT/6pioY3X8cVPJWqxUrg/AxI9O/qC5U3jAMYdt227ok5FEf0PY8bYnSpDqJdpxIHIpJBuIyj2k7mTzFpSnqq1arhZ4wxLWhhTuHgG21EK1siKAV4scXr8N1jx9HLmyX8ep2BnfvHMJg00c2l0W24eHoSB+ueHICZS+Ae7J/aRx4nhcdn847LqXJlCSqo5TOsn6ArQ/ux5M/cwEeONzA5RsysCZqODTaj/UTc1hba+DQYA8mh9dj0/gc/J4cxrM2wryFm0pNTM8EuM8uYefxOkYrTYSi3eUY5+d2EARt01HyPuDbmOBJVbwfePobJVAVi0Vks1nk8/l554WUqrLZLCihS0p7cRITsdjPZXuYPj/d76X5eOb14vuiMWGSHPm6SbyfobSjyVNKek70K67AD7tdhmUkNf3K+cY3opc9KbvZovLUSe66q9slWB5S2r9Jl26IJNcNSH791q5Z0+0iLAudIrsVRTm3ObpzJ74U9+HrXnfisQyoPKUoiqIoiqIoykrDlMzTKbFJJkx1SkORwoIUUUw38hdTrrg68PdxqTZ8uRRxSKagz2iaMd/32xKg+JRfJDqZEqBk+g9JMI1GA/V6PXo0Gg04jhMJVKYUIVO6F29nU+IQfB+rvnE30ApQLRaRyVroO3AUR9aswRNTFi7d1YMeO0RmyyrcPWahMtCLVYfGELR8jA/3oXdiDtsePDAvlQvAvPQgLqLxNK+4VC8+BkxpVaZnU5qVTPWSolmcsHI6aUJyvMalO21yQlw/4WN/TxZ5p4USQuT8Fu6+cHWUQJXJZODkbfxg5xAGmi3YtgXbaeHoQBFXPDmB/rlGW7KU6fimcS7blct/8lHyQuy++2nMlEt48EiIi0aBjfUajoz2o563kc9nkLWAidFejOfyCHMZvLzYxPR064Q4NVbDecfrxnQp2T+yH/n5I68J8ry1bbtt6kX+4GIQnYue58FxHDiOg0ajEZ1PNF7j2pLOe5LSTNc+kwRl6hMTC13H5Dm10DVZCledPotbT46hhUSwpSY8iw9lPpo8pST+JmZamSfTpIGHH45e/odKpYsFWX70PD7J3r3dLsGykNbeTss4T3o9Ey/BJbFOC/Af/sN/6HYRFEU5i7i+j7cCeBrAb+LkdKSDg8C73gW85z3AMsmTqfx7RlEURVEURVGUFUunm/ImcYoSgkgWMd2gB+ZLUiQ6SLkjLnGK75MSVqSsJfcVVzeqg/zOzrZt5PN5AO1/q3Hph6dDNRqNaNo00xSGXBCRDyl4NJvNNumKizKyjXnqUpw4xdfjtFothEGAoa//ENOvfTGqpRJ6Gw30HDmO4xvXwJ5o4tqSg3+t9iEcHsTAc4fhBSGqa0dQGpvGxgcPoHUywUf2CU/u4dIL9ZdlWW0ylRTq+Fih+nJBj9pOjg9qT4kU9eLazDRWTKlEfHv+2iROUd9lMhlsbIS47piDH60pYP1UHeViFo1WgB9dMILrn56Ga2dx13kDGDwpTmWdFg7353H1M1PoqzbhnRSMTMh6kxDE09L4Z5ZlIZfLzZPLAKDkh7j43n149NodePCIg8s3ZODNujjWX8ZA0EJfEOB4xka2YOHn8nVMTQW4v1DGecdq2DFeb7ufw4/L+4eXi8SpOJGOC0T83I2bbpOnkwGIzktaRilcXIqS/UnPNFZpGU37Fyc5LYZOQpPpWnam/9RrurbyZ7meXEbw81dJHipPKcm8camkvl/T9iNr3s2l4eHuFGS5Sfk4TxuJl25OoreKlXOBbv1njaIoS0+z2YQH4PcB/AGAq6+8Evfed9+SHvO3f/u38ed//udtyzR5SlEURVEURVGUlYZJXqCp0+LEJJPEY9rXYhJZTPugx2K+L42TAqQEwI/FE2Z4Sg8A5HK56PiUZNNsNtuSp0gEoWcuQHHJxvO8SLzyfR/1en1e+g7JJvT3Iq8PPcvEKdm2Uvah95HYFIYY/se7MfUL16Ha24PsUBk9bgPHiyVMVjJANoOS78HZNAq/GaA0No21dz8BlMvIZDIoFApRm1AaFx2PxgqJVFzQ4UKGLCNvJ2p73m5hGEZtTgIMCW80FRtvC9OYtG07ajsueZnkHLk/2k/c+OLbyKnh1tdauOpgBT/Z2IsN0w2gCMAH7tw1jCBjYdDxkc1asOouDg8UcfUzUxioNOGzKfbk1IW8jbhUyIUXLtLxspsSnyzLAhxg5w8ew1MvuRD3Hvdx/vl5+Ed8TMBGxcrAtoA9a0I8MWnjUMHGjiMVbB+vIxDnU1z70GdUBy7ImSQ6mQQlxzzJeLlcbl7yGe2DpjCkNmy1WlEyGu8nPk55ufn539ZWMXQSkjrRSa6KOwa/XpnOf3rNp8vk0zZKGVXuQ+Wp5KK9qiT6BnSaSfs0bumq7Ynz+F/5Av2hnWxSdj4T+vMqGSS9Hx3H6XYRlgX5H5KKoiQH13Wj1yGAXLG45Md897vfPW+ZylOKoiiKoiiKoqwk5E17mdYkl8vEJ9P+ZJqK3C6uDKbyxB270/qm8vD3XKSQ+5bTgpHIIxOi5DRycvo2LqyQQBUnYcntuOxA7Wx6xLWPbH9K6bEB9N/5EPyBHrS8AEOlDDJNF81sDr3NBkZyPtyMjSBnY/VPnmpLDTJNoWY6Dp/ukI5rSteRIpWsJ58WkdqP+iFuCj/5WqZEEVK6kaJPp5SzTuNcSidrKx4u2z+Dw0Ml5Bo+ClYIJ5eBl7WQyQCZhoejA0Vc/sQ4+ueceZKL6fyLk734+7jpDaktaezR60zVwbrHD2Gqp4xHn3Nx0RoL/XaAIGvhsgEPlUkP+/08ck0fm47MGqdJNLWzSZaTfc4xJULxZ953pqkg+b4pFc513eh849P3ye34cfhYNl074vpgMXUzbbPQNU++j7vmmT7rdG3odM3oBjpt39KiyVNKqm54pSkjYV6/sqjQNPBILofru12IZSQIAlS7XYhukKLrV0dS0g5pSZ5y+H8DDQx0ryBLRNL78ft33dXtIiiKorwguDwFoG3KgaVi+/bt+OxnP4t3vOMd0TKVpxRFURRFURRFWYnECSCdEnekkCJv3MsUIilBxN38l2kyprQaXk6SXqSYY5rKTMo/tB0/bi6Xi1KPXNdFvV6fJzzx6fjoWJTs02g00Gw227YjeYNvEydFyRABmcrEl3MJxLbttjbiaUuWZaFRzmPs+t1YPzmF6uohHPayKBQz6Gl6qBRLqLVCrMl6qM+5OPrKa3D+D59CHqeSyKgfFhLhLOtEeo8cL522lck41O98ysJWq4XsySkEqR95OwKn/uam9CCZ6EUSmJS+uDgl9ynrRtvk8/m2tiHRDkCUkrWh7gL7p/HA9mHAClHMhGiFwLGSjWzBxuWPH8dgzW1LnJJjVqZ28fOJH5cLTXw7LhPJpDDLslBdN4xjF23G8PNjmNk0invGgKs3ZlCt+XhoJg/PD9Ffq6GZtXHf9kHsfuQIsoa+nCfrsXbmdTGJSabxwMvK07bovewXmSwGIKoz9VdfX190fJ7QJo+byWSi/o2bJnIxQpNJmjIJcXxd03H4/rjoBxhCRwzbxx2D78dU/uUkDM/OLcEE3po5K2g0iZLIG5fKiR8C+/iCX/iFbhVl+di5M3p5T8pksdSex9/9brdL0B1S2t8L/XKbFKbL5VNvtm/vXkGWiEcffbTbRVDOAt38A1FRlKWlG/IUgOjLayItP/cVRVEURVEURTm3WGwqCa1r2ta0n7iEFtN+z6Qcp5O0wsUOuZx/BpySdSihR07JJyUbEn0o7YYn3ixme9M/Zspyk/jD07H4Z50erYEe7L/hIqyrVXHxxjzC6TrCTAYttwW76cJqhQgsoDBZxTXDPnJhgCd/Zhd8JjLFpRlJaUcKcFJ8ixt/sk9l+/Dj03F50tRCSWALHStujPL31N40fSA9TP1Cj76aB4QhAstC1g+R9QOEloVMEKBcdzsmicW1o6kvZL/IFC6TEFZdO4SjLzofw4fGke3JwXI8uKGF8WkfedeD3woRWkBproGRuQrqvUU8fsl6eGy6ShrjplQr/p7WjxszcdcELgzx+ncS3Pi2PMGMysFlrDjhiV8XFiMAxl0fO2GSqjq1x0LXPFNbnM51UkkumjyltF0wBxKYcBHxr/+KG7pdhmUkDEN8BcB7acFJez3RPP109HJzyv5TPQiC9ojFtMg13/pWt0vQHWT/Pv448DM/052yLCNPPPFE9DrJwmCQ4LoBwA9/+MPodZL7MekU2TRe2o+KkiyazWbb+0KhsCzHpf+EJTR5SlEURVEURVGUlYaUdID2tCcTXCwwTX9HUIqLaSo6OjYvA72WKVgkSnQSFDoJAbQ/27bb9sulKaoHiRb1eh31ej2abo+kD16mIAgiUaper0dJVZ7nwXGctunkqIxSBpJTnXFZhj/L4/I6WJZlTPqyLAvNngKevm4XNtRrOH9jDveOZVDtL2PN0UlMjwxgrlRG3nXRMzGHAxtG0Do2gavWBPjJdB6PX3cezv/hUwhdN2oj6kuSUKjcPI2Jl9kku5jEMC62yf7kbUcpS6ZUH1rm+z4sy0Kr1TImqpmQY0sKTXRulEol5PN5FIvFSFJqNBrRMakOrVYLFauFu7cMYqjqolXIYKaYA0JguNZEqwX85JK1uOrhY8iJctDxqM6UfkRjk0+ZF4YhXPeUhGWa5o6Xn8ZFZe0Qjr3ofKw6PIFwoICZUhmZfBbXBtPYWx2EGxRxXq6J6qSDY+tWYfXRSayuVnG8rxdPXLoROx84gFCkr1mWFf3zGp37fJpMx3Fg2zbK5XLbeFkojUqOJ5n6Ru1ESVUylY1P25fP52FZVpQOJpPfOJRC57ruvGsY7+s4OckEH7dSDIu7vvFr32K+s6Z9y31Snywm5Wy5OVtT7uk3+mY0eUppO/Hf/va3d7EkS8w3voHXdLsMy0jq/1M7ZTdy9cZ1ujj4yU+2L/jiF7tTkGXmmWee6XYRFEU5SalU6nYRFEVZIur1etv75TrfVZ5SFEVRFEVRFOVcwCSsSAFBfn466StxCShSWohLWTEdWyZIdUpSMW0rU4KoPDKlhkQNPk2W53loNptoNBpwHAeu67YlTMmkJv4s60rloBSjQqEQPedyuWiKOlN/8DaUCUNhGKJeyuGpn7kA6+tVnL8+i3vHMpjtK2PtsSlkAyBsBbCCAJlmC3Yug+FDEzg0OoKnjwe4ZsiDHbTw5M/sgsekL9m+JhmM6rvQPR6ewMX7igswPO0pl8sZl5vStkgSMaVXxQkzcgpH3u4y/YuXg0Qc/mjmbdy5bQD9TR8520K54sIKACsEypUmSgiQ8wLcd+lauIbpMmW/SnEvTviR48o0dkicGjk6CWugiNlyD6yCjRdjGrPHHXheCCsIMH2sgYtXW1hXqeD4ulXwAwtrKnXUe4t46rLNbdMNmoTAuNQwSmcjMZGmyORimGkcyHEj24K/N40zSuPiMpW8lsgxaZKxTOeg6dpnkqD4c9y19UxYzPVxMdfMrslT4dl7KPPR5CklPdKFrOdb39qdciwTqenXOFJW/3nJU0qicTdubF/QpV/Slht+EzX11zhFWUHo+agoyaLRaLS9V3lKURRFURRFURTlBAuJUVwo4OvJlJJO4hQw/++jTuXpdDNfCgdcROCChSwb/4xSbqSMRGIUn3aPJyyRCELSB6VNcdGKS1Jx0hQ989QuSsSRZedJO1IQ4f0iv2f2clkcvngzRufmcP6mHO45ZmGuv4w1x6YQBgEmVg2gf7KKHY8dxqNX70ClWEIfGhg+NI6DG0eB45O4ZjXw44kQBy9Yi61PHIPNykftSe3DJRlZBxNxdYmTp0gC4rIUT0uT+5DjjdLUZGqRHCOmJB7ef5RWRElTlmVFiWaU7FO1QvzLUA5DbguWnYFV93B0uIwrHjsGL2Ph0V2jWDNeQbGcQ+iF2LtnHa548AjyQjqicvMxxMcqF9rk2KIyyfHd6Clg6qLNGD48AQyWMVMsAgUbP4NpjI97eGJoFCOPHcTgoUnsf9nFeOBwHVdsyAITFRxdPYj147MYrVQxk8vj+LZRrN53HFkhHZnaktqMys3lN9u24fs+stksCoWCUUwziYNy/FAfU5/xMUDnEYmPlNTGk6t4m/Pj0TgxjW3Z/qbrpxzzEikjxq1rWtbp+mgSyfh6ceKdkjw0eUqZZ52mhny+2yVYUuYlT6Whb9kP9+oiokWTxLxzNw39DQC33NLtEnSFef2dkl/S9u7d2+0iLAtJ/1n8yle+su0P9aTxomuv7XYRlgX5JZaiKMlBJk+Vy+VlOa7KU4qiKIqiKIqirGTkTX/+WiaWmNJX5M35xSacmI7D99Fpe1MdTNuY1jGlE9FnXKygadCAEwKN67poNBqoVCqoVCqo1+vzpvKTqUayTvxh2zYKhQLK5TJ6enrQ09ODfD6PXC4XiSI8BalTwhJPRKKHlbNx5IodGG404K4dwD3Hs5jr78G649PIhMDkqgH0TVSw9YHnYLVCXHjv07CCEJViCXbexqrDkzg4sgqPzGSQHykhG4Q4eP46hECbzMQFJkqFMrUFT9+Kk8D4/T/aN3Di72ieTCQTgaiNeP2pHSm5i8s31B8yPYqPBVMimWnqQbl9JpNBLQt8uc/BqpaFQi6LggeMDZZw+ePHMTDnYGiyigueGMPYaB/suodSGMD2Wti7Zz3qgQ/HcdBoNKIHJZvR9wlSHpPJXIVCAcViMUosI8IwhFvKY+zy7Rg+PAGrv4jpYhFhwcZLrBlMTLh4YmgUqx4/iJGnDiPvuNjx/Ucx19uDB4+GuGR1ButrVRwZHUDLDzDUdOAM9GBq62jb2KY254lpvA1lChUlvTWbTTiOg3q9jkajEfU5F66o/+Q0jKbkM5l4xQU0Erk8z4vtSxrHYRjGJnjFXS/5ec+f465dcde1uGULXWd5u8Qd00QS72soJ0iXXaAYSY089fzz3S7BshKGYfqSiL73PdQBPAbgq8Vit0uzrKQ2eWrbtm6XoCukVZ7q6emJXif551W1Wu12EZYU+m+UpGIluG4mTP95oyjKuc3Xv/71tvfLlTwlfzakfhpyRVEURVEURVFWHJ3kpE4C1UL7itv/QukmnaSruDLK6dbiBLA4EQw4NaUXJUjxtCHf96OkKZ42JVOmTNPymY5PslGxWIym6ZPT89E+ALRJMiZhRwpNtpVB32QVA08fhzfdxFx/GYMzVVgBMDHcj76JCrY8sD8qdyYAE6iKyBWy6JmtYayvH5njFax54jCKNQcIT03bR8fidaLymqbKk+1DmJZxOS8IgrZUL5OcFjfNH4lGJnnK1IZxY82U9GXq24rVwt/m5zASZpHPWSi2MjjYl8NLDtcxVHOj+q6aqrUJVMWgBdvz8eAVW9AIW1Hy2ULT2fHjc4HKJC6FYQi70cTqB/ahvP84qmEGWSvES6xZTIy7eHzwhDi16qkjUT0LTR8X/ugpzJZLePBoiItHLWycncX46CByYxVsefQQ+ieqbW3C23shyUkKVFxeNE2DKdtf7luOO/6axk7c1JKyXfl+TdcLUxnkuIhbZ6H147btdF1b6BpJdVmphDpt35Ki0/YpK/oCcFa5/fb29wmvdypvNtxwAzblcigMDaVOJErNeawASG9/83r/9Kc/7WJJlpZvf+c7p94ksK/pjyh6nTiSWCcD09PTAFL6+4aiJJyjR4+2vT9y5MiyHFeTpxRFURRFURRFORcgOaDT3yydklZkihPd1OeiC02pRXSaTkqKITKtiK8r15fThsl0pjjpgosblDTVaDRQq9VQqVSiNBySeaSEIcUrAKeSoIQMQeXjZeASlhRAZFu0Wq15ded/f1oAvMEyDqwfgjNYRl/VwcxgLyqej/7jc9i091l4J8URKlMQBNh0xwM48LJLMd5bRlDIoadax8zoIBqXb0P/VBXeyanVSNIBEE1/JscGrxeVV7Y5bUf7kKnwXJgh0YXSp3j9eRoTjQFTQpVlWVESFW3DP+djVApxcro5Xg9N6TcAAQAASURBVAYAaCLE32fnsBo2sjmg4GXxZN7FKyYtDCGPiVwu6rswDNF3bBo7PBfPXLIJw0emkOvJw/d9PHHlNpz3wydgt8J57UX1ofdyDPGxxROWePJSdrqCY9ddgLCUw7V2BWNjHp4cPiVOUZ2ofXJ+iAvveQaPveg83H+ojsvWW8g8P4WDF2xE8fjjKFTq8MU5bJr+kMpkWVY05aHpn5FpHAdBECVueZ6HTCaDfD4fiYckaEVjXow9fp7S8aW0Rdc8XhbT9YGPMy5cSUzn+UJIGavTVHr8fJXLZKiM3E7uj65R8txVkkm6/jVeMZKa5KmUkda+rAAA+wU0LQRBgF+3LKzL5fCFP/xDYHS020VaHlLWz8S88Z3Cdvhf/+t/dbsIS0bSezPpyVNp+fnz/e9/v9tFUBRlCWg2m/OWPfXUU8tybJWnFEVRFEVRFEU5F4gTo/gy+ZpvG/e5KUWl075M+40rT6flMo1poeQYEi14Ag6l33ie1yag8DQcmXZD+4xLP+LCjhQb5L5MD75/WZe2pKcwQDNno96Th+X4cPM2LIRo5Wz0Hhxvqyeva6vpoXhwAq1CHlYQoFW0EToeGn1FOEW7bQo1flxT+flnsnymtpTT4vFtJCbZzPTPkKYxYWo7eTxT0hTfp0wBc60Q/+hP4sJMEbmshVKQwVMZF7/YLGN9cGpqQ5JWSN7pOzaDrQ/sx+S6IVhzDopBC+XJORy+eDN8mMeATEWLSxuS9TkxLkJMX7QFNkJcnatibLyJJ4dHMfT4QQw/eXiekEf7yDseLvjhk5gpl/DAoQA7NxWw5dAxHNqzBc1ibl7/derLxYxt3semdCo5fkx9Jctiaqs4USmuPU9HMIrbvtNx+Tqm65SpbAtduxdT/pUgTYVn8aHMR5OnlNTc5EsbaU2C4DZxmgiCALVsFk4mg2ZvL5BgMUFJrzyV1uta0uD/6ZPE30HSOE6T2I+KklaOHTs2b9lv//ZvL8uxVZ5SFEVRFEVRFGUlI2+4UzoMpbQstJ1Mm+LQvuR2/Nkk2dDnUuCghBiZqiKPS5JKPp+fN1WbrDNw4u80njQ1OzuLZrOJarUaCRvUJiRj+L4/T86gY9m23VZ/Sv/hKVI89YWW82nFqJym76d4Ag6l8rSlYAUBWhkLzSyQm6miOdyHABYyAAqHJ3Doyh0YrtVROND+t3IYhqjs2YHKBRuRn5iBPzIAJ7SQDX3Y9SZcO4NqrRa1WTabRRAEaDabUT1JKMrlcm0iDHAqRYrajsQjSrCitpP/oMqTteLEJyng8H7mIp1pXMl+4ck8JmGN+pWnZT0XNLHFLsFtucj7BdwbVvFLzV6s9kLUT+6D6kbjzXXdE2JSrYYNroujV+zA6P4x2K0Arh2gPtiDvulaW3l4qtliJEQ5hvyeAlqFHLZMTGAm04dnhlZj4JHnMPTkYeBk+/D0riAITo1/N8TW7/0UB156ER57fBI7R220HjuGmTUDGNk3FpVDphxRO3N4whf1N08EozFG/7BM/dNqtZDJZOB5XpR+VigUoikwZTvQcajteWoaiYxUT37eymkC6Vkmvy2E6d6ubAt+nZQypEmIMoliJomSlvNxHScExpVtOQnP0pR7+pW+GZWnFKP1rJz7pLUv6RdJ35fhl8mG/2KR1r5PE2nt47TWO2kkPXmqlZJxunXr1m4XQVGUJWBiYmLesl/91V9dlmPLnw1plFEVRVEURVEURTk3kGkmcQklckouuU0nkUNiSi3i6/N7BAvJWFQ2LkqYhA6+HU0NVq/XUa/Xo6n5KN2GJIpOiTRSxul0f5LXKa5Msp5cqOLSFglZMr3p+OU70Ds2iV/d5uBfHmvhSGYA/XaAQtDExLphZGeqmLz+Ygy0PBQPHI8EksqeHahcuh1Zz4c1UMZrdwb40f4Wjls2hsYm0DtUxPT2Najm81h/aDo6rkmeIsmF/qHIlDDEt+HlN0lLPEWMJ3nR56Z0sYUeprFmGpe8n+k9F64AYHeuF0EQ4BF/Bj/ELN7kDaDcCuCH/rwxYWqPvmMzKPzgcRy9bBvWPH4IA5OVE20XI9MsBiovn2qu1Gyh9PBzqPYUcWzjRqzZ+wx6xmaQzeXapj2UciKVtey3sPPOR3Hk8m3Y91wVIxNVWKgiNEzbaRJ64lKS4rahtqZ+5qIin26PltGY4HIeH0NSpuwkK5kEUlPbxO2Lfy730Sl5Km7bhe6Vyus3v87EXXcWO5aUcx+VpxS9GZ1Q0nqzgf9XQ5ogGcH0y0SiSVNdO5GSX9xSNbYTTNLlqbSM0p07dwIA+vr69NxUlARRr9fb3g8ODqJQKCzLsTV5SlEURVEURVGUc41O8oAUp2TCiUkq4JJInKDCU5xMZeH7jBMPSI7I5/ORTEPry6nmqG6e56Fer2NmZgazs7NwHAeO48wTkmgbEo04WZbYE4Yh3DBAKwyR8XzjsXm78AQqXtdmLotsoxmtQ6KU67ptCU5tCVY5G4Hvo/jQM5j4mYtx90MzeNW1q/C/n6ujiiyKAzkMuh6mh/pgT85i9sbLEX7vAfQemUTlsvNQuWQbMn4L2XIer9oFHDjmYqxuo68+h/KWQUwerMAd7sO6B/bBsU60bRAEcBynTY7hMhPJLLzeXGLJZrPwfR+2bUciGMlUcdJUoVBok+RoP1zW4mNVHrOTxBcH7YO/521PNMMArw4HUGh58GOmNzTd8wrDEPm5OtY+sA9eb3GebCTLIvdpkpJ4W1C70vp+uYi1z46hZ6YBq1iM2rLT99skYhUtC+c9OYaptQPI5/Og0sTJPkD8vV3ev/L8pjbg1yEeNMGvGVQ3So/ich21hZwusxP8fiy/fsVN/Xm6EpLcnp5N4/B09i2vlXy/cv880SvuGr2cnK0p9/QbfTMqTymaPJVQwjDEHwP4+urVeMUrXoEPX311t4u0LCT9pnwcp2vSK+c2ab1WUyyxcm5Df7jR66RxoFjsdhGWBf6HsKIoyeEHP/hB2/tSqbRsx1Z5SlEURVEURVGUlY4p/YWEBRJZ+HomEYVLCvIGPsk+/AY9lynivv9fjEzAj0tTfklhBzj1XQ+V2/M8uK6L2dlZVKtVVKtVOI7TljhlSsLiYhbJPly0CsMQx3psHB4qYPe+KdiGdCM5/Rufti8IAhxZ14+5/hI23r8PLd9Hq9VqS5mSbUnUNo3AWTuM/h/8FP13P4onfuHFmHtkEgObeuFNOBhv5jFSyGLIdTG9agD25CzmfvZyNA9PwNkwcuJ/mXsKePV5AfYf8/BgpYjy3DT84T4cPT4Hb+NqrPnHH8HK2GidlFSo7FQ2qieNA9/35/UXl1i40MP/mZ7/7cyXW5bVljzFMaVVmZKFOt13kslS8sH7kX+PSP2y2yrBCz00cUra4ylVJH1RG8j92zNV5GZrCJj8RPcPeH3ld5imZCXavlAozEv06vFbCD0fXj4f216mtqHP7RBYe3QWgSF5SR5fltd0HQEQtSHVidaj5CkaB/Qsv19xXTc6h+g6UDz5nTYlofF90Uw/VE7ehnR83kccKdJJuS6u/fizXL6QKCeXLbQdH6cmAZVP5ce30fuxySQxdzuq1SpuvfVWvOIVr8Dw8DAsy8Jtt9226O1nZmbw9re/HaOjo+jp6cHLXvYy3H///UtX4BWE/CGWGhJe1yAIMAXgYD6PiYEBYBlvfHSbNCdPAcmUEWL5j/8RnxwZOfV+aKh7ZVlG5vXx8893pyDLzGtf+9puF0E5C/B52pOIx17P7dnTtXIsNfwP+VT93FGUhPPBD36w7f3Y2NiyHVvlKUVRFEVRFEVRzhVIAOAygEmWihOn+LpcEKHUF54GZTo2f5bLO33GpZRcLmecnounIZHU4zgO5ubmUK1WUa/X4XleJClxeYbXz7Zt5PN5lEolFAqF6HhhGMJDiOOlLEZdD6s8D/efN4yGbc3bBy8PL1MYhnj2vNWYHipjw/EJ1MIWZks2HMdBo9GA4zhwXReu60aSV6vVQiuXhTPSj9zxGWTqDqZefgWsRhM99z+NwwOr0ByvYGC4CNtpYrxpwc5nMAQX/qoBWEELzvZ1gJ0F8jlctz7Ek0c8PFgpoDBXRWu4D2HFQbOvjL6fPAGr6UWilH9S7OLyFC33PC8S1JrNJprNZvSa10GuI/uAi2zUl3w88Wnm+LiIE0FM3/dJOYoLbTJ9TK7Pj2GSreS6PDFLnkemlDKqby6XQ6FQQKFQQLFYRLFYRKFQQD6fb3sulUrI5/PI5/PR+VAsFlEul9Hb24uenh6Uy+W28UuiEZeHTFPw8fM5bh2ZFkaSWy6Xm/fgY5+EJjmu4mQ2KRzyccfPFzn9phxX8jN6L8eS6XoSN85MY24hcUqO2ziZrdM4N5XB9Pliyqwkj8QkT01MTOBjH/sYNm/ejD179uDOO+9c9LZBEODVr341HnroIbznPe/ByMgIPve5z+HGG2/E3r17o2lJkoomBySTNEpxab6RKyM5U8OmTfjC4CAunpjAHgDrv/OdbpdoWZg3vg8e7E5BlplU/pxK4LUsDENMTU0BAP7t3/4Nb3zjG7tcorNLi12HgwSnpfEYdkVRksty/m4pryep+71WURRFURRFUZRzAikGmJKhTDfrTTf86SFllFar1THZxCQG8OVSVuEySrFYjIQMmRLERQcSkMbHx+E4DiqVSiTv8GnwuDBCx+PJT8D8v/fcjIWnV5ex2XEwuDGPyfEA91y0Fi969BhKfti2H9/32ySjVquFZ/dsRn1VLy5szsBfU8KR1cPoeeYISkxQMk1r6GczmLvsPBSPTCAY6QdgYeK1P4Pc8WnknzuKud2bkJ+tINPXh1ylgXEUMFqwMGQFmM6WTnxXm8tiS1+IZyZaGPNKsOt1eAN9yNcbCAfLKDw7Bn+wF63gaFTeuFQwKQTxZ8s6kfrFBTL5WTabheu6Rtmu1WpFwo9pvHB5xzR+6Dlu9iKT5MKFHdqfFOy4OCaTy/g4DYIA+Xy+TeqhsUT7oWOQAFUsFueJRlz+keOc9sXfy7rEJRJRG3OJSwpqUmKS5zRvQ1rOk8ZkWU0iliwTF6X4eSSnQKR98fK7roswDJHP5xGGIXK5XFR2EseoPryt6J/hqExSgjIlUtF6pu+W484X3k4m5DiXaVidrqem82+lotP2LS2JkafWrVuHo0ePYu3atbjvvvtw9WlMUfaVr3wFP/rRj/DlL38Zr3/96wEAb3jDG7Br1y7ceuut+Lu/+7ulKvaKgH7gmOYfVs5d0nhT81z4obZU8F+E0nYet8IQrwIwumoVjl95ZbeLsyykrY+JtNxETXrv8n48dOhQF0uyNLSdnwk+V6mek5OTOJgSgVNRko7jOF09viZPKYqiKIqiKIpyLhCX1BMnNMnP46QHuW2ctNJpW1NZ6D2JMjw5h76nMyUDua4Lx3FQq9WitCOedNOpbguJXyUvwJ6Dc/jxln6MHvewfbUNjDdPCFSPjaHsnxJOZDrTc5dvRW1VH3Y706g7Pp7rGcbgQ/tQPjCGQEobABqXbEdx3xFk601k52ro/+FPMX3TlSgcn0amr4RstQF39RCyEzMIj0whXD+MQqUCt68fuUod45kS+gsW7EwIP7SwugxUPGDSyyNbrSPoKSFXryMoFxBM1ZCr1NF7/9MAk4g6jYFOfc5FFJkIxBOAaH3qY5LvaCpAee8srm+k5CLvO8WNSbmPxbyWUo0U/UyJY8Cpe9lcjJHrccGIy0+Lkdh4+UxTUnLkVIOm4/BzjJ7j+sEkWfJzV9aNP3jyVNzxpNxGkMwGnBKoSJySIpqpnXj55fNirlMLCWV8fbn8dO4Ly+14u8h+ixsvcWKh0h2azSbuvfdeHDhwAPV6HaOjo7j88suxbdu2M95nYqyKQqGAtWvXntG2X/nKV7BmzRr80i/9UrRsdHQUb3jDG/D1r38dzWbzbBVzRcLlKSU5pDGFKY11JvgvMWmD+np8crLLJVk+0ja+ibTU+8orruh2EZaUpEtwSa8fwc/He++9t4slURTlbHH8+PGuHl/lKUVRFEVRFEVRzgUWIwfJ91LqIEwSiYTLAXEJOSa4gEKpPDSFmUyKoVQZ27bRarVQq9UwOTmJ48ePY3Z2FtVqNZKnaN+0X5p2kKfc8AclR/F/+LdtG71hBhcfmsOB3hKOjvnYNpLBsNPEPbtXY8pvYm5uDnNzc5idnUWlUkG9Xse+y7agNtKPCxtTqDst7BtajdKRCfQ8dwwtMV1ZCMACkKnUMXfDHvjlAgDAnquj/57HUN++HtZcHdkwgF1twF81gKBchHdsBk5fH/KVOYR9ZSCbwZxnITgpTs00gMmGBVgBgt4TyVNBqQB/zoHleCj/+AljKpdp2jzer3xaOZqujU8TZ1mnpmvjD8dx4DhONM0fCW7yYRq7cVIW9RmJa3LaQTk9oOlc4GOaxitvFy4n8XHBp7CTD/4Zbyfaf7PZRKPRQL1ej5LTqPz04FM5yuNS3fn0iTR2uaREshEXp6SgJNs/Thijsss2jJO3+LbULjRNIU1DyMcPF7H4fuV3Lq1WC67rolqtYm5uDjMzM5iZmcHs7CxqtVo0hSS1iUwOk9C4p5Q7k/BlqrdJjIr7nN4vdF9USmdyPyb5sxPdvk8Vhmfvcbr8+Z//ObZu3YpisYhrr70WP/7xj2PX9TwPH/vYx7Bjxw4Ui0Xs2bMH3/zmN1/QPokf/vCHeMMb3oDBwUH87M/+LH7nd34Hv//7v483velNOO+887Bz50588pOfRKVSOe06JkaeeiE88MADuOKKK+Yl9FxzzTWo1+t46qmnulSy5UFGHSaVcGCgfYHhBE0SaU6eSvpYNpHm5Km0iAqctPUxkZa+Tnr/LuY/lM5l+LR9Z/QXyDlCEvtOUdLO2972tnnL3vrWty7b8VWeUhRFURRFURRlJWO68R53s90kCnQSTBYjUfF9m55lagqXJrggwo9N63I5hxKnSB6RcoRMu+EPWpc/S9Emk8mgVrDxwMZelIZyuNqvY99AGc9MBtg6BPRXG3jgsk2oWkHblG0Hr9qBxugAdjvTqPrAM2vWYdX0NHaMZFHZvg7V3Vva2qOxewvqF25BsHkU+eMzmPqlG+CNnLhPWDgyiaHv7oWzYwMylQZshLBrDYRBiLC3DH/OQbWvHz4sZCyAuq7uhXBDAFYICxlkLSDsKaJVcWDXHAz/0z0I1g6j+pJLkLVt5HK5SGyRYhTvFy4HkZhmmp4NOCXFSVmt05iSU+fFpUDx93Hry3G42OVynU4pSnLsmsY8T6biUhOfpk9OD7hQnfh2vF25ACenvzPVh7ctb9NObSTLY+p7eW7JepnKw8sdN6Z4m1CbkShF1wEuopnas1Nfy37shNyXqb9M19+FrsWdyrfQdXox5VxOwrP4OB3+9//+33j3u9+NW2+9Fffffz/27NmDm2++OfafMT/0oQ/hL/7iL/Bnf/ZneOyxx/Abv/Eb+MVf/EU88MADZ7xPAPiFX/gFvPGNb8TWrVvx7W9/G5VKBZOTkzh06BDq9TqefvppfOhDH8Idd9yBXbt24Tvf+c5p1TM9VkUHjh49inXr1s1bTsuOHDkSu22zecp+pse5Rmqm7bvhhvb3Bw50pxzLRBpFojTWmeDJU2mse9pIY52B9NQ76fVMugTH+y/JqZ5J70dFSSPf/va35y173/vet2zHl//0ofKUoiiKoiiKoigrkcXcZJeiVSfhSAoW/L3p+xeTxCXFAjndVy6XQ7FYRC6Xm7cvWgc4kRRSq9UwPT2Ner0O13WjdUmA4BIEiRb8wcUKLnjQPrLZLIaQxZAb4ol8AZZt4eLaHMZ6S3hy3MOWwQA9cxU8dt1OzOHE9gev2oH66AB2N2dQ8y3sG1mDVZU5bFmdw6FxF41NIyg9fThKAcpkMijvOwpv4yjCpo9gwzAKRycx/apr4Y8OnPh8bAar/vVBONs3IFt1kA1DZBtNwPMQ9pQQhtaJm+ghiQYhqq6FnBXCgoXsSfXACzPItEKMfvM+BFvWonr1BRg6NIlSTxnloUH09fWhv78ffX196O3tRU9PT5QARv1SKpWiZTxhSYpD1H75fD5KpKIxw9OcpFjDhaC4cSfHYFzykSnFZzHwcnKZzyTW8HU6fU4pVMCJ7yplyhQlZ7mu25b+JMtE7UTTQ9KDp1PxVCea8pLfk+R9JvdvartOwRcm8Yn6kaeBccHJ87y26wVvQ1OCFx87vKx0jEajgVqthkqlgkqlgmq1ikajAcdxjOd7JwmUTxe6UAjE6YyphYgTxUzHksfl9TjdsZ5UPv3pT+Ntb3sbbrnlFuzevRuf//znUS6X8cUvftG4/pe+9CV88IMfxKte9Sps374dv/mbv4lXvepV+NSnPnXG+wSAV7/61di/fz/++I//GNdffz1KpVLb59u3b8db3vIWfPOb38Qdd9xx2iEzKk8BaDQaKBQK85YXi8Xo8zg+8YlPYGBgIHps2rRpycq5VKQloSjpN6MlaelXDv9FJW3w2NC0kcYb+Gm7nhFp6eu2/xTqYjmWiqSP31YY4rFCAQ8ACLZu7XZxloyk96OiKEChUMDOnTuX7XhSOK3X62cUr60oiqIoiqIoirJcxKXn8M9NkKTAJSOT+MITmxbz/T9PeaFy0fRdnVJ+qDyNRiN2ej7+z9s80Uem+/DymlKSPM+D02hg45FZtDwfe708CtkWLpybxNRQP56ZCrB9JIPeuSr2v+wSPHfd+aiP9ONCZxpVN8QzI6MYqcxhe1+Ap475mN6yDkM/ehw5v9U23Vs+AIbvfgzOeRvQagHuptXIT85h8hXXIlyzCrlcDv0TFay+66eob1uHrNdCONyP4kAJ/SULsIAAJx4ZhAhhAWEAL7SQz5wQqPzQguW34PcUUf2ZizF14x6M1urIXroJ01edj8rWNZFwUygUUC6X0dPTg97e3nmiVFw6kJTg+HR+9sl0K74f2a9cbJHjTY4vGpt8fTn1XNx4NiUnxaUGUZITlZ+XW47fTolJcWlPnRKRuDzEy2gSj+LELdPnpvpyAYrOISpjnMxlOqfj+kb2qUzNkv0t253GJh+D8lh83zQtIqVRLTQ25BgzjVETixX0OomA8hjy2bSvTp+vKLoQPeW6Lvbu3YubbropWpbJZHDTTTfh7rvvNm7TbDYj14YolUr4wQ9+cMb7BID/9J/+0zwROI7du3fj5S9/+aLWjcpwWmsnlFKphGazOW+54zjR53F84AMfwOzsbPQ4ePDgkpVzqUjLtH1Ict0MpDGFKTVj2QAlT9HrNJEWoYYzr86/8AvdKcgyk5axnfR6yhjppOEAeP327bgCwPGPf7zbxVkykth3iqK087GPfWxZj2dK63vPe96zrGVQFEVRFEVRFEU5XRY75ZMULOIEB/neRJysIiUTKT/xfzzn65PM4TgOXNdtk6e4bAKcmtqMy1MmgULKL8CJpCrP804k2DQa2PbIIRTn6ngYPShlgQtmxjG9ahDPToXYviqDbDGL+rph7HTnUHEDPDuyGiNzc9jeF+LJoz5qwwNY+537kfdb80QV27ZRCIDhvc/AW9WPYr0Od/Ug8pU6xn7ucrRWDyKXy2FwqoYNP3oczoZRAIBj2fCCEH35qLURwIJtBUAmgwxC+IGFFkLkwgBhNouc38Ls+RsxUqkhM9KHOauAgpXBxrFKJKrkcjmUy+XoQclTXJoyTVNHy3i9aH9cpDJN9WdKMoubbs0kW5GI4/v+osYk3xdfbtpOSmMylSlOJIsTFLn0Y5LD+HGlEBU3vaSpLU1JUvzeHBex+DnIz7W4KQRlu/HUI5NAxfspTpziy6g8prEjxw/vUy5P8Sk94859U9KTqU87IcWnhdY/3e+qz0SSksfo1vfjYXj2HgDmzbBmcmYmJibQarWwZs2atuVr1qzBsWPHjOW8+eab8elPfxpPP/00giDAd77zHdx+++04evToGe9T4vs+HnroIXzrW9/Ct771LTz00EPwPG9R28Zhv6CtE8K6deuijuLQsvXr18duS/PUnsukOa0nyaQ5eeqcMIPPMmlOnkrjDfwgCOAAiJzttWu7WJrlIy2iXNuYTuD4lv/FkzSCIEiFzJqW81FR0oLpnH71q1+9rGUwyVN/8Rd/gc9//vPLWg5FURRFURRFUZROdBI3+PLFfO9luhkfl5hDn3PJg9aVU4VRGfi0XZ2+p6IpwBzHQRAEyGazkRAhU21InKJl8h/56e9LkrAoyYpPL0biReD7OO+BA3jqss14pL8PF6OCC6bH8cSqUTwa+jhvNIOZOQ/PDq1CM8hg1dwMtvUGePJoC7XhAWz4zgPINzxYuVzU5jyRJAhDVFYPoff4DMIdoyhVm6iPDqAwWcHhG/dg4/d/it6Kg8HpOsYrDTgj/YAVouFbKNpATw6onZyqr5zLoOaF8EMLCE7UeVU2QD0Aaj1F9PouGmsHMDPbhB362Lb3EEhBIGHEtu1IRuJCkuz7OKGG0ntyuRxKpRLy+XzU97R/LsPQfn3fb/ubm4s0+Xw+2t4kEVH5W61WtI1pzPKxZxrHJBHRcUjQ45+bkqRoOyobHT9O9Fko0Yh/Ls8lOa7lOUPl5ilrwCkhK5vNtp2TdE6YEpDoddw9XC5tLeY6Q+ceHZNPy8elLtqnqSxUFy595fP5qF7ULo1GI+q/YrEYXTN4ffhx6Pgy2Sru+2VZxqX+jj3uumsS1ug9P3fPdeSsarfeeis+8pGPvOD9fuYzn8Hb3vY2XHDBBbAsCzt27MAtt9zScUq+xRIEAT784Q/jz//8zzE7O9v22cDAAN7xjnfgox/96Bk5EipPAbjssstw1113tV10AeDee+9FuVzGrl27uli6pYdObrr4JZUk181EGqW4NKZtEWm5WW8iKb+gnA5BEKCt1gkUUEykZWy3yUX/+I9dLMnSwPsxiX2aliTAJNdNUdJIvV6ft6ynp2dZy5Cmv1sURVEURVEURTm3WYygIYmTouR3ZfLR6QZ+p38o5+lTC0191SntyiRgyHQfKUrQ9HwkTZFERa89z4skFYQhduzdj2ev2IZHBvqwOzeHzVkXz4cFTFZ89Ld8HA7z6M21sLUfePKwj9qqQWz4zv0o1F1YTKLhgg5JOmufOIyjuzehNl5DbqQH5VoT9VV9KExVceill2DLXY9hatd6OMN9sGh6PgCOD1g4IVBlYGHWDQFYQBgikwHyDRfjuRwsO4OhbAu+ncecG8DK57Dl3qeBIIB/so14cpdMJjKNg07wFKrcSWmMtucpVSbJiT/H3VcxzRpA95+46HU68P6RdNpXnMwiU6jkuSWFKrk/Pub5WPZ9P5KEZHoVjVfP8+ade6b2IWGRy1NSguJymunc7yT08PaU1xB5DTK1A28jLmlx6ZInUvF2a7VaAE5My0brtlqtjuNOCnEkcpkw1fmFfhctr1OLYaHreLe+Hz/NGfc67gcADh48iP7+/mi5KTRoZGQE2WwWY2NjbcvHxsawNibcYXR0FF/72tfgOA4mJyexfv16vP/978f27dvPeJ/E+9//ftx22234wz/8Q9x8881RetXY2Bi+/e1v47/8l/8C13XxR3/0Rx33YyJ18tTRo0cxOzuLHTt2RPbx61//enzlK1/B7bffjte//vUATkSFffnLX8ZrXvOacz5ZaiG4PJVoUnaTj/r18OHDOHLkSJdLszx0+kMh6dAvxsthYa800lZfwPCHTUraIC2i3ID4r5ukkfR+pP+0STppvPYqSpKp1Wrzli23PBV37fz4xz+O//yf//OylkVRFEVRFEVRFCWOxYhRUlzgIgafRYJLDHGQqMCPs5hUFtN0YXHl5tN68anFZNoUnwJM7o/Wp6n/KpUKPM+LRCkSqmhfJKmcLAi2/PhpPHf1Djy0ehjbeoHdzQYe90o4FtpYk/Owrgd4eLofwUgLG799UpwSkgiVgcsfViaDjU8dxTOr++HONpEfKJwQqIZ7kZ+Yw/6XXYwwkzkhTllM/DjpSlkA6j5OvAlCIAMMNBxUSkUgtFC0QmSsDKpeCGQy6Dk0gYmtq1F+5GBUb5o20bbtKD2KPnNdN5JvLMtCPp+PxDPqI042m42m/KMkK566lc/n26ZppEQqfnwumslp5zqNERKFZLubkpH4GKXj0RjgY5dPN9dJGuJlMU3nxpdTWIjv+/PWcRynTWCj9bhIxcc5QetQ+UmKoz6jOlK5qW0psYt/58GlKeoXLsVR+WmcyPrK/uRIaVJOBQmgra3jxDaaUjLHUt1oP9QuzWYzSuOyLAvFYhG9vb3G73f4GOJl6jQVJN/2hSLbybRPeZ3sNB67+d14GJ6dW4K0j/7+/jZ5ykQ+n8eVV16JO+64A6973esAnBhHd9xxB97xjnd03LZYLGLDhg3wPA9f/epX8YY3vOEF7/N//s//iS996Uu4+eab25Zv3boVb3/727Flyxa8+c1vVnnqs5/9LGZmZiJR5Bvf+AYOHToEAHjnO9+JgYEBfOADH8Bf//VfY//+/di6dSuAE/LUi170Itxyyy147LHHMDIygs997nNotVr46Ec/2q3qLBt8eje9EZYcqC+npqbw9a9/vculWR6ozmkcy2metk/+J0Qa2mCefJKCOgPpkTWyCZeL5B8gSYO+EAGSWT8i6RKcoqSNlSxPfehDH8Kb3/zmeTHiiqIoiqIoiqIoy02ctLHY7TgyCUWKJ6aEE9ON/DNJL+okEkihyiQQUP1pGi8uWLmuGz1oerq4/fFjZwCgFSC0LByaDXFBD7AmH2K8ZqEvb+HQ3Ikp86wwRBbm6eN4ClEYhggBHNq9EcNHp3BRvolHwyzqToByTx7lWhO1kQEgDICshXLOwpYB4PGJEGFoIWsBOQuonkyg2jUMPD9jwfFDzJSKQAj05kJk/BCTXgaFbIhLBzw84A+iVTmRyJM52c409RmJKCTVcDHOlP4jxRkuncg2jEtgkmlU8sEFOy7PybFi2rdJXOJ9apKq5HiLG4P8mKaxJ4WguDQqWTbTGKQ0KZJ5+IPKETeVH28D/n0pl7Fku5ralN/X5GXh0+DxvufL5cO0vFM7y9dxQpbcH9WP0uRouk+TjCWRY2Mpv0eP2/dC41AuW0kCVTd497vfjbe85S246qqrcM011+BP//RPUavVcMsttwAA3vzmN2PDhg34xCc+AeDEDG+HDx/GZZddhsOHD+MjH/kIgiDAe9/73kXvM45KpYL169fHfr5u3Trjd52LIVHy1J/8yZ/gwIED0fvbb78dt99+OwDgTW96EwYGBozbZbNZ/PM//zPe85734L/9t/+GRqOBq6++GrfddhvOP//8ZSl7N0nLtH2tK67AU//yL7iw2wVZJtJ4U9P0R0Za4L8sJfk8NpG2+gInf3nudiG6AL+ubdiwoYslWVqshI/ppP98ktNAJ5U0XnsVJcnILxQsy0KpVFrWMnRK7XvggQdUnlIURVEURVEUpauczn0HmY7DRQ9+H8P0z8CdbvRLeUNO9yVllrgyS3mDi008ZYoLI3yqOTouyVGO47SJU57ntaXSEDzVh5clDEM8f9UONId7cXl9Gk8W+/FQo4TLVrWwLvDxYD0PBMClmSoOVVs4+HOXYfudjyBbc+Yl13ChIwxDDDw3hsOXbEFmooKLNmTxYGCj7gCl3gLyQQg3PPE9Xs0DHD/ErmELT0+dCJ5ywhPi1LYhoO6GcAMAsBAGQDkXIucHmEYW+Sywe1WIyZkQuSCEVbJR2zSK1XNN5K1MJE/Ztg3XAuxWgGazGaUYUZI9TySS48C27bZUKZpCjif48BQgnmJEKUK0jEtT+Xx+3vjg/cO/5+RjjcobJ05xAYiWyQQ2k4xCn9E4keOQS19y3HMJjI4n//mej0c6FvVDPp/vKA7S8Wn/uVwuKg8XpfgUfrJN+PlP+/J9P0qSorHgeV5bu/IkKeo76ksqh23b0TKTOMXDVHgfUfnj5Cg6JhfteN1arRYajQZarRYKhQKCIECxWIwVt2ifVI4znQ6yE3HC02LWNfW7aQx3i7M9bd9ieeMb34jx8XF8+MMfxrFjx3DZZZfhm9/8ZjRl3vPPP992vXAcBx/60Iewb98+9Pb24lWvehW+9KUvYXBwcNH7jOPGG2/E7/3e7+Fv//ZvMTIy0vbZxMQE3ve+9+HGG288zRqeIFHy1HPPPbfgOrfddhtuu+22ecuHhobwhS98AV/4whfOfsFWOPJimVTc978fX/r4x/H/drsgy0Qab2qaDO20kPbkqZGREUxMTHS7KMtG2pOnbNvGK17xii6XZulIg1yUZNIisya5boqSRqQ8VS6Xl/33yk7ylOu6y1gSRVEURVEURVGUzsgUnDgJKu47eyn7dEqdktt0+idyKW1JZHn4tHzyHoNJ1CKJhaaVcxwnEqV48hSXr+S0gxwSMZ7dsxm1oV5cGlRRbVmoZW2UEOBgNYOMn0UmBFoWcGgmxHmjGTwz3sD+Gy/G1n99BLlGc56owpOCsuMzGH44wFPXX4zNx47j0jUhHsgOoNqy0JMDEOCEFBWG2Ddt4aKREFevt3DvEQAhsGUAqDUCjDUyyIYBclkLrRDwWkAdWeQzwMWrgeeP+ZgI8riwUENvIYOf7lqD6oyDiw/MRNLJkcECjvTncdn+mUjQobYn2UsmGJGoRAIL9ZsUcaQkw4Uq2ZdSwuFJTSTw8O84eeIVT7OSx5ZyVNzx5ZjkSIFKTqFH48mUmsTPHZoyko5BbSfXjfuumtpElt+U7CTrImVDU6oXl6f4a5NUJgVMEtdo2r5msxn1J4lyxWKx7T3fD9+vKRFLtqV88PrIaR/p+xs+3R99FndN4rIZbzfZF7xsJhZabrpem8aObIO412n8fvwd73hH7JR6d955Z9v7l770pXjsscde0D7j+PznP49XvepVWLduHS655JJIthobG8NPf/pT7N69G//3//7f09onkWxbRlkUaZm2L+k3ayVpSb7gdPqjIelMTU3h+eefx/T0dFvkYRoIwxCrVq2KXqeBedezlNXb93385V/+ZZdLo5wpST9P6b+DgGTXNW2/VylK0pHy1HJP2Qd0/meeRqOxjCVRFEVRFEVRFEWJx/R9z2LTo/hnUkjoNE2eab8mgUGKU1yKofdc2OCSCp8iznRMnhLjui4cx0G9Xkej0YDjOGg2m1HqFMlVXHzh9eN1eHbPFtSGe3FZWEPdt/BE/xDWNx1caTuYrYeY8LO4yK3gkrkZTA304dkZ4LzRDPprDTz3sovR6im2peJQGakcnufBPjqJVfc+gQNrVuOQm8XOkQwyCFHzTqSM2AiRy1o4bzjAo5MW5pohLhoB7AxwZC7EWCMDy28BmRPT82UQwgutE+LUaIjnj7mYCPO4fqSJXCmHZ461MDjTwJo5B83eIgI7i2dW9+DAUBE7Zx00wwDVQrYtXYm3GZd2AET14/IUfS5lHuozU7vztuf75GlOlE6Vy+Xakox4apVp3PGxxqesixvTcaIK345PBymXxe2P+p5EvjgxUE7NJ1OeCDpm3HkvJR8uQJkEqripE6kfwjCMpsHjU2C6rhudY81mE81mE/V6HbVaDZVKJXpUq1XUajU0Go1IauQegEylkg9T+8h+4dcSKj/Vm0/ZyUUrmQrGRSyZZiXb0ySqmaQuyULXUBMLiVFpFqdWEps2bcJDDz2Ef/zHf8RrXvMabN68GZs3b8ZrXvMafOMb33hBCfaJSp5Szoy0JE+FYXhWYuzOFeIs3iTDf4lP2w+uz33uc90uQlcIwxDT09OYnp7udlGWlbRKC2k5r5NeT1NkcZLg8lSSSWLfKUqaWQnyVKdrZ71eX8aSKIqiKIqiKIqixMNv4svkFr4OsdCNeNM2ceuY9t1pXX5s03RbNO0eSTsAorQaz/Pa0n5IxnAcJ0qconXkg8s9XKCwbbutDs+cvwa14R5cGtQw5wZ4on8Ia506dvQDTx8LkOkLUK418VSpiEtzNVxUmcajA0MIpys4b+REAtW+Gy7Ced/7KWz/hODSarUiIYOLNf0Hx1HbPIpjW9fAm/Wxa1UWT00B9RaQzVjY0Bvinddk8Om7Qzw+YWHrQIh1PRYOViwgCBHaWfRYPgbKNg7PAbCA81cBT40HqIZ5vH6bixvOL+C9/+jCKxewxq+hms/gwNpeFL0AE4NFXOI0MDeaw+HeAQxOVjE6W0M2m42EH95WvL9JXCJ5iZZLWc6UDERSC28XUxJSp7HHxSgu0fAp63hb07O8j8H7hScWEZ1kKxKYaIo7Lp6RJMXrQvIUTZlIx+LJVXJaP/6ZFIhkQpNMiVroPDcJXPxzXh8pGZqm1TOlSPE61Ov1aPo/Gjs07SM9FwqFaLo/EqDomY8VXn4phcl+omkjHceJ9i+vbaaxa1pmwjTmF8Ikhspyd5pGUo7thcq41HRr2r6VRiaTwStf+Uq88pWvPLv7Pat7U85JuLmc5BthaZOn0pg8lRYR0MT27du7XYSukFaJKK3T9qWlv5P8sxhIfv34z98k1zXJdVOUNLLS5SlNnlIURVEURVEUZSVgSkGJEwPiklTi6JSSIqWNhUSDxdzYJwlCJvnIRCEuqFDiDSVMmVKNTLKXTKnJZrMY2zgMv5DDnqCGqhueEKfqdezoC/HkMR9TvUVc/JP9uOj+AyjPOXjY6kEpB+yuTGFqsA/PTAE7RjIYPT6No5dvQ5Cz50lHXBSaumgL6uuGYdcdTAY2js2F2DUYIGMBrQA4NGfhD+4K8bvXWdi1KsRzcxYafoh1PQGQtYBWC3OhjaMVYH0vMJAL8eh4iGori188P8D159n4vX/y4VgZDFZraFUcHB7pRa7pY3ygiIucOnwLeDrMoX+mgTXH5trKKeUZDk8pMiUdmeiU1CPHgUkKMaU6LZT2s9AYkONhsQIKH6uUyMRFPj4uefqZnPbPJGaZpDC5zFRnOjdMj07t3OnBp7rsVHberrwd+X5M7cTFR0rzkmlYcdeXuLbjx+XyJE9R4/2+kBi1mDFhSspazJhcqPydWGkClbJ0pM8wUOZBP4RVnkoW9EtumqDxm8bkqde85jW46KKLul2MZYeuX1dddRWA9NzMD4IAf8QX/PIvd6soy0pq+jfh9Uy6BEf/OUWvk0rS+1FR0sZKl6c0eUpRFEVRFEVRlJWClFdOhzi5JG6duJv6pqmwTHICJclI8YZLU1yc4ttQGSqVCubm5jA3N4d6vR5NySW3J3K5HAqFAsrlMsrlMnp6etDT04NyuRylANWLNmYGStgxN4eG08ITfQNYW69je3+AJ4/6mOktY/dP9iFfc+C7Lrbe9ywKs3U8jB6UbeCiyjSmhvpw8HgLG0dz6J+uY2rraGybTe7ejJkLNqE8NoVWPgf4Lcy4GRyrZ3BBnwfbAlohMF638F/vDvG7L7IwUgox0bAAWNhYDoBsFggBPwRC38dg8cRnm/pDvGhTBu/+rgUXGfTNzqGayWB8/SpYtQYmBoo4vzKLpu/hsWwe+UodQ/uOwT+ZNMXTm7j04jhOJLdQ4hRPxzGJJnIcUGJVPp+P0oZoOj6exiS3X0hGiRu/XJDjiUZ8DPIxFvfg5fB9P5qirlqtRmNxdnYW1WoV9XodjuNE0hQlqdE9Ui4B8TLQuOUCDglF8vyjvpFT/FF/kbhlmt6Pp1tJYVFOzSfPKz6FI+8jLiHyNoubao+ORVNtVqvVtqn+arUaHMeB7/vz+od/z82lKD6lItVDJtHR56b71fJaaBK45LrytUQKb7zNFrpWd1pnJX7HH56FR5K58MILz3h2EJ22T0lNWk8YhvhJtwuxjKQxeSrN8hS/WZ8mqJ97e3u7XJLlheSpDZs2wR8awm/edFO3i7QspEXWSPr1S6ftSwZJ7DtFSTMrQZ7q9LusylOKoiiKoiiKoqwkTEk6UhA4k2SoTnLV6U5l1UlEiEvakVIViRIklUg5Q7YFl2NM65AMVGp4OP+xI6iUbDy+cQ02Tc9h42obTx1rYba/Bxfc8wyKTT8qlxWG2PaTZ/Hc1efh4YFeXJqr4ZKZSTw2PAjr+Qmsf34CruehZZj2bGr3ZsxcsBF2w8FF6y285oYAH74rgxAhZhpAoeGht5iFG2awZQB4ctLC7307xK9eYuGfng5wpJLBaCFALgsMFoGP3hjid79lw28Cl68BBgvA++4AbMvC7tUh9h+oo7l5HUabVVgb+1GcdVC1sziSL6FvuoZtDz0PAGidHC9RHUUf8ffU5jRlHU31J0WmuHHDxRQ5XV7cuOWfd/p73ZQsRMeU++ASUZwsI8dmXOLRQudVnFxI39uazgn+mktLpnaW5aS+lNPz8euDbDM+nRw/R+LGBF+vU7nle75Mik1A+5SeJOvR9H8y2YrKTZ9JocyUxGVqb3o2XTtNdJJI5b7kOp0EQNNnccdfKd+HhwDORlFWRm2Whk984hOYnZ09o21VnlJSkzwVBAGe4wt+/ue7VJLlwTSHa9LhvzykjTT2N5Ae+VMShiEcAP9zyxYMDw/jN7tdoGUiyT+jOEmvZxiGuPHGG3HnnXfihhtu6HZxzjo6bZ+iKOciK0Ge6iSe0pd2iqIoiqIoiqIoKwHT1Fam76gXM1WV5HS+c5HpKvw7Kdu2Ydu2Ud7g08NxmaLVakVTe9VqNTSbzXlyFX9P/8jO60milXcyWYmLIFzk8ewM9l24HhsqVWxYbePpk+LUhfc+i0LDRcjKbFkWbMvCzgcP4JnLt+Dhvh5cWqhid2UaT64dRHGiguLB4/B9H41GIxJDnI2jqG5bi9LTB+GNDuK+/mG81vfwn28o4ON3hch4HsbyJZQDIBf68Fs2tg4A+2YtfPWxENdvzeCu5wKMO1ms6QH+6hdCfPJuC00fsK0QA7kQdx3KwLaAC0eAo7MhGts3YpVTxcC6PkweawDZLA5n8xiYbWDX48cQZrPRlHJczqH0IN/320Qfy7LgOE4ktRSLRYRhiEKhEMkrfF3qXynDUJIQveYJPXL88pQrKfeYoOU8YUrKR1K64+lJJA3JJKNmsxmlL9H6pnJQ2fn4p3V43amdKA2J1pUyjWnKPH7OUT140pQUnuh4vEymY/H24zISb1uT3BaGIVzXbas373uejiW3pzLwpCjP85DJZKKEslKphFwuh1KpFLUfPwbtm4tj1LYA2kS/fD7fViY+tuLGWCfBidejk3QopS/ZD6bPTH1FD/puqlO5lJXB6173ujPeVuUpJTXyQRiKaftWrepWUZaFxZi6SYP/otFoNLpcmuUljf0NtKeN8fdJh1+301JnID3JU2mYtm9oaAhAMn/3SEvyI117du/ejePHj3e5NIqivFAmJyfb3qs8pSiKoiiKoiiKYsaUbgPEf3cpb8gvZp3FfOcr5QMpMclp+kzfJXMpyvd9OI6DZrOJZrMZCT60Xx7AQLIL7YNkCC5imY5F6zXtDJ46fw22zM1hcFsvnjrmY6b/xFR9RccDYsoaeB423/s09l+1HQ8N9OAiew47Z8axf/Mq9DcakUAVBAGcDSNoXLoDpX2H0Ooro1UsIKg18aEfl/GxPRV89JosPvyT8qm2DEI8PQ1s6Q+xfdDCvhkL3302xHmrMsjOAZsGgY/dBdxzGBgpATuHgO8dzCCXCXH5WgvPTrQw5WYxmAswNNiLg8ebsOwcfD/E4GwN5z16BADmTclGfScTmGi5TAeSshsfg6Z0H1puklLkZxKZ2sSPIQWUxab+8LEQl2bGj03T/wHtISD8+1c5BR+1C5f1ZPtyOYqLTyZR0JQiFXeuyrak80QmhZnqKqfnM6VjUd/ztjUJRHxccaFK9h/fJ4BILMtkMtEyEjFp+shcLmfcl6lPeTubxikvN30m28kkOMVtv9B6/DPTvjs9Frv/peZsTbuX7LtQZ47KU0pqkqeSXDcThw4dSt30FtTHd9xxB4AT/0HfjRs/3YB+mUkbaZE/JWm5bkvSUtc0yFNJPmf59TjJY5auQzt27EjNz1pFSTJ33nln2/tunNe5XC72M5WnFEVRFEVRFEVZaZhSlzhSkjB9l22SI6RUYcL0z9Q8vYbSdrhgwafPknKC7/twXReNRgONRgOO48B13bapu/L5fCShkKzCE1lItqL0IPm9GBcqrNDCukPTGPI9jIUZNPt7cMne51BstoCT33nzMtJ2VKbhOx7AxLUX4CnbwrqjE+g/+Cxa5TyazWYkT1mNJnrufACt0QE0yyWgWoc9MoD+Zg0ffqAH772mhQ+9JMQf/SAEai5mCkVkfQ+HKjls7Auwpd/CgTkLz04Bv3IxcMf+APumM7hgVYC1ZQt3HrJgZ4DzVwH7xn1M+Tb68wFGejI4MB0gtG20Gh56x+ew+dHDCLJZBEDbNIh8PPB/KKI+ouSlVqsVpf/wNjZNS8elOTk2eJ/Td7R8H1xwk7KUTKfiwkycJCXHGt+WpzvxqRb5OUVJWblcbt69ECo37YsLfHRsnv4kJaowDKN0ND71Hm8f/l2EnL7OJHuZ2oCnNPHycTr1I+8zuuaQUBd37ZFCHpeWpPwlk6po/zTmPM9DPp9HPp9HsViMxClePl4vmTxFUwDSeJNlkONiselTC8lNpm06bc+X87Ekzwl5DnUFtacW5PHHH8erX/1q7Nu377S3VXlKSU2Cyby6JbiuALAq4claJmQfVyqV1NzQTeu0fdTnaRAVOGmVxtLSvxMJP5eTLhcFQRB92ZHE+hGm/2xSFOXcpVqttr2nhMDlpFgsxn6m8pSiKIqiKIqiKN2GSwJSnogTR+S2fHmntJ+FvlOSqTN0Y19OhcbLJoWEVqsVpUxVKhU0m03U63W4rtsmP/F9kXxCcgVJEfSeSwZchpH1L8DC6oqLyeEezPSUsefJ47C8ED4QSVg0ZaA8Di3r+df7Ub94Gw4PDaPvpwdhzQAt1j72+AxCAI3LdyLjuPB3bcJodQovvbwf//xciD+6L4+PX1nB718e4v0P9sOqNdAqFVFyGjiEIjb2W7hgGJhoAF99PMRsM4Nr1odY3ZvBPz8NZABcMAIcnAkw69kYtFvYOJDF4xNAYGUQBi3k602suftxWH19bWOFJ3lJSYb3Md235d+nUjt4ntcmxuTz+ahtuDhHfU19ycsh+0Uuk8IQl5tkcpZpXJsEI5mcRWXjbWLbNoIgQC6XmydYEXwKP9M6fJo/Kj+/jyZlKoLLWFwsipt+j9ddrsPTq2TyFNWZ2sRUDt4H8nyWbR23HU8so++sTaKnTL2i9zS1H53jtm0jDMO26fhkGXn/+r4P3/fbpv6Lk03jzgOT3BTXFqf7fby8hpv6t9NDWZm4rosDBw6c0bYqTympufkVhmGSJcp5hGGI0dFRjI+Pd7soy0aaf1DxX57TBP8vgjSR1uSpTv/FkiRmEz6e+R9qSSTpyVoE/0M86eekoiSdMAxx6NChtmXXXHPNspej0+9zKk8piqIoiqIoirKSkDfzF1onTmSS33We6XefPKmHhBBTogqXG4IggOd5cF03SpryPK8tFQk4JYTQ1Gl8vzxNhx78eFIyo7JSGUfqHob3T8EOABenUm88z4PjOG0pTaaEIvv+J5Ht70HrZMqNbBOEIXJPHIBzzYUoPfIMJi7Ygu/sB35+Vxb/9lQTH7qvF+95UYCPXDiDj+0tIntsEo1VA0Bo4eAc8BtXAd95NsTTUxb2rAlxyRoL//MhIABw0XCI41Vg1s2izw4w0pfFU5MhMhbQ8k9Ewwz/4BFkRJtRm3LhjbeZqV+l5EOCj+/70VRqvL1NEg+ND46Uf0xyj1yfnvl0dHHjWcpZUmSSQhHVldKKaKo4LljxduPtIu8VyTaTchB9zgUr2WZ0LCkGxZ2jpv3IlDa5vkkaMn0/YhKOJFLQixM4TdtJuYze8/MPQNQvuVyubUpFnihF7SSn7eNjzVTP07n2LSRZnQ5SnOKv46713ZSnNHgKePe7393x8xfiRqg8pbQZrUm++TUvPi/BdQXSKdN0LSJxBaDJU+kc62mrN13Xkn4DNck/i4HkJ08lvX4Ej21Pcj0VJQ1UKpV5031feeWVXSqNmTT/nq8oiqIoiqIoyspC3mAH4lNPpCxwOvteaD0Ol07iysKXu66LWq2G2dnZaKo+kjzofmGr1YpSphYql0wbkolCpvQc3/fhNRrwfR/NZjNKvOLpUlzqkElWAGABwGwVAdoTnaLkKwDu7q0oPLIP+cu2ojlbw3RhGD95soqf25LFNw6H+OO7LfyX0Rn8/hbgv1jrgHwOoz3A9RsC/Pe9GQShhRs2h+gvWPirB4G8DWwoBXhyOgM/BAYLAUbKGTw3A/iwgFaAcjZEOD6HyZdfgb7vPRTVnVJ7pATGZR0povEpE3O5XPSgOtJUhrQel6RMogpJQ6bxZBJuaLlch8tLcWOC97eUkPh4ovJywYZPZygFMdo/pRmZxgatI+WfXC4XrUNiFu8TSj2jtqLxRMehtuZtyR+yLKbviXlf8HYxTd/Hpx40iV1SxCOBkkthJEHxclOZpPzGZTR57eJTc9q2jUKhgHw+j0KhgFKpFE2vyJ0DOnY2m21LoJL7lmPldHmh30/Law3vR1OKXje/Dw/Ds6M4nMtf6X/mM5/BZZddhv7+fuPnMmH/dHhB8tT4+Di++tWv4vHHH0etVsMXvvCFaPn+/ftxySWXoFQqvZBDKMtAmhISzuHrwGmTRpnG9IdJWjjTXyjOdaRElJY+T8t0qxJ+XYv7pSgJJL1P5X8/JY2kJ2sRn/zkJwG8sD9EFEVZGVQqlXnLujFtXyeSLk4riqIoiqIoinLuEZdWwj9f6Ht7uZ1MjuF0CkDg8kXcjX0SIlqtFlzXjYQlmpZLimBxxzPJNXHl4fXg0gEJLXT8ZrMZiVNcmpJtEleeuOUZAD3ffxBBK0B112agv4Ctk0fw/OAa/PPhEDevbuC7jzbxB8EmfGjjMXzw5/L45N3AWy4O8M19gB8Au0eBXSMWvvTwicSpshWiL28hCIGsBQyWMjg4B4QWgACwQqB3/xiGRos4Undx4KbLsPtHTyEXWm0zSfD+4PB24gINSUQkEhH0nblJyJL9JQUmOp4UdhaSADvtx9QP8jXf1vQsX8skLVkGY+oYg8tT9L0t3xelKPG2JEhI5MIT/4yLSvTg23dKkaJ9md7Laff4uX0656BsB35eyusVLSNhiB+TS0S0Pi8bCX30zOHbc7kvrty8jqbZZ+IE0bjP4sZ03D3lOEEqzfegVxrnnXcefvd3fxdvetObjJ8/+OCDZ/yPoWcsT/3lX/4l3vWud8FxnGgQkzw1NjaG6667Dv/9v/93vPWtbz3TQyjLRFqSp+bVLcF1BdIp0yR5/C5EWiRICfV52upO9c5ms6m6mUi/kN9www3YvHlzt4uzZCT9Wpb061XS5TDivvvuA3Bi/vAk11NR0oBJguzp6elCSYDPfe5z+K3f+q15y9P0+46iKIqiKIqiKCsbLph0utneSYSSYkvc9iYxhLbj+yCJI04qoOW+70eJU7Ozs2g2m1GSDhc/eAoPyUym/cnpuHjqE8kolDzjum6bLMXTpfjffFy0kHU1pffIZ9lPFoD6ZTsRjg7g/MYEanUfQdnHbJDFXT+awM0XFfGtI3P4/WMb8Ie7Q9zxKz5u/t9Z1DwLL98WYl2vhb98AMhlgUuGAzwylcH0JHDBcIiqZ+G5WSCLE2IVwhBZx8Pk+tUojs9g80gOh+s+nnjJBbhs7wEUMqeSp0gUo3bk0oiUb2iatFKpNC+hiOD9tlihxtSGfLyZxhMXZuISrORrvi9KcDKJQSZBi8tJpuQf03mQy+Wi8UVpX1LCoXsNfFo5y7LgeR4sy4pkPpKnTFPP5fP5SGrjfcDLJ6cH5HWUUwnyNuGJU7IN+XSZvN/k9YRvQ8u5SCa3o33z85faj4tbfP8kY7ZaLeTzeYRhGLULPz4XBU11421A65/Od84LOQ6dPu8kVy12+XKi0/YBV111Ffbu3RsrT70Q5+WM7lx95zvfwdvf/nbs2rUL/+f//B/85m/+ZtvnF198MS666CJ87WtfO6NCKctL0m9iEmGYruSpNMpTaZ7OI439DaR3+jpNnko2Se9T+sOUXicNnjyVxPoRlDy1devW7hZEUZQXzPj4eNv7fD6PfD7flbLI7xYIlacURVEURVEURVkpmOQN02Ox+4rDlBwTJ7+YRBaehEM3kkl0oOQnvg9ZFz59lUw14hIJF2m41EPrkTTVbDbb0q48z4sEIn6suCn6qJ6yDUzljabAC0M0LtqK1uggdjlTqDdaOLh2I3oefx6r/s8PML56Le58wsPLrx7AcDHEn9xj4XN7LdR9CxeOhFjbA/ztIyckg4IFVLwTr7MWMONamG2euNHeCoECAmwsBgiKOdhegCOrh1Cf8bGp10LZ8/HQVVvh508lFckp2kjCyeVy0TO95g85NVqccCT7wzSeeBua1uPPpuWmcUPvO41pXkZTWyz04HWT5wWNczlmTW3Ezx/e/vl8Pmp/Kp8s72LLzbc31YF/ZpoGULYxlZem6aQHlV+Wt9O5IvvMND0dn07SdH2gdvY8LzrPHcdBs9mcl2on99lpnJim+jQJYbxui8FUt4W2leuf7jHPNmF49h7nKp/61KfwO7/zO7Gf79mz54ydgTNKnvqjP/ojrFu3Dt///vfR39+PBx54YN46l156Ke6+++4zKpSyvKQpeSoAULNt+L6PgYRPKclvTqcFlaeSL5VIdNq+dJ3jabmuJf1alvRp7dIyTmlKr7RJnIqSRN73vve1vXddt0sliUflKUVRFEVRFEVRVgJx4pR8bRKc+D7i0mf4Np1kF7kuT3yKOz4JDvV6Ha7rtq3L02SkhOT7vlGmarVa0bH5cWg/lK7UaDTgeR4cx4HnebFpViZZisolJTAub5mkhjbJp1JH+annUb10E46t34Dex5/H6KPPn7g3+t29OP7/uw4/OuDjd68I8bkHs/i7x7N44wUtXLQ2g1u/byHEicSpfVMBnpuzsbboY1VvFo9Onki1umAVcGg6QKWVQeB52JyzcCS00Vf3cGjVALbMVLF5OIdD1RZ+fMk6vOjRMeT9U+1IogilFwHtM05kMhkUCgXkcjkUCgXjuOHyDQk0UqKRIk3cWDK2IeLFNdmHcZ+ZpCne7/SP01IwWkjckglGPNHMVAbTM02nSLJaNpuN5B8qI/UVvZcSl0nQsixr3rR/fDzLaRylQMXrRPfyeZtIAYzXy5QKxs9Nfh0ySV+8ffj33XFTRnIpM5fLRfWif86TchvtK+7eJiVf0Ta8HqZ6dUJuz+WxhbaLE6dONxlLObusXbt2yfZ9RvLUfffdh3//7/89+vv7Y9fZuHEjjh07dsYFU5aPNMlThwG84ed/Ht///vdRve22bhdpSUlLQgsn6cJBJ9KSICfhpn2a4H9IJPm6LUlLvZNcNyAdyVNJrh+R1gQ8RUkiP/rRj7pdhAVReUpRFEVRFEVRlJWGKbGFIwWGTqk+Z3pvY6Gp02gdEhb49zn2yaAB/plMl+LygpTDuLhESVIkSNGUZ1zSIFGEy1wLiQ/0mSmJypRmw6Hj2M8cQljI4+joGvQ8sh99R6ZQ6O1FkM3g6PWXYk2zhmaxjL98wMeLtmXxxPEQ3z+Uxf/dB5RzwJa+EIenfNTCPIqhj7mWjbnJFvJWBm5gYf9kgFdvC3Hvfg+Hghw2hx425AMca2XRV3VwYKAXmyYr2DCcw+Gah3t2r8Z1Pz3W1iZhGEbylBRzMpkM8vl829SM/Ps4+q6VpyR1kqe4qCTFFSnSmfpCjmGSXLjMFteX/DPabqE0JmqjuBQm2pdlWZG84/t+W9vIc5HXhZZblhVNO8fbkaakk9P7xY09k/hFY5i2keIY73O+P96eJsGJl10ek9fb9BkfD77vz/uMt3mcdCblIuDU9zfNZhO2bUcpXtRP9MzrbRIf+fp83JqIG3fyWtHpddx+O+0zzfekVyK/9Vu/hY997GMYGRl5Qfs5o7vNruuip6en4zozMzOJThVIEmmRbNJ2ky/O1k0yaejXONLY30C6k6fSIL1K5B9JSSXpfZp02TMt0/alVV5VlCRSLpfb3q/Ev+P1CylFURRFURRFUVYaXByQYg8wX3bgvNDv8k0SRKf1AMyTp/h2JnHKVCeqN39NsorrunAcB41GA41Goy25B0Ak9JimMZP7NrWraaoxvm7cdmEYImy6KP/gYRQPjJ1ol0IBB27ag7Vl4Es/52K9U8FzTh4HJgK8amuA4zWg5gE3bmhhc8nDVJhHP1xsLgVoNluoh1msLQTYlW/CCSx879kQL9qexRZ4OIgcwjkf6+tNZFshRsdm8fxgLyoTLtaXQ6yaa+CJrUNoZczCELURiSckn1C6GK1jmtbPNJWc7GuThCbFuNNNqZJ90WnM0LaybFKa4uXgU9LJMcTf0zih1DM+dZ/pPATQtg9qUz5tH333aZpSkp8DXKC0LAt+uYDG6sHYc0yObfk6QIiptQMIRZuZBCqT0MbHkRwrfJzw8vMp+kx1kv1uqguJZiRU8mk6eSJYnDgpr6Fx0w/KcRg3XhcjO5mkzIX21U15KjyLjyTxN3/zN5ibm3vB+zmj5KmtW7di7969Hde59957cf75559RoZTlxXVdVCqVxN+Ep7rxGMQkQ5LBTTfdtCKn3lgK5A+qNPQzkXQZIY603rxPi/QqSU29E37tSnoyU1qux2n7vUpRkkw+n0e9Xo/ef/7zn+9iacxo8pSiKIqiKIqiKCsBLmeYBANap1NiSSdZ6HSR059xpGTRSZgBTnynRVNv8cQoLqXQOpQw5TgOfN9vm46PZBd+HNoHFzdoXzLVh4suC0lnCyVv8XQba66OTD4P5G3su3E31pZC/I+Xe/jwdwM8WhjGlfkqjjZ68acPAP0FoGwF+JfnMshns/i5dU3sbxTw7EQLWQRo+SEOtjK4slbFFbks7i8O4F+f9vGy87IIHnfxfLmArZNVrKo6mCzmsWnfOA5uH8WOo9NYtaqAypiLg+v6sen5qXkSDIAohYrSprjswqUh+SwFGS7ucMnElF4k2zjunvFi/6lbpgrJFCQqHx3PNIWd6XjynlAnYUuei7K+sg1t224bj1y+4glu/Nzg++Tb+QgxfsEGtB47iNLYdNu0f/w1lZVPyxcgxPjFm2EBGB6bQ0aMjzgRjO+LzkPezlJa42OEty1vd75PCb+u8GuETLWq1+tRyl0ul4v+iY+n0cWNJ6qHvA51ErBkfeJkNeDUfWWeDBYnuUlJTP/Rb2Vxtu5RnNGdnde+9rW466678OUvf9n4+V/91V/h4Ycfxi//8i+/oMIpy8MHP/jBbhdhWeA/UNNwk49+OA4MDMz7b/KkkuYfVHF/kCUdmTyVFtKePJX0eif9Wkb9SK+TRtLrR/D4aEVRzl2CIMDMzEzbsmuuuaY7hemAylOKoiiKoiiKonSbuBvxi7l5v9B+49aLu3EPtAsUMonFJB91SlaRUoE8FgkLJEq5rgvXddFsNqNkGZIj4iSWxZSRY5Je4h6UsMNTdkwpRcjbGHvlNVhTPCFOfeS7LdydX4Wr6uPYkXUxNhegFQCrgiZuXN9COWfB9UNkgxB+w0Mrm0HL8bHxycMYOTCBhwr9yHg+rmzMYho2vve4j619wNZKHYcGy8hP1rD90UNYd3AKF+19DmM9JYTPzGHTwSlsODzTJuGYkqdMSVJcgJFpSdQGcWk9neS5TmNV9tViks7kPqUkZqqzlKpM4yQucck0xmQ54tKuZFvLOplSseR6dP74uSwmL92GYq+NHc4sjl+xA1O7NrTJliZhMDoHM8D+Gy4GSllsHwScwRLGto52bJO4vup0fsm25BKZ7Bte74WkIjmmqL48hUqmgsVdM0x1Mq0jj73Q67j1z+TRDTR5amk5o+Sp9773vfj7v/97/Mqv/Aq+8pWvYHZ2FgDw2c9+FnfddRduv/127Ny5E+985zvPamGVpWH37t147LHHEn8zOm3yFJdp0lBfIPnCQSdSk8gj4Oc1f590uJyRJtIyzpM+jpOezMSn7Usyafu9SlGSyre+9a15y4aHh7tQks6oPKUoiqIoiqIoykrAJBjJz/l9GVNSjOkfoWVCz2KI+35NihO8zKZpuUwCg2VZbdNv+b6PRqMRTctHU/J5nteW4sKP4ft+JFyRQCHbj45l2/a85abv13id+HsptoRh2JYCBABhxsLMSy7FmlKI//FyF7d+N8CP8qtwdWMCW1dlcPtsH8JsiEv8WTwW9GHiEPCaTR6+f9DCN8eKWJvz8LFdc/j9R3tghxZGH3kerZaPBzeN4rLmLK7NVfFjuxfPTDjYOmzBO1rBM7vW4LwfP4tyK0C54mDnM+M4urYf/ZNVWGhP1aEp4ni9uVwlBRJat1AoRFP8cemK2tWULiTvB3N5Lg7ZzrSMyiLHd5zwR3IXjTHf96N24P+sKROdaD/0Ga1PY4yEHD525PrZbBb5fH5eXXO5XNv6tI9cLgfLsqLve1utVltCFpWPju15HlqNAIHr4eimtdi5Kosts1N49pKtCIIA/Y8dQGhZyITt0wjS6yADHPrZPchlLewazmH2kIeD52/ApiePnipbxkLGak+84n3AU7Tk+cDLTdvybUyJZnFTPpru1dC+6P4VHZeuEwCitLlisYgwDFEoFKL258ixQPum8SDHLr027aOTMCWvX1RmLnfRvvi1k0TSbhCGZ2fykqR9pX+27h2e0Z2roaEhfP/738dLXvISfPnLX8a3v/1thGGId73rXfjyl7+MF7/4xbjjjjvQ09NzVgqpLC2vf/3rsWHDBgDJvmGbtpt8YRg/h29SSfO0fWmWaQBNnkoLH/nIR+alYySShPcpv14lcfwmfVpCgv8Bm+R6KkrSee973ztv2Zo1a7pQklO85S1vmbdM5SlFURRFURRFUVYScSkri1kvbrkp2cckLXS692NKnJGSQNyUVLxsXA5oNptwHAeO40TSFE+OkWk6MlWHC1pxohbJHpSiRMlRlKQkHzJRypQM1NYedhZz11yItbaL/3GTi1u/6+NHJxOntg5b+NpMHxACV7Vm0BhzEPgBqg3gnudDvHizhb5sC2NOFkWvhf+6cwaVtYOY3rgK6x56DkNHpvBQcQCZFvCioIapQg77JwKsX21jw/FpHLhkE9zCiSyTUt3F9n0TsIA2WYU/TIlGC/UztSGXp0zT95na3ZTowz83iTR8W/m82O8K49KR4hKGpDDXCVPb8vspNL5l+hOXZWTZeB2BE9+N8vODzo2W76O090n4rRAPB33o7bex/dgRzF66HdMXb8X4Sy+FW8q3fbeayWQQZjM4eNPlsDMWLulxceyYi8fXrMb6Jw+jNFM7Mc1lBnjq4o2ol9plI1MZTdcO2aYkNsYlzsl2kHKVPI4JeW3g6XXNZrNNejOV19T3pntjcn3T+7hH3Hryemb6TFk5nK17FGeUPAUAmzdvxp133omHH34Y/3/2zjtMiipt+3d17p4cgSEMIEFAEJUgqIAJFXXVF8Mqr2HFtN/LmtZdXXNEXcWc17SsssZ1VzEHBCMIC4qSMwxxmNg51ffH+BRPnz7V0zPMMEP3ua+rr+6uPnXqpDrdXedX9/Pdd99h9+7dKCgowOGHH47DDjusTQqntG+ULZBNtkEWmb44LVM2O09xIj6bJBL+2SIOT2WT/H4/gMyHNTK5bkDmOzPx+mVyX2YrtKuklGn6+eefk7bJ7vjbl7r//vvx97//PWFbNv/OV1JSUlJSUlJSUlLqXDKDobjIlYW7u/DPUkkEp8zSiNeHzcApWagwei2rC4ElwWAQkUgEXq8XkUgEfr/fAB1k4JQMQEkHMhMdc/h+ouhzmXsVv07F97VYLIDVBle9D1221+L+D3ri+5wKHOrdid4lFry3zQndEUf/r36Bt28xtpaVo9fyKuTm2bG8siu8a2M4oySAjzZYcPPKfEzL2Y0D1+zAdneTU1TfVTtQZbNjZYEHQ8IBHLx2J5YP6oad6xpQ5g1AqwtCt1qASDxhPZagHnKcstlsCXWXjRMZQMSBOg5NWSwWOBwO6XiitByQkrUzb1uZ85S4L3c3EsvKx4VMZtAUjTExnRlURuXi7cwdvcilKhwOG5/x65y8DmKbUd7kpkTwj+hApOfnwDNvMfynjcVPrnwMzq9D913bsPmg3sjZshPVYwajcPFq5NYHmvK1WbDluENgt1owNDeMql0xbCotRp+1W+Ha7UXQZQcsVlQN6Y68eh/sjQH43U7kxBLd7Xg/ccckUbxdaa7i7SqCQmbjRMxT5A1obqD3BGtRO3P3KqfTmbSmTfnx/iBnKwKYxDLwZ5lLoBlEKu7P4TI+BqjcHeo8hbYJuZdpKxeNjY1tkk+r4SnSsGHDMGzYsLYoi1IHKVscTKhu3FIxk8W/8LJF2dCvZsr0MFhmEqHIbBkD2eJsk63a2dBgvI64XOjYJey2V6aP32yBivjvjEzsRyWlbFVBQUFHFwFdunTBX//61wRXLHU3n5KSkpKSkpKSkpJSR8vMtUR0qxFvbE/lJCR+lq6rjugww8EOfhwON6VyW6E05AZDbjrkEEMh+mTQlcyhR4SXxGtlMjiK8hDhFQ5LcGhCBmsASAC7jLyjUeSsrsKqXuWocXfDYXVbUVnhagKnoKPnf75HMN+DnQVF6P7TRhR4Q9g1sDuKdjagriQXX6+I4qSBNnyx2osn9GIMi9WjZHs9wlYrotEouv28CQ09S7G0SwH6NPrQf8FabDioByyNIZTtrofD4YDF4UgAjwhyotBwvN2oT0SnJ+6gZBZajdqNuwPJoCuelveL2B+y/k3XNUrW56KLjwzuE2EWQB7GTYR7zM4DAqZ4GQiMIbCL2pE+E8eRy+Uy8qPzwev1GueH4eDkdiIwYThKNlehf24Ey2IuLPWUo8gdRpGvEfHBFYhvqkX1xBGwzPkRrhovth07HDYrMMQdwIadcWztWoZ+u3ah+IBcrLdYEbdZ0VBRjMI6L9A9D9VxHbWl+Ri8bBtskAOTIkhlBoTxNuPjS+y3VEAZAAPYs9vtCSAgb0MqC4VADIfDCAaDAGCAf7Jzgfcx5UMPEW6SjZ1U4BQP7UfPHBaj8SPO+TQGlDpGixYtajczp72Gp5T2f8l+vGWiaOLLtrB99DoblM13pGfLeSwq2xzlSNnqPHXNNdfgo48+6uhitKt8Ph9iAM4AcCaAkrvuwokdXKa2VibDRfQHKpPhMBLVM9vmISWlTFN5eTl27txpvJ85c2YHlmaPRIdCBU8pKSkpKSkpKSkpKXVGyWCkVNdKzIAh/j6d9GYPLjFsnuj8I8IAYpg+CkMmglP8/xnBCrJ60HYe3ougBLPQgbL6Wq3WJABMDPPFjy26xVA+4ZJ8NA7sgUNqtqCypweztzsR13V0+3BhUxg9bwBli9bAHYpBt9tRstuLnlsiCOTW48eh3TFvZT2OGWjHvJ9qsX5AV1Qu3QRL1GIcz7V2K0p31SHiC8BqsaDXT5sA1x5XKRF242EICeDh/cLVXPg82TU6DhRx8Kgl4vmmAqhkkgEwHKYR3YDEcSrbl9KK8BSVlZdNhLWi0ahRNnrPjUWofcUwc5QnOSNZrVbjnKCyeL1e41iaLwDHnEXYdcxIRDfW4cCeOpaHC1DrcCA/V0O8xgd7z2Jgax12Hj0clmAITj2OIc4gNuyKYXu3LuhdvROFBTYsr9ahOazwdylGfoMf7lw7QrUhNJTlo9/ybbDqAITmF401RJBTBk+JsB1fW24OnuLjmYeNJHFAidqTn7+hUAgA4Ha7ExzCxP7l5zkHw8wczVKBomZhCsV6Ek8gg1AJyOsQKespjBw5En379sXFF1+Miy66CBUVFW2Wd1rw1J133tmqzDVNwy233NKqfZX2nfjiV6Yv8gHZB09l06JmNsNT3N4ymyT+MM4W8f7OhvmMlA1OifSD+9+/PmZ1796BpWkfZTJcRPXJ5LCEpGyEtJWUMk26rqOuri5hW1tebNgbKXhKSUlJSUlJSUlJSamzSoQ7gER3FL6NnmmftriGLwIzsjzpmOSiQ84p4uehUAjhcBiNjY0Ih8MIBAKG2xQP8WcGO/E1GSoPuc5w0EZsB95m/DPxurfo+kIiNyruJCMLQ2iU025F3aH9ULlpE/oc1Q3vb7IibgfK3vu+6RiaBj0SAfwB1P0KbDm8XgQsFlh3W9F1+w5sPHY4Pp9fhSOH5eLLL7dibc9ClC9aY7SVrutANdAYjxvh+KxWK/wWC3Jzc2Gz2eB2uxM+404/HHCia6c85ByBKRykEmEqWXg9s5sfOTST6nMxnQiB8b4QgROxn2Xvef/TWJW5UFE6EaKj9Hytmzsf8WfZ+aHrOpxOZ8K2cDhsHJvgt/z8fAN2I9DQ4XAgEAggGo0iEAigsbGxqU1qGuFYuAy7TxoDbNiEQT2AFZECNNjtsHsssDcGYK8oRDikI+rMwQGhGmzYGcHOHt3Qc8c2FOZbsbTRhrjHilhBLnLrGuDOscFbG0B9lyL0+34V4g1BeBn0RGOBxhbvLzo/RRhO3M7bSeY+Jbp/0f42mw0OhyMhZCQfm3wtIBaLJazTh8Nh6LoOv98Ph8MBj8djCpFyMIzGHV0vMptX+DzB5zQxb9n8RnW12WwGQCo6pXWEFDvVpGOOOQaPPvoobrvtNpxwwgm45JJLcOqpp+712kxa8NTtt9+etE32A4Bvpx8BCp7q/MqWRfhshKcydXHaTNkMT1F/Dxo0CAcffHBHF2efSbxjIpvGeqZDRDJlQ3hKsT8zbV4TgcdMG7/ZFEo0W+chJaVMUjAYRDgcTtjWGcL2AQqeUlJSUlJSUlJSUlLqnJIttJt9zp1TxLVT0ZVHBkGJa698MT+V648IN4nwE6XhblM8NB85KYnAlHgMDrY0F0qQwzVimENeZpnrjQzC4eG6zMqY0I6hCAo+WYiGeByf5BbAomsoWbACiMdB/zbF+kSjUQNK0erDKP7PV9h5+BB8PHsT3Gu3I9flQDimIxwOG21G5aCwZBx6cjgcRog+M8BD1u9iu5pBMHwfcX/ZOBLHkkzNgVN8LDd3rKQ+EV7zduBQHIdVxHQ0fim9zDkpFbDIj8O3iWPBarUa/UfOStZfQzYCgMPhQDQaTegT+4btwEffYfdJY6Bt2IRBPTUsjxQgAjvgcCIe05HjtsAaDmOVowh6Dw09dmxFcb4Vy/xOxG0WxO025NQ2ICfHCl9tEI1dS9Br7i+wNwYQYecXlYeupdB6IV9L4e3AgSoOWMn6SJzL+BoNh6P4g7cDdwSjvPhcEIvFoGkawuGwsc1sDUicA9MJB2o2vmR5i/MabzsqP407mleVOk533303nnrqKfznP//Biy++iDPPPBOlpaW48MILMXXqVAwYMKBV+aYFT82ZMydp28MPP4wPPvgAU6ZMwYQJE9C1a1ds374dc+bMwaxZs3DyySfj6quvblWhlPatOI2byRJjqma6ROvKbJD4RZUt9Qb2/IApLi6G0+ns6OLsM4kgRraIw5HZpGyAp0Rl2g9wqk+mOjNlOhzG1dzFByUlpc6v+vr6pG2FhYX7viASid/3Cp5SUlJSUlJSUlJSUupoyUKLyVyogMRFfr5gL96Ilur6ighMERhit9uT3FzEY3PHKXJMoffxeNxwmfJ6vUaYPplzEx2bjschKBGU4W4z/HPRLYbSiCAXhypERxkRaOH5aZpmgCsc9BBdZvRIBKGSfIRDETi++QmBeCLAxOtC9SEnnXg8DksoBM/nC+EfPQTaqi2wNkYQ+zXMGx1PBH5E0EbXddjtdjidToTDYSNkHyBf4zC7aVzW/rJxRG3Nx4YMiJIdVwS1ZCCXzMWIj2mevwhAiRALH88EqFDoSDP3NHL/4f3IxypvOx4eUYT3RPGxzMMrcicwXdfhcDiMPuVjhcrh3LgTtk8WYvfEkbBu2YqDevjwSywPYYcNgAZEo4g77LCENVj1OHKKnFjWYDXAKc/uenhyrGjY7UegeznKPv4Bep0PjawfeZ9QPWXl5/CX0+lMcDIzIMFfzyku7ponAzfFc53mOd5XHKDifQwAkUgEuq7D6/UiHA7Dbrcbj1Ti5z/lKYJS9N7MOY/LDN4T00UiEQQCAQM47QjpetOjLfLZ32Wz2TB58mRMnjwZVVVVePHFF/Hyyy/jwQcfxBFHHIF58+a1PM90Eo0fPz7h/cyZM/Hpp5/i+++/x6GHHprw2YUXXohp06Zh3Lhx+J//+Z8WF0hp30s5T2WmZKR3piub4SkOlWRbvYHsABW4stXxJRvrnanwVKaes5kOh3Fl4/mopJRpEkP2AZ3XeSrTvg+VlJSUlJSUlJSUlPZ/iXBGS240SyedzGUllVMQBwVEx55YLGY4S5FTEg9BJQMKRNBALIf1V3CIyii6zvC6yuAfsdy8rqLbjVn7yAA2sxBduq4DO2rg3FHTVG8JOMXLQHnxm3ks/hBy5vy3ab9f1xpFUK65PuJuOxwi4YAJb2dd140wdBx4EvtKBrSI7lBi/ZqTDNAyA6d4m4nl423Dyyw+xLCOBP3RmBXrzNuSj5dUYdlkY56PYzO4hvLUNC3BzU28XiG2mWPjdmif/oCdx4+EtnU7+g8vwsoGHZoO+HQr4mENJS4d9kgUK50lsLj80C0WeGrqkeuxwrs7gEDPchR/OB/2Wi/irG1l12YJ3KLweKLzHNWDzl/ujkZQmJnDmGwsmPWnuE3cn+9H/WyxWBCJRAxIVJQ456ZTDrNxJstX5nomA7G4o19HSIXtk3+Hdu/eHbfccgtuueUWfP7553jxxRdblXda8JSohx9+GOecc04SOEUaMWIEzj77bDz88MM4//zzW1UwpX0nPhFmsviXSTaIfxlly6Im1fOMM87AO++8kzV9DWTPeSyK+jwUCiW8z3RlowMTkB31Fn9wZ9picaZ/F2c6HMaVjZC2klKmSXSecrvdcDgcHVSaRKmwfUpKSkpKSkpKSkpKnVUy2IPDF7L04nsZfCJLz6Ekcs5JdS2GykJOPQQlRCIR+P1+BINBeL1eBINBI+QYX1cQIQEOXlBaXhYRyBDBCbPy0rWz1vzX421PYBh3zRLhKbFM6eRPZeZgjllaEjn90DVs7v7DnX2obFR3ct6h44qh/ghyIVcjCv1H/SZeMxeBF96/3EyDJG6TjQUZEMefxbCCtD8fO9yBTISUxL7kgEooFEIgEDDC88nan4M/Mrcgsb7iuCDnMmprDmrRtkAgYLymcpIzlthO4vEdG3cg9/P/Yvuk0QjVhTGiOIpFNTbELDbYNB3hUAwNmgOWeAzxXA+c1bXI8VjhrQki0LMcRR/Mh6OmERCAPTECEdWf9wu5nkUiEQSDQeP8tVgssNvtxlhzOp1wOByGK5XL5UqYf/jY4qAkB41k5aBtZiH96Hygffx+P3Rdh9PpTAL/+LgSy0J9Js7LsjHWHDwlOgzyOZ7Prx3lPKXU/Fx+7LHH4thjj21V3q2Cp1auXIlJkyalTFNRUYE333yzVYVS2rcSJ7BMlbhgK5KumaZshGnoy2vcuHF45513Org0+1ZEiAOZvVgvivr8b3/7GwDgu+++w8SJEzuySPtE2er4wuudqcp0eCrT4SLReSrT6seVLc6lSkqZLNF5qrOE7AMUPKWkpKSkpKSkpKSk1Dklc6/hC+zitRJap+H7ii48MrgKSAxNJ4bCE/cTy8WhKQoxFQgEEAqFEA6HDViBwAMzxyh+fBHqAvZcC5MBDvTMP0sFN3AohB9Dth93lRIhKTGtCE6luzYolskMMOLvOczB4SnxQW3HwRHxGPSersFxtyreP7J6ywAhsW/4OBS3ieNUBvjJ2tDMjUrWJxy8E+EpglNoDFPoPrFPxDEnAmP8QWNVhGk47EbtTMeitqe0FosF4XDYyINCt8kcihJeW63wjxgIW4MXDfk5WLPTh34VLmypjQHQ0BizAnocuW4rwsEoYuWFaKjajXDPchS+/z3suxuga4lhLWXjhfeDCDLxfam84nlL7W21WhGJRGCz2RJCEpqNZ7GfeRtQ+/J1DlmEKA4sEvhpFpZPhLlkx5edE2ZzDS+rDJ6SgVdUzo6QrsL2Yc6cOSguLm6XvFt1239+fj6++eablGm+/vpr5ObmtqpQrVUoFML111+PiooKuN1ujB49Gp9++mmz+91+++1Jk6imaXC5XPug1B2vTIeISESAZstCXzYuambTorWobITlgOQ+7qgfK/ta2QARycTvosnU89vsrodMkfgHJ9OU6fXj4t87mTZOlZSyRSI81VlC9gEKnlJSUlJSUlJSUlJS6nyi6x8yNxMzeCeVC45ZehIHQThEQPvK4BhepkgkYrj2BAIBw3mK4Cm61sqBCFEET5ELksPhMNxqUoX2ksExtJ2DXQRJyKCGVA5F4XDYAFc4ZEP5cSCJ9x3lK5ZRTGMGXYl9I7rfUHsSdEIuUjzcHgfPeHmp/zk4RI9wOIxQKGT0H6+rCHvIHJzMwCrZODRrM7E/ZDJzvWoOahHdpjgwRX0rglViGhG4ko0BEerh+RAExccn5R+JRNDY2IjGxkY0NDTA6/XC7/cbfSG2JW/ziK6j8cwJsFp1HKQ1wLVzN6odefDV+tEv3gBvRGuCYTQNwXAcbpcVeiSGYLdSeL5fBtuuupRtxettBgnxMtHYE8cazRVer9eoq9frNeBLui7D54x04CUzFyd65uMGQIJjngi88f1pO513qY7b3BzNP5OdPzwfnk45T3Wcxo8fb4QzbWu1KteTTz4ZL7/8Mq677jrcdtttyMvLMz5rbGzE7bffjm+++Qa/+93v2qyg6eiiiy7CW2+9hauvvhr9+/fHyy+/jEmTJmHOnDk48sgjm93/6aefTgC+xAu2mapsWfx67733AAALFiwAkHkL0qIIissmuEKEp7JJ2QjLAZnnypOusrm/Mx1KyRbnqUyFXDPdWYsrW+B7JaVMlhi2rzM5T4nf9wqeUlJSUlJSUlJSUlLqDJK5k8iAk5ZcN5GBPQSeUHgtWXoZTEWQjd/vh8/nQygUgs/nSwBBOExA+dAitKZpBkwBJIfu4wCBCG/JwnGlAsTE9SsORnEASgzJJ3NVEo8prnfK1j9lLk9mEmEg0W2Hi+ASu92eEOaQXy/k7jqie5cMUOKAFrUVPx45JonbyEEpldOPzOErnRu3Zdc9U4FV/LgyFzXerxxC425JMoeneDxuwIXRaDQB6uGQjwgm8nYVATfuqEQh/cLhcIIDGH1GY5YgKu7qFLdYEPjtcbDZgEGOADZVR+HrXYHSml3YXVaCqrAdDmsMIVhhgQ6LRUNjSEfcYYe9ph6+w4fAUlMP5446ow95XfjY4XUQ+zVV/1CZ+XimOnCQiV5T+EgCKsVjizAVH8+8bLSNh7bkgB45T4lhIPm5zB2oxLLzuZgkAwnFOcgMuuKAmpivUufTtm3bEIlE0KtXrxbv2yp46t5778WXX36Jhx9+GM8//zyGDx+OLl26YMeOHViyZAkaGhrQt29fTJ8+vTXZt0oLFizAa6+9hgceeADXXXcdAOCCCy7AQQcdhD//+c/49ttvm83jzDPPRGlpaXsXtdMpWxbhJ06ciLvuugvHHnssFi1alNF1BRJ/nGd6XUnZtGgtKt0ftJmmTANL0hV3nsqmcZ4NjlvZAk9l6jydTRBvts5DSkqZpM2bNye870zwlDiPZtr3oZKSkpKSkpKSkpLS/ikRBuLbRRgEkAMqsvzENBziENd5ZGAWwQCRSMQAqLhTkehCxMVBLX4sm81mADkinCODe6hcBHmIUJAMaBDBBhHU4LCVzLGGH19sD1nZxM+aE4c+RCiH8hbblAM5YpgzXg+ZA5TZOBHhLZlorVd0zJGBZLLjycahrD1SXQs0g6fMQDUZuAUgKewh/9xsHPG6ysJMysaB6BwmKy+HZ8Rxzh2xxHFggFNWYJDdj03VMdT27oVuVVtQWmDFL3VBxHNc0PQ4utlCCFrtqAvr0DUrnMEgnOX5CFXVoHHSWGgffgfXznrTduDt2RJTDdlcJro9idBgPB6H3W4HgAQoMBU4xcsowlqy+Y2f6/wzWTqxv1LN0ak+F48tgqJm82dHSP/10Rb5ZKqOOeYYrFq1qlU3Y7YKniovL8eCBQvwl7/8BbNmzcK8efOMzzweDy699FJMnz4dJSUlrcm+VXrrrbdgtVpx2WWXGdtcLhemTp2KG2+8EZs3b0bPnj1T5qHrOhoaGpCXl5fRC7OisgW6oAktGxY0gezpVy5xUT6blI2wHJC9C2l0fmebuPNUpo5zcUxnWj3Fu0IyTZkOh3Fl6/eOklImadGiRQnvhwwZ0kElSZYK26ekpKSkpKSkpKSk1Fklczfh20VXG3rN08kAD5LFYklwLeL70GvKk7aHQiGEw2HU19cjGAwarlMcROKuKRyY4pBDLBZLcOohaIQDBBw8MHPzAWC4WVE6XhYCuihUmszphZ7p/6B4XA6+WK3WBIcqsU9IqVxjZNfzeF/Z7XY4nc4EqI33AbWTruuG8xTBJdyFnyA3qqsI9nCYh9yX+MMsZCLlzR24KH/Zuqg4XmWgiUxiOtkYF9tV0zQDzqNxQWWiMlNd4/E4nE6nAYIRBEjH5ZAUHZOPS3EbAMMlSZaWA0DhcNgYq7QvOUqR4xSlt1gsCc5hVId4PI5oPI7QiaObwCmHHxuro6jrU4muWzahuMCKZQEXYIsCtjBiTgeCoTg0LQTd6gbCEcTtNkQaAnBWFEFbtxMNk8bA+vEPcGyvSTj/qW35OBGhIhHKpDYAYJzv9MzTUT9FYzHYfgXEOIhptVoRCoWMcJ5OpxM2m83oO7MxxfuO34hM5zlBm7z/zPIzA+Rk8JMZkCXOD3xf7n7Hw0HSGOyoNQ4FTzWvmTNnwu/3t2rfVgcDLCkpwXPPPYennnoKK1asQH19PQoKCnDggQe2W4zBVFq8eDEGDBiA/Pz8hO2jRo0CACxZsqRZeKpv377wer3IycnB6aefjhkzZqBLly7tVubOIvHLOVMlLthmcl2B7HEU48q2Pubi53E2KdNBEzNlq+MLh6cyVcp5av9WNn0PZYMTnJJSpmvTpk0J74cOHdpBJUmWgqeUlJSUlJSUlJSUlDqbxEV3M9eSVGlFgIC2ic4xZtdcZPBAPB43nKboITriiJATX/gnAIYDAWLoMpnMwAxRoqMUhxBEeCqVO0wqRxkZzCYrV6rrWDL3KtpGLlIOhyMpxBilJeCGwo3xBwFNBGPw9hOBKe64JOYhpkt3DZCDWbL6pdM+Zm3L4TtZXvQ5tQEBRvSe14XXnwA0elD7ptOHYrsSWMSducTrDtQ/zUGCsnHGQzVGYjFExgyGMxxGP4cfm3bHmsCpqs0oKbBiRcAN3W5D3GGDa3sNXEUe1OblQ4OOAwLV2BT3IKLbAacDWp0fzl7F0DbVoPaEkSj8cD4cO2qT6szbujnwTYSrZEAiKWq1YM3Achy4pQF2lo6u0ZAbF7UB9a8Bl2nAR/E6jLUXoovFkRKCouPL5gOzudBsDm5u3pB9BuwB68Qy8PFAr7NxPXZ/0siRI1u9715TTjabDQcddNDeZrPX2rZtG7p165a0nbZt3brVdN+ioiJMmzYNY8aMgdPpxFdffYUnn3wSCxYswMKFC5OALC76IUJqaGjYi1p0jDgZnMkSQ+lk8oImIP8xlOnKtj7m4udxNtU708CSdJUNEJFM2QBrZDoQmOkOgdkUto//zsi0caqklC0S/yM3d7PRvpSCp5SUlJSUlJSUlJSUOqNEmEL2Hkh20Kc0zQEv5CzE/xOlcpIJh8MIh8Ooq6tDKBSC1+tFJBJBJBJJcJziN/xxkEV0ZuGiMvD9RXcpSiPWi/KOxWIIBAIIh8MIBAIGNEUOP9wtSgZ1iVCUDGiRrYOZAWgiPCRLLzoTERTjdDqRk5MDm80Gu92eAOgAMMCbaDRq5E+QFY0Jgk0ILuHtKgOmHA6H4ZrEt3MXKn49UoSH0oVp9tZFR4SaRGcofgzuOEXP5DZEzknk8qTruuF2pOu6AduJ/SuD58gNyePxwOl0Gs5T0WjUcI+iPqN8yZ1NhNysVmtSHai96bwm96Yg4gj7wyjcWY1tjl6oPaA3KrZVoaTAhuUB1x5wancd8nJt8O6oB9w50KGjflM9BvWIYnkoD5EAoHsciGxtQG6JG5aN21B30mjkvf8tnDvqEtpWXFMwWxsWwR8ZeEX10p12OOJASa0fv/QpxkFbfSiKJ5571F4ERVqtVkQiEVitVkQdNsyx+VBitaNMsyFkAXJYf1Fb8rYmqI2cqMTyclc1PvZkcBOvkwycEt2pxG1i6FAZjNpR61S63vRoi3z2d0WjUfzyyy/Yvn07AKBr164YPHiwEVqyNdr3FlHtpEAgAKfTmbTd5XIZn5vpqquuSng/efJkjBo1ClOmTMFTTz2FG264wXTfe++9F3fccUcrS905lC3OU9kG1og/TLJB2bRoLUo5T2WXlPNU5s5rme48Rf2Wqd/Fme6sxZWtEKeSUqYoHo+jrq4uYVtpaWnHFEYiBU8pKSkpKSkpKSkpKXVWiQvzspBh/HNxX9n1Irq2TwBNqvQEbBCYRGHNwuGwseAvhr0C9lyvkoEG/L24HwdGCPrh4AuVU4QOCJSi8IG8fKIbFm9XEegS25vKZNYv4muZZGuiImTBQ8lxByTuYsTXZAjsILCKl5PXh/+/5fURXZf4a4J96Ni8HDK3KhEcE8vKt5lJbA9ZG1I6M3BKfKZ2ouuKBH+JYecowlU83hTCz+VyGaH7aC2Mu3/JAENqJwor53a7jT6KRCKw2+3GmCSIhyApPq4pfw7McMCHnzcOhwP2cBiOtdvh7VmG2j6V6L2lCoXlLizzO6HbLdAddnhq6pCba4e3Johgr64o/PfXiHkc2H38SGDDZgzqAazw2RCOx6HluuHb3Yi8Qhf09VVonDQW2gffwbmzLqGfRKBHBDB5aD4e9lE6RjQNG/p3QYE3DEvvPBTUx/DtwGKMXV+PkvCeMSA62lHfhC3AW84IynQbPM44loTrsSQUwAWubnBYEstFeXA3Kx7ik/pFBk+JcJQMlpKNZ7PzXpwDuQOV+OBtva+lwvY1jb1bb70VTz75JOrr6xM+KygowLRp03DHHXe0av2iVfDUMccck1Y6TdPw+eeft+YQLZbb7U5wgCIFg0Hj85bovPPOwx//+Ed89tlnKeGpv/zlL7j22muN9w0NDZ3qjt10lC2QTTYtaAJ7nIiyCabJtj7mov6m19mibKorV7ZCC9lQb5rHbDabcedGJilbnKcytX5c/K6fbJ2LlZT2Z/l8vqRzN5Xj8r6WOI8qeEpJSUlJSUlJSUlJqaMlcy8RnU64o4psf9l1FA4tcHiKgyI8LQDDvcnv98Pv9yMQCCQAB7JFfgIPuFuPLESZWCcZzCWCBgRNEcgViUQQCoUSYCr+EOvP6ysDq3ib8zYTP+P7mbWduK8IgpF4KDYCcLgDlAxIApAEmXFoStd1w5lKrBN3BZO5TBE8ReUhgEoM98e3ie0l28bHhOhExNtQto6cytmL3ot5iM5bVCcCzwAkgD4ulwvRaBR+v98YawRHUZ35dUrxXCL4Kjc319gnHA7D4XAY0CEHoaicImBDDmy6vic0nXj+AE1ucHVOCwJDe6Pvzp0oqMjBL14HYLPAUe+DPdoIT5ELvtoggj27oPSj+bDWeRGviQOf/vArQLUJB/bIwaptAUSjMUS6l6OhrhH5xW5oazfBP2oQbF8ugdUbMMaurO1lsJHYn9wNzGg7iwV91u7C6gO7IacuipxiO7p6Q/i2TwGO3NCIstieeYjPBxaLBb54DLO7WJAf11DgiiHWaMF8SyNOs5VAi8UR0xNvrBbLR+5V3D2P0nPXMrO5SwZJiX1pth/PN5XrlMzpTGnf6oYbbsDLL7+M++67DyeccAK6dOkCANixYwc++eQT3HLLLQiHw7j//vtbnHer4Kkvv/wy5efiZLsv1K1bN1RVVSVt37ZtGwCgoqKixXn27NkTNTU1KdM4nU6p49X+pGyBbLLNeYp/WWZ6XUnZ1sdc/MdhNsns7pRMV7Y4BorKJnjKarVmJDwlXnTJtPGb6fXjygYnOCWlTJZ4VxbQdGdWZ5HoPLVly5YOKomSkpKSkpKSkpKSktIemTmT8IV0cb2N0nF4STQ14G5DtE283sJD7QWDQXi9Xvh8PgSDQQNUIpiB8tE0zdjGXXK4M5UID9Cx+DPtz0PTxeNxBINBA5qKRCIIh8MG9EBpzByw+GvenlRu0V2GS1z74m5GHIDhaXibc1CJtxvtZ7FYYLfb4XK54HK5jBB5vNwcAtI0DXa73QCc6No9tReHxrjTEe8DyofC9FGoQA5PcahKNlZ4mczcp8Q2lEkEkfg2GVTXXF78mfqIgzAcVKNjUIhDcjBzOBxJ/cTLZPYZjQ0OVFG7i9uofHa73dhO7UvjOhwOG21LfcHHb8RuxbahvVBRtQ0FB5ZgWZ0VcbsGR00j3DWNsPUtgX+XF77Kbij75AfYa7zQfz1W7rZaWD//L3YfeyjsazfiwMo8rFlRj9j6bQj16QZfdT3yuuTDuXwbfOOHo/jz/0KLyZ2QxHOaxiPvD+5AJY4ZaziKvqu248cRvVHUEEJxvhVdvSF83TsPR25oRHF4z1xGj4Cm4+NyK3LjOsrdGkKNcax0hHBqwA2nFoTfEU9oX+6SRnnwc4bDoLxsvMw0zzQHUYlQqAhXcRCM5i0+h4kAVYfCU8p6CjNnzsQ//vEPnHDCCQnbe/fujcsuuwyVlZW44IIL9h08ZbaQV19fjx9++AHXX389BgwYgFdeeaU12bdKw4cPx5w5c9DQ0JBwx+z8+fONz1siXdexYcMGHHLIIW1ZzE6pbIFssmlBE8hORwgRnsomycjybFCmgSXpSvyxmC2ieot/uDNJ3HkqFApl3BjPdMg10+vHla3QrpJSpmj58uVJ2/Ly8jqgJHKJv+d1Xce3336LsWPHdlCJlJSUlJSUlJSUlJSyXeKiOwcmOAAjXg8S95MBVASPcFcono8IiYTDYQOaIqiD7yNzRRJDjImL/yIARtsIDqH3HCYghxiCqMLhsGnYQCoXf80hL34dVHSOMZOYH29T/p73gXh88UZlDk+RyxPvG3F/AkAICCHQSdM0A/6g/AkOomNSW4kACweoOGTCjyfrN56PbAyIbSPWRwZNmbW3mJ+sL2TH4vXkbU/1BpAA+VAfEMAmKxe1Abl68WNSKEDehiIUxvchKIqcvfg5yyErAEnjV9d12CMxdJ+/CpEGL9Y43LDaLChftBoWpxPWYBgN4QjClV3Q9ZOFsNV4oQvruDnbamD9+AfUHDYQ8e83omDjTsScdsR/Wo/GMYMR3liHvLXb4dlaC6tmgW6Vu7CZrftzUM+s/4FfQyaGohj+4xYsGd4DWmO4CaBqbAKomkL47ck7aAE+q3AZ4FTYG8cqpwXH11vQNR5H0BJMgubEvhLhJQ56imNNBorxfGRAlSy9CFfx/Xg5zNyulDpGjY2NKY2TunXrBp/P16q829S+oaCgAMcddxw+/fRTzJ07FzNmzGjL7FPqzDPPRCwWw3PPPWdsC4VCeOmllzB69GgjlN6mTZuwYsWKhH137dqVlN/TTz+NXbt24cQTT2zfgncCmU2UmaZsWtAEsnNRU7wrItP7mIv/KcimemcaWJKuaN6m19mibHKe4nHdM0niPJ1pyiaINxshbSWlTNI333yT8H7gwIHGd09nkGweveuuuzqgJEpKSkpKSkpKSkpKSk2SLaaTOwpBMrKweWYL8hxUIlCDjmMGTkWjUcNxyufzGbASB5F4eWVOKjwcluj2wo/HIYpYLIZQKIRAIACfzwev1wuv1wu/32+EPqOwZpQHd0CShZXjMARtJ2CJ2oOAGR6GzgyIoLxkz2K7ELREZebAjMvlgsfjQV5eHnJzc5GTkwOXywWHw5HQLhx04mXm4fboNQdwuGORCEVRXjk5OSgoKEBeXh5ycnKMKEgejwculwtOp9M0NKQ4brhjlQy+SpVHKshG5r4lpjUbyzwPsS3Ffnc4HHA6ncjJyUFOTo4BKoXDYYTDYYRCIeNBUCGNz8bGRlRXV2Pnzp2orq5GTU0N6uvrUV9fj4aGhoQxTDAizysSiRj95nA44HK5jHJ4PB44nU7Y7fYmx6lIxDhuqKYODXlORGIx5H71E6L+IHSvHxGLBl9FCUq/Ww5nvT8J4qKxkVvrQ9mi1fD17Q67wwFXTIcnDnRduAZ6cT4cXUqQZ7ElhCTMzc01xovH4zHgO1kIR95nMmiIrzd6glEc9tM21OQ4UdMQQ06uhi4NQXzbuwC7LE394I2G8WkPF9zRKMqcOoL1UaxyaDhyRwjFtX6jXerr61FXV4fa2lrU19fD6/UaYT5l6yDc1Y6Hu6QxIwuRmerGexkwxecCEfykthHDjprBoftSehs89mdNmDAB1113Haqrq5M+q66uxvXXX48JEya0Ku92uTpaXFyMSZMm4fnnn8ef//zn9jhEkkaPHo2zzjoLf/nLX7Bz507069cPf//737Fhwwa88MILRroLLrgAc+fOTRjQlZWVOOecczB06FC4XC58/fXXeO211zB8+HBcfvnl+6T8HalsCf+UrfAUvc4GiXdFZJPi8bgpdZ/JEun0bBnr3HkqW+oMZIfjlghPZVr/yu5eyyRlE8SbDTCjklImS3SemjRpUgeVRC4ZPPXRRx91QEmUlJSUlJSUlJSUlJQSJUJJ/D0P8yU6oZjBPhxCEdPJICYClSgMHKXjectcscTQeKnqIUIDBF3xhxlskG778fdmgA5vh1RAhJm7Urri/UBORwSfEOwlC8colpW3LwBpyC8ZTMTLQACVw+FIOCZ9JoaZk7WHGbSUKtReqvfNuVjRM/VFc+NAhNBkrldiuxCgRk5o9KB2NjvfCBIMh8PGPmJbiM5t0Wg0IaQcd5jia8xiGDjeJ44dtbBsrYauaYiTy1YojJK5P8HK8hPb2hiH3iC6fLcccV0Hfv3cGouj64JVsLKwgbQPF9VR1g+aphmhJc3GgzjOXYEwDvtpKxYN7Qa9IYSiPCvKGwL4vl8RDl1Xi6W9C5ETi6PcBYTqY1iXa8eYbX50CeiIItEMgJeLg12y9U0RWOXnnJnM4ErZ2DB7iMdLtW9HSNebHm2Rz/6qZ555BpMmTUK3bt0wdOhQdOnSBQCwY8cOLF26FIMHD8bs2bNblXe73Vqan5+PTZs2tVf2Us2cORO33HIL/vGPf6C2thbDhg3D7NmzMW7cuJT7TZkyBd9++y3efvttBINBVFZW4s9//jNuuukmeDyefVT6jhOftDJZ2QZPZQNkICqbFq1FxWKxrKw373P+ZzHTla3QQjweh81mw7x58xCJRDq6OO0i8btKOU/tX8omiJffLZdN3ztKSpmi+vr6hPeprK47QtkwjyopKSkpKSkpKSkp7Z+SuZGIn/EwUwRvkGOOGH6N4BwgEQIRYRVyxPH7/QiHwwASnYE0TTMAHQ7ryOAmEa4ieITXiVytKCRfIBAwwCkOVZmBU7SdO3GlAhbEujR3vUkEG2g/epY5cfF0HJjiDk05OTlwOBzIzc1NCBXH+0NWfu6MQ2mprQKBQMJYEWEZoOl6MB3X7XbD5XIZ44DKRu5XtJ8Il/H+5sYZ3HWKl5GPNV5umSOS2Xtxm9hvZv1I5eFjw8xhTNM0OJ1OAIDL5YLFYkEoFEoCmCjMHu3Pzzdql2AwmARucRc27hQWi8USHMTEduBtR+dyAvz4a/+T65vR9yw/DhWJD13XEWPjyignA/14O/P24uUV5xw6Jg/lydMAe8A/+swei+HgJZvx4/CeQGMQRflWxL0BfD+gBPnBMMqcTeDUhnwXRm5qRKkvioikP2kepDCf4XDYcO8iJy8+T5GzH50jYpvxesngKzPISQaNinMgH5sy6FSp49SzZ0/8+OOP+Pjjj/H9999j+/btAIBRo0Zh+vTpmDhxYquvLbYLPBUIBPD++++jvLy8PbI3lcvlwgMPPIAHHnjANM2XX36ZtO1vf/tbO5aq8ytbnKfEBc1MriuQnWG9sg2Q48p256lshacyfd4WRfX2+/0dXZR2U6aH7cv07+Jsgng5xJnJ9VRSylQ1NDQkvM/Pz++gksiVDeFPlZSUlJSUlJSUlJT2P4kL7XxRnV+r5Wm4o5SYl+hkkwBeCNf6CSLg159kzlKiWwsHQ2SAE4egeAhCgqe4y5QIXclcYcwcXJp7iGuVYn7UJiK0IwOAqH3EfiOJ0BSBKDabzQjRRyHP+LoLB+J4XiLsRscieIrDaeJYof14yELKk8omhjrk+3HASgRkUjk68TEgfsZDLYqQmcwtScw31bVCM1CL96VsvFJYQ4fDAV1vcpIS04rtytuDjzOSuKZE6aivxPrKQuDxPpdBeRxso9fcOUwE/cQ24ZCcLF/e5mJf8jKbjQfevrytxDB5uq7DHYhg2OJN+OmQXoh7Q7BWeOAKxhHKcaCuNoAdeS6M2FiPcm8UumQ+5FAUtT+FRgyFQgAAt9udAC7xkHx8f3GeEEMRmj3MxqfZfMXTy+bwjpCunKcANPX5SSedhJNOOqlN820VPDVz5kzp9mg0is2bN2PWrFlYs2YNrrvuur0qnNK+Ef9RkcmLXyJYk+nKZuepbOljrmxdxOZ9nqlORDJls/NUptc70+GpTHeeyiaIV7wopKSktH9JhKfy8vI6qCRyZePveSUlJSUlJSUlJSWl/UN8kZ3AJNoupuHbZSAVudWI+4sAUDweN1xaRLhKdJcSQ8WJ8BTfj2CpUChkvCdYiuApCnfGASp+DHpNdZDBZc2BU1QeqhdfsxTry+EU3j687USQh5dRdOUhYMTlcsFutyMvLw82my0BWOLlkdWbOxMBMIAp7jpEz2agktPpNB7kfkSfcccpUbweFPJPDDknwjQcypHBTNzhh+clpjVrc7F84pjm5wxfx0wFsFitVtjtdng8HmiaZtxgLY43flwe5pDOAw5M0TbRmYvS8HFNY010SBPrzYElcRxSe/N5g7eLOMap3iIQRq/5uSPCeDJXNRGcIlCPv6ayBgKBJIBN13V4glEc9PNW/PeQnnAGgF6IYmvEgqp8Nw7cWIuS2iBigsuZCEiK+RKoFo1G4fF4YLPZEI1GjbFCn/M5VBx/5FjF5zdxbIjH5eWTzVP0mfhsls++kv7roy3y2R+1adMm9OrVK+30VVVV6N69e9rpWwVPXXTRRdJJkH/Z/+///i/uvvvu1mSvtI8lfjllqrJpQRPYQ94CmV9XUjY5foiisH2Zfh6LynQQw0zZ4hgoKpvgqUz9rsqW+mX6OAWy1wFPSSlTpJynlJSUlJSUlJSUlJSUWiYOzshC4YnrMRwWEOEdmeMO7cPXWvk2mbOUCDOJ4ImsDgT28FB8wWAwyWWKAz8ioMVBEO6AxcsrK7P4uQw8kwE/vH3FbSI4I9abA0HUHwTLkNuUzWYzQoYRvMTDt1GeYpgz/pnNZksAY0SwTmw3EXqiUH0ejychpKPMJYgDTvSe6kEP7iQk3qArwlBmkvWTWT+kukZIZRAdoERITnaeUL/Rsd1uNwDA6XQiGAwaISz5eKC0srHIxxgfl7ysfK2NzgHxerZ4/ornLvUrHzO8jHyNh+cr9o3D4UhqTxEU4/tw8E2Ep2Rl523BH1RfEegK2yxYMbgbCgJhhPIc2BK2ImSzoqgxiLXd81Hii6AolAhOik5qNB74+KM5JhQKGecmlVcMTygCWLSNQlsS+CmOx1RQFL0WQ5GazVNKHaeRI0fi9NNPxyWXXIKRI0dK09TX1+ONN97Ao48+issuuwxXXnll2vm3Cp566aWXpNstFguKioowYsQIdO3atTVZK3WAsgWyyfQFW1HZAsVxZdOitah4PJ41Y5srW/uczu9sUzbBU5nqPCW7+JNJyvT6cYl3+CgpKe1f2rx5c8L7oqKiDiqJXAqeUlJSUlJSUlJSUlLqbJIBQbRdBk7J9gOS4SAxHaWhZxkQxUGTVNCUWTnIYSoUChnPtE10rBKf+XEIYhBDa4llTQUscPG2IXCoOdBHBsqI7SBeUybQgofKo1B93LlJBMZEaIWXgcpJrkWycohlprIR9EHOUzLXKLGNqIw8D3LLEkO18bJzYIbyM5NYh3RhK5lEUEh2zsj6jQNUQBNMFIvF4HA4jJBvYtnEcSCGfZPBizK4DUgMMQfsuW5vdjz6TOY+xdOmgih5m9H1EQ57iel4O5mF6BMhOhmUl8ppS9M0RG1WLDyoCzzRGMqdOuqr/agqykGBL4QuLh05DQEsGFCK0at3oySSyB/wNqN1HhEupbkpHA4jFApJIUYRNuXjiYBDcqriacQ+MHsWHfPEflPqeC1btgz33HMPjj/+eLhcLhx22GGoqKiAy+VCbW0tli1bhl9++QWHHnoo/vrXv2LSpEktyr9V8NSFF17Ymt2UOqn4l3omn/jZtKAJZA8Ux5VtfczFHUCySfRj7sEHH8QVV1yBAw44oINLtG+UrY4v2QhPiXHX93dlOvCYTaB2tvx+VFLKRC1dujRpW1lZWQeUxFxm8NR3332HMWPG7OPSKCkpKSkpKSkpKSkp7Vk8J9cm8aZH0UWHttFCvOjuIksvwh20jQNP5KrCXadSAUO0nVylQqGQ4djj8/kSwvbxfEVoSgYmybZz9yDeLrxeMnCHXpNzjt1uN9KLdeUgEO8fAAmf8W2Uho5vt9vhcrlMw9txcIP2pbCJ4vpbPB5HMBg0QBC6pkt52Wy2hH046OJ2u+FwOJCbmwun0wm32520tieDjng/85BzZmOPJANo+DFEtyIxBKCZZGNQ1veiW1pzcBOdNzQuyImpsLDQgMWCwSCi0WhC/9LYpbCTYshLDvzxbVarFU6nM8m9KxKJGMcSoR46t3i9aIzReOAhG/laJgcFxT7jn/FxZ7PZks5DDszxNhRDMAJIABP5OSKOaRrPVqsVUZsV3xvgFBBsiGJHgQdDN9ZiVfd8NAYiKCxywNYYxoIBJThiQwMKA3vmDu60JbvmQ+UkJzGqcywWM4BCsc4yBy6n02nM0+J8IZsvU81rlJbGLP+sI5XtYftKSkrw0EMP4Z577sH777+Pr7/+Ghs3bkQgEEBpaSmmTJmCE044AQcddFCr8m8VPDVz5kwMHz4cw4YNM02zdOlSLF68GBdccEGrCqa078QnrI4+4dtT4oJtJtcVyE6YJpsWrUVR2D4gu+pNfV5RUQGg+TsfMkXZeH4D2QVPLV++HADwwgsv4K677urIIrWpMh1yzXQ4jCvbIO17770XN954IwKBAMrLy7Fw4ULs2rUL48ePh8fj6ejiKSm1SFdddVXSttLS0g4oibkIIhZ1wQUXYNWqVVn3G0hJSUlJSUlJSUlJqXPIbKFdBKHEbaK7DSCHrUgi0MIX/mVOUyKwIkJFHOAgAItcpyhMn5inmL8ID8jSmNWF6i/eiCf7b2fmnMOPLcJQ9FrWnmKfcFcgs+Pw1zwsoVhnErUd72cOKYn1lQFKIqhE+VJ6GTgl62++TfYQ0/HrmGJaMfSbDHYz+38uu25ollaEppqrB4FJ5BhGjmmyvhed1MQxI0KQPCIEvRbBPPFcoXOIu7OJwJLowiSrLx9f4vVz2dwhy0vWd82NBbOxRQpbLfhhCAenIthU4MEh62rR1RdFl2A9vj6gEJovisJ8G7o3RvFt74ImgCoYS8rbDEAiWIvmqUgk0gRu/dq+vP9k55l4XsmOKx5fLEeq+UyWVqnj5Ha7ceaZZ+LMM89s03xbBU9ddNFFuP3221PCU++++y5uvfVWBU/tByJqlAjcTFW2gTWyL9dMl9jH2SQ6j7NtISnboEgSh4iypc5AdsFTpG3btnVQSdpHmQ4XZTocxsUveGWD7rvvPtx3331J24888kjcc889sFgsOPzww02BDyWlzqQ5c+YkbSssLNz3BUkhMyhxzZo12LBhA/r06bOPS6SkpKSkpKSkpKSklO3i0JLMLV50RCHxcFv0Hkh0BuL7i/ADpSGYgIMaogOT6M5CjjuRSARerxfhcBiBQMBwnuJuOfzYvM48P9GVSnR24dfCqJ60bkFh8vg6Bh07EokkQSO8jXl9eHk52MTLTPuIwAm5CZGzEN+Pwt6J7j8AjHb3+XwJ7U75iv1qJtENSAZr8b7gnxFYIpMIBTkcDjgcjgTXIcpLDPHG10zFscf7jmAz2Vih44vuamI9CGYSr5mKIe5kMCB3SaJ9HA4H3G63Eb7P7/cnrSHw/c3gQz6OLRYLQqEQnE4nHA4HcnJyDIcrAMb5R2EdY7EYvF6v8ZqOSW1GY14G+9BrCjPH2zQcDkPTNMPxio9XEfzj26issvVCXgf+XjbW6BGxWfHD0K5wR6MoczU5ThE41cUbgWaxIDccx4QNXnzZJxcWfxyFBVb09MbwTZ98HLMthKJg3Kiv2A48/KTo2kZ97vf7oes63G43bDYb7Ha7MU7ofKTy8nOcmAfZPCsCVGbvxYdsrtvXynbnqfZWu13d5/EklTq3aJKfPXt2RxelXZVt8BT/ssgWZStIA2Q3TANkz3lN4s5T2VJnIDvhqUxTpp+z2QTxZotzaXP6+uuvMX78eABNjjgvv/xyVv32UsoMnXHGGZ1u3Obk5Jh+1tDQsA9LoqSkpKSkpKSkpKSktEfcdYaLQx8iUGL24PlxeEG8WY0v2osPsWyULhaLGbAVOUzxBwEgFOqMgwUiXGIGSokAEV0jkpWfAyz8c75fKqcr3s4couEONDKJx+EOT0Di9S0CcHRdT3KCItBMbDdeN5ljklhfXmb+OV/b4evrvNz8vew/PAdrUrkPmYUpFMueqs/4OOd92JJrhGbpZQAPz1927vG+on7ln/O6yoA/8XU0GjXyFGExEcbi5ztBSfSeACbx3BTrLoOXSBxwE9tbtlbCy0fl4GUS+8DsepCmaQjbLPhhaFd4ojGUOXUE62LYXOTBoevr0MUXhcbaNS+q4+gNPnzZOxeaN46CXA09vTF80c2JY7YGURxOXLvl4SZ5/cT5juYyq9VqwFAET1F67vQlA8xSAVBi+6Ta3lmk602PtshHKVntBk+tWrUKRUVF7ZW9UhuKHGsyXdkG1mQjTCMCY9lSb2APBNnZFr7aW5nuYmOmbICIZJJZ22aaMn3e4n9eMlHZ9Fsj1Z/rbNXMmTMxbtw4TJ06taOLoqRkKpnT8N13390BJUmtVPBUKBTahyVRUlJSUlJSUlJSUlJqEi3mE0ADIAHIEF13ZBAVh5L4a8pLdCQS04qOU6JTCrk4kcNUOByG3+9HJBJBIBAwYCoOA4kggZi/6E4FIME9iJcbgOF8Q+85LGIGE3GAiiAmMUyXCMDw/UWJ+RNYQ25M5ATEHX8CgUACrGS32w0XGwoLFwqFDJiDu37JYDGeh91uTxoP5EpEx+D1NwOexNeUH38WoSjxPXeRMgOsqN1EuIv3F08jG+fNSXRN43lTnuS2xEPviecNpYvH47Db7ca4Fvufu6aJY152LkWj0QRnM94WZgBgOBw29nc4HEl9S+HoxPKn6gOCsGKxWELfyUAofk6aObjJoC3xNQDELBpWVxYhLxBCUY4F/roIthbn4eA1u9EtBGgM6KPyF8Q1HLvZj897eqB7YyjM1VDZGMOSEgfG7IogV9/DItB5SOcAjQleHuqDYDAIXdcRCAQAAC6XK2Ecydz7qO1F1y/Z/CuDo8y2K2W+0oanLr744oT3//73v7Fhw4akdLFYDJs2bcJXX32Fk08+ea8LqNT+Iugi00UTXKa6XYjiP9oyva6kbHTbImULBCkq011szJStji/0ByGTlS3OU5kKF2XTnNQWDnjnnntuG5eq43XJJZfg4osvzsrfIkr7h3bv3p20raysrANKklput9v0MwVPKSkpKSkpKSkpKSl1lPiiuwjMmDmW8Gsnshu/uUONDIohaITnIV4bJiiEwvEFAgHDcSoUCiEajSa5J5GDkggRiIAK/0x0IpKFBpOBRLxO3FmJ8rHZbAnAi5iPeP2JQzYEtogQERd3JiIog+omc2Ai4ILDRgAMyCMSiSSVhY8D6jd6pjJSncVwg7xduMuUWHdZGD5xTYw7JYmwDwddRMnAHVn+ZtcBZSH9+JjlY1gErTj4xZ2IZH0ulplC1VHdCU7iwJWu6wYAZwZ48fKKEJIIiPHPqG/5GCBQSgbfyOYAPp+IcJzoCkdlEecMAr54X5iBd3ze4H1hHFfTsLpPKdzhKByFToRrI9ha2gROlTeGof/q/CSbs/KiGo7Z5MPnvXJgbYwhL09D4a4Y5pfaMW5XFHZoRohMp9NpnF/8+GJbElDo9/uhaZpxw5143onjSAxfmAqISgXT8TSdQSpsX/sqbXjq5ZdfNl5rmoYlS5ZgyZIl0rSapmH06NF4+OGH97Z8SvtA8XgcDoejo4vR7sqkBc1AIIBoNIq8vDzTNPxHXyZo/fr16NatWwJRLIr/AKX32aJsdBoDstd5Shzr2SIFT+3/4n9g+PtMkXghbPPmzR1ZnHYVvzOstf34wQcftGWROo3cbjfeffddTJw4saOLoqSUpOrq6oT3mqZ1SsfoVP9hFDylpKSktP9p3bp12Lx5MwoLC3HfffchHA7jhhtuwMiRIzu6aEpKSkpKSmlLdC8R1yJa6lQiAzFkoIrMoUoGJEWjUYRCIYRCIcN1ikNTBI9weIq78fBjydx9+LG5kxOVAUgEPcTrZPS5LKSabC1L9r9QbANZH8hei/CUGIpQvNZOZSTnIw6LicYFspucZUAKd3qifHlaMrrgN8rzPhahJrM24hLBKRkMxfNMlbfZscSyyZ7F9GIb0XsRhhNDWsrKTu1JfWCxWIxxz8c3B6lk49oMdJSdk7JzUUxHx5IBabI2kZ0vQKL7HB+L9Jo7UXE3Lxr35HrGzzURXONtTml7VtXDE46hOpSDnWV5GL6qGmW+SNJYF8vcBFABx2z0YkkXN4qqYzigLoquvjgsMR36r2UgRzazm3P52CcoLBgMGi5czfUL1Um2niQ7V2X90WnXLhQ91a5KG55av349gKYB07dvX1x99dW46qqrktJZrVYUFRWltNlX6lzKhsVoILPgKY/HAyB1HTINpunbty+A9OqcKcBYS6TC9mXOWJ87dy5KS0sxZMgQ0zRt4fiyPyobwhVmOjyV6cAj1Y8W9q+44gpcfvnlHVmkdpN4V5XSHoVCIVx44YXYvHmzceebklJnkQhPFRUVddpxWlhYiLq6uqTtCp5SUlJS6vwKhUJ45plnUFtbC7/fj4ceeighZAjQBNLfcccdyMnJweTJk/H555+juLgYEydOzIrrlEpKSkpK+59E2IBDH5qmSUOByRb3xc95KC4uAo3C4bARgl10pAmHw4hEImhsbDRC9BE4QvAIPfMQfbysHJbi7kAcGCLYQebSRHAD5cXLL9ZbhMA4+EVwC4lgDtGxiPbl7crbS+wf6ht6LYZfo3T8OLwO0Wg0AX4haExsAwotJjp36bqOUCgEi8UCp9MJu90Ou91utAflz+EYEfaStbsI5PC0vA25SxXvDzOASpYnTyNKViZxLPPjieNAzEdWT2oTyofeE3xDMJrNZkMsFoPdbkcwGITf70dDQ4MRylIcB7JxKfY9P/f4mgw/l8Q242NSdBTj4fTEcHO0D8+H/y7m5SUIkF6LYCK5NXF4yul0GqCZ2XFJrkAYYauGLcU5GLi2GnnhOCCsr5tdF9Y0DYW6BWN3RbCg3IFujjgKI3sgRnKc4nUS3eyonagNgSZjEYvFAq/XC5fLBafTmQAvisATn7dEcE42H4vq1ACVkqF//OMfeOaZZ7B+/Xp89913qKysxCOPPII+ffrgtNNOa3F+aa9cVVZWorKyEr1798Ztt92G008/3djGHz169FDg1H6mbAnbl+kLtqJEojkbJLvbI1vE70bIpnpTXTPpwuqECRNw0EEHpUyTDRCRTNkA+2YbPJVp81U2/dbItvChv/zyC2bOnImFCxciHo9j9+7d+OKLL9C1a1dp+u3bt2PmzJn7uJRKSs1r2bJlCe9LS0s7qCTN68knn5RuDwaD+7gkSkpKSkrpKhaLoba2Fpdccgmuvvpq3HHHHXjggQeSwCmgaT6//vrrMW3aNHTr1g3/+7//i0mTJuG2227Lit+XSkpKSkr7r2SL7mYL8nwbveYyc9Phx+LwALAHJiCwIxQKIRgMIhgMGs5TkUgkKUSf6CZl9n1LwA2BDjabzXCJodcc7OHggllbyY7HwS0qH08f7FKExv7dU7Y7B1jER8TjROPIAxEXYDFZHc3cmWTAl8ViMQAoh8ORsL+s32KxmNEf1I+yMG8cahIhr1TglNlYkrW32CcyNbem2BxMJZanLSTCXPSQjVG73Q6n0wmHw2HAVQCSxkCqc4+PadGhTQbHieWUwX28vByYNNvHDBjkY587avFQnOQ0x0FK/ohEIglj0qxOtpiOg5ZtQ05wT0hNWf/LACRN0+DSNRyxI4KiqDyMpFhX2TnI09G5REAo30cc37Lr9KnAKREqlJ0j4mcd9Z9Fb8NHS/Xkk0+id+/ecLlcGD16NBYsWJAy/SOPPIKBAwfC7XajZ8+euOaaaxKu691+++1J/X3ggQemXZ6nn34a1157LSZNmoS6ujpjXBQWFuKRRx5pRQ1b4DzFddttt7XqYEqdUxy6yGSJMFGmX4jJJOcpDhMEg0HT0H2i89T+Xu+WKFtdt/ifDSB7+jxbnaeyCZ7K1L7lFygyUdkET9EdQdmiHj16YPDgwcb74uJiHH300diyZQsWLFiACRMmGHeikd5++21cfPHF+7qoSkop9c477yS8P+ywwzqoJM3rkEMOkW5XzlP7l5q7I1VJSSlztHTpUkyePBmrV6/eq3zuuecePPbYYxg6dChmzZqFysrKNiqhkpKSkpLS3kt0fqF1J9FlSXS4AfYYGZADCoco+O9mek0gBIEOBA8Eg0EEAgH4fD54vV6EQiH4/X7DZYo7SNE+MncpDqPwMHEycIHqRs+iw5QIQPBnMQ3fn+rFXW90XUdcAxw1jWgY0B0xADnLNhh1SQVp0WfRfA/8Rw2D+5f1Tc5OVgsQg+G643K5jONR+9Bn9Extwm8gJBcf3h7BYNBYZ6WxQGXl17IJ1rLZbIYDEIXpE52PeLg1kgycEv9n0XsO1ohACx9nYhg3sd9SQT1inryfxb6RpeUh+niZzW4uprLwEH3U7nxM0zZdb3JEc7vdxmtyX6NyyMI+0nlB5yadU1RWgrQoZCUvH3dN4m3Pxw7vA3JsE93V+DwgOxcpjB25lnEIS3Sz4vsFg0GpmxjVy2q1wuVyJYw/B5unqH4i+CRGxuFzmgWAhYX5pLyoz6kMfB7gUBwdk+obDAZRW1sLTWty0uLAkzh2OGTHQ3VS2UX4UjZ2zdZoOnLtRtebHm2RT0v0+uuv49prr8UzzzyD0aNH45FHHsEJJ5yAlStXory8PCn9rFmzcMMNN+DFF1/E2LFjsWrVKlx00UXQNA0PPfSQkW7IkCH47LPPjPctcch//PHH8be//Q2nn3467rvvPmP7iBEjcN1117WsgnT8dBJt2rQJANC9e3dYrVbjfTrq1atXqwqmtO+UTc5TmQDW7Ny5M610/Afd/i6+GPnYY4/hz3/+szRdpgJE6YxZfh6L6dauXYuLLroIn3zyCdxud/sVtANE8FRnDTfTXuJ/xvbXuaw1SgX7Ll26FB6PBwcccMA+LlXbioeYpT9BmaT9PYTun/70J0yZMgXDhw+Xfp4pcNhnn32GO+64A1999ZVpmmxznjKT1WrFmDFjcM011+D+++9P+OyDDz7A3LlzMW7cuIz7baK0/2rlypUJ708//fSOKUgastvt0u0Knuqc2rBhAz7//HMceeSR0HUdP//8M4qKivCXv/wF69atw7nnnguXy4XGxkb83//9H7xeL+x2Ow455JCUcHw8Hsc777yDH3/8ESNHjsSiRYvQ0NCAK6+8Er179953FVRSUmpWN998816DU6TGxkZ8++23+MMf/oB33323TfJUUlJSUlLaW8mcTcT/+2ZuJsAeQIA7sMjgJBKHSUQXo2AwCJ/PB7/fb7jJ8PQcxuDhvPixCeBKBQjQ/uJrM4BGdMzh9RXhKf6a5xvxOFE76kBUbN+Gvp4wVhzYE8GyfBR8/t+UcA49R8oL4T31CJStWofyw7tjnceJUI4bBT+tb9YViMM5/EGgkxhyTSw/5UX58T4mIIWHPwSSXbBkTlZUVhGc4g+zkIp8P7N9mwOzxNdinmZAm1j2VMfmEsvE68jHLr82SduojwhwcjqdiMfjCIVC0DQt6eZHnr9YZurbaDRq9A2Vg8Liiec4AXFimEF+Mzy9t9lsCWOfQvzRuBD7VWxbsR/45yKExecsGTxF+0QikYTQgXxcUrlkISL5cUW4VNbO4piT5SMDwDgIJ3O35WWgesnaT5w3uJobl9l6nfehhx7CpZdeit/97ncAgGeeeQbvv/8+XnzxRdxwww1J6b/99lscccQROO+88wAAvXv3xrnnnov58+cnpLPZbKbRHZrT+vXrpTdfOp1O+Hy+VuWZ1mpz7969oWkali9fjgEDBhjvmxNRk0qdW5niPLV27Vr06dPHdMEyU+Cp2tratNJxYrut6nrVVVfh6KOP3ueLLNzC784770wJTzX3g21/k9/vTysdh2lEPfzww/j666/x888/Y+TIkW1dxA4V/Zjc389rUlVVVVrp4vG46YLi/ir6vZAKhDODfXVdx7Bhw4zX+7MyHZ4S4aL9qb9qa2vx4IMP4sEHHzQtd6Y4Tx1//PEAUocI5X9y96d+bC/dfffdcDqduPPOOxO2T5gwAY899hj+8Ic/tCrfHTt2YMuWLRg2bBj+9a9/YePGjfjpp5/w0Ucfoby8HDNmzMBJJ53UFlVQygI1NDRgy5YtCdv69evXQaVpXma/dSKRyD4uiVJz+uyzz4zvDjM98cQTxutnn3026fPBgwfj73//O7p164aKigpjrps7dy4+/PDDpPQvvfQSVq1ahbKysr2vgJKSUpuoPSCn9957D/fddx/Gjx+PMWPGGNt1XYff70dOTk6bH1NJSUlJSSmVRJcS0bmHL9wDSFi8p+ssHJzgcIMIbxC0QZAAhejz+XxoaGhATU0NgsGgATvIwCTuamMG9dCxRPiKOygBQMRphyUShTWeHKaMgBEzaMxisQCahqDDCpsvaLRlzGZFDBbAH9xz7EAAtpUbsaF/D1QGA+gb343VXctRO2E4cj5JDBGlA4jne2BtaFpHiZQXwnfqkSjeWoWuA4uxZmU9It1Kkf/VT6Bic5cavr7gdDqT1koJGuEuUOT+Rf1CbkYcWOHOOdzFyO12w263J/QBdzLicBUfc7wtRZCIXvNwihzUEcElEcrhZTELI8fbTXxtlkaE8jiMw8ep6AjEYR6r1Zpw3lCfUPl4SEsOLHHYTdM0OBwO6LqOUCiEhoaGpPbkEKEMOuTtQ8eUOShReWkfXnd+DAr9SO3EgSWxn2WQmChZCE3R1UnWH7y9ecg/PmZ5yE5yTHM6nQlOVNQGHADj4BivB6U1G2tUbloLEuEnXdcTQhByGJGOKzpQyRzWKC/Z2OV9II6VzqDWhtyT5ZOuwuEwFi1ahL/85S/GNovFguOOOw7fffeddJ+xY8filVdewYIFCzBq1CisW7cOH3zwAc4///yEdKtXr0ZFRQVcLhfGjBmDe++9N21zpj59+mDJkiVJbsUfffQRBg0a1IIa7lFa8NQFF1wATdNQUFCQ8F6p8ysnJwd+vz/lolYmOE+df/75eOWVV9CtWzds3bpVmiZTwJrq6mrjtRlVDLSPC9Njjz2Gxx57bJ+3Hb+7vEePHqbpMtF5Kt0LganCNL766qsAgAcffBCvv/562xawg0U/UjOlzxsbG43XDQ0NyM/Pl6bLRMcXl8tl3D1l9p1kFraP/zirrq5GaWlpu5WzvSU6M+1vCgQC8Hq9pguZ+zNclM65tr/3n6gvvvgCxx13nPSzVNBuNspms+GOO+7A3LlzMXfu3ITPrrzySvzyyy8YN24czj777LTdEv/973/jvPPOQyAQkH6+e/dunHrqqVi4cKGpG5qSEtfnn3+e8N5qtXZqx0azc0V2Z6FSx+inn37Ck08+ieeee26v81q2bFmLbvSoq6vDSy+9ZNxYs2DBAni9Xqxfvx4PPvggrFYrTjzxRKxatQrFxcW455570LVr16TvaF3XsX37dnTt2lV9pykp7YXac26mC/SDBw+GzWbDsGHD8N///hcrVqzA5MmT8c9//jNjfn8rKSkpKe0fEl1L+NqTeG2IPuMACEEyHAaQObFwoInCVfn9foRCIQO24A8R3qLrx/y/FQcAqFwiQMAdZQj00HUdtWV5aCxwo9cvWxIAKrFNZDfb6QC2HlgBRGMo+2WTUS9vWT4a+3VD/twfof0KIcXjcdhXbYatMAfrhvRF391b0b9xJ1Z3L4dv4kjkfPKDkWdweD/Ei/Lh+nwhYl2K4P/NUSjZWoWK7h6s3B5HuE8P5L76MSywQLPbkxy/OJgiwhwcRKJ2CoVCiEajCAQCxrVsHiKR3zjKXYoImLLb7caDYCdyR/J4PAZExeEn3qYiMCV7L4JDsrrJHiLsI4I8XLL/TjKXIJlkZSbQjI9J3g8kDkoR8MNBHXpP7eB0OhPCZdrtdsO9LRQKSUMEiueyGK6Oj2/e95rWFJqPxrDYhjyUHQfWZNAjHZcf0wx8EqE2AvcoJKCYL+XN95H1Me1Lcw3BglarFeFw2BTYE4FBXs90rp3LIDDenjxPPlZ4ufn+fB+eRlQqJyranilrcaIaGhoS3judTjidzoRt1dXViMVi6NKlS8L2Ll26YMWKFdJ8zzvvPFRXVxsO5dFoFFdccQVuvPFGI83o0aPx8ssvY+DAgdi2bRvuuOMOHHXUUfj555+Rl5fXbNmvvfZa/N///R+CwSB0XceCBQvwz3/+E/feey+ef/75dJsgQWlduX/55ZdTvlfqvErHtSYTnKdeeeUVAMC2bdtM09CPPNkPt/1Ju3fvNl7HYjHTRQX+g31/rSuJw1OpFgepj/n7vdX27dtRVVWFww47bK/zak+JMYW56urqAABvvPHGfgVP8R+pqSBBPn/J+jwUCiV90XdWLVq0yHj97LPP4k9/+pM0nTjW93fx/qU7MGQyg6c4WFBWVmbY6HZGrVixAmVlZSgpKZF+Tn8gZG4bgUAAkUgEixYtwjHHHJPy3OgoeTweAObzrwhP7e/fT6IyDZ6aO3duSngq0yDOttC1116bBE8BTXP6s88+iylTpmDcuHEYMmQIpk+fbtycsnHjRixduhQHHnggZs+ejZ9++imt/1yxWAz33HMP3njjjU43Hyh1PomhlIYOHWqMwc4oM+cp2cVNpfbVokWL8NZbb2HkyJHo168fvvjiC8RiMfzpT3/q0O+A66+/HnPnzsX69euxfPnypM9/+eUX4/Xf//53AMCIESPw+uuvIycnB/X19Zg8eTJ+/vlnDB8+HJ9//jkaGhpQWVmp5lSlrJau65g/fz6KioowcODAlGkjkQhuvvlm/O1vf2v3ci1btgxAE7hJevPNN/Hmm2+iZ8+euPbaa3H11Ve3ezmUlJSUlJREdxoORsgeossKgTPi+o0IAfBQfbFYDIFAAIFAIMFtSgSnZDBUKjchOg6llcFTEZcDQZcNub4gQm4bVh3aGwcs3gBbJBmell0nigPYcFhf2EMRFOyohS/XiXDMhqjdii7hBhQF3Fh7/GHI/eK/sNZ5jfK4v18G3WbDuoG9kgAq9yc/wH/sobA5rBheuwVL+3RF4ITDUbplSxM4tSOOcEkhcl//DJZwFJrTKQWGeL1FGIk7QEUiEUSjUfh8PiNsogivUV4ikEXwlM1mg8PhSHDyEeEp2sb7xqycMscoGbQiAmNiP5u1hwzQEfuWbzcDfOi1WehIKjPVm0MxHDjiQBW5UpFLEuXNj8H7j6Amm82GSCSCQCBghLrk0Jd4zVp0T+LtBSAhPCZ31eI3iPN2pHSUN583eIhOvp4tgkGyPpLBZhw8EvtM3F/mdMYfVJ9IJJIwxjgQ6HA4EiA4MQQlh6d4v8rGFd9O8yAdD0BCHcX0su2ydmwOoJKlMdu+r6XrTY+2yAcAevbsmbD9tttuw+23377X+X/55ZeYPn06nnrqKYwePRpr1qzBVVddhbvuugu33HILACREVBg2bBhGjx6NyspKvPHGG5g6dWqzx7jkkkvgdrtx8803w+/347zzzkNFRQUeffRR/Pa3v21VudO77Vlpv1ckEjG9+Gy2GM0VjUbTvku+s6o9wvatWLECv//97zFnzpy9zitdcecpsiSUSYTF9lY8dN6+FoenXn/9dbz22mvSdO3Rx926dWuzvNpTHCLq7GVtqfLz8xMcmbhEaEys+6BBg7BixQqsW7cOffr0afey7q245WWqkG18rJv1t6ZpGDhwoCn1vT/KDPZ96qmnEt7ffPPNuPfee9PKMxQKYfPmzfskbNF///tfA8RsDi6S1ZPAJJLT6UyK0d6R4nebixd7+HZg/3SeIhA1ldK9w6olWrZsGQYNGtQhi7jPPvss7rrrLulnqSDO+vp6FBYWYvPmzSkdIzNRp5xyCoYNG5awqCdq3rx5mDdvHp5++mnYbLa9DtH51ltvwWKx4KabbsLdd9+9V3kpZbbEG00o5G1nVar/r0r7Rlu2bEFtbS1GjBjR0UUx1QcffNCi9AsXLpQ6ri1ZssSA24866ii89957qK+vT9sqXklpf9fq1atx++23Q9M0rFmzBvPnzwcAPProo5g2bZrp774HHngAf/3rX/dlUaXavHkzrrnmGowdOxajRo3q6OIoKSkpKWWgOJzE3fNpUZ4gDjGMF4lgArvdDpfLBavVasASIpRBx4pGo0aYPgrVFwwGDeiDO4LTNSlaLxJdh6hMopuLCI9QnhzssDqs2HJACYprvYgVe6DFgOVjB2DQt6tgjyaGBuNlicViiMRiWH/0QdAtGuyIoi7HDl/vMnh+XAdf/wqUBmvwm2NK8I8fwthxxjgUvvMVLHV71gJyv/0ZPosF6wb0wAHV29DfuxMre5QjcvEkOBDHb4t2Y0tDDwRG9ET+jl3o3iMHK7fHESkpRMGbX8IaigI2G2y/PqjuVFcCPTRNM+APHl6N2ohgG7/fbzgXia4+IiRD1/Cpz+12uxEakI4lwk4yZywxf9E1iPqMuwCZuf/QPmYPUeJvQLN0/HP+LF4rpTah8SUL1Uf1pvR8fIlrnnQekbMUDwFID0pDjkkOhwNerxcWi8VwcqPrDDKgjENJYpuKIA0HoKj9RAiKAzjUvlRfj8eT4DYnXmOn/Ckf2Rowh8Z4WvF4/Jw1Gwe8PSgfXgZN0xAKhYxzyWq1Gg5qNOYJFpQBX6LLmDgOeAg/OkdFCErsM9EJMNUaGleqsS1Cgc2dB/ubNm/enBAFR2ZGUVpaCqvVih07diRs37FjB7p27SrN95ZbbsH555+PSy65BEDTTZw+nw+XXXYZbrrpJul/zMLCQgwYMABr1qxJu/xTpkzBlClT4Pf74fV6UV5enva+Mu1/K1dKaau+vt547fV6TdPxcF8yPfjgg7Db7Ql3bXYmbd++Pa10ok2iOFmWlpYaE326GjRoEL788st92jbceSrVonlbO09VVVXtdR6tVbp90p5h+2R3Mu9rperHTAtZyIGfVPNXKvjzs88+M/K5/PLL27aA7aRzzz3XeG0GjAHNz9uklStXtkm5OovMQvqJ2+67776086ysrET//v3T/i7ZGz3++OPNpqE/BCIoJVMkEtnrMrWlHn74YeO1GQwiwmF8XmtsbOzUfzzS+R5oa+epN954A0OGDDFA3n2tmpoa089SQZy/+93vACTftZINslgseOutt9L+k7a34BTXPffcgzfffLPN8lPKPIk23EVFRR1UkvSk4KmO0ebNm1FfX49zzjkHPXv27PSQXXvoq6++QmFhISorK3H22WejsbEx4SYmJaVMUSQSwZNPPonp06dj/PjxmDVrFl599VUDnAKAq666ClarFcOGDcO6detQU1OD+vp6/Pa3v0VJSQluuummDqxBskaPHo0//vGPWLNmDdatW4ctW7Z0dJGUlJSUlDJIfEGfFv1lIfNE8IaDCwQY0CK/mIYfiyCdYDCIQCBghOsjQETmhsNdfETnFxHOkh2XuwLRIzccw8C1u7GtvAAWXwQeK+AMRbB87ABE7NYkmIHyNsApTUNuIIBIvQ/1vbvCs2A57Ju2I+/LJVhV0BX/XBDC+SPt6FJXg/ozjkK8MC+hPvnf/QLX6i1YV1qBSERHjg2w5bpx9hANaxqt+NTVC3k7qtGnCE2h+koKUPDWXNgCoSSHJt6P3B2HP0T3J+qLaDRqPGTwGeXJj0PHJ3iL94kMluJ5pHKY4seR9Rnfli4slc52EcBKlUZMl045ZONZ5q7F21UMh0jADkE7DocDDocDbrcbOTk5yM3NRU5ODjwejwGxUX+JTk2y8oltztPIQjnK6iv2F5XV5XIZIdO4Oxl/iP0jc0KSHYPDX2auZeK5zOvMt3PAi0Igio9IJGI4tnGHLl5e2Vwkfi4LTyqWUZRZXulIHLM8T9m5kQnKz89PeMjgKYfDgcMOOwyff/65sS0ej+Pzzz/HmDFjpPn6/f6ktbvmTEC8Xi/Wrl2b9nrI+vXrDad9j8djXJNfvXo1NmzYkFYeotKyErr44otblbmmaXjhhRdata/S3quwsNB4PXv2bJx//vnSdKngA37iH3TQQQA6n6tNulAL1dMMKCIoyeVytbiO77//PoYMGdKifVorPgmlWjhvzpkmGo3i6quvxiOPPJKWqxiHp3bv3m0acqo9lE74SSAZKGnLsfrpp59i0KBBbZZfujruuOPw2WefAWjqs3Qc5DrbOdoapevmluq8Pv74443Xn376adsWsJ3E79h96623MH36dGm65s7vli4q1tfX4+abb8aMGTPgcDhaVuh9KOrvAw44AGvXrjW2pztHyESk/IwZM/DAAw/sdRlT6auvvmo2Df05mzx5Mh599FGcfvrp7VqmthQPMzlv3jwce+yxSWlSOU8tXLjQeD1nzhwcffTR7VDK1isdGEYMSyjTu+++i9NOOy2tsIuXXXYZACTd0bGvlGou4d+54jz0zjvvSNNli/r3748dO3bgjDPOwL///e82z//iiy/Giy++KP3s8ccfx1lnndXmx1TKDPGbawB06pB9gIKn2lOBQACvvPIKampqUFlZiRkzZkDTNHi93na5acThcLSJW+abb76JqVOnJoGA7SkKCaZpGq6//nrcfPPNsFqtcLlcCenS+Q2gpNRR0nUdc+bMwffff49TTjkFHo8HmzZtwvPPP49//vOfaeWxdOlSqWtbZ9RDDz2Ehx56yHg/bdq0tG5kUVJSUlJSSkfiYr8IgPDwYSJ4QVAEfS66V3G3mEgkAp/Ph7q6OtTU1MDn8yEYDCaACJqmGU415FIjA7f4tXMRKJBdV6cycaAhJxxD/421+GVAObru9iLHY4MWiWHFmAEY9P1q6L6AAVPEYjFE9BiqjjsUOoBcvx+RxgAa+3ZHwffL4KxugGazwRqLo+Drn7Dt5DGYtWAXzh/txD9+qMHOM45C6ezvYK33GWUr+H456qBh3UF94NZiuKSfD4sa3Vjg6gFPTS36FOlYvj2GaHEh8t+cA80XhC5xuqH/k5FIxNguAjBiW8r6n39G6xMOh8MUXiLnHEpL70VIQ9P2hJvjzkbi/w0RjpHBX2bAVSoYireJmcR9ZFCJGbBCbcDbnefJ0zUHXfH60jlBz9SHInATi8UMgMrtdqO2thZerxe1tbUIh8NGOEbqV37tU3ST4u1EkFAgEDDag7vDUR/xfHj7UFuIgBOfa+g4VA+aQygfcr+jssvOc9m1XF5ecbyISgUiUTkJ9KTISTabDW63G3a7HW63O8Htja9vcTiVykPi55EY3pCPK6qL6FyVLnDFxcef6CTY0dJ/fbRFPi3RtddeiwsvvBAjRozAqFGj8Mgjj8Dn8xk3Ul9wwQXo3r27ERXm1FNPxUMPPYRDDjnECNt3yy234NRTTzXmgeuuuw6nnnoqKisrsXXrVtx2222wWq0JRhOpdNFFF+Hiiy9G//79E7bPnz8fzz//PL788ssW1jJNeOrll19uccaAgqc6kzZu3Gj6mZmTx/r161t9vHnz5uGII45oM+eFVBIBoqqqKnTv3j0pXXuEdCPxu/LaW3ySTnUBmt95IGrLli2GG0QwGMTzzz/f7HH/85//GK/nz5+PSZMmtaTYe6V072Rsro9p++OPP45p06a1qAyPPvoorrzyyhbt0xYicApoavcjjzxSmi7TnKfMwkSJSifs6P6qa6+91vSzVDCC1+tFIBAw3qcK20r661//iieeeAInnXTSPj23zST7wwUAtbW10DQNJ554YgKIROFa9mZh7sEHH2x3eCodpyia46nPUo3vysrKtilYO+idd96RwlPiH30+T69atcp4fdlllxl3DDQns7tg2lrphP9obuH0iy++wGmnnQYgMYyjmTjoYHZedJTS/d555ZVXcMEFFyRt5/NUpuq5557D+vXr8eOPP+5VPr169cK5556L8vJynH322ejRowdOOOEEnHPOOUlpv/rqK1xxxRV46qmn1AK+UpJE4KSzw1NmN3h0totW+6MmTJiABQsWtGmemqbhqaeeQp8+fTBw4EA4HA4sWrQII0aMQLdu3YzvjY0bN2LZsmXo168fnn32WVRVVaG4uBizZ8/Gpk2bkvI9+OCDcfvtt+O0006DpmlYuXIlbr755jYtezrSdR333Xcf7rvvPng8Hlx88cXYsmULCgsLEYlE8Nprr+GAAw7AW2+9haFDh+7z8ikpkVauXIk33ngDw4cPx88//4wPP/wQjY2NWLJkCYD0r6+0h6xWK1asWIE1a9bgpJNO2mfHfeKJJzB58mRMmDBhnx1TSUlJSSnz1RxUIy7ic+cX7loFJIa8o7zIzYXCxVGYOMqLA1fNuWCZldGsHqLq8l3YVuJBhR7GwMZGLCvPR3GNF267hngojF9GH4DeX/wELRw2wKltE0cgbmlynAqHo/AO7IWu6zfDXZGL6rwBsIQiiJQX4uDADpRo2/F+lx54YWkdpo6049WFtdh+yhiUvPctbA1NN83GdB3xfA/s8Rj+Z5gFS7cBC+qt6F0Qx5iB+Xjz20bEunqQ98rH0PwhAwrg8BEHRLhDELUpD6Mo60vROYjEgRf+uczxSnTZof4X4SUus+OmcjNKBUvJwClZfhyM4uWSgU6yMovXMs3WZM0AKrOycYCM+o7alc4H2iYCOpqmGeETPR6PARxRiExgj7OcWG8ZmEiisUQO8/y4HGzjbcP3F/uD10l2XNn5S2n4DWc8rWg8IYOrxDKI9ZeNA3HM8FB7JJq/6DwDYIBVMmBPhMx4+5idR/ycE9tINhfK2ohLHDvifh2pjoKnzjnnHOzatQu33nortm/fjuHDh+Ojjz5Cly5dAACbNm1K6Mebb74Zmqbh5ptvRlVVFcrKynDqqafinnvuMdJs2bIF5557Lnbv3o2ysjIceeSR+P7771FWVpZWmRYvXowjjjgiafvhhx/eYg6AlBY8tTcQjVLnkFm8SQAG/Sqqb9++rTrW6tWrMX78eNx///3485//3Ko8WqK8vLyE97/88osUnkrlUDN37tyEtOksUNbW1hqv33vvvRaXu7W6//77jdfNhe0zc4TgYXReeOGFtOApbtP3yCOP7FPAggNEQNMiouzCuuwHjUx/+MMfWjxpdoTVu9hvqe6wTtXfXNOmTcMTTzzRNgVsR6XrJNSco9z+plNOOQWzZ89uNp2Z81Q0Gk2aE99///1m3YvI4eqSSy5BVVXVPgU0du3albQtEolIHbBCoRBuvfVW0/P3q6++wujRo9u8jG0hXdel85aoVGHtRE2cOLHZ/EKhEFwuFy6//HI888wzaZZ27/Xzzz9Lt6eCpzjonW5M6/Xr1xu/V3bt2oXS0tJWlbel2rRpE3r16pW0nd9xJhMHytauXdssPMVVW1uL4uLiFpa05brwwguN16lcJvl3rjhO77jjDtx2221GfjJ4KhucY8rKyrBkyRIsX77ccPz84osv0t7/97//PY444gice+65SSDU2WefDQC48847k8JHP/vss6ipqcEbb7yx95VQyiiJTpydHZ4ym0uzYf5oL+m6jtdee63Nwakbb7wR559/Pg488MCE7RUVFcZrmscqKysNAPzBBx80Pn/iiScQDAbx+uuv49prr4XH48HNN9+MK664IiHP6667DmvXrsVLL70kLUufPn1w8MEHY8WKFVi9ejXsdjuCwWCb1JPk9/ul/6lWrVqFYcOGoVu3bhgxYgRefvnlffLdraTk8/kwZ84c2O12nHrqqZ0uvDf9XrzmmmvQr18/9OvXD2+88QZee+01/Otf/9onZTj66KNxyimn4IknnujUN6EoKSkpKXV+iU4pomuLCN8AMMJyORwO2O12wx2HO0NxJ6JYLAafz4eGhgbU1tbC7/cjHA4bafmNsgT8kPNMJBIxAAoZYMHDX5FE0EuECYq8YezOd2Kj044yp44edXXYVFKI/G21sNmASDiCteOHoPTdb2GJRlF98hjov4JTkXAU3t4VKNu2HTklbuzYEYLu0ZHz83ogGsOSHl0w0RbFsdGt+KygO15YWoupI2xNDlSnjkXxu98AdV40nDAKWlk+pni2YsnGEiz252JQcQwTeuh4+RcLosUFyP37h7D4gglAANWTQu1R/YLBoNFG5NTEHXGo3yg99SG5QtFY0DQtAQAhURg2Cr3Gr6GJ4IcIW/F+4eOO0tBntC4iC8dG5eTORzwvGfhCdRbTpytxjUYGWclgLFkesjLKnKo4GEfnH1/f5SASGYk4HA6j3zweD8LhMPLz8xEIBLBr1y4Eg0E0NjYmQYp0LAKkeJ0IcOSf0Tkdj8eNcUBwGz9vZe3EISQK1cn3kYWLJPGxTm0kHoP2l11f4WOBxhK/5k1zkNgXYkhBXoZAIACLxYJgMAir1Wo4UblcLtjt9oTzT1Y/XhcqN81z1K92u92A5whkMwNJeV6yNKlgQRF6zDZNmzbNdH1OdHmy2Wy47bbbjHUCmV577bW9Ko+maWhsbEzaXl9f3+rrh2nNfnRxqzUPpc6hSy+91PQzM+ep1kjXdQwYMAAA9tkirXjn8bPPPmuazsyVSHQUSqfstGgFpOcm0lY65JBDjNfNOU+lO3mLITxk+umnn4zXHR0CbfPmzdLt9COWv5e9BprcIFqitggz0VKJ48oMaKQvdVm8YzGPJ598Mu3j33XXXe0Sbigdpfoy5RLhKRJfiGmNtm/fnvBDd19p2LBh6N27N4CmRXPZlz5gDi3IHKbIMjMdbdu2LSFm8b4QdxsipfOjRvbjecSIEcbrjjhnU8nn8yW8N4OiaDGTILCRI0ea5pkOZEjhKZ599tm0QNnWiodpA5KhZJLsTheSuLB53XXXNXtcPi/yUI7tLbPvkJaE7HnggQeMkMHpqKSkZJ/c0DBz5kzj9fDhw03TpXLAS+e3hwhGZ7IGDRqEoUOH4vPPP0coFEIkEsFNN92E0aNH4/zzz8edd96Ju+66C19++SXWr1+PVatWIR6P46mnnsKUKVNM2/nss8/Gzz//LAVk33zzzbRD4Cplh956662kbbIbTvYHKXgqWQRpb926Ff/4xz9wyCGH4JRTTsGGDRuMNE8++SQsFgvOO++8NjlmcXEx/u///g9bt27FPffckwROtVSapsHtduOiiy5CTU0NtmzZkgROAU039bz44ovQdR3z5883AK2hQ4eiuroa69atwzvvvGOAqxQ2Qdd1PP/880k3GrSHtm3bhvfeew8lJSU4/PDDcdttt+Gdd97BLbfcgsWLF7f78ZWyS+FwGIcffjhOPfVUnHjiiZ0GnLryyiuxYcMG6LqONWvWYOXKlQlOv2eddRbefvttLFy4EB6PZ5+Uafbs2TjppJPU94iSkpKSUptJXHCXOZ3QmgW/hk0L/rL9eci+YDBohJeThWTjxwL2hK6Shd3ixxLdqUiiuwuBIuFQCBVrdiCoAat0J+pz3ChsaERD1yKEQjG4tBis/iB2/WYsdp46FrrVgtyAH+HQHnAqP8eKzWE7giV5iNltCHYpgnvZBsAfwuxQGXLtwPGRragpKMKLS604f6Qd5fU12P2bI1D/myNgKc/H+SU1+MXrxGJ/LnrnRjG6hxV//9mCQMwC+IMIHT4koX+o3Ql6IvCI4DEeZpCH1bPb7QboRg+HwwGn0wmXywWXywWHw2E8xJuceV/RccV+kQFBZg44VBeZ+5LYd7KHGN7PzJmK58WfxfzN3K2aK4s4FsXyp3LM4vmatZkMsBLBNDGkIvW32+1Gbm4uCgsLUVBQgLy8PAPsoX6k/qZtZn3Mw/oBTed7JBJBOBxGOBxOgJs4zCiel3yMEhjJASqxvc3CNJJkjll0HLNyUBnM3NLEdjXrb/F45Kzn9/vh9/sRCAQQDAYRCoUSQpOK+/JtvGw8lKno9CWDsWTtl2o93QzA6ijpets99neNGzcO9957b8J/vFgshnvvvdc0klNzSst5Smn/VElJSVqLcuQ8NXLkSPzwww97dUz+hbCvHMvISpFkdtcajx8tioNBAPD//t//w+9///uUx+2oRT9uZ/fUU0/hlltukTptmDkRySb3wsLCZif9999/v7VF3mdKFUJIBEIuv/xyXHbZZSnza00s1LaUGNLI7CJoqsX61oRFisfjyMnJMUCGjvhBQCHrJk2alBJCEMP2UVn/9Kc/JaWtrq5Oy5Xmu+++w9ixY9G3b999CmMAe6Ao0q5du6QLPCIomEp1dXUpPxfn0Ndffx3HHXdcWnm3hWROANXV1QkOecCevj3vvPMS/ozy8cnbZNeuXZ1qUVjsh3A4nODoR6KFR3IkOvTQQ43PRNe9V199Fa+88krK4/Jz4dJLL8UZZ5yR0k2otUoXzErlPPXwww8npJ0xYwbuv//+tENzer3etNK1he655x7cfffdSdvpN0g6c+/ChQtRWlraojn2k08+weWXX55+QfdSqWBKmodEiBNocskqKChICWc3NzdlqshV7+6775aOodZo+vTpUtj5mGOOQWFhIf7+97/jN7/5TZscS2n/1QsvvJC0rUePHh1QkpZp6tSpSWVXYfuaFIlE8PbbbyMSieD777/HU089lfD5kiVL2vQ/3DXXXANd17Fx40ZMnToVJ598cpvl3VqNGjUKmzdvRnV1NcrKypqFd6dOnYqpU6cCaLpe8cUXX2DkyJEYNmwYAoEAduzYgd/+9reYP39+m5Vx/vz5CfnNmDEDTzzxBFwuF04++WTjrufFixfj+uuvh8ViwQMPPJASoFdSAprmwjlz5mDBggWmrq8dqTPOOMO4qTaVs/1hhx2GtWvX4vvvv8fQoUNRVVWFjz/+2HBHbmstX74c3333XasvpCspKSkpKQFyhx0RnOIOVKKrEF/kFSGoWCyGcDiMxsZGBAIBRKNRwyWHL+CLLjRUDg4McPcpsWx8mwidcCerWCyGxngEPruGLj+tw5bhfRC2OWBx2uHx+eDrXgp98064nRbU5ziha24U7tiFcDAKX9/uKNu2HXk5VmyCG3G7Dk8oBNTWw1Zdi0B5IXK/Wwavw4HZFaU4xb0bEyPb8ElBN7ywtBYXj7Djxe1W1LqLcU7uTiytdWCBswv6OQKYWGnFC0vjCOkWVGzdgjxEsbp7OXwnjELOxwsSoBlyyeHORARLUftSenKM4m5D1Ic81J+4UM/blEM1HKwxA5r4TdJm1wlFKIZvl8FYqUCnloxxM5CKnkUIJdV1zlTHFstHbU9OQmI5+FgWw7vJwDKgqV9oDZG7KmmaBo/HY4Bwfr8fmqYZITO5m5fYd1ROOj+5S5PoehYMBo3xRRLT8nVsPtYInhLXP2WgmMxEhI9jLpnjEs0J/L0IhPFj8eNw8X7j9dT1Jqcui8WCcDhswGjUfi6XK8ExjY8LGdzF50hN2+PMx53mRGhUlDj+OhMoJVNHhe3rjLr//vsxbtw4DBw4EEcddRSApgg1DQ0NLYoAwbVXdkNff/01pk6dikMPPRQHHHAADj30UFxyySX4+uuv9ybbjNSFF16IYcOG7dNjVlRUpLXARvDBqFGjpA4DoitISyaMfTG5kLsIX0A2m6jNnKdkSnUnWme5YP/YY4+Zxv3ki5pcPNxgutq5c2erytdWuvLKK6WOOqJEFwzex8cff3yLj3v00Ue3eJ+21NKlSwE0heQBzF1mUsEItIDPwYZUY1/XdTgcjjYPbdFaOZ3OlOeimfOUTOnEyK2trcXYsWMBAOvWrUu/oG2kYDAIt9ttvDezrDQL29ca/fjjjwnvZYur7Snqu2OPPdY4T2Xjj8bBcccdl1BvM6iwJS5r+0Kvv/56wnuzMJx0kUM2pjdt2oTu3bs3C8SmUns50aQ7Z7TEmQkArrrqqrTL8Nhjj6Wdtr1E4LjZn7C9VWu+w9tLqcLFPvzwwwngFIcASd9//337FjCLNGjQIGkIVKAJUjvttNNw+OGHqzbPcn300UdJ2wYPHtwBJWmZZI7A2e4YsmTJErz66quYMGECzj33XFxwwQVJ4FRbacKECfD5fIjFYnjooYfw8MMP41//+lenAKdIFosF5eXlLf6e7dOnD6ZOnWpcp3G73ejduze+++47RKNRLF682HCEbUsFAgFMnToVU6ZMQWFhIQoLC+F2uzF27Fh89dVXmDt3Lk455RQ0NDR0iBOu0v6jM844A8cddxxuvPHGji5Kgmw2G/7whz9g/Pjxae/TtWtXnH766TjggAMwbtw43HPPPVi4cGG7OcUdc8wx+Pe//92pF0SUlJSUlDqfUv3eFB1axNB4BPCkWsCna72hUAjBYNC41sadjgj6ofBgZnlxRxiCMAi+oFBWvE4Edni9XtTW1qK6uho7d+7Erl27UF1djbpQEJv6d0WoWyG62mNw2TXY3DaEc9xwhYLw9yxHQ2kx3DYNDsRRV14C3wHdUbp1O3I9Fmy05yPmcaK80A434vD0LkX0gAoEDh0A3WlHwRf/hX3rbrznL4HLEsVxoS2oKSjCc9uLcPEIK06ujOLfoXLMJ3CqvxUvLY4jFNfgWLUJ2wpLEYvq6O/diViPMgROPDzBLcrtdiMnJwe5ublwuVxwOp1JzlKUnvZxOp1J4BP1NcElIowkhmeUAVSiGxaFcuPXu7krkug4JrobiWuAYlg3M2ch8UHjg9yRaKyIY1oEyMzCq8nOj3TSymAw3g58XMv25X0hOrWJ+VJfkaMYjZO8vDwUFhYiPz8fOTk5cDqdRmg5WfuLDxpLdO7SmBMdwHiYOt7+oVAIoVDImD8IuHI4HAnuabwPeFtztyqaJ8ycpcQ1c97PYp/x9uNzijhW+HkijjHZ+IlEIggGg2hoaEBdXR0aGhrg9XoNFypeBj5+CDTlTn4kmnNFONVs/MkgMtE9SwQFlTqHBg8ejJ9++glnn302du7cicbGRlxwwQVYsWIFDjrooFbl2Wp4iv4Iv/TSS1iyZAnWr1+PJUuW4MUXX8T48eOTwqBlu2bOnImlS5cmOEa0t4LBoHGhYciQIabpUoVdAYD+/fsnvG9JKCQzF6i21NVXXw0gEXSRQSbksEWiiY67c/FQNS+99JLpMaurq1td3n0lGdULAI888kiL8+rSpUtbFatVqqqqSst6vqWAnNlCo5n29YU1omRXrFgBIDnsF4kWkGTABcFTPIzqwoULTY95xRVXJC1IpToX2ltutzvJGY7LzHmKtGTJkrSPFQqFUFxc3OIytqV8Pl9CyAJZiB2g+Xm7JRLdevb1OC8oKADQ5Jxy6623ApDPsWbjnL6TKAQEhe67995726/QrdCYMWMS3m/ZskWaLhqNwmYzNwY988wzE96ngiFkQNN///vfVMVstWQUvww0pvHF74ITxRcKU0Fw4nf9u+++iz/+8Y/pFbiFonLSbw5APidfcsklAIBu3bq1SzkeffTRdsmXJOsPs98NqdweRS1evDjpu6U51zSllqm0tDSlW+L8+fMxZswYXH/99WqhMAv18ssvJ2177rnn2uy3RHvKZrPhnHPOSdiWzfDU448/jkMOOQT/+7//i2+//bbN8j3zzDNx00034dRTT8WHH36I2tpahMNhzJkzBx6PZ78YK20lWmgaPnw41q1bh2g0ig8//LDdjie7vrJz504UFBTAbre3+k5JpcyU3+/HY489hmnTpuHdd9/t6OIkqbKyEsFgEI899theLygcdthhWL58OT766KMkZ+lu3bohNze31XlHIhGcccYZSf8Z6f/L119/jUcffTTpRiMlJSUlJSVRMqcS2SI9wRKi65NMHHogNxWCNkTXKTOoQAR7zMKCceiLoA2fzwefzwev1wufz9d0/a26DqULV2NbRRm8NSFYojoQjSHHqiPqdMBm1RG3WRELx6CFI4DNhjxrHLm5Vmx0FEC3W9DFHkO4xo9grge+miB8fbqj4KufYPUFoes68j5bBFtVNd4PlcFl03FUWRANcRvmrY/DrcXgjVtQmR/Hsf1teGmxjoDdicI3v0Th54vhWr0Fa0u7IR4FBnh3Idq9FI3HjUgIwccfHGwSwRyCWmQh0MR2FsXdjDhkYwbciCHPxL4TASlZHjIXKLN+TjUGxBBoHG4RgSwxDz7+SbLzQXZumLlo0XuzOqfrYiU6fsmgLBoLInBH0BONF1kZfAUe7O5WmNRnPE8aD6KzlsViQdxpx+5BPRFjfRBw2bGrdxni+p4wdDLQzqwPohpQe1AlIlrqc5+3Vao+k7UrnztkYf3E/MygPQ57ETRK4fvMwhRSWVIdXwRIZeBUc0BVc+pQgEpvw0cGqKKiAtOnT8f777+Pt956C7feeuterfW26grY448/jieffBJ9+vTBSy+9hPXr1yMQCGD9+vV48cUX0adPHzz55JOdzvWhM6iyshJPPPFEux8nEAhg9erV2L59O0455RTU1NSgpqZGmpbDB3ySGD58uJTKa0n5xUXe9tDKlSsBNBH4pH/84x9J6cSwfVTXX375xUhz9tlnG68vvfRS02N2FEzUEiccs0XNu+66y3jNwYy///3ve1/AdhJBh9988w2ApjCDMqWzkMvvfrzllltM0y1evDhpW0dduCbw6Z///Kf081TOU7QPh89GjRpleqznnnsuadvFF1/cwhK3nWbNmoWqqirTPm3Oeaoljn8dFYqT629/+1sC3CYbh0DzzlNm0JVMDz30UMsL2oaiBaOcnBxs374dAAz3L64PPvgAAPDee+8B2DPOaf8+ffoAAG666aa0jhuNRvHpp5/uM1dIKidd+D/00EOlcJMIT4n1FOGZGTNmmB5TBmy3JpRnSzRv3jzjtQy6MXOeEu8MSUfXXXdd0rb2Gs/kFPbxxx8b22QLNvyOQjOlAtqbE50j7aUFCxYkbbvmmmukaQnSFuchM7fKv/3tbwnv+/XrtxclVZKpb9++OOSQQ1Km+etf/wqLxWLMpUqZr0gkgt/97ndJ2/n/ns4ucU7NNnhK13U8//zz6Nu3b5vepDZgwAB8/fXX0HUdb775Ju6++268++67OPHEE1FYWJiW82+miy64nnjiiQiHw/D5fEkuX4MGDUq4UaWtdfHFF7fY+bo1F3+DwSC++uqrTuVyqbRHGzZswI8//ojTTz8dV111Vae+3prub/l01L17d5xwwgm4//778dZbb+Gee+7B+vXrsXXrVjQ2NmLFihU44YQTWp3/3XffjaVLl6KhoQG/+c1vkJOTA03TcNRRR+Hqq6/GIYcc0q7wpJKSkpLS/qV0f2OJC/LcZYYgAVE81Jjf70coFEoK5yYDWHi4PpmDDB2foBDuxBIKhdDY2JjgMrV7924jXGAkEkmAFuz1PhT/uA67KsoQqfUjolugR6JwOS3QocGhRxGyOxByuVEUCyJPi2FDQRl0uwXlthgC1V405uchXBuAr2cX5H37M2z+UEJdcj/9AZYt1Xjf0gOeXDsu6evDomob3tzsxriKGCb2AV5abkPA7kDhW3PhqvXCbrejdNEa5K7bjrUl3YC4hsHBGkQqSlB3zCHIzc1Ffn5+0sPtdsPhcCT0G7W3DNagMlL78XBqvJ25i5HH44HH4zGORW5EovOVCFHxcGgiaEVAjvjgYSFFpyhy/CGnIO7SI66rmIFTZuNf3F8GV/E+FqFCM0CK6szhN7GteLvQsXnetF0EsvgxOTBF/eJyuZCTk4P8/HwUFRUhLy8POTk58Hg8hguc3W6H1WaDOxRFTbdCePt2M5yh6LgEZ/F2Sbh27HFh56iBcEV12KxWQNOgA3CEowiW5KN+cC/Yfx1PNKa4Ex2HAKktoxpQM2ogYrE49HAEUeZCRQ5R3AGKxj0vN4e/yB1LBkyJYJPY1+K4EMcBuehx96pIJIJAIACfz4f6+no0NjbC7/cjHA4nzJ10nvJ9ZWAYD5PIxyYvVypx2E021jvqBlXFTiWqrq4On3zyCV555RXMnDkz4dEatQqeeuaZZ1BRUYGFCxfiwgsvRGVlJZxOJyorK3HRRRdhwYIF6Nq1a7tZx+9vqqqqSnj/hz/8od2Pee211wJouqt/9uzZ2LZtG0pKSqRpzYCTDRs2SBf4ZIuV6WrDhg0tcq5qifhkbLagKdprAnsWQvv16wen09nsccwmQ9n2jRs3QtM0PP74481XIA0RPJCOdF2X/mggPfvss5g8ebLx/qKLLpLm014uJS1R//79MX78eIwdOxZPPvkkvF6vtE7cbQuQ15sDUM8++6zpMWUhhsycn9pL5MhD5/Pzzz+PoqKipHT8j5B4HpOFv9vtltaps2rAgAFJDjI7duxISic6MMkI9IEDB6Z1zK+++ippmwwm25cyA0HMnKcOPvhgTJs2DZMnT05oCxkQATQtqL7//vttU9hWigAih8NhjHmZCMjYunVrAqxBYCD92T3ppJPSOq7dbsfEiRMNZ7P2CMvCFQqFACS6JJ5//vlJ6QieEs9l8fvpiCOOAAC8/fbbpseUjZH2+g4+66yzACQ6bMncv/iFI/5edv41p6effrrF+7RWFPq0uUVrMziML0Sm+73aEaF6mnM45OLzEJ9vtm3bZrzmzmi///3vE/aXzelKe6+HHnoorUXL0047DZ9++uk+KJFSR4tuNOHq0aNHyu/cziZxTm0pSLK/684778Sll15qhIZtC61atQorV640fk8oNS+73Q6Px4Pf//73qK+vx86dO6HrOpYtW4YNGzYgFovhyy+/bHOQe+PGjfjPf/6T9B392Wef4YYbbsAXX3yB5cuX45///Cfee+89HHjggXA6nbj++uulF61lqq2txdChQzFu3DhUVFRg8eLFaTk/K6UnCr+h6zo2b96MxsZGRCIRLF++HI2NjQgGg1i1ahUikQjmzZuHRx55BPPmzcOkSZMwcOBAHHrooejbty+GDx/e6b+7ZS7wbSFN0zB58mTceOONCf/bBg4ciI8++gi7d+9uVYi/QCCAYcOGoaCgAO+9917SzS26rmPSpEm46aab2tTtT0lJSUlp/5aZs4q4jdScs4sIPhHYkAo8MXOG4RKddoA9YAyFBQuFQtIQbWKe/tJ87Dr0AJR3daH/ru1oKCsC6v0IOZzQ4zo8Vh0xzQqbVYdmAWw2YFvYBg06ygrs8NcH0VBSgqKQD90OLIF73VbEcz3JgBIAOJr2+2azBf64hjE9AbcNcNg1fLUJiOoaEAjDGokmQDCl/12D3A3bsbqoK2JxYEi4DoHyAmwacUCCy5ToHCRz05FBQyLkI7ZzqjBuBKeYhZ+TOVxR3rJnWf+afZYK7pDlYVaGdPZLJbGOIszU3MPMxUuWr1n/NucERmlk0JboVhZxObD6oO4IlXhQGo9g14AKbD/0gCQ3MzOnrFCOEyvGDUJOMAxHzwI09CjF7iGV2DbmQPhL8mDXdNR3LcT6Uf0AoUwc9OLOVnGXAztPPwLQNFjK8xHuXoqGsUOS5hL+TGXj7lZmoSHT6XPZHCc7p8zCA3InKh5GkqAvM/coMxc+6k9xHzGdOGebjf2WgFdK+0bvvfceevXqhRNPPBHTpk3DVVddZTx4FJGWqFXw1Lp16zB58mRT95fi4mJMnjy5RS45mawePXq0WV6jRo3C//zP/zSb7plnnkk7TzHsFdD0A62urg6vv/46gKbQdjfffHPLCitRnz59MG3atL3ORyYOh82ZMyfpc7OQbhTW68ILL0zrOGYuH7KLixMmTADQ/GIrV0NDg2nYFT5Z33HHHSnjdXJHCJnSre+DDz6YVjouXdcxffr0FofFM1MwGITb7QbQBBRFo1GpewoBY2KdGxsbjdcWiwUPP/xwq8ohc1375JNPpItSbaH/9//+H3JychLGdl1dXVI6Hs4MkH9pDxgwAHPnzm3zMi5fvhz19fVtnm8oFEqCRfiCPEnsc6r7mDFjjD8xFPYQSG2l+eqrryZtu/zyy6Vp28PxgJ8vuq4jLy/PdLHDzHkqGAwmuPCRpkyZIs2nNWE821q33XYbgKbxSyH3ZKLxHYvFEvqRYCCCp/gdQ2aSgZMbNmxIu8xctbW1WL58ebPpyNmM/3aSOYSZOU+JSgV/kmTjvb0WnIcPH46ysrKEssvCL4rOTFQ/cnYiZ0funtMZwtUQON6c+ybNDaWlpQCA4447DgASbGIdDocBLZaXl5vmtWzZstYXuJUSw3iSZNCd2XcuQVEzZszA6NGjTY/V3i5a2aoJEyagvr4eCxcuTBm+VNf1BDdSpcyVzH34z3/+cweUpPXKVuep6upqfPzxx7j99tvbNN9LL70U/fv3b9M8s035+fkoKytL2GaxWDB+/Hhcc801qK2txVNPPYWRI0e2yfH+53/+B7m5uXjttdfwyiuv4OGHH8bEiRNx//3349hjj8XgwYNx3nnn4Te/+Q1WrlyJSCSCv/71r7BarejatavpDSEzZsxAjx49UFxcjDVr1gBo+j9x6KGHwuPx4KSTTmp319JMVV1dHWpqajB9+nS4XC5UVFQgJycHvXr1QklJCRwOBwYPHmy4HgwcOBAOh8MYQ+PHj8eHH36IVatWYfHixfv8wvy4ceOM37EtkezmkH2h4uJizJw5EwceeKD0Olk6N0qm0vTp03HUUUcluNAqKSkpKWWnRHgplWh9RuY8I8JQ/KZ/Cp/HwSaCm3g+vCx8LYg7XdFD13VEo1H4fD7U1dWhuroatbW1qK+vT3B04RAFuVRpmgbHzlogHMV6qxu5hXb0qt4Bf0khYpEYYnFAj+twOzRAB5yIYpfuAqwayt06fP4oGouLUBrxo6xXAbb/tA1xDXBs2JbQjnEAvkmHw1Kej4s8W+GIhPHPjR4MKIpjyoFRfLHRgpV1FlzatRZd63aj5rQjESktMMrqdDrR/efNKNi8C6vyy4G4BQfHfAjne7CzV6nRxrz9og5rQntFo1GEQiEEAgGEQqEEmIzceAha4SHfOFwjhokj8bBwMgcl2RoHB37Ez0hUJ3qQmxIPNcfdc2QhCsUHbRfrwtuKP8tcnkR3KF5/s3CFZhKBJl4/EWri/cDLJHOZkoXk4+PJ7XYjJyfHeJDzlM1mQ04cKKoNoKpLIeJ2K7oFAmjsUYLaMYORk5NjuI3JnMXCOU6sPuJA5HmDcHTJQbgxioY+XVC8fjsKNuzEzv7dEA+F4Q4EEMxzYcPo/rDYbPB4PCgoKEBJSQmKi4uR37UceXl58Hg8sObmYMfJo2ELRWAv8MDeGILv4H4oWr01oZ1FNzJN02C324265uXlwe12w+l0JowJGUDGATE+L/LzhtylCH6iuY/DUfS5+FkgEIDX60V9fT28Xq9xo4ZooCFzwqJnGhNUThkkJZvLxfHI5yoOvnaUdAC63gaPDqtB2+mPf/wjLr74Yni9XtTV1aG2ttZ4mEVka06tgqfoj34qORwOY+FIKX19++23Ke/U+uGHH/DOO++0On/Z4pcMnuKh7ICmCxF7e9GWjs3Dtnz++ecGvNRa5eXloV+/ftA0zbgb89hjj01KZxa2jxZsjznmGABNtuAkmWMUhVwSJWvbli7GV1dXo6CgwDSUDUERxxxzDG699daUd9bxyVs2+ZNV4V/+8peUZTILFZdKVVVVuOmmm9KiOnfv3t2sDXogEDDqTnfJy4AdMxei/Pz8hHQ8dAldJE5HP/74Y9K2E044AQceeGDaebREc+bMgc/na/ZLOJXzFKmioiLBkW1vHU0aGhqwePFiDB48GIWFhVi0aNFe5SdKBk/JLtyvX78+AY4iVVdXm7rtyTRz5kxs2bIlrbTXXnstbDabKWTQWsnqR/OTKNFljefB4Sm6cGw2zlu6eHrBBRdg+vTpOPPMM40wmnsr+r5xOBwp5zT6nuIXCoA9jhr8T35zam7e41q9enVK98Cjjz4agwcPbjYfAlF5WBdZOBwz5ykShZTl845Z2FXZeXn44Yc3W1ZRa9eubRbK9nq9abndmDkznXrqqQD2AH3cnUn2nZ5K7bm4dPDBB+OCCy4w/ZzqR2PZLCzWpEmTAJiHuAPkzmEyRaNRfPfdd7jpppugadpeucnR98Snn36aEEKUnNO46Ds3FoslzFUUOuXll19udTmU9k45OTk47LDDcMMNN2Dt2rV48803E37fkr7++msFsWWBZOD9vnBCbktlIzw1e/ZslJWV4cQTT2zRfjabDaecckpSCOTi4mLMmDEDr732WloAttLeqbCwEL///e+xYMECbNmyBW+99Rbmz5+/1+HQzz33XJx//vm49tpr0/69s2vXLlxxxRV45JFH8O677xo3fX377be47rrrkpzSSdFoFB999BE8Hg+OPvpovPjii1iwYAH++c9/qtB+JopGo/D7/XjsscdQWlqKkpIS3HTTTYjH49i9e7fxf6+zunqNGDEC1157LTZu3Ii5c+fi008/xa5du/DII4+k/bv03HPPbedSmuv000/H8uXLsXTpUtTU1ODpp5/G7NmzEY/H0dDQ0CpnKq54PI6pU6cqoFBJSUlJCUAyRCV7kAhuER1WSAQg8HQ8zBoPR0X5yY5Nn1E+0WgUwWAQfr8fPp8PPp8PwWDQgKWoPDyEF38khPaKxVGweDXCbheWhj3I61eKcmsEUasN8WAEEYsVlngMeXYgqNsA6Cj1aPD6YvBb7CixRVHWPRcr1zQinJ8Hz9wliIcjRhliug7vSYdDKy/A/xbX4OcaC2psbhTbopi7ScMn6y2wWQA9puOtX3ScP9KO4pAP1acdgXBpQUJIux6/bEHRlt34JbcI8UgcB8GPmnwntpTmJPRBXZcCbBzaC2CQk8xFTNZPAAwoJBgMGg8egoyHISMwROYAxN+Lbc/DMpo5NsnKKm4XnXZk8IcsPxmolY47VbquUqn+05g5H/GyiecEL4cI6BCMSLAOB22oLcRwgWZOTwQR9aj2wROKYXNuLqxWC3rWN6KhohhVB/eWQmoOhwN6YR42Hj0Muf4gAsU5aPDGsKNHMbovXg97KIrc7bXIq9qN2l5dgFAM+bUNCOa5sHZEX/BbohvL8rFxeG/oVgviDjs2Hncw7KEI3JoOmz+CuoE9UbFsM/LCcSN0JIWMFGEicV4SHbxk644cphNBOOojMXwkd5QSzwk+Pqn/ePpgMIhQKJQUok8cD+K5RWXl56/Zuovs3G8OlO1wgGovH5mgqqoqXHnllfB4PG2WZ6vgqdNPPz3hoouocDiMd999F6effvrelK3FCoVCuP7661FRUQG3243Ro0enbWldVVWFs88+G4WFhcjPz8dpp53WJs5ZP/zwQ9ppS0pKcMQRRyAnJ0f6uQx2uOOOO6R3jV9yySUAgKVLlyY4i8gW6WRhVwhaOOyww4x0zS2KNmdPLwMNjjvuuAR3CZk+/fTTlKFdKioq8Jvf/AbAHrhItNoGzMP2ff311wCAQYMGAUBCOISWOEalWgBNV/zuVe6WRCIXM7rgTRCQbPIW6yuK+vyee+4xtrXEYl1W3/r6enz00Ufo2bMnAGDWrFkp86irq0NpaSkmTZpkGlYMSHaeomOJMnMXI1G5eJiSltx1LY4rvri/efNmaJqGyy+/vM0W7nm4o1QSYQQ6vmwMkW655ZYWleXnn39OeF9QUJAQBvD//b//l3J/+lGSrusNwVObNm0ytskAEYJJxT6vqKgwzmlRsgX9dJ3YABjOZWbAikwnnHBCyh9mQDJI09jYiDvvvFOalju+pHKeakunv8suuwz/+Mc/cNNNN+Htt9/GkUcemdZ+vXr1gqZp2LlzpzRcGbka9ujRAzabDV27dsXJJ5+clI4Wdq644oqEehOUROH3uMzORbMFH5nTz4ABA3DllVfiww8/NGytuWRQZSpxsFz2O6o55yma//l3slnYVdm8Kvt+BICPPvoIq1atkn7Wr18//P73vzfcFGW69957DQgjFVhH9TELK5vuuEolszo2p59++qnZeffOO+9Mee7THTtm57sM6jSbF9MNZXjddddh7NixmD59OgDglFNOSWs/mWgxaMiQITjssMMMEEu2SETfubfeeiuAZMCKzs3OukCYLerbty/OPPNMLFq0yAgDTNJ1He+9914HlUxpX0n8zXzwwQd3UElar2wK2xeLxfDII48YUHE6OuSQQ/Dqq6/i0UcfxdatW/Hee+/hm2++wZw5c3DUUUdh4sSJmDNnDq699lqcc845HXpxLxvVvXt3TJ48GaNGjcILL7wAXdexcuXKBKi1f//+WLt2Lerq6trFFVDXdVxzzTU47bTTcNFFF2Hbtm144YUX0t7/yy+/xNSpUzF69Gicd955OOKII7Bjxw6py2i26oMPPkBpaSlycnJw1VVX7XeQ5+GHH4758+djxowZ6NWrl7G9tLQUV111VcqbpSZOnIhzzz0X77zzTkon4X2poqIiXHHFFTj55JOb3DIcjpSOnOmqqqoKHo+n2RsAlZSUlJSyQyLAIYae4gv33B2Fh1amRX26LqzregJ4Q+CA+B+Iu8iI8IfVaoWu6wiFQvD5fGhoaDBcOLxeL4LBoCnMQA8OmxBoosfiKPp8IcK5Hiyvs6CbK4auMT/CTie0YAjRuIawDuQ5AJcNqAvE4bc5UGKNomuBDcu3RxEpzEPuh99Bj+wBs6LxOBpPGg2tPB//W1KDZdXAAk8FDgjV4oyCemzYrWOT14Lx8Z2YGNmK3QWFeG6FE5cfasFAmx9VJxwGf9ciA46w2+3otWIrytfvwtqQDeEN9ej7SxXctV6jLbf2LUN1r1KM8tcgbrPAm+dK6NOAwwq/w5pwHZMAGEpH14l9Ph+8Xi+8Xi8CgQCCwSAC4TB2Oi0JwA4HomQuOQRj8f6n35Qc7OH9L45FmSNZKrBPlpdsfPP9ZKH3mlsPk4Ff/Jzhx6N0srB3zYGDJAKnwuGwARDSg/ooHA4n9AO1MTkrORwOuFwuuFwuuN1uAz5yuVwJENXgqkaUNoSwOS8XVqsVPeobUF9RhC3DKhOgKafTCUtpITYcMwyeUBjFHgvywmHsLstHr+VVcEVi0CwW+Mvy0XXLDhwR2oXdPUsRi+nIr21EMM+FVYdUIhqPo6qiANv6lKHP7jrEHTasOe5g2ENhuKBDjwF1PcswObwTJXEL0KMcBQUFyM/PNxyxqA40njlEyftZBkVRn4muYqL7lAyeoj7hblO8z/m4FfcJBALw+/0GQMXLyse6+EwP7jDGy5lq3MtCmIrplDpeJ5xwQsJN4G2hVsFT06dPR0FBAY477jh8++23CQP0m2++wXHHHYeioiJjEWdf6aKLLsJDDz2EKVOm4NFHH4XVasWkSZMMOMZMXq8XRx99NObOnYsbb7wRd9xxBxYvXozx48dj9+7de1Wmzz//PK10s2bNSrAP8/v9WLFiBa6++mrDlYMvBtId/rfffjtuvfXWpB9Pffv2RW5uLg466CBcddVVxnbZFyE5T/HPyEXpscceS6v8QJM1mkxUVg5PpaKiuXbu3ImJEyeia9euGDFihDRdIBAwiEKLxQKHw5Fykc/sC72oqAiA3AkkHYnwmAi7Pf/8880CJlzi3cLAnn6hO+YIkkjlCAGk/vHC++HFF19M+CzVgqdsUbewsBAnnXSS6T6iyJ0CAEaPHm3qVseBEDoPZPOL2Mei9hboFF2Axo0bZ7ymC4zPPfec9K7MWbNmJQGE9957LzRNSwtwOe2000w/42H7eN3/9a9/me5z3333JW1L5UbFL4zLLgSngt+4qIwDBw40hRRisRhqa2vhdDrRs2dPnHHGGQCA3r17p3UMoGm+4ePpySefNF5z57GWip9L06ZNw1lnnZXWfp988onx2mzBj843AhFSKd2wfWZhB5vTX//616Rt3DUwXcViMWzevBlAUzi2ww47LMkpTNf1hLuAhw8fLnW3JOitrKwsod4UOkG2GNxciDVRqYDZSZMm4eSTT4bL5ZJ+x6Q6fzh8aLfbE/pMhBxF56l0/9DKJIMiRLBo1apV0DQNJ510EgYOHAhN0/Dtt99K80s39Kfs+4tk5jxF4mPho48+Ml6LEHWq7zXxu2vZsmVJdzZVVVUltH0oFMLBBx+MMWPGJOXHweIDDjjA9LiAuQMi6bzzzjNeEwBnBjul+5vh0UcfTdqW6o54gp83bdqUNHfT71b6XUXPMriaLizQbxDxHKDFMw4D7q3roVLr1aVLF8yYMSPJDU0W6lopsyQ6T/HwsfuLssl56tZbb8U111yTVto33ngD8+fPxw8//IDzzjsPV155ZcLNOBMmTMC8efPw8ccfY9iwYe1VZKVWaMCAAdi8eTPq6uoQiUSwatUq9O3bFwUFBbj55puxePHidjv2rFmzUFFRkfTfvyVavnw5unbtivLyctxwww1tWLrOJV3XUV1djUgkglAohLVr1yY5jofDYdTW1uKqq65ql3D2baGxY8di0aJFmDlzJjZu3Iinn34a06ZNw/z58/HNN9/gzTffxJw5c1K6Sw0fPhyzZs3CxIkT8cc//hFvvPEGpk2bhjfffBMfffQRZs2atc9voG2pLr/8cpx77rlphXlvTpMnTzZu9IpGo/jkk0/www8/QNd1LF++PMnNX0lJSUkpsySDSswcUAgMEBfkCQ6h0FgWi8UAGLgji1mYPw560LXCYDAIn8+Hmpoa1NbWoq6uzgh1RfCOGQwgAjxUDu5EFYlFUXPMYbDW+6BF4/i51oqicg8q4EfQ5kRIB6K6BrdVh10DIrCg2BlHlyIblm+LANBg3VYD76QxgP3XcmsaAsePgKW8AOeX1GJFtYbvcnvgwEAtjq3Q8cYaO+JxwLN1N7705SPXoeEYfSfqc/Pxr61u/H68Cz3sEWwePxSB4jzj94zFYkGP9btQtq0OG0uLgHAEtpoGBAIBbOhbih19ynFGzzD6Di9E1cG9ES4tMEKW5eXlIZLnwbK+xWi06kYYP6/Xi4aGBjQ0NKCxsdFwmqIbKQ2IxG7HpoHdUFeaC531FW9nKiMBQuLY4n1BsAl3opKBULJrxmbQUnNuQqLbkwyioXKYSVYes/KK0BevI9+XtwGvH31udr7QZxwM5I5h4oOHboxEIsZ5zEMP8pB8wzfWo7Q+iE25ObBYrOhR14i6roXYOLg7dL0pdFw034M1RxyIAq8f0TwX6nUrSnq40K2uEZsG90C0rBDOHA8a+neHY0Ql/niSG4dqjajtWY5YLI78mgb4cxz4cUw/bD6gHJV6ANbeeVh1/HBo0OGIxxGNxFDXtQj/V16Lk8e4sGlQV9SV5BllJxDM4/EYoQjJjYqH3+Ptz8ckD60nOtXxfcwAQQ6pNddv9BCPw930QqFQAojK8xP35WEb6Vp1c2YH4niWOap1lPS9CdUnPPZ3nXzyyfjTn/6E22+/HW+//TbefffdhEdr1Cp4avjw4di6dSu+/vprHHXUUXC5XOjevTtcLhfGjRuHb775BlVVVTj44IPRt29f49HcgtPeaMGCBXjttddw77334oEHHsBll12GL774ApWVlc2GJXrqqaewevVqzJ49G3/+859xzTXX4JNPPsG2bdswY8aMvSrXBx980GyakSNHYsqUKQnbzj//fAwaNAiPPvqoEXaJL3gWFBRg27ZtxnsR6rjxxhsTQA1y4DJzZBIhG0rXWlvr//znP8ZrCndEIez69u2blN5isUidcLp06WK8XrRokfRijt/vN1yJAMDtdkvraRa2b29FcJq4qHz88ccnvL/00kvx9NNPY+fOndA0LWmBVlzk//nnn5Muvq1evRoAjIs9VO/mYDFe13Hjxpm6LYkhPFJd8JG5vMgkggH8R48Ife3evVt69+qmTZsMqI0WY8lFiqu5RWszl7PmFmD69Okj3U5hIpvTf/7zH0yZMgV5eXn44x//iDvuuAOhUAg33ngjgCawpzmXs3//+9/GazEcpJnzFMEuXbt2NdKmupM5lcvJ0UcfbbyWUbxi286YMcPUNQloAjZkkAIAPPDAAwBgAKVvvPEGgNSh1sTzetGiRQnw2BVXXGG6b0sc1956662k982F5xTPYzMXP5q30glRJo51oOlca2hoSDsUqni3+dKlS43X119/fcJnZmH/NE2TAjrV1dX45JNPEqAJkugIFolEEqDV/Px8abhCckQMhUIJP0xpbMpckVriHgggwekMSJ5DCNQid0eu7du344477oCmaQnQDwAMHTrUeC3+qL7pppsS3ovOU63Vxx9/LHWSEr8vBg4cmJTmiCOOSAAOuc4555wWlUOEZfjdK/w9iTsDTpw40XjN2xAAtm7danpM/t3y2WefYciQIUlpevToYYR03bp1awJ0KEp2TpktFMpCIXNxt0f67pHduS6GguS/c9IRn9d8Pl/CBbsuXbpA0zRUVlZi9OjRCfuRs54IT8nCCcvmIa7i4uKkbdy1siXOj0ptJw5+A03hmV999dUOKo3SvpCCp/YfhcPhtG5AmzJlCt544w2cddZZGDVqVFphc5U6nzRNQ0FBgfR338EHH9wi97GOkq7ruP/++2Gz2TBmzBh8/fXXWL58uWkowP1JoVAIEydORFlZGQoLC5GTk4N+/fph6NCh2LRpE7Zu3Yr58+ejT58+KC4uNv2/1BEaMmQIpkyZgpqaGgQCAXzzzTc49NBDcf7556NXr1644oor8Pjjj2PUqFEYO3YszjzzzJS/hUnnnnsuPv74Yzz44IM466yz8Pjjj+PMM8/cb9zsbDYbZs2a1SZh9wKBACorK3HqqaeiZ8+eOOGEEzBq1ChYLBYMHjwYBx10EMaPH58E22WqYrEYPvvss6QbpZSUlJQyWTKwQwZQ8c9FxymCn+hmYwIORICAQwUkmRMPubOQC5Lf709w2BHBG1mdOBiR4Bqjx9Ew4kBYGnzIC/hg27wDMYcdq3dE0C3fglJHDDHdAqseR21Qhzeqocyto2ueBct3xhGz22Hftgs5WgyOql3wjx8O3W5D+JD+cDhsOL+kBsurgW9yKnBgsBbje1vw9jIdAYcT/b9civ4L1sKzqxHvBUpQbAeO1XdhRdiFGd/Ecd04K3ohgLXjBsNX4Elon5IdDahcVoX4ryDSpv5dUFNZjt+6d8Nis+AfVR4UeMPoU9sUBSOW40JVeS7ynBb0DISwaEAZdrltRtiwQCBgOBdxpx4DkHI4sPrw/rBagXJrDI25TuwscicAdNS3ZlCSCJ9woE4cF5ReJvFGUhn4IYNAONySLjBilqa59LzO4nvZ+cXrLeYjni/iOSlzWyMHJFmoRe7+xa9nc7clAh81TcPQ9bUoqQ9gc34uNIuG7nX1qOtWhI1DeiCS68bqsQNR2OhHgccKT7UPu10u7FzjQ+9SK7rV+7ByRF9EC3PRd8U2rLLm4tr3ddw8XsMh8TrU9ixHNKbDFokilOdGhSsGS44V/3UVQgtHkesPIhqJo6FrMf6vcCeGdQOmzbND90fQZWVVwnxDjlliKELR5UvsDzOgk9pHBKfEdOIcxvOVPWQOUPF43IAJCV40MyoQ86O+430mG5cyoJB/tr/898kmXXrppdi8eTPuvPNOnHXWWTj99NONBxlztFStgqfi8XiT9WGvXujVqxcqKirgcDhQUVFhbCNnBbNJra311ltvwWq14rLLLjO2uVwuTJ06Fd99953hfGG278iRIzFy5Ehj24EHHohjjz3WWLRvrZoLubJr1y4piCBzjBGBoIqKCuM1uSaZKTc3F4AcspE5T1E6swsofJFdJgqjB+wJyXTHHXcAgGk4xLvvvhs1NTVYsWIFXC5XQn+kUiAQSFhUrK+vx3XXXZeUrjnnKS5ZaClA7u5Ai/5iWLMvv/xSmgcBYdx15+67704Cl4BECA3Y4+5F8BRdaJU5pImwGGnevHkGhEXiUAqve6ovAr4gvmrVKtM7V/kCcDQahcViMcJOycJd8bulSVVVVXjuuecANI11m81mhDDkInLZrI85ADR//nzjtc1mS3B+E10YUkE76YifLw899BBuv/32pHPr8ccfTwBGUrl+/fa3v014z+EpGVRCYZeAxDBu9AOQJIYsM4PGZO4zixcvhqZpOPLII7FgwQJcd911uO2220zrQCouLk4aZzTv0nFSgSTnnXcexo8f36yTncViSYB8+KIbd+eT7UfasGFDkmMH0NROmqZJLxSuWrVKukgpm2Nojk/nwrUMjiSI65VXXpHuIzqfiQBQqu/oVJADzffkWlRdXY2ysrIEZ7lUEuGpgoIC6V3bFO6M2yMDwDHHHIMuXbq0SUzjHTt2JMwF/LuMa9asWcZd6KQPPvgAt99+OwDgpJNOSjsUijgWduzYge3btyfNY2VlZUmOTvT9KtOJJ54o3c7ns1QLB9OmTYOmaUnhh994440WLQ6J3080ztJZ6OXn9a5duxI+S+WCxRcpRJBZdgweNgcAunXrlvBeFoKZ3PueeeaZhO1z5swxji/7DuVQ+vnnn2+8Fvti+fLlCe95/WfPng2gyX3UzPXT6/Ua34e5ubkYMGCAFF4H5L/p0nHh1HU9CZ5qDkznvxV46FelfadjjjkmadsFF1xg+rtVaf+XCE9xSHV/UbbAUzJnWC6LxYJ58+bhlVdeSdv9VGn/lKZpeOONN5J+Z3RWxWIxfP/99zjqqKMwePBg9OrVa6+crdpLP/74IyZMmICDDjoo6aYY0ssvv4zhw4fD5XLhs88+A9AEpdO8s2rVKlRWVqJ79+44/PDDUwL9+1JHHHEEXnnlFcRiMfz888945ZVXUFRUlNZ/y2yTxWJJCmXcWs2ePdsIXS5q3rx5cDqdOOGEE0yvMe7PmjVrFgoLCw0ng+OPPx6DBg0yvQlHSUlJKZvEb2AjEVAANP3WE8NmxWIxAwqQuboQQEPXXSg0XzAYRF1dHXbt2oWdO3eiuroa9fX18Pl8CaHixEV/GaBAZaMH/yxUWgAdOhw19QjX+RDqU4GiTVWwAPhvvQNluRp65UThj1kQ0S0occZRnqNhZXUccc0Cu8+PUEU5onV+OPU47I0BxIf1B8qLMTZeh821FnzrqcDgSCOO6WPH28s0NOTlos+cn+Go9yMajaLHD6vh2dWA//iLUGwDxms12BxxYMa8KK480op8WlCuAAEAAElEQVRuIR9WjxkAr9OaAL9ogRCi0Si2DOiGut7lONu9C7ACr+7Og9MXQvdtDXtApnAE210WbLADkRIbir0+LB3cBVttcfh8PgQCAeN6GA/t5vF44MzLw+qjDoTVYUFxmRMhqx3rehcjN7oHlOLXe1OBUWIa7kDFoR8eVpFDLLwvSSKwx2EZrlSQFU8j2y8VLCUDq/h1RRlAQ/UXQTHal7slyeApEnf5El21RFhMdP0KhULw+/3wer1obGyE3+9PuL6t6zqi0SiCwSAO+LkKBdWN2JyXg1g8ji67dqOmohg/jxuI/DovPG4LGmtDqCnMwQELVqPe5cCanVF0L7eiu9eP5YdWQi/MwwErtmOLIxdXf6Th1nFNAFVdZTn8eR701vzQ3DYs8ZRAi8WRFwgiFtXRWFGMPxRXY1g3C/4wPwfxqI6yZZsTHO1E9zlN04wxnJubi7y8POTn58Pj8cDtdhtwFQesxHbibl7ig2BDcvEi6Ik7fIn7cqCNh7qkPqL+qK+vNyBRWuMU14Z5KEzKg+olW0MWzx8zmEypc8kMwOPfuy1Vq+CpDRs2YP369a16tJcW/3/2zjtKbupuw480fWZ7X/eOK7axDZiO6Z3EEMgHAUIJoUMogSQQMJ0QSgghgST0hF5D6Mah2xQ33Htde3uZXqTvj+XKdzSa2fXitmu958wZjeptutLoPnp/s2czbNgww0VAaO+99wasXQOgvVDnzZtnuNmYt12xYkWGc05n9P7772c8qLYa6BMQSUf685//nOY0lUtWA1cCLrIaAMzlPJXtQUtnwkqZZQW7mFVaWsqIESOIxWKdilG5bt06QqFQViBLlqZpGZBYNskuOrK70JVXXpmx7g9501dQj1auWwBnn3225XzhwCIe5lmFVxT5hY4HM2VXngkTJhjT48aNy7rNmjVrjOk99tiD8847L225GJxbv3694dAhBmMvuuiiTsOU4sJ33HHHGfO8Xq+lu5i4cc1Wx3LYNzOc99lnnxn7MA8sysBMLqhJLmc5f1buL1aSB7Os8idkbu9y2D45HbfddhuQ7hgiH0Pc9AgAwwwpffPNN5xzzjkZxze7Esn67LPPMpxMcvVdTU1NaWmGLSCiDLhlk9nlRdf1rKFa5TYkD079/e9/z1hXOBbJ9fiXv/wlZ1pGjBiBoihMmDCBfffdl5/97GeWrj7Qfp6ZzwFRFuZ+d8WKFRnbWzm+iHMl20BFtjCJQsOHD7ecb3ZjyibRzq0AyFwyw1NOp9Oy/7/ggguAdjciGRqLxWJGnyjU1TAJra2tBqQFWyAVK5WXl6eFfDCHSLRypxL3JLLM7eCJJ56wdLUbPHhwRh0J9zqzOnIGVBSFVCplGZ7RLKs0b41jkAi3KGR2yuuoXVqpra0tA3rctGmTcR2yCmW7Ndq0aVMamCbc+4499tiMdS+66KK03y+//LLlPgcMGJBRXzI8JVvIWpVJIBAwpoUTxS233JIWMvi5554z4F9zeNLly5dndcnLFcop1/1Drn7ILHF9ufHGG43r6PPPP59137a2n0aMGMGZZ56ZNk/TtA6hDVvdVz3Becrc12zPl7J2lnRdz/rigd/v57777mPu3LkceOCBOzhltnaWvF4vF154IfF4POe1+rDDDuOoo45iyZIlxsPeZcuWZX3GsCOkaRrnnXceF154IQ8++OB2dd+59957GTt2LBdeeCEzZszgtttuy3ju1djYyJw5c7jwwgv53//+x4IFCzj11FOZMmUKP/vZz1i4cCGLFy/m008/5fzzz7d8yWtX17///W/OOOOMnK6gtrZo2rRpHH/88RQWFnLIIYcYL0RdcMEFbNq0ie+++44vv/yS/fff/wcf67333mPixIldalf19fX88Y9/5N577017yWdnacOGDVx88cXsv//+nHHGGZYvPWX7j2rLli1bPVnmwXer5R1BHzIwZXawktcRHxmoEY5IAkgwQwdWLj7maTMYI3/ruo6zpgHfZ/NJNoeJDO1H2fJVFARU4tEkOgrLm6DIoVHm13GqUOBVWVSvk9IU8kigeT14whHCg3qjRxIULVhD8fKNVM5ayuJVCT5wVDC2rZ5D+im8uECjNc/PsE8X4Ykl0sqt/7cr8TeGeDlRSr9iB+cOjLBO83LHJ/DzkSn6tjaz4oARhH2uNPhs/R7VNA+s5Ce+epIOlWcj5VRpUX40OEVjkY9llYH2F/MTKUatbqLW76GmTSevyElFfTPLJw6itcif9vK+XJe43aw4aARuRaefWyPSkmJpST57rGulMJrKgHXk+jXXs7ndWDmQWf222p85rSIduZx3zN/ZACorWTlO5Zpnnu6oDLoic/rNQEy2+fLx5fNOPq/k9cQ5PGDuGvI2t1BTXEjK5cDva99vsjxAW0ucxrICAo1tFDo19taaaSwI8F2rSu8KJ1WtYWbv1Y+SYfncPLSVTb4A5033cP3RXvYo1fG4VXRFZU3Igdehs2dvBwlVpbW6mMtLGhhVrXDxvGJK3BrTJsZIVuSxcVTfnO3D7KQlIDPRR8nAmRm6s6q7bH2WGQi1glzk9cyQl5Dc/wngSnbWM9efGaYTeTQzER05uO1q0rfhx1amesy/6pqamgynANjiHpDtbbDGxkZisViXtoX2AToR51Z8AE455ZQMN6iDDjrIcKIQsIP5gdYhFmGHoD2cmtUApizROZjDv8GW0GnnnntuxjLZeaojeEoMEsohxDqrjtwfcimRSHDqqady+OGHp80XkIZVns2QSzbnqfz8/JzhGf/2t7/xxRdfWC6bMmUK//d//2f8Fm+cyYNSH374YdZ9v/baax12vLJLlBi4FYOQIqRjWVlZxnbm/EJmCD0hM3iQTfKAfkchXuQwRHfffXfGgKoZeJFhoVmzZmVMy4PW2eAp80CurusZ7h1C5nIXQJDZUaWlpcUSapLzM2vWrIyLqxx+sCtvewoXEtn9ToBtZgeWbM5TQrLTidVyEUZKBjx1Xae4uNjSaUkoGAx2eNO6fv36NJe8bG5WqqryzTffAFvyaQUrmvX8888zffr0tHyJ/Zglr5PLsUfTNEuXORFOsCN9++23zJw5M8MByty2zOClgB3MYQStHGCsnKfEdtlc+6zc7WTJIBC0D7b+7W9/o3///jm3g44BzVz9nBmeeuSRR4BMAEY8hDXnOxaLZaTdHBpQaM6cOTv0ZldALqeccgqwJewfbLm3yAZ3m69V5nKC9FBu8vlrfmBtBf2IONBdlexWJNJoBRi++OKLab9lm2PYApFXV1cbDpXZJK6HBQUFGSFeKysr+elPfwqQFdb/+OOPc+5f1u23327cc4gwsTJsli0MrFnyfZX5WivfF8mOgrnCq+bSaaedZgxOmh0UO1I24Mwq5KGQFTwlrl3/+te/0ubLkFc2MNzWjtNf//rXjNCQ7777LtOnTyeZTFJXV8eCBQuMN197qstPT9f69es56qijMqBqGRLuLurpzlPr16/POCeFxMtCV111lfHfz9buJZfLxRdffMHf//53nnrqKWbNmsXNN9/MY489RjQa5YMPPuCdd95h2LBhxjZDhgxh2rRpfPTRR5ZhdM2aOHEib7/9NqlUikWLFvH6669v9QsRVnr00Ue58sorufzyy3nhhReMl0LE/dHHH3/Mvffey5IlS7Zqvxs3buQvf/kL11xzDddeey3z5s3j0Ucf5dBDD+XGG29k8uTJxssY7733HtXV1YwfPz7j5ZyPPvqIZ555hlGjRjFixAgOPPDAbtm/XHfddcb9qq3OKRAI8Oabb9LU1MRHH33EypUrCYfDPProo1RWVjJq1Cj22WcfPv30UzRNS3sRqyvSdZ1x48ZZRhnIppqaGsaOHWu089LSUs4888wuDxx2Vbqu88UXX/Dyyy9z0EEH8cgjj/D555/v0DTYsmXL1q4oM4AgzxPzreAWj8eDz+dLc50SwIAAAeRjmI8XjUYJhUI0NjZSX19PXV0dzc3NBINBA6CSnVtkx55sAIrZiUfkSc6Xpmkki/OI7jOC0tXrCJT5WecpQnE5qNAjpJI637W56edPMaxYZ2WzjpYCdzKBkkgRcGqkAl58qRThkQNxDupDfl4e7rJi6icOZUykicnDPLwwP0Wz3/c9ONU+bunxeAxXnPz8fIbPX4+vLcK/6/NxORR+2jdCo+rmb0tcnDnRSe9wGysOGEGbWyUajbJ+WBWN/cs5zV9PyuHgxWg5lVqU4wbrfL0kyrrqAio2NRshD2NtQYbPX0fQ62ZzSKGwxE1FbRNrJu9BuKwgDTRxu904/X5WHjIyDZxaVRRg1IZWShM6LpcrDdiwAqhEmctuU+ZwaFbOStngKbkORZg2q3TIyuUktTXP061grWyAlJWblRW4ZdVmRXmZQSZzGuTfMhhkrg9Rr+JbLjc5tKZwmRLObrquZyyrnrUUT30rNRVluLUE5YkILThprCpmwMcLKFhbx5KqcmKxBOOj9QT9XuY2alSX6BS1BJle3ZtNEZUbBrTR7PFy7v+83DU5ybjCOGt0L16HzrgyjVXNOsGSfH5W2MSoapVL5xVT4U5x08QE78yOsn5oH4rX1KaVuxkWEm1ZzqdcFmJa9F3ZXKnkMpO3FfUkA2bZgCoBfspOew6HA7fbbdSlAKei0SjBYJDGxkZCoRCxWCyt3Yk8ivWF65ZIs7xP8zlj1U53VYjKVrtCoRD//e9/+etf/8qf/vSntE9X1GPgqUgkYgmACGghW2gaMb8r2wLceeedFBYWGp+OHlgI5wArVwm/38+YMWNybp9LYrDUKkSh7DxjlpUjUzZ46pJLLukwHcJtQ3ZJ2LBhg2WeO6Nrr70Wp9NJXl5exj6Eo02/fv0ytjOHqBJh7IR0XaetrY22trasNtvQHirPHCpJ6MMPP0wDawRwJ4NF2eCdXJIv9vJD0D322CMNCvjxj38MwOOPP56xDytHMTOUISRCCeZSMBjE7/cbjhjZgKsTTzyRSCSSATN0FAJI3p/sXCTe9JPDInq9Xsvz0goYE2/3dRSiRNTT3XffnTbf7GYnwCUZfJRhFbF+ZWWlcUF97LHHsh539erVac5MIlSjOAfldAt3LLM6CoNlvqjLMJOsf//73xnzjjnmmGxJN8KkvfPOO1nXMYeasHJREvrtb38LbAFNrFwwOnpQqOu6AaWIcKUdrW+WubxGjhyZ0UfccMMNfPfdd1vlcDN48OAM4GPFihXGPgTwIWBI0Rafe+65jH2Jt1xkXXXVVUDmeS4AjcWLF3PuuecyduzYrCClXJfvv/9+hmuQcIr58ssv0wDCjt5wrqmpyfqGkxUUJObLWr9+PZB5ExuPxzP6I6s/XpFIpNPAi1m6rmftP3NJOFclEgmOO+64NLcPAT7luseQlUwmc4awlOFrOVQntLfXM844I21eNtefBx54oFPp+fvf/46iKKxfv94AduTrvgAUzSCT2XlKKB6PZ1w3zBKgp1niuiQcx4TrnlkHHnjgVg3OCfhZnBdyu80GaU6dOtWYltuhlUMawPHHH29Mizb/3//+N22drQkr0hk3TKt+z+v1ZrjTQHs/evXVV1ue41bwlLj3MjvbyPHFra41tnasAoEAX375ZUafcthhh+FyuaioqGD06NHGwxGn00l5eTmHHnoohx9+OG+++SZvvvkm//vf/1i9ejX33HMPzz//PJrWbmO/owf1bFnr3HPP5b333suYvzXugbuKeio81draygcffMBVV11lGf75nXfe6ZR7s62eL7/fz3nnncfPfvYzJk2axO9//3vOP//8Dl+COuSQQ9i0aRNff/11mtu0rKqqKj788EOOPvpoVFVl+PDhnHjiiSxcuJD777/f+G/2Q/S3v/2N0047jSFDhlBZWUl+fj4ul4uDDz6Ya6+9ln322YeVK1ca/1HEQ27AeJAu1NraygEHHMAll1yS9SW4VCrFpEmTOOusszjqqKO2q/PVztTDDz/MF198kfEMw1bnJd+vZ3vpTVEUXnrpJV599VXLZ49bo6lTp3LWWWexZs0a1q5dmzWUxN/+9jd69eqV8TLvs88+y7nnnrtD77X++Mc/st9++3HKKad0yvXfli1btnZHZXMQkmEBM5AgbyuHvzKHnxLXKgEWRCIRwuGwEUJOdl2RHXpzOfXILjvyc51sMI2iKGilhYQPHEvp6rX4vwendJeDSleSaFMETVXxKBrrwk7WN6VwpDRQwNEaJoXaDlA5dJI+Dx6nQt3IvoT6lrNx/CD2DDWy33APL37X7jg19JOFBjglQxkyCDPqi+U4QjEeXeYhzw0/7R2m3u3nb4tdnLGXg+pgC2sOGcOGCUNoHljF6b4Gkg4HL0TLqNSinNwnzjtz4yyoqGDAwg04Q7G0sIruhMaeX68k5HOzKQgFpekAlSi/lMPByoNH4tJ1+rg1ws1JVhfnMWZNM71b4mnuPVYAhhmKsoLcrCAm8zpWMJ+8bS5oK1t7ztZ2rACSbJBJR9CJAF2sQumZj2eVJvl8k8GZjkLzmdexKi/ZaUlug2IdGXSTQ2oCxPweYqUFOBMJgoqLNtUFCpDSaBhQQWDVJjz1zcz2lZGKJ9krtJlwwMeCNgfDinTyg2H+1FjCatXLpZN0ogk49x2VNXE3xV6dMVUKCxqgJa5ywmCNsaMDXDK3kHJXklv2jPLUZzGm51VT+d1avK0RSwBPlJvZBSpXuxHLrMpWLicBJ3k8HgOykt2ezNCflQOVub7lc8TswCfAU3mc1AxtmZ2snE5nRv2bzyGrtrerAFS289QWzZ49myFDhvDTn/6USy+9lNtuu40rr7yS3/zmN50e6zLrB8FT8+bN4+mnn+bOO+9k2rRpGZ+uvjnfFfl8PstBbAEgyO4M5u3A+o37jraF9gHJlpYW42MFLsn7FwOLd9xxBw899FDaOqtWrerQGcQs+aS9++67OeussyxBmlxwjAwVdeQ8ZXYg0HWdr7/+mqeeesqYJwAr2XnrkUce4dprr03btm/fvjz77LOWFz05HI+AN7788ku++OILWltbufDCCznssMOMdWSoRIQ7MMNTZkhMvD0F1mF2zHmX4Z2t0TnnnMOMGTM6te7atWsty0OUu3lwWbw5vnr1ahYuXJi2jRVIlCvkXEcSbVeEuDQPxAu9/vrrRtlZWXibJbuuyGH1RDmIB8Jy+Difz9dp56n3338fICOUXDYJd7hsuv/++4EtYI/5QWVHcMbvf/97Iza2ruv079/fCAkFcPLJJwNbgAq5//F4PKiqytVXX522TzOM0NGDNBHuUVZnwBBz6FHRto466ijeeuuttH5ASH4jsbm52YBYrMAD4coTDAbT3LJgS5+Q7cG3fF6LtiE7uQjJA/qapuV03jnxxBOBdrDO3N7vuOMORo0ahdvtzujLrSTqpLS0NA2uHDJkCF6vN83Cf/DgwQCGLb85TKKu66xatYqHH37YuAkE2GuvvYDMflqmqx9//HHmzZuXAQUK0OWoo44y5r3xxhsZ4cN+8pOfoOs6++yzDw6HgzvuuCNnvocOHcqyZcsyrkEC/IRMeErAJ5988onlPs3tPBuUYpbV4Mqjjz6adX3z9dzn8xmhFXMpGo2m5Wfz5s2WgFhHoJD55jwbZNYZuVyuDCc0c7g5gE8//ZQrrrgi7U+UkOibhES76tu3r3FeyvUgYBlzeAmz85RQNnhKDkH45JNPZmaOLf27cLYTA83yQERDQwMAgwYNytg+EolkhLmT9eabb2akOdsfpdLSUstQ0NnaqQxGZWsTnXFqevXVV4HsDqZmhUKhjD5yzpw55OfnZwC2o0aNMv6QyrKCOAVoap7fu3fvTqXL1o5Tfn5+TndJs+rr65kxYwYffvghJ554IieeeCKHfB/m5te//jWnn346DoeDgoICBg8ezFNPPcUNN9xg3IfZ2n7SNI2//vWvXHXVVcZ9dTAYtCx7j8fDoYceuoNT+MPVE8P2rV27lgEDBnDEEUfw0ksvZSw/7rjj0u7LbNnqqlwuFxMmTOCRRx5h5syZ/OlPf+Lqq69mjz324OCDD+aDDz7I+G8A7S90XHnllbz44ossWbKEBx54gNtvv93yXmprVFtbSygUSruvaGlpYfDgwRQXFzNu3DgGDhxIeXk5Bx98ML169aJXr15ceOGFHHrooRQWFmZ1GTXr6aef/kFp3ZV1//33c/HFF7Pvvvvu7KTsFvJ6vZx88smWDtVbq6effpoBAwbQv39/Y5BJURT++9//smTJEm6//fassCO0h0XP9rLItlY0GmXatGk75Fi2bNmy1Z2UCy6Rl5vhKdmZRZamaUYIvkQikQYjiP0Jp5WWlhaamppobGyktbWVSCSS4TDVGVkBPVaQjoBIXPEk+TMXoa+pY2PSA5pGpStJuClCW0kJFbE2BhdBfZtGW0JlXKKZwfX1hEsKcQZjJBUnjliSQi1B3OXEqSj4Yyn6rK7Hua6N974IEVMcDPtsMb6EbrjheL1evF6v4Yojl++I6d/hDkb5x1IPjnCcY5Q66l0+/j4P/m8vlWKPTtugKk4INJJ0qrwQKaVSi3JSnzjvzImxtriEgTOXobaGDGcaGShzxVKM+HwZIb+HTUEoLPNQWd/Emn2HESorQHc6WXXoaFzo9HWniDQlWVOSz8iVDfRpTaQ5VAlQwwpikoEQGRzJBgNZtTUzbGJVn2bwx2o7sytRR23KDJl0VlaQUkdtsaO2LfYnh5+TIUH5Y3adMpeTvB9zO5QByGQySTweJx6Pbxmr8HtYc+gYAg3NVIRaSYUShB0uimtqqdq4mbbepdSMG0je7OV4V9Yw119OMppkQriOYMDHvLCbYfkpvKkkT6zz01gf54bxMZo1J00RnVOGQ01zirakg4PKY0ypTHDNZ26K8hRu2TPKX2em+MJbSvWyjXhbwkSKAhntTO6jhEudcGaCzP7Bqu7M4JTL5cLj8eD1evH5fAQCAQKBQJpTlXiJU7wsY3ZXM4cvNQOkZtcqAU6FQiFCoZCxnahfq7CBuq6392mS01YugMoMxO4q0vVt9+nuuuqqqzjhhBNoamrC5/Px5ZdfsmbNGiZMmMC9997bpX12CZ5qbGzkuOOOY/z48Zxzzjn89re/5eabb7b87ChVV1enubcIiXnZnFZKSkrweDxd2hbaH0AXFBSkfawkBsQEgHL33Xdz+eWXp61TUVHR4ZvA3377rWHXv3Tp0ozlTz/9tOFsUlFRYcwXJ7qVi0w25ynR4WXTn//8Z1RVZdKkSWkDe+PGjQPSL2YjR47McDpZu3ZtWsg7WQ888ADJZJK33nrLGAgUzkCFhYU8+uijTJ8+3VhfBkwmT54MZLr0WIXtE1b0ZjgBMgfaza5gAt6yCvkoFI1GCQQCHHzwwei6nhG+yCzZuUx2NhJglHlwWX5LwQxMWDlPiZBDJ510UsaxO+sMJo4pQoBYvSUtVFBQkBZ2zkpjx441puW32ARsIUK37bnnnsayzjpP6bpuDAxahXY0O/rkeotdAE7m/ZgBBKuwVUIPP/wwN998s+UbjXKdpFIpS3gK2vNobpsi3eYb6EGDBnHhhRdmHMsqpJnZYchKF154YdYwlMceeyw/+9nPjPoU7UQOHSVctLxeL3vttRe6rluGf7z55psz+gvRr8jnfTYJSMIqnOWaNWuMaYfDkRYWE9pd8oTeeOMNY1q4HkFmm7/00ku5//77eeaZZwznPVnmB5tW/Z7IH6RDaVYSN7EiTKw4v0ePHo3H40lz/wEYPny45X5kWcHOnQEOra4RsrvWpZdeaul8KId+/fzzzw3HINgCyGVrk+Yws51xLILMMLkAF1xwAS+++GJGu66rqzPeKpaBO7ObjpU8Hk8a5Le18NTxxx/PgQcemDE/m/PUnXfeaUzfd999ljfxVqEXrZwyhdMfpP/p/cUvfsGrr76KpmmWAJnIr5wn+R5EVjanvEQiYVkmW+PIKYCA1tZWBg4cmDboIELWOJ1OdF1Pg7K8Xi+PPvqo5eA1bIHCZSfIbDLXk+z8aAVPyec+ZMJmsuR7RDNALO5FHA5HhsOdlfx+f4YDlK7rjBw5MuNeUbgMmq+74s+mkKIoRp9uBl3Nf7Q7AyLa2v7K5S7ZVWmaxqpVqzj77LO56667OPLII1EUhREjRvD73/9+l3rQ0FN05513ctFFF/HAAw+w7777cuutt3LddddZrnvIIYekQfvdRT3Reeree+/N2RfK4U5t2dpW2nvvvbnsssu49957Wbx4MTNmzMgZoldo2LBhXHHFFfzmN79h6dKlzJw5s8OXKLqiVCrF3LlzWbNmDc3NzXz88cfU1tZSW1vLo48+2umX0nZl+Xw+Bg0axJFHHpnzWVJRURElJSVpLyUeeuih1NfXEw6HOxXi3ta214knnsjRRx9t/C4uLrb8Tzxo0KCs4Viz6bjjjmP48OHGi025dMcdd1i6xm4r6brOk08+ic/ny+paLXTZZZfR0tLChg0bePDBB20nNFu2bPV4Wbn9dPQBjLE28UxTdkKRw0oJ0Eo8R0kmk4TDYdra2mhtbTUcpwSwIYfos0qbDA+Yw71ZObuAteuMGo3jrG+hedJo8DioDECkOdYOTiVCVPTKY8XKMK5wDG9bhEVxHxVFTvZobqK1KA9XME7c4cSZ1CgmRTTPR+2AMvKbw2zy+Gn0+Bj8zUo8sfb/euIlvlgsRjQaNVy2RBkJiGLY+3PxtIT4V30B+YrOsdRSl1fA39bkcea+Hg6vjvOZs5znI2VUpiKc2CvKf78Js7aklOoZc3HUNBCLxYxylEOIJZNJ1HCUQR99R9jvoaZVJ7/YTdnmRlbvM5RlR47DqWv0diUJNSVYU1bA6NXN9A9p+P1+8vLyKCwsJD8/n0AgYIRqNI9fWQEtZpDEHMpPyAywmN19zOVlFfJPfjnJCoaSASQrqCkXOGUFnmSDwuT0dxTlwspNyEpWLlNm8MdcllZOSyL9MlAlh6UTivk9rDp4FPktQfLz3QRbEugKeNfX0VJUhA6Ubq4l2K+C+r33oOCz7/Cs2MD8vAqSsSTjQ7VE/B7man6KCp34FI1n1niZH/Zy5SSdfI/Cv7/TaU44OHFQgk0pD7/6zE25O8X1+8M9S3x86y2moqEVvTKfTXv2p6VXSVqbsiojwLINWtVZNrBNbpty+coh//Ly8oxPIBDA5/MZLxLIx5PPEQFJye3Y3L/FYjHC4bDRN5phKHld0cfKbljm+ja3Catl8r5t7VzNmTPHiJzhcDiIxWL07duXe+65x4jYtrXqEjx15ZVX8vbbb3PYYYfx+OOP8/777/PRRx9lfDozyL2tNG7cOJYuXWoMJgvNnDnTWG4lVVUZM2YMX3/9dcaymTNnMmjQoAwHlB8iMQBllgCiYEvHv3TpUiPUkfiMHz+e+fPno+u6MYiW7QHSV199lTHv7bffTnMfyuZY884773T4ULojlyx58FAOn2XVoUyYMMGYFu4pDoeDY4891uiQrN5wFFCAcGACDFtrMwwgHLbkDl1MW7WPU089NWf+xNvc5sFeGc4wD5ROnTqVESNGsHDhwowyMD84s3q7q7OQAFg7T/3rX/8C4Gc/+1nG+nLbVBSlUzANpIM4ViHZTj311Iw33Ovr6/n3v/+dAZPJaRXh8YRbhQwceb3erM5T5guaeKPVDJQAnHbaaWm/czmPZHvbztw/WIFJQhdffHHWZTJM4nQ6s7q/WckMI4i2pWla2rkhy3zRkAGMbA+7lixZwuGHHw5k5ltozpw5xs1SZ/R///d/abDArFmzLNcTbevYY4+1XC6f1wKessq7GXA1wwPZYFkZVt1jjz0yll955ZWcccYZPPbYYxnntghHKKszLnBW7jWQ3Sb0k08+2aowgtk0ZcoUIDN8m9VbtmYwa//996e0tJTW1lbOOOOMjOvELbfcYkyLtJuvVWeddRZABngp3MfkG2rI7sgk8tGRTjnllIx15Te4r7/++rRlcrtatGgRuq4b9xBWDoVXXHGFZRqzhVcTzi2ddZ6SXR2zhVezGig3O9hlC08L7WEjoL3OrAAy0V/J16dsoJkA5cx/NnJd32SoUb7GAmkgutj+jTfeYPXq1fz9738HtjhSyTIPFDqdTqZOnZoB0yuKwgUXXAB0LiReKpUy1hN5FCCR1fkpD4iBdbsV4JcMbgqwXEiGHcU5+NZbb3H88cczZ84czjrrLO6+++4MsFwGXMUfTHM9iPsDs0OhlfOUGOzP9jKB0I58wcJWdp166qmW17TtocWLFzNt2jTjXtTWtpMM9sdiMW666SYeeeQRy3Xl63B3Uk+DpzRNy+lcOmPGjE4Bu7Zs7Qw5HA723ntvbrjhBmbPns0dd9yRBuDbaldpaSmHHHIIJ510Eo899hhNTU0sWLCA5uZmVqxYwbvvvsvGjRupr69nw4YNaJrGggULWLx4Mbqu09jYSENDA42NjcybN4+PPvqId999l9LS0pzu+La2r1RV5a233uLrr7+mpqaGxsZGotEomqbx2WefcdNNNzF9+nRWrFjBggULjPDf21rRaLTDlzO7okQiwZIlS7jnnnvS3N+t9Mwzz7Bp0yb+9Kc/UVBQQK9evbj88stzumbZsmXLVk9RR0494rccAkt2GzSDHzLkYh7fSCaTRKNRw1klEokQjUYN2EoGr8xpMbsZWUFUVrICTHQgNGk4rmiMXrEQsY0ttBYXUZEIU14dYOWqMLrLxZiZKxgzcyWqpjMv5qOs0MHw1hZaCny4QnGCbjeBtii9IyESHicrRvchv76NAd+tw5naMl4nQAkBiMVisQy4KaVpNAwoZ9Cni8nf1MxroUICDji0OEKz6mHG8gR7BOLURRWK/QrH90/w328jbCgvp/S9r1A21Bn7FWUpw0YyQNXvvW8JBzzUtGnkl7pxuRRSPhflXp1gQ4x1ZYWMWF5P37b257fCfUe47vh8PsPpxipUWK5PNvhJrisrGKkjcM4K3LKqfyv3IbmtbM35Im9nTnMuhy3zsToDrFhBgObysoLAssFBsMWRyQyq6bpOxOti0T6DKWwNU5DnItgSJ1RdStX731I5fQ7eDQ3UlbePK5RurCE6sIrm/UaR/+l8PCs2MNdfhh5LMlINknA4aQhpFLl1VOD1pdAU1hiYrxFMqZS5U5wzMMbyJp0SH/xunxSPfppgecxNXjKJw6PSqjhRNZ3KhVuia7T0KiHm96Tl01ymZnBKrq9s7SEbcCXKyexK5fP58Hq9aUChVd0BaRBhNshQ9BHxeNxwkDPLDAvK7mTmY5rbV65lOwue2hbh+sSnu0sO61pRUcHatWuBdjOPbNHiOlKX4Kn//Oc/7Lfffrz33nucddZZHHbYYRx88MGWnx2lU045hVQqlRaCJxaL8fjjj7PPPvsYDgtr167NcA055ZRT+Oqrr9IAqiVLljB9+vQOAZqtVbaHHPPnz0/7rSgKQ4cO7dSbwdnKWbhmmCXnSQwSzp8/P61DEdDZD5H8kNvKJUiW/EAhW6gmcxmBteuRGBC1CmNnDtsngBV5YFZIuFJlk1xeMgghwrpl22bhwoUZgM1rr71mmQbzti+88IKlS5qVrJynBFTSmTfgbrjhBmNaDr0mS4aNnnrqqawW/tOnTzfOwcsvv5ySkhJOP/10TjnllIx1lyxZYkwvXLjQ0mp/a8L2icHqbIPyP/3pT41p87FE6CdIByZyDXbIlLQcmm5r38zN5jwlJF+UZQhSbpfhcDjr9rfffnvab9lZyWz9bxXWpyM3IxFCSsgc/k2WDA/ss88+7L333hnQ2NaEhxAwVjZwbEdIAATZyt/KQcgsGVCTBwnlPkCGiDpyeeusRBhTMwxp5ap1/PHHp/0Wbl35+fk888wzGTeq5rdorSDcbICcHAbU3P9aQUVmmLojyQCB7IJnfvh75plnAu0wrDgPJkyYgK7raUCOAARmzJhBPB7PSGO2P5evv/46b731Vsb8RCJh2W46A/QIycCKcPc77bTT0HU9A6qBdmcu4boky1y2oq+U02cFrEJ7mFnzuuLPT7Z+WoYaRThAIRmUzra9lbOaqqqWMHdVVVXWMKadeSBg5TwlrkOd6ZPkEJ5Conzl61tH92n5+fkce+yxvPnmm4wdO5Ynn3yS6667LgOSkyGsTZs2WZ5P4t7BfJ8ya9asrE5ZHTmGibCP2/IFBVtbL4/Hw3vvvZcRlnN76vrrr98moK+tLRLhMjujzjjM7IrqafBUrnCWXq93hz5HsWXrh2jcuHHccMMNfPrpp8yaNSvj5YvdTYFAgMcff5wFCxawYcMGPvroI1577TXOP/98ioqKGDlyZMb9amlpKb169UJRFEaOHGn8J5HvO8eMGcMhhxzS5RDetratVFVlwoQJxvNa8Rxmv/3245Zbbkl7efCoo45i48aNPwh0Ei/V/vjHP06b31FYyng8znnnnUdxcTGKotC7d2/22Wcfbrnlloxw3ND+P61///4MHz484wUiWffeey+NjY2cccYZxn9KW7Zs2dpdZQUrmV2dHA4HXq/XAKfS4B8J0BF9s+xEFYvFaGtro6mpiba2NkKhkOGQJIM+Yn3ZoUlABOaPHB7QDArJgIgIMej3+wkEArgG9cGVH6A6ESMe1mjuXUWvaBvlVT5WrgyTcjgZPXMFzqSGlkwy9NMlkEgxO+Si2K8ztKmR5jwf7qYQdQE/SjhOWX0LrcUBNg0sR4+1p0vkIRwOEwqFCAaDtLW1pX3C4TCRWJTNI/sQy/dBSqPPF4vx1rbwcrwUZ7GXs/qHWNji5uEVeQwtTPHjgQleqs9nQ2UlRW/PwlHTkJZ3AV+IYwpATdSlI5qg//uziQR8rPTmUxmAKkeCte4AG3qVsceyWno1RzPqUHYIE2UrgBLZxUh2MrJywrFy5rHa1ry9gK/MgJQVAJINArGCmToDVpllBWTJ6c92DCugKhf8JbaVv+W8mGEZ8TFDZmZgxgpaE2BQIt/Hwr0HURKMUljgJhrSCFaV0HfGfHytERRFofSz7/Csr6O+ohxUldKNm4gNqqb1gDHkfTIP78qNzC2sIp7vZ7QnSAKVTXEHBR4ocms8scDBgkaVvcpStCRUpn4YYEihxp0HJPnjPBdL4x7yY1F0t4OagnxSqkrVgnU4vm9zrf3KaR1QgUsno7xFvuQwhMLNLlubEW3Y5XLhdrvTnJysQCvxLbYTIJVwofL7/Xi9XiO8n/zs3sptytyHxuNxgsEg4XDYcrxUBlUFpCpDrWZ1dI7sdNcpm54yNH78eMOg4eCDD+amm27i2Wef5corr0wzLtoadQmeSqVSOR0Kdob22WcfTj31VG644Qauu+46Hn30UaZMmcLq1auNUGXQ7mhhBlcuvvhiBg8ezHHHHccf/vAHHnjgAY444ggqKysznBl+qDqyG+yqtibe/euvv25Mi8FSMeAtTvaf//znDBgwwHL7M844o1PHEU4NsMUpIpt7jxxeK5s7V7b5Zsnh3WQ9++yz/O9//0vrLCdNmgRkD0/1xRdfdOqY8kCpgH+sYC+zRAd70kkndeomIxKJpA3qQ7pjkSwr5ymhzrgMyAMx2QY3ZXcq2brcSmvXrkXXdR588MGceZXfsh41apQlpPPxxx/zzDPPZMy3yrO4MbUKlwTkdEB4/PHHjWk5XJI55GY27bXXXjQ1NbFs2bI0GC2bBBELsGrVKiC785T8sEsO2wdbzuNQKJQVYMglcV4IyaH1RP1kC98ndPLJJ3P++efzox/9iGg02mEIONmdbtasWUZYTCERGvSqq66y3N7KeUq4tWxLZQulZ9ZVV13FggULOh0OUyjbefTYY48Z0zKU11lZucJlU1f7YF3XOyxzVVXT2qRVOM1sxzG74ck39VYDCddcc03OtJi1ePFiy9AHItyk0AMPPMDbb7/d4QPw4447zpj+/PPP0xx+OiPz2wzZ8rk1uuaaa4y+TPTxVk6EQo8++qhlHeXn51s6qsnwc7Z+fr/99sPr9abdD4l+ujP5mz17dtrvzsBjWwuG/JC3+a2cp0TfbhWmFNiqtrE9HJvEGxjnnXeepfOUOGeDwaAx7z//+Q8Ar7zyiuU+rUAxGVYW6sihytb2V79+/YywnNdddx39+/dn6tSpPPzww9xwww089thjXHTRRRx00EHsv//+nb4fz6b169fj9Xr5xz/+QUtLS9q9j63tq9NOOy3tfqs7yfwf2spqvjsp16C0+b+eLVvdRZMmTeKKK67oEaH1uqKf//znrF69mnPOOYeRI0dmff5ga/dTdXU1p5xySk4nciudfPLJaJpmQFrm/22ffPIJRxxxRNpLFeFwmGXLlvHiiy/i8Xj45z//afzH3bhxI7NmzeLmm2/mV7/6lbHNww8/TGVlJQMHDsz5suYll1yCpmlcffXVGe65tmzZsrU7ygqcMkuAH/LgfEcuQ0AaECUgKhl2kgEPGSgwQ1lWzkPZHIzk9FpBEUWtUXrNW0O8MU5dnyr6tLZQVulj1YowKYeDkZ8vxZlIbXHc0jQGf7wQEhpzIh5K8hT2qK2lJd+Pu6aZdaVFaMEY5Q0ttJYEWLXXQBISCCHybv4kk0niWpI1h+5JNODF6VYJF3rZOLofalsETVH4bA14HLB3bx2XU6Ffvs7SWo3WuIquaeihSEYZirIRxzEDZQCOlA4pDR2FYExHS2poKKCDK57+go/ZUcwc0szKwcjKISkX1CG2ESBMLncgK9DDCozpKgzSkTtVZxyezOvI+TG7RJn339F3NhArWzlnO7bVJ+J1MXtsb0qCEfLyHESCGo0leewxawW+1khaOZd82g5QNVRWGABVfFAvggfuiRqMoDsUVjWBx6EwsKCda0mkdGKagkOBkeXgdeg4HAouVWFcuc70lRprWxTcavv8WFxDUxWUaNxo5+tH96N2aDV7BaJ4y72s27MfSWf6M3UzmCQgo2yuUlZuYbnq1Kou5HNA9DmdcWiz6v+EA5WAHq3apRmCk88fc1lYfcvpsLXr6I477jAie91+++0UFxdz0UUXUVdXZ0RU2Vp1bH1hob322muXfKj31FNPceONN/L000/T1NTEnnvuyX/+8x8OOuignNvl5+czY8YMrrrqKm677TY0TeOQQw7h/vvv79B9qDOSB7q31yDRb3/72y6F3hAw08qVK9McTHKFz/nVr36VdQBQhFiD9ofC119/PYqi8Otf/xpoB31uvPFGy20/+OCDrG5ZQldddVVOZyfIDskIyTeqYiAw2zbZgA8rR5Mbb7yRW2+91YCmuko0bq1OOukky/lWzlNCWwvx9e/fv8N1ugLpZFN1dbXx0CYQCBihHM2S2yy0D+yaHT9eeukloON2YdZ9991nhKiD9rc9S0pK0lw2OgLGoD10VbbwVWYJdy5oH8SG7CDJ0qVLDfcAOWyffKGPxWKdCvtnlrms5DIV4es64xYiAz8dqbW1Na1dmp1fVFWlvLw8bUA+201KrrB9AEOGDGH58uUZ8837++677zLOYyv3pWzqjMObWdlgyIsuushwQBL10b9//4xzIJtyOXc999xzab+tABYrqEhoa28W29raOt0HxWIxy3NXznc2RybhitW3b99O23OaQals6sy5b77e/1BAIFs+t0aBQIClS5cybtw4o0y66m5x2223cfjhh6e9WZ3NbSgYDBoD9jJcJCTcGzsbllZWZ4CrrlyfHn74YUvXrY70/vvvp0GEuq4b/U22e5xDTCH4ZAlwVKgjELUrkstn6dKlGfUwePDgjPVOOOGErT7OM888kxEq9dBDD7WEoW3teCmKwt133501dK+QeBCxefNmfvOb39Dc3MygQYOoq6tD13XDvbAjnX/++cY19Wc/+xnHH388yWSSH/3oR3Y4ok7q5Zdf7vSLHgB//etft2Nqtq96kvPUb3/7W+bMmZMx/8wzz+TXv/51Rih3W7a6mw4++GDC4TBtbW3ccccdlqG/u4tOP/10rrjiClpaWgiHwzQ3N3PuuedmrDd27FgeeuihbfpMxFbP05///GeOPPJINm3axKmnnsrnn39OLBajb9++PPjggzQ0NBAMBvnss8+45ppruO2229Ke7xx77LEZz6Q++OADPvjgA/bdd1/69OnDyy+/3Kn/5w899BDffPMNqqry6aefdrj+008/bTgw27Jly5atTFkNtCuKgsfjwePx4Ha7DWcbsQy2DOzLUFMqlSIYDBIKhQyXJeEEI8NTsqOQORybkHwdEfCO/F9KAAoC7jIgHo8bt+rAZXIEivjdrBnbj6GtLeT1zWPJugQpd3uoPqeuENdSaInvHbEUUJIp+nw4m3WHjmWu7mHPYp2hDfWsKivEX9tMzeAqCprb8KPTXFLAuklDKP1iIWqi3UVG5E1Om+JysPnwSehOFbdDI9EQomaP3ijBKLHBVZyireNzpYK/r/Tzk2EpftY3xlNr/KQ0B6eXN/HBnDD1Jx9Awasf4wvHjXISblGpVArNoeLCBNO4Xaw5bBweTaMy1MzqQBGa4qE6EcbRHGfBqGocizZTFU+hKIoBniSTSSPtoixlWCRb2Dq5fViFs5NdfLKFvZOhKnN76Kgdi3Yp3H+s4BJ5v9ngQbPE/lRVNepWlI1It9PpNPYvO0CJcgXS2oU4jhySTRxfLguRbhkAEmkxoD+2jLGJNIpjiXNHPk7cobCwTwEV4QTePBfhtiT1RT72nLMOtS1K8/cgoNhWURRKP/2OpgPH0Ni7grLaespq66gb0hucDoZsXE9dWRnfhAOMLtcZX5pidkP7eIDPCdG4htfvxK3qlPt0XlvuIK47OawyxqI6hY1OD45YgqKNtYQL8tg4sIyk10OkdzGTk43EdVhaWU5BbQt6JEqCLe5MIo+iHxLpFW3VDPqJchN1YgW/ibq0cgeT54k24HK5MkBTuX8TaRTtwuxOFQ6HcTqdRKNRY79yukQfKH47nU6jfza3DzNgmg123VnaVqZRPQEDmzhxojFdUVGxTUKnd2kU7sYbb+TYY4/l008/5YADDvjBidhW8nq9/OEPf+APf/hD1nWyvQXXp0+fbRov/tprr+UPf/gDTz31VBr40REc9EMkO/Z0VuJCPGrUqLSLWSKRyDqIOW7cuKz7s3qQJCvXoJ/ZacZKd911F/fffz9Lly7Nmt+ObgLkjlC4Y2XLa7Z9WYEjhxxyCLfeemuH4fe2hyZPnpzhqJZKpbI6T2XTbbfdlhFWCzoGZaqrq3+wE4Gs9evXGzc0nR3oicVihquaXMdiEG9rHVus3KXM4Ym2xvGtqzKX/eTJk/niiy8YPXp02oUc0p2nxM252aWlM7ICWwYMGGCE29oeMrdTKyeWZDKZdn7Jf/bkOhfh3bK5IC1atCijPVi1s1GjRvG///0vDS7Zlte82bNnM378+LR5ZlCoX79+GdDNH//4R8A63GhXdNppp6X9tuozOgsVdUaKonD66aenQVtmwLCqqopNmzYRDAazwlNC2a5XgUCAN954gwMOOIAxY8Z0qbzkcJY7SuPHj2fy5MlpbRoyw8F1VmZYBdqd3kR/9kMGeczQj1UoVmiHJER9p1KpjHwIeKor+ct1/f4hf2IuvvjiLsFTDQ0NBsAp6lA4X+UC8kePHs13332XNs8q/VZ9kDlM8dbK/Oa4GS4VoPkTTzzBhAkTunwcq2vLqaeeasNT3UzirdNBgwZlwLdCy5Ytw+FwsGDBAh599FHDqSybnn76aSP0jN/v57zzzqOgoICrrrpqp4bg3ZX13HPPWbq5ZdOECRM6DfPviuop8NTHH39sGcr7iSeeyIBlbdnqzvL5fPh8Ph544AEuueQSli9fzq233rpVwOfW6IknnmDJkiV88cUXHTpfHXDAAfz0pz/loYceYvHixZbrqKrKRx99ZPki5tlnn42iKHz55Zc88MADVFRUcMstt9jglK0OpShK2suP4mUfyO5QK8vtdnPGGWfw0EMPZSz78ssvtzo9n3/+eYfrlJaW8umnn1o6wtuyZcuWLWvnHiFFUXC5XAaYJAbtzQ4t8kC8HH5PDhsnb281oC+OZwYAzG5WctoENGUF8dQP7YXqcNBnTcMWdx2/m1XDq9mjqZlA/wDzNyZJuL8P1ZdoT1d9r2IiPjdqJIrmdFC2YC2qDn0/msu6KeOYF/WyZ4nOoA11rPUX4N3cRN3AKoo31FFQ30xTZQnRY/em8qWPjbzKZZ1SdOqPbAen8sJhkm1RgsP64lpXS7xfOT9SNxJxO9mo+fCpGl9tUilWnaDr6LrCO0s0fj7JxTNf11P3o4NwvvEZrmgy7Rhxj5PNew+javYqPOFYO5zhdLLm0NG40OjtTNBcF0H3FqIA4dYkvYpdqM1B5o2owrW8kcqYtVOy7GRkbgdWzj3m+srm7pPN/UduF9l+i3m5vnNJBpyslpllhq7kdWVgCdqfA4hpM0SVbdxTpMcMEsrH76gcrOpGPJOQj5twKMyp9NM7kiRW4iTUkqCu0M+EBZtwBWOEpXPUHEau5NPvaDxgNPW9y/DFouB20VuNolfk0+Ly4VJ0NrQpFLi2PEt1kuK7BgdVUZ3hZQrzNunEUXAqOl/XOijxgz+YJOxyoms6geY22gZVo/k97BvaRFxR+MZVRkHLZvKXbyRhKnuHw5EBBZn7KCtwSF7Hqt7N9WqGkeR1ZHjQDDHJ860+mqaludSZ4UG5Dcgwlvy82py/bL/N6+8M6Xr7Z1vsp7trypQpvPLKKxnPPVtbWzn55JOZPn36Vu+zSzHkpkyZwnPPPcePfvQjfv7zn/PQQw/x1FNPWX52V1155ZXccccdliHuQqEQa9euNcJyvfvuuzskTVa0nXBJEhBRZ5ynVFXNOniWK/wPbBn076rcbje6rqeFUNtayTeRY8eOBXIPHr/11lud2u/2CIMhBpJkbdy4MWOex+MhGo2mzdM0LY2o7ox+8YtfdCGVW0IVbit15EpjFWpPdirq7M2aUJ8+fTLmdSYU1I4IN2SGCaxCtslh+0Q+RXvIBYx89913nR50l2Gyyy67rFPbbK06an9NTU088sgjRn4F1f7nP//Zsn6zWck7nc6MAd8LL7zQcl3zA/PKysqcadwajRs3Dl3Xsx4b2sOmmSUGBJLJZJcAka0NJThr1qytWr8zMttlbt682XJ5JBLJug/ZeSobHHnCCSdQXFxsCeN1BpiW3RR3lLJBUrngKSvXyeOPPx5d1zn99NMzlomQvdC5P8KdVbZ+8/nnnzemxRtXssS5nAtyzRXiSNarr74KwE033dSp9XNJhsEuvfTSLu1D13VjsCGXE2pHcIlQXl4e++67r/F7+vTpGfD0D9ULL7yQ9rutrQ2wDrO5tTLDHl11PrO1a2vo0KEMGjSIE044gTfffJPa2tpOQ1DhcJiHHnqI22+/nbKyMqZMmcI555xDXV3ddk5199LW/qfqjGPorqyeErbv7bfftpz/k5/8ZAenxJatHaehQ4dyzDHH8OmnnzJ79my++uorZs2axVVXXcXvfve7Lr+ccueddxqDImeffTZ33HEHH330EalUytKa/4wzzkDXdT755BMuvvhiFi1ahK7rzJ49mz//+c98/PHH/OY3v+Hkk0/m1VdfzXrfJv5zT548meeff56HHnpou4SLt2XLSjfddNN2caK10pNPPsnq1attcMqWLVu2TLICCKwG1lVVxe/3G2NsIiSc2T1K/sRiMUKhEC0tLbS1tRGLxYwxHvGitNiH2WUH0gEqeX05DJ1wg/F4PPj9fvLz8wkEAgQCAdz5AZTifCamgjhLvKwZ3gvt+30piSS9l23CU9fGmlURSGqM/nI5zkSKuJYi6HEQ2NxEW0U+oWGVjA3Xk/C50TwuHLpC/4/m4WgNs2RdHDbWUzxrMf4l68hbup7GXmUE/T4cqRS4FOoO2ZOI25EW6i6l6NQdsy+aU8UfDJJoCdM2sBeOTY0kepdzsrqBJrebtxLV5CciFDlSrK9P8E2jm73jmzg0vIam4lIe/87Jzya5qWhppOmkA4jn+Yy6Cxf52bTPHvjW1aG0hggX+NCcTlZNGYML6ONOEWxKUNe7kuqvljHsvTlEAl42BxXyi130bg7y7dASGgLONPhGAGoiLJlTcvSSQSKzu5SQHNpMdmiSwR6xfyvAyiosYDbHKys4ywpAsVJnYLBccJg5nyJPIv3ivFJV1QjvJkJLymUrb2cV/k2WOe9mFyzZuUret9PpxON0MSwEQyLgb9EIe91MXt5EXjhuuDcJ6EuEwZOhwJJPv0NtDRMsKmBQuJFASysrHIX4knEmJmsJBxOsaVPZuyDCyb1DtCUcONGpDyssrdMYWaGS59BwKtCiO1nbpvLPfdvYK9lEW68ywn4vutvJBK2ReErjK0cJrvV15M1aRDQaJRKJEA6HCYVChMNhotFo2jij3G4EbGQV8lPUTbZwoDKoaQY85XXMrlaibj0eD16v12jfYnuzC18ymTTA01gslgGrmkErs6udVbpk7SrQlK1MzZgxg3g8njE/Go3yySefdGmfXYKn4vE4r7/+Ok1NTTz55JNcccUV/PznP0/7nHPOOfz85z/vUqJ6gvLy8rjhhhssIRC/30/fvn0ZMGAAuq5z5JFH7pA0HXXUUVmX1dXVpV1AcsFTAF9//TWpVIpXX32V/fff35g/YMCAnGnYUWE4fvSjH6X9loEjuYOeOnUqeXl5OWEdOXRbLm1L5yWhM888k82bN6d1xFaQltfrtYSnxMVB3j4X+GIV4s0qdITsjvHLX/5yhw/IWL1pb/UGuuwulkt33XVXp45rPsb2qPOOJA/mixstAdPIf9TEslxA46hRozr9IGzy5MnG9PYABQGuu+46Y/qaa67Jup6ArARwUVZWZizr6FwRMrstdUYnn3zyNgVNhHK5q+Xqt80PTfv27Zs1LCq09+vNzc2dard33nmnMT1p0qQO199amfsM8/VG9EUyFX7qqaca/bHcryWTyQ6d5YYOHcott9yS9ib61KlTu5z+zurrr782pnOFO16xYoUxLSAp+VoF1uHuhBYtWpQBYu+ot981TaOwsJC5c+dmLBPtUU73s88+m+Hi1xnnqbPOOitjnoB6ZJ188snous4tt9wC5AaWOtKLL75Ia2sruq5bvuEtlM0BRdThOeecA+QOz9eZ8LhC4s3yq666Ki1s4raSGfyXj9EZYEE4bVlJhB8V2h59qq1dT+Xl5bz55ptdqu+PPvqIJ598koqKCoYMGcLUqVPTQskmk0lWr1692z20kK8vnVF3d0TpKc5TZjgV2q/hdqhKW7uDVFVl3LhxTJw4kUmTJnHfffdx66238r///Y/Vq1ezZMkSNE2jpqaG+vp6435COBLutddeTJo0iaamJnRd5/rrr7e8rqiqyi9+8Qt0Xef111/nkksu4Z577uEf//iHZbrGjRvHJZdcwoEHHsjtt9/Oq6++yoknnrg9i8KWrS6rrKyMzz//fKteanj99ddJJpN89dVXHa47duxY/vSnP5FIJDjrrLO227MfW7Zs2eoJkgfh5W9d1w2QQ0AdwlVKhKIzO/WkUini8TjBYJC2tjai0SjxeDwNvpDXFR8rGECGqmTIxOv1Gh+3243L5Ur7n6XrOuE8L6tH92WvyYXcfzQEKwIsGt+PWCKB3hrCW9fCRpebiKoy6Kvl6JEYiUSCsNfF2tH92LD/MPzlPiYPcdEwZRQbJw4hUuBrB0niCSo/+Q49EmNDoAC9thG9vpm8WYtQQhFiZQXkkSCQShDvV0noqH3Qv893StFpPH4/dJcDfzBIsiVCaHAfnOtrSVUUc7K6npRbZbpejY8kFQUOWhsixN0elIYWvowXEXDqTImuo6m4hH/Od3DmRCcVzQ3UHbcPMadKuNDP+oNG4wpHSQ6ooGVUP5pG9WfVoaNxo9PXnSLUmKCmspTqb5ZTXNOEL6Uz8ssVhHxuNoegoNRN/1CcWYOKqfc7M4CkbJCSPD8bOCTDJTKEIpRtX1b7lsPSmcOaWblBifZhPp7VetlAqWxAVUcwl1V+5HyJchIu6SJMpmjj4mMFUXUGFDM7LMnH9agO+sagxamw2eNgn7WtFMVSGXUo16OAqlKpFK3D+pAqzmNgqBmtMMDSQBmBRIxxSjOL6iHmdNFHCbM46OGjzT765yUJeBRUXWNjWGV5g8b4Xiq6Ak5FJ6XrXDTDzW8PUigjTryymIl6E4TjzPZU4NlQT9GMOQZoJGAuAVnGYjEDPDJDl+b+xqo/FH2PvI28H9GXye5SudqhGQ4UfaoZQBTHFv1oPB4nFosZY4dWbVkAV+b6tTqv5G1yOXDtaOnb8NNdNW/ePObNmwe0R+YQv+fNm8fs2bP5xz/+0WVzhC7BUzfccANPPvkkw4cP55ZbbuGxxx7jn//8Z9rn8ccf55///GeXEmVrx0uEjpKdpzoajFZVlZNPPjkNeLDaRjhcbOuH9gMHDgQwBkhlHXfcccCWAdlsrkSdCYOUCyKTJedvW4aArKioyHocobq6ujQnEUiHp4S8Xm9O1y4rCGrdunUZ80aNGmVMX3TRRdkT/wMkk6JWrjEi5IX4M2COZyzkdrsNh7FsMsN22ZwwVFVNg3pyhWDqqjpyH5Ef+oobgGuvvRaA5uZmI+9iUKmj9t3ZgUx5UEeEpNrWGjRokDGdK/yquLaI/MugiSyrcG9dkXiTWDjabA915mZr2bJlab9POOGENIioo37b5XJ1OvyeaFPb6/zuqN01NTUBpIWwkeEhOd+JRKJT4d5uuummtHM7WxpkkOmHSnYqy+VaJrv3WeVH0zSi0WjWwVVFUTjyyCPT2lAuZ7xtCcQpikJzczN77rlnxrIbbrgBgAceeMCYZw5NB51znrJyV+rMw/yPP/64w3VyqTNwsBkGkyUG96Dj8LFWb0hY6YgjjgDg/vvv79T6Wytz+5D7UvO9hixd1+nfvz8jR47Mus6OelPe1q6nyZMns3Hjxi7By0IrVqzglVdeobi4mNLSUsaPH09VVRUDBw5k8uTJOd0Kd3eZ/090N/UEeCoWi2WA1Nddd53t6GFrt5eqqvTv359hw4ahKApVVVWUlpbyyiuvkEwmCYVC/P3vf+ebb75h1qxZWxWC9MQTT+TPf/4z11577Tb7b2jL1s6WqqpccsklRKPRNIdwoalTp3LxxRcze/ZsdF3nxBNPxOFwMHHiRObMmWP5P7GqqopPPvmEOXPmcNlll3UpnLotW7Zs7W7KFdpJDPa73W4jFJYACWR4Sn6OH4/HCYVCBIPBNHhKjHnI65rD91k5wgjwQKRDuLcIsMTs4qLrOoHGIBXLN/GHDUV8viLJY5NDpAJulk0aTCyRIB6Pk7e+nuo5qyC5BcBwtYTQFQj6vOxXFKO2McWcZhfJgA93bdMWWCOeIO+rxXgWrCIejxNVofaoieheN4VtrcTyArQ53Hjrm9DyvISOmkRKheYTD0BzOvAH20i2RggP7Yt7yVp0h4PxzmbiHievJ/tQFg3SN6CzrjFFvDAf9/L1kO9DbQry32QlAafOYbH1BkB1xkQX1evXs/mAUWw4dE/yahpR8r0kowmiZYXECvy4gb7uFOHmOBsrixnw3VqKa5oN4MOb1Bg/ey1Bj7vdgarIyeBIkk96+aj1pkNK2Vye5GkzOJUNgJLH/cxQinl9eZmVC1U2dyi5rVspF3yUDaDqDLzUGZBKzo8MT8nQlBm0MefZKg0dyVyOiqJQEkkxsSaCJ7El3KAZoJJNLjRNI1xZRLR/JYM2b8SXiLE65iaQSjDeHWTx5hTN5RUcnVzHrwY00BrXiaQULh8dp0qPENdVnOhsDqssrteZ1FuhVE1Q7tZocnv5v0/zSOT7mJLfRri8kG+95bg31lP0v7nG8WVwSnwL6CgWixGPxzOc8uT+xdyHCcn9U1JLsbE8j7gEX4kyN7d5GaiS66Wu0EPUs8W1TXzkMoUtrleJ7/upeDxOMpnM2nZlZzBzm5fHnazafzbnwR0tEbZvW3y6q8aNG8f48eNRFIUpU6Ywbtw44zNhwgRuu+22Lkcn6dK/oeeee44xY8bw1VdfdRossbVj9Pnnn7PffvsxZ86cnOutXLkyDVTYd999mTVrVtogfGfr9sQTT+SNN97g2GOPtVwuHER+9atfdWp/nVUuFw8xANnY2Jh1wFoQ/9vqoYAMNcnuQNtK8+bN4+WXX7Z0ybIK5WaOAwudg8Xk7aDj8HVWA+bbQi6Xi88++4znn3+eQyzcOsRg9cyZM5k8ebKlG4au650CK8xOPLlioH7wwQfG9Pbo/4455hhj+o033shYLruDrVq1Ki1clxhIEm0bOoanzFq8eLHl/L59+xrTjz76qGUohB8qRVEM++DOyMqtRr5Z6QhUGD58eNb8ylq0aFEagLmzNGHCBFpbW43fU6ZM4b///W8aRNRRnjsr8cd+e2ro0KEsW7aMRYsWZSyzyocZnhLalvmGdojviCOO2CbhKeWQoLkcv/7zn/8Y11DhpCX/ARb9zgcffNChm14sFuOYY45JA5bMGjRoEF999RWvv/56Z7PSJXm9XhRF6bB+OuM8ZdaCBQtyLn/ggQe48sorO72/rki4Pq5atYry8nKCwWDacnNflsvlEtrbfUFBQdp5bqX333+/awnOocsvv5w//elPAJx//vlpy+T7gEMPPTTtzR2z1qxZw5133sntt99uudweuNy9VVVVxXPPPcc111zDK6+8wqxZs/jwww+7tK/GxsY0cHHmzJn4/X7OOecczj33XA488ECg/T/BO++8QyqV4uijj95tHX4666S7q6onwFNWjh8nnXTSTkiJLVvdQ+JBui1btqzl8Xh48MEH+e1vf8uf//xn+vTpw0knnZTzpZ2xY8fy+eef85e//IXm5mYOPvhgJk2axOjRo7fpf2pbtmzZ2l0lBuCFw5O4l5HDSyWTSQMeEMtCoRBNTU20tLQQDAaNkFMybOV2u9F13YCqzP+JFEUxXjA2hyAzg1pymswgg39TE/l5Hu739eLSZB1/2zvJBTMLWL3fHvT5eAGusI7icKB8Dy+kdJ01ew/BUeDh/L5BntqYRzwJ+bEI0aTGuinjKHnzM/SEFKow3A4eBPcbTaK6lLzGZhzNrbT4AuB04WxswdUWIlRVTuPPj0NtCxP4HpyKDOuPe9ZCUr3LKXclaXYX8k20mHItzAm9I7w5u5l4v7446lrwuB04lq0nOrQvjrpm3iqu4FhXLYfF1vNhcR+e/HoTh44v4KWWQryhKI58L/G4RqyiGHcohlvX20P1NcbZUFFM37lryN/QQOL7UIrC0Svg8XPY6jY+GlxIXQSqihSGtKX4tNLN0ZviFEvuYEBanchh4aygJrldmZ+LyyCL3A7k/QiZHcxyOUmZ15HbSa71OyOxnXBhsgKqxLeu60bIOPEt0iVDL3LUBpFPXdeNcJdiTEGEcRPjn2ZXJXO+ZeBJfFuF3FSSKZzJJNF4erg+Ge6SQ9+lXA7CowdStnQlzjF9WOwvJZCKs5c3zJLVcZr69WLY0sUcc3SAq74rp9wb45h+cONMD2HdQakWodnpQ0/p1EUUlA0xhvX2sHxDDLfTSUx3sKcvytAqBzPmOVHicSo+X4jmdKaNH5rrRbQbMaYqQ3kiH6LdizyZHaTS6g2IBTysGeZn4PJa1O+Hb0X7F+MfVlChqqpsLvKypszP+PVBFCUd2DIDbGJcUcBTsVgMj8eTEULQ3K7Fb7kdWkFRZqfBnQ1O2WrXqlWr0HWdQYMGMWvWrDSzE7fbTUVFRZefKXTJeaq5uZkjjzzSBqd2QU2ePBld1zt02nnmmWcADHeAXr16ZQxGb039nnDCCVkb4fjx4/nLX/5iOC/sCD3++OMAvPbaa0D6xVyE+ZkxY8Y2hae2dwi3MWPGcPPNN1suu+KKK9J+CyK4paUlrdPvTH4VReHee+/tMD074kHmfvvtx4MPPmi5TLgA7bfffkD6IIo5z515CLRkyRIeeuihDHjMrFzQ3raQqqqceeaZQPt5ZaW9994byHQAkcEjMbi9tfUkw1iySkpKjPT861//2qp9bo3MN/a5ZOU8Zf6zkEsi5E1H4dsqKio6DEm6I2QOUTZkyJAf1G9DdlhuR2jp0qXoum7puDBlyhRjWuTbHLauq9CY6B9z6b333st6/m2tcrmKCYe1xx57LC195n568+bNABnhWa3kdrv58MMPc16TBNQlh7zcHlIUBZ/P16EbTGdhz2eeeYZRo0Zx+eWX53Q3AvjJT34CwD333LMVKd46CVBbOCF+/vnnGevous7VV1/d6X3KYYZ3pB588EHy8/N54oknLB0uBXBide6YQxoKZ1BbtrJp4sSJ3HHHHXzwwQeEQiHef/99HnnkkQ7P687oiSee4KCDDuK0007juuuu44gjjuCkk07ixz/+MUcdddRu+WDjrLPO4vTTT9/ZyfhBMt+bdyaE6K4mqzDN++67705IiS1btmzZ6kmqqKhg2rRp/OIXv8gJTgmNGjWKhx9+mGeffZZf/OIXjB8/3ganbNmyZesHyApCEC4pZlcUGb6QYaZYLEYkEjEcX8xuLwJGkB10xLHNbi5yiCsBOcguRvIzdHPYv7biAHWDKvi/YQkO1+t4sLWK95dpPLpPK3qBj/UHjSIl5VcDVu89hFRpgGP6pVjZoJNCoapQ4eh+KTwOnaTXRf1xk4mlpBBgCjT/3+HoAyqoToaI5AdoHDIA37pa8pqaCA7uR8Lnw+VxgNOBI+Am8T045f10Lp7Zy9BdTupTLpodPsoirVSXOHjr2wj1lZXkvf4pukMl7nChFAXwLV9PqrwItTnIfxMV+J0ah4fXUl9ayoutpeSt3Yw3kSSZhFhRHnl1LeQHw/RxJQh9D04N+G49xTVNGeUtyjpfdXHMxgTNTpVNIfDnq4yNpJhZ6qLNkb2tmB2Xcjk4WX3nCidmFVosm2Oa1fzO7L+j86GzyuYAJJd1Nvcuq29zmD8rRy9zWMRsrlhWbmHm8pRD1snAjlU9qvEkee/MJLaqjmXuQvKCQfbyhFi+OkJddSUl731D06cr+NU3RZQnw/x2jxZmfttMWHPgJoVb0XEkEqAoKOEodUk3y9aEGdLbg6JCr4BGCCd/W+DBu66WPm98mbM9yfkUEvkR7nIi/J78kV2mzO1h48ByQkU+dJeDpENl3sSBJNUtZduRG9vi6jwWVedRHE0S9qjMqw6QcKaDWtn6NZFuMzi1Ne24o23kNrs7PmfcVdS/f3969+7N2WefTWlpKf379zc+1dXVP4hh6BI8NWLECGpqarp8UFs7TyI82d///negPQ4kpF9sYeucpzqSoihcdNFF2x0ukiVgCBHiTHbiEmHonnnmmU7DU7J7SDaJwcadEZJGDLyLN5pFvn//+98DWy4a0DmYRriE5XLQymV7uCNkhvGs4CnonNsWwLBhw7j00ks7BG6ee+65rUzp1uvpp5/OWbairZkHjgYPHgxg/BGDzjm5rF27Fmh3rMmlN998E9g+4Qo7o/nz5xvTq1ev7lSor1wKBALU1tbywgsvbJP0bS8deeSRlvPFzaTcb29tWWSD5Xa25HAcAtbLFrZvayFY+SHDzta5554LkObkI/IjX5dFuNUbb7xxmxz3xhtv5P77798hg7adgaeE81RH7feMM87gu+++ywrVyqqurmbRokVbBS5trUR7FA5e2d7acrvdaW6fuRQIBLjmmmuYO3duh+t2BH5urVpbW9NCZcpavXq15fwTTzzRgPDENek3v/lNzuMIMLG7O+HY2jby+/0cfvjh/PKXv2TBggW0tLSwaNEiTjvttB8EeL7wwgv84Q9/SAvd+cknn/D0009vi2TvFIXDYU4//fROX/MqKytpa2vjySef3GWue11Vd3ae0nWds846i2effTZt/vHHH9/t68WWLVu2bNmyZcuWrd1R2ZxMBKjh8/nweDzGM3oBRAkoKpVK4XQ60XWdtrY2WlpaaGpqIhwOG2GzYrFYGkQl9i+AKOGW4nA48Hg8+Hw+/H6/cWwRsswM5KgOB6oU0kx1uwzow1nfTCjfx/s1Ds7e38OERANPRqr4YJnGY5ODUOBj/cGj0V3OdnBq0hD0Ej8Pj21iTr3OB9ECqpwJDimP8UpDPmHVSWFbC7pDpW3qIaSU9nIKHzIePeBDSWloqkJ+kQcFHXqXwKpa1EiMaHUZuqoSCLaRcLmJjhqE+5O5uBasJvzjQ6DAT0n/IhzRON6KAtavDlJX1YvCt2fi3VhPwYsfofncxB1OKPS3A1Rl3wNU8UriXg9ujxNV16CikFQKooUBBs1dTSCSpLyxlURNkM3F+QyYv47SzS1pblNut9sAODweDx6PhyKnmxPrIehQSDSD36Mwsk2j1qOkgRZmAMscTs8cls4KlpPbnoBFEokE0WiUSCRiwHhmyMUcfk0sE+1T7EeEbZM/5lBu8kcGVaxcnITMoSat3J9kyMcKlLJy58pWPmJdAbm53W7DGc7n8xEIBIzzRswX548MW5kdwkRerMrBCipKc6r6/jxsPXQ8vmiYPYuTLFkZYlN1JZWfLqCoMUjo0L2ocCT4zcQED3+psaSomsLVG/BEY9ToPhyaxtD6DegeD7QG2YyPJfU6B/VXcCiwpNWBrmk46ltIfu9gJ/dR5tCC4pmLuQyFm1MsFiMajRKNRo3wom1tbbS2ttLa2kpLSwutra2EQiGi0SgFtS2sH1KFNwX43KiKwneTBqN4toTeE32QKFdRtkt65bO63E9ZKE7EobCixIs/nsKZTIehxHYyLCryIYOoVu3R6ny0arvZ4Cv5HNpZ0rfhpzvL5XIZRivbUl16Wnf11Vfz2muvsXTp0m2dHlvbWb/73e+ALQCRLPlCsy3hqZ0h4VoiYCJ54GRrnZigvbyEy49ViCmx35qaGj755JMflPauSIQUO+644wD45S9/CbS7lCiKApKVa2fyK8CEF198cTul+IdLQAdCVmGEtqaOO6tjjjmmQyJ5e0uEVDKH9RswYECG81Rn8t63b190Xe/wnL/vvvuAdsejnaHRo0cb09OmTevQeaozKi8v3+UHroRToFlmeG5rHJjmz59vhOja1dXc3Axkh6e2ddi+HSmr8FHmPks8SAEoKCjYJsctLCzkyiuv3CFt3+/354SnfvnLX3Y5zGhHGj58+HbNozl8XrY3rrb2OvSHP/whZ0hccW/z5JNPdnqfP1QVFRWW8+U/J8KJq6NryXXXXQekO67ZsiVUUFDA8OHDee6556irq2PNmjVceumljBgxYpvs/+yzz2afffaxDHm9q+vZZ5/l+eefzwkO7b///pSUlHDmmWeybNky8vLydmAKt5+6Mzz12WefWUJ7wknWli1btmzZsmXLli1b3Ue53EbMEIAYZDePJciuU9Fo1IBSskEu8jNgAR3IgId8TBmOsHLUaa0upmZMPzRFQdN11k0YTLAkr/240Tils5awNL+Uq9+Hq/dXmZho5MlIFdOXtwNUiQIviw4fw7IJA0kVe5lUpfH0MidLEj4K9ARet8Lry0CLJUkFfMTDCQqjQXA6CJ4yheDhE0n2r6J4/QbUSJTN7nwc0RhVjjgRh4vg+GEQjUMqRVJ1kHS5QFUgqZHoV0Xoxwej53koy1fR2yK0enwE1zfTXFRM8buz8NQ2t5dBItUOUHnbASpFAqiUSIyPnVVUE6XalSLschMqyWP01yspaYvTd00DqYhGbVEhQ+espayuLaNuM6C07+cFdIWT6xVCDoVQRKFvXGFIZEvbMbcDK5jF/LGqR7kdyW3Tqr2Jdc3HtoKRrNq6VdpzyWo/2dyszMeRf5vdkeR0dhS9xMrBS86vAKM687Gqi2zl0hlXL01VCB64J3nBIHuWaixdGaK2dzXln8zHU9NA/V5DKCfGb/ZO8vAXGstKelGwegMOl0o0nESNxYkkwJOIs0ftWvT89uc+kaRCbZtGbVRFRafMqxMvL6R1WO80QM0M7+UqJ7mcZXBIQFWyK5UIlxeLxXDUt1C1YB3rehfhDifwJlOousbs8f1IOTKdrsS+F1cHWF3up3dzlKSiUJfvxpPUGFQfQTG1LXPZyuk2ytoC6hPfVudKtrbaUXu2tXN10kknGVHItpW6NErVu3dvjj76aPbZZx+uuOIKJkyYQGFhoeW6Bx100A9KoK1tq169euVc/kMcTHYlTZgwIe23nBeZDN6aAc399tuvw46wqqpqK1O6bVVXV5cx78a77mJaMknyssuAbT84vbMkX1zr6+vT4KmuAHLdSfn5+QDMmzcvbb7ZcQu2bXjFq666irPPPpuSkpJtts+t1U033cS0adPYuHHjdgMudjVlc/oqLy83/viIP9adhV5Hjx6dBqPtivrkk0848MADjcFFMzwl1NPgqUQikQYEAlx77bVAe/i+YcOG7bD0bQutW7eOW2+9lWnTpmUsKy8vp2/fvp12ntrVdPDBBwNbwHQz0CjDrNuyL544ceJO/2M2efJkvvjii7SHK6IeO+qHDjjgACP9ra2t2zehtrq9+vXrZ4SGXLt2LQ8//DAffvjhD4KfZs2axcSJEznmmGMYMGAAt956K6WlpdsqydtNHbnu/fGPf+RXv/qV8SZjT1J3DttnDrMtdN555+3glNiyZcuWLVu2bNmyZWtbyDx4LiSciQRwIRx65P9o4jmKAKeam5sJBoMGRCVgBLMzj/gP5Pf70XUdr9drrGt26hHPFcVxNE0jmUoR87vJq2slXJrH+vEDqfpmBaWra9g4oi/5LhXPms1oDoWKLxey6eCxXDk9xp8Oh/u/bOGfwQqWLmplaCksCTqIVBUyqTBGfUuC+clixmpNXLxnil/OLUZXXRS1NBIJxgkN7gcr1lKshmmoqCBVXkTxqrUkUYgWF6GGozR63eSFwrh9LuKKilaUR/7GzUTy8oiVFOKuqcMRDBIZ3B9F06iq20Qo5CRYXkrh2hraXD4K/zsTb2MbusNhQBOORIrCl2bQesqhxKLgKQrg2VhPdGA1jkiMWpcLfzyGqnrou7iGvCQo3z/T8rldDFnZQGFKQfN4jPIX401yeZuhGg9wYKvGereCQ90Cdsjwidje4XDgdrtxu92Gi465rTidzgzQRF5uBZRkA2CywUdWgIlVmDfzPuRlVgBWZ86hXE5V5n2KcpQdrMzbyekxuwU5vm8f4jmtpmmoqmqMO5hhRbGd7AKnKIoxLiUf3wx9yfCjDEyCjntdLe7N9ayK9aaxfz8K3v8ataaRmKri3FiPr7GBR92DWFbZj/xV61FdKq1eP0pSo+JfH9A2YQ+WFOfh9SgosThj+jgJBxPMrfPiIcU+vRUWrkoQL87HsXy98cKr3F5zjanJ7Vs4k5lD40WjUWN/siOZruvtTlCtrVS5VTZOGELV5jZ0v4uYS+GrMdXsu7AWh6mslvTOZ21ZgF6NYVKqSn2em6JIktEbQxlwl9hG13XDkU+48AlXOHnMTG4DVu3MylEq28e8zs6Srrd/tsV+uruGDh3KtGnT+Oyzz5gwYYIRuUno8ssv3+p9dmnE+ZBDDjE6nmnTpuXsELvTW6G7g8xwT69evdi4cSPQs5ynzA/YvV4v0D7Y11V4alfWrFmzLN9efmX//XF//8De9eijQM8ETV5++WUOPPBAoP0t7q6E7etOOuSQQwAywivJVPXWOI1tjXYmOAVw6aWXMm3aNN59991t4jzVnWUGiKD7wSe51L9/f6A9jOWhhx5KKpWy/KPYneEpKyWTybT86LrOmDFjmDt3Ln379t2JKfth2rx5M5WVlZbLujsIedttt3Hrrbca/e7AgQONZaI/7q55k3XkkUcabltHHXUUq1evzrh3hJ7VD9natdSvXz/uvvtuANra2vj4448ZOHAgb775JnfeeSctLS1btb+3334bgCVLlvDhhx9u8/Rua2Vzv4X2UNtXXnklkPmWZ09Qd3aeMocah3YQrqOXmmzZsmXLli1btmzZsrVry/wcWjjVyC+7isF72RVKURTDpSUSiRjQlDmEmRzKTAA04tmovC95PTMgIAb5o24H6/fsT1FNA45iLyHdwaopYxighSlvbGPDPsPxl+STKsqjrKWZXm0trCsr58KPY/z1wBjXfhnm00Qho/OSHDhA5csNsDjiJT/gZ1hbK6mCfK74PIoeUCh2pkgVBEjl5+OqqSM0uB/JSJh8r0I0lqK1bzUppwtPQzN5pGiO+2grzKOAKAGnSrPuIFxYgObz4thQR7y0ALUoH1VLUZqn0pooIqy6cS1aS7A4j/wPZ+GOxA1wSobV1HiSgpc+ageoAKVPAHc4StLnJRGJ0+gNMGrGQgp1Fcf30IWiKBTFvgdepPEWIVHuMoBjPq4blUFxQPoraw7JZ3ZCEvCUkJU7lEiLWGblTJXNlUmGijqCp+Tjmx2JzBBLZ+EpM0Qo2rAMNZkhpGzpkdMqzi+rcSF5HXP+xLQcss4q/cJ1SkBQAm6UXZh0XcfpdBrnrygn+Rw08qXpuJdvIFZaSKiqmoIPv8HZEiIFKJqGZ/kGNg3uRUt5HwqWr0XJ89Dmz0NJaZS99QWqrlD41RLqjpxIsLycvRpXk1zuZHlRX5RYnLjHxfKVbYwclMfX81qIThyBd00dajJp5MEM4JnLV5SnFbAkg2DmOhXlKMolsKaW3orKhr0GUV7ThMvvIeF28eWICiYvrsOhtW+/rE8ha8vz6NUYJulQaMz3UBhOMGF1S3t6yYThBDhlVWfifLJykOrM+KGV+5TtOLXr6h//+AdFRUV88803GS/bKoqy4+Cpm266qUc+lN1dNGbMGAO+2H///Y2QSJA+GN2d4SmzBFjz2GOPsWzZMqBnuRJNmjTJmJY77ervQz3J2pbuF7uKfvnLXzJ79myAtFBkPamOZQnnKasLgex0At0XRsgmkXfouXncGombxs46vnQniVBDjz/+OP/4xz+yhu3rKef49OnTmTJlipEf+T7rqKOO4plnntnp7oY/RPfdd58BPZglzuXuDt2INjl27Fgg3XmqJ7TRvfbai+XLlwPWDxRisRjQs/ohW7uu8vPzjXDVI0eO5Fe/+hUbN27krrvu4u9//7tlOOdsmj59Ot98802Gc+2uJp/PRygUyph/wQUX8Oj3L0n0VHVXeMoqbG1RUVGXHtzYsmXLli1btmzZsmVr58sKEBHPSITzlJgnh+CToSdVVQ1wKhwOE4vFLOEpAXzIzipiP06nk3g8jqIoxGKxNIDKDF/puo4jHqdizkpqxg8m0BIkUOChNamwwp/PgGKN6g2bqBnam8DqTdRWlFMWaqNPQz3ry8o453MnLp+TKneKZa1O1oU1evl1ojjQUyl0v5dlG2PEAgEq1q8jHtdoHdQfNRgiX08SjkSIBQK4ohG88QSt/gIcWoo8JUW4NY5eXQDRGK0eD2WxMKXJKPVF+agbG/C/PIPguceh5/upTAUJN2mE/AWodc34v1yA4nXjDMdAVbO6wajxJP4Zs2k7+QDUhEYgkURTEiR9bqoXbSCQ0HB4XEY5myEQAWnIsI0MEsluNOYQeLI7kxmEkudZwVNiO6vQeh3BU1bh2MR28n7N7Vg+rnwcMzxldrMy7yObY5VYLpenXH4ynCO2EeeBDPWYYSm57OV05AJczK5Rol7NYJFcTsJlSbQLcb4Cae5MyWTSSKOVKxWAo6mV/P/NxhWKgaIY28fLCwnv0ZeiFeuhwEOrLw8lmaL4jU9xOFygQPO+I9DKC5kQ2khSg3nOMpwrNqBVlaI2tbK5qhSWNbP3Hn5mLQ7TPPUgil7+GCQHKnP9ivxZ1bn6/fklyksuJxmykss2mUrR3KuYwjWbqNZS1EwYQvH6Blz5fuIeF1+MKGffhbWsrC5kbUUe1Y0hA5zKD8UYt6KJ+kIv+XGNQCr9uFZQnZwWAZuK9mNuD1bOU/K02X3K3LdYwVQ7Wvr3n22xn+6uVatWbfN9dmkk5+abb+5wHU3TePPNN7uye1vbWT6fz3iQKzt2yB1ed3eeyqb8/Py0jrSnDGjKamhoMKZ1i4GjnpTfadOmcdNNNwFw1113AdDY2Eh1dbWxTiKRwOPx7JT0bW+99dZbQHt4VOHSA1vaNvQ8WE64yMEWt6XdyXlKOAXK0nW9Rzq+CHgKoKamJis81VOcpw477DDL65J8Pnfn/vuee+7JgKdEPQoYoDvnT9M0wxnshhtuMOaL+usJfbHX6yUajQJwyy23GPNF/9sT+yFb3Ucul4v+/fvzyCOPcOedd9LQ0MDq1auZO3cu++yzD7/73e+YMWNG1u0nTpzISy+9xI9//ONd8iWh+vr6rH2kuAfuyTL3od0lbN+XX36ZMe/f//73TkiJLVu2bNmyZcuWLVu2tofkwXQBT5lhEHk9AS2Ew2GCwSBtbW1Eo9G0sGBWblMyqCMk/iclv3eUMUMC8ieVSuFuClK8ZB2b996D4nW1FBQoNCkeVuWXMJBGKtdtZPOAXrhqm6ipqqB8Qw2leW3U5xWBrjGkVGVWjU5bQiXPDcXOBKujLjZHdZI+H+Xr1xKPJGnu3xfnvOVo/StpLSnGH3DjCgUJ+vPA6cWdjON1qzQWFEJARw1FcKoqSiJJvd9LYQGU1TXQUBig7aKTcYSilMeDtHh9RBQVb30zCZ+H6BGTyH//67RIM0Iy4JOqKCZ09N7kr6sj0qeMUCAAKpRsaKJ2SBV5oRiVrXHDLUcGZgTYZA7VJVyTgLR6ywZIyUCH+BbtRTgbCRAqG6BnhlRkcEukVcAvYhu5TGTwSIB1ZoDKfCy5zYplnXGXMn/L9WJOt+xCZQWuyPnuCFqRzwFzaD8ryMt8XsrrmOtC13XcbjeKouDz+Yy6dLvdJJNJ4zsejxvhO4WrlqZpRmg747gpHaUlREKCHnE5Ce81jLwFK1BG9qNNcaIkUxS+9jEqKpqi0bLfKKIDq5kY2URSh3mBalzrNpP3wTekCgK0TT0Y5+pNbO5fibq4jr2H5PPV0gjNUw+i4MUZKBLUKdeLHNXGXGeiXVmFSzSva/RZDgfh0gJiZYVUfreGSk1n86ShFK2tR83zkPR6mD6uGnTo3RAi5VRpzPdSEI4zfkUTDQUeVlcGGLO2lVRKSwMGreAnK6DKDOmZISnxLc79zoTt21Vkw1PWsgIVu6LMnvEHas2aNdx4443069ePqVOnbuvd29oG8vv9rFu3DsiEp4R6Ejz1n//8x6B/zTcPPRGeKi8vN6ZTPRye+uUvf2lMf/XVV8CWwVvouXVslpxH2TYTeh48JasnACVbqw8++IDjjjvOcMcQ9d0Tw/bJeRE3rjI8JdRT4ClID/Em57E7w5ByuCJx89qnT5+0debNmwewVU4xu5pmzJhh/HE031f1lOuQ2+22BDiFdofrjq3uoaKiIgYPHsxhhx3Gr371K/bff3/ee+89nnjiiZzbnXLKKVx22WU899xz2+Wtpa4olUpx0kknUV5ebhmWcMiQITs9pPKOkPmBbndwnpo5cyZTpkzJmH/kkUfuhNTYsmXLli1btmzZsmVre0sGaswuJULyC2gidJ+An8wONTJUk83dR3aKMUNb5gF/Xdcp3NhE1VdLaepbgd4apTgYgqTGqvwSfIVuKtZuIF5ehHNzE5v79SFakE+ZM0lCV/lsg0KJV2dIETRHYXXQRR4JkoqTYiVBIpKguX9fXAtX4p3xLWxuQPd6iIUTuFwqDkUHRcGjpIiF4+guF7rLga6qBEJBPOs2gwKtYQ1HY5Biv4LidJLnd5BYXU8koUBKw9fURkFdE4mKItqOmIhmKmNRF6qqolWV0HjM3uRvasQV8OCtb0NXFTytEVSfk7JNzawc25/6Yl8GgCbXWRoUYnJ6yuZ4Zd5erk/ZMcoKtDI7SsljmtkAObNjkpAMvFi1kc6oI2AqW3u3+p1tmRU0Zl5mdsCy+pjTlWv/5uVyeE1zfcvLhEuYy+XC7Xbj8XiMj/xbTAuYKludGnWRSBL47xeoKzcRaYrgqGum4NX/oX7POTXvO5LowGr2jtWSQmG2twLXulryP/y2HdBrC1Pw/HRIpnDOX0lNXjErv93E5LI4rmSCllMPJiVBanJoUfNHbk9WUJ/ZlUleLzRmEMmSfEaU6ig+F2sOGYN/fR3lMxfT1K8MtS1M0qmQ+v5ZT0yFxnwPBeE4E1Y2s6o6n8V9CxnviuMOKCyqziOmZtZpR+0LtvQF5nTn6i87C03takDV7qynnnqKMWPG4PP58Pl87Lnnnjz99NNd3t82gadSqRSvvPIKRx99NIMHD+b222+npqaGww47bFvs3tY21owZM3j33Xd59dVXLR0uAIOO7Qk64YQTjAfs4gIFPQ+sueCCCzLmjRg1KmNeTxrUlEEx4abm8/kyALme0patFAqFLM/jngjTmCWH+tpdnKfOPvtsVFWlV69exjy5vnsK9GpWJBJJc56CLXXd3c/x+++/35gWYc/kQWFRv2agqrvojjvuMKZFO73tttvS1hk+fDjQDjx0N4lz8ZFHHjHgKXM7FUBcd9fDDz8MQJtFSGCw4Slbu7ZcLhdnn302X3zxBQMGDMi63sMPP8xPf/pTBg0axCeffMKCBQvSwPwdrf/85z+88cYbWZc/8MADOy4xO1HdLWxfOBxm//33z5h/4oknWr7Za8uWLVu2bNmyZcuWre6hXIPlAqowD8rLzjdivCIUChEMBgkGg8RiMXRdN1xsvF4vHo/HeBaYDXYRMIPL5TKejQqHG+FyI6AG4XKkqioFGxopn7mYxj7lxBtayWtuQkskWV1QirfQTeXaDcR7l4GqEEypJFQVj6P9uLGkyh7FKTQdgkmd2oSTYyqCpJwOmvcYgnPBSjwfzyV65N7o/aopXL6alMNBi9OHnxR58ShtDi8xt5dAPAKKgpLnJRmMERrSl8LPFuBbuoHNA/qBy0kfwgTdPhqH9Kdk9nIKl6yjpW8VejKFf1Md8ZJ8gmMGon2fT5fLhcfjwev14uxbRePR+1DS0IanKA9NU4gXBBj20XdoDpWIrpD0OSnd2MjyMX2pL/ZbwhLityhDn89nOBCZHWuE85AIyRgKhYhGo8Tj8TSnHzPslEqlDPcxuc5k0MoKpBPHt9o2m6uU+LYC9qzAJLm9ZXPGynaudLRcpN0MEGaDnszTsmSnIas8WUFL4ls+nhy+T3axkstapFcuEwFTifbn9/spKCigqKiIkpISiouLycvLw+/34/P58Hq9RlsS56aqqqiaTqowDyWWIPDFApRUe12FBlUT71fBxOgmEjrM9lbg2dhA8cfzcDqdWxzNIjF8H36Nomn4PvyGDb36sHRliMllMVzxOMEp40mS2cZF+00mk2n9B2xxYJPDh8omDmI9ow+rbaZ50h4EQwlG91HB5WDd4eMJbGikctYSmgdVE/e58YQi6OjUluXhbg4zfP4GlpZ5WVWVx97uOGqBi4WFeTg1HbeWGaLPqj3Ly4STnBzGTw6PKtenuQ1agVVWbXKnSd+Gn26u++67j4suuohjjz2WF154gRdeeIGjjz6aX/7yl2ljb1ujH/TkbuXKldxwww306dOHU089lffff5/S0lJ+97vfsXLlSt59990fsntb21k//vGPszpPrVixwgjN0l01fvx4Y1p27ZCJ8J4ET8lOb1dccQUApcXFGev1lPyaJeApr9eb4djSU/MM8O6771o6T8lgUU9T8fftWnae6unw1DnnnGNMy86A8ttK0PPq+6mnngLawxUlEom0fIu6FmBRd9Vll11mTH/88ccAPPjggz2mHzO7hEFmO5UB5+6mF198EWh3hZNtsiG9P+4JQNGGDRsAeO+999Lmmx0PbTDA1q6sfffdl6VLl/LZZ5+lhYe10kEHHcTo0aOZOHEira2tOyiF6Zo5c2bWZddccw3HHXfcDkzNzlN3g6e+/PJLyzQef/zxOyE1tmzZsmXLli1btmzZ2t4yh4nK5lgiBuXNgBNsARRk8KUjNxQzJGKGTGQQQIACiUQC78oaij6eR+uAXqQawxQ0t0AyxdrCMpz9S8l36ygOBVXVaUmoqLpOdQCCCZ23VzkociZRdCj0KGxs0cDpQE0m0MqLiRy5N6kB1RRtrCGFgu5QUXSdeAoSugKaDqpKMp6iWImj6xAaMYD8WYsILNtAqiQfRdMIaSpRHGhK+zbxkgJKZq8gsHQdrX2rIKERqK0nVV5EdPQgFCkUXqqyhI1TxlLS0IYS8JBM6oTz/Qz/chnetgiDPppP0u0kqjhI5Xko29TEkpHV1Bf70upKrjMzmCHqULiIifoUZSx/BJghO/3IdWeuUyv3HyvXH/PHyokpGwzVUTvO5uq0LaERc56t2rYVjJgLYszlQpXLmS3XtuZpMwhnlQZxPgugSEBSwoVKnOtiWp7vbgmR9/USVNrTEh3Sm/iQ3kyIbCKpwbfuMtwb6in5eF6GK5qiKDjiSfwfz8WzYgP+92exoU8/lq4Ms19FAncoRPiAPdHU7O1OhgLN5SODfPIzYLnt+JqCFM1ewcLqfmzaHGfv/AiqqrD+iHGEiwKga6CoaA4VXVVB04h5nazoVcCaXgXsr4VwuOGToAtSGoM3BTG3uo76WfM5YdWvmt3Y5GW56tZ8rJ0hm53aooceeohHHnmEu+++mxNPPJETTzyRe+65h7/85S/86U9/6tI+t3p0I5lM8uKLL3LEEUcwbNgw7r77bpqamvjxj3+MruucdNJJTJs2jf79+3cpQbZ2rMzhjuQTff369TsjSdtMwiEB0t0QzK5E3XGw1kpHHXVU2u9RFq5T0D0HpzujcDgMkNGee1IdW2nTpk0ZA/OyE1FPzPtPfvITJkyYsFuF7Tv00EONaTM8Jdd3T4OnRHhCXdctoTHo/mH75HO3uroagMsvv9yY15P6MRFyyiq8KnTPc3nSpEkANDc3Z8BT0LPq77TTTgPgk08+sVxu5bxly9auKJfLxX777cenn37aqfXnz5/PLbfcsp1TZa2VK1dazl+yZAl/+MMfdnBqdp7MUKb8oHJXVLawj+eff/4OToktW7Zs2bJly5YtW7a2h8wwiQwvmGEbWWJZLBYjFouRSCTQNA1VVbc4Jn3vkpILKjG79gjHfhnKEM9nUqkUkUiEYDBIc3Mzzc3N7c/oFq8mMP1bQkP6oLVEyG9pQXM4WO/Op8ANRS4NHRUVjYimkojFcaoKSU2nJuLgmKoIebEQc+MF9Eq08deRm6B3KakRAyjYWEMcleDgfrjqmiiorSWWgpjTRV59PZ66RmJ5eUSbo+R5QA1FCe3Rj4Zj90EPeBnQ3ICzLUKd6qWwpY1+tZuJVBVTu98ICr9ein/RGiL5AdS6VgKfzseZTOFyufB6vejVZdRMGUtpQxBHnpdUCkL5XoZ/uQxXKNruRhNLMGjGfJIeJzFFJRXwUFHbwqI9Kqkv8qUBJFZONdFolLa2NlpaWmhoaKC5uZnW1lZCoRDhcNhwFWtrayMUChGJRIjFYsTjccONyuxcJOoqkUgY64r2kU1mZzNzuDk5xJw5XKDZQcgMxsjL5Tae7VzYWrjKHLbO6iNANBHiUi4X4XhkBn3MIJE4V6xAN7lszeEYs+VTLnu5XVg5WTkcDtxutxFKzO/34/V600L7+f1+8vLyKCgoID8/H7/fb4T6M+pA0/B/9C3N65uZ1+rEuXIj+R9+Y/Qd5lCCcphAz+rN+N+fxaaCEpZ9W0tg/nIcmxrQpHKX3dPM/Yr4iDISrlrCNUuGkkT5aXk+fI1tFC9YzbKyStbWJZmUH0YLeGkZ2Z/8lZvw1TWT8HpwxBMENjeTcKmsH1zO2FA9SUeCj4NOPLE4Q1bWE3U7Msrfqn81jm+CD1VVTXP4EvVnzrsZkjTXp3zsXACfrR2rmpoa9ttvv4z5++23HzU1NV3aZ6fhqWXLlnHdddfRu3dvTj/9dD788EPGjx/PQw89RE1NjfHmva3uJdmxQ+548vPz2WeffXZWsraJ9t13X2N6d4CnZBkwgcWFvqfl99prr2XAgAFcc801AEycOLHHOLbk0nPPPQfAO++8YwmVdGcYoSN5vV6i0ehu5Tx1yimnGNNyfQv11PoWDogPPvhgRjhZ+UFBd4anZH399dcAjBkzxmjTf/nLX3pMP/bkk08C8MorrwA9o7+S296cOXOALQ5b8oOP7pg3s2688UYAvv32W8vlssunLVvdQWPHjuWrr77q1Lr33XcfI0aM4B//+Md2TlW6rMJkHn300QwbNmyHpmNny9yHiv5mV5UVPLVw4cKdb+tuy5YtW7Zs2bJly5atbSIr5yfzfNn5RN5ODNgDBuAgywriMDvDiAF/sR8Bzsjhu1KpFPF4nGg0akAnZmDEs3Ij+TPmEBzUm6jLjc+loCiwMeYkgUrAoeFUVVykqEu6caQSlHjA7YCPNjppcfoojbexWC/g0fXFjO3lIN+ZIt63itDgfrhqGwnoScJNUUgkUYJhopqKNx7Fs66GSGkxifWNFLU0oRXnEa8opFesjXBrjIjLjbuxjTaPBy2l0aupgWh1KY0H7knht8vIW7iGaN8qPA4H+as343Q4iBcEWHvgSErq21D8LhIJjWDAw4iZy/FE4kZ9qKqKK6Uz9OOF3ztQKST9bqrqgyzYo4KmQl8GFCTC8QlAKhqNGiH5xEfUixlMkuvd3Gas2o2YZwa3rByTzPCeGYwyu5GZ4SJzSDur/ZkhK7PMy6xgqo7cr8wOSFb5tnKgErJySxLbmB3B5DozQ1lW4dvEvszlY1We5uVAGoyULVyiOHetXKkCa+twJjRWFlTgWllDYMZsS7hPwGNyiEdVVfGuqSXvg6/ZVFFFWHXhWrgaEsmM9mblfGYFIglXLdlRSz5ecHhfWvYagndACaWb6llVUcXSlJ+x/Z24kgmC/SuIBny4W0NoDgdJt5OU18Mwf5zYgFI+0wpRdJ0CNcnGEg+z++QR1tvzZ3VumduhFdwkykWUbbY2Y95nLu1MgErXt92nu2vIkCG88MILGfOff/55hg4d2qV9dhqe2mOPPfjjH/+Iw+HgV7/6FfPnz+err77ikksuMUIo2eoeEoNf0N5pWzlPaZrW7Qej5Yvw7gZPGfVaVJSxrKcNar711lusXr0agMLCwt3GeUqEmnnzzTctHeR6cti+SCTCggULujVwsbXy+/3GtJXzVE8tCxGO84UXXrAM29fT2rkIiybn55NPPsm4Vnc3CSfIbI54PaX9XnzxxQCEQiFjnminPeHaO3LkSKC9TVZUVODxeAA7bJ+t7q2JEyei6zq//vWvO1x38eLFnH/++QwfPpxzzjnHACa3p8R1QdZdd9213Y+7q0n0N0Jr165NczHc1fT555+n/T7nnHMYMWLETkqNLVu2bNmyZcuWLVu2trWswn2Zl1kN4MvOLrqup0EHYlvZAcjsQJUNKhHwhcvlwuPxoKoqyWSSWCyWBvoIMCTZqxTd176ed1UN7nW1xMqKIZXETxIdCCUVin0q+WqKOA5IpghqLlzBEIFwiIjiJhjRuHdCkNFqK19HC0i2hJlQFCfi8+OIRvGTJNgcIdG3Ev8L0wk89S6ay0lQdeN1gGdtDZHelTQXl6CqUKnEaPT4qO1TTcGc5ZS/+inelTVsKCtHT+n0amog1ruUpoPGkr+hgaJvl+FBxeVyoef5qBs/iJJ1deBzkUjqtAU8jPlmNc5gNK2sxLMrZ1Jjj8+WkHQ5iSoqSb+LPrVBVvUpJBLwpAE/oixbWlpobW0lEokYYJooXwGwmN2/zCH7YMvzs1xtJZsTkBm8sXKbsoKirMKuWcFUZvcpM4hlJSs4qiM3KjO8Y3adMrsC5QopZ3YRMju0yQ5Wor6sPrlAJ5EXAShagVTmMgOMY5vhLLlOhGOUcHMSISgFoOR2OMibvQzvojUZfYn4yPCUSKP47WoO4Z8xG7U5mLUOzX2NXN4yPCXAKY/HYzhQycerXLwR3eOmNa7izXcTCIfZ5Mlj/YYIE8o0cDvB7aDX29/g21BPtLyQEY4QPlVnfpMDHAoliTDB2iDriv30mbcGNZYw4CmrEHzZ2pUctk+kW/S5ZueybPvIVV47yxndDtu3Rbfccgs33XQTRx99NLfeeiu33norRx99NLfccgvTpk3r0j63anRDURSOOeYYpk6dmjUkmK1dX3JjkaEL0VmI+d19EFOWeGtb7lTFBbgn5VPIqD+LvPW0/C5cuBCADz/8MMN9Sdf1HteWhaZMmWJMm6ESMQ96Xn0DPProo8CW0F+7g/OULCvnKRkQ7UmSB0vXrFnDG2+8AWSGK+zu7fyCCy4A4D//+Q+Q3qah+zvoiXB9S5YsAbLDU921/f7oRz9K+y0gIxny6871JyS3yTFjxnDSSSelLe+p/ZCt3UN33XUXCxcu5KGHHupw3SVLlvDkk08yfvx4brrpJu677z6jn9uWisViLF26NG3eDTfcwNixY7f5sXZ1eb3ejHnPP//8TkhJx9J1nZkzZ6bNO+CAA3ZSamzZsmXLli1btmzZsrU9ZHalkQfiZccWs5uJgBBkKEIOr5dKpSzdgMzHFZCEABjcbjeaphGPxwkGgwYwJbshwRbXGL0gj9Ch40m6nQT3HES8Tzme+iZiDjcRxYkHjTwXbAhCa8qBO5kAh4O8RIQ6h58mTx7uSBhdg0tmFXDVYV72dDYzP57HJ81++jkiBNwKwaRKsm8Vvpem42hsRUkk8D77PrrLScjhxuvQccRi6H4vFXqUWDhBa14ennW1+OetRNM0Cj9fQGD1ZmoqylFRDYCq8cAxeJpDKLQDAPXjBlO0rh69KAChOKE8L6O+WoHaGrZ0bRIwRcDhYsxXq0i4HCSTOrE8F31rgyzuU0Ao2u40FQwGDbjGDMDIgIkAquLxuBGWT9SbcD1KJpMGxCOH5jOPa8h1b4Z3xHwr0EkO4WZ2MhLQSK5Qe2bQKRs4ZQVKWe3bCuASeZLL0NzGO5IMXcnbyaH5RHi/XGE0xfHNTlTyxyrMXzZozQz3ZINzZMcpt9uN1+vF4/GkucfJ4I/L5SIQjOH1eo11ZRDIbBoi8i76HEVRcAejODQ9oy6tALFsjnmiLAWsKcIQOhyOLbBaLEbpt8uJ+T1s8uXhKva3A1TOAMsjTiYVJ3CHoqyduh/hXqWMjjTgKPEzt82DQ9MocmnU+fNo7FtO2eL1qM1BWltbaWlpIRgMEovFcrqimevcClIT6TU7m+eCsXYmLGUru6ZOncrMmTMpKyvjtdde47XXXqOsrIxZs2ZljNt0Vp2Gp2699Vb69evH448/zv7778/IkSO55557uhwv0NauoWxh+7q7y4VZH3/8MbD7OE/V19dnrb+elt9zzz0XgM2bN2cARND9oYNs8vl8xrRVOLOe5sgj64EHHgBg3bp1QM/MYy4tWrQow4Gpp0IL48ePT/s9f/58IBMS7O5tQLhRiMFWc366OwT61ltvARj2qVb9lXx97m4677zz0n6bHVJSqVSPOTddLhd9+vRJu7bazlO2eopGjBjBpZdeSiwW44knnujUNrfeeitXX301JSUlvPLKK7z33nvbDOT+4osvDAdGaD/Xrr766m2y7+4mK3jqf//7305ISceqr68nHA6nzTvooIN2Umps2bJly5YtW7Zs2bK1I9URDCKDO7I7jLwsG2iSLQyVAAhSqRSJRCINyjFDG8ne5cSH9qG62EFBUxPN/3c44b2GkbdiLa62IFpSQ9Og0KfgSCXQgURKB5eTqlgrKY8bTVEpcGn0S7aR19ZC2OnlstcSnDciTr5DA02nrSlKeFUdqeKCdnCqodUoFzWZxPuv99FcLlrLylE9TqqSQZpdXpo8AQJfLqRg+uw0+KH0qyXkra1jQ1kpik57CL9epTQcOBoABSiftZiSDY34NrWScjoY9eVyHG0RA3oxQ20y8OLWYM9Zq3AlUvhaYpTXhxi5aBPJ2BagRgA0cpmaXZPMwI7cBsyuYfL+rGAN2SHL3D4gHVYyw3ZWII/sjmQGp6xgqlxOU1bbWM3Ptb9sjlu51NF5ITtNmZ26zMcxn5OyQ5X8sdqPOU3ZQvaZnZyyOSLJsJtcX/L+ZfBHfGS3JzOUZgWMWbmR5SpnWeb6kmEks8ta45Bqon43+UqCpNdNa0TD63Xg0VLUJ5zULG1mr94KistBsRc8WoIFtTqqCsUkaAuliLtc+B06zmSSmiFVhLRkGpyYq71ZOYaJ9WWQ0Apytcqv/FtuO+bpHSndDtuXpgkTJvDMM8/wzTff8M033/DMM89kjC1ujTo9uvHb3/6WlStX8vbbb/OjH/2IFStWcP3119OvXz+OO+44y3iCtnZ9LVq0KGMQU3Ss3Xmg1qx//etfwO4DT7355pvt9WrR8/W0/J5zzjkArF69OgM4EHXc3cGKjmR2kBPzoOfVN0BVVRUAl19+uTFvd3ae6snwVK78yM5T3f0cF2E4haycmbrzuSyctUR9mvur7p4/86C4VXjJ7pw/WYlEgvXr11vmqaf2Q7Z2P7ndbs4++2za2toYMmRIp7bRNI2pU6dy1FFHcfbZZ/PZZ5+xYsWKH5SOd999N+33XnvtRWlp6Q/aZ3eVFTz19ttv74SUdCzhiivkcDgYOHDgTkqNLVu2bNmyZcuWLVu2tqXMAIH8MYfSMwMTMnAgBvDFPsW3DOBYDeoLyMLlcqFpGuFwmMbGRjZv3kxDQwPNzc2EQiGi0WiaK5YBdjS2Ehvah0ac9Nu/P+6AC5wOUgUBgr2rcIQjVHhTNEQgpDtxppKgKKBrxB1OIrqDArfG4ECCtXmlRF0eSmo2Evb6uGpeKUf1jlOhxmj25ZPsW4nvpemo9S0Z0IhD03BsqEV3OvDoKSKaQiSpoiQ1/DWNuL4vIxkSqfhmOXlr61hfVkYqmaK6oY5oZTEtw/u2u3ChonvdRPN99JmzGq0laDhGyU5Rcl2mUikDjkqGwvSet4aQlqQ2HiHc0mpAU5qmGfVm5QpmBljM8IqiKBkAlwxSyaEcrRyAckFJ5mObJQAds6OReZ2O9mN1LmRTNrhKLJP3YQZSrGCkbEChHIpPhtZE1CEZfMrm/GR2MJLD4In9i/CMAqbKlnczvCWH0zODOnLeYItbklxf8nh2NthNdq4SDlCirmXASoa55HybQTsZ4LKqN+GcFgqFiEQixGIxI91G6NDGNmr3G0m4II+yVBRdVWhQ3ASUJEXrNrO2vJIlKR8Hl0RxORS+8VfijMQoC7fRpLhIeDwUJGO4nAprJw1DUxSUWHvZt7a20tzcTH19PaFQCF3X08KVinowhxuU247T6cTj8Rj1bQ6HaW6n5rZq9dvWzlUqleKll14ywva9/PLLGa5iW6OtfjX8qKOO4qWXXmLdunXccccd9O/fn7fffpuf/vSnKIrCnDlz+Oabb7qcIFs7VqJjgfTOD7r/YDRscSWC9BsA6Nlh+yA7NNPTBjWLioqMaauwfT25joWsYBpxHvfEvL/66qtpv2UXrt1F5ra+u0ELMpQC3b+dn3DCCWm/XS5X2s13d+/HjjjiCKA9BBXAySefnLa8u+dPht/kN216Chxmpc8++yyr89Tu0g/Z6vnKy8vjgw8+MPqwzurpp5/mgAMOYMiQIcYLHFurP/7xj9x1111p8w4//PAu7asnyOpeTwDUu5qOP/74tN99+/btcdcAW7Zs2bJly5YtW7ZsZQepxDJZuWAS874E/CFACzM8Ica1BNQhPma3KStoQAlH8X7wNQ2jhrEw7md0IEYgGSPcrxdKMkFVkRNPfRMuBRIpSKBSoYVJpXQanX5K1ATDvVHmNzuJJ3USThdaNE4JMTQd3ljjon+hgkMFpaENJZnKhBCA+D6jcLgc9Nq0gVhKodnpxx8MUrxgJW2TR5EqLcyAWhRFofLbFQRWbWZTRSWaptOroYF4VTGtg6vb4aZEin7z10I0lgbPWIFooqxlyCUVi9N7/locraE04MoMnJhdv+R67ki53JOyueWYj23+mNuXFdSRzSnK/J3LkcgsqzI1H9NqOte8bGm2cq4yA4vy8c3zskFp5vRnOxdlMEt8xDYyDGc+f63KyOo4VuetOa1WYerEPLNrlVVIx2zOU2ZQzap+RLpEWs3nl7wf3etGT6WIpBRiMY1CV7vFUUsEnBV5uFWNpriDjVGV+qQDFZ38QjehxhgpRcXvSOHWNVoSKkoqRdLlQJOObXbYg/TwkJ05n2R41byuVbuwmrb6bWvHa8GCBQwbNoyzzz6bV199lVdffZWzzz6boUOH8t1333Vpn12Oq1FRUcH111/P8uXLef/99znllFNwuVx8/fXX7L333owfP56HH364q7u3tQMlP8ztSYPRAJdeeqkxbR7M7IlgzbHHHmtM7y7OU8KFCDKBEuiZg9ZmtbW1ZXWe6gkQpFkffPCBMV1UVGRQ4tCzb1Z+/etfG9O7i/OUWQ8++CCwBZ7qKe28srIy7bfT6cyAp7pzHgsKCtJ+yw4cPeFaLF9zzCH7RP564rlph+2ztTuof//+vPfeeyQSCX7/+98TCAS2avszzjiD/fffnxtvvDEtBF8uLV26lGuuucZyX7urrJynOvswd0fqzjvvJBgMps0zXxds2bJly5YtW7Zs2bLVvSU7yMjTZvcSGURwOBy4XK5OOfsIMCEej6c5ujgcDlKpFJFIhM2bNxuflpYWwuEw8Xg8I0SdACIEQKGpKrHRg3E5FaIJnYX1MLS/H6+eQPH7qF/bzCZ/EY7NDZBI4VSgLZIiqTopcGr0K3OyoEFBT+q40FBqG2ju24dUbQtlTfXENZhV52T/VXPxfDkf3bNlvMYAjVQVJRzF8+UCYusb0ZtDONrCuDc2E0jpVCxYhzPfj9vtzgg1B1D+zTICq2podAdQWiOUf7sC1eFA/b58ZKgsG+QhyjmRSBAOhwmHw0QiEWNawGgyUCHK0ePx4PV605x+RDswOyWJvAt4xezwYw7ZKKfTXIculwu3253xkcOmmSPvyO3VCqgT+xbzzN+5QD/5t/ydS9nck6xAMlmi7OQXVcU50hEgJ39bAUjm4+aCqqycroRTnHCnsoIYxT5llzGxXSwWM7Yz50c+f4XDlNlNSiwXy+R2Iqa9Xi8+nw+fz2fMzwazZXuuK7tqiXKIx+Np7mlGfr0e+s1cRt7GBtp8fpJtUarr6tA8Tuo9AaqIUU2UxREvSirFAG+C1qhOqE85Zes3kdfcRoPDiyMap9dni/C2hkkpW9pxMpkkHA7T2tpKY2NjWhQeqzEGuQ5EHmXYLFdYRrkNmad39likvg0+PUHnn38+o0aNYv369Xz77bd8++23rFu3jj333JNf/OIXXdrnNhndOOyww3j++edZv34999xzD0OHDmXu3LlpIZVs7Vo6//zzjemeDF3sueeexrSAwnoyPPXII48Y07sLPFVeXm5My0AJ9Mw6zqbdyXlKdmJobm7eeQnZwbrqqquM6WzOUz2xvgcMGGBM77vvvkDPu16Z/6yY3xDq7v2YGTZYu3YtsCXf11xzDS0tLTs8XdtDcl8sn5/duf6yyQ7bZ2t3ktPp5Oabb6ahoYGZM2cyZcqUTm/7+eefc9ttt3HWWWfx1FNPsWrVqpzrf/XVV5bzx4wZs1Vp7kmyeqi3q4GabW1t/OY3v8mYf/bZZ++E1NiyZcuWLVu2bNmyZWtHSHZjyQapyGG0xDbZAA1zmD8Z2ojFYoRCoTS4xxyOzsq1RoZ5IoeMJ77vSPrrQYa4IkS8fhZs1hhXquELBYn1qiSxqYmwx0flunW4ahuIBPIp0GMMy0swd7NO2O1jZCBK32Qret8qlMZWWopLScRSlOgx9EicT/VKHGs346xrTkuDqqo4FQXvglWoDhdt1dUUf7WU3q9/jq6qhLweXLVNuGsaMxxt5PyVfr2M/GUbqC8qQkkkKVq5CYUtQJTZNUoGPMyOQmL/4nms7CJkhpkgPXSigC/kupPrs7OuR/L2Vm5HVu1JQDRmdyH5uXIuwCMX+JEtjdlcsnIdI9uybI5SViEN5fowh+LL5haVzXEol+uUGa6SXYyswnCanabkNmOVTnEcc37kfMm/zXnJ5TJllSf5t4CsBFDl8XjweDwZQJZcHubyMZeBCDNqLoe8VZtQQxFIafjX1hJ2uAm7PBR4FRy6Ro3mIej04FNS4HJS06qTcrnI1xMk+5XRpLtxNwdxBKMoDpXilZtwJDXL9CSTSQNAE+kQoJ0ZCDSXiziXrOC9bG5T2c7xHa1tAU71FIBqzpw53HnnnRQXFxvziouLuf3225k9e3aX9rlNnziWlZVxzTXXsHjxYqZPn85Pf/rTbbl7W9tQv/vd74xpedC5p0EXVgN4oiPsiWH7+vTpY0w7nU4YMiRjnZ6UX7PMICB0f+ggl2Q4MFv4zV1tYGlbyMp5YXdwnpLdieLxOLAFsunJ0IIMT8luDj3JecqsXr16pbXlRCLRrfsx8x+UwsJCY7qnnbPmeuppEO+3335rTFuFJ5Tn27LVE+XxeNh777358MMPWbRoETfffDP5+fmd2vall17i7LPPZtCgQTzxxBM8+eST1NbWZqy3fv36jHm7+0tJ8ssSQiNHjtwJKcmuJUuWWM6XnUNt2bJly5YtW7Zs2bLV82SGK2S4QHaF8Xg8xnpC4tm9FTAj9q1pGrFYjHA4TFNTE83NzYTD4TRYwAxNiX3LUEWibwV6UR6eTXWs0gKkvB76u6MkFAezN2oMHZSHt60VqsoobmogjINIRTkFsRCDKt3M3qQDCgN9cZpwsUHNJ7BxM4qm46ipp6W0DH1VLWUNteBQSey1BzqZYecEwOFL6ZTMXk5+U4hk73LKZq/Au7bWcO6R4REheTqwejNF81ejxJNpIEcsFjNAFDMMZYZbZHhKhqBk9y+zs5HZ2Uc4T5kdo8ztQsjKncocDk4Gb+T2IMAZl8tlgC9WbkSi7Vi102zLsskqdNvWQiPZQCZzeuWyF85MstuT7M6UTCbT0mGuZ/mcMD+bNpe/nD7ZGcwM1Ml1KdeT/C3SK9Jubj9y2E3xEevJjk5W2woXOlHf5jrPJQHeCec0v99vfISLmuyEZpa5jYoyES5cGedNLE7+orWUzZiLe1MjLSVF5IeC9HPGSSgqLQmFglAINRon4vFSmopQ4dZoSTpI+t30/mAOVd+uwBWKpeXBnCbhQhUMBg23PjNMaG53Yp7L5cLr9aad+9kA1mzOUz1tbKM7atiwYWzevDljfm1tLUMsGInOaLuN5BxyyCEccsgh22v3tn6g+vXrZ0zLYVfkweieMtBnlgyT9KQBTWjPW3V1NTU1Ne0wQe/exrKU2w3xeI8e1LRynuru0EFnZXaeSiQSWe03u7t8Pl/GvN0BnpK1YsWKtN89GZ4aNGgQM2bMAKC6uhrYcr3qSbCvLKfTaYS6u+yyy4hEIj0qjyJvPbF/qq+vN6ZlqKinnJvjx483pgXEKWSH7bO1u2n48OH8/ve/59prr+Xtt9/mxhtvZNGiRZ3a9uc//7kx/eGHHxKJRJgyZQrTp0/n+uuvz1j/oosu2mbp7o5yuVyUlZWl9bFbG0Jxe2vZsmUZ8y644AK7T7Rly5YtW7Zs2bJlqwdKHmgX4bgE0CEG4oX7iQwlCMBAdp8ywxnyPAGNRCIRA8YQz1/ktIj9CZmBkUTAS3jsEPwr1qH0LaNFKWZV0MFoX5yBiSZWeYtZsDLE6N5uVmxopbFPb1AdFAabGeKKMmeZhlaYz5BkE4mIk/WpAKRiVChxWtY10zZ+OM41NTT3qaZ4xSqKtTDNFUWkBvfGuXqTAXmIMlFVFVVRoSlI0+iBJAr9uGsacNRFjOe9sOUZk3gGJQMLqqribWxLC5snYBMrWTk4ydBUR7CTqDcBTLlcrgygQgZLzFCQXE8iDJ/sIGQGO+SQbLkgEAFUyeVr5bqT6zmsFSBl1cas1u+MrMZu5HTKZZ8NVLGCEzs6lhmIyeYkZRWuTk6fHJpTPl+t0pzNVcoMxIn9yu5RQuZwf+YQfaqq4vV605a7XK4McCxbfqzcs2SgUEBIAlCzcs+S825Otzh/3HUtNI0eQLyymN4tDdQUFOPSdIqdKVqTCpu9+aAqFCUixAM+1oaTFDiSRFvjbDx8PP0/motDz+4WJs5jOQQntI8fij5CrkORdtmhSoTeVFWVRCKRtS3mmr8zpOuWgae6tJ/urjvvvJPLL7+cm2++2Yhc8+WXXzJt2jTuvvtuWltbjXXFuFRH6jkjcba2SnInk82xpqc5eYg3luWLZ0+DpwBqamoAWLduXfqC73vBnpZfWcKVpqfXsdBVV11lDL5Zncc9Nd+2toQrNENEPQXQkHXZZZfxz3/+E4ARI0YAmbBvT7teQXsePR4Pw4YN47LLLtvZydmmMoeeOuuss1i5cuVOSs32lfhD1hP747/97W/89a9/Na47PRnitGUrl/x+P1OnTmXq1KksW7aMl19+mRtuuKHT2x922GE5l19//fUMHz78hyaz2+u6667juuuuM37LD9R3Bc2bNy9j3h133LETUmLLli1btmzZsmXLlq3trWzQjIAXID3ElhnoENOy85AZgtJ1nXg8TjgcJhwOp7kpiWej5jSZoRkDNGoNEXhnJsmKIqKD+zIqWsfmRviuvJJ+XpWBmzewqriahcsbGVXtYAEqKU1jgDfB3EYXWqmfIc0bCRUXsjHuobxmHYV5TlYGSvC2bMQ7bzmxAb1wrNxAa34R3o9n420JobIFcDC7wWhA3SF7oms6vqZWol4Xkf4VeL5baaRfyPz/zyrkmgyByA46VvCEDJ1YwTQyFCI7S4llYv9iH2boTV7HDFmYgSfZIUzOn+zWZQX2yNuZoSk5fVblJa/b1ZdbzenNdhzz72wQlhWMI8+T4anOpMsKcJFdo8z7sTqnzJIhqmwwkTl8n9VHhuuEBFBlBs2sQDkZ+hHtyOVyGcCT1flhriMz7CUDX8K9Tbjbie3kPFudT+K3yEvb2MG0jerP6KaNuPK8bNB0Uqj44xGKnA4aVA8uNDxulbpQEs3poKCugXGlKl+1+Vhz6FgG/m8+qp7ZVmWYTHadczgcBvRlPq/k9iT6CZfLtaVPMsFfVnCUFdxna+fq+OOPB+AnP/lJxvlzwgknGL8F6NwZ9byRHFtbrc8//5wrrrgCSA+D1FMG+u6++25+/etfU1dXB/TssH2yPvnkE5AGGIR6an4BI36p+ca6J4IVAKeddpolPCXO456ab4CKioq0UDdWby/0ROXl5REMBvl/9v48zJKyvP/H33X20/v09Ez37AsDMyLIPuwIrghBXACXKIIJmvgz0aBRUBF3v8SEEBOBJK4f44ISYogaUAkjoAgCyjoMMwOz71v39HL2+v0xc9fc5+7nqVOnp7urp+p+Xde5+pw6VU/dT219+tSr389PfvKTuulRlhb48JSElH2jfF2L4jHNj1OS/47069W///u/45prrqmbFjeZNcrXIUUJytFHH43rrrsOH/vYx/Af//EfeM973nNY7SUSiVHXlrgir6NTTZ769a9/Xff6Qx/6EHp6ekKqRlEURVEURVGUicAviYTEA/qOiycLyYQpGuaKQ2IRSQx79+7FyMiIJ07VCR+OAzgOEkyQIrhww4WgRLWGSlsL3LY8Btdvx9nLZ+JXQ1VsKGZxVLGMxds24MVZC/C0C5zUXcGuwRqerE2H0wMcvWMdRkrAlvY+TE8VcdaSLB58aDtqr+hB6WWLkCyVkN68E8WXLUB61UZUjp6PlsdXeWIC/97PdV1UXRe7XnMyKh0tyO/uRzWZwJ7Tl6HlyfrRFrjIQPD0HCks0XY1JTlJ6YH+2TGbzXrbzZRqRNPo+y6SU7jUxEUrkjBoX5tkGEqu4scHvccFGZ5MZYILVKbn1OZYsKUXyZ/NSlhS8DPtHy6xkLTWKOXHtp8B1A3LJuvgEpGUofwSiKQ8YxKopJjEh7ejGkjyof2dzWa9fU77P5fLIZVKeSl2iUTCm4+GnXMcx1uH3/7ixyFBtdN1hhLuCoWC1yZd34aGhjxRiZ9LXAirVqsozp+JgWXz8PI9m5FszeCJbA8yw0XknCr2tLQhlwJ6KwXsTWSxvZpBBhXkN+/Axtkzkdy1E6f1jOD3A3lsOWUJ5jy2Bg5dxw72lYYtpPOyWq1iaGgItVoN+XweuVzOmz+RSHgyG/WtWq16y2azWa+/JolSin1Bjkdl8rj//vvHvc3o38lRGvKjH/0Id9xxR2STpx588MG613FJJZLQZTyKNzW7u7uxZ8+eUdOjvo/58HW//vWv8Za3vAVA9PsNAMVi0Ti90X8eHOnccMMN+PjHP+69pg+8UZYWEokEHnvssVHD4biui8Uf+QhcANu+/W3gllvCKG/c+OQnP4kvfvGLddPo99Vb3/pW7N+/P4yyxo1NmzZh7ty5ddOiJBe97W1vqxccdu3C3w0OYu5vfoNvR2jYPhMyeUqHqFKUA+fBlVdeiXe/+9246KKLcM8994ypnXe84x1YvHjxOFd3ZDLV5an169fXvT7nnHNCqkRRFEVRFEVRlIlE3jTnSSz03TTd3OdiDF9WDu1Gy9D3+iQnlEqlOnGKlikunQ83k0L+mZfqaiNxxpTS4rouci9sRHrzTmx46yuxY0cFr5+5D7/alsHa3nlY3L8N89tr2DiUwPp+YLh6oJ1FnTWM7Eph45w5mDGwG2f1VvF/zxYxtHghWr9zD0pnHYfyrB6kXSD7/HqUli1E6nfP1SVNkbxSrVZRA7Dndaei3NGC/O59QKGMwaPnon3FH5HZuKNOiiK4bMK/d+LyBgkcfB+Y5Bwp0NA2tck/tJwc3o8n7piSfkxD0PG6TKlTJFaZUqlswpJ8mMQxG6b3bcvY0qts89jSqBrRSEhp9p/ouWhHy5mEJ5sg5SdOyZp4H/h5Locb5PuHi1LpdNp7kGDH5al0Ou3tY5KnstnsqPNFClK2fSH3IQlkdD6lUilPOCKBynVdbxhNm9xWnDsDw8ctxnE7NyA5rRV/zM9EqljE9OIw9hdcoLUN5QpQrR48H50EKuUaWnNJJLfswLrZM4FdO7G8p4Cnd1Ww/bgF6Ht2A5I4VCtPW6M+c0mNrgfAoe+qvWuQGK6RrlV8+5lS6IIcC5OFq8P2ebzyla8c9zaP7DtVyrhDH86A6CR5fO5zn8NPf/pT73Vc5KkvfOELgOEGZhT7+8Y3vhHf/va3vdfyF2YU+yx55plnAERLRvDjjjvuwIUXXui9pn5zsz6KnHrqqQCAc88915vG5amo7vNTTjkFp5xyivea/iDofuABAEDfP/3TES9PnXbaadb3onAdmzNnjnF6VH4Xt7e310/4//3/cHWhAPz0p3j53LlHfP9MyOGQozx8qKKMFcdx8LOf/Qy//OUv8fjjj+OTn/xkU8t/5jOfmZjCjkCmsjxVrVaxffv2ummLFi0KqRpFURRFURRFUSYKk6BAz+nGPQ2p1dLSUifG8OG86OY+gLqhp0bgov9g4tT+/ftHDR9Vc124mRRS67Zg6NxXoJY8Crk/rEbyoIThtOSQrgFgqT11iToJB+WZ05AcLqDY1YYHX+jH+ccksGL3EF6cPgdLRvbjpPYkntjfArguTuscwbYBFxt756NncC/O6q3iVytLGJ49Ey13P4hEpYLMfY+jcPkFKHd3Iptw0LJmE4bPOBaZdAr5FzYDOJRMU6pU0H/R6ai255HftQ8olDB41Bzkn1yD1ItbUAWMMgdPnCGBRCYG8QclPpnSl0yiTCaT8YQlvr9km67rIp1Oeyk1PDFIDgFoO3Z4Wg4f2pFLHJlMxijA8WEP+bFDIgmX1YLIU37yh5T+5Hu29k2pUqbtYFp/EHHKNI8U2oBD309yAUbeN+TD63HhiL6vlulUMpnMTyDj14RSqVSXikaCVCqV8sSofD4/KpGMktsocYrvX3pPDlHJE+ekKGgTK6kdOu6oPZKluJhIyVODg4MoFosYGhpCqVRCsVg8lKzVkkPHb55C9eTZeNbpQmqkgJ5yAfsLwODsGZi5aRsqXa3Y1dqOVLmM2f27sb1zGra3tqPXGUT3lh1Y39cDZ+MWzFq/DTu7p6OaSCBRO5TSRduJH4s02tTw8DAKhQLK5bJ3XgAHzmkSv/j2yOVyo6+1hvQp/gg6jKQyORQKBTz11FPYsWPHqH3yxje+sen29F/DYwwNLbB06VIAo+WDqCRPHXXUUXWv+S+TKNywlXzkIx8BAORyOeP7UesvgFFpLUTUREA/zj77bO+560Z/2L7Xve51OO200/DEE0/UTS8UCiFVNDm86lWvws9+9jMvilImvsRFWmj2P1aOBC699FLjdPpdFcV9yz93RO46/aMfeU9PGBqKVP9uvPFGAIfkKUKTpxTFTCKRwOtf/3p84hOfQKFQwI9+9CN8zDC0tuTBBx/EkiVLJqHCI4OpLE/t3r3buwYSs2bNCqkaRVEURVEURVEmEpu8QTfSpeQgxR2eQsNv/A9Vy/jD4i7szSVRKpWMyUXV6Z0Yeu1pwLK5aHeqKLxsAfa/fjlqAGqdbdh7wYkot+U9iUAm3gyedwIGX78cPdkaZroF7J4/F7/a04LzT2hDe62EF2tt2F1KYkGHi9YMsHbAwSa0YoZTwOkndOKezRkMLZiDns2bkT9mFgqvXQ7Mm4nWO1fAKZZQmtYBtyWL1jWbMXDKMRhYOu/QUIXVKva94XRUO1qR270P7kgRQwfFqZbHVo3ariZRQYocMnFKPnjKjEmKsCUD2VKjTPtbJtOY2uOyDUkffGg+etB7XIriDy6/yO/fZDqV3IZ+Agjfjn7bU/bLtr/8zhUJr5mnbXExjR40TfbRT2qSdcl+8/1H8PflkJkmeUY+AHiCUyaTQTabRTabRT6f9x4tLS11DxpqjubNZrPIZDLIZDKjjhm+703HIW0DqtM0hKB88MQ2ue3T6TSy2SxyuZxXb1tbG9rb29HR0YG2tja0tbUhl8shk8mgdfUmOCMlPD9zPlKDw+guDmNgqIrB2T2YsWkbUikH+2tJJAsl1OCgMlBEX/9eIJHA9pY25HJJ9KzbhvV9s7An04JpL2xGsnLoe2d57NtEVpK/pAgojwnqK5flTO2ajqUgx/hE4I7j40jnnnvuwfz583HGGWfgjW98I970pjd5jze/+c1jajMydzf27duH973vfZgxYwZaW1txwQUXjLqpbuOqq64yxhsuW7ZsgqsOl/POOw/XXHNN3bB2dJMWiI5wItMguDkeRXmKEohsNxSi1l8AmD17dt1rKQJGsc9ErVbDbbfd5iUTxCV5ynEcPProozjppJO81wAwODgYZlmTwkUXXTQqRjRu8hQQPJr3SIbLcVE+n6NyvbL9wVSp1SJ1bv71X/81AOD/+//+PwDxlTgVZSxks1lcfvnluOmmmzA0NIQ77rijTqRKJpN45zvfiXK5rMO+CeTviYcffnjKfBZ45JFH6l47joOZM2eGVI2iKIqiKIqiKJOFTEmi77houC15k5/f1K8d/L4okUhgb2sahf2D6Fy/HZuOnYvdfZ3GZJP0ngFkn30JA/NmoVKqonX/ACozu9B/6dnYe94r0LpxJ5zBYQx1t6HAkmBc18XI8YtRWjIXuR27sCvbihEniY7CEAqtrXhwVRGXHAPkEzWsL2bRURzELHcYe5BHd7qC1x6VwK9WllGc0Y2ebVsAJ4F9PTOQ3rAdmc27kEok0H7XA3CKZRS72uG2ZtG6djP6T16CgaVzUSiVsPf1p6Ha2Yrsrr1wR4oYPmoOck+8gNyjK43JPzwdiIsuNIyYlD+k9MPFFy6RNBKC5HqlkEPz8HXz5fj+lYlINARbLpcbJdZwWYYLQ1yqMg3nZzomGwk+UqAplUpeOpJt29pENSmTEEEEEylOkcTCh6/j24gnhPH18H3L4duBJ5TJY0bWzY8zevB/mKK+Uzt8u5FASelzbW1t6OjoQFdXF6ZNm2Z9dHR0oL29fZRQRVIVHTN0zfBLz5JDZfJ+UEpUsVhEoVBAoVDw9r2UqKQ8lc/nvf5Mnz4dM2bMQG9vL3p7ezFjxgx0dXWhvb0dyVwWg2cdh+zuvehK1dA/VMXQvF5M37AZqaSLnfk2JEdKmH/Xb9D9x7XYNa8Ppf4R9O7bc0Cgam1HeloOPRu2Yu8xczDS2eLVxPsvjy3+HTUNfdpInnJd1xPUTMeVSeA0iVSTjeuO3+NI56/+6q9w+eWXY+vWrcZr3Vg48u9U4cCF6uKLL8aTTz6Jv/3bv0VPTw9uvfVWnH/++Xj88cdx9NFHN2wjm83i61//et20zs7OiSp5yvBv//Zv3nP6pRq15Cm/2MSo3LDl3HvvvQCA6667Dh//2c9GvR/Vm5q33norjjnmGACjhxCK2j7mOI6Dv/iLv6ibRudxlPttY2BgIOwSJpW4SguO48BlfwxVTj01Eh9o7r33XmQymVHTo/K7avv27RgZGambRr+Lo/KZw4TrukhHYP8R3d3dZklMh+1TlKZoaWnBFVdcgSuuuAKf+9znsGHDBsyePRutra1hlzYlMf2e+NCHPoSvfvWrIVRTz0MPPVT3ure3NxK/txVFURRFURRFqUem+5iSiiglSGKSoRzHQblSwbo2B/sXdKPWkkBuzwD2nn0cOgHkVm8atZ7sum0oz+jCwPFHITs4hHTSQWl2D9KDwygv7EExk0S5NY/cxu3enfHiCUtQOOPl6Fq7AU5bFnsT09CfSiKVctBeHsFAKo//XlPGBUcn8MiLJTxbbEMNwOxUASctzOE/ny+jlMlgRnkIxfmzsH+wgvRLW5F9bp23TVKOg86fPISBN5+LQmcbcgBa12zG/lOXAq9YDKdaQ3bnHtRGSigePR/ZP7yA7O9Xosa2BXDoH4Xldk0kEp7sIlOH/JDzEyQfURtceKL12/Y1tUWvaeg93i4fXiydTqO1tdUTYkgEIhmGht2zDadmmiaHYJOiVlCpg0tONNyhaZvK+uRwcbI9XoOsx5b85DfUIE/cSqVSXr20/U0pYFIg4/IXXyevXQpicjvy45K2QzKZRDabrRuSkfczm82iUqmgWCx6/aB9n81mvTa8c4mlknERypT6xY9h0/lAy1I9pr6QbCSHC+TbXA4xSc+pXhLbSqUSds8/Ch3FEtI9LRjYX0JhwSxM37AZ6ZSDnS3tSI4UMfMXTwCOg/ZVm1Cr1bD75KMxfcMW9GIPtnd1Y0e2Fb3dQPfa7dh14mK0Pf4iUrXR560tha1Wq3lDCdJxLc8V3jee7GY6jkwSlbyeK+Gwfft2XHvttejt7R23NiPxjd6dd96J3/72t/jxj3+Myy67DABwxRVX4JhjjsGNN96I73//+w3bSKVSeNe73jXRpU5p4iKcRF2eOvbYY/Hcc8+NfsM9NC50FPnLv/zLUdPikDwl4edxlGUECfWb5Kl8Ph9mOZMGfVCMozxVp8VHZJiw173udXWv+f6Nwr6VKRxxScqrRTw5LK4Sp6KMJ9lsNtA//MQZ03X061//Ov7hH/4h9M+8GzZsqHttEqEVRVEURVEURYkO8h4LFxr8hpUypZXUqlUsWrsLT/RkMIwUsh05tK3dhP6zXg4AyK/ZPGq92S274Xa0ov2EOdhXTiBRrQHtOexPJJAaLKH1l7+He/B7muIJS1A841h0rF2PRFsO/W2dwNAwMK0DuUQN87oSeGl/GUNOGr9bNYJXLgD+d2saFRdY3ufivueLKCazmO4W0NmSwNoRB24mjdzjL4yWfRwHXf/9G+y79GwUOtuQdV0kqlVU2/JI7dqH2nARpWPmI/PEKmR/v7JuyCgu2JhSXvhwaKZta8MmWHGZgt73k3lMohyJO5Q+RQKMHHaOUohaWlq8oc0ymcwoacMkKHFZhMtctB7TsRgUKTfx1CH+k6+Ti2RSnJIikuleJJdOeFqUbN/UDv0keYpLU3RfmydM8fPOJETx+mRCmdzffDuZJDxqg+9PnmxUrVZRKBS85UhCymQydfudD9lI71HbJkGKS2y0HUwSHl9Gbheqk+QpOq6pL1zwo23P56NkqlQqhXK5jCU7h+EOFbAukcTQUb2YuX4zkpkEdrZ2IDFcQNdPfwek06gdrLN91Sa4rovdpxyD6Ru2oM/Zi53ZVux205i3bgdatu5DNpEatW3lccWPo1qt5qVpkTwlk6X4OWySp0wPvg+CyJsTxXgNuReB4ClcdtllWLFiBY466qhxazMSd3LuvPNO9Pb24i1veYs3bcaMGbjiiivwH//xHygWi8hmsw3bqVarGBoaQkdHx0SWO6XhyVNRutF33HHHeccH/2UTxRu2zzzzDLq7u7Fu3Trgd7+rey9qfbVB+7hUKgGITopaUKIqBgaB5Km4XcdJWpB/PEYVx3Hqxh2OqhRKRPl8jsP1iv5wjipSvo9yXxVFCQ/T74mRkREMDw+Hnhi9Zs2autc0vKmiKIqiKIqiKNGGCw08iUUmVAGjk4HofuTQ0BCKIyOY/of1GHzVCRhO5dHiwhOoXNdFbvUmAEzUKFcwPL0TZTeBRdMcvLjbRbnmAPkcaokEauUKEo6DwiuOQvHMl6NjzQYk2rLob+tAtVYFerrQVRrEvBmtWLk7g0TKwazSfmxNtuN/t9Vw0YIqXuoH/ntTDm7SwXx3CPuyLVhbcDE9UUJp/W4MXXzGgaH6Rope/w4+QedPHsK+S8/B8LxeJJNAemgE5eldwLQOZB9difxjzwOGNCKTsELIRCUp2JjgAosUjvg9Iz78mZyX70OeykT/7ErzJpNJ5PN5pFIpT5DKZrNobW1FLpdDV1eXlzpFkopJtKP1SFHKdDzRa552xWUev+3CRSUugpiW9VuHrNe2z/yEQ769TcNsmfY5bXMSg0jsoaEqqR15nPBa/NKw+HoIub9JjqPzmSdXUZoTHSfVg/9cS8vKlCouX0ppz5Q4xaUzLk7x7SePeZ6UxNPdeN8pqYoSqLhMVK1WvWn8GOAiFYU6bJsxDXsWdGLxvv2odrVhcyqLzEgJPb/8A9yDAhbvU+vKDYDrYvepSzF9w1bM6HCxM9eGHacdjdmPrQVyqbrtYruuclmMhiakc06eazy5iqd/yWODr8eUZBY3vva1r+ErX/kKtm3bhhNOOAH//M//jOXLl1vnv+WWW3Dbbbdhw4YN6OnpwWWXXYYvf/nLyOVyY26T8y//8i+4/PLL8eCDD+L4448f5QOM5Tu6SNyp+sMf/oCTTz551IG/fPly/Nu//RteeOEFHH/88b5tDA8Po6OjA8PDw5g2bRre8Y534KabbkJbW9tElj6lkDe/oiScPP30095zfpxE8Yat4zjYu3ev8b2o9dVGXFLUTFDfy+VypM7hRsjkqbjIU/ThuFKpRDpZzkSCf4CN+LEeleQpCb9eRfk6XavVIt0/QpOnFEWZSGzX0WKxOMmV1OO6Lh577LG6aY2+e1AURVEURVEU5chHJtvQzXd6zeczySVyWKlEDej9+e+x7Q2nYTiXQx4uWtdswsDZx8F1XeTXbD6UqpLLotLZiv7hGtyKi8XT01izpwaUKqj2dGL4DWcgtXknime+HO2r1yPRnkN/e+eBG/3dnege2IujF7XhsS0VVDMZpEoVJAF0ZFzsLyfwzI4K+osOXDiYlnWBoovhQg2uk8DwzmEcNzeN1X/chKFXnYz8fY8jWSx7/XIc50CaSaVyQJCqukCNtoeDVKXqpdfYHibG8r23LRlJJiTZ1m9KPeLv0XSezpNKpZBOpz15Kp/PI5/Pe0IVl6ZsfTLJU6btIOeT4g2v07Q8f22azyQ3cfHKJnbZ+mRaRzNtUJ1yXqqNzkOaj17Te6Z1mfa9nI+WlUlMqVTKk3K4gFapVFCpVJBMJusSsQB4kiW1waUcvm65zUx12hKR+PY1yXlSBDK1waU3OS/fR1yqo+29syWFl7rTOHZ/AcNtWWxBCtlCCUc9uhZDmYwneUnxqG3VJsBxsPuUY9CzcRtmYghDNRe7jluAuWu2jzpu5Dbg00luon3BxVYp0ZnapbZN280mtMWBO+64A9deey1uv/12nH766bjlllvw+te/HqtWrRo16ggAfP/738d1112Hb37zmzjrrLPwwgsv4KqrroLjOLj55pvH1KbkBz/4AX7xi18gl8thxYoVo66RsZWntm7divPOO2/U9FmzZgEAtmzZ4vsF5qxZs/Cxj30MJ598Mmq1Gu655x7ceuutePLJJ7FixQrfG17FYrHuC1u6cX+kQjfhgegLJ1FNnrLhIn43NKOYohaEOCS5SOgXYn9/PwCgvb09zHImFbL+47a/Hf6fJhFN3OJyXJT3b9T7V424PCWF5bh91lAUZXKwXUd57H0YXH311aOmLVmyJIRKFEVRFEVRFEWZaGzSAgBv6Cq6aU9DRQH1goHjOCiVShgZGUF/fz+KxaKXWp5JJDDtJw9hz6VnYziXR9510bJ6I/afczxcuGhZswWFvm7se92paHlxE5KzutCf7EJ1XxVLuhys21pBJZ9GZWEfKotno+25Nd5QfbVyFehqQ8fOnVg4N4fHN1VQa8lj4c5N2NYyDZta2zG7WsSiFhdP7j+QCHJCWwGbhxxsQBs6ikPo69+NF7pn47kNW9FXHkZl7TCcrnYkd/UfkhOSSex+7ckHhhXctAPDfdNRbm9Fbv8w2nb2Y+8ZL0draxs6X9iEWq2GUqnkpfTwZBwpifBEGZlOZRJzbPuPL2uTMKhN+smTgvi+JEkql8t50lQqlUI2m0VbWxs6Ozsxbdo0L32K2rGNHkHt0zw8DYdvA1kHl7HksGb0U0o1NiFLHutS4vKTpyQmyUkm/ZgSrngNXN6R+9EkPJGYl0qlPEGHkp8oIYmONZ40Rts0nU7XbVO+D2xDLfKaaFtzOXJoaAiVSgXFYrFuHwH1CVBy/3AZSw45yCUxfv6Yjm9+TnFxSW57LofRcJNcCgUOff9LNVASFT8/C7kazuivYldnFnurDjoSLk7bOIxKby/2ZbPe9Y9qIYG0Vquh5bn1AIB9L5uP3m270bd9EAO904BsBqjW6tLR5LEqh1AslUooFosolUrI5/OjhEXZ/3Q6Pep7bVPilJTOwiCsYftuvvlmXHPNNd53Ybfffjt+9rOf4Zvf/Cauu+66UfP/9re/xdlnn413vvOdAICFCxfiHe94Bx555JExtyn55Cc/ic9+9rO47rrrxm1knil3J4cO6CBks1k4joORkRHjsHwU+TUyMuLbzpe//OW6129/+9txzDHH4JOf/CTuvPNOvP3tb/dd9rOf/Wygeqc6dDEm4SSqqTV08tDFLco3NCVx6au8kRuXfgPxSXKxQQJrXOQp/iE7TsKClKcQ8b5Hef/GQQ5zIz5sH0G/c+MyfKiiKJPLVJSnXNfFd77znVHT58+fH0I1iqIoiqIoiqJMBiZxCkCdDEIigCkNyHVd76Y+SQMASzByXXT914PY9+ZzMJJvQR5A65qNGDznFahO78TIyxYgs7sf5fm9OHEOsLNSxuqBFDZvHMTCeW14aVcVbjoNVCooHz0PQ0MluJUq0N6Crk2bMXdWHk8O5lBryeI1nf3Y6+SxrtaCdKWMfU4K5eEKOjIuRioO1vcDxXQaqWIJ+9M5zHIcLN25Gatn9WHrcAXdz6860L/W1gP3ExMJbHnlcai25dGxbz8SFWA4kUCyUoWTSMBpb0HP1r3Y9YqFSKVS6F67FalUykvpsclTtH1IBJEiiZzftByXKuin35B5tD9IIslms55cQvub5KlMJoN0Ou2lS7W3t6O1tRVtbW11Q/XJ5CbbOk0yFD9G+IOm8+3AjzW5PUzYUqHk80aylGlZOY1LYFwG4+IPSThy3bS8lBht65ICHE9VopECZGIT9Y8nhNGDi1Vy/SRL8vQrWifda+ffnfJjwSRPAYeOVUp1Ivg+liIPF30I/pyuTbK/1Gd62M4NU2ITvUfi2vGlKiqJBFa5NUyruTh+dxXlfB7lVAqlUsmbj8Qpx3G8hCgA6HhhM1r2F7DnhKPQunk/Zr2448A6DaKjTfzj28I0lKGsnZ9bfJvYkr+kvDfZuO6Bx3i0A4wOBspms6O8m1KphMcffxzXX3+9Ny2RSOA1r3kNHn74YWP7Z511Fv7jP/4Djz76KJYvX44XX3wRP//5z/Hud797zG1KSqUS3va2t43rPYkpd6fqgQcewAUXXBBo3pUrV2LZsmXI5/PGuH76IjWfzzddx9/8zd/ghhtuwK9+9Stfeer666/Htdde670eGBjAvHnzml7fVCAuwgn/xRaXoXSIOPUViGfyFE+qiaoAaYKuX/v37wcQH3kKOPTfBXGQMwjHccA/CjkR73tUk8X4544oX6/ikjxFXxI0+gJFURRlLEzFYft27Ngxalp3d3ekr/mKoiiKoiiKEne4nEDfhSSTSU+kISGAhCB+Yx448P3JwMAABgcHUSgUvFQZSntxHAcp10XXfz2EfW8+1xOoctt2YfjEJchu342UU8NI1cWju7I4P7Ed2FHB6pnzsWlnEYt6c1i3p4qK46CYyQLJNFCuomvrVsydlcfKahtqrRm8ums/9pcTeKw2HR2FQbx6WgH/PdiF4WQWcwpDyNccbE+2IFUo4Y2d/fjVtgxemD4by/Ztw8sGd2FdXzcSxx+Nvt1DB2rPZPDM8XNQy6cxc6gIJ5XF9r42LNzSj8VbB/HYy3sx0tGKzkwG8/YMY9PL5yGXy6J3w25UKhWUSiVvm8rEKf4g+YPmkyIbfVcu9xlP2+HL8O/UuRhF+6OlpQX5fB4tLS2e9AEckkVSqRRaW1uRzWbR0dGBfD6P7u5utLS0oK2tzRuqz5bWJJOYpLAj049MgpVJ9OBymWn4scP5Dk+mUklZzQ+qn4ItqG56kEhFPwHUDSPXqG+mGqTMRPNwicsm3PF56Ptruv9GD3kscrGHjiN5LJNMx4fuk3XTMUsJWYlEwju2qV6e2EYPkjK5mMm3O+8nP+YymUxdwhrf3qZjl2qkvlAKleu6qNaqONotY06phlouhdzBVL7UQYEqm82iXC6jWCyiUCigXC6jUCh4+zyzez8yz65HslSF66JuP/Ga+DFF8G1BQ/dJ2VLuZ5M4ZhKnePumoQePVKTXcuONN+Izn/lM3bRdu3ahWq2it7e3bnpvby+ef/55Y7vvfOc7sWvXLpxzzjneefMXf/EX+MQnPjHmNiXvec97cMcdd3htjgdT7lu9ZcuW4Vvf+lageWlYvlmzZmHr1q2j3qdps2fPbrqOfD6P6dOnY8+ePb7zmey7I5k4JE8RdKGLzZfbBz94xAGevgTEaB8z4po81dfXBwC44oorQq5kcohr8hQAJPgH/Yj23ftjo1qNbJoPfe6I8vWqFpOUS/pSUFEUZSKw/W0aZvLUSy+9NGpakEhxRVEURVEURVGOTOTNc5IB+E13PtSWlCRIEioUCp4sxIecIgmrWq0ClQqm/eQh7H3TORjq6kK6M4fc4AiKvdNRHhg+cDN/Zz9+nW3D+dMHUC3twYu56di8s4RFMzJYvacGuA6QSKCtWsKcvhxWlltR62rFq9r6MVxO4HdDHciXC3hN9wju3ZBErTuBtuIIdmZyqCQc5EZGUMhl8cDmFN6w0MUvtxawatosnDS0D8cXS1i7uA+1tiFMGyzjiaUzUMwm0VusIOWksGFGC5bsGMYxeytItLTgvJf246GjOjGQy6ArkcDcPcPYuKQXqVQKszbt9VKApIwg05dsSTuNJBqSXEik4G3L/Uv7NJVKIZ/PI5/Po62tzUvJItmCUqdaW1uRyWQ8WYp+kowiU6KoLuoXP0a4KCUFKinXSIFIJhbx7WBKNrJtq2YwiVNcBLJJWjZ5TIo6cj0yVUp+Z86XITFJ7mdTypAtQUimC9G5XSwWUSwW644rKU/x4ftKpRIGBwe9dmiIOKqPH3N8/1erVW/4PL4NZFqV3AaJRKJOGuKiFH/Ov2vhQxrSPPL8o2m07SklTF4LU8kUjqo6qKVrqCUPpXvl83nve/JSqeSledE/xnEpKrP3gJhZNaSw8f3Cp9mG1eOCmjwe6H2T2CiPgymTPIXxHbZv48aN6Ojo8KaPl/eyYsUKfOlLX8Ktt96K008/HWvWrMGHPvQhfP7zn8cNN9wwLuuoVqv4u7/7O9x77714xSteMer7w5tvvrnpNqfcnZy+vj5cddVVTS1z4okn4sEHHxwVs/jII4+gpaUFxxxzTNN17N+/H7t27cKMGTOaXvZIJW7JU0RU+wkAiFNfGXGWp+iD0x133BF2KZMK7fOjjz4aAHDyySeHWc6kEtfkqbqPQBGXfZ966imsXr0a//zP/xx2KeMK/9wR9et0lPsXZ4lTUZTJYyoO22eSpz784Q9PfiGKoiiKoiiKokwa9F0spc1w8YHLH/Q9CUkhJE9R0oqfPOXJLrUaWh95Fv0XnYlyuYaWchmlYhK19ha0PPAk0k+tweBl5+P/sj04Z1kWiQ39WJPsxMb+KpZ0J7Fmj4uk4x4Qp3ak4eaTOGtwI/qHUnisZTZaC0O4cPow7lmfxFB3F2Zt3gy3WsP2eXMBuOjr70e1P4FNvTPwwOYhXLzIwYp1RTyb68S5OwZwRqWMTDKP3x47HSOZBGaXXWScNNZMS+Dl/RW8fCQJt60NwAEp4tWbCvi/eXn0Z9PochzM3zuClxZO9wQqLnoA9UOo0WuZOsQlCSlG8OVKpZKXCibnp7ZoGokt6XQa+XweuVzOk6domDEayi+Xy3nyVD6f95ajn3KIPaqH6qOhAU3SlCllih+HpuQnTqP3m5nfJECZEqzk/jO1LfevaShCLlFJaUjKZ1Is4uvkcho/nmSaF09pkvITJQzRsUMC5MjIiCcb8eOKoGOzUCigWCxiaGjIa5MnkiUSCeTzeW/4Ry5jkpxENdI5QPc+TQKPHH2pUql47ZCI5UlOB1OxeJobT9Tj5xNPC5OJTTwRi+ahdfLz1HEcr55yuYx0Ol2370gIk4lRXDSTshufZpMpTee87T3TMW17hJU85Y7zsH0dHR118pSJnp4eJJNJbN++vW769u3bvVALyQ033IB3v/vd+PM//3MAwPHHH4+hoSG8733vwyc/+ckxtSl5+umncdJJJwEAnnnmmbr3xiqFRuJOzmWXXYY777wTd911Fy677DIAB6K+fvzjH+OSSy6pM+TWrl0LADjqqKMAwIuDk0M8ff7zn4frurjwwgsnqRdTA4pNA6KbPCVPlijf0JTEqa9APOUpIPiH4ShCH9KimtIjoevZ448/3jApMUqQPLVz7lzs37QJi+fMCbukCYH/ITAyMhJyNRNH1OUpF4i0VMQluCj3U1GUcJmKw/Y98MADda9f+9rXRvZvaEVRFEVRFEVRYLw5z+UXEhxc10WxWKxLaSGJgoamkskoBP3tU6lUUOidhoHXnoqW1RtRWjIbQwdFpJZV6zByxrFIlMtIr96Ewrkn4DdrSrhgTgqVwRLWFTLY1F/DsTMc7BwEVu1LwMkmsbx9CCP7aniiexZahwfx+p4RT5yau20bnEQCW3tmomvLXiCdwrZp07GoNIJlg8N4vr0ND2wp43VLHTz4oovH5nfhop0u/tiVwFDOwZwKkHaA1a3ACUPAScUMKtmEJyWQlPH6bRX8clYG/dkUpiUSWDRQwtq5XeiuJTBjsOxtB540I2UQep+mEXJ+077jkDxCkooUsJLJJLLZLDKZDFpaWuqGkkulUkin095DSlAy0YpLP81iS3eih63fUjbi06U4RtuP7y8pm9hSn0ySlBSkJFJU4SITpRhxcUkOjUfrlwKWrJdvF7595JCH/Hwk4YgPg0fiY7lcxvDwcF3ylBSPpFxD96wouaxSqXhD69HxVCgUkE6nkcvlkMvlPMkJOCSS0TCRtM9taWp8G0shjd8/kxIiF53kNqL3+b6n5Kp0Ou31jb4TofNDSn8kWpFERcu2tLRgcHDQ2zZ0DPDrLa9BDq0HHLo3aPpeppFQJbeBTKyiB9+/cSOTyeCUU07Bfffdhze96U0ADmzX++67Dx/84AeNywwPD4+6LtH9A9d1x9Sm5P777x9bh3yIxJ2qyy67DGeccQauvvpqPPfcc+jp6cGtt96KarWKz372s3XzvvrVrwYArFu3DgCwbds2nHTSSXjHO96BZcuWAQDuvfde/PznP8eFF16ISy+9dFL7EiZxSetReSr68Bu5QHRFQBPU99e+9rXo7OwMuZrJgyefANEWFTj0we7HP/5x2KVMKo7jYAuAH37sY/jYxz6GkdtvD7ukCaO/vx/AAbM/ipC0HfXfT1HvH6DylKIoE4vtOkqf98Ng9erVda/PO++8kCpRFEVRFEVRFGUykDfVAdQl2fB5uBhBkDhhuolPbZGUUJzVjX2vOgktL21BoqsFie37UOmbjuS+QSRbs2hdsxGDF5wM1Fx0rFyLoaPm4b7tOZw7uwqkq1i3P4G9+yvYXz2QAnParBqGChk8070ArXv24vVzq7hnfRLD0w+IUwk42DK9B527B7HshR1IZ7N4/uVZrG9rxVK3guOKJTybzeD+DTW89ugEnlvt4J5eoLsKzKs5SMPB87kaThpJ4pRS0huqi0QPkhQStRpev72Ce/tS2JtJYrqTwNKBMtb2tSG3u4SZhUPbjCffSImB34CXQoeUgqQUxYUdkjfkDX5qi9KAcrlcXbIYT+7hEo5tiD1eB/9pOg6k1GGSoGwili3tySRWmaQqWavfcvKn3zwmAYzPy9PC+FBwJO7I88skX0mBSvaRt2F6TyYJcZGKpB56kLhE5zlJN/RaClR0zJJ8w+d3Xddrkx8DdGzRPHxfUBKTHBJS/pSSnJ8MJGvi7fB+0fai/lSr1bphCLlAJfcHtUsJe1QXtVUqlbxa+L7ndcp9Z+qXRF6L/QQpv3aDrCvKXHvttXjPe96DU089FcuXL8ctt9yCoaEhXH311QCAK6+8EnPmzMGXv/xlAMAll1yCm2++GSeddJI3bN8NN9yASy65xLuGN2ozDCJxJyeZTOLnP/85/vZv/xZf/epXMTIygtNOOw3f/va3sXTpUt9lu7q68Cd/8if45S9/ie985zuoVqtYsmQJvvSlL+GjH/1obNJLCLqJyY34qGGzHKNO1JMvTERdBLRBH3Ditr+B+CVPEe94xzvwgx/8IOwyJp1qtRr5fb1161YABxI1owYXXaMuuUb59xCXV+P4e0dRlMnBdh2lz35hsG3btrrXCxcuDKcQRVEURVEURVEmDXnDnBKH5M18Lk+RYFAqlVAqlTzxxtRuIpFAoa8bu89ahrZ12+B2taBQAaodLej8zv9i8OKzMJzLI9PRgqQDuCkHtd4uVIcKQHsrHtyWxqt7hjG9PYHH9+cBAK9Z5GLnQA3P7E0D1Soy6QTuf76AkdndWLR7D5KZLDZ2dGJGfwEnbysg1dODdDqN83ZW8LtMGqtzGRybAE52HfwxkcQTG5M4pTuFLQNVLEEKA24NL6QrOLmYximFBFwc2D7URxJTSD5K1Wr4k90u7ulxAMdFKpPAmfuBzR05LEoeEpzoPiVJGaYh+oD64f14ahLfVyTXUKKPHFpPijR8aDO+j6UEZJKLaH/ynzLNR84rZQ6an/eb6paYhK1GyU+0HK1DSjbUV9N3fSYxyU+k4nAJiJKF6LiQAg8fNo//7c+3qVwvT+GSddI0kzhD6U2UCFUsFlEqlVAul1EoFLzkKZksRTXzlCpbghGlaaXT6brrA9VUrVZRKBS8n3VDeOKQsETDhJLUxEVC1z0wrCBwIFSiVqt5548UsHh9PJ2Kvy9TuPj2p/Mik8kgk8l46yQ5CkDdOcTXSUlalO7mui6y2SxKpRL27duHSqXi9QOAJ5bRP9Dx41KmUZmkOnl8caiPtO95nXL/8vf4tMnGHedh+4Lytre9DTt37sSnP/1pbNu2DSeeeCLuuece9Pb2AgA2bNhQd4x96lOfguM4+NSnPoXNmzdjxowZuOSSS/DFL34xcJs23vKWtwSq+a677mquk4iIPAUA06ZNw9e//nV8/etf952PEqeIrq4ufPe7353Ayo4c6AJdLpdjcZOP+PrXv+7FwUWdKO9XTlxS1EzE9SZ23JOnZs6ciWOPPTbsciYNLt1EeV+b/gMpasThcwcQj2tS1M9HRVHCZSrKU9u3b6973dfXF1IliqIoiqIoiqKEBRc1gNHpQSYhxJSCRAz2tGPzGUvRuXEHal15FMruAXHqx/fDGSmi7cf3Y+DKCzHSlkfryBDguhicPh3oHwLKFTi1Kn6zO4PTZ7lYnHSxa8TBhp1lrB3OwKlWkXBd7M23Aa0dWLR9J1KZDDa0t2P6/iJO2TSIzMGEJRoi7II9wIMzEliZAY5POTgDCTxRqyLZn8Jby23Y61bwq2wB5xWzmF9OoOocSsmxSTmJRAJJ18Ul+1w81uaimACmw0FvMQGk6uUlPqQeFx9M6TpSjuHpOZSCk8lkPGlKDtsn9ylfP7VNsoRNmpCJPVLgkbXa+mKSjrjsYkpvkscg/27ZJlDJdZvqNy3TjDwlhTNTepBJgrLVzbe9qX6+DWTNfBmT9FQqlVCtVkelS/GUKSlQ2raTlKeoX1wGlNuHpvPvOrgcJOflYiKtj57zoRDlNjGJZdQeyWwyQUte24BDYijJR8CB74gdx/FEJ9OxbDrecrkcEokEcrkcSqVS3fpJPDPVzmVDjkkUk/tOCovyuDG9trUVFz74wQ9ah9RbsWJF3etUKoUbb7wRN95445jbtDGRIy9F+06V0hT8ZnSUb2LaPiREnoO/YOIAP5aBeMlTwKFf9HG8iR3H5Cn6wztO+ztOkmCUP4DH5XOHi2j/HorT+agoSnjYEgrDkqfK5fKoVMhG/xWnKIqiKIqiKEp04FKKKXmK31jnw37R9yf0oL9pHMfBYE8HNp52FLo270KtM49SxUWtowXT73oAtUIJNddFta8bGBxGIp3ASCoDJBygUAC62tC5cyfmtdbwTHUGHtjm4I0zhrDdSeK3e/NIVSs4ZnoCL+1yUU0m0ZOooDK9A1udDGYOlnDGjjJSbW2eVEQpR4lEAm+sZPDzdAnP1qp4RSaBU2pJrK2V8YKTwCw3idNKacyrplDDoSHtqE9SLOHSCACcU3GxNl1FPptAwqkfuo1SbPgwboRJPOPpNrR+mdZDyVN82D1an0k+kuvhaUim5BmZcsQFlkbpSFLU4m3y9Zva4QKYTezxE6j8RC7Zpkn8srVLP7kkQ/uTJwJJiUjKalLAI9FHHlu0jWySIk9YonSjcrmMkZERT5qi+y30oPNWJjDx9ohUKuXNR3Xy7y34cc1TjmTiE6+lUql4KU88yYlvz1wuV9eOlLT4Ty4v8VGoqF6Sp4rF4qjjkO8jWhfVSfuLEq/4/uXpU1Qflykdx0FbW5s30sjw8LC3j2hYQH48yJ9SLKT+8++tbRKYTNji+8H0MCWLTTbuwcd4tHOk8q1vfWvC2o7unRxlTFACRJSHz5G/zD/3uc+FVMnkE+WbtybinjwVJ4GI9xuIR8oLUP9fEnHpMycOx3mU5Sng0HDBUb5OlxDta5LKU4qiTAa23xNhRaT/z//8z6hpKk8piqIoiqIoSjyQcoqUOGg6QZKGlC5ItEgkEhjubMG65Uswbctu1DpyKFaAclses//3UVTKVVSSSZQ6W1FY/jK0v7gRzpxu9M+dc2AFmSw6hwYwe2kPVq0bArIuZqUqeGhPDgPVBLpKI9iXzmHbrjIWzsxg454a+pHC7nQK3SMVnLm9hEw268lFJGiQPJVOp3FpJY3/cYbxdKmCV6STOD6VwtMoI1dOYEEtAyRGJ/BIYQWo/x6b5n0ZADd9SK4h6YGECZImTHKNaX1SRuKyGiVNkYjC12Hatzzxx5RmJH/yIf6kvCPbNM0jH7a+mR4mecp0PNowHcON5Cg/Ics2jcs79OAiDd/WXBAziVT02i8xSKYkUaoUiVM0pKYUpGzDBtI6eRJUXaraweObi25cGuSpZtRX03CAJOhRkhOdO6ZENHpQQlMikfDa5KKflIzkPpDbVZ4D1Ac5rCRto0Qi4V3TaDpPj5PnAd+fJHPl83lPLhsaGkKhUPC2O303xPtlQspTpmEUCZMYF4RQ5amQhu2LC9G9U6U0DV1Eon4TU/7SjnJfIW5ixuWmJu3juMpTcU8iAuKZPBWnPvPfV1E+zh3nULxtFIn0546//VvgK18BAKwEcMzKlbj44ovDrWmCifr5qChKuEy1YfvWrFkzatr06dNDqERRFEVRFEVRlMlGCgj8Jj3B5QAuT/GhsUjgKbVmsWVpH2Zu2InStPxBcSqL+fc+gWTFhXswCSaxdz9yv/w9atUKih3tcNZsgrt0AdpQwvzeLFZuKaLa0Ypzqzswsq2Ax7vmwXFdXNxewqb+En6f7UR2ewlH9aSwei+QcYGzd1WQz+e9xKlMJuMN2UfyFPX5T0oufpssYEelhnMraSxGAjnUD3knh7+TIpCUk/hzLsxQLVJ+oHn95CmSS/iQfDSNv8flKZkQxNdD6+c18PQkPi+Xp2Q7NE1KL3J4Nblu0/aUaUpye9i2M2ETrBrJUFJ+kdNtyL7JNvg0W0IQvSeHr7P1h+8vniY1NDSEUqmEQqHgCTgkGlUqlVFpTSTWSKmI73t6j4tzXMbhqVh8eEl6j88vhwmk+5wkR3GBiv/kxzQfeo+3ZRqaDhg9xJ3sp9wfvH4SqqrVqnc/g+QtOr6p31ycs9XQ2trqbUeS3Wg78uCXUqlkbY8nfPH9yY8nQm5veTzJ45FPC+sf+pSJJWJ3qpTDhX45xCl5KnI3bH2IS1/jLE8RcZOniLglT8194QV8vlrFzoGB2PQZiI88BRw6lr/73e+GXMnEEfXES+DAH31RhcurUT8fFUUJj6k2bN/GjRtHTdNroKIoiqIoiqJEG5kMYxJWTGICDQtGKTd1ckIigU1H9WDm+l0YWNiN6v4iSj2dWPDLPyBZrgJs+K1UuQxnqIDCsgVwKjU4C2Zg2oZN6DthFp7b5aKWS+EcZw/2t7fj6dI0dG/cjVJXK+4rt+CivipyA0U8mMqiNlDDMd0Odu1w8ftZLbikP4l8OlMnE3HBw5NAasCZtSz+mC5jdbqGM6rZur+DeL+A+uHdJH4pSSQ98b8DpbBG93ykUMRFIt4XLplwwYoLMKbaSLqQ+82UpsNTkggpO8mftnl4bbwuKRyZBCTZn0b4CVC2aX6iVaP1m4Q3LuhIgUqKRvwntWF6nwQ3GvpteHgYpVIJ+/fvR7lcRqFQGCXGmGQYkmpM6zYhhToSo6geOXwetUd1cjGHyzx8mD+5z7hQxo8j13W94UHpYaqfX8/oeTabrfunfb6t+HnBjwXa3ryv9Bowf2/Ck8HoHM3lcnUpWvv37x91DsqEN9N1gGqyCYS1Wg2lUskTsWy18fnlMIhhoMP2TSzxMwoUK1w4ibJsYhqDNi7Eqa/AIXkq6jflOfy/JOJ0A4ffvAdikjw1OIhLv/pVXArg+fvvx28WLgy7okmD7+8o72v67woAOProo0OuZmKgP3qi/PvJAfDYY4+FXcaEEweZUVGU8Ojt7UVXVxf27dtXN32qyFM33HBDKHUoiqIoiqIoihIuJolE3nC3DQvlOA4SjoOjn9+GwvAIhvNplFqzWPyrP8IpVQDn0HBmXIZIbdiO4jHzMGPtevQdOwMrXxxCrbsDZ7UMobJ1BE8Pt6Nz614cu24v8q0FPH78LNy7M42LZwOpfVXcX0lixi4Hx3c72L07id91Onh1JY10IlmXmiRFCQBIOAmcUssBOCQkcQGE+gU0lqdM0guAusQoWQttC14nzcfr4QlQNmmK2uLSCQBPVuPiily/Sf4yyVP8GJGSlC15SU6TskwjccoP6q+c30+gMs3Dn0tpTs7PMYk/siZZn0xCku/L44gnOQHw0ouGh4dRLBYxODiIcrmMYrFYN7+tr6bh7vxEKjrO+LJyX8kkJy77SEmT5qfrB7VraofXLuU+uT35a14DLUPnj0lMo+/0TW3LIQ95vabrhWybtkMqlUI+n0e1WsXIyEjdtqT+mY5bKU+ZthGfXqlUvMQxm0Blk/fCkqeUiSW6d6qUMUEXiijLJvJiHuUbtpK49JX2MQ13FZd+c+ImTxGxSp7asMF7umzbNiQWLw6xmHB44IEHsGXLlrDLmFAiex2r1XD+8DDmHLz5HLn+xeizBpcZY3HtVRQlFBKJBL75zW/iLW95S930MOSpYrGI//7v/66bNm/evEmvQ1EURVEURVGUyUWm1Mj3uGQhJQJKOOFDUAEHE1ScBGrpFCqZFPqeWAunUkVNtAMc+CfxVCqF2oI+pNZsRve8dqzZUUVlditeWdiK/ak2PJnrRc+O/ThxRxFtM2cil8vhkt0O/rc3iXu2O7hkDvC6AQf3DbvoGkzhFa0ZrCsC+xMJzKglvH9Ip9q4nMClJj6kH4C6BBqbiMOnm4bd4+sxyUN8OV6LKbFJrsMkTfF9B6BOtpGyDH23J0UYiZSnqE3TMlJ2kZKObFduV7+h+kzb3zTPeBBU3OLz+glQjZaVP6V4RedMtVpFoVBAf38/hoeH0d/fj1KphJGRkbrh4CgdiZ9rUt6T8puf/EfzS/mPpvFrBKVa0XupVGqUqEf1cJmJljEd93QckcBFzykByrS9+HFH7WQyGbiui3Q6XXeOuK7rDUNqOtar1aq3ndPptFervGZwkYxqoX1Bw4Z2dnZ6AtXw8DCGhoZGnc98X9ByNPQob5f3l0+3JU/JbWMaBlHlqWgS3Ts5StPQxSXqyVNxlqfidlMzjsP28Q9Pcdrf/OY9EJPkKfHBLI77+6GHHgq5koknsvLUf/4nvr51K3DHHbgNEeyfIKrJYRxNnlIUZaJ585vfjHnz5tWlPoUhT914442jps2fP3/S61AURVEURVEUJTxk0o1NXOHyjLwJT9Mdx0G6WsOclZtRrNbqxCneLokVbRt3AgA2zO9DsacLryxsRbGWwJODOUzfNYDj1vejpaMDuVwO2WwW6XQab9oH3N3t4qdbgEvnJ3BpIoGfD1bQVUzgLDd/oC73kGDA+8CHIePD3/GhwkzpOhIpg0jRiN4j6YOLFVISkcPw2aQpKU/J+mT9su82qcc03J8UXmg+27Yx/bSJUHIaF2fk+0FlJlNykA2bECfTmEzbw9YeX8aWRGSrw1QLX5YknFKphEKhgJGREYyMjKBUKqFYLHppQyTB8GQ4KUrJ58lkclTqmkyKarTtaDn+nYY8xk3JSba+82VNwh4lOtG2kceNnxTK7zkC9cPg2dKnqG90jnKJ1FS/TegiYSyfz6NWq9UNtSj7TZIYPWzXIb4OXldQEcoknE02OmzfxBLtO1VKU9BFRJOnIoob7WGROLSP4yhPEXFNAIlV8pQgFsLYQZr5b5YjGcdxPHkqcsf0VVd5T69F9K/Tl1xySdglTBj882PkjlNFUaYcc+fODV2euummm0ZN0+QpRVEURVEURYkPQUUPEghIuCAJgUQN4JCQRGJUqVTyluXDVCWTSaTTaa+NfQtnotrdhvPcXShUHfw+OxMzdg3i9D01ZHt6kM/nPXGKUpr+tJzAD3PD+OkW4M0Lkrg0k8UDewqYWU2hr1IvDvGaSVDg0gjvD0/VscktUvQxyQ0mYUWKUbScHNqPL2cbFo/XwIUQKU6YEod48o4UwGh/8eQePo3EFbkN+HaR286UEMR/SiFsLDQjOsn5gyKFLrmdAYxKBfIThWz7hbdNks3Q0BAGBgawZ88eDA4OYmhoCOVyGYVCAZVKBeVy2ROoZNoYb5e2Mx1zlGqUSqW893h9UpbjkiFvWyY48WOBzjVeG08mk5IVX8ZxnFGCFN9uUjo01cWlKUqSKpfLnmxGdfHEOb5fgEP3KGl+oP4eABfEONRmtVpFOp1GNptFT08PWltbUS6XvVpofdRvSp3KZrN1w3ryPsn18OPAT7bi2K4bSnSI9p0qpWlc18Utt9wSdhkTSmzlKcSnr/xGLhBB6cAH/qE/jjKNJk/FA9rfV1xxBZ5++umQq5lYIps8JYiytA1E+/zk199YXHsVRQkVeT2dbHlq9+7dxukqTymKoiiKoihKvOCiBskNBBdF+D/78rQmUxILf9A0nr5C3w8OzJ2OwrwenJPZj4qbwqPZHvTuHcGJ20bQ0tmJdDqNTCbjiVM0XFYqlcJVyOE77j789/oK3rQAeH05h18PDOH8RB4z3VRdLTYJiUsaJqlHbgd6zkUf0/B5poQfKUVxUcQkeNmkKbldOTb5gy9nEnps8olNqDLJU3x+Wx1B3jO1JWuRMonfNvCrcSz4SSZy//D5bbWY+gccCFQol8veEG8kTQ0PD2NkZASVSgXFYtETZ3jilEmc4uc5SUumvpm2j0mUMyWc8eky0YwLRvyawY9/UyKbaXvzPvL5Zd1cJONDCprSqkzXL1ObUowzyXSmawPVSEMItra2ekKW7Gc6na6TRXld9JwLaHQM+CWHSaEsqDg70bjuqNuDY25HGU2078QpTTHWX3pHGvIXVqRvSPNfZoj2zVsT5XLZai9HGfrFH7f9DcQ7eSqOfU4kEujq6gq7jAklLvJUlPt3O4Dej30MuOuusEuZEF5+3XWoAnjo8cfxoTlzwi5HUZSIIz/XT7Y8tWbNmlHTjjrqKLS3t09qHYqiKIqiKIqihIcc8onLU/w+Gw0HRkIBJdXQspSeQsuRlMRv4CcSCaTT6bqEm459I+jYvR47uzPYdMwiLBzaj9NKGWR6epDNZr2UKkrHyWQy3voB4OpqD35e24dHX6rhfCeNC6sZtCcSSKJeYjElMMkEqqBwAcMm+PD5HMdBJpMxpkvx11wekXKSTZoySTJ8Ofmc5BaTcGRLfpLzNxpGTLbVSGaS8plNrPKbZqvDRqN7yM3eY+b7VEor8jzyk8LoNSU5FQoFDAwMYP/+/di7dy/6+/sxPDzsSVPFYrFORGqUIETfz9vuuZmSw6juIMlgUjziEhSXfSi1jr4HcRynLv2KznvT8U39oFp4WpMUAUkoo+sTT9Ki16b0JT58nuwfT87iSIlMnuP0PJfLIZlMoqury0sQ49sGADKZjPcggcokP9I1m0Q72/43iVP8weXXycbFOMlTh99EJInunSplTMQhYk7+ogpjqIewiPLNaQ7t43K5HJs+E9T3uMlTvN9ATJKnstm6l7Ho80Fof0d9mDDHcaI7/Kj4vBG5/jGOBVBcvTrsMiaMnt/9DgBw3s6dSM6fH3I1iqJEnbCTp3538JrHuf766ye1BkVRFEVRFEVRwkOm0lCSTT6fHyXM0D85U2INJUKZkmRoOCwu0cgEJiJdLCObzWLzgnlYXHCwrNaC1s7WUcPqUfoU/R3lSV6uizegHfdjECvdKk5OthjTf6ScY0qf4elQpuQW3pZJ+JFDnHGJzCZP8Vp4wgwXnWQf5DS/+whSnpJ9k0lDXCoxpdZQO1Lusq3XNNwa7yMXseTDtBzHVJ9J0vJ7z7Z//dZratc0vB2dA3Lb2dKd6DUNvTYwMIDh4WHs27fPS5xyXdeTCV3XRS6XswoxhJSWaD1y2D6SdCjdje87KWiZvr+g+aUwaZLD6LiltCTgkATFz3O+Xfj5lEqlvGsADQFqOnaoThKESKYySVNcHjJd/2h5nlbH9yE/p2hUA94OX0cymURraysSiQTK5TKKxSJKpVJdihYl7ckEKr4tqU25LXn/bAKaSaJUokd071QpTdOsFXykIj+cxOm/hKN8c9pEuVyO/FBQJuKcPBWroRqnT/eePtbbG48+HyQu8hQAnLllCz4NILdmDbBwYdjlTBhR//0Ul89YUT8fFUUJn7DlKTlccGdnJ9773vdOag2KoiiKoiiKooSLTB8pl8ujhu7jN+hJhuCyBRcG+NBRQL2oJIfxoueZTAbHbxvG7Jm9aOtqQyaT8dqk5UgioOnlcrmuxgucNriJBJJOvZxkko9kIgx/n8QF2QeT5GKTfHjbJKJwIcUkWHEZib8n02BIyuH7hr9Hy/MEHd4mFzpMqTpyeZtc1Eie4ttBLkuSiRTrTNvY9NxvGq/PNr/fehrNS3BBSIpoclmT8GZrm6cyDQ8Pe49CoYBSqeQdU/R9At1DkstzYYZkRplKRMceJT7RT0p344IQpRqVSiVrShEXKU3bgZ/PyWTSu17wYQRJ6LLJg5RGxeUpPuwmXxffH1Im8pPN+PKm7Wo7ZuX8pmn8vMxms3Bd15NVK5XKKKFSpmrJGml7V6vVUddt2/FgI0yRShWuiSPad6qUpomDMSkvlnG60Rf1m9ME/3ASlz4T1Hca9zguUL9jlTzFoA+8cSFRLmMRop+wlgLw2WefPfDita+N1iDU4ndx5K7V8g/5mFyT7nniCeBf/gX44AfDLkVRlIgStjy1efPmutfXXnttbARZRVEURVEURVFGQ8OAkUAF1IsPNHRXIpFAPp/3bvZzaYJEDS4JZDIZry0u5aRSKbS3t2PatGno6elBW1ubN0yVlIuoBpKmTIlFpuHkpABlmtckQknpiG8LatckyfDUGP6Tp2jJevyGwTMJE1LU8ZN1bH2UyVJ+6zS9J9uUsomsyySa0TYxySi2fgXBJkc12r6NpCrbtiPJLZFIoFqteu+ZEsx4G7Y25fCZ+Xwe2WwWXV1ddccKCTc2GUgmwfF9RHVKmY+knmQy6Q0vR/3gciX9pKH3arUaRkZGvPeob1La4VIQTSOBig8Lyuuh5UlCpOm0jei7eBKISqXSqProJ9XK9x2XleQ0Sn0iYS2dTiObzXrXKVqvScCSMhk/94ED9xCy2Sw6Ojq8dUgpLZlMIpvNorW11VsP/aRtViqV6volj7Eg4lioPoWL8bGnInS7aTyJ2J0q5XCgi/KSJUuQy+XCLmfCkL+84yRZRFky4NA+rlQq0bsh3wA6j6MuldigD7Cxu4l18INwLKjVcOGnPoW3A/jHdevwv319YVc0YcwLaczsSUH8cRH1a3XmySfDLmFSmFapAIVC2GUoihJhwpan7rnnnrrXCxYsmNT1K4qiKIqiKIoSLvKGOU8w4d/Jy5vsPLHGlMAib+Kbvt9OpVLIZDJobW1Fa2srWlpa6obmk2KHlD9M0o0cElBKK1KUMMlHtteNxCSqiQ+FRrIFH57OJE/JBKyg+4tLNHI72yQkUz9s28uGnxTlN4+sz7a9Te1MJWRNtuQpm6Amt7NpeRJ3pIhIMhO1QzIhl2P4Ty5i0XlJ99x4X/hPOn7pXOTfXaRSqTqJistTwIHvNei7cSnvUPtcIgQOfDdCAQpSCuRtyDQmkrq4iMVTtnjalk3u44IWPw/5MKN0rZPD6NF6+Xc5vJ98vVxgk+smIYtkKJOERcM0clGLX69lqpisx0+WmhIClTJhRPtOldIUdGGaM2cO5s6dG3Y5E0Zs5SlmE8eFOCZPEXGTp+i8phjkuBGr5KlHH0XXpk0AgL95+mn8Ys6ckAuaOIphFzBJuEAsh1iNLJMsMiiKEi/ClKf++Mc/jpo2J8KfQxRFURRFURRFqcd0U52kiFKphGKxiHw+X/f9NBcwMpkMcrkcMpmMlxjD5QOSBOTQbZTC0tHRgdbWVsyePRstLS2ePCVTmnhyTq1W85Jn6KdJQuJ9k4KOHCIPQN17BJez+HsmAYPXS6KDHG5LCmGmVCLevpRa+Hp5TSYJSrYj2zIN78e3F59HtmlKXTK1bdr2cptL+a2RKOUnd8h+2OrncGFJvm/brryvpunUJzrOuRhla0fOR+dBX1+flyxk2uau66JUKtWJNHQOc5mGn+Mk55iG+6NleMoSP64dx0E2m/X6KWUtSp6imkwCl+n8kUIQHxqQ94FqIvGSS0MkHtFPLhVJAY1q55IXf03zUQpXOp1GS0sL0uk0MpkM8vm8J5FxkYwLafxaSPOQeCXFr2w2i1QqhXw+j0Kh4NXP26L1cRmLX6v58IdSNPVLmPJ7b7LQ4KmJJZ5WgWKEfslUKpVI34Q/EizsiSIuIhHt0zjKU3Qex00ion1eKBQmPYEgNNi1a8auXXj88cdDLGYSKdYrRVH+fVXgX7T09CDKv63idq2ONP/6r8DHPx52FYqiRJQw5akrrrhi1LQo/9ORoiiKoiiKoiijMSWQkHxQLpeRy+XqpA4amozkFD4sHb83RfOYhA8SQ9ra2tDa2opcLleXcEMPmdwik6ZMw41xcYdjEqzk32NclDKJPbJtvk6ql5K4TH0x1W/a/qZtJpE12dKN+Hv8p0l0kuuXP4FD4pupFi5LmdYn5ShbzSaRTM4v5zNhk5aC3kM1rcNPhLJhEqhMNfD5aL/Q0HC275rpfJRJU+l0um6f0k8uT8m0JJ5qxBPUbCltlLpkGg6QD/Mn5SneX2qXpy1R/XKoQaqLrh9UG19HqVSqky6pBilL0rpksh4fMo/6nclk6kRRGrIvmUzWDQloOr/4vub3Ovm1R14TaJ8Wi8VR5w4/17gkZhPl/EQqvh3ouRwycLJQeWpi0TtVioftQhQ14iRLQcgzcbs5XalUIj0EpR9RP49tPBmTobEA1A17tgjA+vXrw6tlMhF/aEX5OOe/rZzly0OrY6JxEO39GDteeinsChRFiTDy98VkfVH1L//yL1i9evWo6UuXLp2U9SuKoiiKoiiKEj6mxBF6XiqVkEwm0draWvd3C7/BTgJDJpPxbvQTfBgtTiKRQD6fRy6XQ09PD3K5HPL5vCcocImKRA+6+c9FJCnoUJILl4G4qMLnlzITYUpJovllchbNz+vlCT18Gl8Pb1vW2kj24TKZbJfvH7mMxCZPmZJn+Ly0Xj8xzbQu2V/5nukY9JOs/MSpIFJVUILIWbZpfD/w/RpUvOJSnhRc6KdJlOLv2eoyDfEmh3+T28F0/JrEo1QqhWq16g03SOcvPWT/TPIUtSWHo6P3TUMXVioVVCoV7z1KpaN0LWpHHsuO49QJofw8pLby+Tyy2Sza2tqQzWaRy+W8ZQuFAoBD1zt5Lsjjn2qVaV5cPqW66Z4o3060HtqPpVLJSxmTwxTK535SFX+tRI94mRSKL3GRp/gHjlmzZoVYyeQT5f1qolwuo62tLewyJpW4nMeSWEmRREhWe+jESJ6qI+LHeGz2o6IoinJYhJU89Vd/9Vejpr3nPe+J52dQRVEURVEURVHqoO/jaSgqSqCRN99JMMhmsygUCnVJTFKMAQ78M3w6nUZHRwfy+TxaWlq8IbEoXYfSZPjNfCkjAaPTXaSMYUossokKvD1T8pSUlLjQwIfn46IVl7xM6VB+yTR+CUuyL0H+hrOJVHI9UpzgMoiczyRp8X3O1yEfsgZbXaZlTK+ldMW3kWn7BRFE/PaV7Lvsr5SlODa5S7YpazGti/YDnZuyPb4uvyQiEojovDdJlfJc4yIPgLrleSKSFHvk8oQcXk8O1cn3rRQZXdf1hg51XdcbwadYLKJcLsNxDgwLSP3kCVj0nKdoUV9JjGxtba1LnspkMt425dcdSrsy7T+6VtBxQVIZXT94UAhtF0odozp4e1yg4tvItO9M06VgxdPBwsB1R90mG3M7ymhUnlI84iJd8F9acUtiilN/HcfxxsSNI7VaLdLnsaIQUT7OEzG5IesiggKk6E/1DW9AdI9UwfveF3YFiqJEmDDkqXXr1hmnn3nmmRO+bkVRFEVRFEVRpiby5joNRWW7v8ZTYEh+4iIBCQ78pj6lVLW2tqK1tRX5fN4TpvgQd4lEAuVy2VtODh9G8Oc20ckk4pjuK/kNBWgTtXjdMqVKSlh+qUz0vJE4xee1SVk2GolWJqmIizO0LMklJnnK1o7chs3U20ie4rWaarG17bde+dyvPZOIZROnTPhJU43WzZc3CVz8OZdpSPAxzUPvcRlKrl8OO8nn5z8rlQpKpdIouYeLhrQ8yUQkQHExSC7Hh+rjIhRJZKVSqW678WOWrifyOZenaDmSl/L5PNLptJeMl0qlvPXz6w61wxOc+LnKrzs0zB8Xrwh6LoVSCRfMTHIU7WObRCXFKZkONpnosH0TS3xMCqUhdHGMkzwV5X4CAET/4iRPAfCM6TgRFwlSQuf1/PnzQ7O9w+a1r31t2CVMDjHS4ev+xIuaXCQw/UETJZxt28IuYfI4//ywK1AUJcKEIU/dc889xumzZ8+e8HUriqIoiqIoijJ14TfaKTWmWCwCOJCCYpKLSEbiiSxcVKDXlODS1taG9vZ25PN5T0rI5XJewgoN1QUcGp6LljcJNY1EJS56yOQpLriY+iUFJZrHJIrJdvzSpvxEGVNilpzfJBA1krP8ptneM4k9fNgw+Z4U1UztBhGSTPvZJMH5CUMA6iSZoMKWrV7TfHK9XDyheZpJobKJWLY65HrkdPkeFx4lch6TlGUT5gDUCUM0rxx6z0/MofcpqYqkKDnUH5f4TMPUkaRJ16RyuYyRkRFUKhUUi0VPCpXCEU/covVks1mkUilks9k6QZL2G5ee6L4tb5OWoeV5eh9JYpTsx/tGbfJEPlqvFMZsqVNyG9E+4D/5fjEN5ahEh3hZBYovcZSn4iTWZBADWYzhOE4s5Ski6uexjXK57P3RGXnEB7MTTjghpELC5c477wy7hAmj7s+yqMlF4vh94okn8PKXvzykYiaexB/+EHYJk8cTTwDveEfYVSiKElHkl5ZhJk+pPKUoiqIoiqIo8caUTFKpVIzDghEkIyWTSaTT6VE340kySKfTyGazyOfzyGazXooLPUg04GIAF5akxMSfc/FAii38fZPs1EiekiIVH36Lt2V6mOqR0+T2DyLrHK4oFUQk8pvfcZy6hB45XxDhp9H2sYlTQfoRVIIaj2VNcpSUjGzzHE5NzSwXZLpJlpKY9rkftVrNO0e4PGVLy6L55DaSxwPNL0U6x3G8c5PmIdmPkp4qlUpdPaY0Kn7N4ol4puOPljNdC3iqlFyeaubbgi9D8pWUtvgytJztEWQeLp3J5ZToEE+rQDFCF6JKpRJp6YJfcKPcTwDAM894Tx3ESxZznAPj8sapz4AmT1UqFeTz+ZCrCYfY7O8FC7ynvwFwwQUXhFfLBFO3R6MmTwkGBwfDLkEZL3RfKooygYSRPPWVr3zFOP1lL3vZhK9bURRFURRFUZSpB91A56lCJDEUCgUAQFtb26h//qCb/alUCrlcDh0dHRgeHkYikfCWAw6kVnV2dqK9vR3t7e1oa2tDJpPxEqey2awnapE8ZUqaovXL90wyFMkIckg9KVZIeco0TB8lTZGYwduQwxTyGhoJTVJUMKVV2dJ+grTdrHTjV5vf+qXcIpeVopBNjuL7t9m6Tevg67LhJ4sEWT9fj5SLbLJUI3HKlD4WtA5T+6btI9fF+2HaJlwwMiHf4+ITP19lMhJfnq45JgFJ9o/m5/IRLV+r1ZDJZDyBs6WlBdVqFaVSCZVKBYVCwbvWyMQrXgPJU+l02jh0KKVcUS3UJy4/8esG3x90n5d+FotFZDIZb318+E++PkqMMh3XNjHKlj4lE6hUnoou8bIKFF/iKE9FXqwRwwRFvr8G4tjnz+3aheNcF/O++MUD6R/t7WGXNGnETRrjxOZYZ8liWwDcf//94dUywdR9vRLx4/r8888Pu4QJxX372xHsT/cIcMklYVegKEqEmWx5as+ePcao/BtuuAEtLS0Tum5FURRFURRFUaYmXGbgAhXdrK9UKl5iC5+fyxE07F46nUalUkGpVEKtVkM6nfZEKXrItCl+E18iZQqTNNUoecqvDVtbXE6gOk3pMSa5I4jg5JcyZZoniDxl6r/fvI1q4yKNlJFMclWj9TSSm0xClWldsqag/ZLLm9oLKhmZ2jdt76Dtmebz618zoptfDaZtY5vWqC+2GmzD9dlkO/4ePZevuaTEtyWXjpLJpDcfDY9HCVTlcrlOoKL+8VpTqZR3bZPylJSU+Dplcp6U4UznAZecqB/ULp+Hp2PJawXfH0HSpkxild/QihOJe/AxHu0oo4nJnVYlCHGUp6LcTwDAokV1L2MjV+DQfo5Tn4ED/Z5fLuMkANiwYdTQWFGFX79is8/Fvo389cxA1GWUJP/jKsLJUy6A6dOnh13GhPFxADd9/ONhlzEpfPhDH8ItF10UdhmKokSYyZanHnzwwVHT3v3ud+Ozn/3shK5XURRFURRFUZSpBx+yiSeucDmApClKkspkMqPkgHQ6jWq1ilwu57VXKBTgui6y2SxaW1vR1dWF1tZWtLa2IpvNelKC67ooFovejXvT0Hp8Gk9n4qIEYRKpgohSJEbxaXyYPlu6lE3c4usNip+E00jQaWZ+P/wSnIDRQ8/b+iGHI5NtmaQpKaE1qpPkkrEiRREuCcl+yHkI/lwOO2drVy4nX/ttA5tkZVpHI2wSnG1as+1zZLKRabs2Sj6Sxwxvs1KpADh0/5Rqpfe4CFosFlEul1Eulz3Js1wuj6qPjsdsNuuJUTSNXzdpXp4wZRKWuGAlz99qtYpyuQwA3vWRX6eoH3I4VNuQfiZBim8vklVJjOVth4Hrjs+t35jcPm6amNxhVoJAF59169bhv/7rv3DTTTeFXNHEECt56owzvKcuYtBfA7ERaQ7iOE79b7wm/tiIAlGXP/2ITb/ZMf2GEMuYDKbzD9933x1eIRMBiyJfjggev+w4fTyRAE48MbxaJpF0Oh12CYqiRJzJlqfWr18/atqXvvSlpr7QVxRFURRFURQlWphuunOBqlaroVAoeMktdPOf3k+n06jVashms96NeBrqqqWlxXtks1kvcYpSYUhcAEZLNQDqZCYpLJmG2JMylJRhZJuyfVpODptF8/J2/CQn+VxiSvLxk62CrtNvGheN/AQZWzty3bbEIJM4xd837WeeqGNar9+6TMdAIxpJOo3m8VuWD+PG12fbxrb1mzDVZNtuza7DTxprVHuQftmEKQCjBB++/UznBd/OpvNIio5cckomk14SFX0nQ/ddeVIUnfuZTGZUDXK4O75OkyBG79O1j+D9pKFL+TWS1kvpUHwf8ZoapUzJxCl6zhOnwkyeUiaWeFkFSmBWr14ddgmTQpzEmjLi1V/6JRinPhOOylNhlzE5iH0bm2O9v9972hpiGZPBKaXSoRfFYniFTDB5RPv4jc01CSpPKYoy8UymPDU0NIQPfehDo6bPnTt3wtapKIqiKIqiKMrUxyRP8Zvv1WoVpVLJG5KPS0mO4yCdTnspU6VSCalUCplMBtVqFfl83ntkMhmkUikvoYXLU5TcAowWbGTijE2e4tN4kpRMtJHilBSkZNqUXAdvw4RJ5JHrtyUy2Zb3a7tRDUGnN5KwbLWYRBu/uvy2HSGFt6BS2Vjx285jacMmJ0kxyW+by/doeSm4SAnNry7be/x4DCJCyZpMfZJtyvr8RJ8g2PYZP/9pGqUscYGJBCou4FEaHlAvTxFcYuLCEYlcMgmNH8e0Xjk0Kp+XUrJc1627v0DXYb59+LnkJ0/ZtjMfso/6NBZhcDzQYfsmlujeqVKa5nB/WR4p8ItxnG5oAtG+OS2h4zluN3Idx8GJByM3AUR6qC+J4zg6bF8cYIlFAPCBD3wgpEImnsUTnKYxVRgAMD/Cx29cPl8B8fqcoShKOEymPPXpT3961LT3v//9E7Y+RVEURVEURVGmNvKGOk0zvUcC1fDwMFpbW72/ZUieovtUlUoF5XIZ06ZNQyKRQGdnJzKZDHK5HFKplJeqAsAbrk8Ox2d7SMnJNI8cfo8nyUjxibdLshT95PKFSZ6Sz000Eo9skoyfEBRUJhpLPY3m4ZhkGSnNmCSf8ZacTNOCrqORxGaa3yQD2WqibcC3hV8CVaNtT8s1Sjgaa2IWl4iCtm3rC73Hz0P+fYcpCYmEISnxyMQ327aQ6WVcpLSlQAGou5Zx2ZKua/S+FJekXGkSovi8fFg/6rdJQORCluM43naTchm1K/sv5Vc+jUQpmZwVpjh1oH4dtm8iic9ddaUhcbm5x/sZt5t8cesvEM8+d/DfeDH77Ver1eIjEQni2u8opz+s5PJn1ETQK67wnn4N0T5+izxBLOL89W23ATFJL1UUJRwmU566+eabR02bMWPGhK1PURRFURRFUZQjg6BpJSRQVSqVOjGGxAAali+dTqOlpQWtra1obW1FPp/3EldICADqBQIpKRE24UmKFLYH1WdKmeKveSINr/NwHo1qa7ScaflG22S8HmPpP6/Jb581akMem42Wl9NkHfI4l9vQ9LMZTKlmfvsqyD6UtQTd56blmjnW/NZnai/IOvz2sdwn/HyU56ptvfyaIjEdz7L9ZDKJVCo1aqhOOd3UFr9m0Hz8J7VBD78+UR9s6VsmyYmWG2vqlE2eVaJF/KwCxcpYfskd6UT5Zi0AQPQv8v1l0PEcN3lq1Hmcy4VTSAjQh544Heec2Bzr4hiP8v5+nu/Td787vEImgtNOA370IwDAMGJ0/Eacnl27gBjJYoqiTD6TJU8VLcPlqjylKIqiKIqiKPGG30zncoCcXqvVUKlUUCwWvXSYlpYWTw5IJBLI5XKoVqt10kFra6v3PTeJA6VSyUs+AeAlsshEHSk6UBqUTJfi89F7JqT8wKUHLjbI+f3kkmaxSTqm9vyEHvmeX/qP33Km5U2CSzP9pW3GBTu/5RulMDWa7tc2HXvNIpfj28kPW2JTkLblPPI9/ty0zfxSrWw0u1+DJE+Z5uHnkUyV8uujlOekgEXpSZWDo9fQdYuvl65FNH+5XK5rg88PwJOfKHmKroepVMq7biWTSW+9PNnJNKwe/96Hi0p0raHrLK+nUql4wwyaUqFkG7zvNkHKNFRfpVKpG4ZQ5alooneqFA9+8TP9l21U4P2M283auPUXiGeff+c4OIN+acdo2D4ijvsciLZE5IccFztKJPgfY+3t4RUyCUT5+I2dmr5vX9gVKIoSYSZLnlqzZo1xek9Pz4SsT1EURVEURVGUIwsufZge9B7deKf0KZIbSDLIZrOoVqveaxKj5LBU9LdPs6k1pocppUbCh/4yyVOmZf3kKdPrRtjEJVtbfvIUr69RTab1+NXQjLjkRxDZTEpbfsuM134I2n6Qmhutnx/7jeYzvZbLNmrLT5zyE2OCCHONpvHabAKVaZqfpOYnTnGxyjSUoZSv+PB7PGWKL+eXCkVD6REkltpkJZqXDxvIRS1TqhqvXUpd/H05zKkpPaqZNKqwpSlXh+2bUCJxx3Hr1q247rrrcMEFF6C9vR2O42DFihVNtbF582ZcccUV6OrqQkdHBy699FK8+OKLE1PwFIVfUKL8pTDvZ5Rv1pqIk1RC+zlOfQYO/vLnv/HG+EH4SISb7rFAfLJ59tlnQyokXGKzvyN+LkdOgov4/uK4ct8980w4hSiKEgvk7wv+34bjie1z1ezZsydkfYqiKIqiKIqiHDmY0krkkE78USqVUCgUvMQSLiK0tLRg2rRpaGtrQ0tLCzKZDDKZDPL5PNLpNAB4qSdcZLINiwVg1HxymD0+VJYtjUoOo5VOp5HJZJBOp+vel+sw1WcTtCRS8DKJWLa2mxWnbK+Dtm0TRmz9NU2X88th0ExDlvkNoxhUigpac6Pl5Tbxm18+D7K/+Lpssl/Q17Jmv/1tW9ZvG5mmB92epuVM+1wOjyeHyJND4slznLfNh8aj81imKdF5zx+mY1ReV3jdyWTSu3Zks1nk83nk83nkcjnvZy6XQzab9a59pmQ72zWPy1zlctkTUWV/+DIEf982TB9PnaLUrqkgTykTSySsglWrVuGmm27C0UcfjeOPPx4PP/xwU8sPDg7iggsuQH9/Pz7xiU8gnU7jH//xH/HKV74Sf/zjHzF9+vQJqnxqwS8akbuJyeD9jJtYE6f+xlWeUmIk0wi+/vWv4/bb3516SwAAxEJJREFUbw+7jEknyvs7McY/sI40UhH+zAHEMHlq2rSwK1AUJcJMVvLU2972NuP0E088cULWpyiKoiiKoijK1MeUPNJInKIHH/IJqP9H4GQy6U3nUgCfZpI8bNOpfT8pxPZTyjwkWpjECNvycj1yG5qwCUpynkbt26bL9k3pPUFr8Ks5CCR2+C0XVEqSMogclsxWo23fUJt8SLtGbfnV67ed5fIyJUr2zYbftpJJT6bntvmbIUjyVJD1A6gTgiitCYBvP+S5z39K/GQwuU5+beOykt93MXz9fFnZR5l2xWvgdSYSiVESFKVh8euwTZwyHTsmYcqUiBVEjg0D9+BjPNpRRhMJq+CUU07B7t270d3djTvvvBOXX355U8vfeuutWL16NR599FGcdtppAIA3vOENOO644/AP//AP+NKXvjQRZU85+MUpyjejOXHpJxG3/gLxk6ccx8HpYRcREnEX5r72ta+FXUIoRFr2rXsRMQUn6sJ21PZXMwwNhV2BoigRZjLkqYGBAeP0j3zkI+jq6hr39SmKoiiKoiiKcmQgb7YDB76TppvrUgjg8zqOg0qlgkqlUtcmDdOXSqXqbsZzOYnEJVqfSZ7yk5n8pCrClOhCaTLpdLruPT9ZwyZuNJJfbHKPqUbT8n7TbBJWI4EqiIQSZH0SLiYF6Y9NyrHJZLa2/QQbuX+kQBVEvqLjv9F8cr2N1tFIUPFbzrQeW11SELPJMY0kKdM0P1nKtF5+PjaSrqQ0R+2Y1i+PedkWT56i5fj3LiRQ8hRw0z7n9XLBiZAClBSp6Jopj1nTcjwhSg4TaJKcGiVOUcKUSaSaMvKUDts3oUTiDnN7e/thLX/nnXfitNNO88QpAFi2bBle/epX40c/+lEs5alI3sg8CO9n5CULsR8j318G7WeKto0LjT6Yx4E4SoIAkMvlwi4hFKK8v3fv2nXoRYR/L3+lWgWefBI44YSwSxk/2NDPSxYsCLGQEOjrC7sCRVEizGTIU/fee++oaRdddBH+/u//ftzXpSiKoiiKoijKkYUpeQpAnfzEhSnTDfpyuewtA9QPSUXroHZJFOBiim3oNtkOR0pPfvIUH25LDs8n2+LL859B4fcibW3YhB9THxvhJ2P5racZsSeo9GObJ0gqFV/OJM7YJKZGApHssxR3bPWYnss++fUlqExm6lsjaD/zRCVel00kM0l2pn5JScm2fnrPJHLxdvi5za8jJqHIJPDY5B5+DgMHri2UhlepVOrq45BAxGvj0DWDEups/ZdyHclINJwp/eT7ySRDye1Ny/F1cOGJL09D+5mkKdODhuurVCp1IpVpOynRIbp34gJSq9Xw1FNP4dRTTx313vLly7F27Vrs378/hMomH37BifLNaE5c+knEUZ6KU5/jDu3z2JzXQgz8zne+E1Ih4RLl/V33IS3C8tRc1wWiNgzSD37gPf2LnTtDLCQEVJ5SFGUCmWh56pFHHsEVV1wxanpcEz4VRVEURVEURTkEv2ke5CHnJSjZhMOlJT5sF71H0+mnTYYKIjY1Wo7XwofqC7pOKTeY0m7k/M3U6NcWx287+NUe5L1G6+DPbceF7b0gmNYrJTrTo9H2km03s+/58dNou8r1yW3XqO9B3mt0vIz3w7QNg5yHptpM+1HuY9Nr/jAdW7J9koe4JFSpVFAul72ftusVXR/owWuR29w0fyqVMi7b6HiynVdBrsFyCD7Ctrwpgcp0Hk827jg+lNHE3irYs2cPisUiZs2aNeo9mrZlyxYsXbrUuHyxWESxWPRe2yL+jwT4BS3KN6Pj0k8T69evD7uESSdu8lTQD5hRJjbndXd33cv7778/pEImGXGMRzopse6FnttHKvOHh8MuYVJwAaw/7zwsPOmksEtRFCXCTLQ8dd555xmnL1y4cFzXoyiKoiiKoijKkQm/oe44h4avoiGj/GQYkgRIUuBJTjI5pVKpwHGcunQqieM4VrnJhBQRaBq1Q+kxXGywyTBc8JLrCyIWmIQZv2lBkfP7vQ4iEgVdV6O0KE6jJCPeXqM2bf2R6VKmdKIg7TWSQ+Q+syUP2dbLj31bjUHTvfz2tW0dtn0fZB/Z5m1mu5napGsAff9B1xx+fTEtR8956hJPjaL18nXTuU2pTJSwRO9Ru/xB14tUKoVsNlsnfPL12/rK6+XDn5rSo3hfuBAmU6D4ekgEo4Qpvq5SqYRyuWxNlyJRjF7zbSKlK02eii5T7o5jrVZDoVAI9BiPA3NkZAQAkM1mR71HQyDRPCa+/OUvo7Oz03vMmzfvsGsKC3nBjANx6Sfx3e9+N+wSJg06nuMmTwEAXbFqMeu73wf0qFI72NfHQq4jTKIsy8XnSI42m8IuYKI5eO2tAXj++uvDrUVRlMgzkfLU+vXrUSqVRk1/wxveMG7rUBRFURRFURTlyMcvpcSWZgLUD9/ll4DC3+PpMjKlxZbUwtflhynhxa/dw5WbbG2a2vbri+k927Rm1tvsNL++NbNNgmJK8WrUP1N9pvU2OnZMgpBpn9nWx9sIkrLVSFAxteHXbtBjoZn5ghyzQY4fv33mtz15n23bi+a3pVDxc97Upm0786H6SKTyux75EWQbm/osn9P8ftdVkqPkNduUMjUVE6eUyWHK3Zd74IEHkM/nAz1WrVp12OvL5/MAUJceRRQKhbp5TFx//fXo7+/3Hhs3bjzsmsKCX4SifDOa9/MHbFidqOMAaG1tDbuMSSdu8pTjOPBUUBGlGXXo3I7y9WsU9KE75DLCJMr7+zT+4hvfCKuMiaGJLwaOSDo6vKfPhljGZJIAcP6VV4ZdhqIoEWci5alzzz3XOL1bpH0qiqIoiqIoihJP5M1227BOphvuPEmoVquhUql4KSj87xq6wV8qlbzpJE6lUimk02lkMhmk0+lRIpVJfpJJUxx6P5lMIp1OG4fRsg2ZFWRbyXXx541kJ9Nyjd7zmz+I2GKqRU63zdOMBGWq2U8UMdFo//jV4zeP3/b2a6tRvSYRxyTBjIeg4icSBZF05HRbWht/jw9X53cM2WgkCcl5eDoSJSxxedNxnFHD4cn1JRIJ73qSy+WQyWS8awDvFx9mj17TMi0tLcjn8941ieaR28xPSpLrCTrso9y/lJRH24RDKVLFYhGVSsUqS8nhC+m1SbgKEx22b2KZclbBsmXL8K1vfSvQvKah9pqlu7sb2WwWW7duHfUeTZs9e7Z1+Ww2a0ytOhLhF884JbdEGnFzoaWlJaRCJh86nuMmT9URdTnBQqyuXzHdx5wo7++P8Be7d4dVhjIWTjsNuO8+AMALIZcyWTgAUjEZolBRlPCQ8lSlUhmXdguFgvUfoaZPnz4u61AURVEURVEUJRrwYftk0okcXstvSC9T+gnduOfDWdG8XNiQ0wg/2ckkHZC0YJJx5HJ+z/1kgsORohoJKH4CkKkdkyRjW77RNNt0Ke/wfW5aptEQZ41Sn+R+kOuTbTVKZ/Ij6H5qZr2HA/XV1GfaNvQ+r8V07DbaL3I5OW/QeWw12KQgXoN8LqfJdhOJxKgh7+Q6KEEqk8l41xdbwhm1lc1mPYFTbi9apxRHG/XRdm7z2mXSlOwHgDrZidrgEpSUn7j0ahNi/VK4wsB1DzzGox1lNFPOKujr68NVV101aetLJBI4/vjj8dhjowc9euSRR7B48WK0t7dPWj1ThSgnecQZvxS1qBFLeWrXLlz83/8d2xQi2udxvX6Nh1B8RGD4j4KosgVAb9hFKIdNnK7JqaGhsEtQFCXi5HK5utemYfbGwvr1663vdbA0QUVRFEVRFEVR4otMm+Iyk0yest3s5/KATKmq1Wool8te4gmlx0hxihJWbCksUp7yk6H48FvUvkmiCiItcVnBb7kgbTZqp9Fycl1Ba7K1a8IkTpikE5tQY5N2bG1LYcomzoyX0BFUTGuESTzxazuIzNRMTX7HhGnf2NYfRK7y+0dv275pZr9xIcyvRvrJZU4pIfFl0uk0AHjpTyRvmtp0HActLS1eGhWth96j51IAtQlrfueBxG85ulZSmh/ft5Q8JVOk6LpL07lgZZpGNdhkKiUaxMgqOMCGDRswPDyMZcuWedMuu+wyXHfddXjsscdw6qmnAgBWrVqF//u//8NHP/rRsEqddOQHJiV6DMcwEYJ+6ceCF1/ESUwETYzjMCZHElGWafxYsmRJ2CWEQpT398qeHpy0a9eBF038QapMAfgfoCGWoSiKEin+6q9w4W9+g5/hwBcZKQBdTz8NnHUWUC4D73sfcM01Y2p637591vea+VJYURRFURRFUZTowmWnarVaNxwWTyrhyVMckzzFE6ccx/GG6zPJDnTznq/XNCSXXB8Xr+i5HJ6P5g8yTJ9JggiSJGN6byzSUqN2pGTk17ZN5uKJOYeLSYwZS7u2feK3DWzrleKJlHIIU2pQEEmpmfeCYuvTeCBFN1u6kVzGJoT5pY75JWXZZC7+Hp2jfHlbHTx5isOn0U8+5B6/3vDrB61bplTRtUSKUybJqNn9x69/JhmVZFKal5L7+HqKxaJ3bbUlTPFrOw3b1yh5KizGa8i9qdGbqUdk5KkvfOELAIBnn30WAPDd734XDz30EADgU5/6lDfflVdeiV//+td1B/gHPvAB/Pu//zsuvvhifPSjH0U6ncbNN9+M3t5efOQjdYPmRBp+8Yzyzeg4k8lkwi5hcrjiCuwdGAAA3BanFIzf/z7sCkKF/8EYR6IyhGxDxAf9KO9vh38Y1xu3RxaPP+49PSfEMhRFUSLF//0f5j73HObyaUNDwMMPH3h+0UVjbvo73/mO9b3jjz9+zO0qiqIoiqIoihId5E18EqVMN+D90nZIguDpLjSv7Ya96SElJ5MYI+UgLkGYxCtbm7x+03aRNBJtGs0TRLaxiU9B3mtUg5wn6HBdYxG/msG2f4KIboRJ0LEJZDZxym9dzYhiUuLi6wq6jccqZpkSjxqJYjYRSk7zW6cUqGzill9NXKQ0XWOkAGa6PsikLH49kPIUXS9IVOLCkmnfyYQnLjMFFan8pCW+TbjEJddFkAzldz1tdB03SWBTRaZSxpfIyFM33HBD3etvfvOb3nMuT5lob2/HihUr8Dd/8zf4whe+gFqthvPPPx//+I//iBkzZkxIvVMRlaciiJAK5syZE1Ihk4zrgnoeq2O5szPsCqYEsdrnjNjIU2LonCjv70c6OvCO3bsPvHj/+8MtZryRf9Ref304dUwU/f3e01eFWIaiKEqkaDQcd6UypmZ/8Ytf4LbbbjO+N3v2bPzJn/zJmNpVFEVRFEVRFCVa0A12Soniw2HVajVUazVU3BoSDQQqKVuQgOW6LkqlklGisN3EJ4GL2iSpwSSA8KSpVCqFVCrlTTPJEBxZt0mEOFwZqhlM4pDcro3W2YzgxRmLMNFICDKtz3TcmJLB6Ptx0zpM65PJaLb+2yQf3ratXtmOSfyRx7l8Lc8Bk6RjWn8jWcsmKMl+B3mP5CPZB9P5K9fXTC3yJ0+Lk33n1wYAdcN8ElyMkvPz44qLU/L4s0HXk2QyiWq16iU5caGKw7ed6T3b9qGf6XTau4bSenif6LpaKpVGtWtLnuIPWbPp2jfZuG7dwBeH1Y4ymsjIU0EP0hUrVhinz507Fz/+8Y/HsaIjjzjKUx/+8IfDLmFiEb/AWlpaQiokPFKNbrJEidmzw64gVOgaFuUkIhsOgFwuF3YZk8O8eXUvo7y/f93RgU8DOLmvD2/68pfDLmfC+D6Ad15ySdhlKIqiKFOdCZKn7rrrLuP0d77znfj4xz+OfD4/pnYVRVEURVEURYke/IY7iSCJRALVWg2bFvegvQIs2FPw5m3mRrvrut6N/2QyWSdK+YlLpoQZm6TFxQaZQCUlF76srV7J4QhUjRKFTDX51R1k/UGWI7gYM5H4yWu2fTyeNUk5ybSfmxFH/KS2IElMfu35rSdozab1+B3zzb7XKGXKJqcFWUeQ843OfVpetiXXz1/zB5c0TSIdX69MgrLV6Hd9tKVOyb7RQw7rR22QEGUbSlCKVDZRdaoJVMrEESOrQGlEHOWpOCWLAcB73/vesEuYdOJyLAMYlTQWV2K1zxmxSZ5i/BrR3t9OIoHPAzjvmGPwpqglyz36qPf0nQCwahVw5pmhlTPhPP88sGxZ2FVMOG4yiYn9+khRlFiTTvu/P0Z56r/+679GTXvta1+L733ve2NqT1EURVEURVGUaEI31yvsbw/HcVB1XWx62SxkkgnM2DWAwXQGabeGJLspb0v6kTfu+dBSqVSqTkJodEOf18STpEiEoPYodUoOw8WXp59SluAyhJzf9trEWEUqv9r8xCY/scavlmYlCZPk5reuRqk6pmlcZvHDL+HHNN2WQmRqzyQBSfz2oU2Skm2NRU4JegyYRKJm2ralU8n25NB6futsJK7ZxDPTNFM6FV2LaB55TSIplEROkisPBy5TUR38msen+YlMEp6o5bruqNQpx3FQLpe9B11b+bYypU1RO9SWSciy1aREA73Trnjwi25c0nom2hCfaqQb3XCIIL///e/DLkGZJOh8jrJM40cc5SkH0U6eIiLZx5/+tP511M/bZ54Ju4JJwalWwy5BUZQoM0HJUzt27Bg1ra2tbUxtKYqiKIqiKIoSEV5/xqhJPMXEu9Hu1vDieS9DYVorFvQlMTS7Dc8tmoaBdKJOAOA/eVIKtWdaD1+epkvBwCRUybQYmTRlk3FkmpGsySQM2JJobO3Z1mWTomyvbY9G6zDVYqqf+tyIIH3xe5iG4ZPv2eoypedIQSrIdJNMZWubTzMd24crlcg6g+5L27Sg0/3eD3KcyTaCzOvXtl8dQfrX6Hi01cmR1xmaxt/j0+Rz2T6/x2FLcfI7fvgxwc8bv2OPZCibnOX3MAmrNvFwsnHd8Xsoo4mHIaMEwnEc3AggC6DvjjuAU08Nu6QJZ8+ePWGXMGmkET9ZDAD+53/+B7eGXYQyqURSNAlAJpMJu4TJQVzHoizL0TU7ksf04GD96yj2kbNrV9gVKIqiHPlMgDy1atUqS1NjE7EURVEURVEURYkIxx114Oe9v/Mm0U13+nvBTTrYcv4JSKSTODZXxK6dFWxtbcPSdXvQVkmglk57CS7JZNIbOopu+FNaiuM4o77j9LuJzwUsW2IOCQY8fYYEKpug4yemUP9NaTu25WSKjlzO9to2j5+k5NdWo3UGEaeC3lvjNTUSK0zzmur0E00cx/GOh0Z9MMkujTDNaxNnZL/4/LbtYUr1Mc0TZB83gp8vfD1j+e7d1h/TdLleed6a3gu6TjnN71hq1D7Nw9+nZCi5jfj+N61H1mTaxnK/cwlPptvxtmTf+DKyzXK5jFKpVHcdtclSXIo1yauyf4crCh4u6j1NHBG/U6U0g+M4+AiA6wH03HVX2OVMKF1dXQCAv//7vw+3kIkmhrIUgLp+Lz3mmBALCRe3pSXsEiYV+sAUZZnGj9jIU4Io7+9Iy1OSqPcx6v1TFEWZDBrJU+Vy001eeeWVxumlUqnpthRFURRFURRFiQ5zt6w/IFCxBCp+872CGja9+iQ4mQSOTY9g164i1k6fhplb9qG9f2TUzfdareYNHyXTe0jGopQo+i6QbuhLmcAmK9BDDj3FRSr53E+UMrXPa+DylSlBiU/jy5iW90vKadS27SFrbTSfCdN6+UNOM7Xf6H2TxNao36bjwFS73+ug/W52ftP2b7Rco7b91mVL6DItY9qmfrX4HTO2dTZahh8Tcn6/bRJU1jEta6qbrj/VahXlcrlumDopDdF8tjQmmf4kU6LkOSBFJpOQZEq84u3wPkjZiq6rdM21JUn5iVN+iVhhi1PKxKJ3chQPx3HgXVIjfDMaiPbNdgXA0097Tz/wgQ+EWEjIxOxmPX3o+6d/+qeQK5l8HMRzWE4gHmJRHPo41qGWFEVRlBjRSJ569NGmmnNdF49almmJ2T8hKIqiKIqiKIpSTzKdMApUAFB1XOy4cDkS6QRelhrBzp1FrOvpwZyVm9C7aY812aRSqRxKrRICFVAvGtB33bb0Ey5AEFxg4BJAI5FDyhYmaYDX0Eh2aiQqmeSTZtvk75nm8+ufTUyR89jaMYk7jdbv15ZtnbZtY+tL0G1vey/I+kw02k6NtuHhSEhBjr0gbcrtSNgkGdMyY9nmjerldYwV0/4gSBwi2dIkM/Ht4Ccgmd6T24eLT7xdOexeo3b48rbUKS6Q+l3TGg3ZJ/fDVBCnXB22b0KJwd04JSiO43gHRNBfikcqUe+fjdj0+/nnvae7b7klvDomGyFYOHJYLCVyuOycjqs8FWUZdm6xiHcg2n30+Lu/C7uCiSXKApz+laUoymTRSJ568knggQcCNzc0NGR978Mf/nDgdhRFURRFURRFiR7ru+cYBaqq42D3xWfBySSxLDWEHdtGsKF3JmY8uQ5dL26vSzCRj5GREYyMjKBSqXjClJQX0uk0UuxvH55ORXIDTbclovAkFilmmJJbTOIQT6UxyVuNsMlepte297iYFGS4Qb/10TTTdJs4FUTWsdFIyglKECHIlIDVKCHL9kgmk0gmk8ZjxiQL+bXTzHS/RCjTNml229mWa0YS81tHs7X41Re0783Oz5FCJ09pct0DQ/HxYT5pGSkjAfUJVjy9iT83JUfJ2vzkK7mMn8zlugeG6ysWi9611lQjXXe5ZNVo2L6pIE4BB4bsG6+HMpoG3z4qccJxnEPJU1G+yRdjuru7wy5h0pm9Y0fYJSiTRGzkQAsLFiwIu4RJxwHgRPX31dVX4yfPPAMA+JuBgZCLmQQa3RA/0lm9OuwKFEVRjnyC/K54//uBlSsbzjYyMoJTTz3V+N7FF1+Mc889t9nqFEVRFEVRFEWJEuu2Yv3COViwZzPmblmPTccdhVIyCcyagXQ2iWXJQWzfXsS2uXMx/Q9rMG3DbriplDHJhG6485v1JKjw92yiCqVH+ckFJDzwdCj+sxlkSotNILLRrPwh3zcJJrb1NytQ8f7Q6yBtmWo3LSv3Q5Cagm7PRpLX4d4fse0buc1MNZjqMbVtq3M87+0ElZlsr/36a2rHND8/D+Vzv2PF9louY1u+UZ2yRn6d4vPST76/+PVAbi/TNYmuW7IOW7t+tcu6bddCniolE6fk+35pU7JNWedUEKiUiSPid6qUZqiTpyIuIezduzfsEiYHsR+nT58eUiHhkYqqWKEogj/5kz8Ju4TJQVzXIpvK9Nvfek/f8uKLIRYySSxfHnYFE0sTSSiKoiiKhSDy1KpVQK3W8J+B7rrrLqxatWrU9AceeADnnHNO7KV8RVEURVEURYk9P1kBvOn8QwLV1g3YdNJSJGpVLB3ege3bitg+fx46HlmJlhe3oZLJwHEcT4LiN+TpebFYBHDgnzkymQxyuZz3PiW+5HI5JBIJlEqluhv9AFCpVOC6rvd9qBQYSFag9CA5RJZJXJGyFU0zDZc10ZgSeGyyVJB2TIKDnyTTjDDTaP5mBaogMgbtS9omPFGqEVyOofXJ/WuTw/gxyOs3CVG8Rv6TQ8cvtU/HrUxV4/PItholm5mQIqBfW+Mpx5gEKlt9puWaEfOC1s2lTTm8p0yc4vuDDwuaSCSQOiiM2vpiqyeZTNal45mkJaqH1meqn19faXq5XPYkVSlz8YctfYq3aRNVlWijVoFSB/26iPqXxfJCG1liOowXJ8gHRyUaRP261Yi4HuuR7fcLL3hPz926NcRCJomenrArmFhifn1SFEUZF4LIU64LbNzYcLavfvWro6Ylk0kVpxRFURRFURRFOcRPVhxIoOqeg+SxC7CgrYqWfBIvOe3YPn8eWn77DPIr1xtTTGxJJtVqFaVSCZVKpe5vD56UYhMY/NqWQ0zZEn5MKSqmeYIKAkHSmvxSfmztmGSeZhOFbIk1fvPa6rX10yZ38YQev0Qm2Y6tPVmf33B3tu07VmnLVEejeYI+/OY3tS37E2TbNuqD3/EYhGbW7VeHrVbT9iJM8qMfttQmed2wbVsuUclh+eS1xXYdkcdwo23An/vVzxOnuLhqmqfRc1vq1FQRp3TYvokloncclbGw74UXkD34PPPcc6HWoowTUR8GKQCRTaVRFEFcb/TpOR4RDOkfkSKqkh8Ah/3nWXXu3BArURQl8gT92+aJJxrOsm/fvlHT2tvbY/t5SlEURVEURVEUC3c/AOQy2FDIoKM4hO5aAYPtHUjsGUD22Ze85BJTgglPdeFpJ8PDw14KFUkEtDwlwGSzWaRSKaM8RevgN/xpXdRmI7FEChNyHSZRwCRZ8OX5fCb8xCHZpm0ZP3lhrH/PNZJYggo9zdTSSLih48IkGUlxKghSuPGTXUzCiQkpmPhJPn7bwNSvZvonJRu/fWUScoLUCjSXOGQ6bv3WZ9vPpunNIsUjm+wJoOG2d5xDSVCVSgWlUsk4PJ5fLX7HMJcO5Xu0br4unohG/aDkKX7NNfWXpstrNd9OnKkmUCkTR3Tv5ChNUxgaCruESee0004Lu4SJpaXFe7ojxDLCZHhkJOwSJo9yOewKQiWWv9AOflBbDKDdkKAQB55//vmwS1DGg5/8JOwKJpaYJF5W7rgj7BIURYkyQVN1t23zfdt1XbzAEh4JFacURVEURVEURakjkQCuuhjJ/v3oxQhWVjuwsZrH9D27UOtsw9A5x1tvxJtuxtOjXC6jXC6jWCzCdV0vfYXeq1ar3tB7NoHKtg4pXMjhpmzSDLVJQ135JcbYaOY9mygSZD02ZM08ictUh59g1miaTfiQmAQhPp8pOcqWKGXrx3jRSAwhecW2rEw+48v5YeqzfF++NolapmnyuJJt+slJjWSwoO/L9Zn673csmupt9hwxJTPJoetsyXmm88gmYrmuWyeR2lKt6LVM2JPrAFD3vqkmmkbrlbXLIVS5bBqkv34iYVjfI7nu+D2a5Wtf+xoWLlyIXC6H008/HY8++qh13vPPP994bF988cXePFddddWo9y+88MKxbJZxQ2NpFI8T2tvDLmHSWbJkSdglTCypFNa9/e14+Ic/xK8AfCPsekKgUCiEXcLk8eST9a/jdAPod7/DcwMD+D2Apz7/+bCrmTwO7uNOAAW5/2OC/A8ARZmSxOR3UfoDHwD++Mewy1AUJaoETZ4qlXzfvsMielYqlWYrUhRFURRFURQlqpA4lU3jaAxg67NDqBz7MqBWxbSRAXQM9mPdMfMx6Djo+O2zowQqvyH2qtUqyuUySqUSEokEUqmUt0ylUkEqlUI6nR4lAPDlHcdBtVr1xAISsPykCpJ8pOBC36/Sunh7NJ3P34ixzucnmARdT5BUGJtE02ydQUWhIDJQo2VMyDQjXlOj5UwyjA3e30bHlu09P4L01bTNbGlOfHpQ6cx0XjSDrKdRn/3WxZeVfTLJO3J+Wx3yWiJTmOh6whPsTH3h6+TiIM3Pk6gA+8ghXG7j24Ff9/h1jb9nek59MCWp2fodZMhV0zYIm/Eacq/ZNu644w5ce+21uP3223H66afjlltuwetf/3qsWrUKM2fOHDX/XXfdhRL7jm737t044YQTcPnll9fNd+GFF+Jb3/qW9zqbzSJMYhnUoZhpW7ky7BImnY0bN4ZdwsSSSGDd+9+PdwL4Zti1hERHR0fYJUweclioKfYLfUI57zz0uS4uAXDMpk1hVxMKYVnuYeIgRv2OupAS9WSm3bvDrmBSSMRU4lQUZZIIKk8dHP7Cxp//+Z8bp6s8pSiKoiiKoiiKBxentg2h/+glwP/+Fs6q9Vjb2Ydk0sHCnZtQOnoe9p/18rrEKduwffzGfblcxtDQEEqlUp2swJd1HAfpdBqpVAqpg38PmaQHSouiNggpTtBPU6qKTIppNESVXzqVH6YkHr80nmbb91tfUJEmSB1+yzdKEDrc77OblcwA+9B6pvmaEUWaEY54qo9JTLElMB3O9pfzBe1f0BqC1NMsY0mWClqH6bym/VIul1EoFFAoFDAyMoJisegNy8eHBU0kEt51icQoSn3iyU+NaqE+JhIJrx15feNtyn4QPD3Ldg2zDdvHh1m1HZuNroVx4uabb8Y111yDq6++Gsceeyxuv/12tLS04JvfNBsI3d3d6Ovr8x6//OUv0dLSMkqeymazdfNNmzZtMrpjReUpxaMzhje8HnroobBLUCaY2bNnh12CMhmwIQtb4zRUI/vwmbnnnhALmUTG8EduJFi3LuwKJhbLf6BEhnnzwq5gwtA/GxVFmTTGKXlqyDJcfTXqIq+iKIqiKIqiKIEZJU798lEk/vgCknc/iMTGHQcFqgQW7tyM4tHzMHDmsXVyiLxRD9Tf8CdZgW7eA4cSXbhsRWKBHLpKSlkcWxqRnzgh2zKJAocrEQQVp4Is34zMYlouqLwl57PJUM08giznt45G9fsJcH5ijk2w4+/5tcNfm5b3Ow6b3Z6mZfzqa1bAMrUbdL/69clvGl9+LIJco3lttRF0LeBCkZSKpPDEhxzl1zrT+kyJWtQWn9c2jJ7tmLIl/MljzjSP33JTWZZyQxi2r1Qq4fHHH8drXvMab1oikcBrXvMaPPzww4Ha+MY3voG3v/3taG1trZu+YsUKzJw5E0uXLsVf/uVfYnfI/4iuw/YpHj0PPhh2CcoEEBuxwEJfb2/YJUweMd/XhCsTuKIM/zA6hT/MTSSxucZFvZ+dnWFXMLFcdVXYFUwYbioFR9NaFEWZDMZJnrKhQwEriqIoiqIoikJIcQp/WOWN/JD52W9QuvhsrJ3Xi6P6t2Phzs1Yd9QcAMDMP7wIx3FQqVSQTCZHJZvw1JNSqYTh4WHUajW0tbUhlUqBhp8qlUpIpVJwHMdLnqIhtShdhYbZokcymUQymTRKC3IILHpNqVUkRiSTSe95IymL2qb3aDk/gr5va8sklTQrOYxFTOHraiTcBFmvqR3ZJ1O/aF+PBdP6g4giY5VIDkeyo2NdCke83UbHCH8dNG3KNn0ito9fHSROStGRz9NMDSbZi64ZdC2R8hvfvnx+Pg+/JtG1hA8lKveZTKUytSslTrp+8df0vFKpoFwuG5OjTHKVvAbz9+Swf6b1R5WBgYG619lsdtTQebt27UK1WkWvuOfe29uL559/vuE6Hn30UTzzzDP4xje+UTf9wgsvxFve8hYsWrQIa9euxSc+8Qm84Q1vwMMPP2wd8nGiUXlKUZRIs2fvXvSEXcRkEVN5RpKK+AcZpZ7YyFNRlwKjfv2KsDwFveYqijJZjMOwfX5fKLa0tDRbkaIoiqIoiqIoEWWUOMVwXRfZn/8WxYvPwtq5vVgysB2Ld2/Bi0vmYDcczHxq3ag0J9uD3/y3pUuRLMNTXiR8WZscJFOlTMlVXKoJKkTx5YJgSuExTZfvm17b/sZrlDTk16YfUkAK8p5fGlEzNQRJUmpm/aaUMdv29GvPtt8atWmqic9vO05syzVqm7dr+hmkNklQ0dC0/cYq/cn1SuHQdu6SqMQFPBKX0un0KOFJzk/vNStK+vWTC1RS3DI95/2X11c+v99113Rd9htO0lR/1O5JzROjZtx44434zGc+M67r+MY3voHjjz8ey5cvr5v+9re/3Xt+/PHH4xWveAWOOuoorFixAq9+9avHtYagqDylxJr58+eHXcKEE7WLeLMkYt7/OPLy3/427BImDz2+40PUh7WLOul02BVMHCpPKYoyWQSVp9hwzpKbbrrJ+t5VURZdFUVRFEVRFEVpCj9xin5mfvoblP7kbKyZ24sl+3dg8a4t2NTdjoG5PcjsGBiVbMKFKkp/KpVKqNVqXspHJpMBUJ+MS8NjUTIVpb1wGYSnTsmHlEYAeAkrfHhASrpplOxzODQSgEzCh5w3iHTiV3sQIccPv/obpUsFqYOW48lQY6kxiPThJ0uZjhs/wa2RRGVav20ems8kDDYrutGyY03sCrou0/Ya71QquT7bcWaa5jiOl2YHwBsulK5Jchg+eh/AqKFDZd9MAqaUoeSD4CIXXRd5H01Sk0y74v2QDylN0bJyaEK/Yf2mGm6TQ+75tQMAGzduREdHhzddpk4BQE9PD5LJJLZv3143ffv27ejr6/Ndz9DQEH74wx/ic5/7XMOaFi9ejJ6eHqxZsyY0eSriMQZKMxSmTw+7hEknrMg3ZfJQeSp+tIqIySjjsA+wccRBjATRqCdPKUcsMTkDFUWZCgQVUS3JU88//zyuv/5643stLS247rrrxlqZoiiKoiiKoihRwyBOmcj+7LdIbtqBta09SDou5u7egcHFfRjuyBuHhrLd2C+VSigUCqOGn5LzAofSYvhPU0pPo+QVOUyVTW5oBtOyfmKNX/pSozQjW72mbRFk3bJWv4Qlk6Rmm9/04PusmeX8BCXbdrf1Vwovfq+b2WZBJCo/bOttdnv41RyEIOv0O35N0/3asO2fRilMjeqV7yeTSaRSKaTTaaTTaWQyGWSzWWQyGaTTaW+YUP6wXWdMKWFcbrIlQJn6xc8L0/skdJE0Zbt28WutXN40ZJ+8PpvOhajT0dFR9zDJU5lMBqeccgruu+8+b1qtVsN9992HM88807f9H//4xygWi3jXu97VsJZNmzZh9+7dmDVrVvMdGSc0eUrxyO3eHXYJk85EmsZThdiIBRacGOxjj5jv6zgyMmsWWjdvDruMyUUc540+mCmKMsmUSsDB/5JUFEUZVw4zeeqb3/ymcfqnPvUpXH311aF+MaMoiqIoiqIoyhQjgDhFZH72W1RPfRlemjMD3U+vxbTaFqRTaVQzGe8mPx+CzzRUVLFYRK1WQy6XA4BR8wGoS5Yi2YASp/hQXBKTrFCpVOoSXqRsZUq0MSXrNIOfLGSaV/aBp/vY6vGr7XDqNr0eq7Rj2gam5B7bvM3WK7EJbqZagqzLVGujNkw1yuNU7m++HN9GpmOjmb4EOWYaiWRyn9mOTVuN/HwzHeMmSdC0DjlNSoV0XeEpdnIZnkZnwrZNaf/zxCp+bfFbls8rr0X8WkniFL+u2uRPKWpxqYsnTnGpyrTMVJSn3HFOngrKtddei/e85z049dRTsXz5ctxyyy0YGhrC1VdfDQC48sorMWfOHHz5y1+uW+4b3/gG3vSmN2G6CPEZHBzEZz/7Wbz1rW9FX18f1q5di4997GNYsmQJXv/61x9W3w4HlaeUWKPJU9Enofs4dvBI46iT2bcv7BJCxQEwc+bMsMuYHKIuR3Z3h12BMkZciPQpFacURZkoDlOe2rp1q3H6jTfeiFTQthVFURRFURRFiT1S7nAcB+knVqFcrWKobzraX9yKWj5Rl5JSLpeRTqfr5IJE4sA8PHFleHgY6XQa+Xy+Tl6g9dC8BKXIcIFKJsDI11wUoLYaCUxSpOLT5Ht+KTt+BJF+GmGqs9E6mpk/qMjUbDLRWOoJKirJ5bmYx+U8k4Qj5RvT+mUiUaPjxm8f+CX+mEQkWZ8UgcayjWzrs9V1uPiJUzJBKWh7cn55ntIxYBObbOuSw9jZ5CISNCkdL0jNdP2i2kxD8HERla/LNlyfbSg/U9oU71sQ2StM3IOP8WinGd72trdh586d+PSnP41t27bhxBNPxD333IPe3l4AwIYNG0ZJd6tWrcJDDz2EX/ziF6PaSyaTeOqpp/Cd73wH+/btw+zZs/G6170On//8543pV5OFfkOoxJp00KEfjmDinjwV62H7vv3tsCsIhV27diEug5Cmh4bCLmHyGeMfrEc8U/SD+rhx6aVhVzC+9PYCB8f/fhTA8nCrmVAifmQqijKVCPq3W6lknFypVIzTVZxSFEVRFEVRFGUs1KXfAHCSSbg18xB5pqH65DzVahXlcrlOsOJyA4lQ/OE3dJ+pXlqPTQrwS8YhTHKM3zw2GtXaaJ4g62uUdDWWFKxmazIt30wikpRggqw76HSZmCTr48ehTZ7yk+SaOQ6CbBe5TRr1zfS6mfWYlvNLeqJpJtHQr65GNfklXwXpi+0YktcX/r6UN/0wSVR0vTJtM1t/6Jomr5O2ayhvT6ZUmR5+12FTWpUymg9+8IP44Ac/aHxvxYoVo6YtXbrUui3z+Tzuvffe8SxvXIjReFZKM8TlknDDDTeEXYIywezetSvsEsLjPe8Ju4JQiMv1CwD6ly0Lu4RQcRCP4VcBRD956pWvDLuC8eXyy72n5lv4iqIoStMcZvLUvpgndiqKoiiKoiiKMjHUAJROWwZ31nTk1m9BKemgfHBYKZ48JYeLMj0qlQqKxSKGh4dRLBbrhqfiywMHUjvS6bSXaAXAKhXUajWUy2XvIUdvsElTwOih2WyYkoKaSZ4aKzaJhydx+ck/fFlb236vbQ/T/LZ2GvWP+kOvZb+CfkfOjw/HOTTsIwl49DyVSiGVSiGTySCdTnvpZjLhzLR9eU02ocq0f8YDue1txwNPObLtO1Obfus7nJr92qb9EuQYbXS8yW1je88vTUzWIZOo5PWsVCp5wqZJnOIJeXQcU3IVH6KPD7NnWpe8tpqkK3kNlvNzkcwmeU0F3HF8KKPRf7FUjET8Fq3HtGnTwi5hwpnID6VHAm3t7WGXMHnERSJRPErT45KxxRjDf68ckWSzQLF46PUU/aA+buRyYVcwvpx8svf01BDLmAwiegYqijIVCSpPGRKmyuUy7rnnnnEuSFEURVEURVGUyLL8OODRZ+om1SVNHXxeA1B+4zlI9E7DGdiJnafOxer2PqT+uBaZwaI17cSWfEISAb/JLwUGKTXx9BhbEhSvQ67TlJLTKAVnPGUXv/ZNQlYzP03raCSbBBGm/JYJMn+jdTaaN0jdY1mnTTDzOx4aiWm29QYR8fix3ai9wyFI0pnpfb9EKD5PkH7Ylpdt8LZs0/gyphqk8NRMslTQfvD5/GRNfh3ix5EpDcpUU5AEKdN1WF4LZW1TVZxSJh6Vp5RYE2SsVeXIpr2jI+wSlEkmTjfyW9etC7uEUInTvo68PDU4GHYFyhiJ1XmoKEq4HMawfd+O6XDWiqIoiqIoiqKMkVeedOCnQaCiG/1V10X10vOQmDUdZ2EHdu6rYlXXbOSeXIPEjr2oZDJe8lQikUD5YEpuKpU6IF4dTD6h5wC8xJdqtYpSqYRarYZsNls3NB/d1OfpOVJO4IIK1VxifytxQaFWqyGRSBgTYUzTgqTb2FJ8+LyN2rERRJgKwljEKdt7phrGIl+MZXlahqf2mDAJQnJ/Uht0rBFcNDGJOrY+0HOSAuV0KcqY2jKJR0H3ix+mYzmILGZbp20Zk+Ak67Atx89f2zB4pr64rjvqnLad31Iy4vPSenlylKzP79oh1y9rdF23bhhRftzZxFNZm99QfjTdlvpnmia3hRI/VJ5SlIizcuXKsEsIle44pzGVy8FvMkWIOH2kadm8OewSQieyyVOSefPCrmBiGR4Ou4IJI07XJEVRlAnlMIbte9/73jfOxSiKoiiKoiiKEmWO2rwGay0CFXBgqL7qm14JZ/Z0nOVux67+Kp7rmY/MU2uQeWkr3Exm1E37arWKZDKJarXqCU/0k4sR/DXJV67rIplMelKE4zh1Q3lxWYCg+blEQMjkKZMsYPvelafEyHnH8l1to/Qpv2XGI3HKJgDZBKFmE5YkhyMCjWU72/oh04z4OpqVyPySp+iYbQZTTab1+tXUDI1EPj+RxiY0ETZxypYE1ahGKZzZhDuTFMXf4+KSTGLi83A5SdbCX/MHXdf4dYaud7xtv37bRDNZq59cxec1DZNqk7z8mAr3o8ZryD29b2FG5Skl1kyFi9xEs23btrBLCBVH/MdFrLjrLuBtbwu7ikmnI05DNcaUWiIB1Go4EUDi//0/4M//POySJp7Zs8OuYGKJ8O9j/SNEURRlnFi1Kth8hmH7FEVRFEVRFEVRmmFObx6wCFQ1ALU6caqC53oWIPXUGuQefhYuE6KkPFWpVLzpXJIi6YmEKJruOA7K5TJqtRqSySRSqZQnTFAaFWCWIXjqD5cfpCzFU23o/WYknSBJU3I+G35JNdRXkzDlJxlJcSVo3xoJRX5t2IQw03y8n34JRaa2/AQj2zzy+JDbmE/niUAy3czUl0bPZW1SdJHH5eFs30biUyPZKcj6TNvQdAybjj+T0GSaxyRNmeqwyUamaVIoousRT4Ei+PWDzgMubtrEKV6TTLfjNTS6JtD8UpayDYXK2+fJU6blbCJVI7FL7qfJxnXHZ6CS8WgjisQ4kkXxJZMJuwJlnIiDIKZYePrpsCsIhf3794ddwqRRmDEj7BJCYee73oUEgByAxHe/G3Y5k0PUUvRmzqx/HbXfVVHrjw/x6amiKKHz/PPB5hPJU/39/RNQjKIoiqIoiqIoUeahUjfm9OZx1OY1B4bwW37cgZvtrovqm18JZ3Y3zqptx659ZTw3fQFST65G5sEnUTPc5K9Wq6gcFKfoIaUqkwTAX1eqFZTLZZRKJZRKJVSr1bp6afg+mp+3Wy6XUWH/ZMKFIlNSi5xmQsoFzQpXtjbHA5Ns0kxNUrxqJE4FkT9My5le2wQo03v0vjxWgoofzdToJ7nIfW96mLDJZHw4yiC1yTrkOm2vD/feaRBZzVRfo/b8tjFtn7HUamrXbwg7Wlc6nUYmk0Emk0E6nUYqlfKtwXbM+olO9JMvK+expUfZZCgphsl5TddeRQE0eSoUqtWqN7bxlGLBgkPPX/c6oFAIr5YJZsHBvs6ePRuFCPcTANra2rz+Hm5fM5nMmH4xKyFx773AF74QdhWTTsQHN6tjeOFC5HbuDLuMSaf12We9587vfx9iJZNI1GScV78a+MEPDr0+5ZTwalEURVGODDo6gs3HbgrUajWce+651lmvueaaw61KURRFURRFUZQIUhscwUNt3Tind099AtWCXiRmT8eZte3Yua+C52csRPLJ1Ug/9CQqJxwNp1ZD4vkNdTf7q7UadpywEHM27UVHqVo3bB9PaLE+4OLhxAjmVKs4Bi3eDX8OTwbi63Ycx0uTISGlURKQLfmnkRzC32tGTDENmRUk+cdvvsMRmkzJVrYaTKlO1I8g67elJTWznFyvX3u2tKNmRaIgx4AJPxmPlg2SvhWk3iDHTFBhxpb6xOtstE34MeHXjq3WZmuWdftJbFJo4rIWDf8JYNR1p9E+sl1D/FK3eE02udM2TB/99BOsTA957Qy6jcMSrnTYvolF5alJxHVdbNu2Dfv27Qu7FDO3337oeXs78NJL4dUywdx+sK+u6+KlCPcTAE4//XSvv4fb10QigUWLFiFzBCWT1RYvDruE8Fi3LuwKQqEl7AImkdTw8KEX55wTXiGTTC2X8547bW0hVjKJRG04ylmz6l9HbVhC9kdhnK5JiqIoE0pnZ7D52D8q3XfffXjaksba0dGBa6+9djwqUxRFURRFURQlavy/n6F25cX1AtVrlyNRq+KMofXYua+CVTMXIvHH1Ug/9EeUTl4KzJuJ3IonUEsnUa3VkKhWUU44SNVqaNu4ExtevgDzVm9HtlKF4zh1IQt8+D7+03Vc/C5dwRBcnO6mMFKrIFFJoFI5kESVzWa9Nkh2IEmAEqcodSqdTns3+3myj0ms4FKBHC6PY0r7mcjkKZMcNZb1+tUr+2MTTxqlRJn6YxLFgtTul/rUaD18PpnsQ/PKRCMppNgkMdt6pTDD1y23O5el+DHcSKBqFtP2k0PJ0fqbleAaEUQI4/MGSbGSy/DptA3lurk8yYfSc13XGwaU5kmn06POAykc8UQ7gg/bR89NkpJf26Z1yXQsnhplS57iw6XKZC0pVJm2/1TF1WH7JhSVpyYREqdmzpyJlpaWcbngjitDQ4eed3dH70YmY+hgXxctWhRyJRPPjh07kEodONUPp7+1Wg1btmzB1q1bMX/+/Kl3/HKmTwd27wYA1JYvD7mYSUTuk3e+M5w6lEmjgyUwBR7KJgI4/EN5X194hUwk06cDW7Yceh211D/2xQ6A6MlhU/l3pKIoypHKtGnB5mPDV3z0ox81zvLBD34Qf/u3f4v58+ePR2WKoiiKoiiKokSNE5fWC1SnpZGsudgxksK6kQ5sntlxQJx68I8oXXw23DkzMGfPNhSPn489vX3IP7oSqb2DGDx2PkZSaaCnAy179uP5UxfDWbUNfQOlUcNNcZHBdV1U3Sr+O1dBMeFiJpJ4DgU875Twxto0tAoBgC8L1CfENCuijIc8MJbUJVsbfnLW4QhUtuX80qxMmEQbmyTVbNJR0HnHS/bwk6LGkibmtz1s27nRusb6nt8ycp2mabJ9Wz+kDDZWAetw7sFK2c7UP3l+0TWED5vIZTIuZPHlTGKfaTlbspYUyxqJVEEepnb8kqfk/Eq8iYQ8tXXrVvzTP/0THnnkETz22GMYHBzE/fffj/PPPz/Q8p/5zGfw2c9+dtT0bDY7bkO6VatVT5yaPn36uLQ5oaRSAEv2iCq5GPQxnU57zw+3vzNmzMCWLVtQqVTq2p1yzJ7tyVOxIpmsf30kXGuU8WOqphpOAO2PPHLohSVN4ohn6dJ6eSpqGP4rRTkycQGoKqYoyqQQVJg++Dvm+eefx1NPPWWc5aqrrlJxSlEURVEURVEUO689+E/Z/+9nqH38PfjNniQu6u5HZyaD37fPBDbvQPLXT6B0ybnAgj7M3r0VxaqL3XNmI/30i0hs34NaKoWWJ9di6JxXAKUKRrpa0L1lN55f1gfn+e2YPVTxBIVUKlUvJySAn3W4GEy4mOWmkK4BT6cKOKfWhnY25B+lVyXZvQFKWqlUKqjVakilUnVJUyYZSSbDmKQGk3xhS0Q6HExiR7My0eGsuxFSRJFiUCPJqpl1jkUGM4kysi2SZIJITZLxEsB4nX7HWdB1Hq6gJNfh917QtptJnDKtV+JXI71P0+T+5dC1gKfP0TWErkkJ8c/cJjnQJmHJ6wgtQ9O5oCXFJo6f8CSlKJlwRT/59dCUPqXClCKJhDy1atUq3HTTTTj66KNx/PHH4+GHHx5TO7fddhva2PA/SSkiHAb0AaalRQdvUSaX8fzgSsP1VavVqS1Pvfii9zR5773ABz4QYjGTyJvfHJ++KqMR400rRzhH0PCoioFTTw27AkVRlOjR0xNsvoN/e3/xi1+0zqJ/lyuKoiiKoiiK4kf7qjXY/9rlwKkvQ6JQxOyWFH7d346RWhKd/bvRP70T5asuhtPWglm7tqBUqmHnvPlIPfsiUqs2AMnkgRvylSo6H1mJHZeejXS5CqfFQc+2fqxc1ovk6l2YNViG4zioVquHElocB//bWcNgAuirJpBzgZXpMs6utmAh0nAds0QgZQ8SB/gwXbQOLljQ/I0kgiAJOoeTONVIkvJLzrGt29aeScpq9NwvQYrLJKbnjWqyTfOr34afrNMoEckk4zRqk89rEo5M2ypIypNsx8Z4iXV+6/eTlPxqbEacMiVv+clXzWw3k5zGzwGeMiXPjWbq9+svv07x9fE0K7pu8aQqk1xlSo0yzSuH97OlUPE2/foXZNpk4OqwfRNKJOSpU045Bbt370Z3dzfuvPNOXH755WNq57LLLkNP0C9kx0hYJ5KijAdHzPHLhqBM/c//hFjIJCNli6gN86UoSnQ4Un6fjJVjjw27gkkj4ntSUZSpxJIlwebbtAnYtAm/+MUvrLPk8/lxKkpRFEVRFEVRlCjS0dMC1IrYP6sHi4a3I7FmDzbOWwpUqzgh2Y8nKikMzepB78AulEo17Jo3H8nn1iG94g9wmUBQq9WAcgV9P38U2y8+HShXkMgnMWN7P549ugfOmt2YNVj2JKdytYr/m5nEUALoqwJZ18XKTAXLSxmcihzchH34KY7rul7aCr3mgREyaWYsQ1b5pULZhBNa7nAIKk75Le83zfZcEkQ2a7TeRutoJr0pKH4CVTMCUdAa/ea3tSslnCBS2lgIkg5lem+sNfids9Quzcdf+9Ut25dpT7blXNe1ptE1W7dsXz4naIhRnoRH06XYROuVyVJB06hInCJ5iidO8eeaPKVIInFnvb29Hd3d3Yfdjuu6GBgY0JNEaYrh4WG89a1vRUdHBxzHwb4YDZ11RKDnsxIXVJZTFEVRFCXKnHLK6GGqTQwOAvPm4e6hIVwFwLSEJk8piqIoiqIoiuLH5hlz0Tm9FUuxDy/lZ2D17CXAw08BW3figew8lNvbsAT7UOrpxq5Fi5F47iWk/++xuja4AOAUS5j7iydQzaRQSjgo5dOYuXM/njm6B9s7MgeG4KtW8aveFAaTwMyyi0wFWJV2cUohhZOL6VEiAA1DxSUAkhKSyWSdiGF7EDZ5wiZMmBKLgko0QQUSnk5jWq9JoDKlUwVN2PETwRrJas1gWrcNmYrDBRKbTMLXwYdga5Rk5bcd/LaxrWbT8qY2ZM2mddpqNNVp28d+NTSi0fHSqK1GQlPQWhr1odFrvhxdJ+ghjxG/fWs7zmzXECkq+V2bTFKTaR4/cYq3I9uz7Yeg5/ZUcEjccXwoo9E7rYzFixejs7MT7e3teNe73oXt27eHXdKU4KqrrjL+krnwwgvr5vvDH/6Ayy+/HL29vcjlcjj66KNxzTXX4IUXXqib7z//8z/xqle9CtOmTUM+n8fSpUvx3ve+F3/4wx+sNZxxxhn4i7/4i7ppt99+OxzHwbe//e1R9Z577rmH1+km+M53voMHH3wQv/3tb7F161Z0dnZO2rqVxsQqEUPKMz/7WTh1KOGwfHnYFSiKEnf+/d/DrkBRlCiTSAAnnhh49tOHhvAtAPdidOS2ylOKoiiKoiiKoviSSmLvUBVOMonWZO3AP3Ls3Q/0D8JJJjEtU0M6lUB/wQWSCTj7BlF9+SJUXrawrhl+Qz5ZrmD+r/6ISjqJUiKBUi6N3p2DeOqo6djclsJDC9oxlHLQU6ohXalhdQ44acjByYXUKLGABCqT0MNlBllDEDnAJLfYhKsg2NryW6dJnDG1Z3vfJo00UzfVy3+a2vQTeWzzjLWGRg9TbSaxpRkhyfReI3HHJuaZxBrZP1MbNhqJcI0kKr86g0pNjbZNM4JZs8eF3zYy7R9ZI0+Bku+b5CJZexDZyvQwXZtMy8j1+R33/LkUp4IKVH7w66sSbVSeAjBt2jR88IMfxL/+67/izjvvxJ//+Z/jjjvuwLnnnouBgQHfZYvFIgYGBuoeRyouFy/a2+veu/DCC7F169a6xw9+8APv/Z/+9Kc444wzUCwW8b3vfQ8rV67Ef/zHf6CzsxM33HCDN9/HP/5xvO1tb8OJJ56Iu+++G6tWrcL3v/99LF68GNdff721tgsuuAArVqyom3b//fdj3rx5o6avWLECr3rVq5rfAGNk7dq1eNnLXobjjjsOfX19Y7pw0n8HKMq48vTTYVegTCYzZ4ZdgTKe6Idw5Uhk1aqwK1AUJer86ldNL/JqAB8X03TYPkVRFEVRFEVR/Dizfy2q5Sqer7ShoziE9mdWAhedDSxbiN51a1AaKeO5cgf6akM4ev0LqL7yJFSWvxzJ9dtQSyYOpHoI4alarcIplrHkgedQTidRTDgo5pLo3TWIxxZ3YV8uienFKtKlKta2JnB8fxXHD7rGYafK5TKKxaKXPkUPusEv5SkuDzTCJkpJKYtPt7Vja/twCSIi+Yk+40EQwWasEpeUS+SwZqbkHVrOJMOY6vabj/dNplfJ5UyCll+/JbY+TQUmQpjxE8mC1tOsZOZXg0ye4vPYlgua0ET7lq5P8lihNmnoUH6dM6VI2aQp0/nBr4um4fps7flts6mC647fQxnNlJOnarUaCoVCoMd4XTw/9KEP4Z//+Z/xzne+E29961txyy234Dvf+Q5Wr16NW2+91XfZL3/5y+js7PQe8+bNG5eawqCyaBGKAIbSaWDatLr3stks+vr66h7TDs4zPDyMq6++GhdddBHuvvtuvOY1r8GiRYtw+umn4+///u/xr//6rwCA3/3ud/i7v/s73Hzzzbj55ptx7rnnYv78+TjllFPwqU99Cv/7v/9rre2CCy7AqlWrsG3bNm/ar3/9a1x33XV18tRLL72E9evX44ILLkC1WsWf/dmfYdGiRV7C1T/90z958/7ud79DLpcbNczehz70oTr56qGHHsK5556LfD6PefPm4a//+q8xNDQEADj//PPxD//wD3jggQfgOA7OP/98AMDevXtx5ZVXYtq0aWhpacEb3vAGrF692mvz29/+Nrq6unD33Xfj2GOPRTabxYYNG7Bw4UJ84QtfwJVXXom2tjYsWLAAd999N3bu3IlLL70UbW1teMUrXoHHHquPf1UUI6VS2BUok8kU+vA2qUR1uMKXvSzsChSleW6/PewKFEWJOl1dwOzZTS/2VvE6GWT4P0VRFEVRFEVRYsuL5RYUqg4wOIzNe6voOGEBOjIuMrkUhto6sKdw4L2t/S4G589B2nExd2EH2t94GsoXn4XqjC4A5qSUZLmKZb9ZhfLBBKqdM9qQcIFqKoEiXKzrSOPle8t4+UC17gY/b09KBlIA4IkytFwz2JJx6KefSGBb11jv6Y4l/YdPC9p+0OSjRqlLfHlbSo/fcjZsSUC87SDpSUFSmvzqbTR/s/P49dG0nfzaNM1vWq9tHX7bYCzHvI1G/Q+6riAJSo367FePaV7Ta7/jX8p9fD1+qVKm6Xwaf8+0fKOHiaD7Mei1ZaLQYfsmlil3x/GBBx5APp8P9Fg1gf/d/s53vhN9fX34VYP/bL3++uvR39/vPTZu3DhhNU00qa4ubO3pQWrZsqaWu/fee7Fr1y587GMfM77f1dUFAPjBD36AtrY2fOADHzDO53ehOfvss5FOp3H//fcDAJ577jmMjIzgz/7sz7B792689NJLAA6kUeVyOZx55pmo1WqYO3cufvzjH+O5557Dpz/9aXziE5/Aj370IwDAaaedhq6uLvznf/6nt55qtYo77rgDf/qnfwrgQKrUhRdeiLe+9a146qmncMcdd+Chhx7CBz/4QQDAXXfdhWuuuQZnnnkmtm7dirvuugvAgaEDH3vsMdx99914+OGH4bouLrroIpTLZW9dw8PDuOmmm/D1r38dzz77LGYeTI35x3/8R5x99tn4wx/+gIsvvhjvfve7ceWVV+Jd73oXnnjiCRx11FG48sorp4x5rUwhpESiaWZKHIjqtfDVrw67golFr0/RZHAw7AoURYkDuVzTi5wE4N8AvHLci1EURVEURVEUJYpsnzkX2Lgd+Kc7gK52bKm1oKc0gGmVYeyf2XdgCL9bfoBaJoOtyXac1FFAy9AAdh58L7F9T92NepmE4hTLOPZ3a7C/LYuyA7QXK8iVq9jWnkHv/jKW7SnVpa5IUaparaJYLKJcLo9KVgGAVCrlPQiTzMOnSxHDJBlIYaLRPLZ2TDSSb3hqTZC2xopJyAhCEAGl0XLNCkW0TRKJBFKpFJLJZN00me5jk4Pk8G2mefl6+bJB+8XX4TdcXKP2/GppJFWZtl0z+8xU50QJN0HnbSRONbs+kxQl9yEdZ0FqqxNHD6ZcyfcAjLrOmdqh65ypbVNSlUkutSWc6T13hUg1nmVyWbZsGb71rW8FmnfWrFkTWsu8efOwZ88e33my2Syy2eyY1zE8PIznn39+zMuPlWXLlqGlpaVumuM4WLhwoXH+n/70p2hra6ub9olPfAKf+MQnvESlZQ2kqxdeeAGLFy+u+7B2880349Of/rT3evPmzejs7By1bGtrK5YvX44VK1bgHe94B1asWIFzzjkH2WwWZ511FlasWIFFixZhxYoVOPPMM7198tnPftZrY9GiRXj44Yfxox/9CNdddx2SySTe/va34/vf/z7+7M/+DABw3333Yd++fXjrWw/8b/KXv/xl/Omf/ik+/OEPAwCOPvpofPWrX8UrX/lK3Hbbbeju7kZLSwsymQz6+voAAKtXr8bdd9+N3/zmNzjrrLMAAN/73vcwb948/OQnP8Hll18OACiXy7j11ltxwgkn1PX1oosuwvvf/34AwKc//WncdtttOO2007zlPv7xj+PMM8/E9u3bvXX6Eab9OiWIc//1l72iHLm87nWo9PYitX078O//HnY1iqIoinLEcw2AxwH8OuxCFEVRFEVRFEWZ8nTu2Yn+BX3AlRcBhRJaWlPY7LSh7CSR3rsP5Z7OA+85LualhrGxlMEepNAxsAeDvd2o9XQhsWfAeoO/Uqth/QnzkS5WUM2mMJxOopxMoHO4jG3taWweqmJ+0Z6YImWsZDJpFBVSqZSvLOC6ridB0TQbUq6gZf0wiVV+skyQ5BtTCpFpeZPgYkvICUqjBJ9GIlkjgqTimMSfINvUb3+Z9q1si9bRaL83SiSS0JBtQWUcP4GK1y3nNS1rm2arXZ4vEtN7QY4JKTU2OiblPI3mD3JeU99Mx4Ap3akR8prCj1PT8jbZydRPk/BpE6e4jNWo3SDbR4k+U06e6uvrw1VXXRV2GXBdF+vWrcNJJ500oet5/vnnccopp0zoOkw8/vjjOPnkkwPPf8EFF+C2226rm9bd3Q3g8GzM9773vXjjG9+IRx55BO9617t82zr//PPx4x//GACwYsUKnH9wiLxXvvKVWLFiBa6++mqsWLEC11xzjbfM1772NXzzm9/Ehg0bMDIyglKphBNPPNF7/0//9E9xxhlnYMuWLZg9eza+973v4eKLL/bSsp588kk89dRT+N73vuctQxfbl156CS8zDKu0cuVKpFIpnH766d606dOnY+nSpVi5cqU3LZPJ4BWveMWo5fm03t5eAMDxxx8/atqOHTsCyVOxRwUiJS7E9ViP6gfWdBqpVauAF18E2O+tyBDV4RYVRVGUiWd4eMyLPjeOZSiKoiiKoiiKEl1mVIeAagr98/vQuX0rkpv7MXTMMUClhlkj+7DDdVFeMBvz9m1FZdUAti5YDGf/EDL/+QAySABDBbgGKYPEqQ1nLUU5l0bX/hEk9rnYNqsT6UoNLTUX0/uLeLgvB2d7CQvLByQAEg54EpXjOCiXyyiVSkilUnAcp27eZDKJTCaDSqVSt4xJTrAJEROZxuIn+wSRqholCzVavpkaJ3o5kwxia5eSf8aSmiQlnWbqNUlKtmUbSVqmdmTfTdvAr04pNpmOAT5PEPHvcGQZkyRk23ZBZKmx1BRE5LLJXaZrQrPyERc0AXjHrNxHXHqSy5vkJ1Mt/NpYrVZRqVTqkqxsYlbQa9xUE6diejdwUphy8tREs2HDBgwPD9elJO3cuRMzZsyom++2227Dzp07ceGFF05oPcuWLcPjjz8+oeuwrbcZWltbsWTJEuN7xxxzDIADItiZZ55pbePoo4/GQw89hHK5jHQ6DeDAkH5dXV3YtGlTwxouuOACfPGLX8TmzZuxYsUKfPSjHwVwQJ7613/9V6xduxYbN27Eq171KgDAD3/4Q3z0ox/FP/zDP+DMM89Ee3s7vvKVr+CRRx7x2jzttNNw1FFH4Yc//CH+8i//Ev/1X/+Fb3/72977g4ODeP/734+//uu/HlXP/PnzG9bsRz6fN15sadsAhy7Gpmnyl4iiICUu6QclQCUmTLEPb5MGuz5Gjs5OYIIl7tDo6Ai7AkVRFOVIpVQa86LPjmMZiqIoiqIoiqJEl7XtfThqZur/3959h0dR538Af29NL4RAGiEJEIpIRwSU3lEEBUThpJwnKKeo2D06iniiIuehqAjqD+TEU7EgIEjQKL1I7x1CgIQkpG6b3x84e7OzM7O7ScimvF/Psw/J1M98d7Is7DufL4Kv5OBSnRgIkbWBnYeB+GhcqB0HfYAJDWzZKIyri0tBUdAdOAl9fhGKkhNg3HscOr0e+DPMJP2Q3i4IONf1VtgCzYi4Xgi9xYEr8bWQcjYHmXVDUQwdYNajfp4Fm2PM0F+xoYFdOdRkt9thtVqd3aX0f/6yoiAIsNlsAODsPmW320sdlFLqbuSJt8EXT1OFlSelUI1ahyVvtvNELWwkPabScyINmyh1lfIlrKRFqYuSVvjIl/N5s694frHzlKdatc7hbRDMm3vLl+5aWnWpBZXUAkvycRGDkNJjScOPcp6CQJ6CeZ728+a40hCTuFyv8EvU4nUZDAbYbDbn65k08KQVmpK+rko7Tak9lEJWStehNq6VLThFN1e1CU+98sorAIADB278d+hnn32G9PR0AMCUKVOc240ePRqbNm1y+QFISkrCiBEj0KJFCwQGBiI9PR0rVqxA69atndOn3SzBwcE+dYCqjPr27Yvo6Gj885//xNdff+22PicnB5GRkXjwwQfxr3/9CwsXLsSTTz7p83k6d+4Ms9mMhQsXori42Nmx67bbbsOVK1fw8ccfO6f3A+CcNm/ixInOY5w4ccLtuKNGjcKyZctQr1496PV63HXXXc51bdu2xcGDB1WDY0qaNWsGm82GrVu3Oqfty8rKwpEjR3DLLbf4fN1EXjObXb//c+5gqiGCgvxdgX/ceae/K6DSeOEFCFOmQAcADRr4uxoiIqpKyvAeNxtw+fchERERERGREsFsxtmrFjQMNaLQISBXMAIXMgGjAYivg4RAC/Q2IzKvOwCjEbqLV2HYd8L5C66KXVEAZPdtD0dwAEJy86G3OnClXm3UO30VKZkFSMq8jh0t46GzAzqzDvXzrPitrhnGbAEpNuUOMDabDVar1a0LjDiVn9ilCIBzO6XuLloBibKEpuShD08BKnm4xddQjPzcSkEWrTCEVjcsT+fS2k6py5I0+CEPtohjIe8upRaq0qpNft3ybkBqITFvQjbeXLcabztBaYW5PF2//B7w5j6Wb6cWLvOWp33E59Hbe1Rc70sAUu0YWvvJO1DJx0G6n9K9LX3e1AJU0mYh0tCU0lSjSt+rba8VnNIKkKpdf2UjoHwmoql8V1Y5VJvw1NSpU12+//jjj51fS8NTSkaNGoXff/8d//3vf1FcXIykpCQ8//zz+Mc//oHg4OCbUm9VU1JSgkuXLrksMxqNiI6ORkhICD766CMMHz4c99xzDyZNmoRGjRrh6tWr+OKLL3D27FmsWLECnTp1wjPPPINnnnkGZ86cwX333YfExERkZGRg8eLFqi+goqCgIHTs2BH/+te/cMcddzjf8JnNZpflYpem1NRUfPrpp1i7di1SUlLw2WefYfv27UhJSXE57qhRozBjxgy8+uqrGDZsGAICApzrXnjhBXTs2BGPP/44/va3vyEkJAQHDx7ETz/9hHfffVexztTUVAwePBiPPPIIFi1ahLCwMLz44otISEjA4MGDSzX+RF5hWKpm+/vf/V2Bf/w5hSxVMUYjdNevA19+CVSC6Zpvhi8A3A8gr2dPsM8WEVE5GjECUPm3mJaNAFJSUkr1izxERERERFSz1D11DFkJ9XHYEoKG+nzgwDnk3tMNsDuQePoYrI3q4ZwtFMEl+TAcP4vrPdvDrtPBuPe42wwBgnCj41Ru/9vgCAlA8LU8oMSGrJRYxB2/hLjzOXAEBsJgtaPToSvY3KwO4AB0ATokXbdiU5QJumsONJJ0ohFZrVbnn2JYSjynGBwwGAwunWykU/iJ4RxprfLgg6fwlFoAxpsuOL52dPHUgak0ytJFSWkbpesWA2tK3XnkARRxHMVj6vV6l+dJLVDlC2+vqSwBHV/qErtPqR3b13q9Pbc3YShPHaMA7a5t8p8PpWMpBZOk6+Q/X74Ge5TuMV/217oXxOVKgSWR/HVG+r3YQc9ms7l0npKfx1O3KXG6PnnnKvnXSgFPT+G2ykZA+QSfGJ5Spp5UqWK8TQ6mpaW5Lfvwww9x4MAB5OXlwWKx4NixY5g7dy7CwsIq8hIqtTVr1iAuLs7lcaek28fgwYPx+++/w2QyYeTIkWjatCkefPBB5ObmOruCAcC8efOwfPly7N69G3fffTdSU1MxfPhwOBwObN68GeEepvHp0aMHrl+/ju7du7ss79atG65fv44ePXo4l02YMAH33XcfRowYgdtvvx1ZWVmKv2XcqFEjdOjQAXv37sWoUaNc1rVs2RKbNm3C0aNH0aVLF7Rp0wbTpk1DfHy8Zp1LlixBu3btcPfdd6NTp04QBAGrV692mX6PqNzJ/xKvhIlouolk08/WGJXwzSt5KTS02ganAGA0gD4AskvxAT8REWkYN65UuyU8+CAOHDjgnHaeiIiIiIhIja3EDrtdgFBUghMZJajTuj4iAwUEBhpQGBqGS7kAiopRWGBFeHQIIo6dgL1HO9haus9i4gBw/Z474AgJQuC1PKDYgrzkGNQ5cgExJy+7fJZpsgu440gWrAYdigEUmfVIKXAgrRZw2mh3+3xTHhaQT/8lBi6kgRu1z0+VlnkK6SiFMdS61JQ1hOBLNyr5OHg6ltp1euqcJH9oUeuII61RaRzlYTZP9fvC02fqSsE6+ddloTbuWuEerfGWL9d6LtXGTun4vt4bWve/2rE8nVPr50gpVKXUqUn+pzedmLy5Tq1jqT1X8iCU+Dqm9tqkdh75Q+3nS+0Ynq6Nah6dwGe/XOXl5SEiIgK5ubkuQaDi4mKcOnUKKSkpCAwM9GOFBAA7duwAALRv397Pldx8mZmZOHfuHICyX2+VuY9rcohIeu21awNXr/qvlopkMADSNHpNec6lz3deHlBTQr/S6x4xAlixwn+1EKkQ/1F48uRJt66X1UoZ/s5Ve99cmVSFGolqpFL8p/DxDRvQqGfPm1AMERERAXzvTETVi+7ZvwD7TwAbtgHPPgS9yYCm+jzk6Uw4bw8GLlwBPvkBGHMXYDaini0P17OKkBddB6YNO2DIyLoRWNLrYe14K+z1Y2AusUBXZEFRowREHjiDuFNXYDabYTKZEBgYCKPRiKCgIBgMBggBJmxqGIkAh4AgnQ4hNuBagAG9Ckyoqzc7uxGJ0/JFRUUhKCgItWvXdpkKSxoYsNlszmUmkwlGoxFmsxkGgwEmk8l5LIPBAKPRCKPRCIPBALPZ7AxgSUNY8vCJN6EOpcCRUkclpf3ErlqeAk9K30vDR55CLFrH8XYd4Dr+drvdLayhFWwRjy+OifT5kXee8rYe6TmVuh+pHcdTjWrhI1/Igy1KHYKUalNb701HKKX1nr4HoNgVSWuM1J5ztWXeHE+pk5L0e63wmVZwSClwpRT4E7+WhjctFovze61adDqdc2YpQRCQn5+P4uJiFBQUwGq1ori42K2blNVqhd1ud55D7FQlXVZSUgKr1YqioiKUlJSgpKQEFosFNpsNJSUlzm3EqU7lHarEukXe/uyL3f8qgvheu8eiKTAGlf0zeltRMTZOeIXv3WWqTecpIiKS4TR+NQs7MBEREVFNUauWT5vvBmBs0ODm1EJERERERNXP/hPA2i1Av06AxYYQwYozjmBk2INgyrsOREcCt6QAS78HLFZcMIQjvHYQwk+ehu3O1nBER0AQBFhap8IRFgxTQSF0BUUobJSA8L0nEXnwrGb3FJNdQI9TeSjR62ARgEKTDqnFOvwSYkOu4PohvxiMstlsLgEFedhJXC7dT/qnlFbfDbVQga/H8aQsXZU8db/xpXOTp65AnjpQedP1xlMQzdftla5B6U8lpenGoxZ08qVDlFpwTn4NWvtr1SA/vhgg09rG25CaLz8T3tTu6/3pbT3ebuPputVet7SOIw0DAlCcas/b+8ubDlRKQTBvOk6pnZNqDqO/CyAiuqlqcqBk9mx/V0AViW/miIiIqKYICPBp868BTKzMnXOJiIiIiKhyWbsFuOsOoHESEi+dhQVAZkoqYHcgxXINV84UIHdAZwACsPQHCAM746JOB/PeMzDuPw9cLwQAGE+ch/HAKQgJdVDcvinCNh9A2KlMCEajS2cWaUcXsSOQ2QH0OVeIXbFBCLEIaFisR6LVgGA4IOhcO8OUlJRAr9fD4XA4Q1PyLjHSTkNawanSkB/fm6CHuI8WT+ul5/U1YKUVTPHUschTbb52A1KrQ1zmbeCjvPgyntLnXCmc5Atxe/H+lS6Tnku+va/UapPfw950olI6thpP3b7kdcl/rtSO523d0nte/rOjtb/SNUrva6XOatIa1cKbVqvV+ZB2rZIHnqRfK/1sSbtjqU0DKN1efmy1saWaiZ2niKh609fgl7levfxdQcXhGxkiIiKimsPo2++BlQAI8DFwRURERERENZgYnMo8B6sDyIxJBPYdB7JycMIegjpxIYg4ehwY0BlongLdj5vhKCqBJSkOupzr0P05tZcutwCCzY7i5ikI3n0MQUfOuXyQL+26Ip1CSmR2AJ2uWGHV63DJBIRbBUBw/eBfp9PBbrfDZrOhuLjYOY2VeDxxG/FPaVBDpBQkEENY0v3l+0mphR7kvO2Uo1Szpz/VzudLZyH5PmrH8XQOcRzEP33peiOl1eHHm+N60zlJejz5sT3VpnZMT+dROrZ0mbRTkadOUGrPjdZyNeUZmlHq/qZ1Lq36valX6+dDHopS+tnxFHpUOp6n0JS4nfh6Z7PZYLFYnNPqKQWmACiGS0VK96l8KkOl0JTWz1BVIgjl9yB37DxFRFRd1aTgmPRNXU0NUtXU6yYiIqKax8fpqS0AQkJCbk4tRERERERU/TRNRkRxPiwOIDMuETh2Fvg+HTAZIIwdhBP2ECTH61Ccdx0lAzpDgA76C1cA042PXQWTEZZOLWDedhA6h4Dgn7bDpNNDkHWEkoemlD7gNwhAh2w7Akx6CHr3TkYAYLfbYbVaUVxcDEEQXKbHkgagpJ1tlM6n1EXI125R3nYc8hSCkW+jFZiSn9NTGEt6PrXttY6lta1S9yClwIY3x5V2BRLvGaVzeFubeExP55Ru780+WscpzX7yTkzeXK8316f0M1Ca+rypQ2uZ0vXIa1I6jvw+kgailH4epH9qbSM/lvT4aqErrZqUCILgDHWKISqx45RSdzbpMvnro/S8SiEptQCVtBY13t5n/iT8+SiP45C7GvTJOlHNFBYWBgAI5DQVNU8l+Eu8wkiv1ccP06qNmhoTr6nXTVQZ1aS/d4jIv3zsPGUFYDabb04tRERERERU7dTLOAub0YTM5Ab/C04B0NkcwNLvIECHU6GxiAjRI+LoCeCuOyF0bQNjxlU4zCZY+94OfVExYLXBAQA2u/PY8g/0lQJU8m31f7YJkXZlkU9BZbPZcP36deTm5iInJwcFBQXOTlQ2m+1G/SqhHnn4Qasbk7fKI2RQlo4wSuGo0gaOfN1WHvAo73OVB29CVJ7qr4iay7srkFa4R3x4e12lrU2pu5Qv+2rtoxZ8LG19UtJudr7sJ+9AZbPZXLrjqYWv1LpHqYWjlF4XK/PPIFVO7DxFNdItt9zi7xIqjPghAaepoGqN4amaKynJ3xUQkYj/wCSiiuJjeMpyk8ogIiIiIqLqSagdgWapYdh1qgSO2pGADv9r0xEcCAQHopbJjvaNQ7FFnwC9TsCwbhG4GtoaP9tiEHYhAy06xmB3Xj5KGtRD0M+7VLumqHWdkm/vrE2lk5HD4YDFYnFZbjKZXKYOA5TDCfJz+NoVSUqtA5S8m5C3x9daLz+2VpecsnaZKm2gRim44U13IrVje/s83YwgiFaoztNz5an7kjfjpHWvaS1To9aVyRP5z5783N6EddQ6S0nrUrteX0Jb8k5zSueTb6/1XPh6P6u9dsm7QSnxptuUWvep8g7dVSZCOU25V42HqEzYeYpqpODgYAQHB/u7DKoIHv7yJao2ampooV8/f1dAREREFc1k8mlzhqeIiIiIiMgXF2rFIvNCPlpbL0EXEgCMvhvQAUJ4MDDuHtTKyULX4GtIPyPgWmA4Hm5ajIji6/g5uAFCSorQqnEIDh66hpKWjWHaetDZNUreIcVut7s8vJnKTy1gBQA2mw0WiwXFxcUoKSmBxWJxHhdw73Ij7SQjn85OKxCjFLiqKJ66yahNB+jtsaV/lqY2T5TGWQy3lWfgyVMt5dFdSW3qOW/OVZrzexsw87S+NM9vaUNScr5MC1eWLnDeBNo8kd+f8iCmdBtP55K/9qmFnLzpQiV+Lz2O0rHV6qjqhHJ8kDuGp4ioeqsGfxGWWk0K09Tk51lUU8dAz7cyVLklJCT4uwQiouqHnaeIiIiIiOgmShbycM4Qjss5drQxXrsRoPrrPf8LTjU0YP1JIE8w496kElhNZiw+HYkgazFaNY/AnrNW5DRrDOPGndDnFbgd39tQlFbXFemx5Ou1QgryoIPSMcsryONtgMebcE1FhB58md7PU8hMacpArWXy/dSO5W2N5dWVSi0ooxQCUzt+aTsxKS33FNbxdlzEe96Xe9BTnWoBRG8DfUq1+NIZy9fuZWqvKUq1+HI/KV27rz+/Sq9R8u+9eb2U7kPkDX7iSFTNGQwGRERE8MNbouquJoXliKqAyMhIAP+bPrdG4D9Ciaii+Nh5qic7VRIRERERkQ9GJ+Qi8fJZnK/f6EaAKvA6dPF1EBhsRJcGBqw/rUNBXBzuthxHeMYFLD1khsFqQStzHnbtvYb8uDiYvk6DISvXeUx5pxR52EnsPnUlIgAWh101CCWd6kqru4rdbofNZoPNZoPVanXryCKdGkytU0tZAlS+dIYS//QUJPK2C5EvQZOyhlK86cykFCzSChuVpVOTJ96Om6cAkC91lleQq7woBcC82cebZZ7Oqba/vBZ5hyeRWuDJm1CX/Di+Eo+ldF75vSKtv7w6PqkFv5ReU5X20bomIhHDU0RVjE6nwzfffOPT9qmpqZymsCaqSX/h16RrVVNTQwt16/q7AiIS1dTXISKqeHa7T5s/MHr0TSqEiIiIiIiqo3nHIjGurf5GgCqpES7XicfttYoQF2nA6qI6zuBUdKgOSwuTYMrNRfsoC/Zm6lAcUxeGXYdhOH/FeTylqamUPvC/FBeBjJhw2HXqQQHp90rHllPrLCOvRRrKUqvbE29DCL6GFeTdd7wJXHnTDcebetTCId7uq/aQ1+9NWKm8qYWllKZp83QtWtfuaZ1WaKsiKHV38iUY5ikc58328lq8DR9Kjyl9qIUh1epT6jxXlvHXCn55E9b0pruU1nZEpcXwFHk0duxYDBkyxN9lqDp9+jR0Oh327NlT7sdOS0uDTqdDTk6OV9uJjzp16mDgwIHYt29fudeUkZGBAQMGlPtxqy0ffyu9Wqlf398V+EdNfWNkMPi7ggrj8gw3b+6vMohIjkFWIqooFy74tHloVNRNKoSIiIiIiKqjQmPgjQBVBzMSQ+24UGyC2QCY7TbYzAFIDS5B7RA9lhYlw1SQj3bB+dh2zoGiqFoIOnwCjsQYWHt3AOAehpB3lBK/P90qCVfqhqGWpQQlJj2OxgRDgHrnFKXlSsELeahAHrCQd7fyNXjg7fZq04J52kcrOCX+KQ34qG3jKfjjTVjGm6kN1QJSSkEkT+fWOoe316VGLcAlDU7Ja5c/ShOk8lSbNyEYb4/lbehL+rNQHrTGQV6bSGmKOfHnVel6lK7PU02eQmtalAJmat2xlPYDoDiNqNL5tabeUwqUKgVA5a8dvlxrZSeU44PcMTxFVZrFYvF3CS6OHDmCjIwMrF27FiUlJbjrrrvKvcbY2FgEBASU6zGrHWlgqnZt/9VBFSc5+X9ft2njtzIq3LJlsAcGwv63vwE1qLucbvVqoEULYP58f5dCRERE/uDrlKg1+RcqiIiIiIjIZ11t51BoDsK8i7F4pLkNXaKL8Et2CE5bA9G/9nUYzAZ8Ym8IU0E+2gfnY9dFwB4RDuFyDmCzITgvD/YmibD0vg2Aevcn8UP/c20b4HqdcETYrbAYdDiSGImgYhsESdBAK9ikFLxQmqZPLUAiP3ZZurh46ryjxptzeTp2eXac8bZ+rVCGXq+HwWCAwWBwC3h5cx5peEkaYiov3oR8KiNvu66Vxznky3w5Z2nCbErnVwpLKQXxfA1TKZ1Xen616/UmKFda3uyv9XrlKQBa2e9tbwhC+T3IHcNT5LPu3bvjiSeewFNPPYVatWohJiYGH374IQoKCjBu3DiEhYWhUaNG+PHHH537iJ2ZfvjhB7Rs2RKBgYHo2LEj9u/f73Ls//73v2jevDkCAgKQnJyMN99802V9cnIyZs+ejdGjRyM8PBzjx49HSkoKAKBNmzbQ6XTo3r07AGD79u3o06cPoqOjERERgW7dumHXrl0ux9PpdPjoo49w7733Ijg4GKmpqfj2228B3Oho1aNHDwBArVq1oNPpMHbsWM2xqVu3LmJjY9G2bVs89dRTOHfuHA4fPuxcn56eji5duiAoKAiJiYmYNGkSCgoKnOszMjJw1113ISgoCCkpKVi+fDmSk5MxXxIQ0Olcp+3bt28fevbsiaCgINSuXRvjx49Hfn6+c73YOWzevHmIi4tD7dq18fe//x1Wq9W5zcKFC5GamorAwEDExMRg2LBhmtdZ6a1adSM1q9MBv/7q72qoIgwceONDNLMZGDTI39VUnJEjYcjLg+HDD/1dScUaMADYuxd48kl/V0Kk6quvvsIjjzzi7zIqVjX4xycRVRG+hqdqUMiciIiIiIjK7nSRCV1TdCixAx8eNCExQodAowCHoINNEHDFaoIBAurWCcaOa4GwJNdDwuljiLYVoKhZKuxBAQg5fR72xoko6dXeeVylUNLlTs2QXzcCda/lQLA7cKFWOGpnFyIuq1A1JABohy20lqntqxWW0JouS+mYpQ1Q+VK7r6EUtcCNWvhE7Xu1c8jPI9/fm/N4ul6tAJY3HZa8vWat2tXOK792X3h7z2nRqre0gZ6yhLPUuh1pBeg8Bemk+5clpORNYMqXAKVWbWpdprwNd2mdX6kTldY+3oyXUmcrqlkYnqJS+eSTTxAdHY1t27bhiSeewGOPPYbhw4ejc+fO2LVrF/r27YuHHnoIhYWFLvs999xzePPNN7F9+3bUqVMHgwYNcoZ4du7cifvvvx8PPPAA9u3bhxkzZmDq1KlYunSpyzHmzZuHVq1aYffu3Zg6dSq2bdsGAFi/fj0yMjLw1VdfAQCuX7+OMWPGID09HVu2bEFqaioGDhyI69evuxxv5syZuP/++7F3714MHDgQo0aNQnZ2NhITE/Hf//4XwP86Sr3zzjtejU9ubi5WrFgBADD/+R/7J06cQP/+/TF06FDs3bsX//nPf5Ceno7HH3/cud/o0aNx8eJFpKWl4b///S8++OADXL58WfU8BQUF6NevH2rVqoXt27dj5cqVWL9+vcsxAWDjxo04ceIENm7ciE8++QRLly51juuOHTswadIkzJo1C0eOHMGaNWvQtWtXr66z0howADqbDTq7HWjUyN/VUEV4+22gpOTG4x//8Hc1FYudFIgqpR49euCDDz7wdxlERNWTr9MVMzxFREREREQ+OFunPq7kWDGoVjbO5xuw4mQAnm+Whz5xxVifHQ693YY7ArJx0WKENbYOEi6cRkCAHln5DuBqDopj6gA6IOT0BdhSE1Hcs53z2NIP5K/e0RxFcVGok3UNdquAjKhwRGXmIuFSnsv0Vr6GGQD3QI88XOAp+FKW7lOVVUV1pFEKi8i7R6kFoaT7iA959ypfebtPWcegorr6qAW/gNJPI6m1XC34pPVz6WlqOjXeBqk8Bai8Cf1J65S/3qhtozXtnk6ng9FohMFgcHttcTgczk5svgS/xG29GevShO2Ulnvaxt84bd/NZfR3ATVe+/bApUsVf97YWGDHjlLv3qpVK0yZMgUA8NJLL2Hu3LmIjo52dliYNm0a3nvvPezduxcdO3Z07jd9+nT06dMHwI0AVr169fD111/j/vvvx1tvvYVevXph6tSpAIDGjRvj4MGDeOONN1w6PvXs2RPPPPOM83vDn/9xXrt2bcTGxrpsJ/XBBx8gMjISmzZtwt133+1cPnbsWDz44IMAgDlz5mDBggXYtm0b+vfvj6ioKAA3OkpFRkZ6HJd69eoBgLOb1D333IOmTZsCAF577TWMGjUKTz31FAAgNTUVCxYsQLdu3fDee+/h9OnTWL9+PbZv34727W/8JsJHH32E1NRU1fMtX74cxcXF+PTTTxESEgIAePfddzFo0CC8/vrriImJAXCjc9a7774Lg8GApk2b4q677sKGDRvwyCOP4OzZswgJCcHdd9+NsLAwJCUloU11mPbM1w9UiIiIiIioavA1PB4UdHPqICIiIiKiailCZ8HhwiBcLdbDoAfiQwWsvxKCwzkGBOtssBhM2FkYDkFvQEKAFeaUWJy8ZIFOnw3j0u9hH3gHChrWQ+i5Cwg5cx4FqYko1OsRkrbbeY5rXVvCmhCNqCtZsEOP7NgoRGXkouHxyxACAgBoB0HUwguewiRicEq6n9q2SvvJpwGU16DG1xCCN12Z5Mf1dVsp+bho7Std5m1XHvnxlb6X7qPVHUp+DOlzonQdnrp4Sffx5XnyNGZq+2gt92ZMtXh7T6qFBrXuESVK3de0OjtJnyOlfT1t46mjknx/+TLxe6XQlPyY8sCl/Hql2+r1eq/vB/lrldL97s09oNRtqjzCnqW5rytUeSWfmJ5SxPCUv126BFy44O8qfNayZUvn1waDAbVr10aLFi2cy8TQjrxrUqdOnZxfR0VFoUmTJjh06BAA4NChQxg8eLDL9nfccQfmz58Pu93uDEmJwSJPMjMzMWXKFKSlpeHy5cuw2+0oLCzE2bNnVa8lJCQE4eHhmt2etPz6668IDg7Gli1bMGfOHLz//vvOdX/88Qf27t2LZcuWOZeJfzGdOnUKR48ehdFoRNu2bZ3rGzVqhFq1aqme79ChQ2jVqpUzOAXcGDOHw4EjR444n4fmzZs7xw8A4uLisG/fPgBAnz59kJSUhAYNGqB///7o37+/cxpDIiIiIk0NGwInTkAAoFu82N/VEFFNYfTxvzL4bxsiIiIiIvJBm2gHdl214Io9AF0iruP2esC8A2Ew6gQ82NCGlUccKDaY0UB/HbUMwM7CYCBYD+HrNOh0Oph+/B22gZ2R3yABoecvIvTsBRQ0SkABgLBf/sD1Hm1gqVcHUZevQhAEZMfVQcT5LCQdzYRgMqmGAuTE5fLAh7yrkXx/pWCAvLOMEqVQgS8hA2865mgd25tuPJ6O5SlMU5p1WiEY8WuldWrPididR9qtylMgR6tWT2GU0gZFyis4pXbcsoZgvAkxae2rdr+LPytq+6mF19RCUUo1y8NLWtsqBazEMJO8Bmlgym63u3WTEo+p1+vd9pXXJ30YDAbndt68hoj3tXiv2+12Z91qYyuvQX5cre09ve7IQ4hUczE85W+STklV6bwm2W/66nQ6l2XiC4unF7jSkAaFtIwZMwZZWVl45513kJSUhICAAHTq1AkWi8VlO6VrKW3dKSkpiIyMRJMmTXD58mWMGDECv/zyCwAgPz8fEyZMwKRJk9z2q1+/Po4ePVqqc3pD6xrDwsKwa9cupKWlYd26dZg2bRpmzJiB7du3e9Vti4iIiGqw48eBe++F7vbbAUmnUCKim+rPqdG9xvAUERERERH5YPMFoGG8GYV5xfgtLwy/H3SgrskCncmIz4+aYDMa0NBUCEdwKP64YkUYSnA9vwT4ywA4lq2BAYDpx82wDuiEgj8DVCFnbgSorjVMgA5AZOYVOAQBOQmxCDt3BbF/nIYQHKwYeJBT6xTjaUo4rQCVWhckb/jarUc8hzeBBaWuNFrnl37vTTclT/X62pHJ2y5PSuEqMbAifS7F77Xq0Oo2pFSHNEijVovWOHvz3GndT97UVpqQmzfr5TWonU8a8lG6BqUuSUrPkVoHKLVxVzqmN92nPBE/FxbDU3a7HVar1fm1/B4UG3J4ep7E7ZWuSbq9NDDlcDicX4uvZeLX0tcv6RhKefq+umPjqZuL4Sl/K8PUeVXRli1bUL9+fQDAtWvXcPToUTRr1gwA0KxZM/z2228u2//2229o3LixS9ckOfOf/3Fut9vd9l24cCEGDhwIADh37hyuXr3qU71qx/bG3//+d7z22mv4+uuvce+996Jt27Y4ePAgGjVqpLh9kyZNYLPZsHv3brRrd2P+6+PHj+PatWuq52jWrBmWLl2KgoICZ6jst99+g16vR5MmTbyu1Wg0onfv3ujduzemT5+OyMhI/Pzzz7jvvvt8uGIiIiKqkb7+2t8VEFFNU7eub9tz2j4iIiIiIvJBiTkQ2VcK0KKuDleuOVBg0yPGZMWFIgds+kAkBlrRvJaA1edssBlNCDt9GqmRBuwJiYL9L/2hW7YWBgDmNVtgHdAJ+SnxCL2QgSDBhsLgEATmF8Bus+N6YjxCTmei7u6TEIxGxWmyvCUPKHgKIEj3kW4jrUGtW4unZd6EaZS68PjS8cWbEE1pQl1qfKmxtOEzaRcfrQCcUtBJaSxLU7M323oTKJPX4830b0ohJE9jqdXVy5sAllrAUB6ckndyktandjy158TTva8VcvR2nXwb6bjbbDbY7XaUlJTAbrfDZrM5t5V3O1N6LZG/LkgDVGIwSl6DNAwodpsCbjRhEdcJguDsYCWes7Svg/KvlcarrPwV2hKEG4/yOA6503vehKj8zJo1Cxs2bMD+/fsxduxYREdHY8iQIQCAZ555Bhs2bMDs2bNx9OhRfPLJJ3j33Xfx7LPPah6zbt26CAoKwpo1a5CZmYnc3FwAQGpqKj777DMcOnQIW7duxahRoxDk43+aJyUlQafT4fvvv8eVK1eQn5/v9b7BwcF45JFHMH36dAiCgBdeeAG///47Hn/8cezZswfHjh3DqlWr8PjjjwMAmjZtit69e2P8+PHYtm0bdu/ejfHjxyMoKEj1BX3UqFEIDAzEmDFjsH//fmzcuBFPPPEEHnroIeeUfZ58//33WLBgAfbs2YMzZ87g008/hcPh8Cl8RZVIVBQAQPB1KhMiIiIioqriX//yftuwMIaniIiIiIjIJ72LjqNAb8bGq4FIDrWjnrkE+wpDkC0EomVQPowmA767EISkYBsSLp3FxfqNcDnHjjbGa9AHB8A+qh/E+U0C1m6F/lQGrjdMghAWjPDiQhSHBiO3YX0EncpArS2HXEJLvnwgrxS2kgYbpCEIpc+ZpOvEoIJ0Wi/5OeQ8haSk9SjV7uk4SsdSO588MFHaoIQvgTEptXHy9vkUAyRisET+0KpV7Vyeavb0vJSF2rG9Cb15y9PUcKXt0ORpndrPl6/3nLfPj7f3oq/hQ3mXOnEqPzFQJZ3WT/qQ/+zKx0AtaCXe3/Lzqo2ltz8HasSfSa0QVVkCVeUdxqLKgeEpqlBz587Fk08+iXbt2uHSpUv47rvvnN2d2rZtiy+++AIrVqzArbfeimnTpmHWrFkY62EKGKPRiAULFmDRokWIj4/H4MGDAQCLFy/GtWvX0LZtWzz00EOYNGkS6vr4G8oJCQmYOXMmXnzxRcTExDiDTt56/PHHcejQIaxcuRItW7bEpk2bcPToUXTp0gVt2rTBtGnTEB8f79z+008/RUxMDLp27Yp7770XjzzyCMLCwhAYGKh4/ODgYKxduxbZ2dm47bbbMGzYMPTq1Qvvvvuu1zVGRkbiq6++Qs+ePdGsWTO8//77+Pzzz9G8eXOfrpUqiaws4LvvoCsq8nclREREREQ3R0oKEBHh3bZ/+cvNrYWIiIiIiKqdeqECrpcANjtwKceOiEAdQsxAgBGw2IBLuXYIAnAhy4aH2+qRePkcztdvhMwcB9oac6ALDoRt5P8CVOKnsRY74BAEQNABguu0SWpdp7QCIlrbyDuwyLeVBhakXV7kdXgKdWkFOdQCNGpToGlR6yYjX+epDm9CGOURwPJmG/l5lAIt3lC6d7x57uTrtJ57bx9aNcm/VqvJm229PY60Nq0wjqeORVohPU/Pl1YYT+0+UDpfWShdj9I0n2J4UgxRSQNT8ufYm+uXj5O3wSm1UFpZw3dlDZ1pdU6rKEI5PsidTvDns1sN5eXlISIiArm5uQgPD3cuLy4uxqlTp5CSkqIahKnO0tLS0KNHD1y7dg2RkZH+LqfKOH/+PBITE7F+/Xr06tXL3+XU+PuYiIiIyo/a++bKpCrUSFRj/fQT0K+fdp/xpk2BLVu8D1oRERFRqfG9MxFVJ7qnR8Jks6BlaBF2muJgNOrR3JyPHJ0ZZ4rMCLAU4zbrRaTr4hCcm4tn21rx0W4BF2vFof7p44iJDcKughDgTCYQGgRHchzCLl5CcWwdWMJCYM7LR/DlbOTVi0XQ6UzE7joBXWAAQkxmmE0mhISEwGQywWw2w2w2w2g0wmw2w2AwwGQywWg0Oh8GgwEBAQEwGAzOZdJtTCYT9Ho9jEaj809xP6PR6AwqiMR1wcHBLvtrdYxRCpTIuwyJ51ALn3g6rlpAw1OwRb6t23OtcTxP+4qkoRKHw+FcJv1Tvr38uL4Ep+TrpOf3JvilVpvSlHXSc5YlUuDLvtL7R238lKb481SvNyEZbwJbnp5TT+OrFhBTCi+K95N8vbdBNumfYhjKZrM5/7Tb7bBarS7LxG2lrxcmk0kzyCUGrKTHFANY8g5W0u5W4jLxGMXFxSgpKUFBQQFKSkpgtVpRUlICm83mnGbQYrHAarXCarWiqKgIVqsVBQUFsNlssFgssNlsLp2zxK8tFouzNnkozG63e3WPyq/darV63Ke8iO+1O/xrCoxBZf+M3lZUjG1PvML37jKc14moEvn555+Rn5+PFi1aICMjA88//zySk5PRtWtXf5dGRERERERUefTpA6xfDzzxBHD06I0QlThFX3g4MGwY8NRTDE4REREREZHPTFnX0D4B2JEdAMTpYRbsyLCYkGs3QG+3ocQUiLNXdegadgG/mKPxxg4BSQ0jYT15CWfrNwDOnETbWAE7GidCCA1G2KmzsDsEWI0m6AqKYTOaAACRFzKRkxyLyyYTEGBC3bNXEZVXotlFyFtKnWbUQkF6vd4teCGfnsuX8yl9Lw3D+NpJxpsQlC/H83UfwH3KOaVgjtI2auMgP7f8T7VuYkp1SY8rDx1Jj1eWQFRZukB52k5pjJT+9ObYWuPnDa3nWGsbpfOqja/a8+PNfkp1qYXE5PeEGGCU/ikIAgwGg/MYer0eDodDNRSp9rOi9jOtFIiUPsRQplinGGoyGo2wWq1uNciP6S21nzm1IJzSzzPVDAxPEVUiVqsVL7/8Mk6ePImwsDB07twZy5Ytg8lk8ndpRERERERElUvPnsCBA/6ugoiIiIiIqhn7F+uxY1gPWBtEI+H8SZgMwOm6SYDdgWZFl3C2yISzMUm4vnMPcOAQiu5ohdP7LsERHATdqYs4FxyJy4V6CGEmhGZehsPuQEFyPZiOnkXIL3+gsHd75CXFIvLSFYRdzkJug1gEXruOoNxCXI8MRaDFffo0kdK0WfLvvX1Ip9ESjy0NXqgFqJSCC94EDbzZxtdQhNJ+3ga5fOVpP2kNas+fVkckrXCU2nr5udRCH1qhF2lwpiy0Oj2p3cPSupX21dqvMpI/v56CUIBycEpcLwacpNt5CtipPQ9iSEkMRwmC4PIaYLfbnUEqcRuDweB8yO8PaecmpXtYuky6r8PhcHazM5lMMBgMzm2DgoJQXFzsrNNms7mEu+TBKW+CXdJ61IJTSiFDBqhqJoanqEJ07969Svyl5m/9+vVDv379/F0GERERERERERERERFRjeTo1h6OlPpIOH0cZrMep8x1gHOZQHgojuXq0Li2DWfOnce1dq0BBALFJbDWqwshNx9CchxQbEFxeAhCT56GYLkRnDIeOYfAtF2AwYDQn3ehsFc7ZCfFQB9gRkBRCWy1w3GyY2OYbA7UOnYFAR5qVOugpBQsUFon3UcenvI2LKDWbUa+TB6wUNtOLXihFBLzJ2+n9/IleKEVnPLUCae0YTN5GEf6dXl1mvIm0OIttSBSaY6lRf5zoDROSsuky+V1yYOJStSCV56uW217tfEQA1nyYJZ4zdKfVzFYZTAYXM4hDxmJQSqlgCYAl25W8vCmeGwAMJvNAIDw8HBYLBbnFH3i9uJxxPMqhac8hal8vefk/B2oEv58lMdxyB3DU0REREREREREREREREREANAqFQknj8IcZMSpoDrAtTxg2RogJAi2v96Do9l5aBylx5kjJ1BwawNg/wnYiy0wFJVAV1QCISocpuwcOCx2FCYnwnj0LAI37gIkH7gH7jyC4saJcOgAvUkPfUERCmuFIOpCNkxWO2A2aBSoTSlMoLWdvKOMp+5Kat97E47yJdDgS/CorIEIbymFWTx1klIKv6h1lJJ2BVI6r1xpuuOUJVRSlunw5IEjb4Ja3hxH/rUvlMJGSl2ItOrwtK3a9lrbipQ6T8lJt5Ffk/y4Op3O2clJHpISp8yTdksT1yk9V/IglXT8pIFM+euLeDydTgej0QiDweC8781mMwIDAxEaGgqLxYLi4mKUlJTAbrc7w1ZqQSm1gJX8+svK3+FNurkYniIiIiIiIiIiIiIiIiIiApBw9gTMoQGuwSkAusJiCB9/eyNAlZWHxgmBOHPiFApubQhczYE9JQF6owGmnFxYIsJhDQ2FYf9JBGzc6RKcsoUHI//ergg4dxlCbC0Um0yA0YTal68hLzoCFwvtSL5a6NxeLSSi1HlFKbijtL30e2kgQRqa8CbUIoYjfA3veBtk8BQC8xSg0Vrv6Xu1ejyFWaTH8maqNTml40ufo9LUrVajWgel0hzTU9BILUAln9rQ0zG9WeZtIMube0vt2GohK2lYyJsOXvLjeDsWnp4jtWOJ+4mhK+nzIy7zNH7SfZT2VwszyY8hvZ+1pgtUe62Tv4bJj+uppqoYhGLnqZurbJOXks84dR1VZbx/iYiIiIiIiIiIiIioOlMKTol0hcXAx9/CFhGOo9k6JNUPRciJU0BsbUAQIAgOCDoddIIAGPTQFZe47G8PD0H+0O4wXb4Gg9kI4/msG9tbrAiw2RF3NRvXokJwqU6oYtBJ+rXah//eho3kx5KGFbyh1tnGE63r0tpHbRu1a1LbX75eHhyTL5duq/Q5mVLYRCuAIg3N+BKI8RQg0XrcjGOqhVjkD6X10sCL/Gu1+kt7nd7cl74EaZTqUjuOVn2efr7VrtnbY6tdl/y5EH/mpQ/pMm+OLX+OpV9rjaP8OA6HAwBU7x9v7wFv7h2lWqoCQSi/B7ljeKqCmEwmAEBhYaGHLYkqL4vFAgAu888SERERERERERERERFVF2rBKZFbgCopDCG5OUBBEXSFxbCGhkKXlw/TvuOwtWmMkk63QqfTQYgMRf7wHjBkZkNvNsJRUILietFI+HE7wi5kIzcgAAarA41OXUFJoAlQCad4CqyorfN2mVbXF5dx8BBYUdtWPtWXVsjBW5629TRlmi/NA8QOOeKf4sNutzsf8unPPJ1HKYwjLpM/D6WhtZ+v4+xreEltP7V1cr5OSyg/ZkXwNYyjtd7TPaJ0ryhto9YRTv4zrxSmUhs7rTCS0muP2muLdFo/cUo+8bNni8WCa9euobCwEFarFcD/unlJj60W+lJarvY64+1zQjUHp+2rIAaDAZGRkbh8+TIAIDg4mD+EVKU4HA5cuXIFwcHBMBr50kFERERERERERERERNWQRnBKJJ/Cr0ntEpw5cB75LZsB2XkQTEYIZhNMR8/C2qYJioIDYW9UD8bMbBgCTBAKi2FJjEGdtTsQmF+CkO1HUdQkETlxUUiwFaHBxTzozeYb5/IQVPEUatIKPKgdp7QhJrV61NaVJ2+OLZ0STxrmUtpfLfgkDUWJnXLk0x1Kx00Mb3gbnJJPpeYpMOMNbwJI0vVKXbiUjqm1vjzqU1vubWivPGqQr1e6bk9T7nmq0dNYKh1bqRb5fe3tc6p03ynxZTpE6XHUgkviz4+4TBAE2Gw2FBcXw2azKf4MqL2GebNcft1qY1nZVZ1Kqx4mICpQbGwsADgDVERVjV6vR/369Rn8IyIiIiIiIiIiIiKi6slDcErkDFDd2x1H919FwPGz0OdboT9wEo6Bd8AeXwfGjCswnbkIa6tG0OUXwRBghCO/GLakGESv2Y7A3ELoTCbo9XrUPpeFYLsAowPQGdQ7TUlDOWKXGK3p0cRtpeEBaXcZeXcW+fblzZsAmNZ+pTmfN+u9CY2InXLEAJX0oXYso9HoHGf5Ob0JeZT2uqsqaZBFLTR0s87rzXpPQThfA0a+rte6R5UCgOUdDPImCCje72JXKYfDoRjMEgNSYtMOu92O4uJiXL9+HRaLxbm9+BolCILb1I+epoqUb6f0WlqVglN0c1WL8NSGDRuwbNkypKen4/z584iNjUXPnj0xe/ZsxMXFeXWMCxcu4Omnn8a6devgcDjQo0cPvP3222jQoEG51anT6RAXF4e6des628wRVSVms9nrua6JiIiIiIiIiIiIiIiqM11hMbByA2wDOsMRUQvGHYdufFj/dRps93aHtX4s9EEBMBSVwBEaBIvdASEqElGrt8CcUwhIQkw6nQ6RWQUwhIa6BDWkQQFpGMBTJxZxf6UggdoxXK7Nx3CT4vho7KdWq7fnU6tb6dxqIQlfrlE6FZ/4kHeeEr+Whn/E4Ii3oRetmm5miEreKagiyZ8fbwJtpTlHeYVkPNWr1PXJm2CTp208HVNpnVKXNV+vU76v/NjyGsXAlBh4UgoGSo9hs9kAAFarFVar1RlQlL9uicfUeu3Tek1UWq42jafS8+hp3CuEgPJpPcW8mKJqEZ564YUXkJ2djeHDhyM1NRUnT57Eu+++i++//x579uxxdnxSk5+fjx49eiA3Nxcvv/wyTCYT3n77bXTr1g179uxB7dq1y7Vecb5NIiIiIiIiIiIiIiIiIqq6dFYbdGu3QG8yOj9U1wMw/LwDjofvgUMATEXFN8I2EaEIPHwG5qzrwJ+fFcq7o0i/Fz9TNBgMqh1WtJbJw1LiMcVuSFrBK2lt0q+9DXAoHcdTmErpT1/drGCDGJ6Sh6hE0kCVdJ3YLUesTQyUSOsVt7+ZHb+o4qZn8yUUpbROJL9X5AE3rWkN1UJB3tavtL3SuaShKefrn6QRhzxMKK6T/qyIgSmLxQKbzeYMTym9HordrLx5AP/7uZV2wJJfk1KQU+16/f3z6c/s1L///W+88cYbuHTpElq1aoV//etf6NChg+K23bt3x6ZNm9yWDxw4ED/88MONGgQB06dPx4cffoicnBzccccdeO+995CamlqK6spHtQhPvfXWW7jzzjtdfhD79++Pbt264d1338Urr7yiuf/ChQtx7NgxbNu2DbfddhsAYMCAAbj11lvx5ptvYs6cOTe1fiIiIiIiIiIiIiIiIiKqenQ63Y0Ald0B/PnBuiMiFNZR/aA/fRGoVwfWyHBAp0PAyYsoSYnD9SILav1x0i3UJA1JKQWbPIUFlLaXfm+QdbqSBwaUwlHyAIVS8ENpmrWyhqCUaIVFtM6lFSRRClNI18tDU0rhKPG6pdvIQ2fSwJVaUE26r1Y4xltKz52n7T2dryLCR96cQ36fyvdXCyVp7VdWSve/UlBOaT953UrTQaodT95FydN0ffJtta5HytPPjPz65T8D8n3kr1G+dJVSe+0TX0vFOqTdr6Tbi13j1MZFOo4E/Oc//8HkyZPx/vvv4/bbb8f8+fPRr18/HDlyBHXr1nXb/quvvoLFYnF+n5WVhVatWmH48OHOZf/85z+xYMECfPLJJ0hJScHUqVPRr18/HDx4EIGBgRVyXXLVIjzVtWtXxWVRUVE4dOiQx/2//PJL3Hbbbc7gFAA0bdoUvXr1whdffMHwFBEREREREREREREREREpkn7A7gxOZVyFMcAEx8kMOJrUh67EAr3DjqCTF1FwSzL0ej2i95/xKgSl9pCe21MYSiscpRagUJqmTh4mEJd5mvZNKZgg/Vrp2NL18mtR6uzkDaUp1bRqFLvgiMEo8Xul/ex2OxwOh3N6MTG4Ia6TPxfSkIf8+VHqQlWasI+vASpfw1PyMVMKDXk6j1IQTyv4o7Tem+tUChSVNUCl9bMj/VqsW7yPlLaX31fygI98G7Vwo3wMpfevdBvxXlXbR/612rmU1nu6RqX7SPqnnNprm1bwSt51TxpMlAfO5HVKv/b2nq4IgnDjUR7H8cVbb72FRx55BOPGjQMAvP/++/jhhx/w8ccf48UXX3TbPioqyuX7FStWIDg42BmeEgQB8+fPx5QpUzB48GAAwKeffoqYmBh88803eOCBB0pxVWVXLcJTSvLz85Gfn4/o6GjN7RwOB/bu3Yu//vWvbus6dOiAdevW4fr16wgLC7tZpRIRERERERERERERERFRFSV+qG6PCIF9VD/oLl6BIcAE2/UiOFLiEbh8HaydW6A4pjYCL2Uh6OQFXG9aHxCAOgfPwmazAYBz2iqTyQSj0YiioiIYjUaYTCbo9XoYjUbntHvSr/V6vXMbg8EAk8nk0slK/FrcR9rhStxf2pVKJIYPlDpWedNVRms7+bSCSttpBcQ8nV/te7XuOUrbybtJicvlgRMxhCENu0g7iqkpzRiUlqeQSHl12LkZdVZG3tSpFSBSWq8UWFK6d5VCVErrxa+l965SgEqtJq0gl3Qbte5sDofDGSgU/7TZbM7QlvgQl1mtVthsNlgsFpep/Ox2O6xWq3Mb6XY2mw1FRUXO7+12u/MhP7bdbofNZnNODSitwVNor7Lwx7R9FosFO3fuxEsvveRcptfr0bt3b2zevNmrYyxevBgPPPAAQkJCAACnTp3CpUuX0Lt3b+c2ERERuP3227F582aGp8rb/PnzYbFYMGLECM3tsrOzUVJSgri4OLd14rKLFy+iSZMmivuXlJSgpKTE+X1ubi4AIC8vr7SlExERERFVe+L75cr8D1KxNr63JyIiIiLSVhXe3xMR3SxiwMEeEQLHXwZA92fHKfv1Qjga1EPAyg0wZuXB8G06SgZ3QXHsjQBV8MkLuH5L/RsdqA6ccQaorFar87gAnB/y6/V62Gw2txCUGISSLpN+LZ3KSh6e0ul0buEpwD2YpBXykW4n7z7lKQgl7xajtp0365TIu9VoBafk+0hDJfKwihi4ULoXpNcm7x4l/3tSaVzlNSv9KT+XJ56CU/LzlVVpj6PW8ceb/cqrdk/H1Xqv4+04q4We1JYp7a/U6Umr65TaeeVdqZTqlh9X2olJ7SENTCmFqARBcFsmBpykASlp+EkMQ4nr5H+KoSil88qDUkrdr+TXr3VP+es9r724xPNGPhxH/v/eAQEBCAgIcFl29epV2O12xMTEuCyPiYnB4cOHPZ5r27Zt2L9/PxYvXuxcdunSJecx5McU1/lDpQtPORwOl/kPtQQEBCjetL/88gtmzpyJ+++/Hz179tQ8RlFRkfNYcuJciuI2Sl577TXMnDnTbXliYqLmeYmIiIiI6MZ85xEREf4uQ1FWVhYAvrcnIiIiIvJWZX5/T0TkrXL/UPyN8j0cERHVLGazGbGxsdj3Yvn9hRIaGur2/97Tp0/HjBkzyu0cwI2uUy1atECHDh3K9bg3Q6ULT/3yyy/o0aOHV9seOnQITZs2dVl2+PBh3Hvvvbj11lvx0UcfeTxGUFAQALh0jxIVFxe7bKPkpZdewuTJk53f5+TkICkpCWfPnuU/EmXy8vKQmJiIc+fOITw83N/lVDocH20cH20cH20cH20cH20cH20cH3UcG225ubmoX7++2/znlYlYG9/bK+M9ro3jo43jo43jo43jo45jo43jo43jo43jo60qvL8nIiIiIqqKAgMDcerUKa+bEHlDqbuWUsOh6OhoGAwGZGZmuizPzMxEbGys5jkKCgqwYsUKzJo1y2W5uF9mZqbLDHGZmZlo3bq1L5dRripdeKpp06ZYsmSJV9vKp9o7d+4c+vbti4iICKxevRphYWEejxEVFYWAgABkZGS4rROXxcfHq+6v1LoMuDEnI/8RrSw8PJxjo4Hjo43jo43jo43jo43jo43jo43jo45jo02v1/u7BFVibXxvr433uDaOjzaOjzaOjzaOjzqOjTaOjzaOjzaOj7bK/P6eiIiIiKiqCgwMdM6cVpHMZjPatWuHDRs2YMiQIQBuzCa3YcMGPP7445r7rly5EiUlJfjLX/7isjwlJQWxsbHYsGGDMyyVl5eHrVu34rHHHrsZl+GVSheeio2NxdixY33eLysrC3379kVJSQk2bNjgFqxSo9fr0aJFC+zYscNt3datW9GgQQOvQlhERERERERERERERERERERERNXF5MmTMWbMGLRv3x4dOnTA/PnzUVBQgHHjxgEARo8ejYSEBLz22msu+y1evBhDhgxB7dq1XZbrdDo89dRTeOWVV5CamoqUlBRMnToV8fHxzoCWP1S68FRpFBQUYODAgbhw4QI2btyI1NRU1W3Pnj2LwsJCl+n+hg0bhhdffBE7duxA+/btAQBHjhzBzz//jGefffam109EREREREREREREREREREREVJmMGDECV65cwbRp03Dp0iW0bt0aa9asQUxMDIAbGRx5B9ojR44gPT0d69atUzzm888/j4KCAowfPx45OTm48847sWbNGr901xJVi/DUqFGjsG3bNvz1r3/FoUOHcOjQIee60NBQl3Ta6NGjsWnTJgiC4Fw2ceJEfPjhh7jrrrvw7LPPwmQy4a233kJMTAyeeeYZn2oJCAjA9OnTFafyq+k4Nto4Pto4Pto4Pto4Pto4Pto4Pto4Puo4NtqqwvhUhRr9ieOjjeOjjeOjjeOjjeOjjmOjjeOjjeOjjeOjjeNDRERERFR9Pf7446rT9KWlpbkta9KkiUsmR06n02HWrFmYNWtWeZVYZjpBq+IqIjk5GWfOnFFcl5SUhNOnTzu/7969u1t4CgDOnz+Pp59+GuvWrYPD4UD37t3x9ttvo1GjRjezdCIiIiIiIiIiIiIiIiIiIiIi8pNqEZ4iIiIiIiIiIiIiIiIiIiIiIiLyld7zJkRERERERERERERERERERERERNUPw1NERERERERERERERERERERERFQjMTxVDkpKSvDCCy8gPj4eQUFBuP322/HTTz/5u6xKIz8/H9OnT0f//v0RFRUFnU6HpUuX+rusSmH79u14/PHH0bx5c4SEhKB+/fq4//77cfToUX+XVikcOHAAw4cPR4MGDRAcHIzo6Gh07doV3333nb9Lq7ReffVV6HQ63Hrrrf4uxe/S0tKg0+kUH1u2bPF3eZXGrl27cM899yAqKgrBwcG49dZbsWDBAn+X5Xdjx45VvX90Oh0uXLjg7xL96tixY3jggQdQr149BAcHo2nTppg1axYKCwv9XVqlsHPnTvTv3x/h4eEICwtD3759sWfPHn+X5Re+vA88dOgQ+vfvj9DQUERFReGhhx7ClStXyq2W9957Dy1btkR4eDjCw8PRqVMn/Pjjj5r7rFy5Ek2bNkVgYCBatGiB1atXu6wXBAHTpk1DXFwcgoKC0Lt3bxw7dqzcaq5IN2N8lF5L+/fvfzMv46bxdXwOHDiAoUOHIjk5GTqdDvPnz1fc7t///jeSk5MRGBiI22+/Hdu2bbtJV3Dz3IyxmTFjhtu907Rp05t4FTePr+Pz4YcfokuXLqhVqxZq1aqF3r17u90XNfm1x5vxqcmvPV999RXat2+PyMhIhISEoHXr1vjss89ctqnJ948341OT7x+pFStWQKfTYciQIS7La/L9I6U2PjX5/lm6dKnbtQcGBrpsU53uHyIiIiIiqn4YnioHY8eOxVtvvYVRo0bhnXfegcFgwMCBA5Genu7v0iqFq1evYtasWTh06BBatWrl73Iqlddffx3//e9/0atXL7zzzjsYP348fvnlF7Rt2xb79+/3d3l+d+bMGVy/fh1jxozBO++8g6lTpwIA7rnnHnzwwQd+rq7yOX/+PObMmYOQkBB/l1KpTJo0CZ999pnLo1GjRv4uq1JYt24dOnXqhMuXL2Pq1Kl45513cPfdd+P8+fP+Ls3vJkyY4HbffPrppwgODsYtt9yChIQEf5foN+fOnUOHDh2wZcsWPP7445g/fz46deqE6dOn48EHH/R3eX63a9cu3HnnnTh58iSmT5+OadOm4dixY+jWrRuOHDni7/IqnLfvA8+fP4+uXbvi+PHjmDNnDp599ln88MMP6NOnDywWS7nUUq9ePcydOxc7d+7Ejh070LNnTwwePBgHDhxQ3P7333/Hgw8+iIcffhi7d+/GkCFDMGTIEJf3aP/85z+xYMECvP/++9i6dStCQkLQr18/FBcXl0vNFelmjA8A9O/fHxkZGc7H559/XhGXU+58HZ/CwkI0aNAAc+fORWxsrOI2//nPfzB58mRMnz4du3btQqtWrdCvXz9cvnz5Zl5KubsZYwMAzZs3d7l3quq/r30dn7S0NDz44IPYuHEjNm/ejMTERPTt29cluF2TX3u8GR+g5r72REVF4R//+Ac2b96MvXv3Yty4cRg3bhzWrl3r3KYm3z/ejA9Qc+8f0enTp/Hss8+iS5cubutq8v0j0hofoGbfP+Hh4S7XfubMGZf11en+ISIiIiKiakigMtm6dasAQHjjjTecy4qKioSGDRsKnTp18mNllUdxcbGQkZEhCIIgbN++XQAgLFmyxL9FVRK//fabUFJS4rLs6NGjQkBAgDBq1Cg/VVW52Ww2oVWrVkKTJk38XUqlM2LECKFnz55Ct27dhObNm/u7HL/buHGjAEBYuXKlv0uplHJzc4WYmBjh3nvvFex2u7/LqRJ+/fVXAYDw6quv+rsUv3r11VcFAML+/ftdlo8ePVoAIGRnZ/upssph4MCBQq1atYSrV686l128eFEIDQ0V7rvvPj9W5h/evg987LHHhKCgIOHMmTPOZT/99JMAQFi0aNFNq69WrVrCRx99pLju/vvvF+666y6XZbfffrswYcIEQRAEweFwCLGxsS7/DsjJyRECAgKEzz///KbVXJHKMj6CIAhjxowRBg8efDNL9Cut8ZFKSkoS3n77bbflHTp0EP7+9787v7fb7UJ8fLzw2muvlWeZflHWsZk+fbrQqlWr8i+skvB2fAThxr9/wsLChE8++UQQBL72yMnHRxD42iPXpk0bYcqUKYIg8P5RIh0fQeD9Y7PZhM6dOwsfffSR21jw/tEeH0Go2ffPkiVLhIiICNV9a8L9Q0REREREVRs7T5XRl19+CYPBgPHjxzuXBQYG4uGHH8bmzZtx7tw5P1ZXOQQEBGj+RnFN1rlzZ5jNZpdlqampaN68OQ4dOuSnqio3g8GAxMRE5OTk+LuUSuWXX37Bl19+qTolTE13/fp12Gw2f5dRqSxfvhyZmZl49dVXodfrUVBQAIfD4e+yKrXly5dDp9Nh5MiR/i7Fr/Ly8gAAMTExLsvj4uKg1+vd/l6raX799Vf07t0btWvXdi6Li4tDt27d8P333yM/P9+P1VU8b98H/ve//8Xdd9+N+vXrO5f17t0bjRs3xhdffFHuddntdqxYsQIFBQXo1KmT4jabN29G7969XZb169cPmzdvBgCcOnUKly5dctkmIiICt99+u3Obqqo8xkeUlpaGunXrokmTJnjssceQlZV10+quKN6MjycWiwU7d+50GUO9Xo/evXtX6funPMZGdOzYMcTHx6NBgwYYNWoUzp49W05V+k9pxqewsBBWqxVRUVEA+NojJx8fEV97bkyPtWHDBhw5cgRdu3YFwPtHSml8RDX5/pk1axbq1q2Lhx9+2G0d7x/t8RHV5PsnPz8fSUlJSExMdOtSVZ3vHyIiIiIiqh6M/i6gqtu9ezcaN26M8PBwl+UdOnQAAOzZsweJiYn+KI2qKEEQkJmZiebNm/u7lEqjoKAARUVFyM3Nxbfffosff/wRI0aM8HdZlYbdbscTTzyBv/3tb2jRooW/y6l0xo0bh/z8fBgMBnTp0gVvvPEG2rdv7++y/G79+vUIDw/HhQsXMGTIEBw9ehQhISF46KGH8PbbbyMwMNDfJVYqVqsVX3zxBTp37ozk5GR/l+NX3bt3x+uvv46HH34YM2fORO3atfH777/jvffew6RJk2r81KElJSUICgpyWx4cHAyLxYL9+/ejY8eOfqis8rpw4QIuX76s+NrcoUMHrF69utzOtW/fPnTq1AnFxcUIDQ3F119/jVtuuUVx20uXLrmFBGNiYnDp0iXnenGZ2jZVTXmOD3Bj2pr77rsPKSkpOHHiBF5++WUMGDAAmzdvhsFguKnXcjP4Mj6eXL16FXa7XXEMDx8+XB7lVqjyHBsAuP3227F06VI0adIEGRkZmDlzJrp06YL9+/cjLCysHCuvGGUZnxdeeAHx8fHOD5tr+muPnHx8AL725ObmIiEhASUlJTAYDFi4cCH69OkDgPcPoD0+QM2+f9LT07F48WLs2bNHcX1Nv388jQ9Qs++fJk2a4OOPP0bLli2Rm5uLefPmoXPnzjhw4ADq1atXLe8fIiIiIiKqXhieKqOMjAzExcW5LReXXbx4saJLoipu2bJluHDhAmbNmuXvUiqNZ555BosWLQJw4zfy77vvPrz77rt+rqryeP/993HmzBmsX7/e36VUKmazGUOHDsXAgQMRHR2NgwcPYt68eejSpQt+//13tGnTxt8l+tWxY8dgs9kwePBgPPzww3jttdeQlpaGf/3rX8jJycHnn3/u7xIrlbVr1yIrKwujRo3ydyl+179/f8yePRtz5szBt99+61z+j3/8A6+88oofK6scmjRpgi1btsButzs/ILFYLNi6dSuAG0EhcpWRkQEAqu+ps7OzUVJSgoCAgDKfq0mTJtizZw9yc3Px5ZdfYsyYMdi0aVOZQh7VSXmPzwMPPOD8ukWLFmjZsiUaNmyItLQ09OrVq7zKrjC8f9SV99gMGDDA+XXLli1x++23IykpCV988YVmt4/KqrTjM3fuXKxYsQJpaWnVOthe3uNT0197wsLCsGfPHuTn52PDhg2YPHkyGjRogO7du1ds4RWkvMenpt4/169fx0MPPYQPP/wQ0dHRfqq24pX3+NTU+wcAOnXq5NKVqnPnzmjWrBkWLVqE2bNnV2TZREREREREpcLwVBkVFRUpfpAj/sddUVFRRZdEVdjhw4fx97//HZ06dcKYMWP8XU6l8dRTT2HYsGG4ePEivvjiC9jtdlgsFn+XVSlkZWVh2rRpmDp1KurUqePvciqVzp07o3Pnzs7v77nnHgwbNgwtW7bESy+9hDVr1vixOv/Lz89HYWEhHn30USxYsAAAcN9998FisWDRokWYNWsWUlNT/Vxl5bF8+XKYTCbcf//9/i6lUkhOTkbXrl0xdOhQ1K5dGz/88APmzJmD2NhYPP744/4uz68mTpyIxx57DA8//DCef/55OBwOvPLKK86AEN8buhPHxNN76vIIT5nNZjRq1AgA0K5dO2zfvh3vvPOOM6QtFRsbi8zMTJdlmZmZzmkIxT8zMzNdgl+ZmZlo3bp1mWv1h/IcHyUNGjRAdHQ0jh8/XiU/QPRlfDyJjo6GwWDweQwrq/IcGyWRkZFo3Lgxjh8/Xi7Hq2ilGZ958+Zh7ty5WL9+PVq2bOlcXtNfe0Rq46Okpr326PV65/atW7fGoUOH8Nprr6F79+68f6A9Pkpqyv1z4sQJnD59GoMGDXIuE6d1NxqNOHLkSI2+f7wZn4YNG7odv6bcP0pMJhPatGnj/Lu7Ot4/RERERERUvej9XUBVFxQUhJKSErflxcXFzvVE3rh06RLuuusuRERE4Msvv6yS7bxvlqZNm6J3794YPXo0vv/+e+Tn52PQoEEQBMHfpfndlClTEBUVhSeeeMLfpVQJjRo1wuDBg7Fx40bY7XZ/l+NX4t9PDz74oMvykSNHAgA2b95c4TVVVvn5+Vi1ahX69euH2rVr+7scv1uxYgXGjx+Pjz76CI888gjuu+8+LF68GGPGjMELL7yArKwsf5foV48++ihefvllLF++HM2bN0eLFi1w4sQJPP/88wCA0NBQP1dY+YivR/54T+1wOBTPC9z47fkNGza4LPvpp5+cv1GfkpKC2NhYl23y8vKwdetWl9+6r8rKMj5Kzp8/j6ysLMUuY1WR1vh4Yjab0a5dO5cxdDgc2LBhQ7W4f8oyNkry8/Nx4sSJGnPv/POf/8Ts2bOxZs0atylNa/prD6A9Pkpq+muPdHveP75vX1Pun6ZNm2Lfvn3Ys2eP83HPPfegR48e2LNnDxITE2v0/ePN+CipKfePErvdjn379jmvvSbcP0REREREVLWx81QZxcXFKU6/InYXiI+Pr+iSqArKzc3FgAEDkJOTg19//ZX3jQfDhg3DhAkTcPToUTRp0sTf5fjNsWPH8MEHH2D+/PkuU4QWFxfDarXi9OnTCA8PR1RUlB+rrHwSExNhsVhQUFCA8PBwf5fjN/Hx8Thw4ABiYmJcltetWxcAcO3aNX+UVSl98803KCws5JR9f1q4cCHatGmDevXquSy/5557sHTpUuzevRu9e/f2U3WVw6uvvopnn30WBw4cQEREBFq0aIGXX34ZANC4cWM/V1f5iB+oiO+fpTIyMhAVFVUuXadeeuklDBgwAPXr18f169exfPlypKWlYe3atQCA0aNHIyEhAa+99hoA4Mknn0S3bt3w5ptv4q677sKKFSuwY8cOfPDBBwAAnU6Hp556Cq+88gpSU1ORkpKCqVOnIj4+HkOGDClzvRWtvMcnPz8fM2fOxNChQxEbG+sMETZq1Aj9+vXz23WWlq/jY7FYcPDgQefXFy5cwJ49exAaGurs4DB58mSMGTMG7du3R4cOHTB//nwUFBRg3Lhx/rnIUroZY/Pss89i0KBBSEpKwsWLFzF9+nQYDAa30HdV4Ov4vP7665g2bRqWL1+O5ORkXLp0CcCN8G1oaGiNf+3xND41/bXntddeQ/v27dGwYUOUlJRg9erV+Oyzz/Dee+8B4N9dnsanJt8/gYGBuPXWW132j4yMBACX5TX1/vFmfGry/QMAs2bNQseOHdGoUSPk5OTgjTfewJkzZ/C3v/0NQPV7/SEiIiIiouqH4akyat26NTZu3Ii8vDyXD+G3bt3qXE+kpbi4GIMGDcLRo0exfv163HLLLf4uqdITp/fJzc31cyX+deHCBTgcDkyaNAmTJk1yW5+SkoInn3wS8+fPr/jiKrGTJ08iMDCwxnd/adeuHX766SdcuHDBJYQoBvE4DeT/LFu2DKGhobjnnnv8XUqlkJmZiVq1arktt1qtAACbzVbRJVVKtWrVwp133un8fv369ahXrx6aNm3qx6oqp4SEBNSpUwc7duxwW7dt27Zyez99+fJljB49GhkZGYiIiEDLli2xdu1a9OnTBwBw9uxZ6PX/a8zbuXNnLF++HFOmTMHLL7+M1NRUfPPNNy4fnD3//PMoKCjA+PHjkZOTgzvvvBNr1qxxTjdYlZT3+BgMBuzduxeffPIJcnJyEB8fj759+2L27NnlEoaraL6Oz8WLF9GmTRvn9/PmzcO8efPQrVs3pKWlAQBGjBiBK1euYNq0abh06RJat26NNWvWuAWbK7ubMTbnz5/Hgw8+iKysLNSpUwd33nkntmzZUiXfn/g6Pu+99x4sFguGDRvmcpzp06djxowZAGr2a4+n8anprz0FBQWYOHEizp8/j6CgIDRt2hT/93//hxEjRji3qcn3j6fxqen3jzdq8v3jSU2/f65du4ZHHnkEly5dQq1atdCuXTv8/vvvLv/PWZ3uHyIiIiIiqn50Aue9KpOtW7eiY8eOeOONN/Dss88CuDHlyK233oratWtjy5Ytfq6wctmxYwduu+02LFmyBGPHjvV3OX5nt9tx3333YfXq1Vi1ahUGDhzo75IqlcuXLzu74IisVis6duyIQ4cO4fLlyzU6AHP16lWkp6e7LZ8yZQquX7+Od955Bw0bNkSLFi38UJ3/Xblyxe0Dtj/++AO33XYbBgwYgFWrVvmpssph9+7daNu2LUaOHIlly5Y5l48cORIrV67EmTNn2AUPN+6j+Ph4PPjgg/j000/9XU6lMGjQIKxbtw779u1z6aJ077334ttvv8W5c+d478j85z//wQMPPIB58+bhmWee8Xc5fqP1PvCxxx7DJ598giNHjjinPdmwYQN69+6N9957D48++qgfKiYiIiIiIiIiIiIiopqAnafK6Pbbb8fw4cPx0ksv4fLly2jUqBE++eQTnD59GosXL/Z3eZXGu+++i5ycHGdHk++++w7nz58HADzxxBOIiIjwZ3l+88wzz+Dbb7/FoEGDkJ2djf/7v/9zWf+Xv/zFT5VVDhMmTEBeXh66du2KhIQEXLp0CcuWLcPhw4fx5ptv1ujgFABER0crtjYXO03V9LbnI0aMQFBQEDp37oy6devi4MGD+OCDDxAcHIy5c+f6uzy/a9OmDf7617/i448/hs1mc3Z7WLlyJV566SWGX/70n//8BzabjVP2STz33HP48ccf0aVLFzz++OOoXbs2vv/+e/z444/429/+VuPvnV9++QWzZs1C3759nUH6JUuWoH///njyySf9XZ5fePM+8OWXX8bKlSvRo0cPPPnkk8jPz8cbb7yBFi1aVLkpzIiIiIiIiIiIiIiIqGph56lyUFxcjKlTp+L//u//cO3aNbRs2RKzZ8+ukvPZ3yzJyck4c+aM4rpTp04hOTm5YguqJLp3745Nmzaprq/pP54rVqzA4sWLsW/fPmRlZSEsLAzt2rXDE088wemzNHTv3h1Xr17F/v37/V2KXy1YsADLli3D8ePHkZeXhzp16qBXr16YPn06GjVq5O/yKgWr1Yo5c+ZgyZIluHjxIpKSkvD3v/8dTz31lL9LqzQ6deqEkydP4uLFizAYDP4up9LYtm0bZsyYgd27dyMrKwspKSkYM2YMnn/+eRiNNTubf+LECUycOBG7du3C9evXnWMzefJkmM1mf5fnF96+Dzxw4AAmT56M9PR0mM1m3HXXXXjzzTer3BRmRERERERERERERERUtTA8RURERERERERERERERERERERENZLe3wUQERERERERERERERERERERERH5A8NTRERERERERERERERERERERERUIzE8RURERERERERERERERERERERENRLDU0REREREREREREREREREREREVCMxPEVERERERERERERERERERERERDUSw1NERERERERERERERERERERERFQjMTxFRERERERERFTFLF26FDqdDkuXLvV3KT7JyspCVFQUJk6c6O9SKqWxY8dCp9Ph9OnTPu8rCAJatWqFLl26lH9hRERERERERETVGMNTRERERERERER+pNPpfHpUtcCU1PTp01FUVIQpU6b4u5RqR6fTYdasWUhPT8eXX37p73KIiIiIiIiIiKoMo78LICIiIiIiIiKqyaZPn+62bP78+cjNzcWTTz6JyMhIl3WtW7dGSkoKOnbsiLi4uAqqsuzOnj2LRYsWYdy4cYiPj/d3OdXS4MGD0axZM/zjH//A0KFDodPp/F0SEREREREREVGlx/AUEREREREREZEfzZgxw23Z0qVLkZubi6eeegrJycmK+0VERNzcwsrZokWLYLPZMHbsWH+XUq2NGTMGL774IjZs2IDevXv7uxwiIiIiIiIiokqP0/YREdUQS5curZJTfGRlZSEqKgoTJ070dymV0tixY6HT6XD69Gmf9xUEAa1atUKXLl3KvzAiIiIiuqnU3t8nJycjOTkZ+fn5ePrpp5GYmIigoCC0bt0a33zzDQDAZrPh1VdfRWpqKgIDA9GwYUO8++67qudau3YtBg4ciOjoaAQEBKBhw4Z47rnnkJOT43W9giBgyZIlSExMROfOnd3WZ2Zm4tlnn0WTJk0QEhKCyMhINGnSBGPHjsXJkyfLXNP58+cxadIkpKamIigoCFFRUejQoQNmz57ttu3OnTsxdOhQ1K1bFwEBAUhKSsLEiRORkZHhtq30/fiiRYvQokULBAYGIiYmBuPHj0dubq5iPevXr0eXLl0QEhKCqKgoDBkyBIcPH1Ydv2+//Ra9evVCXFwcAgICEB8fj27dumHhwoVu2z7wwAMAgMWLF6sej4iIiIiIiIiI/oedp4iIqiBfp15YsmTJTark5ps+fTqKioowZcoUf5dS7eh0OsyaNQtDhgzBl19+iWHDhvm7JCIiIiIqB1arFX369EF2djYGDx4Mi8WCzz//HEOHDsW6deuwcOFCbN26FQMGDEBAQABWrlyJJ554AnXq1MGIESNcjjVz5kzMmDEDUVFRuPvuu1G3bl3s3bsX8+bNw+rVq7F582aEh4d7rOnAgQPIyMhwBnukCgsLcccdd+DEiRPo06cPBg0aBEEQcObMGaxatQrDhg1DgwYNSl3Tjh070K9fP2RnZ6Nr16647777UFhYiIMHD2LGjBmYOnWqc9vvv/8eQ4cOhSAIGDZsGJKSkrBz50689957WLVqFdLT05GSkuJ2Dc8//zzWrl2LQYMGoW/fvti4cSM+/PBDHD9+HD///LPLtl9++SVGjBgBs9mMESNGIC4uDunp6ejUqRNatmzpduwPPvgAEyZMQGxsLAYNGoTo6GhcvnwZe/fuxZIlS9x+0SQpKQkJCQlYv349BEHg1H1ERERERERERB4wPEVEVAVNnz7dbdn8+fORm5uLJ598EpGRkS7rWrdujZSUFHTs2BFxcXEVVGXZnT17FosWLcK4ceMQHx/v73KqpcGDB6NZs2b4xz/+gaFDh/KDFSIiIqJq4OLFi2jbti3S0tIQEBAAAHjooYfQtWtXDB8+HA0bNsT+/fud/26YPHkymjZtirlz57qEpzZu3IgZM2agU6dOWL16tcu/M5YuXYpx48Zh+vTpePvttz3WlJ6eDgBo376927oNGzbgxIkTeOqpp9yOZbFYUFJSUuqaLBYLhg8fjuzsbCxbtgwjR450Of758+edX+fn52PMmDGw2WxIS0tz6dD6+uuv48UXX8SECROwbt06t2vYsmUL9u3bh/r16wO40d2rZ8+e2LhxI7Zt24YOHTo4zzFhwgTo9Xr8+uuvLuPx9NNPY/78+W7HXrRoEcxmM/744w/UrVvXZd3Vq1fdtgeA2267Dd988w0OHTqEW265RXEbIiIiIiIiIiK6geEpIqIqaMaMGW7Lli5ditzcXDz11FNITk5W3C8iIuLmFlbOFi1aBJvNhrFjx/q7lGptzJgxePHFF7Fhwwb07t3b3+UQERERUTmYP3++MzgFAF26dEFKSgpOnTqF119/3SV01KBBA9xxxx1IT0+H3W6HwWAAACxYsAAA8OGHH7r9gsbYsWPxzjvvYNmyZV6Fp86ePQsAmr/MERQU5LbMbDbDbDY7v/e1pu+++w6nT5/GPffc4xacAoB69eo5v161ahWys7Px4IMPuk1t/cwzz+D999/HTz/9hLNnzzpDUqJp06a5LDMajRg3bhx+/fVXl/CUeI7Ro0e7BclmzJiBJUuWKE71ZzQaYTKZ3JZHR0e7LQOA2NhYADfGneEpIiIiIiIiIiJten8XQEREFWPp0qXQ6XRYunSpy/Lk5GQkJycjPz8fTz/9NBITExEUFITWrVvjm2++AXDjt6ZfffVVpKamIjAwEA0bNsS7776req61a9di4MCBiI6ORkBAABo2bIjnnnsOOTk5XtcrCAKWLFmCxMREdO7c2W19ZmYmnn32WTRp0gQhISGIjIxEkyZNMHbsWJw8ebLMNZ0/fx6TJk1CamoqgoKCEBUVhQ4dOmD27Nlu2+7cuRNDhw5F3bp1ERAQgKSkJEycOBEZGRlu244dOxY6nQ6nT5/GokWL0KJFCwQGBiImJgbjx49X/KAEANavX48uXbogJCQEUVFRGDJkCA4fPqw6ft9++y169eqFuLg4BAQEID4+Ht26dcPChQvdthWnTlm8eLHq8YiIiIio6oiMjETDhg3dlovdXNu1a+e2LiEhATabDZcuXXIu27x5M0wmE1auXIkZM2a4PSwWC65cuYKsrCyPNYnb1KpVy21dt27dkJCQgLlz56J///5YsGABdu7cCbvd7ratrzVt2bIFADBgwACPNe7atQsA0LNnT7d1RqMRXbt2BQDs3r3bbb1SR63ExEQAwLVr19zO0a1bN7ftIyIi0Lp1a7flo0aNQmFhIW655RY8/fTT+Oabb3DlyhXNa4mKigKg3pmKiIiIiIiIiIj+h52niIgIVqsVffr0QXZ2NgYPHgyLxYLPP/8cQ4cOxbp167Bw4UJs3boVAwYMQEBAAFauXIknnngCderUcZnWAwBmzpyJGTNmICoqCnfffTfq1q2LvXv3Yt68eVi9ejU2b96M8PBwjzUdOHAAGRkZzmCPVGFhIe644w6cOHECffr0waBBgyAIAs6cOYNVq1Zh2LBhaNCgQalr2rFjB/r164fs7Gx07doV9913HwoLC3Hw4EHMmDEDU6dOdW77/fffY+jQoRAEAcOGDUNSUhJ27tyJ9957D6tWrUJ6ejpSUlLcruH555/H2rVrMWjQIPTt2xcbN27Ehx9+iOPHj+Pnn3922fbLL7/EiBEjYDabMWLECMTFxSE9PR2dOnVCy5Yt3Y79wQcfYMKECYiNjcWgQYMQHR2Ny5cvY+/evViyZAkmTpzosn1SUhISEhKwfv16CILAqfuIiIiIqji1jrNGo1F1vbjOarU6l2VlZcFms2HmzJma58vPz0ft2rU1txG7ShUXF7utCw8Px5YtWzB9+nR8++23WLt2LYAbXZUmTpyIKVOmOLsu+VqT+MsSCQkJmtsDcP4ig1p3LHG50i9gyLtgAf8bU2kITDxHTEyM4jnEjlFSkydPRnR0NBYuXIgFCxZg/vz50Ol06NatG9544w3F4FZRUREA5W5eRERERERERETkiuEpIiLCxYsX0bZtW6SlpTmn9njooYfQtWtXDB8+HA0bNsT+/fudHwhMnjwZTZs2xdy5c13CUxs3bsSMGTPQqVMnrF692uUDhKVLl2LcuHGYPn26V9N6pKenA1D+De4NGzbgxIkTeOqpp9yOZbFYUFJSUuqaLBYLhg8fjuzsbCxbtsxtao/z5887v87Pz8eYMWNgs9mQlpbmMrXH66+/jhdffBETJkzAunXr3K5hy5Yt2Ldvn3NqD5vNhp49e2Ljxo0u03rk5+djwoQJ0Ov1+PXXX13G4+mnn8b8+fPdjr1o0SKYzWb88ccfqFu3rss6td88v+222/DNN9/g0KFDnNaDiIiIiADcCFk5HA5kZ2eX+Vji+1K1LlX16tXD4sWLIQgCDh48iJ9//hn//ve/MWvWLDgcDmcHWF9rEt//X7hwweO2YqhM2n1LSuwsW5bp0MV9MzMzFdernXv06NEYPXo0cnJy8Pvvv+Prr7/Gxx9/jH79+uHw4cOoU6eOy/biOMv/PUBERERERERERO44bR8REQEA5s+f7wxOAUCXLl2QkpKCa9eu4fXXX3cJHTVo0AB33HEH9u/f7/Jb1AsWLAAAfPjhh26/eT127Fi0bt0ay5Yt86qes2fPAlD/rW9A+beozWYzwsLCSl3Td999h9OnT+Oee+5xC04BNz7UEa1atQrZ2dkYMWKES3AKAJ555hkkJyfjp59+cl6L1LRp05zBKeDGb6WPGzcOALBt2za3c4wcOdItSDZjxgzNrgLib+dLRUdHK24v/oa7Uq1EREREVDN17NgR165dw4EDB8p8LLFjqtbU0wCg0+nQvHlzPPHEE/jpp58AwDmdeGlq6tixIwDgxx9/9LhtmzZtAABpaWlu62w2G3799VcAQNu2bb06txJx302bNrmty83NxZ49ezT3j4yMxMCBA/Hhhx9i7NixyM7Oxi+//OK23eHDh6HX69GiRYtS10pEREREREREVFMwPEVERIiMjETDhg3dlsfHxwMA2rVr57YuISEBNpvN5TejN2/eDJPJhJUrV2LGjBluD4vFgitXrqj+trmUuE2tWrXc1nXr1g0JCQmYO3cu+vfvjwULFmDnzp0uQa7S1rRlyxYAwIABAzzWuGvXLgBAz5493dYZjUZ07doVALB792639UodtRITEwEA165dcztHt27d3LaPiIhA69at3ZaPGjUKhYWFuOWWW/D000/jm2++wZUrVzSvJSoqCoB6ZyoiIiIiqnmefvppAMAjjzyCixcvuq0vKChwvn/2pEuXLjAYDIrbHzhwQLETk7gsODi41DUNGjQIycnJ+Pbbb/H555+7bS/tLDtkyBBERUXh888/d6tz/vz5OHXqFHr37u3ySxC+Gjx4MGrVqoXly5djx44dLutmzJjhnNZPauPGjRAEwW355cuXAbiODwCUlJRgz549aNOmjeJ0gkRERERERERE5IrT9hERkWb3IrX14jqr1epclpWVBZvNhpkzZ2qeLz8/H7Vr19bcRuwqVVxc7LYuPDwcW7ZswfTp0/Htt99i7dq1AG50VZo4cSKmTJni7Lrka005OTkAboTDPBE/2FDrjiUuF48ppfQhhjim0hCYeI6YmBjFc4gdo6QmT56M6OhoLFy4EAsWLMD8+fOh0+nQrVs3vPHGG4rBraKiIgDK3byIiIiIqGbq1asX5s6di5deegmpqakYOHAgUlJSkJ+fjzNnzmDTpk248847sWbNGo/HioiIQK9evZCWloZr1665/JLETz/9hOeeew6dOnVC48aNUbduXZw/fx6rVq2CXq/Hc889V+qazGYzVq5cib59+2LkyJFYtGgROnbsiOLiYhw6dAgbNmyAzWYDAISGhuLjjz/G8OHD0a1bNwwfPhz169fHzp07sW7dOsTGxmLRokVlGtPQ0FB88MEHzu61I0aMQFxcHNLT07F//3507drVrZPUvffei9DQUHTs2BHJyckQBAG//vortm/fjnbt2qF3794u26elpcFisWDo0KFlqpWIiIiIiIiIqKZgeIqIiMpNREQEHA4HsrOzy3ysunXrAoBql6p69eph8eLFEAQBBw8exM8//4x///vfmDVrFhwOB2bPnl2qmsRQ04ULFzxuK4bKpN23pDIyMly2Kw1xX6XfxNc69+jRozF69Gjk5OTg999/x9dff42PP/4Y/fr1w+HDh1GnTh2X7cVxFsediIiIiAgAXnjhBdxxxx1YsGAB0tPTsWrVKkRERCAhIQHjx49XnOpazcSJE7Fu3TqsWLECjz32mHN5v379cPbsWfzyyy9YtWoV8vLyEBcXhz59+mDy5Mno3LlzmWpq37499uzZg7lz5+LHH3/E77//jrCwMDRq1AizZs1y2Xbw4MH47bffMGfOHKxduxa5ubmIjY3Fo48+iqlTpzq785bFsGHDsGbNGsycORNffPEFAgIC0LVrV2zevBlz5851C0/NnTsXa9euxa5du7B69WoEBgYiKSkJr7/+Oh577DG36bo/+eQTmM1mPPzww2WulYiIiIiIiIioJmB4ioiIyk3Hjh3xww8/4MCBA2jevHmZjtWyZUsAwOHDhzW30+l0aN68OZo3b44hQ4agfv36+Oabb5zhKV9r6tixIwDgxx9/xKOPPqq5bZs2bQDc+M1u+QcTNpsNv/76KwCgbdu2Hs+rRtx306ZN+Otf/+qyLjc3F3v27NHcPzIyEgMHDsTAgQPhcDjw8ccf45dffnH7LfTDhw9Dr9ejRYsWpa6ViIiIiMrP6dOnNdePHTsWY8eO9Wm/tLQ01XVLly7F0qVLFdfdeeeduPPOOzXr8cbdd9+NZs2aYdGiRXj00Ueh0+kAAM2aNcNbb73l07F8ral+/fpYuHChV9vedttt+Prrr73aVmvcunfvrjjdHgD06dMHffr08ep4jz76qMd/m4guX76Mb775Bg899BB/MYKIiIiIiIiIyEt6fxdARETVx9NPPw0AeOSRR3Dx4kW39QUFBdiyZYtXx+rSpQsMBoPi9gcOHFDsxCQuCw4OLnVNgwYNQnJyMr799lt8/vnnbtufP3/e+fWQIUMQFRWFzz//3K3O+fPn49SpU+jduzfq16/v6XJVDR48GLVq1cLy5cuxY8cOl3UzZsxwTusntXHjRsUPaS5fvgzAdXwAoKSkBHv27EGbNm0UpxMkIiIiIioPBoMB8+bNwx9//IGvvvrK3+VUS3PmzIHBYHD+MgkREREREREREXnGzlNERFRuevXqhblz5+Kll15CamoqBg4ciJSUFOTn5+PMmTPYtGkT7rzzTqxZs8bjsSIiItCrVy+kpaXh2rVrqFWrlnPdTz/9hOeeew6dOnVC48aNUbduXZw/fx6rVq2CXq/Hc889V+qazGYzVq5cib59+2LkyJFYtGgROnbsiOLiYhw6dAgbNmyAzWYDAISGhuLjjz/G8OHD0a1bNwwfPhz169fHzp07sW7dOsTGxmLRokVlGtPQ0FB88MEHGDFiBLp06YIRI0YgLi4O6enp2L9/P7p27eo2rce9996L0NBQdOzYEcnJyRAEAb/++iu2b9+Odu3aoXfv3i7bp6WlwWKxuHWjIiIiIiIqbwMHDsQ777yD4uJif5dS7QiCgLi4OHz22WeIi4vzdzlERERERERERFUGw1NERFSuXnjhBdxxxx1YsGAB0tPTsWrVKkRERCAhIQHjx4/HyJEjvT7WxIkTsW7dOqxYsQKPPfaYc3m/fv1w9uxZ/PLLL1i1ahXy8vIQFxeHPn36YPLkyejcuXOZamrfvj327NmDuXPn4scff8Tvv/+OsLAwNGrUCLNmzXLZdvDgwfjtt98wZ84crF27Frm5uYiNjcWjjz6KqVOnIj4+vhSj6GrYsGFYs2YNZs6ciS+++AIBAQHo2rUrNm/ejLlz57qFp+bOnYu1a9di165dWL16NQIDA5GUlITXX38djz32GEwmk8v2n3zyCcxms9vUg0REREREN8OkSZP8XUK1pNPp8MILL/i7DCIiIiIiIiKiKkcnKM3rQ0REVAnY7Xa0aNECZrMZu3fvhk6n83dJ1c7ly5eRnJyMkSNH4qOPPvJ3OUREREREREREREREREREFUrv7wKIiIjUGAwGzJs3D3/88Qe++uorf5dTLc2ZMwcGgwGzZ8/2dylERERERERERERERERERBWO4SkiIqrUBg4ciHfeeQfFxcX+LqXaEQQBcXFx+OyzzxAXF+fvcoiIiIiIiIiIiIiIiIiIKhyn7SMiIiIiIiIiIiIiIiIiIiIiohqJnaeIiIiIiIiIiIiIiIiIiIiIiKhGYniKiIiIiIiIiIiIiIiIiIiIiIhqJIaniIiIiIiIiIiIiIiIiIiIiIioRmJ4ioiIiIiIiIiIiIiIiIiIiIiIaiSGp4iIiIiIiIiIiIiIiIiIiIiIqEZieIqIiIiIiIiIiIiIiIiIiIiIiGokhqeIiIiIiIiIiIiIiIiIiIiIiKhGYniKiIiIiIiIiIiIiIiIiIiIiIhqJIaniIiIiIiIiIiIiIiIiIiIiIioRvp/Y6JE4639cqIAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAIACAYAAAB0C+PpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmYJUdxLoy/dfZeprunp2fp2fd9pNFoGe0rIATILMbGGMxqrsHGP/uCweDrzxKLLx++vnzAY7yBETY8GAwCGRCIRUhIoH20a/Z97+npnt67z1q/P0Zx5j3RkVV1eno0I6nieeqpc6qyMiMjIyPejMzK8nzf9xFTTDHFFFNMMcUUUyglzjYDMcUUU0wxxRRTTC8WioFTTDHFFFNMMcUUU0SKgVNMMcUUU0wxxRRTRIqBU0wxxRRTTDHFFFNEioFTTDHFFFNMMcUUU0SKgVNMMcUUU0wxxRRTRIqBU0wxxRRTTDHFFFNEioFTTDHFFFNMMcUUU0SKgVNMMcUUU0wxxRRTRIqBU0wxxRQT0bve9S54noe9e/eebVZiiimmc5Bi4BQTtm7dij/90z/F2rVr0draikwmg9mzZ+O1r30t/u3f/g35fL6a9t/+7d/geR5uuukmZ36vfe1r4Xke/vEf/7F67d5774XneTVHOp3G7Nmz8aY3vQn33XffpNVn4cKFLxvH53kerr322hclDwJQ+GhsbMTq1avx4Q9/GN3d3ZPPbEwxxRTTaVLqbDMQ09mlT37yk/jEJz6BSqWCyy67DO985zvR3NyMrq4u3HvvvfjDP/xD/NM//RMee+wxAMB73/te/OAHP8APfvADfOlLX8Kf/Mmf1OT3T//0T/jxj3+Mm266CX/8x388rrwFCxbgXe96FwBgZGQEmzZtwve//33ccccd+Pa3v43f+Z3fOeN1juncote//vVYv349AKCrqws//vGP8bnPfQ633347Nm3ahGnTpr2g/HzmM5/Bxz72McyZM+cFLTemmGJ6kZAf08uW/vZv/9YH4M+bN89/6KGHzDQ//OEP/WuvvbbmWldXlz99+nS/sbHR37p1a/X6tm3b/MbGRn/atGn+kSNHap655557fAD+NddcM66Mz3zmMz4Af+HChadfKd/3FyxY4APw9+zZMyn5ncvkkumLgYd3vvOdPgD/tttuq7k+Ojrqn3/++T4A/9Zbb50cJmOKKaaYJoniqbqXKe3duxe33nor0uk0fvzjH2Pjxo1mute97nW46667aq7NmDEDX/7ylzEyMoK3v/3tKJVKKJVKePvb346RkRH867/+K2bNmhWZl/e+971Vno4fPz7xSoWQTCl1dXXhPe95D2bOnImmpiZcfvnluP/++wEAw8PD+MhHPoIFCxYgm81izZo1+M53vjMur6997WvwPA9f+9rXcOedd+Lyyy9HU1MTpk6dije/+c3YsWOHycORI0fwJ3/yJ1i4cCEymQymT5+ON73pTdi0aVNgGXfddReuvfZatLa2Vq95ngcA+NWvflUz3XXrrbfW5PHbv/3bWLx4MRoaGtDS0oIrrrgC3/jGN0z+rr32Wnieh1KphP/9v/83li1bhmw2i3nz5uEv//IvUSgUxvEXxkO9lMvl8La3vQ0A8Oijj46739vbi49//ONYtWoVGhoa0NraihtuuAE/+9nPzPz6+/vx53/+55g7dy5yuRxWrlyJz33uc9i9ezc8z6tGQIWC1jj913/9F66++mq0traioaEB69atw2c+85ma6WyhhQsXYuHChVWdmj9/PrLZLJYuXYrPfvaz8H1/3DM/+MEPcMMNN6CzsxPZbBazZ8/GNddcUzPtHVNMMZ1diqfqXqZ02223oVgs4vd+7/ewdu3awLTZbHbctde//vV4z3veg69+9av45Cc/CeCkk3vXu96FN73pTRPmK51O1/x/17vehX//93/HbbfdNs7BTYT6+vpwxRVXYMqUKXjrW9+K3t5efOtb38KNN96IBx98EH/0R3+E3t5evO51r0OxWMR//ud/4i1veQvmzZuHSy+9dFx+3/ve9/CTn/wEb3zjG3HttdfiySefxO2334577rkHDzzwAFasWFFNu2fPHlx55ZU4fPgwrr/+erz1rW/FgQMH8J3vfAd33nknbr/9drzuda8bV8Z3v/td3HXXXbjpppvw/ve/H/v27cP69etxyy234BOf+ETN9CeAmvVGH/jAB7BmzRpcffXV6OzsRE9PD3784x/jD/7gD7Bt2zZ86lOfMuX0+7//+7j//vtx0003oaWlBT/+8Y/xd3/3dzh27Bhuu+02AIjMw+mQ1od9+/bh2muvxd69e3HVVVfh1a9+NYaHh/GjH/0Ir371q/Ev//IveN/73ldNPzY2huuvvx6PP/44LrjgArztbW9Df38//vZv/7YKlqPSX/3VX+Ezn/kMOjo68Pu///tobm7GT37yE/zVX/0VfvrTn+JnP/sZMplMzTPFYhE33ngjDh8+jJtuugmpVAp33HEHPvaxj2FsbAy33HJLNe2//uu/4o/+6I8wa9Ys3Hzzzejo6MCxY8fw9NNP47bbbjOnvmOKKaazQGc75BXT2aHrr7/eB+B/+ctfnnAeAwMD/qJFi/xkMuknk0l/4cKF/sDAgJk2aKruU5/6lA/AX7t27bh7rumcIHJN1QHwAfh/9Ed/5JfL5er1//iP//AB+FOnTvVf97rX+aOjo9V79913nw/Af8Mb3lCT12233VbN74c//GHNvc9//vM+AP/666+vuf6qV73KB+B/+tOfrrn+m9/8xk8mk357e7s/ODg4rgzP8/yf/OQnZl1dMhXauXPnuGv5fN6//vrr/VQq5R88eLDm3jXXXOMD8Dds2OD39PRUrw8NDflLlizxE4nEuGnYMB5c5GrbkZERf926dT4A/+///u/H8ed5nv+f//mfNddPnDjhn3/++X4ul/OPHj1avf7JT37SB+D/3u/9nl+pVKrX9+/f73d0dPgA/He+850mX6w/DzzwQHVam+tfLBb9173udT4A/2//9m9r8hE9vOmmm/yRkZHq9a6uLr+1tdVvbW31C4VC9fqGDRv8TCbjd3V1jZNVd3f3uGsxxRTT2aEYOL1MadWqVT4Ap0OOSgwggvIS4LRgwQL/lltu8W+55Rb/Ix/5iH/dddf5APyWlhb/N7/5zbjnDh8+7G/ZssXv6+uLzFMQcGpsbBwH7kqlkp9KpXwA/q5du8blt3DhwnHrr6TeGhxJfkuWLPEB+Hv37vV93/cPHDjgA/Dnz59f4yyF3v72t/sA/H//938fV4YGbbpOEwEtt99++7jyfP8UcPr5z38+7pm/+Zu/MYHi6QKn17/+9VWd+MAHPuDPmzfPB+BfffXV/vDwcDX9k08+6QPw3/zmN5v53XHHHT4A/0tf+lL1moA9a73bpz/96cjA6Q//8A99AP6//Mu/jMtn27ZtfiKR8BctWlRzXfRwx44d4555xzve4QPwn3nmmeq1DRs2+I2NjX5vb69Zv5hiiuncoHiqLqYJ0+joKD772c9W/3/nO9/Bq1/96sBn9u3bh0984hM116ZOnYpf/vKX1TermDo7O9HZ2Tkp/ALA8uXLMWXKlJpryWQSM2fOxPDwMBYvXjzumTlz5uDhhx8287vmmmvGXUsmk7jyyiuxa9cuPPHEE1iwYAGeeOIJAMBVV101bvoJAK6//np84xvfwBNPPIF3vOMdNfcuueSSyPXTtH//fnz2s5/F3Xffjf3792N0dLTm/qFDh8znLrroonHX5s2bBwA4ceLEhPmx6L//+7/x3//93zXXXvnKV+LOO++skdWDDz4I4OSaJWsNlWxfsGXLFgDAwMAAdu3ahXnz5mHhwoXj0l955ZWReXz88ccBnGwnTcuXL8fcuXOxZ88e9Pf3o7W1tXqvtbUVS5cuHfeMJcu3ve1t+PCHP4zVq1fj937v93DNNdfgiiuuwPTp0yPzGVNMMZ15ioHTy5Q6OzuxZcsWp+OMQh/96EexdetW/Nmf/Rl+9atf4atf/Sre8IY34Oabb3Y+c8011+Dee+8FcHKR7+23344PfvCDuPnmm/Hoo4/Wtah8IsROjSmVSgXeK5VK5r2ZM2ea16Ue/f39NWcXCJTrfX19zrzqpd27d+OSSy7BiRMncNVVV+FVr3oVWltbkUwmsXfvXvz7v/+7uagZANra2sZdS6VOmotyuTwhflwk69fK5TJ2796N/+f/+X/w7W9/Gx/4wAfwla98pZqup6cHAPDzn/8cP//5z535DQ0NATgJnAB3G7muWxSl/fbv34++vr4aPbLkCNiy/NCHPoSOjg784z/+I774xS/i85//PDzPwzXXXIP/83/+jwlmY4opphee4rfqXqYko+277757Qs//7Gc/w5e+9CWsW7cOn/3sZ/H1r38d2WwW73vf+yK/Gdfe3o73ve99+NznPoeDBw++KBe/dnV1mdePHj0K4BRQk7Nc13TkyJGadEzy5lq99LnPfQ49PT34t3/7N9x777344he/iE996lO49dZbceONN04ozzNJyWQSy5Ytwze/+U1s3LgR//Zv/4Yf/OAH1fsimy984QvwTy4zMA9ZvN7S0gLA3Uau6xadTvvVQ+94xzvw0EMPoaenB3feeSfe+9734r777sONN94YbwgaU0znCMXA6WVK7373u5FOp3H77bdj8+bNgWl1VKK3t7f6/De+8Q1ks1msXbsWn/rUp9DV1YUPfOADdfHy/ve/H2vWrMH3v/99/OY3v6m7LmeTfvWrX427Vi6X8etf/xoAcMEFF9Scf/3rX5vRq3vuuQcAsGHDhrrKTyQSzgjQzp07AQC//du/HYnviVIQDxPN7wtf+AIA4C//8i+rectbjVHfhmtpacHixYtx6NAhc2sBaaMoJO0n0VKmnTt34uDBg1i0aJEzwlQvtbW14TWveQ2+/OUv413vehd6e3sndXf9mGKKaeIUA6eXKS1cuBC33norCoUCXvva11Z3Btckr8Ezvf/978fhw4fx6U9/Guedd171+oc//GFcddVV+O53v+vcJ8iiZDJZXff0v/7X/6q5d+TIEWzdurU6VXKu0S9/+Uv86Ec/qrn2D//wD9i1axeuu+46LFiwAAAwd+5cvPKVr8TevXvx+c9/vib9ww8/jG9+85uYOnUq3vjGN9ZV/rRp03DgwAHznqzr0c7+pz/9ac0U2OlSEA8TpY0bN+J1r3sdtm7div/4j/8AcHLd1VVXXYXvfe97+OpXv2o+98wzz+DYsWPV/+94xztQqVTw8Y9/vGbfpAMHDoxrhyB6z3veAwD49Kc/XRP5KZfL+Iu/+AtUKpXqfmQTpXvuucfc20nq09jYeFr5xxRTTJND8RqnlzH91V/9FUqlEj7xiU/g4osvxuWXX46LLrqo+smV++67Dzt27KhZW/H1r38d3/nOd3D11Vfjwx/+cE1+iUQC//7v/47zzjsPf/qnf4prr70Wc+fOjcTLm970Jqxfvx6/+tWv8NOf/rQ6lfTxj398Uvdxmmy6+eab8cY3vhFvfOMbsXTpUjz55JP4yU9+gvb29nGbFv7zP/8zrrjiCnzkIx/Bz372M1x00UXVfZwSiQRuu+22cQvXw+iGG27At771Ldx8883YsGED0uk0rr76alx99dX44z/+Y9x22234nd/5Hbz5zW/G7Nmz8eyzz+Kuu+7C7/7u7+Lb3/72pMggiIfToU9+8pO488478YlPfAJve9vbkMlk8M1vfhPXX3893vve9+KLX/wiNm7ciLa2Nhw8eBBPP/00nn32WTz44IOYMWMGgJPr8O644w5861vfwrZt2/CqV70K/f391Y0s77jjDiQS4ePHyy+/HB/96Efxd3/3d1i7di3e/OY3o6mpCT/5yU/w7LPP4sorr8RHPvKR06rvG9/4RjQ3N+PSSy/FwoUL4fs+7r//fjz66KO48MIL8YpXvOK08o8pppgmic7W63wxnTu0efNm/4Mf/KC/Zs0af8qUKX46nfZnzZrlv/rVr/a/8pWv+GNjY77v+/6+ffv81tZWv6WlpfqavUVf/vKXfQD+K1/5yureOUH7OAn94Ac/8AH4F110UfXaZO/j5Cp/wYIF/oIFC8x78oo+k2wVcNttt/k//OEP/UsvvdRvbGz0W1tb/Te96U3+tm3bzLwOHjzov//97/fnz5/vp9Npf9q0af7rX/96/5FHHhmXlstwUVdXl//Wt77VnzFjhp9IJHwA/i233FK9/5vf/Ma/7rrr/La2Nr+5udm/4oor/O9///vV9uC0rrqG8RPGg4uitO2b3vQmH4D/xS9+sXptYGDA/9u//Vt/w4YNflNTk5/L5fyFCxf6r3nNa/x/+Zd/8YeGhmryOHHihP+nf/qnfmdnp5/JZPwVK1b4f//3f+8//PDDPgD/z/7sz0y+rC0M/vM//9O/4oor/ObmZj+bzfqrV6/2P/3pT9fs/SUUpFO33HKLD8C/5557qtf+6Z/+yX/DG97gL1q0yG9oaPCnTp3qr1+/3v/sZz/r3B8tpphieuHJ830jNhxTTDEF0te+9jW8+93vPmcjYTGF05e//GX8j//xP/DP//zP+KM/+qOzzU5MMcX0IqF4jVNMMcX0kqbDhw+Pu7Z//3586lOfQiqVCtw+I6aYYopJU7zGKaaYYnpJ02//9m+jWCziwgsvRFtbG/bu3Ysf/ehHGBkZwWc+8xnMnj37bLMYU0wxvYgoBk4xxRTTS5r+4A/+AF//+tdx++23o7+/H83Nzdi4cSM++MEPntYHqWOKKaaXJ8VrnGKKKaaYYoopppgiUrzGKaaYYooppphiiikixcAppphiiimmmGKKKSLFwCmmmGKKKaaYYoopIkVeHD7RD43GFFNMMcUU06RRQxZobwEOTfCjxx6AxXOB3QeBs7zCN15i/OKkOOIUU0wxxRTTi4cassB1FwHzZ9X/rAfgyguAlQuACJ/aiSkmi2LNiSmmmGKK6dynhiwwdQowNALv4WeAqy8Azl8e/XkPwE1XAC2N8J7ZCZQrQGfHyesxxVQHxfs4xfSypihT0Kc7TV3P85LWCuFHCeuHlWXlcaan4c/UdEQ9+cZTIi8B6mgDrr4A3sPPIn35OhSe3gW8aiOQSQGPbg5+1gPw9tcAUxqRfHwLEpesRrG1GVi9GLjjXiBffAEqENNLhSLv4xSvcYrpxUATASlhz7ju8/WgPKI8r69Jt+TuGdX5B/ESFThNtL9PFPAFpQ96Pmreljzr5SOmc4AWzQYuPw/YvBuZ85ag8Nwe4LqLgXs3ucETg6YntyExuwPFw8eBebOAH90PDI+9oFVginXsxUmTtjg8VoCYhMIccb1O2fM85/NyT4MgfU48v56Bz/wsHzptMpkcdz/oWTlcz2i++Ugmk0gkEiiVSiiXy9VzpVJBpVKB7/uoVCqBeeh6AKg+J8/6vm8+I/UWfhOJRE2Zcl1IeJI8+ZD78qycXWn5GX3fdUjacrlslmGV5TrC+HKdXdeYYvs4SbT3CPz2VuAVG1G4+1Fk1i1G4Z7HTq558jx4Cjz5APD2m54HTduRnNOBwnABuPQ84Ct3wBvJA6cxcJgIII/pxU+TApzECMf04qLJ7uwu0BKUJiwv+R0EjCzwZIEIF7gJOicSiSpwkuupVCo0vU7DeQCoeUb+JxIJpNNpJBIJFAoFlEql6rlcLlcBVLlcNuumgZ5cl3YulUo1QCdIPsJ/MpmE7/solUoAUL0uVC6XTSDD/yUNgzb+r8+c3jozCGSZWGVoMBaUp6sOOj++LvekDEuvY/s4OeQnEkAqicRT21GZ0gD/hotR/PVTyK5dhOK9m1C59iIAHhKbtgAAKgDwtlcDzY1IPbUdiTkdKBTKwKqF8L57NxLDY/CbGuCN5p1lutpNtz/3s5he+hR5qi6ZTJ584Hnjao3IYnrx0JkETRY4qifiFAaS+LcV/QHGR5b0mcGFBj46TTqdrokGMajg68lksgqaUqlUTX6cRkeYdN6JRAL5fB7FYrF61sDJkoEuS/gUUCHPa7nKc3KN+UylUvB9H4VCAb7vI5PJ1ESdBMDwoYGJlCvgSwMUfRaAx/XVaaROpVKp5r8rWsUyCAJj+ix15LMFnIIA1QttH6VtJlLuuQzwKovnwD9vKVJPbUf60tUY7RmCv2ElEvc9jvTiTpSe24fydRci8avHgU1b4f/+jfCbG5F6ejuSs6chn80B82ch9bMHkVm1APn7nkblqvVIfO9eePnCxPkiHaqXYt/54qS6gBM7pokqykuZXkzymAxetZHV4IXTuCJNLkMdNcKkAVHYfQYzrmv6EOAkoEaiQgyGBKjwoQEV5yV1EXAject5bGwMhUIB+XwehUKhCpwERLCcGOhxHlKWjsq4gJP+L3n5vo+xsZPrQDKZTNUWAKemAJk3diTMt4Aca5pNgyGeppRDR7H4HBZRCgJhOr0rGqWnJYWCgJMFpCxyRaXqjVbptGH9/FwDSmGgr3LBclQWdCK97zDSqxZgbCiPyurF48ATiiUgX0T66e1IzO5APpsF5s9C+t5NSC+bjbFNO+CvX4HkLx6Bd7wvlK+g9tG6UQ+9mHxGTKco3gBzkuhMdoCzFeoPAzVh111gabL4CQNqUQ69HkmIHaREafRUElAbhZBpLT1lxHzJNBu3KUd8GAhwnTgixA6d7zG/vu9X68VRFo446fVKlky5HK4bg6dEIlGTrwt4uKI+GtgVi8VqhEpH2ZgHK9LlijxpGViAyIpWcRtq3ZhMCutTE7EBUfg8W7bFRWH8JJ7YDr+tGcUr1gMPPo3cinkY3bwLlas3oHjf40ivWYByvgBMaULy6HEDNM3B2M7DqLz6MiS/+bNIoAmI/V9MtRRvR/AioDPRacURBpUXNTpk3Z9M0FRvHkEgybruKoPBkQWcGJxIOj6z8xVwYy3OFtDFJE5cT+nxYm1eJM486zVQGlTwM5Ify03LgJ0Z/2f+9f2gKTsrwsQAiqcmOUJk8eWaIrTWXum0LGfXdAuDp6D7LgrqZ/XQmQBN5yJFqWfynsdRntKE4mXnAQ8+jYblc6vgKT80jExzA/wDR1BaOhf5/hFgSmMtaLr8PCR/9GskjvW+ADWK6aVILyng9GI1Fmdr1MeRCk31RpvC0tQ7RReUt+XgXdd1vmHgLgxoCVkOlSNNAljkzKBF8yXPaBDG+TGfWl90ZER4dUVpXLITIMh5CbDidVUafAG1kTI97aXvWZEnvm5FerjMsMiRfi4sT1dbWs9oIBQFGDG4PNM26sVqA4Wi8p/8wf0o/9ZVJ8HTA0+djDwVikDLFFQOdSHVlEOxbwhob0Vy+76T03M7D6Fy+flI/PB+eDsOmF9biSNLMUWhlxRwerHSC9lZLeAwmXycC4bHVS89jReWh+sQsgAMAycGOnJNokGaHxegsYCTdsRWJITztMCAC9zq6Brzz3UulUrj+HdFmvQaKIkw6ak6DYakPF2+NaUWti6J28YCRS6HzfdPBwDptrPKiKk+qoKny89HpVxCLptA4Wg3SnNmoNQ/BLROQWrbXqRXzcfo5v3wnwdNiR0HTrvsszXYjencoBcMONWraGfCmJyryq6nOl4oQBP12umWFwTWXNddvLlADJN2bpbzmwhZz7miFJpfTTqapfPQoEvys0CFBhs8Dcd88vQfP6+n6/gcxDf/Zx55vRbXwZKVdbgWb1t1cck+DAi5ZOsiDZq0fKw2s2Roge2J9LkoUa4o6YLShOXhuv+CDgR/cD/8P3sLylNakNixDw0LZmB4NA+0TUFy9wFkl8zC6HP74a9aCDy+NRQ0hdXV9T+mlxe9YMDpXFC0c4EHi6IAixcizzNR9gtFrshA0H3X8668g8p2RX20c5Hy5Q04a1E4O175LW/nWaBJT3EJ6X2c9FohBm48RWeBPV6czoe8waf3jpLyLBmFRaf0FJ+WrwUYLQAV1G7WPWsajtMHgaagfKKWUQ+5yjgXolcv1AC1AsD//RuB0QK8wREUF89DZXAIuemNKBw+Dn/JPIzsPgR/xXx4j22Bv2YxKsdOILFp6xnnLaaXNp0x4HQudOAzQS9k1KqecoKiR/XyGzV9PbKIOmJzpZuozK2okysSpZ/TkQMGIMyXvFXmcvAu/jmSYu21ZMnCFWFh/lz1CJKNlkVQpIyjVHqhPMsoCNiERZyC3nCLCo406cGE1b5RwZKWYVhESud5uhQW9RIKA3lhZUz0fj0RsYnIQ0BTzT5NbVNQntqK1J7DaGjMYbirF1g0B96zu5GZ3oLSPZtOblUAxOApptOieI1TnXSuRK2iAoozyW+UvE+n/ImApiCgIvfFOVtTK3KPX7HnCIrmyfNOrvfh/Zo8zxsXOZIzR3Y4aiLrfmTzR37dX55zAQY9hadloWXqAnfym/nUi8UZHLBMNNjSa5usdUzW4vCooCks4uQCjK5oJPOvdcOaypQ66jy1fFzlnwlygfNzmSYNNGVzQDqFxLFelObMQmnPYWDxHODAUfirFla3KsAEwdMLOWCO6dynSQVO53onfaEpyHi6qB4gVA+wOFc6fb2RJz5bDvp0wFWQs7N+B50ZFHjeyUXgPL0lDpgjTAywNBBgQBIEBDQAscCaBagsEGZFT4SYF5ad/q2Bk3UEASDNn+uaBfxcpPXFBTAsXQiKIFmyDUofBuqjUD15uABi1DJOh8LKmqgsfAD+TZfZO4Lf+xgyy+Zg5EQSWDwHySe3I9vWOG6fJ9yzCeWrLwCO9yGx72ikcs8V+xnTuUFxxOkcIRcAOJsRpbNFLlAUBposcBXkKDnCooEAYEeY5L4VZZBPivBO4RK9kYMjOjp6wSDA9QaYrhcDJ71PkxUt0mfO35Kb/g5ekMPTYFOAkmxkWSgUatZkBa11cgE7V0QpaoSJo3d8n8GqlZcFQlzkiiqdyWhTFD6i8j9ZZU82+QD8K84HfCD15DYk53aMA01jOw8Dl58PHDmO8pK5KD7wFBqMTTLxk9+gcvl58Cs+vANdk85rTC9tekkCJ2sUGHT9haQwgOQa2UbNV+h0QssTGc3WW3YYQAyLKE0k0hSVXJGdsMgTR5xc/PF2BHxfgxfNB4MJBjVWFEccJm8tEMa7kH7bz+IxSEb821roHXV6zQJHmm9XGpatBrdB+mLpWFi7WM8GRZyC+kwUiqrvYQA3DPhOFlkRvAnntWQu/CmNSD63G8mLVyBfxjjQVKEtB2SrAtSApwtQ/OlDSF+wHKVfPILKdRchcezEaX2rLqaXH0X+Vl0qdRJjsfFwGbWzTVGBE9870xQGBCx+6gE/k1mPegGRFbVx5Rk1suaKIlnXgo6gb9hZH/wNirZI+fJff7BXvk8nH/q18uKP5+qy+Tt4vPZJv2Gm19a4tiOQ/67dt1mWskaLv5lntYdrI08XiOSIUz6fr+GfIz18tqYedVrXsxbA5eetNK6pQi1vIR3hq8cWRrGRk2FHw/II4++FsuX12C0fABIJeJUKyq/aCH/VQqR+/SQyq+aPA01C5d+6Cv78WUg/8BTSK+Zh7HAvKhtWIvH9XyGx9zD8ZBLe89tmTIRPrSv10rniM2Oqj9xbR9dBQaO+KM/WW06UEWtU/k6H9yhUj5MPAhP1PBeFD11GlHyigqIovGi+XP/DyopSZpgzsJyey+nq/9oBuyIqYWt9hPQHiIPaOaoTDqoLUKsbUjZPN+ppRatOYXUN2nfJdc3i31UviyzA7bpu/df5uOQblmeUsurp6xPt72FluGRUb/n18FcPecBJ0HTFefBXLUT6vscDQRNwcpNMb/9RFC8/H8VtB5Cb3Y7Epi2ovPEaVKa1hIKmifAZ00uf6p6qqycKEoVeCkrpMkxBaSeS/2SSi9dzqT0sIBlk5IVYR3U0LChqJod+8831aRqOrnhe7adT5M08KVOIF4/Lbx3ZknQc6WAgpbc/sGTFMuOPD1uASUBSMplEOp1GMplENput8u77tZEvrrt1DlsYzhEnLXtXxMgqy0Va5iwfXt8UpAssH1eE7HQHXC9kX4sKZqLad+5fYeVN5sC0smoR/M6Ok9+eW7coEDQJ8Q7j8nmWsbsfgf/KjfDveghe36CzvMn2dzG9NCgycNLO6EzRiyV0aTl16xz07GR2yjMNrs4ERQWa1qjPSn+6/DK40v8tYMYONiyqUw8PQRFU1i/rngZG/FtPOWnQZv0WHqx2cEWCosggKOIUBJ40WXoRBRBF6XsacLvy0tet9Jw2CtgISmeldZFLf1xpJ7vPh+VZTx/xF81GZc0ipDZtQfqKtcg/t+/kGqUIn1E59W2784H7H0du9UKMPfIcKq++FInv/2rcGqcYLMUURJGB08tZkaJGlOoOPb+MZco0UTkEgSoXkK23LMsRuhxckEPkKTA+y5oiATaFQqH6OyzfMHASBRhooCR1LRaLNeUwP4lEwvzmHkfg+A1CLi9qZCmsXhZ4tfKK8myU9FH4ejlSPUDstOV2oAuJrl4gX0A+mUT54tVIfO8eJPYeifR48gf3o3zZOpQWz4V/9yYkuvvgH++f0MLwOBL18qYXfB+nc1HZ6olmhDng06nfizFqNBFioxMkTwZGEwE+YWW4HKiOCAYZSe24Nc/6YADFER/tnDnvMGJA45KB/Nayt2QcNJ2mgYduG6tto/AedZpO16UesngP4kmnO51ImM6Xr1n65sojKgVFxOrh+XTKt+p5OuDJK5WBUhmVGVNRuXg1Ej9/GF53H3SOQfVIPvgMKhcsR/nK9Uj84D54A8NO/gN5OQftakwvHE3K4vAXA1nOy5qesP5bC3ZjeuHJ5fBd9/i6pnrBCT8nh36TxqUv/J93F5fIUrlcRrFYRKFQQKFQQLFYrK4pcq0T4vLkbbhMJlM9ZK2SvKmXTqeRzWaRy+WQzWbHpZU3AkVestt3qVSqvhXHb/NxubxGiheUu2QQ1gYuEBUUgbJ0QqfR56BntNPXPE2WDdDA9qVCljx5oODqr5GodwCJux6E1903Id4ST2xH4jdPwytXwhPHFJnuu+8+3HzzzZg9ezY8z8Mdd9wR+sy9996LDRs2IJvNYunSpfja1742Ls2XvvQlLFy4ELlcDhs3bsQjjzwy+czXSS84cHKtZzgTIXDLibqiABpUuYxqWEQhjI8oz0YxJvXmOVlyDAIsZ7KsoHJc96LyFlUXw0brYYcFvqUsASkCWML6iQXuLQAj6VKpFFKpVBUkuQAP8xUE2rjfWPXSfU7/1jJ1yT7qyL+ePhSkWy5+LfAWloeLpzCK2rfrsQ8Tyft0jjA5u+QdRFXdKJbg9Q6EpguMEHb12NfroHjKtpaGh4dx/vnn40tf+lKk9Hv27MFrX/taXHfddXjyySfx53/+5/jDP/xD/PSnP62m+fa3v40PfehDuOWWW/D444/j/PPPx4033ohjx46dqWpEorr3cRKyFPJMKFJYZwpypFHziWrMJkr1PutyLpPFT70Utax6pmqDDCynDTPKOk85uzZy1EDGyt+1f5Oc+TtunudVozsCSASUuNY0aZn6/qlv1Qk4YSAT5Pz5v07PESKdngEQ11XuSSSsUCjUTN3psoRPIYlQ8d5Tci4Wi9Uz11Xy5n2c9EJ24cvlEPlTNnw97LcVQdT/rb20dF5W/kHXJ9NWTiRqqsnzJndX86hysK5NNBrsojNhKxlQW9HnqPRSBV+e5+H73/8+3vCGNzjT/OVf/iXuvPNOPPvss9Vrv/d7v4e+vj7cddddAICNGzfi4osvxj/8wz8AONnP582bhz/90z/Fxz72sTNahyA6rTVOLwRQCvsfNU3Q9dOhieZZz3Onk9a1XuNMkJV3UJn6XtCI1Ep3urwG8cX8uc6cl56G0/XgaSo2uvrMhhioXbcUBKAs4CfbEAhZ+zG58mbwJZtY8j2ekuP8rLpoXq06RI0sMYW1j55Wc13nexZfup0sHbDydOU9mf2w3ryC0p+JAZJ+xrpuyYavTxQY6ue1HkThL6iMM2lLJ0pjY2MoFCZvF3SrntlsFtls9rTzfvDBB/GKV7yi5tqNN96IP//zPwcAFAoFbNq0CR//+Mer9xOJBF7xilfgwQcfPO3yT4dOCziFGbyJdNCoICjo/rmo0ExR+Juo0QjK52zIJSpo4imoevM6U6SNadR2swBCkJ5yJIt35hYAxflxPtZCc7nOdWAQZsncivrofaSkr1vTc5ofV1RIAynOV9eR91sKIis/ua7tkwWqrHtaNlo3XXmcDaqXj4n0IZeszgSxDtQTtbLyqOd+vXI5F33M2NgYFi2ajqNHhyYtz+bmZgwN1eZ3yy234NZbbz3tvI8ePYqZM2fWXJs5cyYGBgYwOjqKEydOoFwum2m2bt162uWfDk0YOLlGdi7k7nI+9QIlFy8vFqoHNMnvqEbqXAId9ZClR65o05nmw6Ko0a56eNXpkslk9be1y7YGKRxdSqfTTnn5/qlPg+j7kjd/4sQCThrQaOCkwZMmvYEk16EegOMaTLgiZ1HytsCQJcOgyEi9NNnA40yDOEvuk1VmUD5h+nG26Fy1pYVCAUePDuHAgY+gpeX0I0IDA3nMm/d/cODAAbS0tFSvT0a06cVOdQOnILTOxiUqqn8poP/TLT+qTCeTzrTMoho2V+QJsAGLK/pi3Y9Crvz4Xhi4l/Uv5XK5GgHiuvDHf+V5HR3iqBM7Bg2cOJ1eAG7tQC75WJtfyn0GYdpByTVZm8VlWA6VZcGH/uyKfs5qF9d0jQV+rLzqAWaWzHXULajsMABg1cF1rV56IaLJp1OG69mw6bEoZdYDoMLKs8hqp3Mh0hhEU1qymNKSO+18pJYtLS01wGmyaNasWejq6qq51tXVhZaWFjQ0NFSXPlhpZs2aNen81EN1vVVnRQL4cL3C73pTzXXUW/7ZpDMNas52/c4kBUUOhMKAEv+OqhNBYMiVVxB4ssCCOF1eIK3vWxE2XkTOi8ytvqZf/+c35/jQWw3oenD/1OXxp1isN/LYsfDbd0Hgids6avRI/7YAnKt9XHrFste/pT5hzz7/Az4m1ler5dX9ZG0eEz0mUkZYuVGelethZYaVFfQGdEznNl122WW4++67a679/Oc/x2WXXQYAyGQyuPDCC2vSVCoV3H333dU0Z4vq3jk8qmJOBNVPdtoXiiaTJy3nF2I0GZU0H2ERg6hp5b5rdGc5tyDgZJXvAl9hICqqMeZpNeuejjix4QdQs06J85C37Sw5cd7yG6h9s4wBgAYrmmddXytvXS8hPcWny3UBJc8Ljhbpslzpw/KKUgf5b00p6jRSlud5KCybi0prMzKPbA4sy9Ij3/dRmTMdxdULkf3FY0i8QH19ItEXec4CpVH7iH426Lmotk+3exhofqmT7588JiOfemhoaAg7d+6s/t+zZw+efPJJtLe3Y/78+fj4xz+OQ4cO4T/+4z8AAO9///vxD//wD/joRz+K97znPfjlL3+J//qv/8Kdd95ZzeNDH/oQ3vnOd+Kiiy7CJZdcgs9//vMYHh7Gu9/97tOv4GlQXVN1k4noT2d0diboXAAnLud+rnT+MwXigkL5rqgD/w86T2S0Xc8IOkweDD6AUwuo5XelUqnZskDyZNDBQIgdMwMl3/dr1klxuVy+Bk1MHL2RN/J4TynJywJMko4jbC7wxHKsBzTJPZEP34uSF/+2eNF1ksNy9nzO7D6C0WvOR+GS1SfBE4LBGlNlznQULl2L7L2bIoGm0+1/9Qx2XGlYhq7+MdFndVuHTX+GpbWunyv29EyRj9OLYHI+9dBjjz2G6667rvr/Qx/6EADgne98J772ta/hyJEj2L9/f/X+okWLcOedd+J//s//iS984QuYO3cuvvKVr+DGG2+spnnLW96C7u5u/M3f/A2OHj2K9evX46677hq3YPyFpsj7OGUymZoR8mQo37kEnqKOmM4kD5x30KjpheBjIhRFJ1wOywI2YRssWhGmMPCkp3g0+OF7AkS0nPVaIt7PiaezmAddLu/qnUgkkM1ma8CTOO98Pl/d98j3/Zqpby5D8mDSb8pZESfdFrzmigGRFUWSvF2HgCjZB0m+f6dBD+/BxLzpPZOkrRjUWHsvSXoX+LKiYPy87DclWzBoeUkZY6sXwMuXcNXcMtqmN+K7ozPgJ5No/P59SBjy1ZRftxiFi1Zh1dOP41XXzMBXvrIT+YtWIHfPE/AiAoZ6yNXu9eQfJY+wZyf6v568g65HKScsEqb/nwv7OA0MDKC1tRW9fX+NlklY4zQwMIb2tk+jv7//jKxxejFT5IiTdhaWIY5CQaORemkygEM9efBI00VRZGGF/vm6K5JxrgKmM0VRR7Rh4El+R4lAMbjh5zgfa6F2WHRK82DxZUWdBCSJYRbQFaUfSdTIBSL4OgMm3lZAzjJlaIEOzot11AKcnKc8p68zT1GiGxpMRY08WKTrYEWYqpGmPUcxfN0GbNp/CH/2qmkoPd6N7+UWY/RNV6Phe/chEVBmft1i5K84D6u2PI33/4/l+PJXdmLshguR2bTNBE1BtsEFEF0yCNMd131LBvVQEN/yv56IlCtvHbWql48gmmjdX0jyz9JU3cuJ6gJOgB0qr9eRTxZ4eqGBU1j6emQh6fQz+rc2VuciWYYqioGrN+/JoiDQ5LoellfQImUr4mS9BWc5fb3JpGX05ZoAraA2sICOS7+0DCxQxPZA6sIgzwKLugxOG0SWc7ScmK5PUFrOzwJfLtAEAInRPBrv2YTe116Ov/vFCfzlK9rhPbEbtzefBE+N378fVo3G1i5C/srzsHrzM3j/78/Dl75+ADvWnI/cPY8jfeAYEODstZw0T6drn1w67wKQk0mTkfdEn3WBNBcgc6U7lwFVTJNHkYETv44sJMZyIiHgKMrt6sRhxiFKHkH8TTTkGmaYo4x+NL+nM8I7Xap3ZHamgJ3LkUWhKCDJlc5y5nxdT7vpPYwYIMm0Gqf1PK9muk1C/lymPKu3NJD0/FumxlwbXVr7QzGvmncpX4Mg3z+1noqjQjI9x+Vy9MpqG8tZyn8rUhYGspjfeiMJ/LZjUKSppryRPBp/uQmDb7gan/3FQfzlK9qB58HTyBuvHjdtl1+7GPkr1z0PmubiS18/gO1rz0P2sa1I7z/12rXepsLl2FmWYffCbJxle3R6lg3fq6fvM9DnvLntXHyGAZR6+NA6Z90P4pdpolN1Mb046bTeqqt3BFIveNJlRXk2DIgw6Y7hGqmG0enIwHWfeThTI7x6KQxIhRmioGfDSMshyMi7yAJL+vrp5M3nenQHODUIsQAb/9dAgo06AxQLOFmgieWqnSP/1oBRk46aBYHQIFASRdd1H3WBJBfg4f+uervy4v/5hbOQGB7Dwo4ksO1ZPLNqHT79aC/++pJpwOO14MnDeND0//3XMew5/wJMe3Yb1s4o48lsGvk1i5B9cmdNG1o218Wjlo9+3rpv5VFPPw4CslHKOJukbQCTHqxpUG7Zo3OB/Hiq7oxT3VN1vEGfNTrTVI/TCftvGYOge/xfDstIauAk94UsgOD677oX1RFYUQst33oiPy/kKOhMGw+XQ7DKDQJD/J8jRWEASnjQoEPzwxEeBjasg5JHuVyughHPOxmB0ptbMlmbMko6HZEK4tslV+tNPMlLeJK6cTrZ/JPz15EEmcbTfFmOKYhnlqHVLxgchoEq5kPLzRllkk1Bh0YxfPk69O/YhVdcNxfF+7dg65rz8OlHjo0DT6kdB5G/Yi1WbXn2FGhauxZte/bjtVe04blfH8LI9Rcifeg4kiGOmHly6b7rnlX3oOdcA4IwWxRkg7StC8szig1z1TUsLx4M8FpF9m/ynCviFKZrMb30aEIRJw00wkaJYQ41qPNb5bvOro7PjomdWhTgpA25TscUNlK2yBqxuBxLmJyZ6klbD69BZYXxoq+5ynCBkYnoEd9z6UyYboWVYQEzV72CgLmAHwA1AIWBgI6KROHRKssFFKI6KQvQh6XXz8r/MN3W1+vRhaBBTdh1y/kzn6meATQ98AwOX3sB7vzFIbz2FZ3Ar5/B1tXr8OlHj+GvLz4Jnr4zcw1Kczqw6ukn8f63zsXn/6urCpp+a20aTz1wBM92LkZm6z7kntsbuc9OtD9MZsQprHyrrHptUxjQ07/rsUVsAzRwkrxceh7W588W+c8fk5FPTDbVHXHitQ08PRBkQF0gqJ50Qc5OKz9fl9e9eVTu+/643ZvDnAswfo5bO7KJjJgs8Mb3JgKahKKktZzSRCiKEQ/L2wWaJlKWdegF2S490utLhDddfphe6/IlHwFEGrDzf+lboqf8rOZBIlSyZYism5JtAETP5fV6HbWSsgD77VmrbroPyO7gpVLJ/Padrh+DxDCydEf3Cb2NgqThNVcu/nVZ2nkGlZvqGUDDE9tx7LoNuPMX2/C6V86Cd/+z2LJ6LT796DF8/BXzMZpP4L7dZSz+rXX4/76z7XnQdACvX5fBUw8cwTNLViN1+DgantsbWR4u3oP+B13ndtb9wkpXD8jmZ618g4B+EN/cj+UNUn7708rLNXDQu+cDtZu6Ws+JzvG3IM8F8uOpujNOE17jxMYlzKmfLnByle1yjsApB8CfrQBOdXhxStZI3jVK1cZU75MTBRwEkeVIJwqaXKT5tGQetQ718DNZAK1ecumJ3NPnekBR0H8Xad3STpCn9OR6EGjjfZ0EQKXT6Wp63kcpqG1d5esP/VrPMRh0OSymqPodNRJlpdP/gwZGFhiNMhiUNLk9R+HhCRy77gL86Bfb8LpXzATufxZb1q7DJ7f4+PK1I/itGSX8/37TiLG169C2ez9evy6Npx48gqcXr0Lq8HE0//zRUEDk0k2dLuyaJgvQhJVVrz1ygaYo5HpOdF0GDb7vY2xsrLoXVxCA0vlrHyI+whqsuJ6L6eVDdQEnDUyELKWM4pTCRhrsHPTzLqXVa0Wy2WzN3jhSDo8m9CZ/mheXgdWfmdD/g+QT1BktiuL0otDZ6uAaNFn1cTlOTVGMNuurPuvNL6MaP0vXwl7/13rnqosGSqzrejNNnbcMDnK5HJLJJLLZLDzPq0aBxsbGUCqVqtdER5kHObs2p9RbIgTpqcjZiqpZQDCKPrhkq2XFAJHz1OXraJhVtgu46TwBILvnCOB5OHbtetx593a8+vULMXyigkMjCXxzZwZLGoB8Ko0mr4TX3jgTT31vcxU0TfnFY0DEfqnlqa+55Bd0jeskadj2Wum4/Kj2p16wZfkMppaWFsyZMwetra1YtGgRSqUSDh06hOHhYezfvx+jo6PI5/OmXdc8u7YH4bq6gFPQPm5ng+KpujNPE444aeWy0mvFD3vFNsjxhC3gFdKviPOHUHVn932/ujhXfjMfQSNTMdKch1zTddJOIcyA1AMWwvLSMp1IpMcF8iZCYVGEIIdcD0+Wjrh0J+ys87TKsHiLSpZuiH5qoKf5YzAoui5AS+7JTtgCZoBTm2NKmRpAWAAqavtrpx7URvXodRDgcgEdC5DpukYBTbpsi8fcniOABxy94UJ895CPdywcRkvOw2e3NOPnfhpXto3gshll/OBAGtvWnIfMzkNo+cWmcQ4qDERa16KCp7C2cOXn4skFKl1lBFFQf7OezeVyaG9vx7Rp07Bo0aKqnvf39+P48ePVqWPmK6jNLVvBkSf9HPvCcwU0xfTCUGTgJFEbMco8UrZGbAxY0ul0zbMu0MX5ua5zVEfuAbVTDIlEojr6ljVOnFbIGoHy9aDfUqbOR/IK+iq8JS/hzxrlBBknS16TTfUYhShpg0bw1jkoHz215IomBW1Q6Tprx6Sjra6RJvOl91ay+ANqP/Lred64/5aTZD65H4yOjjr7DOuKHkzwJ0+4Xfi/paNWWpYDT2XrtC7QpElkwX1M65C2S1JHvm8NbKwyowAxqz5+Qxao+BgteRgsJVApAPNagEODHhKZJLxyAQeGc0C5Ar8xhwowoQ/7RunzLtDk6nta9y3gom1dELiNypeLN6tvASf3FEyn0+js7MSGDRswbdo0LF++HJVKBbNmzUJPTw96e3ur/a9QKIxrK23Tub6yxknrkjVY830fhUIhBk8vM6r7kyts0IU0EJB08s2uTCZT3ciPX//WnUy/+cb5idHj71/JPW3YpCwGb0yW4XBtDmiNwvX0he6MwifzaNXXIk7rAk1h/8PyP12gVe/IMYg0/2EAJipoDDL+9fBrORMNfoLqxg7emu7SeVpTilF5ZQAk5WkZ6b7CAIs3q7Scon7eBTpcA4OgOligTJdnpXWBp6DyovCny3CVyTS8aj6GLlmF9Tu24KJXz8dX901BY9bDO1YUMTZYwLcONuH+oxmcP2UMK/bsxHebF2Hwt67AlB/8BgmHXILqESVtmP4EAZYwHY9qS6LocL3AKZvNYsqUKZg9ezamTZuGmTNnwvd9ZDIZZLNZNDU1IZvNIpVKVWcEmCxbz30xCNxzn5F+E2YLXkiKp+rOPNW1c7jnedU3d3zfr3lrR5RGwEo6na5+uJR3TQbGK6IGZa5OWyqVUCgUqsCEFZgXA0perr1wrE4aBATDHIM1igFOOjAJH/OHQ+UsjtUqQ5M1yp8oTSSPqEahXuMfBn6CyHJilv64QFQYqHKBGheos65bAByoXYvneV5NZJTzsvSMy+EIjAB1AU6STnSvUChU1zpxH2GerfWAQPAbpRzNsg7JX7+gEQSCg3SC108xP0GgST+n6xcGjvR9fW945XwMXbwC5+/ahvf97ix88buHUVm5EqMFH919JTT7ZRTyZfjJJLZvH8TvXtIOPLGnCp5afvgAPETvP2F9OAjgcT7Wf1d/0bKw5OHqD/WULWdZ+K31q62tDZ2dnVi4cCHmzJmD5uZmJJNJjI6O4ujRozh27BiGhoZQKBSq/UrXh2cCWLdlytulwywfuSf96FwBTjGdeZrQVF0ikag6fqC2o8kX4gX5W2s0mNh58FoNflNIysnn8/A8r0bZtREVx8DPW2VanZXJZYAtEGX99ryTYeJMJlMNF5fL5epiRSB4C38XBY3Mg/5rHoPq7DIAkwmetMPT97XRteqh5VDPEcYnp9XAKYivID6tka0c0q84XdCZ21kOAUwCoIQYrJdKJXO9oPzXU4RShn4DlR2Z6yUJLROpH8tD181qB4usqEDUKBLny3V0gaaw+0Mr5mHg4pW4YPc2/OFbOvGF7x7HthUr0LHvEC4/vwk/OtSCfDGDRY1F5J7YgudWrsGnH+nGX1/SDu/JvfhO80IM3Hw5Wn/0YPXbdpPthKOCKJeNlnMQOI2Sr6u/WMBNfAnrVaVSQVNTE2bOnInp06ejvb296mfK5TL6+vpw4sQJ5PN5FIvFcQNoOWTbDDm4b+rtCLSeMa/nZMTJP3lMRj4x2VTXVB0beB1F4sXYvAWAdkBM2oGI0ZaRhuTDSi0jBYk4JZPJKnDS0yJWudYogpWfyTLEUTqHlCvfGPN9H9lstibiJJEzHYnSb/jpjhtGYZGpMAczkfpOdlrLuQUZXnb0FkCy8g/K0zUtHQa4gnTdegMvqB2sDVqZOBIkui9AnEEOgJqop+zwrXnVYMoacOhyNVjSgMmKtlntp8EUD4Tq1dUwHZS66YGXq57c5hZoys9ow+jyudiwZzve+7uz8MXbe7Bt+XJ07D+Mm9el8cwD+zG2bA38ZAIjD+7GtTfMBH6zGc+tXP08eJoKPLkX36vMwOiG5Wh6Yof5YWAXf8xjUJ2jkFVHF7Dh9K7ywsCS1a88z0NDQwPS6TQWLVqEGTNmVPV2ZGQEw8PD6OzsxLJly9DZ2VkFTWNjYxgcHMSRI0fQ3d0Nz/OQy+WcZYvfKBaLNXs/WUtJLPDE9XfNbJwtiqfqzjzVDZz4zR2gNhLFa5h0Z9BGjZ0dOygBZbIAUMoBUAUcPBXBSstgQ68V4Ty0cbcctNwLM9yWcQjqRAKOpB4cieINBOXgcixegiJL9YInfb0egztRYiDB/8NAkzVCDTt02qB8dKQ0jAedh3UtDNBZEZ2w9MCpz7boReByFsfDoFzqx+s/+Kyn1bg85lEfmjdXVEjqZelpFP0MAmCWTDmdBZ5cfT0o0pSf0YaB9UtwwcE9eOc7F+CLtx/H1mXL0HHgMH5rXRpPP9yFJ+YvR27fUWT2HMHRq8/Hj+/egdfcMGM8eHr8KP57SitGNixD0xM7I4EnSz7Wbyudjlpa14LyssBTGOCS/0FHIpFAU1MTGhsbsXz5cixZsgTFYhGFQgF9fX3o7e1FZ2cnlixZgtbWVmSz2RpQ1dXVVV0YLqBK6sN14gG31CGov2l95nTWOtqYXto0oX2cBEAB41//txa5MrjiZzRwEuCVyWSq66RSqVTNVIQAi2KxWOXN6uR6FGtFoPi/5RzDgFPQ9IJlgOSebNhWqVSqUSkdkZKRkBVS5kMDPe2MXHy46hDV+Fp1Ph0KMs78W18LijSFAZWoeUbl11oLpfsNH5xWr9kBgsEvp+FtMaxoJa+nk74AuKci5F5QnfWoXL/lZq1DcsmRHZYFzriuUckFBnlbBgFMXIbVf7RDrTrPZBLtj2xDbmYC//rto9i+9GSk6bfWpfHMI114Yv4yZI70ou2eJ6vPHL36fPzklzufB09bsHnJcvy/vziAV2RLmPKbZ5FfMmecrPX/MHmGkRVVitLXrPzDIlRWf2S7D2DcwHnq1KmYMmUKpk2bhmnTplXLmT59OkZGRtDa2opp06ahoaEBAFAoFKpv0skAVN7kFtJvduoBNK/V5b5p1UXXcXh4uPpm3blAfjxVd8apLuDEEScNdqzOoaNUoszyLJ95GlAAk0zV8dt04gjkuh7p8toHDTBYseW3FSFjskbOfI8PuRZkvKRcMRq6DKmnzNHn83nk8/nqwnjLMXK51tmqTxQD65KF6/5EKAiYuAyVnK2okAWGXYfFh34+ah2s5yzApHXfFdmJqk+i/xK9lN9CDAy0LlvAifO1QDfLntNZMtXrkILkp38L31qHLZ6Crlt8M2hy2Yowufu+j4ZjffB9H1sbpqJ7wzLM2rkPr75sCp59+Bgen7cMmaO9aP/VU/Cfz6dhz1EAwJGrz8eP796J19wwHYl7nsNzy1fhrp0+Wv0jaNx5CJ5jXSb/1v0/iFx1scCNvs7XXHkwD0FgQ/cBWe7BMxXJZBIdHR2YOnUqZsyYgenTpyOTydQAIV4qApwETseOHcPx48erm72KDxF7qttUloAwkOIIpF6OYvVZ0aGBgQGMjY3V2PSYXtpU93YEDKC0Y+BOwhGooGiU1SHFaOoIi4AqyVOABu/VYRk9BhuuNIB7miWIdISAgYkFrHQ6+a/lBqAKHNPpNEqlUnXKxbUeih2hCzxF+c88aR41TRZ4skCeVU49YCgKnxbgijpFp9vQRawDPKrl56I8r/mQ/EQvBDi51hpxfa11SVpfLN70NZaZ5tc1DRgGSuQeb0gbRU5BeTFvuv3C9FqnYx6KzQ04ceEyzNq1Hzdd1oJnHjmGTfOWInv0BNp/9XTNOhHP89C4twsensaRq8/Dj3+5E6+5fja8e7dg87zFGF3cj8Y9R8bJysVjmBxdMgjqO9aZ9VXft3RL23jtByxAApwCLMViEaOjozh27BhSqRSam5vR2NiITCaDXC43bkA9PDyM48eP48SJE1XbqPsM6yfbZvZlwgPPfCQSieqUn45iAScBVyaTqQFyMb30acIRp3Q6jXK5bKJxTqcVU6e1nJ44BBkBcBr5nARQu1/S8PDwuHzY8PD2BRZgCzIglhEFxo+uXACJI0k8+reMjvCWyWSqfMvUpIAnvT5Kb3HgAmyWXJh/nSbombD0WlZhwMUqw2WstWEOM1hB4EoDJgvgW8+5QIXLyUq7y1tt/OaOS/5aryQvnmIqlUrViKS8sWm9rWkBHOk/+gUL/awmKxrGfdwC8cyHiyyQKnxq/jQvYXm62oXLtCITQeUUmnLouWQFZu/Yixte3YnnHu3GprlLkO06gWn3PQ046tq4rwvefc/gyNXr8ONf7sRrb5iD5M93YsuyOUgkPDTuORoJaEaN6HE95Tm5Zum5ywZa90Q2OoLPMxM8ANTASefleR4KhQL6+/uxe/dudHd3V9+ea2trq75FJ9GksbEx9Pf348CBAxgcHKxO1enpV8tWVyqVmu0OPM+r7jsonzBKp9OYMmVK9b/oidj0UqmExsZGDAwMnDMRJz+eqjvjVHfEKcixMLjSU2DcwfkzJ7pDslFm42aNfLTR0CML/az85/w5WqPT6TL5ecnDcgqW4ZcOZ0WH9LOWc2ewKUZDwKuOOOg1La4Il0VRDbE1Eo4CYILuhUUBta5Z96KWyc9rgK/XOGijK/W39M9VvqUTLsfHum31B9ZdXvengZWOakm5wov0UZ7OCGtDC5hbESFrtB+Wt5YZT6cF6Yeuo3U9SK+ELHnJf6vf56e3om3zPsyd5mHbI8fwZEsnsl196LjvGcALjhY17u+Cdz9w7OKV+Nn3t+C8NS04+tNnMbR6AbCvCxyqculQ1MidrrPuM64oK+fBfcHqg3Ld+tSVACcdaXKBU9Ht0dHRapmFQgHDw8MYGhpCQ0MDpkyZUn1Z6Pjx4xgZGal+4NcasLnsqu7vqVSq+tUJAU7yvVOJOMlbqjG9fKku4MS7gfNaClZAfrtOGxutbNpBccdip2J1UD01INdk0bU4kiDHFRSRkdGHLpN5cXVQDTJldMJgRmSn+dAykrKk00qeUkcBTKVSCUNDQyiXyxgdHTUBlMiKz5qC7rMzctXfSm+R1S7aOeqRcRBo0vIKI9ZXjqLqNFY5Vv5hET6dVk8dczkWSNJ5M2jK5/M19/VGsryFBw8SmL+wKLDmW5+1HIS0UxberXpaQIZBos5D66qOMgSRS384PwsQSnrf99Gy7xh838fBngS6N65E075jmLL9IHwD5Fn8NB3oRnpoFF2XrMTDD+xAZqyA1sd3ROpLYXpuAVbX+iMdbbXK1TaQP6dlgSQddQrTcaC2TcvlMvr7+zEwMIDjx48jmTz58epcLofm5ma0t7dX7ejAwAB6enqqdtCSga4XT5nLIENe2uEIUyqVQmNjY7VuUqZr4HsukA/E2xGcYZpQxImBjTU6E0PH4EmDHclT7snZ5Rj1oQ2Z8CVRGJ1GE+ftSscOhp265Uj5N7+5o/eh0hEzbUjkugUadX05n0QigYaGhiog413LgwAUk+aHr+s0URxDGGk5WkA3CDRZOmLVSZfJzsLKK4xnTqfbyQJDYYDEkknYPRfo8rxTi23FYfFUrt7iIghAMLkiOkFgx3rW+h21n1p15+e57/A0vwvg68FXUJ2tsoTGOtvR0NWHKTsOAXX2g2zfMNoe3YbhJbOROd7v3ABT9zXp8640wPhvKbpsqjVNrdPoJRl6x3ueotN5uWyYJh2BZZmLPWNbL9dHRkZqBs9aJi695vSy/U0mk6lO1eltBoQ3Lt+S89kmP56qO+NUd8RJdnMVcMLom6NQjPSt3YiBWkUEUNM5dafTQIFBgOd51UiTABbXAmqLtMLrEaz+hEXYb+aZR188v89lWSN4nqe3+JY8ASCTycD3fTQ2NqJSqVTfLBkZGalZA8NtpfN1OTHrjSwrOhCFXBE6vuaK2FjAw5UH56PL5HbRO9YH8ewCPdoRuwBdkBOz8g+TrzgZGSUDp/aTkamFXC5XneaQqQ8B0/Isv71qOR6RgY566X5ppeU3/lz5hOmglOGKavEaFStyYZHWEat81yBCnmdqPthzMo0x9epqR06XOTGEzGPba0CXCxQxTxpAWhGmID1jcKPBkwZC/L1RBk4cVecyNMB0RWeC+pS2k7KmKZ/Po6+vb5ydZKCjQY310gT7Gvm+XTqdRkNDQ03Z+ln2gfJ1iHhx+MuL6l4czocYLN052HByJ9AdW6he4OR6vVqDKt2JXIaSedKgwOrs+lldPv8WPuTscqSSxpUH82YZGpazjALL5XJ176xUKlVdC6XXPgVFmrQMrVfEo5AFtixn4DLyYaDJNeLTz1oj4dOhIBAZxjfrAS+u5nRcji7TVTcGgtyGehG4y1la5UVdnK31SoMRfiYsyhNGVtvzgI2n96x+bf3n63x22YHTJZf+WOCB25rlybYxCEhpfdHRIT3QE4AkgMkaBHNf0qDaslfW76D6W9fYfllvS4tctQw4GqoH9hJtkoGElGPpiK7TORdxQjxVd6apro/8yuhWvh8k88nWomeOiOhOJuicO7jVGV3hY2sUK5ElWX8lZ5mm0q+puiIbFiDS/13Pu96YE0okTm2nwAsOtTMHULPRp8g5yKmwocjlcgCAxsZG+L5fjTiNjIxU38rjDzSHAUsNhqWuQQ5Q5xMECrSDYr2wZOMCjpaT0XuEaQchxE7WlZdVL66fCxxajkvzpRfMWo5At4HeQFBHjfL5fM196XcCnvmtJ1mrIuu8NPiR/uWK4OqoM6ex9KQegOQCXFpXfP/U5y/kHgM9yxG6iOUo7WBFLKw2Cot4ybN81mQNHPnM9beAnubRsqu8vo/X+XFkSc8SuBZF89Soxb/VrzSvQQNbPbjjAR8DIbkv/Gh5yaHXYTU0NKCpqalad9F1S456gG+t6Y3ppU0T3jlcR5406AjKJ8wo6A7ORkzyYNIGlZ2Y7mRB4EkbwigUBTRoHpLJZM2Uph7lslz4FVfLibp4YJlJdEHvq2PtRq7laJUn16LIygUmrP+WI9AGN8zh6HyjGG/rubCy6tGRsDJ0P+Drltz5twVKJQ1PMbuivZonLp8dEJPWFQ3qNMCLCrA1f64BSJTn2X5IXpbeWTbAyrMeu2Clj+pUNfDgyIi+xoMlqxydl44w8Ys8DJwYZOv2cMlBy13zrvnUFDRok7O26dZzwoPuR8yjBk56UKX7gC6H34idiI7G9OKnutc48YaMgHsEEgQErHAvRwGsMHCQQZNRbqVSGfdBU1kDkU6nq6MITl9P1IR/c4fhcDGn1c6D115J59O75/JbKRKZYhkI2NGLvvm/lC+jR/k0gXzXSXYlLxQKNZ92kXyC5MFrsKJEFdj4WAbMuq5BehCQYbCldY31LSicrnXN4iUKuXTVMvgS/RA56ugsp2MZS/vLnl7SBgx05HNE/OYmG3qO2EqZ0p/525DcXzhyq9tdH9y2QU4uSF5hcnbpmxy8eNf3/apd4G0bJC8+699ahy3QqPlnYOOqiy5X2zyXLeT66/6j8+c33+TM0SUemGmgqWVgvUVmASwLOLnyCrIdwPiodhSwxPLUZ82b3mtK6zH3KS5T+or0RWvvqLNJvn/ymIx8YrJpQhEn7mSJRO1aAqsD6Y4v9/XvIHCkRyvcQdjZMJAQcq3L4Y4RNPq0RloC2Fx8W/UU0p1Rd249IrKApAZ+ml8mlr04FN1OIid2ti6ynKQ1IpTfQcDH9d/SJ3125R10aDm5dC6IXy4/6FnLAQf9D5IJp9Ngip/ntuBpVRfptEH1cwGkIIAQREHyDZKt1R+tdEDtJ1bkWY68hj2v+ZR+r0FL1PZz5cmASQBJkP10ASfOVwMmnoZju2nZAi7HaicXb7qvWfxawMlqS2tgG6XNrT4fBEwt2Vr5ah4YiE9E/88U+YjXOJ1pigycGJnrBXRA7RoD7fR1hEk7fDFkpVLJVG79yitQG6b2vJM7igOofix3dHS0ZndtUXAxHNx5OYrCeQvpUa2c2XlbnUfKY2CmjZAuO5/P1wDTbDZbXVfGURTf92v2rJI1Kxwd0LyLrHK5XPXzBZJeIk8iL45m6DrxiJ4dr+XUw8CFddZA0kojv7XB1ut5tCPQRtLiLYgPro+ONLockOUkrTdNpQ0tWQmJrljr6aT/aMDEUS1X3Vl+lrxYh3UfsPhkfoMiBNazLFdugzCwpvsiAwupA/efsAgB18/Vz8P02wJUQUDJFWGySA9Y5RmONOupKOY7qB018HDtcSZlcgSa7bu1/tVFUQcSlu5Ysxi6Hnxf7zfF/oWfFRvO+sL2gWcJwsByTC8dqjvixMqn//u+P27BoTUC0UYtaNGm5OkaXWlHJPnJpy04bw1g5MxgLmzkwM9JfkEGWBte656eHtP1sqJPWq5shF0RBH1msMthe71RouUotIPSwND1PPOgr7kOi3+rXiw3S046LdfHxaP1bNhIX+s73w+bhg7SEz1idwF868ztFGTgtb4y3zzlFxZtZaDjKsPixRrt8zSjvh+lv8qZp6W4f1h5WDqt8+Q0mifrWctm8uAwSC8s/qyXbzjCJG+J6RcPXFPyQX3QxQvfdw2i2J5YcrTyiZKO/7M8WSaudDwI1ZEnrXeWnJj0c2edJmmqLg45uamuNU7syHkthIyUNdq3OiVf1w5DdyzZ8Exeq+ePPOZyuZpnJGrFr9/7vl+df5Y9bGQtjzbG3OF1R3dNiWnjqNO56snXLOMroxwx8ML36OhoTSfVRkL289FRLDGc+lt20lZiZCuVSnUTTfnuGX/GJWxdi5StDaYrksfEehMGnvRzbBCtaQgL4LjI0lnteDSA0XlbDlA7Sv02nc6D9SSROPVZFF7jxg6Kn7fe0GN+9XPcZtLntPOQ/iT/RWf1tLiUJzaBy4sSbeA+ZbWV7ieWs9ZtI3wDp95E5D5i8afztnjlKW5rMMbpWT8tPQ3ajoLztACAjlrxFB2DRG3XNIDg6BRHbFkWYgckMs2yAlCzVtKSqwVmrN/6Gv+3AJA1IGHS0aF0Om1uscBktavWJT2gjenlQXUDJ62kPGLSb4CFhWY5rVZO6fBsvGTUC6A63cZlAaeMAQM7WUzLnVifdf583zUSkvIsgyv39DWdlp/Xv7Vz4tA8O1+XARCjxyBMO1k2NuIgy+UyEonEuBcALGet82OHxEbbJQPNizaaDKb4rJ9lB2ABrzAAxsRgWBtrrosVVdHluEa4+kOnunxLTtwXXFEDixfOTwMZDRBEx9iJWA6UF19beivPcNTRWrPiIsuJWnKy8uT2c7URO0UrIqJtCucv9dO6r/WG02rAHDXCpEET22DtuC17wHXRQEbbEgFO/HadtkG8BtJaZ8nLIjTg1DrlAkvWfX3N2oKDz9wmQO2WHLwFh/ZpIi8L8EUBgOcCxWuczjxFBk7AKQOaTCara4mYdAeVZ6LkC4zfyE2UVzojcLLDyo7I0sEZgEhnlo4gIwvg5PqnsbGx6ht3vLBPnpeRF4CaiAkbacuYWwBKiI2MjvpIWm3MZNt/TmONGMUYJBKndvd1GVR2ZPLmFYNSoHYUValUqu0skSfXh4S53gLA9MhTR/S0jmijpw2hpTesk2xILQOsHY8FDoLAmwYaWgf4GSYGJnKPZa7BjdYfnYfok7SBjugxcGZedJ0tB8EDCctx8csFDB4tcMKfPgoCzro/abDjcrC6T3Lf0CDR1T6sk/r7kVYE2tJnHnBxGRowSV9lndI6aIEazsd6K1mXyQCA74sdZN5ci6RljaPWO3k7UeyAtvVWdM46rHYNAk/cd3U/DypD0mWz2Zr9yniwKG3Ousk2m+vOOiZ9QaJvYYOBmF46VNcaJznrTgjUjjSCng/K34Xc+dVpMQbyTSGZsmOQxeXxVvgy3eB5HgqFgukIgVMdQk9LcP2CjIF2EHqKxRqNcdk8AuRRHht4dhhiAGV6RAMofkNHHK6OrvHIlkerstmpRKLYIVqjWA0Gub46SqIBoAu0yG/L4epIk3YmnE4DJ2shdpAR1m2nQYV1FtJycY1oLRBiPacNuwXotCz1K+4WBYEa7hOSVreLvheWvy6H+eW6WNEK5ssq0+pnrvZhIKoBk9SZ+40AX0lnOXsrCuTSTy0fBgg8jabXjloyDQJP3L+tvFhurFsiC97WQUewrTYN61OW3KxnXf08LC+pYzabrX4qRUfirMEs11HOAhZ5CYToTtTZlZheGlT3Pk65XA6NjY3jOpIefQBusBTUOTiNdHo9Mi+VShgbG0OlUqkJtwppB8MdTb8dwun1qEPy1G8QugxVkLOUDicARNYQaUOpDWyQgZJnGdCJYecIjFxngCRONMgJMl9yTwAaf0BYgzkte3lOytGRPHaQLE/Lychv/fZcmFHWoXwLPMh/nYZBpc7X4ls7KEvH2WhbjsA1BcKH/h6jC/SwzPSoXa9X1HVwgVUN9NjhaBCudU+3t440W4DeRVr2QvycBvaWTnF/0MCI7YAFbnXURdtAljnX1ZK3BfB5EMR9WvOhozGsa3yW37x/m5aRCxBZwFzXl3UnrG8K39IGXA/rbEWFdbksL/lCg5ylvbTP0rIU+ySAiWUi/UV8ybn2Vp3vT87i8BgHuqlu4JTJZKrTNzxtwCM1bcCYrI5kdSzd6YSkPHltv1QqVfmS51jJedpOHC3zygbfigZZfLlG9y5jIml57ZD+jIqebnPxo4nry6NjcYqSP3dsbVQto8H14uiM5CmRKPl8ixxcV0uHgFNAT081cToNNLg99Eg+CqDRebqAgS5fgw8+62tRgJOkZdBr3dPAREctrenfMJK+oMFMkL4DtmPk5/mwdEzAtgWEdHuwDLQz1/zwMwxyWH5Wf9Sk9UzkK3noqcMgEuCn7UuYs9fT664ptCC91aBB9x0GhaxPetmC1d56hkHriEuWOh9XHwoCjVpHXOWyHCWyJC8TiZ3ggZ5lo0ROYpd4gCLEZfD/cwY4IV7jdKYpMnCS/YQaGhqQy+UwNjZmTl0B4xd7C2nFlw6mR5zym8+cB4fIC4VCzZ4cumPp0Re/oivRHw7BWw7A1VmFLEOp68xAUMrlsC8vFhbjqx2HyxBrPjkiwCBFg78gIyfkkgdPe8pO8joawovLud0YhEkZfHbpAxtVvVbEiihouXB6C6jIfx0d0JFQqxyrzS0Q4XIe+lmRGddNP6+fE9L86ygQOxme/rGcU719QfoRAxgLFDGfWi8tBx5UX9Yt/QwPoFy6YclV9FRPlQfxpCNxLpvAaXXkVNsrza8lBwt4sJyFD45Q6qiLa3Cm9YAPucYDPMsG6+d0/np9oms6zuUb+L7+AoOkkTbUyxw0se7pCJ+eFZD1tRLNsmxpTC9Nqgs4ZbNZNDQ0oKGhAYVCoXqPnbmLLOW3DiY2vlb+Apx8369GnETJJa0eufB2BfLZEQuoWE5P8y3XJeqi13lZ9U2n0zWGSxZpc+REGzyXI+GRMIMKOXh9Aucr6VlWrrYTg6qNmJ6+kPrLZpqSngGABSYsh+UykHoxq+bTGi3rslykebSmBZgsgBxEQXrO+WmnpEFuUB6sY+yMZW0GyyJs7Yzl4FzXLT50BEfXCxj/7TJ2wEHyDYpoaJIIqQvAuNqdgZPrhQ79vNYxHeHhZxgw6SgR2wErSqd5t6a0WJ68hYD00yBQx3VyDQQ5jYAxq0+79J7vu7ZosPTEAnDcdnpLBqmDjqhZdkLLXJ7n/sSzAqInMhgPswEvFPnxVN0Zp7p2DrfC80Ct0bFGLlbn0b/5rJ/V6fkeGybLuVjGjEe87IQlQqJJOzGOREidmT/mR/hk4Cbly9SdjNTkWSnTIpcREmPM00OcDxtxzaeeUnK1hZaHLpt54wXresE+y4Svhxlpy6iyY7Gcq8tJaweo7zHQsHTXRZbjZJ501M3i03I6Yvx5ClamSzkPdhqZTKbaFnodnDgZ/n6Zlq9LNoD7sxl8TYMGl/N0gSTuq9b6yaAIkB7saABinfU1/faVBZz4t1U/F8hjG2L1BZ3eylvzoLcAsd4KrpdYF6y24/29eNqZbYoV5eW6a1sd5iOsNNZ/y2dYMtV6KGtEdZRYZCh7nYntFiAa08uH6v7kCjB+dC9KJB1Ir5kAap0eX+d02um4Ogc/w8ZZj6S50+r1WNy59dtVTGwotYHkhbUMumSUyvXgtzuAkxG8UqmEoaGhcSNayzgHGQr9yjNPX7EjkwXdkq/M/XPkSa+Fchke7QjFgIpMuF0kqqb5txynrnOYAdQAR4fXrefYqbvK14DMko3Fry6Df3NkAUBNm3Fkjx0ID1b0lIjUX0eT5NXrXC4Hz/MwOjpaszGh5C1bdciZ+42QflNWeOH8LACl/3MbWWTJUeflegGBn2fQw/rAebucqx4QSd/WfPA167oQt3fQ1HIQGLP41m2hZSH3rL3rLAAblTRPrKu8Zsj3/Zp9kti+Wv3JkoEGavKsJQt9XQ+INf+sFwyMRX6W7eD7vDZK7JsVJT1bFK9xOvMUGThpIwiMN0I8tWal04rsMmjW6Caok1jGxCJrZJJMntrsTS9yt2SgOzMDIz1ikf9ShpyBU98V01EZi1/mVfLTdbDkG+S0pJ4cDWJjYwFcl0yYtMGqVCrVtQCWcXTxyW0b5Gx1nV1RLA32g6YrLL0OMtZaTi75cLRPdE07Fc0Hy8h6e1HuWfzqqKfFmz6C2lsDQR1RsmxEmGw0IJR6MlDSa3KYN1d5DKCtNrQOlkGQE9T66gIGrnJZJqyfnL+lXzrir6fiGUC77BiDRN1eQXXW/ZDz0fYJQPXVf10Hz6vdy0r0NCovFnhi28VgTfPLtkLbKQ32mQcXOBcZxvTyo7qAk44kaWfLaS0noI2FXJezNZet01gdRr/qDsDsOFyOOBWJukhURN7YCxr9CUkeEmVhXjR/2Wy2xvgVCgUUi0WMjo7WOCItLzZK1nQYUPvpBznr9uI8xTjofYD0Ikjdbrr9LHDMET+9voQjUHK29IpH6QxAuT3CDKuOsukICYfX9ShcOz0elVrXXcDAxa/wwXoTBMyEX/n0Dr/l4xqgeJ5Xs67DxQcv6NegyTr0upkg0GTJxuX4tV5IffmtJit/zpev89Q4r+NyDQ6sdrbW0wXpK095st7yM6xDzDfXUdstbTtFZvKM2C69XMGabuZ6cwRSzlZf07Ze/7eOdDqNTCZT5ZPlJLZQ91VX1FIT10PLXqantU5Ke2i7ymXqyCHrOvPBoDzIFsX00qW6dw53gRch7YT0sy7QpNO4HLdeE2AZNm3EtRNiPoV05ImjMVY+FqjhN81cYX/Jl1/ht6YgtOystmDSzjEMWOhn2YAKnzyicoFQIW4XC3hpveDytFOs9/VeDQbYsbuAk45eaJ1lXeM3Hfm/Fc1wydgl97BRPqezjiBiR+ACeC6go9u9Xn3Sv5lnvfbG1VZ6s0VXn3aVz/ocBHIlveg8AxAdteO+Ldf11gFyaNlqEMvEoM2SNTt3vS2FlW9Ye2nQGdTXrDwtmYgNlWk6+f4lL2PQfsPqewwgg3SdI0vWW9UWELTAtu4nUeSoZXAuUTxVd+apLuAE1E7pWBEWnZbPQpbR4LN0FAugWW+fsPPSTtFaoGhFZKSjy75Q8lFdzovBAa8JaWhoQCaTqYandaiYwdLIyAhKpRKGh4dRKBQwNjZWBU88ygmbM2dj4lr34ZK5FSHkPLg9XN9UY9DIhiuoTGvkrkEN56+drs7XGh2KsxW5ykeeg5yMJVdL5/jjqSIbPvMRNLiw+gPrr0UsrzDwxA7W9/0qf2E6pZ2Z1RZyXTt61kXWZSvKxxElCzCxHrvaTNuWoKi3tIEAI90G3OZWPaV9rM+l6MGCy4lzm/CgTNLwB3kZVGrZWRuf6siS1EXrnG47qZseIFp9jQdSrNNsD1OpFJqbm9HU1FS1hZI/vwFtReyA8R9gZqBtRRx1X9Rtw/XWAzGJ3rKMtU4JaLb8mnWcK+T7J4/JyCcmmyb0yRU5u5yDpYRR8ta/tQNyATYrrascdobcOfk67wzLxlYMIm+qJqMsOXjKjjs5d0LL6QXJ1xq9spyDnKGkiypzDb549M18udaOBMnduq8Nm+Y1CEgIfxqE8TSPa1dzyzkIcVuxHIBakC8O1ffHbziqAYgeWWt5BMkvTAYuskbbWsauQY3l9Dk937Oe5zbhCJN2/Prs6heSp0tvw2Qg/OvX5l3A06qPrn897eUC0fqeZTeDgKTOQ1+z+ND/RVeljCC5uA62nxx1EuDO67CsKWSrjKDpWfYDeiDNpMGtHhhZMuf7ug+HyTemlwfVPVUnZ0H5oljWVJOrI+sOo0eB1siIp7x4lMJpLJBljY74vnRkXUalUql+B0+Mruzf0dzcXAVOugxXVMXlrPUoi6MCkje/2WTlo50JA60oRlYbaX7zUGQjICGbzVZHekHOQ8vFyt+1BkMbTpYPk57WKZfLGB0drYlmuPZv0QZa58t88RoNOXOkiRf+C/DWkUfuM5yHbhMdyeE6aBnxWctRA3QNwvVomnVV+JR2tMCQbg8rMsJASa/J4Tx4rZvoGdcjKAqr9d/SZwDVV8iFR2s6WNsHK2/mT9edbYrVHtrBuwCIyJ1lKhESV+TF0iFLDpaMrK1muBwGUrw2kOsjOiPfEJUvTMg9HtTI57L4229cJ72uTfMsswOpVAoNDQ019RPeGMxxP9QgVMuH7YG2W9ouW9OE5wLFU3VnniY0VWcBlaijm7B8XWXx6MIFhHQ5QU5FAIt0Wh6R6DykE3JYmEGT1RGB2tEVbw6pN8m0ytURDWuEZhlDzsf12yV/pjDgZZ0tWWs+tVG2DKMGCfxbR5jYSevv5rHhtRyuJVNNfJ33qWGHwgAXOOX0WO46L0veVttYTlU/79ILV/tEJa6rdd0Ccdr5ahBlTTdyHlb+Wh5B1yx+WZ+EH61fVv1c5WgwwdcEeFqRWm5D5kfOugyLtO65dMJKH0TMl6Wz2n5agFCDB12u2DKJQMkAlcE8A3rNOwMWvXVGkI6yr7LSWQPNIN8WpJ8xvTyo7oiTKzzKSu5ygJyP3Nd5s3LrN7T0/kw8ktAAQxtmzTeP5vTGl5bjkQ4r/PGibv5eGzsHycta58GvozNo4/l2Lp+f0bJjGWqQoeuhSRtzV37WaNmaxmQDpadq9H9uZ3YiXL52erzOQ9ZNyChWrnPeDG6CHJ+utyUneU4+0SN15zUi2ulox8kyYznKWRt4Dcit/sRpWWb6g9YWWNX3dLSEebCcqPW8DBCkX3D0T/LT8rKADNdLrw1ictkXK189GOE34bRN4bd1gVNbiDBY5vsSnbXskyY94NOOm+vKa4AsHXcNNLQ8g+wA86RlyXxKGt5FO5k8+U04iTDx2iGrHSQi29DQUFOerEdMJpNV3eE+oZdHCHHfYXDFkXFOK7rEdl2I9V/aWUf5tEzONQDlx2uczjhNaI2TdejRRT2jHP6vRyjWYRkmdkxA7b4onLdrZMRnFz+SRjqedOx8Pl91EK7XtHX0gwGSLkuPuiY6utGG3apLkHENcpCuCIF2/FIfkZucufwgR26BEXYs/IaiNYUUNoLXsopK2nFxpEG3v9U/rPx0e+mzpSsWHzzVwPJ1DSp0PlbZmkdLFly+jjRx3wxrC12mjjIyaf2xbIqWrQs8Wnxo+YkN0SCXnawGbjx9p3ljHnU76TzkHg+yXHme7n85a8CkgYkV+eGF77oO8qwAIW33BOyIrDk6qKfAXQMVy1e49F7bOB7s8HOeF+0NzZheHjShiJN1AO5pBctxW795BCBTYq5XfeXgr3ZbI1PuxLwORXjS8/s8AhHjJKOf4eHh6j5P2iFYDlNHW1z11Z1QG1ItQwucBIEiF3Cy/usRJY/sRMbsQDQxcNUHr20Bxn9rTztrDT4ZKAlIFdAq6yWsaIZLH1meWh4ukGLlp+uuy5e1H9rh6LasVCrj3l7UZIFYPVjgNXuWLlmAivNzgTGr3pJO1uFwpEmvYdERUE36LSernvoNMB71c1vplxfCIkFchkSWeG8r3VYMAIQ4GiZpdfmaT0v3uI2EN7FZlUqlOtWl90Fz5cU8BV3XAI15tSL9kpZtZLFYrFkczmVwFEjbdQBoaGiA75/8aC6/4CH6wGmlXI5ecxn8PTlpG91ftN3ltmI900CVbaTcj0HUy4vqjjjxf8u5MLlGdUEOSndO19tbVuSInYTlBPhZ4U+MEndOXv8kZ3HSxWJxHHDivPTomzs+86lD9boOFmmQUU9njfIMG0m9CN8a3Wregg7tQLXjtkbcOkTuimZowMr8anDAdbXqbl3T+uLKg+smIDNomsvVZyywE8S7LltkooETP6cBWpjOBRGDKyvK5KqLvqYHIa70WlcA92DEshsu8Me6Y4EbeVZHhCWNpWN6CklP7+i8NRBkfdBAzxXh4nPQdVca1z0tT5YZT38F5Sf2lvWSdVUP3Lh/s0y4XKvNLf/A/GqZcJ0YEFoDBlfE6VwBT348VXfG6bQ3wOSogSsUrzutVjp22BJF4jOPHLRjF9LRDUnLhovX4WgeGcD4vl+z11J/f3/Nvk78lhPXi0mDAX1P1lVxWNiSNeel5RnFqYUZYG5Licix0eF7fJY8tLwtsKR3OJa0WuZCOmrHMpCIgAak/FkX3x+/yaIFpF3y1s7MAt6WE+G6SN0lKiDOgL9/pkGZ1da63bXz1OXy89pJB42MXfXQ4EfzxhFAXpdi2QANMlztEgQYdUREO0kdyXPJRr9Ja7Ury0vrPJcR1A9dgEXbPL03mBUV1HWWNU868uQCZ2F2w7INml+5pteayfV8Pl+tj0R9xFbL2kCJ6ElanrrTspAF5FrvGEwxGJMyJcKrZwW0z7LqqAcvEu3jlz8kHwZ95wr5zx+TkU9MNtX9Vp0my0hpYxIVOLEhs6bodHkaWIQ5RpeCWwZdpuTy+Xx100rZwE1ooh1GAwI9molCUcrVTt8Ce9oQ643kJA0bN10PPUUF1H5UWS8Odjk1IV7Toh2Hji4xSLDSamcRpCPa4Wg5aQBigS0mHSHzvNpNGDWF6bGr/1j5SPlB6a2+5MrLAmlcR1fkz8rbKitsEKD7qLYZGti76uA6uG1c/UTO+q08lz5ZdZV0GixwXVxgjfPkIyja4wJuQfwF6Quns3SD+fV9v2YphR68ibz55RALyOo+zLIQUKOBKEcHw/qDJSvWBV1fa9r1XAJOMZ15Om3g5KIonVjO1vy5Bk7aSWnDpyMf2rC6DJ0GCcViESMjIxgbG0NfX1/NW0FBzkUbFUsO+h5fs6J1XAdOY5WpiUETOwN+jmWsDY6+zuu+fP/UZzL0mfd50YY1CuBlwKSdMINajjix4eRReRRw7Vq7w3nos7ypo/VWP6/3dxG5AajZA03rtu47GrRJW+RyuRqZ60io5ZDFWQtI5jeVrB2vmQ+JGvq+X32bUc5Wf7Lam/VXzqKfIhP91qXVhpYT1H2En9XlatLO1YpK6DI0qNH6GwSEuV9JhCSROLm5bjJ58msE0i5sAzgfjq5x2wQB5qgOnm2P1NFlA7VdBlCjGwJCZFAme2pxtJ1BZD6fRzKZrL6xxxsLa1lIXYU3/c1Qa90Zt7dLLlYkWM5aNhY4PZvkx1N1Z5zq+shv1FGhpI8KnjSC15EmS0m149PrSORsjQo0ONEdcWxsDGNjY9XNFF2REks+FlhwyYSvWR2U+dPrgsI6qQXA9EiaQaq1mFbC5gICgNoFvLymRaZpZOpGl8PGzJKZBkz8W6e12pzrqsGhdtgaOOmpRi03DZxcLyxYvGinb4FLF2jS+VgGW/RCy4KBnQZEDJTYOet+Ivkwibx4Z3bRCebNahOWAzA+Sij/uT8ycZvrviDXdGQmaIAR1pf1NZa5lZ51V/i01npJG/CZp3z47TEdbdegTWRu7V0WZK+C7IfLZgbpt7atGky7tmXg50VPeY8n1ydVhB9+u47lqSOHus5BvHA9tI3SfdU10IjppU0TWhyujbg2Ktqw6DwsQBPkkFxGXY+uLYPKTk32CGFDJB2iWCxibGwMIyMjGBoaqkaZ2JBr0kDJ+q3rboE76xn+r+vhIgt0WcaApwnY0FhTHjxyq1Qq4yINcpa33BgUaN65LMuZBjkb5p8Bm6ybknq6dE+3BesN88n39YiYHRvLSNdHiOuso0/6bSEdgZB0vCZK0kpZIicB1twHhE8Bv6w7OtKoo06sL3oqjvsF11GD3TDwq9uT7/H6NH3PytMaGPA9l8OzItl8Zh75vwW+td66ok5CAnh5CtfzvOq3MovFIjKZDBoaGpDNZmvaTPPDkSCJ/lo2iEnrq8smc0SHZR0GyFhPOYqn20GuSxlSjryhKbIoFAo1u5Fb7cb9jdtf215+Jqjt2T+4DmvwdrYpXuN05mlCO4fL2QJQlvGyngeCv0VnjbasTsD8WAaKOzDfYyDi+z7y+fy4SJMuQ8rVRoeNA/Nm1Z3LZ3KNcLjuYcDJirpZcudoAxsaMTwMoLh+/IqwvFko2wEwaOLwOLcjr2nQddcO13KQnF6/vaXlyHW2jLWlv643OIMAvuVEGKC40orDdBl3LkuDCmlrdrjWGheZ/pHP5LDzY540j1wPbg/9JiPnxeBF9NQFIHQ7iaOX61IfDZS0s9LPWCApDDwF6YqrH1u8sYy0PZA8OB8NmKRv8FYI/Dq/tKHmm/uHfFtTrrsisiwzfc+ys6x31vSUC8jI81pntdy5T0h6zzs5pceDXt8/tWEp2xDWZ72ZZRSQZ9kF+c39SvdRy9/E9PKgCb1Vx0qqDZoOpbIxtUb02nHpSJMuX0e4NJDRzoMjTNqpiqGShd+jo6PVBeCuMsI6YVAncnUyawQTBJqCOmsQsOTIj56i0+CBjZlEmkqlEsbGxsbtn+TaNZ3LlbbwPG9c2J3lAIx3TC7HZRmusIiTZeQZ2DGfOtKkozGWXgS1S9DB7c+Ljy0Z6LpbzlHXjxfgWjrM6Vj2+u1FlgOnk3usoxYI1o5U58F1cm0m65ItYC/wZ9KRVc6Dzxq0c9n6jU2dztVmmmcGfPJf2kf6l+hlqVSqrn/S34nUQIrBjguwWnXXA4aJAIMgQMX1tZ7T10UeYpMlTSaTQS6XG8cz14/bRdcpiHcXiJJ2YbnqOsf08qHTAk7scOS+Bk6i8NpYaeAkBpmdOZfL5XOn1qDJ5RR1OgZyAgDk7Tmujy7DJRcXhQEpLSvtSPQo02XMXOCOZcGfK+Bde60IH1A7JSYAaXR0tAqg+DovDtdGhQ8Op+upO65LEDCwQIT1nJVeG1Cuv4BsGQDoqTkLzAdRPSBK0uv1dFYU0ZKPBepZ5gyIg/jiaJEFnDhKGwRSXVEYnu7jSJMlOwuY8FmDHUumuh3EzljTXrp83R+1TKxpaQ12XUBP2ktvsiln2S4BQE1kVaJQOpopxHZCdNkVfdJ8WxHUIOBk6VsQcV4u4GbptUS5JQ8A46bsWPZWWeyngmRg6ZD2AxqUnWsUT9WdeaprjZPlZFkpRfG1wQdq3waynKnuuFYYXX5bIxdrRGc5O/0cb2xpRUskbz2iiWIkgv5zXYLSsbPT/Fg8WeBJnKYAJn5DRYNLaUMBQwKUhoeHa/7zGid2IrrdLcOmnYbV/kFysnTANQK0AIUm7SAZ7GunbLW/1lUrDfOr5a5J+hIbailHy8iSl1y3gB5P2XFalmOYo+XnLBnytC7rhj7zonKLLB4s8MRpXNMzUcGB5bitCCjXVZeho2Ra/ladregIcGpQJ3xzVDSTyZj6Km8ncn56dsDVR1kfg9omqE+5AIgrnfxmcMIk/IpOFQoFFIvFcS82cHrdBloGLh40WXZFt8W5Bp58/+QxGfnEZFPdwElPp/E+GqyoPPUBjDf6rKz67Z8gB6rPOhKj+bXK04ZpdHS0Ghp3TWVoI2IZFW2s9L2gZ4KuacCknS07WF2GAKZkMolsNlsFTcynbhd5U6pQKGBwcBDFYhFDQ0NVkMlrnfT0nDWq1NMnso5DGyLeANUyiJaMNXCKYoj5vpAV2WGwpIGllrH+z/zqtmGd123JAxALyPm+Xx2AiMw5vZBe88E8c9/UctQL81lWFnjVfPKifdER3gBV0gg41/KL4oQsQMJ1tOwE6zoDSg2CdIRMn3V5TBo4uYCfZZus677v12way2BTv3XHfZj3WuN+yXzxdW0HdH24va36hslct5vko/u4q68K8abBY2NjyGazyGaz4+QrOsZtoCPpVh2sfHSdhG9tW8418BTTmaXTfqtOOxM2MLoTifJajlt3fj3al7MLNLj4tYwUOxoGAfpZrpN1Fgr6bzkbzZ/FLz+jI3oWn0HPCnDSa5r0MyKPQqFQ3TV9ZGSk+sYhRxHEgFs7c7vax5KLlqfoDkddLNLGNkwHuG10G4S1M/OkZc0DBS6Xy+b1ES5eWSYaALh41/y7dF7S8EjZFXlh8KAjFBagYrDAkSQBTAycgtbcWCBX14fvWYMQq83lbE1Dc325bjwtZOlLEAW1sdWefM8FBrlNZPAiAFpe8rB0xvNqXy6Qa2xTXPbIlZ9LN616ukBVFNDh8jfyPA/adHQ2yBax/XeVrevrygc49YbquUTxVN2Zp9Ne42S9vqw7CD9rdSZZ7KjX8+hIiAucWEbHxascMhUlb9PJaJiflXI0MLTKCzOClhO3rut66ulQbbwYqOo3TaRT53K5cdNzljwFKI2OjqK3t7cKoARMMVBybRkQRkEOUiJRsihWTyGybmgjaE2x8nMTcYLCr+Qt/Ek76LVQls7psnQbuuTDbc73rLrLPVckkeXCzzGoEN542wGuv47GcHTY90+tQ5FIk0ypyDXdRi4HF+QwtRxcfd7qU7zNg+iv1McF/oOAHNcBwp/DyWqS52r0wveRMOyGyJ11T2yX75/cNDSXy41bJiGRW+ZVA2Heow6oBZeSXuuYq32CwJI+dJvr9tR6qeVeqVSq05e8JlDuaUCsdZ0HAS7SvsXyDTpSHtWmxPTipwmtcdLOwWXIrJGpq1NpJwmEAyfrt5Wvzh84Ffa23hqSPPXvIKev683pLL6189QGSdeFr7ue0R2av/mnHZ3wwiNZebNwbGysuu6L32zSxihodMdyYGNsgUpL1vJb/stiWT1lFqQHugw2mFqfXO3IcuJBgQY2LifPzieK3FzXrekfSw+YF103C4xZoITrLb91VIbXK2pnGzZVpXnVbWi1BTtdq29Zztmql6yr46kcPc0cZMeYR7neN3sqCo1ZTN9xZBwvLuL7I+3N6Js/HfOePQAPdp9n/rjPAqgONNjeAajRVy1DbYcYsFsgweLfqmsUMOWSq5AeAFgyYyCveQ4DvlZ+mlfX8xZ4PNfIj9c4nXGa0BoneTNLOzEA40L82mi7HLzk7QJTmlwOSD8vgIH59X2/ZlG4tbbJ82pf3XaBQy5Tj2L01JqkdclXzr7vjwOP8tsinVbqylN0LAt+U65QKFQ3/szn8xgaGqqJNPECX66fdjZBozdr6jZIBmzE5b/UT+qhv5ln6QHLx7V2h/XXMqzCv+d51VE/v/Wpn9W6B4z/NAbrimWIxSkIyGGQz/rEay1YzpaM9UDHqq8L2DHA4E/G6D7NDt3amsLV3tzG1n1rUKWJr7Ns2S6x/PQgwCIN6CwnCgAtR/tw6LwF6F46C9N3HkXCAA9C0v7C71BbI7pWzsH8zYeQNGydBgtSJm8JUqlUqrqmI0+sr3qanmWjd/vXts9lZ8MiLRaQ0vLk/m7laQ2QBATrKDCDLssWWMDRxa/OJ0r6mF4eVDdwYkAjDt4FKvTInh28nLmjuKY8wkg7A+uQOvCIzQJ51lnLwTUq1tdd6fielb+Lf82Dfoado0Sa2OlI3cWxyXQKH9aeTNpoBv0OqmtU0gZVGzrtkK1ygyIXFmk9CeNPO5Ww5+vJ2/rtKl+ndTl7BkGuiINu5zA+dd5Bgwr5zTxaDg0YH3Fg3Q6rt66nTie/Lb0OqqtFPfM6kCyW0JgGOoaGcHhaG4amTcGCh7bDslq63Y7Pm4ajyzqxcOsBlJa0I7/9OI4tnoEFW49UI0/WVDDXwfO86nSV7DquI8sWqLCADJ818Ajqw7odLbtrpQ3Lx7qvdcg1GOJD91e+FgRU9bMu3YtSt5heWlQXcOLRvoAm6bhBIzmtUBo4WREnua+Bk5UvAzhRdI6ysNHgDR0l4mQZT1cn1h2Pr+v5cz0K5rw4YsPXLTDJUyGSlg0nv40m8kwkTu0YLTzJOhRZ0zU6OorR0VEUi0Xk8/lq9Ik/bKwXyroiTRa40vK0DBqnlTrr6J+us7Sj1gdXeZK35ezZKAYZa9YheZ4Xpuo243axDhcoZrlq56XTMR++79esV+G8JS9ZtyR9VKKRFnDScuU6Slm67SWd9DuOqFkgS8te6wGXqfcsknrzR6aFL+Zb+r+ujxVtYh5YxlJPbYuajvbi8IYl8A8eR2rWFMw42ocD82dh76XLMf+BrUgG6NTxedNwaPVczN9xGKWVM5Ddfhz7181D54FepGk9okyz6zbVdZB2kfbkCBT3J62HyWQS5XK52l683sviXctL/7b6uU6rZe1Ka521XvNO6zyzwIN2rXMsLw3GXGVbxLI/10BThLFPTKdBE56qY6PJysnKqqdoXE6A8w9zZK7n5bprNCvEc+PayFq8hpWn0+p7lsFgXqMYCQuocVprp2s28mJgJZrEe6HINb2WyQIZQhZICgJNQbIJGslaFJa3TucCR1pfGRhpHQpzAjqtdQ4jF4Cy8rLkbrWR9D/XJ260M7HyCivL0pEosrBka7WJC1xyP2aHL2cXKLPky9fGyQhA96q5aNtzDJl8sSZ9arSAzk27cODyFWjqGcSUmVMwb/9RHJg/C/suX4EFD2xDEkD/3GlI5YtoPj4Iz/PQM78Dh58HTd7CNmD3CexZNhvzthzC1BOj8ANshksnAfszPPy8bjvWe1c716PHVrsF9RVXHV1prf7LumCl1aBI2xuLx3r68LkGmADEb9W9ABQZOMnGidlstvqWFhsuUWKeAnO9eeVyZPqakOWQXcBIiMPS/Cx/YkWmpiSdNcIG7PU8QUaX+bGmGnnEYz3LoxgezWiDxqNG/p/JZOB5XnUULptUSqRJoktylmk7vVhetx07Y8tZW+QypkEGK0hPLBlr2WrHzjKSaJzVXi7QHMavTmtFlrRjkkWtepd8XV85yyha88ltpKed9dos0UUtA5fTlGsWoOZBB+tFWB1c8gLGR4G03HnAw2/xWWupeHqa5V+Po5Nnsn3DOHLhEsx6bCfSY4Ua/tNjBXRu2o19V68G9ndjyswpmLvvCA4u6MT+y1eibX83BuZOw9wn954ETQumK9DUi/0r5mL67mNo6epHkfRFokdSVlDEUp5h2YjuSxRG+rbLxvj+qe/d6bWN2hayDHRbuWy4C9i4gIp11j5Doqi8SFzXieXDOmj1Ow3e2VbzdSZuj5heHnRaO4cDwUY3aGGofjYsjcVPVJ65Q1hALihPq8NboEkb6TD+LOdsjZSte9KZg9aIAeOjaxxxEuOqwa/kHwaILHKBT20A+X6QfE7HEGmnLvKxQFkQL5YjCDLoURyI5knny/xrXjQQsOqs62852KA6B/Gg66F/R3GIXB+LN10/3Zaizxw11qBSP1cvVQD0LJmF1j1dSE7JoGX/MRy4eg1mPbwNDX3DNWlzfUNYcN9m7Lt6Nfz93WiZNQVz9x7G3uXzMdLehAVP70WlOYPDM2bi+OKZmL/9ILyFU4HdJ54HTV2YvbNrHN/832orl7PWOqYHXNagR+fFYDaMD53HRPq7ThOlj+m6Wi9HWLxE5Y/LCMrjXANNvj85U3WTkcdLlSLv3OVSWh4BSgSHlZidt3bcenGyXHMBLgZvYU5Kj4J5I7566swRH150LW+s8f2gzu7K26qLREisNTLyqYVMJlPdOVf+S3rZm0rOo6OjGBkZqR5yT0/XaQAVxDPviaV5ta5ZozLtbPV17TDZSDLPem0PlyfRRZGFHKKrvKYjiNjZ8Fo/+YwN1zfIAIsesv7zLuwWwA/TpaA20e2iedW79TPP+r9uS11H1l/Omzdq1Hy5+i6TvEE2OjqK4eHh6se4xVZYMmIZsl5z9EzbpRqdKpVQ9oCj6xehXCrDX9iO3JEeHLxmLQaaMlWbJf0ocawXs3/5FPrmdaCvexTdi2cBHpBCBScuWoiuWVNxbHknZuw+Aixog7+rB/tXzMGMPd2Ys+vYuL5v2VjNI7e/9Z1P6SdsV1kmkheAcTohtsVlh4L6Net8kE3kqJBroBBk73WfEvuu+6hlh/TaxLB1iMx/UL1jAr70pS9h4cKFyOVy2LhxIx555BFn2mKxiE9+8pNYsmQJcrkczj//fNx11101aW699dZxbbFy5cozXY1AqmsDTGA8wucFmmzE+H/YGywiDD0NFAQ69HUdkuXrcs0VaeJ8wyJcbJg5vb7mOuuygkY/erqRy9dTdCx33sGZQYY2vK41TVoWUYxD0Kg4ah6ST9B/ueaKJljtL8ZVG1xX9EnzbpE26lHBPLeT1iWLvyAwo6/xglcXry7n4ZID8xYUcXDVfaKORQNI7egtfdXP89lF1kBB6tq6eT9OrJqH43NmYOqhLjTMngp/9xEcveECzPjZJjT0D9eUnT7ej5m/eAKHX30RPADTx4aAdArd5Rz8pbPRsWUfsvNaUdnRjcOrF2L67qPo3HkMvsG/BQD1dK3Ft9YhqaOWqc5X65mQ6JT1woYmC2QEnfVvnY9+xrqu/ZHVp1luuhwXX0F8aj7ONfB0Ntc4ffvb38aHPvQh/PM//zM2btyIz3/+87jxxhuxbds2zJgxY1z6v/7rv8Y3vvENfPnLX8bKlSvx05/+FG984xvxwAMP4IILLqimW7NmDX7xi19U//N2NGeDIpc+OjoK3/dx4sSJ6h5AcmYHLKSNZxBg4bUY+rMg1joRyd+aKpCzgA4eremws+Sj17ywg9Dgh8u3fruAoQs8WTIT/ll+1n9RHgEG+Xy+BjjJd+XkTTm93YC1HQNvYeD7/rhdnxkMa3lZjjXIuek0uh2tNnHpkp7y4nUJbFglwiZ58aiU9ybSeem6BAFsaSvrEzead9F9eStIRscyatYRT86DwZeLND9chv4moH6ryorWyA7y+nDJHTj1BqTl+OQ310e/qBC2Nxzro9YfDYwsUBGko01P78bI9BZ0L5uHaVv3Ijd3GvydB3HsVRdi+s8eRbZ3qOaZwUWzkCiVkUp7KGUzKPmAn0rCK5aQXzkb6U270HXeErRvP4jWzQcwouykjpAIr1a/Ep1hm8A6pXVDZMTpJA8htoXJZBK5XK7aftZ0fhDo0DxIOUFATedh5WUBRBkY8Y7qLEPRb9eARM4u+y3lcD2iAsqXE33uc5/D+973Prz73e8GAPzzP/8z7rzzTnz1q1/Fxz72sXHpv/71r+N//a//hde85jUAgA984AP4xS9+gf/7f/8vvvGNb1TTpVIpzJo164WpRASKDJz0J0r0x161M9WheiAYVMh9y5BpAGY9K8/rTuEyoJqHoP98zepcGmS5fuvRENfbGtGwQdThYZGrGA3f92tC1TxK12tCdASQ+eKDHanmU9fHkjuTrruVrpROotCcQ65nsOY+t6sFFKpgCsDIrKlo6uqrqY+lI1b5DBiDdMBFQW1olQfU7u7M5bLc2SnKb37OKpfJBZwYLAp4Yxmx7KzBhaVDuu4u2Wk90jKSSKm1kaZretwC3trZawCrnZ/Vxu0/24SeV2zA8ZUL0b55NxrmdcDfeRDdr7oYHT99BNneIQDAiY0rMbJoFjoe347KmjnoaW6Bn0xiankMDaUCurwGDG5YjrZn9qDtuf0oG8BAT19ZNsuSvbajFlnPaTCh6y/AulgsVvVO92UXoAnSzzCbGwVMcV3Z5ln9SeTqijAyb1pmeuCkyw7i96VAAwMDNf+tjysDQKFQwKZNm/Dxj3+8ei2RSOAVr3gFHnzwQTPvfD6PXC5Xc62hoQG//vWva67t2LEDs2fPRi6Xw2WXXYbPfOYzmD9//kSrdNoUGThZzth6hV2n10af/2tjLHnoaRV5lg2JHmHqxaFRRzEMQHQ412VMXKSdgDbSnEbzwzyJbDxv/D4uEimQPCWixO3Be1VJpIlBk5C0A7+9o42xXHNN53FeLC+Wp87bkhkA5HMp9Jy3CG1P7kKuu3+cI3QZZ8/zAM9D39qFKDVlkT3SA69SK3MN3rk+/IabBlKWU+DyLRCmjXkQcLKiWZo/Bs81dVZy1M5XfvN6PI4u8J5sVh08zxs3NcYO15rmtfjS/ZzvsZz4TTkN8Jk/mV5iOem0HCF1tQ0/bxH3lak/ewwnXnURelctRvuW3Wic1wHsPIjjN16Cjp8+guGlczC6qBPTntwOLJuF4d5R+K1TgXIZ8DwUvQT8ZAJepYL89FaUKhUkjb7Pb7Hxp1T0ujWgdm8yC8RKPul0ukbeIj/dnhx91GAsk8lU20jLy+qbVl9h3XORbh8X6NLLGLgvAxg3SND2V9s4piDAb/EaJe0LSZM9VTdv3rya67fccgtuvfXWcemPHz+OcrmMmTNn1lyfOXMmtm7dapZx44034nOf+xyuvvpqLFmyBHfffTe+973v1azh27hxI772ta9hxYoVOHLkCD7xiU/gqquuwrPPPospU6acVh0nSnUBJzZQluFk8MK/tUGX67pzcofmUaZrlCjX5OwCOWEjHz2C153M4tVlbF1lWXPs1jNaVtq58T5a4lzY0ei1Ta5Ik5SpAQUDCSZtkJl3DRZdwNEls3ImhUo6CW9oFM3P7MGJ8xejaechNO48PK59ix2tyPQO1uys7Hseei9ZAT+RQMuOw6gUS8i3T0H2xFDNt788z8PYlBxKqRRy3X0mCGBdYAfNdRuekkPzcMGsi5ZXUL01iObrkocGXho86bbQuuN5HjKZTM1HnkUXxakAtbtLa53n+lh1swC15ThZNnyNp+RYZ4PAgAWEwkAEl++6pvms1glA208fRd+NF1fBU8Pz4OnY6y4DyhV0bNoCb1knBoeKGF00G83b9qGpswXdTS3wUylMGR3FlB0H0bVkPrquOx8zfvkkEsA4WWjQxM5et72uP/Mt6SRPbT9dsnKBX+seX9PtbQEQK2+Wt9Y7qyw++BnuL6zjXI4G3C4KA08um3cukO+fPCYjHwA4cOAAWlpaqtetaNNE6Qtf+ALe9773YeXKlfA8D0uWLMG73/1ufPWrX62muemmm6q/zzvvPGzcuBELFizAf/3Xf+G9733vpPFSD014hZV2Oi4jxL8Z7FidkUfEvKOtZSj0iFJIRwmkPGvUa4EmF7k6PBtx7sja4VgdXfjlTij157UOluPhtUviaGS9mZz5DUUtb2u9FwNSSafBpeZfOzg21q4pQU35aVMwcP4SND23B8NrFiC76xBObFyFUsJD4+Z9p/hLeBhYPR/p7n40Pbf35NfkPQ+9N12CUlMOLVsPYGDFHBQPZTG8YCam/+Y5JEun1nsUW5vQddFy+AkPbZt2IHP4+Lh2kYgeRyJZ53pntODYnKlYufUocr4bGEgbafDPcpX2lnL1CDnIsOv7mk8GTtZbbNrhMnjU11k2vHaQ04UBKOZT64UAfb0nk86XB20uZ2XxYOUVJFcXeb6P1rseQf+Nl1TBU2r9Ynjw4SUTKK+ah6EToxhbPBtNW/eidWYz8k8fgL9xNeB58PcdR2J2G2bu2o+uJfNx7Pr1J8GTX7v7tAYBnncqEsXrkvRu2foLDFwnHgzpgYFLXnyNv3Np2Y4aOal2t6a6NPDgdNwntA1iPXTpMANPyc/KywKdQeTyH+cSaDoT1NLSUgOcXNTR0YFkMomurq6a611dXc71SdOnT8cdd9yBsbEx9PT0YPbs2fjYxz6GxYsXO8tpa2vD8uXLsXPnzvoqMolU13YEfHaNXizSiq2jIPxfb1egFzPrKSnXEWQk9YiMO1UQ6RGZa2QVdFjTP9pQiAOVKRbOFzi1qFNv/8C7gvP0HPNtAUtdP9doynKCYpR1+7jaxXrDL3moG41P7cTgmoXI7DiI/KLZaHpkCwYvXomhFfNOgsHGLCrFEpqf2IZCRyv6L1iKsVIJPa++GMXGLJq27ke+oxXJnn4MLZiJ9gc2wyuUqjwOzmzB0YuXo3XzHnQ8uQ295y1E/5LOGn75g8/WiPTI7DZ0zW7DkgM9SJd9jOXS8NT0Q5iuu6a3LONugXULqGgHYOVtvVIuz1igSefHPDKvTNZ6Gas+rK96XzG9PYQFmqKs2dN91Wob13OW3ajm5/touethpE4M4fiFqzCayWJacRRNlSJOtLRWQVPbjCbknzuM3otWYsrTuzHjzocwvHg2+nvGquCp2NKIY9evh8AQzavuY7x5L29kq/dl06DHkiHLIQw0MHDSbR/UzrpOXB+rDJctdPUNFyhmHdHbFHA5Vj0sCuPZqufZJN+fvKMeymQyuPDCC3H33XdXr1UqFdx999247LLLAp/N5XKYM2cOSqUSbr/9drz+9a93ph0aGsKuXbvQ2dlZH4OTSBP6yC8flvGW9HzmfFzEeViRDxdf/KyLby5DAyerI+rn+ZplmHSUQD/j4l9PBekvmbMjAmCCE3H4PGJ3OQ4X6XvaqTDIdRlfLSOXU7dkkjnYjWxLI4YuW4PmhzYjv2Q2mh7ejOFLV6OS9FCcNxO5Z/dgyob5aN3dhePrlmNszSL4+QKmbNmP0oyp8ApFDK5ZhM4fPYTkWKH6mvfQ7Gnovmot0qN5pC5ehCmNCQz0VzB42Rogk0bzs3tq3hySduER+eGVs9E9vwNrdh5C6fwO9D3dg/0LOrByRzeaiqdGupbT0AZWA2R++04Muo4U6lE2t5nlnCydt3SQAR73O/nNjob/M1/A+MijBjqsQxIR5et6AGbplgvMBJFLD7mvu2yI5ZgBIOF58AaH4Sc6UCqW4Zd9VNIekEwA5QoaZ7Vi7NkDOHHRSjQ9uxctT+2C53mY/rPH0P2qi4A9h9HKkacb1mP2r56t4VmvB7LAoJw5uuJ5p6bmJBIlZ23jNAjlZQFse1geQVNdYUBC9weOCLme0c8z4LH02tJfDf6jgB3OV0dAuayggdbZIv/5YzLyqZc+9KEP4Z3vfCcuuugiXHLJJfj85z+P4eHh6lt273jHOzBnzhx85jOfAQA8/PDDOHToENavX49Dhw7h1ltvRaVSwUc/+tFqnn/xF3+Bm2++GQsWLMDhw4dxyy23IJlM4q1vfesk1HJiVNdUnWsazFq/w4oXFURp4yZpdIerMWIOZ2KVwQaZ7/O6qiA+LYAo96OAJOu+/qyC3iCQp0QA1ESaBEBJdElvPqp503y6ZGY5LV5PNZGRugs4sWxzz+xGJZXE0KWr0fTgZhSWzkbDQ5sxeulqZB/fhrG1i+BvO4yWlTPRkKhgOJdGcjSPwow2pApFjC6chRl3PYrUSL5axvCcDhy/cg3an9uD1JLpOFZKoq+vjNlTk+h7cDOOb1gJHz6an9lTs8aJz0dWz8WJedOwfNcheMvbMbq5F0fnTcOinceQHS2irHTUqqMebEgk0bVRqOikHnlHMdIusKB1QgMUDYDZ2QgxX3KfHYwFnMRBi87Kthny6riLf3nO0lP92zWlbQF6rpu+pmVk5TN4xVoUlsxB+wPPYvTSlehpaAaSCTSNDsODh+NNU+BftBLNz+zBlCd3Vr89l+kZGAeeZu06gK4l83Dk2vMw575T4EnXQ4iXFfBCcgZMorfAqRcAuF6cl+QjchbgpAG1PMvAiUn7BU2WL7AGrWF5WMBH67LwxwMQvSUG5+UCfGxzrT7FwPNcAU1nm97ylregu7sbf/M3f4OjR49i/fr1uOuuu6oLxvfv319jT8bGxvDXf/3X2L17N5qbm/Ga17wGX//619HW1lZNc/DgQbz1rW9FT08Ppk+fjiuvvBIPPfQQpk+f/kJXr0p1RZzkrEfVrtGJThM2MpZrWkm18bbAmh6NuXixDKeLonSGIIcZlodlTPTuv8yLABiO/rimSbURsXhhQKTP/K0qdqw63B8EnIKAset6w+PbAQDDl61G44PPobh0ThU8ZR7fhuGNazBSKmHa1CzSu4+gv3MmiukUCqkkZt71KLIDI9W8RuZ2oPfKNZi6eS+aF7ShsOUgiuuXo5hMov+hzZh2fie8x7eie8NKePDQ/OyecfLrXrcQAwtmYNGWvUitnoHebb04tHwOljy+F9n+UeRJN3Wbs97zt/Ismen+wQCYo5kse0vG+hobeAZkrmiK5YBYT7hsjjixM7em4vX0iXbKLC9rytCqH8tO/rM94rzCSNsbeV7r9OAV61BYOgdTN22Bt3w2vO2HgDWLgVIZjV4FlWIZw+kskEwid+DYOP4ZPHl7jqB1zlTM2n0QPbOmo2/lXEzbfhieUWdX3blt+b6AAn5jVNpT3rLjt4kZ2GqAosvTbRTEqwuYWPdcdXXd47a38rL02kqvdVgPciybJ3m67O9ZpbMZcgLwwQ9+EB/84AfNe/fee2/N/2uuuQabN28OzO9b3/rWxBg5g3Ta22+ygrnuu64HgRt9TwMn6byWYdR5uRy4foanI1xgxKqDNVpxlWPxyR2VP8DKdWPQxHP37KCYJx41unhig8nrfAQ4sWHgUZcGUZJXFNJytZyjgKeRS9eg8aHnUFgyGw0PPYeRS9cA5Qr8KY04secYps1tR0tvH/qnTUP2cC/SAyPwn58uGZnbgd6rz0Pbc3vQvHAqCju60LVuGZp2HUGqbwjdG1YAT2xD+/mz4T2xDccuWAEAmPLcXpQTHpIVH93rFmBoaSfmPLsDmdUz0f1cN7rWLETnE7uRPdyLURUlstqbF31bb7FxBIGdoku3w0CTEDsRaWfXQlYNyCyALNEhuccOmnnhiKhet6SjGBxNYn4tgMjp+HcQ+NS6yWCI73OZVjq5NnjFOuSXzkHbY5vhrZiDkWODGFmzGM1PbEdxzQL0+Bmkm5JoGx1BYdcx9N50Cab++GFkegZq+Mv0DGDmzx/HsVdtgLe3C62z2zDjUDdOtLagd8UcTNt+eByQswZiAnLYHlr/K5VKFSSl0+lxgEGif3LIp4R8v3YJAre9BXot/ZsocAob1Eoa1j8NeLjtXfZJ82YBKqk/9wFJzzp6ToGnmM4onRZwCgMKYcBCK6zOi42nNh4SitVOxFVGEGkjZdUprG46vebJAoO6k+qOr8+u6IDrnpTjih5o52ZFsoKcFztmS0ZaVq77LvDk4yR4anjwGRSWzoU3VoDf0ojEgWMozZmOnp5+TJ3bjumP7sCJRfNw/LrzkT3Si8KMNozO6cDU5/ZgyvOg6di6ZWjcfwztD289WY4HdF+wEt5TJ8FT4sntOHrBchRntiE9UgDKFQwtm4u5T+9A89pZ6N7Sg561izHjsR1oPdQL3zG9yzqh16lYbaYBFIMwPbrn57lMS95BJDom+Ws95XL09JvWC2uaL4hHqaNLb3Ud+VqQgw0DkZyfHoQFPSc0eMXaaqQpsWIuCnu7MXrBCjQ/8Cym9Pah2DuAnivOQ6FQQcsze5Ge1wFv5yGceM1GtP/kEWR6BmpknesbwsxfPIGey1cjt/UAGjMJTN+0E8OLZp3kj8CgJcugwYe2HdLOsicXDzoFSMmgUQA221wrLx7cuYCRXlcVdrbaVNc5SK+CSOuAlp3L/wCosZd8XWQWZNvOBp3lgNPLguoCTnq0NxFyjTwsko7Muxu7jLvmzZVvkJJroKKfceUXVl8rjX57hOvo4iUMNAWBHen4Ek3iESZHAXRUQDtt5l9AmIuCjHuU3w2btgG+j9HL1gL5AtCUQ2r/MZTmzYB3YhCljqkYemofOma2YPrW3eheuRil5gYU25qRO3YCTQSaGvYfQ8fDW6vrTVq3HoTnJdB9wQokn9mFqed3YvhwNwYWdqLcM4BScyPmPPM8aNp8HD3rFqPjsW2Ysq8bFdr7yjU40GduI/kvcpb24Wc4UsNvVgbpGzsBqw/If37xQAYgHG0VfiyApKfs9EsDroEDULv1Buut9SadJpajzttywBYYtHiy2kan679sNfJL5qD98a3wVsxFYc9xDK5fjqm/ehIN+46h1JTD4AUr0XbvUxhZNR+9qxdj2pY9aJw7Ddh5CL03bcS0ux6ufp5F5N3QN4zOe5/GsY0rkNjdhZaKj2n7uk8CFIcsfN8fB/z4mn5JRdsDiSzLh3x5YCp2Qa9p03JlvZX/Ol2UN0TD9FS3BcvDpSNBebqe0yRpRDYShZfPDUlePO1+LlEMnM481R1xchkqpiDl5k4e1ln0iDfISAb95+uaR4tvi1wjP/2cy1Bro8wHgyjOjx0OOxv9erur84pD0vvk6Gk+a9QfFRhbYNYlt3oMjKTNbNqGsfXL4Lc0IXWwG2jMItndh/KMqchs3Yv8wtno23EAidUL0DA0ghXr25EuFvF4ZQqOjhZRWrcMTfuPYfoj2wClI23bDiKRSODo+UtwYnAYlYWzsD47jI6NbXjo4V4MbliK0Sf3onfdYrQ/shWtB3pqHJ9uP91e1j2un+uwZGG1jwWkuK+wHrn4COrPDCisg3XR2vpClxc0YOHymKyXP3Tert8si7CoqK6/5DOyuBOFudPR/uQ2JFbMRn5PDwbXL0X7/c+i8cBxIJFApa0ZUzbvRe7QceQOduPEqy5Cz6pFmLZ1L5rmToO36xD6L1+L6fc+jXS+WNPXE2NFzHxkO4YXzqzRT0sWXBfLVuq0GthrgMjfbBRAXSwWa8CQ3iCX9V+m/1xAxRVxsuStrzFAYf71TAO3VZhfCrruet7VPzUQO9fAU0xnlupeHG7tq2ERK1nQmggLQMjzvL5C3gyxnJTLsLooqpJbo1sdXXCNVsPKYGMlRogNvJDIS8LsAoB4PZL1VgdHlvL5/LjoUpAjkbZgI8UGQhstnUbLMIo8LKoAGH7DVUC+gNSxEyjNn4nksRMoz5iKxse3Y3TtIjRvP4Dh5fOQ7elHef507No1iOs3NAPlAh7saURyrICOR7ePW68g8p+28whGFndidFor1mdHcOGaKbjr1/0YmdGO3NETGFi3GB2PbkfL/uNIPr/+jD8gqvXXBYK1/Fj+AkBYpmEO3tJB7m+ct15fpdtOR7s0SGfwpCNM+puVPHXJb+BpgK/7EctISNsDfs4CsJwXR2CsqUSrTYSkjLElszG2ZDY6nt6Fyuq5KO7rweD5SzD9gc1oPnoClecjDo1dfSfz8DwkAUz7xePoeeUG9K5chI4d+9E0px1Nu46g78q1mPXYTmSeB0/SVslCGQ07jwKqLTVPuu31G2aWHF0DKratsvebRKIqlQoaGhqqa53kGSnT9/3qFgeWjRS7Zr3kotvbAutCehrQslnad4T5JWv6nPOxynOtNzxXQZPvnzwmI5+YbIq8AWaQklgjDknrcqjyHJ9d5TKI0s/q8q3r+ncUhQ8a0Yald9XRMvZWSFuu827PPLrnjqyjAvx2jGsjSlcEwTUtF4VcOmDdd9WX//ueh+E3XI1ycwMantuLZLGE5IlBlGe2o/GJ7SjPakfLpu0YXjEfma4TGJ3dgWT3AIYbGvHTp/OYOTOLizsrSOaLOPqqC4FE7eaNYti7Ll2JUmMWa7JjWLW8CT94cBjHmlvQcuwERma0obGrD1MP9iCVSlV3c9e7cFuHq/0tnWKZu5y8Jsvp8zmojbmMGpk7ytTOPCxPrp/W9TC5WTLiZ62Bm/Wcld61ON6Ur+eh0NGKtl8/C3RMAZ4+gMHl8zDtN8+i8UB3YP9IAOj4xRNI9w1hYOY0JA/2oKFYQtvuoxib0WrWy+X8w/RK/7baS7ed1ZZiL/Tmw1yGq99qfi0Kq09gWzh0PEwOUfQqiC8tryh8ngvkT+IRk011TdW5QpY66sPp+bkgxbaeE0cuDt8K0fKo1hqJhJUB1H6/SOet+Q8bzVnEUbYoa5sAVKMaDHZ4p2Bt/GR/HOusvzLvGkFx+ZqsEbDWBS0vHVUIM5RVMOh5GHzd5ag05dC4ZS/Ks9rh5YvwG3No2rwXo2sXo3XTTowt6kTjnqMYWjkPjd19KM9oRfr4AIamteInT+Xx2jUpZOZ4ePRwGodfeQEW3PssPNLbwxcvw+jMNpyfGsKKZVNx16Oj6G1sQuuJQQxOb8P0gz3onTUVg2sXYdaeYzWf/xF+dQTEqqeWgeXMLdDEMrXagfXR6peFQqEKErkP6Xow6S0urEgTnzVI57rqTVz1onAd+dTOkPkMcsgW6eltvbBXy0vL3atU0PrI1pNy3NWFgQuXo+PuJ5DtH0bZAJZ8Bk6Cpxn3PIWhtQsxMLUNM3fvRHPl+f6QSIxrV2uNkAUYdL0TlJfuo5ausr3UvHueh6GhIRSLRSQSCeRyOeRyuZqNMSXyxG3rebVvl2nZuPqDVa8gsvLSxH0sqAwLiLKdtgaanK4e4BfTS4/qjjgJhaH1evNllO9Kp41rlDKte0GjFv5vjWaCAFgQRRnlWKM5y3npUb8rwqQjAVGPKBEPLYugEb5rBJ1f1In84tm19fU8DNx8OcrNz4OmGVOBfBGFxbMx7c6HMPXhrWh5di/6L1wGbzSPoRVzMeVAN5rnt6LhaC+G21uQGh5BKZ3GLx8dxMzZOVw85+SHhPdfu7a6OPzwxcswNLMN61JDWLF+Ku67vx/9DTk0nxhGf2szph3qxexZGSzefghdyztxbMlMZx3rjRoEAS2t33zdAq9hOsjA2gLNll5b+YYBZ82fxa8LVGpAGcWORBkYBcnHum/ZOB/AyNI5aHt4KzJ9Q4H1HccjgNYtB5DpH8bIzDazbIunsAFgFLvrAtVh/V5shwzQxKbwACGoHVx1DLMlUe1okHxcFAS69fOcNkq0qR7gF9NLh+qOOAmxoWNjb70hwx1TlNQFWph4VFQqlaoLFZkHVngZ+XC+0uG1grsUnkdR8p8jC3wOM7x8TTtLOesP+er0pVIJo6Oj1Q/68sJuWbskkSX9cV+9944FoFz86rOOUIkM9Lf0uH1dTkbqmjs+gL4r18JLeGjYcxRl38fAazai3JRD89b9KM5oB/IFFBbPRvuPHkRmYASJZBKtz+5FfnobRpbMRkNXL5oWtqGw9Sj6FnQic2II5cYsWvd2o3/RdPzysSFcf1ETLsYYHj2cwr5r1yI9NIaRGa04LzmEleun4lf39+FoextmHOhF96w2tB/pR++MNrTuOIzGle1YuvMIdi2bDc9LYM7+nnHRQh0tsECIXNdThfI9QpGb9B+tJwDGRXQsnbP6k6w/Ak5FCrgvWdNYYeDZWu/EzwlvLhDGOiM2RK/VE521+jnLU9KKjLgMPRjQ0bRA4ON58ABMfXgrRDKWHlu/qweA1s37kXx+UMDtpus6rmyHY5ffrIdarixr3Tb6EH0QmyF5FItFpNNpZLNZtLa21ugk2/NUKlW1SVwXzbu2xVqHXW0QRkGyYjnwNVe+GkBagwwt15hefjTht+osBQzqKNpwRhlRyjnI+ep0FkUpj/MIysvK2zpbeUcZrenOqXdaZmfFkSYdVQgaGbscmv4fxZBpI27JWYPOkcWdSA2MAA1pNO86hIE1i1CYMRWVVBLlphyatu5HcXpbLWjqH65+UPfE+sUYnT8dDb39yM6bitEdXeifPwuZrj6UWxvR8ew+HF+74CR4WlgLnh7oa8Zo+xSsL/dh5fqpuPdXJ9DVMRXTDxxH96x2LNx6BB2HT+DIvHbsXjobS3YeQeOyqVi64wh2Lu2E5wHzDvbV1DkKcNJgXANprQdW3i6HHTYIYaBgLRCX8qy1Ki7w5GprLlOvmQvSO3bI9Tglra8MBvh+UB8IIhcIdtkULRdXOg2oXXVz2Q0uK+i+i1wDKGk3GajKtJ2A9qCyJJ1VR/4f1R5babVvsXixyOonlp13ySWq/zgXyMfkrE+KYaGbJryPk/4vSmitcxGy3t6x8tPXpTPreXTuiNYbF/xfynON0IOMF9cvqIwgpyBndoj8XTqdn0QJCoUC8vl8dX1TPp/HyMhI9R6/XccRJhdo0uVY9WO+2bFa5Bo1usr2fR/J3gH0X7oazZv3obRyHqbsPozeS1YhOTiM5q37UZjeBuSLyC+ajak/fOBkpOl5uZ1YvwSD65ei4XA3MrNaUTzSj+EFs5DqG0KyXMa0R7ZjYPkcTH96L7rPW4jm3V0YXDQTdz8ygOsua8VFLcCu7gpK7e345X096O5oR8e+bnTPnobFW49g+tF++J6H2QdPwEt42L2kE0t3daFheRuWbD+CXUs6kfASmHOg1wmGLOep9ZCBE799JGeJRFl5uEbseqSv29oabACnvmcmOiBTNNo5sSMXfdDfWuTIjtYDV1RI8+uaItG8WC9JyMGREz34CqKwNnQ5VdczLtAkttDVr4KAGZfJwJrX6PB/16DGJQ/f96t2RdY85XI5ZDIZZLNZeN6pLxxIW8lO47KwXPLgOmoddNU9jMJ0O0xu1lmII/a6z2l/J3oVNoh4ocn3Tx6TkU9MNk1Mc2GHqXVndo1crVFOUP76eX7GlY/LIFh5M+9hddX8hJHVQTWAspyuGB5r7ZKesgtbx+SSR5R6Wry5DpaNdRZK9w6i5aHNGFy/FN6B48ivno9sTx/KTQ0YXrUAqZ4B5Bd1YuoPH0C6b6j63MDKeRi84BRowt5jGJ7aiuTAMCqZNJq2HsDg4lnoeHwnhuZOw+wHt2Bobgcadx9Bf3sbfrQNuKATeOO6JLYcLaOrYxqm7j2G453tWPDcQUw/2l9T59kHTmDurmPYuWgmRncOoGFZG5bsOoKDi6ejZ/qUyLKKst5JPx+0jsqVf1DULwjg6elD681Bi78ouiDtH6YTYf8tEMNr/6yXH1zr/DS5+obuR3q6L+rUt7ZLQbYwCllytgCB1iNX+7jqzm/aib1hG6rzjALQooLPqEBE5xFELhlZPmrcywJ1+IaYXvpU9z5O+pq+Lv857K6jQdZZphFcIAVAdRSUTCaRyWQCDY9rRBHFuFvlW50qSDZWeXxkMpmaaAOv7/B9H2NjYxgbG8PQ0BCGhoYwNjaG0dHRauTJ5RiiGHMxclEpzOjxaEzLiYnLTPaPoPL0bpy4ah1an9qN5PwOND22Db0Xr8TIqvnouOPXSA6Nngw7+z4Gls/FwKWr0bTrEFILp8PfcwwDi+cidWIQM793P8bmzcDQmgVof2w7UkNjmHnfs0hWfMy65ykceuUGoFxBQ0MCW7p9FItlJFJJ+PkSji+YgflP7sW0I/2oPN8WrLud+3sA+Ni5ZCaW7DiChmVtWLXlEA7MbUemAkztH62pqx5dBxlr19oi6QucB789xW3CeVvt7Hmn1tFls1mk02mk0+lxu/EL7zw9w5EDjpJwZEt41S8qaIDBuqHrIPf5zA5L6u/a+NXSNXlev9mnX67Q8rJ+az61fHW7WofebFKe0WvOdJRIt3sYUPZ9PxTQWOBHruuF4IVCAQAwOjpafSuTt+XQspdIlAAti7Q90XXXZIFmaVOdRstdAx+Oyuk8NOAO4kPzUy/4PZMUT9WdeYoMnMIUw1JSMax8b6JKJs9Z2xIE8cRnbYw5bz6H8VDvKEcf1ihQl1EqlapvtvDhchy6HrouQYZG11H/t9pPl6tl7BpRMjXsPQoA6LtqHVqf3o3CyrnIDA6j2NiA4bWL0PLQya9mjyychYEr1qJh234kl8+Cv+sIBpbNR+rEIGbcfh98ANn9XUC5jBMXLkP63qeQKpZQ8TwMLJuNRLGEZTOTWDOjjP/emUAFSVw5s4gxJPHkniJ653eg43AfEv746RHf9zFrXw98H9i1pBMrNh9EZk0HFj9+DHsWz0Bu+zE05kumPrkGFZYD1bK1pnK0Y2e5u5w+AycdUdLOVC9EB1BdeGy9fi7XuU7Cf9S347Q+8aHrCKAGoLGsrWl8lp8VLdILf8MGTlye1X5BUTh+xrIHbCeDZObSoSDSesTXdT5aB3k9Ja91soA3t7sFPJh/bmMtT7kfBGQt8GSVY13TfcrSPX3f1ZeZzhXw5MdTdWecTmsfJ9fIjUk6rTUq5JG1VZYm6cQ8GpcyXI6bO4l+C5D5D6uHlGOdNd/c2TRYkh139U7hklc+n0exWMTg4CCGhoYwPDyM0dFR58d42Rm4Rj+St+sTCZyXlp8VLbTKCTP4Oi/5n955EK3w0XfVeWh+YgcyC2eg4dG9GLhoJSqVCpIHjmH46vPQ8NgWJDrbUXp0B0YuXoXkoW60fP9+jHE9dx9C09EejBVOGvm+a85HftZUXLR7G1bNnYPvPJlDJZcDUMHDeyt4c+cQZg734Rfpmdi2cSmWP7QDKUdkZ+bebmRG8ji4oAOLN3WhabCAlc8dRrrswzMWcItcOQKldYdBjQYsWmZWe3IbWCBLdC6TySCVSlUjTjqKwc8ITwKYGhoaapymvIiQSqWqZ73Bqt4eQ3SXX2Jgmbje4NMgTe9+z+m0/mpZB70wodtHDxR0Gs2fpftWP7QGS5JGR0K0fvBhRaesZ11ARNLLpq4WAOL1aIlEovqdtnQ6XQVPzJu0CwNBjtwGgSANGi2Q4gKfIk9rgKeBvC7bat8g8Mz8WLob08uHJhxxsgyQlQYYP5qzlFUrv8sQWdNkOr12Uvq3zlcb3bBRnJUvG3gL1Eknl1C2y3BKpCmfz2NsbGzcfirWFEVQW1ggzxqBslw5r3xzDl6xhNRowbwv/zWYraZLJlBsn4Ls8YFxxkbklTrcg6ZHt2LoohVofmIHyks60fzIcxi4/Dxg7SLkHnoO3vwOVLbtx+i1FyJ5sBuNt9+LohSUSKC4agEyuw4hOTSCiudh6IYLUZrTgfW7t2DV5bPxw58dw+iaJUieGAQSCZQac/jJY6P4rTWNuOHgUfwiMwtbr1yBFfdvRcqoh+d5mHpsAKlSBXuWzsKqLUeQKdlfhudnLL23QLXWF92OlnF2OXJuZ4kO8M7nrik/1g1x0AK0KpVKDdhnfddTR+JI5Sxp9OJwzbsFfFjPLYAvz1oOzPO8qpPXfcYlR+4bE3WIQWCL+z3zpxf2yyEAhF8isQAJy98CH1ym5MEA2WVvRV7Cp7QnL/x2TSVqgB8EnjRZ9pP/W+TyURNNp/svp3fdi+nlQROKOOmwN9+T35oshefOxHlrp66BgUuZg8CdBiouEODimQ2uNozaEXGZOtLEAElGbcCpvXYGBgYwOjpaXdckb87xGig2nFbd9ejKcjSWQdcOBgBKbc0YXDYH0x7cjORIfpzR0CCIyyx7wOBla5DsG0TiSE/NMyzHci6N/PwZaHhkM4YuWY3GTdvgn7cYXsKDDx+V8xfDe2gzxi5bh+S2/Wi466Hq/LvveShetgblWdNQWtCJ5nsfx/DV61GaPxPn7dqMtZfPxh13H8fAuuVo+vFDJ9/Qy6ThJTz03HwZ/vvZ43jV6ia0D1bQXc5g+6XLsOj+zUhgvNFOpVKY0juEpq1HkCqWq+uvpN6WLmi9c5GkE33Qb9XptVCu/IKMugs4MA8MtqRM3p9H9vuRN4+EN7kP1DpVcfjlcrkandL7jVX1wIi2cT2sNX2SlqNYGnxaMrBkFiWdyEmDFn2f/4uMLBuk+WRgY9lGnjbjvcDExrBNsSI3krc1rShp+JCyBTBJ24keWAMA6QfpdLrazgxItdzCBqrMv1UnzS8w3sZomWticK7bkdNMhO+YXnpUd8TJBZT0YY0uXAqr0wcBINdoLmx04QIZLnIZRYtvF8CS6/y6t3RuXisAnFr4rkETL7Zl4KSnvbhTWzxx/bXT4XoKFZsbkBgZQ1PfILz9Xei5Yg3aNu1ApndwnCwtQFnJpDB4zXqkevrQsPcQiqUSylOnINHTf4qPxixQ8ZHpPYGW53aib80SpJ/ageFLVsPzgFwhDxRKGG1qBK7dgNSzu5H75aZqGWXPQ+GmS+GN5DFn63Yczzah7203Ap6P9Tufw7orZuOOe06CpoYfP4DE/i74yST8RAJeIoG2O36N3tdfie/1AhdPzWP98aP4RXoadl29GgvufgoJ5RDknBsrVveUAk4ZaXYmItMwvdH6Js7FigZIBCIIELBTdwHmMAcgOiv15UXAwoMAKtFNcdZ6zRMvHhcABaD6nOTB14RX65MsLuBk2QWWv657EHgKsiM6LcvM9WyYbdNptdzYZrAu8lo160POlr1lkBM2xVczCHq+jQRAyYsDsg2BtjcCnAQ0aZ7qBU9WHkEUFTDpZ1ztYV2PyssLTb5/8piMfGKyqe6IkzZcQSAkiqJyvvJMkOMPykf/5v9RO6bLoekRmOtZADWOQkbuelQuDkbWBgwNDaFQKFTfnHOtOeIyZZ2Jiy+WgeU0dH68BmxkzjQUpjaj40QvWhZNw+jRAXS9cgPa73wYmRODZtRR8qxkUuj/7WuQ7BvEtLY0KmvnYnCwgkpTDrl7Hof3fLpSZwdKqxZg2r69WHL9Imx68Cj6L14DwIcPDxXfP/ltOR+A58Ern6prJZFA/nevR6W1GR1jg5h/SQcaKmlsK2aQrpSx+LK5+O97uk+CpjsfQGp/F3zUTklWSmUkPA+VXAqDKGPGgjbMOVLCEaRwfO0CTHtmb5VXXqcnbaidutZbXsvGDo/1yWWYJV/tDHV76ja08tbP6vRM7Fi53ho4iRx1xEFHjLkMDa709K6UwaDK6gNB/SKobpYMrPRhAyvLVrgcbtgAjK8xD643zPgZkZfYEGkf0RmxPaKDbIss26rbkm2C5C1RQhkICpiT57l+eooxTJ4ueQQBfBfoCypD6xz36yigmfO0+uHZJv/5YzLyicmm056qs+67nnVd06N0y1HoPKKMIILKtxyX1fn0fx59adKGTwwHh7DZuAGnFrwODw9XtyCQ6TnX1KDkL05Mrgc5Ftd95l34LZfLaNl2EH2r56NrajumHezF9NltKO08hJ7XbETrD3+NFK1ZqpFNOonB37kOiYFhdJRHUa5UcLyQgN+cRfbexwHfr3bI9M6DQDqFg0sXAQ8dxIbrl+KBMQ/5kofU8DDyTU1Axkcyn0f2gecwesV5yHtA+v6nMfY718FPJbFm/zb0LV6IXx9PYN6sBlxc6kV3YxO+39cOf91UNNz5AJL7jlbLFMdebMph6I1XI3fwGJbOTKGncTp+si+P5e3ADQNH8UA6h+Nr5qP9mb3j5KZBI0dKtB7zq9t6isQ1/ab1LypwkvSW07b6itWHmDdJw/UVZykO1AKLArhYPzWAsvobAwF+8cFFUQBO1MFXVAqTKfMVBlzDAJxljzhvXjQvoIaBUyaTMcGq1b4MfizAL3ou7S6AqVwumx+NZj2yti0Io6gDXl1eWJqg8lzAiflx/Y/p5UV1TdUxMuc3u6wFytpwWwae85XffOZ0mheLgkaArmct8GSltergus9ORAySgC3+X6lUqm/Myf5MPHrUTosNjzZq+m2lIBlqUMVRxKrDKpfR9NQujF53Pg4vWoBZO/dg1typOLLzIPpvvgIt//0bJI/31eRbyaQw+LvXIzEwjJmj/ejt7MRYyYdXqaDxmz+HVx5vONNb9qLc0Yp9G9ZjzE/g8pZRPHoYGGpsBJIJoOIj/fhOYNU8NDzwDEYuX4fCigVIDI9hbc9+tHS2YNvuXmDFQhw8OICp+T40t5cBtMED4PX0jSuzPKUBw2++FtlDx7B0KpA/dAJHK1NQacyi+4GdaMEYpu89hOFpU6pAjw2/rDEJahvWJ5GzHpmzvrjaKyjCwuW4KMpo3OWkrP6udUuDQdezWk7sWHmAkUwmq0DAsgf1UlCfFnJFNKw0Yel02bo8C0jWk6e2q1IOlylnsSVSrshU1kJp8G6BcQ2kJZ0AJ2lf3v1e6ydHa3Vdte6FDYijACTO2+o3nBfbWBe4DvM39QzgXxCapKm6OOTkpsi7ILqcLL8er0flfLjytMoIMpQuw8dgJWiEbT2rR2G6vlYHtMAikzgEXgwuIzsetQ8PD2NoaKg6Rad3A3dNjfJbMTocHmYIdB1lwW7N4Z0Edy33PInk4AiOLFmEsYMnMHN6BtkdBzDw+itQbG85lUc6iYHfvR7ewDBm5E9O5RVH8/CnNCK1dR+8cgV+Jl1bfurkeqPkoW54mSS6hnxsP17GmhkVeKkEEvCR2bQVY5esQnlfN/yV8+AVS0BjDitai2iZ3YKHjyZQnjcLjd86CcyebpyJgVwTVgx3IXngKEbf+ipUmnOnZNPSiOHfvQGZg8ewtK2CkWMD2Dl9DhKFAmbc/isMzmrHrlIWfqmMxq6+qpy03su+WvoVeX1IOpErf85E9I/bwxWFsaYStPOzRv0MTKKAKEv/uW4WQNRvVkV5Xvc70WWZTuI8ouhyUKQm6PkooEmnd+Vt2TPui65+qaNYUXhxgVSRNb+dy59sEv3Ta8SC7IwVpeLtJnReLBcA5i70Wk56QOB64Ua3g4t0+jBgFKRfk6k/LwT5k3jEZNOEFodbAEmnY9LRmDCFd+WjywdOTQ3ocqKQNrbiuFyAzuLReoYXbeq1IPKcRJeCthtg3qw1DzyKY1mwTIBTQEovyGXgxBFEABhctQjwgNRYHtm+AZRzGRxZtxKznt6CWXOn4uiOAxh641Vo/v79SAwOY/AtN5yMNI0N4Pjs2ch7CSybk8XAUwfQvXENygtmwRscRe6nD1e/NF9aPg/FZfPQsGQmpo8O4DAacCjbisNjHhY2FpAbGsaRjctQOjqI/MbV8EbzQC6Dtf2H0LSyEw/smgJ/aRrTH3wCTdetQtevn8Lo66/CgZ4hLO4awLK2Buw40o3Rt74KDf/5MyCRwOhbXoG0gKauQezrXACvXELLHfcjkUih9f5nUJ41rbp4X+TPUSJpT2kDK1rJbWcBHG4/y/haERxuUz3NZz2rN77UbzVZPGreGARaAwlX1Evnp8tgmejpJJna0QMWlrdF9QIQ130L1FqRHvkdBILDAF8QL5ZMw/QtiGQaVJ5PpVLwfX/cwEvbd7Y/YXpp8W/pm3XfJQOrvmGDgDCgw+nCpui0frt+x/TyoQlvgKlHOELa+AKnwsRRRrkuI8zlMxjhMqMqcdjIRQMx18jFNRKRkbOAEnFiUo5M0clicP4elB71sRMUh6IXz7ID0m3EbaU3JNRtyc/kntiOoSvWoeT7SFV8NBw5jpF0CkfOW4VOAk+Db7oaKFeQ6unHrNF+lCsV5H0PaGrAoUf2YuH5s1B69gB6Fi5Aavt+sKQrYwWUF8zCyOETaGzPYLY/ioPJHHwfaBwcROuUFHbsGUClow3IF+FPacSaoS60LpqGB7eNwm9rRktXF6asmYOuh/eicNFKNH7z5xi7cSP2TJuNhccPYdnURuw40o2Rt98EAMjsO4JlU32MHhvE3s758MplNH73HlR8oJj0kRgsIzWaR5FG2vwhW60DWkf5twYIPCXFoBXAuHUiVhSUozWso3oxthwSjZTPrFi8CtDWI3yOrEl0wRo8adKASi8u5oMHFyITWWPneafe2gsjyzHr+rjSchrLQXJ61+DF5fitQWCQHbSAgEvGmlfXM5yfgKZK5eQWAZlMpqoXVsRQbIaOaPKLLvUAwyD7r/tMWH1d+bLP0WmCAFaQLkseLl8Q08uP6pqqk3M9RxBZCu96XoMxS4n1867/+nmrQ1mjKmt6TufvMp48Rccf6OVoj45O8XSfjjAwny6Dy2XpjwJrwDRO5qUymn79NEpzp2OsvRWoVNCw7wgSI2M4ct4qjB3sxaxZDUgkE0Aug+n+GMoVH0dnzwUyaWSe2IqRpfOxY+8I/JULMGPTUyjPm4mxV1wEACi3t6B43YVIHDkOtDahu5zGUFsb5mQKmOmNYUe6HY/2ZDBtZiOylSKQy2DpcDeal83AA/srqLQ2oamrG5XZ03Gwp4iRazag4VdPIn1iEI3fvhvwPOztmIP8iREsnQogm4KXTWFxh4eRrgHs7ZwPlCpo/M491bVXroFB0DUNFFztwYBIrysJm8Jx6aWOgrj0Ru8+HWW0bk0PRunjQVEB4U2f9YeFLV6DZML3rKmlKIM2qZ/Oy8rTJXdXXpZ8XGArLI+gNhMKenOO/1vTy9Z0nQUA6+HNlUc99Zb8gwBO1DK0L4nKSz39IKaXNk34rTrXugt2/NqRs8JGGVkEdUJLWYU3/u96LkjRdceSPLn++jqAGsOv80ulUiiVShgbG6suBud1MnozQAmduyJ7zKdrNCRrpjhvCxy4wCVKZUz50QPo/+1rMea3IdtzArn9RzA2vxNHz1+N1lQFs9NljPYP4/iCeSgNF+Cnkmh4bDO8GVNR2nsUxcVzMPrYNixeNQveE8/h2AVrMPzay+HlMsje9yRK165HqXcAmDcTJ0bKmFEZRKUCdCVSQEMO5cowLl2QRdfu4zjS1oFdu/LwW5rQeLwHfuc0FHccRmHpPGQf24bs4CgqiQQ830fjt+/GyFtuwJ7ZCzB3diNWlsbQX/Cwb9ps5JNTgXwJjd/5JbxKBTAAJ1C7Xs73/ZpNSy0w4HKKDJoYIAiQFj2ygI1u7yCHrYGTvFUlEVDWYdegRPSC121Z4InvWdEkIQZurFuVSqUaleWF9onEqd3G5WPDPJ0ZRNLPGDRJWUHPWNdcoI9lwPWJQpZeuCItYQBap2M+Xd8P5LxYz+U3T91p4Mi22Rp8WnxxmS6ZuUCxVS+dt+ihiz9LrlHJ5Tv4nuX/zgXynz8mI5+YbJpwxEnfc3Uoy6G7OotrJOVC+hZvLh6D8tNUz+hUd1LXFIGUxYsq2SlZEQnLcfJZOzGe8rOm/VyLzYM6fqJQQst370GlKYf8tKnwKj5yh7qAVBL9XgbJsTG0ZHwUy4DflENuyx54M6aiMFKAP6sdmZ89gtEVC7HnuePoWD8HM554DpXFc1DJZZGYOw2p433A3BlAqYRsuYhdxUbs9xvR4pWAcgXHE80oHB/E4hlpDPXn4TfmkBkaQmFGO0oHe1BZPAe5B55DaVEnQJGKFHByh/HWZhwcBJoqRXSmChgtJ1BpbUbjTx9E0q/9GG1YtCNIbywnawEhV/QnLH/d/la/cdUjLGLCZYYNLoL0RZevgaU15TPRQ8ub9y7iFyas8oPyYaBnbSER5XDJI6wOLplabR518Kd/u9qTbQjbpyA94N8sX53G8hdhfAXVx3Xd5RcsfoL8k8ufhPWNc4V8f/KOmGw67Y/88j05izLzSFTSBxl/y5gL8ahTOrrVSXkdiKsTuxZhu4jXpGhZ6HS8EzjXRUbxEnHSa5rE+OvRjDYYeiTN61DGxsaq5XA9eXG49QZMaP2fB08Db74OY4mpwIw2pEZGkcimcTDVAr9QQiLhIdXVg/L6pShuP4TKsrnIfeeXSPYMIDE4jJHXXo49T2zFovVzUHn0KXRfcj5GE0ByRhtS/cNINGZQKZRQyuZQAtBQyWNuUwLDQ6N4LDkViaMj8JtyaBgaQn7KFCSPnYA/bzqST+1GecFMtP/6WWQymWq7jObSGH3j1cjuPoSm5TOxI59DvuKhIVlGZW83Rt58PVq/+yskR8aqcuWpLSFpFxeQtYACA2h2xqlUqrreSD6Twfqkz5aDcTla7fhlbRMDCd2fuBw9iuf+qvsR9zGtRyIHeVbnIXWWdBrMA6cWh8sGr3qtk+ZN2iiZTCKXy42LPHBUQstV92MNmFxtY8mO20K3la4/2wWrHXVeTByh9P3az/xYeei20vf01L1E/SR6p3fE57rzwI/XWFrTfSJv+a/51rxFBZNBYE3rgF5v67KBVh30DEM9wC+mlxbVvR1B2Gg0KK31XNBoy5VXVIfv4tHii3lx8RTGq9UhNdizpj+ilMv88+jQtY6JN2W0ZBE0yjJBYaGEpv++D+XODlQqQFMxj9zwEMq+h0o2g+bDR9DY3ojy8UGUl89H5u7HUDpvGfy2ZqT2HUXDjx/EyAUrsee545i5dhY6ntkGv2MqSqUKGhuSSA2PophrAConhzp9iRyKg2OYNiWJUqGCfFMTmoaHUGyZgnRvPzBzKir7upFfNg8Nz+zG6PK58J53en5rEwbedDWyR45jRauP9s27MJDIIJ9KY/7uPVjeXML/n70/D7PkKs6E8Tfz7rf2vaqrl+rqfZfU2hcEkkAgi80Cg4fdHhvPA/bYDMYeD+AZfgMYPGzjsY0/bD7b+nkbAzYgsWtDEi21Wmr1vm9V3V37Xne/N/P7oxS340bFOXmr1KASdDxPPnlv5smzxIkT8UackyejQ+OYesvtKNUkAiMhNrAiARefipPRJXm/moiDSc6k3Mj7tgiIlANpJLQxqsmNqTwtsiP5oP3mANPEKy2CxvORkQ9ZN8kX7bqtz219ElSOKcIVJHv8v9YnkjRgqfWf1t8SyNrWPpl4EBR5sjkJ1bQviILsg8kuVQuiNNuxlMi/jMcV0qnqiJMcTNJLlJ6FjaoRbOm1EtF/8hy09QtcsOVrtloaE0mjo3mHJgUl8+DRIb6PCkUzqD48CkXPk6cEzL0ZQ+ujcrlcxXoU+n6UyQs2eVrVKAIvGkbqzbfDvTAMt6MJmWgMXjSCkOPBzxYx092F+Mg4nNYmRI+dQ/6u65DYdQi5u65D4uHnEDs/Avd7TyP9uhtw+vg5rLxjI0rnJjDZ0IR01kGprg5OvgD/hf4KeyWMxWpRSGXQ1eRieCKPmdo61IxPodjaAOfCKErL2xA9eBrZbb1oOtyHaCSCYl0So6+5BsmLo1jbDGSGUzjT1o3I+DR8x8Xppk6smxrGhgYXx4cnMHXf7Wj91pMIZ/KXpvnYN+JktIAbBv7WGv+chQTNBAai0SgSiUQ5CsRlm6fVjA83wFwuZD25oeXlSHmWkRy5NpDXS4sW8DrItJSflEWKhMq3Q+k6jTH+Zl0oFEIul6vgAwcG1Fb5gVuqh4zqmcaHBCoaL+T4N62d0vqKDvn5EV5PWTbPjw45VjXwJa8HARlNN/DNM/knW7g88fy4/JJMaFFCm26S/3m7tPJsfWMDQZxMDgO/JqcsuU43temlJP8yTbMtkeYsSXpRESeTsTUJkXZdCqO8vhAvxeZNac9VK+xSAWrXTPXnyogfmtcrST5Dho5HmkwbkJoGs2ZETeXR4UXDmP6VO+BOp9GdmUbb2T7kEwkUQ2FEJmcRTWfgl3xk2lrRcOQkksubEDtzER/4wx3oHh9G6k23odjdhmj/MOJPHEB66zqcOzODpoYI2vOzcJNxxCMO/EgYcACEXPiREN68CVizKonJqQK8SARuLo98SwMigyPwOlsQvTCM/JbViI5OIrqyCZnGGvT/0vVIDk9gfZOP/GgKp9q74XglNH/rSbR9exfgACca21GYymBdbRGx4QmMveEWFJOxeXySPNIiCKaoiRZl4YctQlHtYepHrb6a3Jf7t8r1bqb8tUNGS+RvAhGmNUVyfZGUXY0XWjuD6q3lK/My8U77z8vQ8lwIDzVQZOOnxg9NL0k9KX9L2ZCRJxnN1toj+04jm6xpfSPrKOsapPtM/22yX03eSwUwXaGfHS1ojROAisETNIBMxL0ETVnRWVsvQc/xgS2v8evSU6vGQGghaZ4PRYCqBYecb3SP72HDvSVSOpSWIlR852mKNGmbEtraSXyW6z04b+fx4gXQFJpJoys3DQ/AUGcXUCjB9TwUE3E46ezc/kypNMbX9qJhYAihNZ04sX8Mn/j4VnzkC2cxfO/NqHl8P7I3bUXk4gicla2YHR/HaGMLnFQGNU0J+J6DrOfCAXDfRh93rXPxew8UkQ5FEZ+ZgddYh/xMBoW2NtReGESuux3JiyOI3bgW6UMXMP666xCfSmFjE5AezuBE2zI4xRKav/0ThOECnofWbz+F0dffiBMNHVg7OYR1DcDxoXGMvP5mtH7rSUSzBdWwamBAriHSplMIIEQiEUSjUcTjcdWg8EiTnJrh8lutQeaySM+RnMgpXVteGgihetJYCEoPVK594nXjUTrHcSqiUPwZ+sSHjAbJFyzojbxqwBPnLW+/tj7HdtbyMek1uT4sCAxLcCTvU1/w61Ju5FuikuQLKiSzXI/Shr2OcynSKnlI/cnf6uNRTeobW7tN7ZRARbaVk6nvTP0h132awCZ/85PzLcieXKGfP1pUxOmnMd9rEnaTVxDkIWj1rsZLCGqDNqgWQ0GGj/hsW8MkQZeWB51tBsRoNEMuZl9/6xxoyk7D831c7OyGH4+hbu8xJAZHUAqFUGioQ+LkeSRPXYCbyWGqqwOhwXF8Z7YJ//L9UXz2d1ehfWAAs3ddi8jIONZHs2g8eQ7D9c3wszlEEjHMpvJIxF3EI0BPE4BwCB98wEPKDwOFPEqNdQgNjMKNx4CpWcx2d6L24iBWrGlA6fQgxtasQHgmhW2RDAoTGRxv6YTr+Wj7zlMI+SxK5Hlo+dYuAMDJxnYUJjNYV1tAdGgc46+9HqWweddqyTNbRMAWcdIMoSk/7Z62hkfrVykL2hgOes5032T4Te3SgCf9tu3fJI1d0LgPWosj61eqiSOzaRXArpv0j0a+6yC9vRdeOKTe1+poy4/fC5IBjW8aD2V5Wh+bZF7y1fSpFUmmepgoCLjb0psAVhCZnMxq/l+hX2xa8Ed++SCyKSgZTeKekcyPyOSl0T1TXfg1m/KT5WjeBX9W3uOembxn85xk/biHJnlD4Ijevstms2Vvj69/4qBJRqzkb5MCIOKefZmfIRezt21HtH8Ibc1ReMALoCmK+uePw2trRClVAIoluMU88jUJxLM5JM4NILOyE9NdHYhPzeD7bgvwwAA++3ur8F/+YQoTKzsxduosRppb4E6l4NUlkR+Zht/WiKmMh20dLm7oBv56rw8PLlAowI1GUZjJotDWgpqLQ8h0tcOZmYXT24Wpkxcx3b0MkekU1i6LIXN6Gscb2hHySuh++HmUQhF4ziUZ8TwPrueh+Vs/wfgbbsaJxg6smRjE2kbg3NFzmLhlC1qfOoJQUf8Uiuxrk3HmBo7WN0Wj0Xlrm2g9lQRFGniQcqOVKadIeJ9qUy0a8JMvLshxyKNNJLfSKXGcyjWBdM0UeeLjQ37XkeehRal5H8l+keON/pejB/kiCl3NSEcjqD10tryzvaYz5O8SfKRu3AK3NCdTJnmRz1E9iIecD5TGFB3iaagtfE2eVl/TNc5Pui+jV7zOvu9XvMFbKpWQSCTK0SmTvtfkl9rOecDrJdsq28H7lZOmCzV5kW8S8rKlc8HPwKUoV9Bi+ZeKfH/uuBz5XCGdFhVxkv9tB6WVecmzdk0rV6uPSXC1emie8YslG5BaaBk0kGlPJvkxWdtHNbV6EZnuS0+WjuzV6xCeyaAFBfg+cLGl4xJoam1AMVNAvrcLTd98Ak3/8jD8mjiyLY2A7yPRNwg3nUWupgbhqVl8B8vxz49N48vvrMWK6REMrl0Nv+Qhtuco3LMD8Job4HolREIuwq6Pfz4EAA7g+XCiYXi5AhCLAtNppJZ1oG5wCF31IWSGZzDY3Y3IdAq3LvPgnRrCwdYuOJ6HVY8cQMSpXCfD2+h6Hpq++STgAKeTzShMpLGsKYToxTFMXbXW2M/VkAQxPOIkvXBtPQ+/J6M02toRDbDbHA0JKkyHSVbkIetlAn9B0RFThIIbXOm8SGMt66u1AQBKtQnklrfBiYRQc2EE+dYGTNy+HR6qi9R6IRdTr7sBKJUQn56B77rIrlkGL3LJFzXpLX6WpF236Tk5frWIpdY3QWVS3jId109cJ2lOrlZ+UHuqqZeWzsYfU9pq1oXa8l6KoAnAlbfqfga06H2c+DWO2DUvUXqY2n/bb+CS8tS+GyY9GVmnIMPC08jfPE/5jTj+ZpxGjjP/LRqNPM8rR5VSqVTFzuLaRpZcgdkALa8H5xHnG28r975qD50DCkVkXQeTr70ecB3UvQCaCpkCcqu70PjNJ+COzwAAGr7+GKbuux05NCI2Nol43wBy7c3IdbYgNJPCD0s1aHhwEP/jHR343X9LY7IuCTeVhRsOwc9k8Zbr4mhPevizZ13ABxriQKHoIF3wgUgYyBWAuiTc2TTCK9pQODeIfFcX3KkU8uEwDv/Lcxi/cSui02ksf3gv/NLcwCdQwr1GDp4a/+0JzN6wCX1+GLXPHUei6COcjKv84yDItvaEzpQ2EokgFouV14bQPZ63LEu7ztedUF9qAIze8LP1eTXgi689onx4dEF65Fz+bDqA8uURU7kmkbeft0HjNdVVI9O48EolzG7pQfJEP9y1nUj2j2JqyxqM3Xk16r+3G47NIYuEMPnGW+GUSqhxSvC6mpCLRFBsa0K0b7giiiP7mPjA+8emn2S7bXKi8Zyn5+vJ+HXJxyD9TTrQcRyk02l4nleW72g0WtEXlC+9WWrak0v2mayDiRYKXKT+NDmhXM/byjQBriv0800L3jmc/6/m4M+aBFQu9taUnck7kHVbiCAHeaUaD0zhWZvxsykByotHmGgRON+2QGufqc1a3TTPVPP4y8bXm1Ne03deAy8ZR+3Rs/AZaGr47lPwopc+HOvmi2j4+mPwknHkmhvhOS5KbU1w02n0dkQRm5rGP2e78I8/SePPr5tG+4lTSL3hFhQ7mvHGzhQ2NPv4f/YCBDOncj5CISDmYi5mHI3AyebQVB/B7EQaQ8uWITo5jZ7ZUUT6hjD0uhsBz0PbodPwCx5mOxvhoXLaTOtb1/OQfPIAAAfpTT1wADj5IiSZ+tQEwLnB4BEnE+9NB89X6zsJ6LRF6hJ4aHnJNmmHBI7aPRsIMPHSBPQ10tKZypHP8PHhzmZQ88hepNatQG5oGljeiroDJ1FsrsfU3dehKKZyym+0usDkm18Bp1RE3cAQvEQM6QKQb21E7Y/3zW2pIQxzNYuIg0CQBnbk86Z228Z+NbpK01l8exX6tBP/fJAJiMvI04shm82pJm3QSzU2fX856v/TIt+/fMfLmY4cOYI//uM/xh133IE1a9agq6sL27dvx3ve8x784z/+Y8U2JwulRa1xChIs7k2XPTxv/s6z0gsjMgENyoOUEf2WnqkEFZSnBm54eu6NSS9roYtOuQHji7kp+kHh7nQ6XY400dtzfA8V2Q7O82pBnLymrWHh/QkAnu9j9qq1cHIF1B3vQ6m96dL03LeeBPJFzL7yKvjPn0S0f3iuP3OFuR3Gf+UOZNsaEMrkUF8Xwez5caSSTUA2jx/0hRHdexF3vGUHvn4CaG6OYPnqenzyMR9+OIR42EeuCJR8BzM5oC7qwHGAbMlHMhHC7GweuZpaIJNHznOQHpoCtm2Ek84hFAthtrsJ0+EwCm0NKJ25WAaA1D516wbPQ/zJA3ASsXnyHeT5Up9qBp3vFs6/18bTSNmV4ITy5cCLe+yO45QjTOTt8z2laIzw+st1NVwWqqFqHZNq0lSTr8lwS/DF01Jb5Louns6dLSL51GFMv+FmeEfOIbaiBXX7jmNmxzrMvu5GJB54ssKz9MIuUve9EiiWUDswhFIihkwkhtKyRjT866NALg+P1ZH3r1ybRf9l5EkDT/ysgWKK/sj1ZrI/Jc+qiZpK4nUmWSwUCkin0+Xr0WgUQOXbu67rlnfL533B6y3Hg00eTSCP39euc15wvc7zqQaELWW6XNNsS7uVZnruuefwkY98BE888QRuueUW3HDDDXjzm9+MRCKB8fFxHDx4EP/tv/03/PZv/zY+8pGP4Hd/93cRi8WCM2a0aODEr2mCp4Eh7b/trJXPvThpsC4HSUVMZcvfEpBJ5SY/00HKghszAkrca+NrBmwD2HTP5t1z0t7G421LbelBqSaO5NA4CivaUJrJIreuGw3fexrwfETzeXQfP4XzV61FqaEG8QOn55RREXDSGSASRlNdCLlcEQP1LUAqi/C5IXiREL694Wp0n/fxN3flcCYdwR8/GYEfcoB0DvlkFBEX8DwfruMglfPQkHCRKJQwVXDhJRJArghnchqeDwxu34JINos25DGbymOqpQmRIpD80R7kCkWU2IZ9Ul45qHcBOJkcfPbZCNn3NlmQAITLAY8EmfqFGxH+HF+Qyjd35J69jDbRAnTKm0+5SRkwGSjNqZFtD5JPjUzjWyOb8ZIgQNMXQCVwkjLvOA7CIxNoeGAXpu69Cd7hM0isbEPt88cxu2M90vfejPi3noCLuem51FvvmJueuzgELxFHJhJHqbURdf/3ETiZHDxRvhbN0fSL1B28fRxU0NkGiIL4yfMwrZmzkeQ38TafzyObzSKRSBgdDpJf+pSOnJ7l7ZTPBrUpSA/KsUp112T45wE8/SLTfffdh9///d/H1772NTQ2NhrT7dq1C1/60pfwuc99Dn/0R3+0oDIWDJy4EtKAFCmFirUkVQAcDWzRda0esmxuHKQx0g66z6NXchDKcnhb6FleBhkvbZ8TDqDIQ8vn8xVhbg2UmgCczLeaviPSpv8oPzon+4fhHuuHH4vA8x3kezvR9O1d5bftOo6exNWvXwvv4X70Xb8NpUgY8WeOwPc8OLkiYs8ehX/z+rk88yW42TycvcfhveVVgONiRV0Jp1NhfP+sA99xgJIHNxJCseSj6LuoCZVQE3MxkXUxmfVRE3Zf8IAcuOkMvEgUaKoFcnmEMllkZlLIlxygrh6JR/fCz+XhY36k0yS3PIJJfcG9a+o737+0xxBdI+PDo5KUl+Q/HxMS3AComNrjZWtTYwTEpeGjtmh77Ug50gy4lAVpBLX2aGPNNuY1OSfe07S19iIEH4vURi1fzgsNIPJ2hYcnUPetJzHz+luAw2cQX9WGmn3HMLtjAzKvvwXx7z6FzK/cCac4B5qQjCETjaHU1oi6f30Ebjo7zzuX/JAASP7W9BmdiZfhcLh81srg7ZLOQjVkqqfMVwMl5Pzlcjnk8/ny/mayf4FLwKlQKKhl8Xqb7vEz/60BNo3kVKrMl+t3m3NgAm5X6KWj48ePIxKJBKa76aabcNNNN5XlcCG04MXhprl7mUYqeKlsTfnbFK4NVFC+GoCyAQxT3TQPhfLR5vHJgPHvbPF8uPEtFovIZDJl4GTak0mrg4mHNuUj26nxVxrYSGpu/jfd0YTs6k40PrYfbmaursndRzFw/UY8/dB5XH/HCpQe3o8LV2+D73mI7j6M+Hd+guyd12F8LIfGjho0jI9j2o+g8K67AQDvjJxDoqMb/3NXCEW4+PDWNP7fI1GMZR3AdeF4HmJxF6msh1IR8N0QZvM+oiEH4aFRpBsbgZA7F/mCB99xMNvcBDgOav/xh0AmV26jNkWsLQiltDwdN17SAHPgIuWcDLrJCdCAE12Xe/Pwe/ScjDYFGUrNmGjp+Ljh5fD7NvmR40SOJTm2TSDHtFeQBi7k9BRRsTYBdzaDQiIKpLPwE1Gg5CFUKFXUj/ILD0+g5puPI/XGW4HDZxHr6UDy8GmktvQi9f43wRmdRHJsHH4yhkw0jlJbE+r+78NwM5XrJEy8CXJypDxqSxEAlBdYa/nTb657ZL/wZ7R6avKktUPyj0fP8/k8HOfSNgmyjSTjprfxFkJSHnm9NYAngZxpuYNJX2q/r4CmpUXVgKYXkx64DGucTMpXe44DKj6o+aCXeXHig0IasoUKsTZotHyqGdikbOS0DG83eWSZTEaNMtm8HV6+/Ladrc02Xmh85/1B5YdGplB/YRR+KoPiC/UKDYwievgMLt5+NXY9chA3vWoF/If34+LO7fDhI7b7CGIPPYP0e38JUyeG0BgHale1YcZ3sTyaR/fGNnzxyQwKdXVAoYjD5wt42zrgL48mESoVUZsIYSLtw3dcRIo5wPHgRSIoDo4j2dWMTN6H77qIlnKA5yHvhIBwGDX/8AOjIePGgL/Vxa+ZvhPHecJ5Q3LEDZVUrHwRLeVPUUkpU8R/nqdshwk48/bY3jCzjeEgw66NRw6ytEiTlGV+EDCiscB3yS8UCvMio7z98jfVnZ5Jr+2GHw3DmUqh2NqA8IURFHo6UfvY83ALpXl18zwPoaFxJP79x0i/6RUopHOIbKiBWxOH57pwmuuQi4bgT6YugSYWaZJjiH7LKXtZdxtf+RjlAEWuUdSAvIweaREjWzTHlIdpWo/6k4ATrWniYFz2lU3fcx1nk3lNx3GbwPnMx5fpw8VaX5jGnpT1pUL+C8flyOflTKOjo/jqV7+KXbt2YXBwEADQ2dmJm2++Ge9973vR1ta26LwXBZzkf02wJRiR89k20GRS4LxszROV3oZpUMmFgXJwybJkfTTvmowhfxW8vNDa88rRJZqio6kIaQgk0NQGq4ziaX1hIk2ZAJWfLqgIXU9Ml5UifzZ6tA9eKITBW7fjyYcO4OY7VuCZh/fhws4dAIDY7iNI/sP3kXr7qzFeE0dj1MWtziQmaurxp3tD8OpCCO85DG9TD74zVIPIVBhvWpHFk6MxTGU8+I4L+D6KnoOkU0TxqaPI3bANkwUPoUgIsUwKxUQCeT8ExIDQgVNAKgMI0KDxj/cjb79mdKTMOY5TXoxLhkqWJfuQ1oDwqTNZvqmPtLbIlxh4v9nkXoIYk9GQEQeTcTeNX61saaQ4CKCxQC9G0OeF+EsSWhRE0z2leARI51Bz5Axmtq1BqbkW7kwKpVXtiA5PYPZVV6Nu12G4M2mVD+5UCu7gOPwV7SiGHLgOEM7nUIjG4DXUwotEkfzm43DTWWN7JRjX+kH2mS0f/qz2ijzJLi2+JvmV8iyv83x53Xifyu8qapFSagd3EEOhUMVnczTARoDbprMkv6QMaOmlbMp60ss6MnJnGndyTJnG7VIh3587Lkc+L1d65plncPfddyOZTOKuu+7C+vXrAQBDQ0P43//7f+NP/uRP8P3vfx/XXnvtovJ/UREnfl3z0OVvU76mZ+k/MB+USdCjebpE2qJQadxsXqHGB14n+Ro4X/NCHlgmk0E2my171zbDJL1IrV2kRDnPNMAo2yRBFwd39JxpOlbWJXbwNHzfx/BtO/Dkw/txyx0r4T/0PC5ee9UcX3YfAcIhIBxCQyGFWFct+s5k4UWTwNQsQofOAiUf3vVb4BeKeHo8hmvqs/hBOg7X9+AVSvAjERQf24vIxm4Ucll48TicdAahmjhy0xmgJgnn7CDCfUOqcdVIgkXiNf/GllT2kpfciMgP+MqF4HwatlCYe12dIlByITfvwyD508YgyR0/82e1PEzASFvPqPFR8pvLlkmG+D0ecdK24eBjgf5LPUHXZq/diPDYFDo64qgrFjHU0gR0NyM6m0bk+tUonhzDxJtuRf3XH4M7k67om1IsgvTb74I7Mo7uRhdZ30EqVYQTjyBZyCFUF8f4VAq56zch9L2n57auUHQbBymSPyZdJHkqwQoHeHKpAPFUW5tH0Uvf9yuinBLQyL6kcvjaOw04aXpZvuQip+wkn/g37CSZZE5zEGR7NH1ushH8ngZmTfbFpmeu0EtHv/3bv423vvWt+PKXv6zKwW/91m/ht3/7t7Fr165F5b/oT67wAWxKX030xvSMqXwyCKVSqfzWUTUDhUcJtDYBZq+ZrksDQAOff+iVG1J60ySdTmNmZqbsSfOPbvJ6cH7K6RbOSwly6LoERaaogARGmnHTInqcb0TRA6cA+Bi59So8+fA+3HLnKuwm8HTDViDk4JdD5/FQqBuPnM7DTSRRf/IcZuI1yL31DiAeQ/TEOTRctRKj00X8cDaO7fU57B8NAaEQws8cRu7mbcj7HhLREPzJSWSbGjGTK8KtTSJ5qg+Z5mYUt61F5OzgvLbawA+/z9el0XWTt8wNGq1ro83/6MO/fONNMg4cjMgPA1M/VevJSiBCz5IccNmQz8j/psgTAX/Z58QHzWhw3aABJfmfAyb6zJAETxwQmkATUc2uQ5h5xXYMDE9g2apatIyNYKyzE7m6JNypDBrWtmCybxzT992O2v/7MDCdmqtPPIr0r74azvQMll21HMViCamZIvxkAqFSAdG6OCYPX4C/vBP+TAY+ANlTHJDL9VcmgKqNT/rNZVDykKfhfKX/fOqO/vOXDnjUSQPAfFpae1lBqyNwaQ0nOYw0HrT20SJx28fiNf6axokGnDQHVfKRt1sbU7J8rlu1Pn2p6cpUHbBv3z787d/+rVFOfu/3fg9XX331ovOvegNMIpOQaMrBpCg0xWpTLkQaMLLlY6qXrEvQNXmdG1sKj0sv0/f9sjGQa5psJI2ytqaAKxBeLn9O2whRhqlNc/2aEdWI7kX2n0L08ecxsnMHnny4H9fduQqtcQ+IhHBjYgabtjUjOzgJLxZD6fwIooU8GvIpIB6FUyyifmMXZg+eR94No1Qs4ei4i1s78mjffxjFFR2A78OPRuGPTML1PTjjM0AkDH9kEsnmWjTsPwYkoihcs2HempNq+lYqWsl7E1CKRCIVh2aUpLKWURbyzm2yWM34kPclgJFpgsg0hmTfa3UzjUkOlmhqjm/2qn04VvJei3pUpM8XUPPo88hs6sG5bASp7g5EikUUI1FM1dWjNJVB48oGhAbHMPPWO+DVJipAU/emDhRLHkZnfRQiUfiZHErhCEYuTKOwohM1zxyC11SH9L03l7cfkDKiGWtT/5mAPtclkuc8fVD/cZnj8ia3Z9DAhgY+6Lpp93wAFWVxnReUvwZ0gkjTVVJOqxkPpkMLDmjgcUmRfxmPlyl1dnZi9+7dxvu7d+9GR0fHovNf0Ft1RNUKtIbKtUGjKWRtgat8hg+EIA+K18lUX62O/B6vm+M4iMfjZSNKyoS8KHpzbmJiorwgXNtyQCuPe66ad0Rp+PQFf44iJ/RcPp+vMNZapInnUY2BlffmIk/AyG1X4dGMh9s2xBCZmMSubAM+syuHYlMTIj/ag+J1mzAWDqOhux4toxNINzdjPJWH39ON6NkB5LvbkYWLhucO49PvXob370qi6DqIXxxCrrsdmEzBb0gi+uxR5K/ZiPGBEbT2dqD++FnMtrcif/V6xJ4/MS8awOWR80bKmQaYiC+0fi0ejyMUCiEajVZsP8Gn6TQDwK+FQqFy5JHy0oxQNQaEyxOPzPCtEmygmEdxNINrKl8apGoPWtOUTqdRKpWQyWTKkSctoiKnwHl/ElVEzXJ51H7zccy+5ZWYHhlHoqMR8XQKqbp6TNXVo2FyCs0rGzF2dhSpt98Fv+TBnZquAE1eOIxwLgck48ifGoS/ohPhg6cQXtaM2uePYfaqua0Kah7chZABQGiGmkjKFp359K9Jf2oOpMwfqIyy07lQKJRBPkVIJRjl+ofXg9eRdB6f7qZ+INBEi8RJHnkk1BQZ0tqlyagWTeV50zXJG1O0KWh8aPqA2naFlh59+MMfxm/+5m/i2WefxZ133lkGSUNDQ3jooYfwla98Bf/rf/2vRee/6MXhgP2tAino1XhIpnz4mdeFBoFpsayWt+m+bIsG6ohMCzDp8Dyv7EmTN60NTK5MJAjSFKWtfhpQ1aJKMhpgIq1M0z0qN3zgFPLXb8JUvBYX9w/ipmsakNkzg2JtPULH+xDffxI5APk7rsHs8Cxaa6NIzEwjE68DPA8F30HkWB8cx8GDyeX48bP1SHhFeGdH4McjwMQsvKY6xJ8+hOiqNrjPHEb22k0YP30BjfEIko/uReGqdXBCLlDS1ynI3xz4cAAsnyMjoq1l0mTAxD8uuyQrdKb6cJkP6iPZj3x6y0ZSHqVxpLNshwSeEjxpRkiLNPG36OT3GGUdeF20cSrbBQD57WsQ23MUPW/YBm8yhb5IPcKFIoqhMKbqG1A/OYnmniYMOxHAddHVlagATU6xhFIijhWzY6jd0Ypj3z+M/DUbkHn+BBI97ah9/hhSV29A+t6bUf+93fMARJDOkWBByo5m2E0UBEAk8X4h8M7BE1DpQMi2SeL3ObDhuodPOfJ6k+zZwKCJT5o94s9L/WgCR5o+tNmTpU6+P3dcjnxervSBD3wAra2t+MIXvoC/+Iu/qHBSd+7cib/927/Fr/zKryw6/wUDJ/q9GNKQPP23CajmNXPPhjwgOTWl1dNUFjcgmoHlv7mh1Ta6zOfzmJ6exuzsLDKZTHlBsPRAHefSPD9XOBIUAvM3rSSFJr0w8irJMPFpuaB+40qT88QEmis8O8dB7g23wvGB1UN9OLdqBY7unkWxqR4t+49hvLcHmXtuRrGnE4ndh+DduBljo9MoNtUjPjKObEMd0FKP5Hd3IRQKYfI/vBpTXhj1Z/rhxCLIFsJAOIz44/uQu2ELInuOILa2C+GnD2L2hi2Y8Hw0eKcQ3XcKgAP3hb05yu12nHIUyvf9cr9Fo9Fy5IgDIYrQAZf2nZGRJr5ZJTcwmmzxdSYEagGUz8VisSLyxI1RUL/JlwR4/5nqY+pTIi5b/BkCePyD19qUr5weKpVK5Zcj6DND2WzWuMZFevd0pr4xjW26Htt7Auk7d+L8949g231b4Z2fxrlQLcLZHIqhMKYbm5BMhNAWAoqui7G8g1LOewE0FeFFo1iVHkX32ibs/ed98FZ0IfHgT5B99XVwjpxFYnUH6g+cwvS2tZh93Y1o+tGzczuMK86RBuCl7pPTkCbnxsQTeZakOZ7UL1yXUTSK9Cl/eUHKguY8ApeiTvQCBJdtzXGUUS0JwHm75IsXmgxQHry+2jo+E5CS+Zn6r1qg+rOmyzXL9jLGTQCAt73tbXjb296GQqGA0dFRAEBra+ui9m2StKCP/AZ5PosBVFKQg/LSvFg5KCRVK/gmJSWf0xZXcvBCiyNlpEkrR1M+Ml9trY1UrnItg4wu2fhiM1LaeZ4idRxk3ngrvJYGbOs7jo1tLqbOjCFdV4/kgRNo3L4c9SMjKG5cidjgKBrXtCL8xH4UmhuATB7REBDPZeGkc5h5y6sw+cuvhJvKomZkDMXmeqTaWlDq6ULNAz9Bcv9p1Dy+H7PXboJ3chDh1R1IHjiJ0trlSN2wZV49AcAPuUjdth2l5vp5fCRjEYlEylMXBKZoGpYftkiTlC0ur7LfgwCp1ic2MsmYqf9tMhFkEDSjo7VTc3LkGhvT2jpeFxtf+Njj9Qtl86h5+DmkNvZg72Pn0ba8HqswCy8WRcgroRSPIuW5SMRc1EWBfNFDIRKBUypdAk1rmrDn+2eQ2bYOiYefRezsIGq++QTym1YjO5aGs7IVjQdPodRQg/RVa+cWjCvRERtpY1D20WL0qqlcnqdJZwRN0ZrK0/QpBy2yD7XDVn8bP7XrNqAkrwWRTd6v0NKmSCSC5uZmNDc3XxbQBCwCOFWz7oGfq8lLKk8tZC8VME2D0Rb/pjpp4IfOcl8dXjdKw40j/2grrQ0AUDa+nuchm80ilUphenq6vHZDKiSetzTMGliRC5HJCySvLpvNIpPJIJ1OlyNc8pVuKlMqJ7l+hF8jL5EO+caY4ziA6yLzhlvhNTdge98xrNjajkf2pVFqrEPkmcOY7F2F4ZPjSPcsR+PQIOo3dmJipoj0NZsQOXAa8DykJzJw4CCOIrymeniNNagdGoGbziCbSMJvqEX8x/uQvWkL/Jo4kicvoOGpw5i9bhNKg9PIb+pB7b4TKGxbjfSNmyv46IdczN6yDW4mh8hUqmK/rUgkgng8jpqaGtTV1aGpqQlNTU1obGxEQ0MDamtrUVtbi2QyiWQyiXg8jlgsNo8HHIRxcMXBLVEQoNX6xLQIV8qsHJ8y2litQawW0Glt0BybYrFY3sMsnU6XX5iwRY6IJA+0rT8cx5nXNsdxEMrm0fCDZ5Bd0VEGTytDaZRqkwh7JURCLkayDkbSPqJhF67noRiJYGVucg40/fAscmtXoPZHexDNzH1GJD4+g4bv7EJu0yrkxzNwVrah6cgZFBtqkN62GlAcqyD+2sCGCYya+G7qM56H7BvaY476JZfLlfWraT2QJB71lzqbdB6PGPFD6j45puRUoOZYcp5LWZfjoxpnW+OtKbK61ECU71++4+VMP/zhD3HPPfegqamprMObmppwzz334Ec/+tGLynvBb9UBweCoWiHSPGRJ1SjpIO/alK/Ju7Z5O7YoA0Wb+LoNTZlp5WuHKaph8hIvx0C2AU15zwOQuvdmeM312N5/HMu3tOPhfWlkN65C/BuPwXFdhM4MYOerVqB7egTprg5k+seQXb0Czvg0Iv1DiD1zBF53G4qFEgptzQiFALdQwPTGHsys6ILX0oCrzx7Fyqs74U7OYPJX70KxpQE1Jy8iebwfMzvWIHZmCP7G5ah9/iRSW3uRXt05V79oGBO/fDucfBH1CRdOcy1mt/Wi0N6kGmN5VBNtCgI3trEijactomKKQNnG4EIM72LI5nTIsjTgFhR54P1jA5IazzJXr0OpswUbdrRi87GjyPR04ZnnJ9G2ogErajwgFALgI1sCMt7cZqtOyMWqRAHL1zTi6d1jyK5bhd6Dh7Dt6lZ4rQ3IXL9pbsp2bAZN330ambXdKJ0chN/ZiIZnj6NYXwMvGauox0IoqK9MusQWVbGVoR0SZFcTuea00KgQ13Xymknmg/LkbQ06ZFr6bcpHS8+vXaGlQX/3d3+He+65Bw0NDfjCF76ABx54AA888AC+8IUvoLGxEffccw/uv//+Ree/qLfqXixpCtc2qGxeFgcRdM1UZjUeNAdH8nm+9QCAeYYyn8+XvWoZCaN09OFLKk/WW67ToudpJ2XaH4VAGld2HMBpPLMtDNeUFK8feY3laIbvI/36W1Bqrsf2vmPo3tKOh/elkN3Yg8Q3HkNkdAoZ30dpwwqcPTiMV9zSjh89OYaL7W2IjU0i39KAYnsT/JYGRPccQen2HSil83BiEbjRMIpOCIi5WD4xjJlNvZg+PoS6q1Zh9vggJu+9CcXnTyKzfgUSZwZR2LgckePnkblmLWqPnUN63XKUvBJSOzfASWVRH/Pgh8NIrepCqaEGsePnK6bn5CdyiDexWGwucvFC9Eiu95Bgmq9h4ouhqV+DeC6Nhya3nGQUk0cUAFR8jFgrXzMUJsPHx6KtfibgyHlFn+Lg9dXqRnznWzdQFIQW8PM1T3zsRIYmMXXTFgyd7se1dy9H8bnTOLZxI546k8ctayNIRko4MvnChqfwkfMd9CYL6GqJ4KljORSXt2PtqVPY+apVeOa755C5bQfqnz2BWCw2V7fxWUS/vQsTt2xF7ZE+hNI5NO06PNcOAWg0XkodY+IFTxMEErTfprS2fD3v0puPxGsaJzzSLvOkfG1vlvLy6EwbdMqNMGW6IIdBAz/abEY1Myame1yeL5cDcrnJx+VZn7T0WlY9ffKTn8QXv/hFfOADH5h3773vfS9uvfVWfOITn8C73vWuReW/oIhTNR5UkLdTrdeiPWvLsxpvSxuIC/EMuXHTnuULYbVwsDS0NgPFD2mI5TqRIM/U5k0FkeqV+j6yt2xHqamuDJoe2ZdChoGmYlsjCpt7EDt8Bv2JZjz6xAjuuKUF7elp+C0NaDx/EYUtvYicvID85l4Uh2cQikfgv/DmE0IutiRSuPXqevSdT2N4xQpg3xk014URHpnA9M1bED87gGgigsix80itWY7YsQuI1MdR9/RRTN9+NZxsHs1TE/BdF+PxWuRb6tG46zDCPpBe1Y5sR1NF9EKS6Q0621Sa5JvJW5f9r8mTlFN+TesnW5+ZZCOITGPEVDdTBIgDy4UctjcZTX0SCoUQn86gec8JnN+6Fk/snsSGe9ZhZXEafjSKPWeLaKgJY1UDAB/w4WBFrY+ulgj2nMqhmIhhRX4aW+5ejSefmkDftvVo3HsKifGZyqn7VBZNTx5Eel03vEjYyBeNl1okWfaj9l/jfzWkyYGtvkFrJm310uTARkG8srVXAnreNtM44CBP8shESxEgXSEz9fX14a677jLev/POO3H+/PlF5191xEl6xnJPIkmaYAbd0+aq+Rs3EoAQ8egLzZVTOvK++XOaMrcNdO4p86gAKWny0GincIo2kQdF8/jc45HfSaLddYmnNNVH2xpks1lks9kycOJGmZ4zRYdkW+iseYGacq1QOAByV6+Hn4hi+9mj6N7eeQk0ff0xhEcnUWpvQu62Hah/bC9qrl+Dsb4h9PV04+Gnp/Ca6+rx2A/PY2h9D5oPn8b0xlWIHziNzA2bgGMXENq8AvCBpnAJ4WQc39wzjXxrE8Jj05hYvQJNY+Oo29yF6eFZpDesROORPmR7OpA4N4hiawPizx7H5F3XIDIygdapSXjhECaSdfAaatHxwFNIhCNIr+pAau0ytB3oRywWmxdJJH7wneA5aNbAM+ef7U1GDQzIdVE8b4qsSCBGcsTL5v1OZdHY0Iy1DVDztLI8zREg+dY2VuTyViqVyuubeFs0onK0b/yRDqHypSxHIhEkskWUjl7AwI0b8ejBFF63I4navjQO55LY1e/jxhWAA2Ak5cNxHew666EUiWGNk8LOrTX40XOzGN+yFk17jiE2OqWCz1Aqi6aH98Jl7eQRTOKZlBfKR0YLZdtNYFry38Y/2W98fy+SR/5WspQp35+LeFMeUlYlEQ9oTSTX57INpue5jeB62pTW1HaTw2B6TuZNz0qZqxawXqGXhrZs2YK/+Zu/wWc/+1n1/le/+lVs3rx50fkvaDsC0zU5IGygyUbSENlCqrwsoFI5cEEPKovnZVJAEmRxw8QNi9yVm5fPp4JMilASGRrtbSRTJMH038Q/rUzbudjdBq+1AV0nTmL5vRvw6OPDyF6/BclvzIEmhEPI3bgF8ScPAK+9BpnnTqLx1VdhcmAMF5vq8fAPLuCO13Tjxw+eweDmXsSeOoJ8bxfqf7AHU2+4GSgCrUkfvckSnhkJw29pROPICMIAxv0wRntXoOncCGqXNSM1MYPJTSuRuDCGricOI91Wj6HXXofo6BRaZqZRCrkYbW2DH3bRcvgMwrEIxjetQq6tAR1nR+DVxJAOR5BJxtE6nVONks3zlddNUR7Jdy5LfJrP5E3z/gQqNxA0GVxtHJiMsU0+NAAg+cDTURlaFIimOgnIcWOk6Qw+Ba1FlmT5RK7rItXTgehMBq13rkZ4KoWLySQeOZHHTWvjmL5YxPl0GE9d8PHq1cDqJgcPn/bguy66o3ls60niocNZjNfWoT0zg847V2P44hjyzXWoOXFhngF2+G8GeDWeUT15u2080PrKJIMLIS4L1D+2dAS2uHNmm37mEUEb+JOkgSZ5SD0qnQBZ9yBdaBqnpjotdboyVQd87nOfw7333ovvfe97uOuuu+ZtgHn69Gk8+OCDi85/QWucNPRebQhTCh5XFnJwce+av4VmUhQ8giPTy3pzhUtz66aBRXXk3pi2iJF/0Z029+PP8rZI40V1JEAkvxTPvxDP13NoIInX22a4Nf7IaIWpXyMXRxEdmkDK8/D4Dy8gv2EVGv71UYRnM3BeWBMUe+g5oOQhfWIImRu3ofvUBWxsieNE/xAurl6GR799Fq967XI88s0TuLBjLeqeOYb89jVwMlmE41G0eAU8NxqB77qIeCVEVrQgPziFSEsd8pkCJjra0DAxA6epDm46j0x3C2bWdGFy8ypER6fQNj01B5ra2uAlY2jedwL+ilZMNNQj3duJ9oNnMdXbgUjfBC70tGHd2XE1isIjThrvTHIrHQlt2on2y4nFYhX7N5Gs8bcned4UQeKRHQliJJnGqhyPpmf5wdvNx7CcypG84m2mfGmcyMgTN9YEPshQa+Nf8tz356aTz96xA2tnU3jTdUl851AOZwpx/OBUCXevBvwhD4NpF4dHfORLHnzHRVeihOuXh/CDEyWkwgks89N4/Q1JPLpnGoO/dAManz5a7k/OQ9nf0qDzNvHomiYvGiC1gV8TsJJ5aQBOfmNTppXgjmTP87zylxCIF3yM8INkmcqQIIfzgAMxKpuDZimvmsxKGZLlyCj9QuyYySmxgbKXipZWbX729MpXvhIHDx7EX/7lX+Kpp57C4OAggLlPsbzuda/Db/3Wb6Gnp2fR+b+oxeEmYZGAha7JQWFC8ZqQy7xtz/CyTOnkoLQBBhkdkEqGjAAdUrlpg1MqSL6hoLYPFM9PtqdaCvKYNIUiFa7jOHB8H6XWRmQ39qD+sX0IZ/JwmJF3HAdeyEGxuR6xvmEMNdQjfOIC1q1rw4kzAzi/ugePffcs7nhDDx75l+Pov3kLUPJwa98xtGzvwDenm4GQg0Ynj+4aD4fTUfiNzUiOT6ImHkUq62OqoR7J2TQSkTDSU2mM3LwZ4cnUHGhyHYy0t8NLxNC87zjQ0YjZkoP86k607z+DTE87agancXF1G9adGEZdzgOc+aF4zTDZ7mn9IY0I98T5VJ1cs8OnQ7iC5lPkmoEM6l/NyPLxKK9xeTDJNY+A2Qw5X2QvQZcNQEnQJI07P8/JnovxzSsQm06hvzGJx4/mcefGKP7taBFjhTC+f7aEN/aWcDEH/LjfBXwH13eVsKbBx7dOACk/jKZwEa/dFMfjB1M4Ha5HZGQas9tWo/bMINzC/EXMNl1oMs6awdXki0fzeDslgDOVbwJOEpBIYKLpaOojWoZA4EnqNg78TOWYHDttHHKHNwjwaKDJdtYo6F7QWLtCLz319PTgM5/5zE8l7xcFnGwKQ5JJafNDemM8XVBepLzJI7IpWJOBNA1kuVstD7fzLQh4pIneHJKLgynKxdefkAdH+90QcOJGUjOUprUhXGnJtks+8rN8TiO6F55OI/bYfoSLHpxotCJP3/fhAmh68hDcQhETd16DvvVrser4Kaxf34bjZwfQ19ODH//7cbzqV9bh26fnPrdSd81yPLQvBawCat0iViQ8nB4twk/GAd9Hpr4edUOjiHa1IFfykI4nkBydQGRZE/K5EoqNNUhlajCTrEUpEUPL/hPwOxox44eQX96Gxj3HkF7Vjuj5MQxu7UHPofNITmdQUnadl3yyAXY6myKK3LunfaASiUTF20ryu3f0n8svjwpSfXmfVmMIbGtupAdtMuqy3VrbNaBTlp0X1vPxaKx2lruS8zrwtYK8riXXwfh161HbP4plrREMzPo4gDpMHc3jzRvD+LdjJYzlQ3h6xMGOxiKW1UYwlgb8godnhlykvBCaIyW8aaODRw9ncbpYi9rJKbQVUpjoH8b4zVvQ9vRRuIX5m9tKWeD8WYjRln2jAZug+wAqgDdwKXql7bdkA2VEPA3pLdd1K6Zeab2glAE+vqReq5YPGsmoqylPGfE3pQsaQ1IPV9OGnzX5AC5HlZZWq5YWLWhxeDUeLR9wNvDD8zQJvfaM9I75dTllp60bCaqDdt8UbZLlUp3IUErlSfekIqUpOh5p4q+yS2PM1xoEtYuXo3l6EjSZlLDMN+S6cEseXMW4kxy4xRIc10XLo/sw9qodOLd+DVadOI3161px/OwAzm7aiPTZPH51ZQbjBRf/0lcHv6cenXuPoGNHJ46k65FPxhHJ5uBmssg11GO6sw21UzNoGJ7E6MoujLY3I5kroD7kIJPPY6KrAyiW0Pr8cfjtDWXQVLfnCIor2hHpH8H49jXo3nsaLeMZeMpalCCS8iKBg+QjjyLRFBxNX8gF4nyhOAEM3k9l3hqmCashqq+cgqTf2tugRDS+NSeHGxZKK50YaZC5AZWAieqiOVU84sFp/Jq1iEyl0NBVM/eh7bwHp1DAOSeKB056+NWNHh4bcHBgxMXF2QjuW5ZBrsbHN4aS8OFgY0sJdy738O0TDvqKCbi5PApuCKXpLBLLGhA6N46xGzai/SeHAWGIiYIWu2uAVCMNHMn0NvAkozxyzRnXD7zOJtDE05O+o+0haKd9XpYkDejbZDbIsTUBH9N1bZo0yCHSrgWBryu09Ok973kP+vv78fDDDy/q+QVHnDRhkUa5WrASFBGhtKbrWt3kN8B4edXUibdBTpnQPb7ugB9SOWmGlNJSRInelOP7pkhgJT1BzjcNbEqlJd9M5DytBgzL/7y92kdp5T3HcdD22AGMvGIbzq3rxYrjp9BzyzocTZcwVoxgMFvAwekIfMdBreuh/boVOHNoFPmNzUCpBIcAeakEhMNzkSZ3GtEIkPV9ZEIRNJRyQCwKeD6cSAj51R3IzhaQX96G2qcPwVvVAffcMKauWY+OZ46jeTQFJx63Kk75dXkJGni7uXLnZwmcCBDxfXHkNJ2URSpTG3vaOJJg3yRLPCrAp0JMkQgpOwRqSNb5b55vtc4Unwbir8DTQutwOFz+thqAMnjiDlv7yUFEMnlMxVfgwvJWOPkiHA9A0cNgJoQ9gyXc0FrE+ZkIJrMOTs2GUCp48OGgMerj5nYP+wZ89KcjQKkIwIGfLWCwswPJgTE0nbiI4sVx+CLaJQGBCYxrfSBliKc1OZzyzPuSA1cJWm3glcuwTT9Ipw9A+a072h9N7uXE68HXlvL8NJBkOsu6mcCMadzI52zXtLL5WFhqAMrH5YkWLZ0WXX7q7u62zqwE0YIXh9sQvVT21YAVmbe8pwkxV/IyDZ/OsHljsp6UL1d62vy8LJfS8wXcct0U5cWVKUWWaDG56Y05qdRI8VBZ2jow/oYMr6ON/5I0j8xkJLTInlTkju+j5dF9GH3lDpzdvhktuSJuSqYwE4riGwM1gO/jlY2zmM46OJBNoLBxNWKnLyJUG0OmqQGFSASxdBb1Z/oxsm0Vhnu7UVPIo62Ywlg8iclQDI7vo8YvolQEpluagWYfNbsOwlvZDvfsEGZ3bkDb00fRMDBpBU1E2rQWtVlrJ+epZtQkeOKfmpCgiddNeyFA5k3pgPkGk/cdpeORT+nZ24CTlA1tbPF68fFKz8q0vP68PCnfdI+u05l+A4Bb9OFEo/DhIlT0kK9NwHMdNPgFhKMOnhqO4vSMh3eszODwKPDweALwHeysS+OmTh//1pfAhZSLxpAH5IuYhINifQ0isxkQ692ZNEq+vkeX4ziq7uHtlxSkp2Ra01mbIpP/TeuiZBtsQIM7BiRzNF1Heo02ytT0pvbGoamdWp00vUTnIOBkA2Kyndp/qfuWGmgCcAU5VUGf+tSnXtTzCwJOJq8oKK2mlHk6bWpAA1/S45X3KY1JoS1UkUljpnmK5BHzQ3uzj6bzCChxwMSBl6wD1ZF79Pw6Ny5UPwqZ8ykPrmDl4JckeV+NYpDAWTO6c/WZG9WzeQcNDcBkDnAdH44DjGdcxGIuCrkwUCoh1FqHmkP9yO5sgO84SAxNwWurg1uY+3p9PhJBTamAmOMh4zuA48AteSiEI8RElDauQPhIP1I7N6DxyYNoGJpG6IVpBb5IWwMb1cgKb7u8r63x0BbKSiPHZYkDXwlSTW+yURq51w5fg2eScZ4H70v51qVGvP+l0eZRKSlfVE/eFh6xle2ltjiOY5zWrh+YADwPo2u7EA056IqUcHKqCMQiGE47ODriY32ri71pYCbvY2WDg9MTHi7OOgB8zMwW0BMvIosI8kUgdn4E8XPD8z7cLfWW5IOUG5NTaeK/DVxoz9oOLapI/REEoCmdVi8a247jlPey419I0OSdrnPZ4uUuFIyYnDqtj4JAk8yX52Uqc0kCqCv0U6NFLw6vVlBMg1EDBjxvE0AyAR26xz1Rk3Gqps6aQSWSERZu7DRvjy9kpcXfEjiZgJ5mjOm+ychQxMnm+Uqy9adJ2Wh5SqBEVPQ8TLzqKpTaG3DDmSMY3LQO3x2rRVONg6sSGUz5ERzIJOHnHWyqyWFgpIipmiSy165H49kRNJ8ZwtlXbIEXchD2fbTOTmOwvg7D8RrEXaA1l8NkJIaZyNy3whJ+EQUPyDY3AjfUoemxfajrG0G4pqbiY8VBe81IA2HinQZ86SxBk6k86jt+8L7hwIn6REZYZV4ywsDT2aZTZLsJMNj4INsvX4Tg4ImXSUCfR8F4vaieNKUNXJqKz+fzFfyhZ6Y6G5GtT+La4Qs419ONo4UEEHdQl0qjoTGMH43XYH/Ox7vW5jGW8vB/z8ZR8By0u3lkJzOYrqvHqVIITeESNvadwbFEEqXVHagfmQjUfRxgmNJqwEkCG6lnFuqkmiJQmj4wpeG6WI4Jnge96JLP5+G6LmKxWFmvmfSnXLAdZCck7ySoMQEnG9iXfJX8rgY4LTW6EnAKpv7+fvzxH/8xvvrVry7q+UVP8kngs1CSyo4DAS1PDd3bvD5bXprB1wwdV2ay3VIpmfjCtxegwxRl4nU1KQMO6vh6Am4EJV9NU0FBoNZk3E0HV1QEFEulEgqlEiZedRXybY24/uIpbLi6DSMnx+C7DmZSJfi5IvxiCT4cwAcujBSwvc2H6/vwXBfxyVmE0lm4xSK8UAg1hTwK8QiQLQKOg2LJA0oewrk8MRHIF+eE2/eBcOXUJdWNbyzKIxcc0MoPKfMNTuU1vh1FkJxSf9BCcdOHhGUEqprpGFhuBWMAAQAASURBVJlebm1ApL3NZiKb0Q0yynIcyrHJeSkjaJwHQTqHl1+ojSOSyyNUE0OnmwdCDlwfWNMCjE6UAPgYSTsYmiwhn/VQ8OYiTZNTeaxsDsH15z4E3IEsQvVxhGbTKNYm5tVVO3hfc95q0/CST5rekuM4aFxrwFzjkwbotbV2Jt2gEQEo+pICRaK052zRV/ov+RK0ZkmTqWp5busn7d5SJd+/fMfPK42Pj+Pv/u7vFv38z/Qjv5rQaoOE/9ee58/ZFjya3nTixAeq9M61Tz1wxUQetTbwyXsmI8wjTaRcTANQUxC8HIpE0Jt7ZORlVIDzhYBNkHHU+ojfkzziYI3SU7uBOa9l5jXXId/WiBsGTmHdNa342v4i0quXoeO5Iwhdtwb78jXwwyEsc7IYywHTiRo8OVnEpvoiCnvO4/iO1RjeugqxmQy6ZmZwobMFpYIPPxJC/cAI0svaMBpPwHGAurFJpJvrkYnGAB+IF/MoTmcxccc1cB99Homh6TKvAJQXG0swTPIgpyZM3q8EkJxPHFwRf8hImRaJy2gQ7wuSDbnWjdLz1815ezSDoE2TSAPHQbgmM9WQBgooT/4mrHSCCFzSFDhfEM4NmRzDy54/i8GtK7HXSaIzkcQt6WkccmqxL5OEXwskM1ms63Dxr+eT8Hwf3dE8JsZySNfV4mDeR03Ex5bsMMaaW7BvuIRwDVD7oz0olebrFD/0grx486Md8jeXEf6/GAkhXLgUodUidBJ0SH2k6UKpv2zTsjZgLO+bQBX1US6XQyaTqVjrJNPSuJMf95X1rhYwcZKbq8o2kdzLPE36TxsrSxk8/aLTt771Lev906dPv6j8f6rAyeSZ8oGtRVgkScEmoa1GaS9ksEklo13jykmGmelMwIGmFniEyeb98DK4160BRZ6ee4+A/tYX5x3nDc/fBFq1NJw078z3/bnv2m3rRSkexXUXT2DdNe342r4S0r3L0PHcYXRtbceZZ8/Cu2oDUPTgF/NYF/Vx2I+gFA4jv/cMbn1lG4aOpzFTk0CLn0eo5AHpAvyaOGrHJuG21AKTs0BDLZx8AaWaOBKjU5htbQIcH/GhCXhtDciOT2Ps9h2oefwQ4hNpKyDifJJGT2u7DfTLfLlcAJemnLTdm6UzQPd4hIADYankTc9XYyj4f8kDTea5MeH1kGXL6/K3aXxQu/mWDXycUFqKcMD3kRyawFhPG4ZG8tjSE0PvaAbPOTVwAOxoK+HwQAleTRSAg+nRDLZ1hrB71ofvOugpTaNlWR0OnU7PfQPx4Gk4AjQR5Vd3Ib+iHXWP74fjzXcGeRs0EDHb24VsZxNadx0Bf4L3rYzMaPm9GNKAjQlAmZ4nIvnjW6uYZJHrO35dc6r5vaB6STnSHBBNzqqxQSZ5Xyp0ZaoOeNOb3hQIbl/MmFnwVJ0cUAspnA8U7c0vTYi1KRI5VVKNMbfViddNU0Y8SsAPrV3UWaaP/moev1SQ5GXTa+uxWAzRaLS8V4pUcPwZPqUhQZUt/C55oIXxtVC+bEe5vzwPmS09yLc34Zqxc1h/dRu+tn8ONLU/dxCdW9pw6tAopnasR3jfcbi5HAa9GC6GktgYyyJ5+gKOr1+Lrx93sHZ5BL3pacy21aO/pRleNILWo33w2+oxnfdRrK9Fsn8YiISRgYtUcwPqBkfg5oqYXNaByNgskvUx1I1Oo/+2Lch0Nc97m01OGyxEhmyyRfkRX7hcZLPZ8kec6T7nvfzNx45cB0X1ldEtui77WZKpH7XpiSADK3mnyRMfW/L7jqZIDW0gSmOCIq5cL9A00VRbPcZ6O7Ht0HFEayP4/lkHE7U12BlLoTlSwlOzNZiqqYGbK8LN5DBTX4/dqSTqoj52+BPINjXih2cBp6EGa5/bi3xvN7JrllU2MuTCB5A4cxGx2TRmX7EDfjQ8r72yv/gYmlm7DOkVbWjfdwK+58Fz5us97RM7trGtAQvZT1p/ajol6DCBt2KxWCHjpqiSnEqW9ZG2hutZkxxy/gU5Bpq8msaArEc1+V6hl4a6urrwjW98w9iXzz333IvKf/EbGbxA1QomEKxk5f9qojMmBV7N8zIfE6iwGVeehhSdaS2TqQ6yDZqCrca7tCmboMNkqDUQKckUYYDno+axvQi7Pv79ySmkV3ai7dmD6NrSgbN7LmJm2zpE9xxG/NAZRB/dC/g+xrPA7JMnsLbNRbJvCNN1dcg8049kLofsZB5eOIQVJy8g3JBAaWAKXm0SyTMXgYYkavaegB+PIjSdQmI6jZa+AYRyBYy3NSM+MoO4A9SPzuD0NT3I1Cfn8ddmEGx8N/WjlA+p2LUPOEt5tcmxKboTFPWh+sg+rAY4LcRAaGNSlqm1UZKslzSMWr2LYRcdzxxHHUqoe/4U8vEYLgznsbrVxQZvtuxNO+kskM4BPuA7DtYXJrBmeRznz6dQrEki8swx1Dseah/dC5+tlXMcB7ktq5G9diPe8Ibl+NS9UYRcB+P33Q7Eo1aQQc+P37QZ09tW477IED750XXItjdi5LZtmHtBtHo9aeO/RiZdSmdNr5p0oJRz2Z98KYGtnhp/bG3Q0praVk37eb1lG15uoMi/ssYJO3fuxLPPPmu8rzkYC6EFAaeFGBH+jGaMgPmegaZY5XU5yGzAgrxZ/uZaUB21vPm+O/xNJyJKUywWkU6nywf3tjTvX1NQtFiYvGq+mZzkDY9SmAATr58GlqRnzBcoawvONcMu+QEADoD4oTNw8kU8OxPH7KZedDy9F8u2duDMMxcwfd0WxB7di/iTB+FPp1FcvxLxH+9DtG8I5zeux9SxEaxvcdBw5CwOr1mN4+E6lKIRrD4zhFJbPdJuBLm2RjTtO4XS8lZgeAqpLavR9OP9gONgur4OIQDtA6OI5PIYaW9CzWQaSQdoH5rGkWt7kG2sKS+wlzt2a3yQMmKSGa1v5Zolioxks1lkMplyZJJvhFoRwVMWpVezIJlfk3WWdZJRG4qOmTZntYHpapwNDRBpRGtmKHJLdeJTQdxpKRaLqDkzCHcmjZPjJZxfvxorjxxDfU0ID54EBmobsCmeg1sootRYA6+xBk7Jw4ZQChPNLfjuMQ+JhjiW7T2Aya1rcXw6DDeTQ+JYfwXfao6fh1eXxL8O1KJYAj77iiKiqSxG3ngLnJrE3Nhl04r8GL95MzIr2/G23Bm85+1d+P/93QimrlqDpudPwQWTJRHdNgFFiuxp41vqWxuY5tF0uib3HdOitSagR5GnfD5fURbXKSYwVo2Nkfqe2sjrL/lnIpsM8vKu0NKn3//938fNN99svL927Vo88sgji85/QcDJ5slqFCRk1USZgjznF1vnaiILQWl4BIGMjGZotLyCIjzymSBeafmbFFFQ3Ww81f5r3md+ZQfyG1aifc9+dF67EmefuYiZ67ci9vjziB06M/d8Ux0ix/qQPHkBdT/Yg/DIBPo3rMP08RGsWl2L+FQK2cYadAyOI99Sg8JsAbMt9eg8dA5eRxMSh/uQ6elE008Oo/70ILq+8wxKiRim6uvg+j7aR6cQyRYwsLwVNVMZIB5B+/AsTm3oRCEWmQeGtH7RPOKgw8ZzecgpaFsfS/ASJL+8HqY0Jk+72vFj+q/lKWUmyFBqQEEu+tX6LN9Yg/Gr5j7zc88rmtF64AQyySTOjBRRzBawOZQCHAcIuVhfnAB8B2cu5pCpq0XD/uN4/Ws6sPzgEWSuWYdSZ3MFAAqFQgj5QNPTR5DpbMUfHmhEyQM+v3MW0XQGA6+9FtmmWozeugVeJFzB97GbNiOzoh2/OnsS77uvE7/xV5M4tnUjmncfQ2wmU05XSkQxdMtmeLGItY9M/ab1v43P/F6QDtTGjNb/5LzKj1Pz9sj8TXWqJu1Cokna/Wpt3MstCvWLRrfddhte+9rXGu/X1NTg9ttvX3T+C56q44heoyDDAWCeAjR52NqaB14Ov2YCDlzp0n0t0mIzjEFrh/hbJKlUCtlstuwJS95ID45HPMiTk8/w+nD+aR9BBVDOn/LlUSP5vAR5muKzRTOkl8afza/sQHbHWrTtOYCOnSvmIk3Xb3kBNJ0tlxUbnkTyzCCi0Sji0ShaH92P2Og0zq1fi/5poKYljs7BUUz1tiGT9TDe1YSeoxeQX9aM+OAUZjb3oO0nR9BwfhSu6yJcLGHZ955FKRHFZF0tHABdUynUZAq42N2M+pkcnGQEK4ZncXx9O4qJqPrdOLkQ2RZxMt3nfOQk+UqRnnw+j1wuV7Gho9ZfXJZ5JEDbdkADf3KMmPqaX+ft0MaBFoEw1d/zPPUZPkZc99IGiRQF4+sFKQ8epU0kEojH4yg112N05zqsPnISd7+yBY89Noyj6zfA7RuGA+DUbBiphjpsrC+hI1TAhbpmnJz04UfCiJy5iHObNuBHj47il167DL0HjyFz4xagux2xWKxinVUsFEbnYwdRqkngD/c3wPMdfP6aFCLpLIZv24rw6BRGb9wELzL3Hs7ojZuQWdE2B5re0oH3f2US59b0oOPpY6jNFMr6wK+JY+SGjag7P4pQXn+TUPJWbqvBIy+yzzRZlHpG60O6TusvebRWi7bSZ6V45JLLHdc51O+cbI6LiSfVgEnurJi+2KCNW8C8k/9SIf8yHouhP//zP0dPTw/i8ThuuOEG7N6925i2UCjgE5/4BNasWYN4PI4dO3bge9/73ovK00T/9E//hFQqteDnNFr0Gic52DjZPBqTYGrCbktv8jiqra8GSDQFowFACcrk23M2z1yLaNjC3Vq9qmmjvC5/L3TA2/ihKhffR3FFO2oeeRb1K5pw/tGTmN22DrHHn0f88DmV18SHsOui5bF9iE7MYKq+Hi3H+hGtiSB2dhwTbXXY8OwZFGpiaDw9jIm1Xeh49iTq+0cqwW6xiO7vP4dSNIxcEQh5PtadHkEiW8BYQxKN0zkkSj66R9OYqI8bp2lNxsYmM1o6Ez85D4MOns7UN5rs2vpxMWSrg63NpmdNdZTPSANpAm+hUAizy5rRduAceruj2PXIII6uXY/whblp29jeE/Bq4zgz7aAln8aacBapHFCqr0Hy+RMIwUHs7CBOb1iPh38wgPVra9G4+xhyK9oqxuzMum6kejqw47om3Fe6gFxdEr97sh1ncmHcti6MOi+HVa9Zg+jUDAZefyNGbttSBk3vva8D7/z7LE6vXY2rz57GW1/XjHxNHEPXrkOmPolzr74aDQOjWLe9EUhGMHT1GuSTsQp+SGdG+2+aBg2SA5PsaM+bALAN3Nj63Sa3kmwgh5evkQ1gaTrz5UIvJXD6l3/5F3zoQx/CH//xH+O5557Djh07cPfdd2N4eFhN/9GPfhR/9Vd/hT/7sz/D4cOH8Vu/9Vt485vfjL179y46TxO9//3vx9DQ0CJaNZ8WFXEyAQN+5unls5pg2jxT24ALAhVamZrR0zwabdPBcpg+FCrvBD47O4vp6elypEnOsfMIEL0dJz+GydchSb4BmGcYTLte8+iFtrEj964oX/68jPxJXsg1Dlof+r4PB0DyyQNwZzIYevY8preuQ/IHu8ugifKUERPiSywSwbLHD6HpSD8Gkg0oHh9BNhnD5h8fQXxiFrXnxzDc045Vu0+g6cL4PMDgui4iJQ9rHzsELxxCIe8jkS7g6iPDaJzNY6omhtZUEctnClg5XZhXPu+rIGBrW+9hAsmmqIxpqk7KuxZFlZEnWZdq1qXYjCmvD8lYNUZF0wnSoGsGWEtP0TY+FuhtO3rTLhQKof3EAJITszi4bwoH1q5D/OR5hHN5uMOTyF29Fs5sBs1OEceyMRyYDiOKEsKTs0hftQ7RoQk4jouaw304uXkjnnl2ErGpFJr2n6ngW6JvGDM9Hdg75mLNxjq8OdePUiyC/3WuCSUP2Lk8hEIqj9V3rgZcIN27DPfOnsF772vHu/4+g4GV3dh2/izecm8bnnp6EsPXrkN0bArnX7UNDQNjWL+jCanBFAY39yCczSOcylboRxrbcp0Xj17yg0+XSZ5zXmuya4rIyzEjI58AKupTKBTm6WGSA9rPTNsAVsqFSZ9JB9VEJsd9ofRiHJCfR/r85z+P3/iN38D73vc+bN68GV/+8peRTCaNO3Tff//9+KM/+iPcc8896O3txX/6T/8J99xzDz73uc8tOk8TXU4A/KLfqgOqi3Ro6Uz3F9LAhXjP1eZbrffOlZR8c0TzyGyRDBsA1ECpZowkAA0KKWvts0U4tDoG8d5xHOS2rkbyqcOIDE2oAEfjheu6cB0HjScuIjY5i4neTnTvPY1QOodiqYSRFS1YdrAPiam0sVzHcRDygRWHzyMfCyOViMABsPriNGpyJYw1JoxTbEF9r/HPdpjSazw09QVds9XDNKVhqjNPU+1YqtZDl8YsKC+tvkGya5smLMWjGH7FNiTPDQGxKNyRKWSv3QAnW8D2yQGsHBrAWCmM2Ugc6y6ex47iBMIzaczsXI/o8ARKDUkkj5/H+G3bUKyJz6uDm8mh+clDGO5dgb94soANm+rwyzOn4cWieGQogkzJQdYJYbbkYOuaJFblp7Br5Xq8/f+fx8Cq5dh+9hR+9dWN+Md/G8Jza9Yg0TeMse29aDw/gu2rIpg6N4X9LZ1wMzk0He6r2ONJjk/TurhqALkWeZG81sjEf82Z43UxyUE1Y0eTm4XYDJuc8nxfzuT7l+8AgOnp6Yojl8up5ebzeTz77LO46667ytdc18Vdd92FXbt2qc/kcjnE45VjK5FI4Iknnlh0nj8LWjBw0gYGoHuRdJ3uafRiEL+mPE33qA5yoSKvu/wIqtwnh5fh+z4ymUw50kTfzJIRKs1b4vWjdLJdGo85cWVIwI2/CcXfPiLe83UJ0rPj3p/0aLX1E/wDwqb1QXTU/eQQoiOTKm945EzKhed58Eol1B08i87vP4vS5Mzc22fZLFp3H4c7MjnvrUXKm0eMYqEweo8NIjE757HD97F6YAadU5cUgCZLJsCj3deigbLvbYZG8k8zOqYxYipb8tVkmLRnbQBe1su2PlHKdAWwMUQNeN58PyqeB0U64vE44vF4OdpBVIpHMLBzLZqOXoATjyE6kUJm53q4uQJ2zA4jHAnjuF+HcCaPyGwGJ+PN8LMlbPem5sDTNesQGZpAqT6JumdPYOzGTcjFIxWfEykUCvBn02j48T5MdXfgLx7PY/2mOvzy9El4sQh2DYdRCEeQ8UKoKeWxbWsDZsazGF3VjU3nz+HtdzfhH78xhENr1yDRN4LJHb1o6B/CtpVhTJ6dwoH2boRzBTTtPwPfspZQ0wmmfuHjmdaM8bcTJdi1AW2uQ3mf0G74PB3pKT6LQH1JdTK1qxrQZLMxxBsZlZNrQzm93MHT5aQVK1agoaGhfHz6059W042OjqJUKqGjo6PiekdHBwYHB9Vn7r77bnz+85/HiRMn4HkefvjDH+Ib3/gGBgYGFp2niapxCqulqoGTaRCZKAjZL4QW4kGb7vO6aBEVqZS0/KQXRcrHtDmdZiy0tpnaYfK+pbKQRsw0zakZ7mqUkvRYNaPIwZ6M2LgBXqTmndJvz/PmjIacbhRtpPSUrwStjmgf5+xCIi5BbdD6fyH3JTgPIlteWpts9TDJ6kLGfDWRAM3YBUU/JEils2lh8ui6ZWg8PwovHkFsbBazW1YhlC9ix+wwnJCLI34dCrUJ9PxoH1b/aB/8cAiH483w0gVso8jTjrWIXhhFsakWNYfPYWprjxq9iUzMouXBpzC1ovMF8FSPN0+dhFcbR3/KQWOkhIlSCCeGPWzoTaI9N4PQ1Svx998exaF1a1F78iJSvV2o7x/Ctp4oJs9N4WB7NyKpLDof3lehpGkcc55wfmm8s0WgTIujbfKm9WeQbrE5AFpf8+dkWu23iUwyKXnD87PZq5cDoLrca5z6+/sxNTVVPv7rf/2vl62uX/rSl7Bu3Tps3LgR0WgUH/zgB/G+971vniN9Oehy9t2CP7miKV1tMFfjOdA1Psi0xkllSQrTcS5974gYbQMg3PPRDAqAcrSCGxBqH9WNohy0XxPlxz117klx4y7Xa1F7pMctFRz3CrnnxI2P7c0SABX1o/bwsiQQsylSzTBTu7XyNfmQu6CbvE5Kwz1TylNLK+XGpMg9zytHFLmMEZm8UQ00af8pgkTySh45/zYd3af1ORQN5PJGPOXtpr6U/a/Vk8YGtc8WvaJ8TP0v5Ub2M4+CUrSTRzl83694s0oDZTzywUmLzPJ6kIwAQNeR8/BLHrKuj3Ov2oHodBpbMAM/5OJwqQbF2jh6frQP4cLc2O15eD/O3rEdRxIt2JAawbbkBI4MpTG7rRctD+xCJJ1DtH8YJeGIUB3CEzNofmAXxu+9CX/5xAB+/c0rcee0h90DDsIOcHYamCyFcH24gHtvqMW3n5jByIYNqDl2HrNrlqGhfwjbe6KY6ZvG4Y7liKSy6HpkP1yhXzmw1ngndRWXFd63/HkuKzydFq2kZ7nMmcA3v0Zyx3UhjxBKnUh9SfJDZUn9Kce/SW4lSLcBTZkfP2v8XnLEUc+LzQdAfX096uvrA5O3trYiFArNW4A9NDSEzs5O9Zm2tjb8+7//O7LZLMbGxrBs2TL84R/+IXp7exedp4m++93vYtmyZcEJq6BFwTqTsQrySE35SM/XBH7koa3nsAEnABWKVhoIOdg58QEkNwnkHpc2VSLLl4ZIKh3ZLlIeBJ7ktJkEWpoxM5Wr1S0INNn6Ustf6zctukF1NUXMZJhdbmMhjblJTmRbg9KZ2muTPTl9ZptK48BKysxi+KjV0zRFyOupXZfGT8qnxlPT9JAG+iUA1kCZqR3aCxLldJj7+O7527YinM1jmzMLx3VxxKtFsTaBFT/ci3Dh0mdAQp6P1Y8cgB8O4UiyFaV0AZsSOUTHpzH+2utRCruAMo44RSZn0fzALkyuWYE/OxTHvS2z+H9fmca+UReThRDaw0WMFkN49lQB2ZZ6hGdSSK3vRu3ACLb3RDH1QqQpnMpi2aMHyspZAzca/00yK/mrjRk5zqoZ+1JHaLIvHVAtvcxTq6/UB7xtQXWz6TQTgJJtX6g+/EWkaDSKnTt34qGHHipf8zwPDz30EG666Sbrs/F4HN3d3SgWi/j617+ON77xjS86T0m33nrrvPVUi6VFfeSXAwWTIEnPh1/XpiJMSgDQ3yjjb3bZwBL3zmS9uCLiYX+pjHmkxvcvfYeO7pHnxL0pIv41d95OXj5wKdpCi8zpLRj+5owGCnheWr6Sj9UYO94n/MxJXrOtL5DPmcAkjzSYgKymaGX+XNnSb+518zL5c6Z28mlYedYMhQZI+Jt6tNYsFAqV39qLxWIVa5I0I8n5J8Ekl2s5vqjtPEqlGUjulYfDYdVLN0WDJF9tUUzJX+1ZaUB5Wt5++k2Rw3JbY1Fc2NSN+pFp9LY68BDCoWIChdo4Vv5wLyJFDxD97ZY8rHzoeZy7YweOJluxOTuOzTUFnD4ziJnbtqPhyYNw8/pXAOh/attqIF+AGw/jibEY1nk+7lgN7D7vYWO7g+MjJZwtRNEVKWDN+hocPpdDZEMnRo+dxfEXpue6HzsIB5VBA023yf+yPnSm6JGmOzSAwtMRjyORSAV/TaSBbL5uDrik60jGtH42gSo5ZqUtMoEbDSARb7R85bP8OWn7lhqYuswBpwXRhz70IbznPe/Btddei+uvvx5f/OIXkUql8L73vQ8A8O53vxvd3d3ldVJPP/00Lly4gKuuugoXLlzAf//v/x2e5+EjH/lI1XlqtHv3buzcubOsFx544AH86Z/+KU6ePImuri78zu/8Dt797ncvooVztCjgxMnk8XCh1sCKfN6UphqP2QSabF4ZL1vLX6sD1ZOADHDpcyZcAZChpikJyRcb30h5yakODZRpANA2iDWFYJu2sfFO5mMyiFp/E3+lQtKAG+e7nKKg69JwaJ6jTRGb5ETjpyZbmrGgaUgZaZJbBtDUXVC0ideHT+1yICTHGtXdJNcS0NB/Drx4XiT7JtL4Lq9pBor3n+wzjfcacJIAe3BNO2L5IlbUenBCERxJR1Coj2P1Q/sRLvnwxfgug8ySj+U/fA7nX30NjoYbsSkzhdXtYZwbnMX0tRvR9NRho7xP3roVuZUd+A/TJ3DHrcvwG3uaEL7o4DM3ZvHapiI+9nwSWS+MWreEoUIYDekibl4bwZETKRzqWY3Y6DS6Htk/T+5Muk2SBjJ5X9vy08A08dP3/bI8m56XeWt6msoxATlT3TX9pOk+7flq5JEfJp1nymMpku/PHZcjn4XS2972NoyMjODjH/84BgcHcdVVV+F73/teeXF3X19fxWxONpvFRz/6UZw+fRq1tbW45557cP/996OxsbHqPDW66aabMDAwgPb2dnz729/Gm970Jrzzne/E2972Nuzduxe//uu/jrq6Orz5zW9eeCOxSOBkGnicTCBJE3AtLU/DjZIxNM/S8LylsjE9y9edmNoqQ9yO45QBkqYITFMdXEHRug+KMMlIkzYFZfJ0qO6Esum+XAtlUhgygqj9NikVU3qtH23KWsubK1rOW5Nx0aauTMqcAxa5azF5xDLKItvBn6c8OXDibzPG43GEQiHEYrHyPSkfJnnlPHMcpwzMuUxJQMqfkf0nvXQN1FAa/sFq01o6TlL2iU/S2AXpCC4HXB4k2JZt7D4/gVC+iFIYuNjdhHACWP/jw3B9wGPt1gBApORj1cP7MLyjF2fzIXScuoCWdAH5sItQNKrya/TGTcitaMOvzp7A+97aiXf9fRp+TzMivofnhl00OA48D4DvY9ZzkQz5yMJFvuBhsqYWTraEQk0cpWQUoUzBCFJkXeWYo/u8fiQXsv+1vKTMkM4oFosVDg9fn0j9S31B/23Orexz19An/B4vi56Tci3P9CwfIxrvOP+CyAbGrhDwwQ9+EB/84AfVe48++mjF/9tvvx2HDx9+UXlqxPvis5/9LD7ykY9UvA24evVqfPazn/3ZAidg/lSRRjZjK0GTzcvUjJ4tnU1JmMATef1ae3g7uZKWoMgG0Lih53nQug8CTPS5DR590QyUyQszKUMOnqQC4bySgESWZQI38rdmIE1TdNWGy7mMcGVN9bb1r206TZMr3udSJuR0hdzElG8S6jhOeYqObxIoN9aUdeXtlGCe+lOTLZPy18ATnTWZ4GmksTGBJpk/N1rafUmc37LusmxTXSifWMkHQiEMdTYgn4xj9cE+wHdQEnIjx0sZ5PnAsv1nMby9B2Orl6Ht2AWEPA9+JDIvSjt8zRpkVrThHenTeM9buvCu+zNz+zT1nca9d7TgcyfqkPciuLkhjRO5OMbzLja1+Bie9fHMUAhRx8OmNuDkvimcf/U1WP7DvYhlCyrYsI0LjZfyGv+tAXLupHCZ4BuPcuCkRZM8zzM6BHL8yzqYAJaUcy4X1G8SIHJZ4vdtOozrdhstZaD0Uk7VLUU6fvw4vvjFL1Zcu++++/Cnf/qni85zQcApyOMxpTUZBkpnGwwm0FTNwcugsxzAMm+Twae6aV6uBjRI4VAUg8AQTb/lcrmKtUx03QQeTMrRllYCtWqe5UqMtzkIHJue5fyWER3ik6ZMZV2l/FA0iPLnb1c6jlNeQ0RAhabEeFRIiw7JsnhbOEjj7eXRKzrzKbhwOFzea4jWMsmpDxOvTf81MKwd1P/c8Mi28XZQVIiXIftCc14kiKN8+H0bIDcBAykXdNB0uDZmObWMzaJ9YBKeD2iTjBIYV0wXe0Dr86dRSsQqgBaPnE2takepvgbvyffjXW/pwLvuz+Liim5cc7EPb3tNC/7lW8MorKkDHGDXVAJv6M7BLXp4JpVAfyqEWBhoCZVQGk9j06Y6HDs2g/OvuQarHtqHaCY/D1SYHCc59rR7vI800FQNsCKZI30lI/3SGQJgdFY0UMj7metkTU9opMk1yQuXFd5eDgg5f2xAjed/hZYmHT58GIODg0gkEuoaXFpusxiqGjiZBpLmydqeM6WjPOVz8u0jk4GzgSepOOQ9OZBN0RigMlqkrTuidkjgRMqWpuGy2WwFYJJGUCpCyXtZNw20mPrJ9CxwyTOrBjhVe43zmBMpM42HWp/x/ucgjAMnAiT8tX8JZLSNOmVdueKUIEJGpuRbc3zrAYo0JRKJiik6OZ1q8nhNwEkD79JoaUDF5FFzvvJ8tA0oCbRQHWQfceJbTMh6yjpoEUnTNJOcgjEBp3i+BN8H8iJPExid9+ZWCXCLJXhO5Wv9juNgekUrUstb8PbION71y214z/1ZnF/ehesGL+Ktr27E1x6cwL7VvWg+M4zxla1wwiEcH3dwU7uPqeESABfFqSzcZhfTsSTcyRQ2bqzFsaPT6LtzB1Y9vB/RTH5ePbm8aG3Wrtt0YNCzvHy+Z12pVCqPIxM/uVxpm8JSWVLPcXmSoEnWydRGnrctIiUdeQCB9mApgybff+nWOC0luvPOO8vy8eSTT+K6664r39u7dy9Wrly56LwXDJz4f1s60wA1GXotXz7ATODJBqZkfShPCZr4uinu8cjrcqM4ykN6q9LY0kJvftbWZki+2MATv24CORqwpfpqc/3S6AYBtCB54IBJRil83y8bX26sNdLAk+xTqZA1Ra15vhqA0PKnemppeLRLA09y2sLU1yYean3NgR2fgiC+SjAhAR4HhZyk0aP8OcAlQEX5a0Cbjws6yzJ5u7kB4/maDDjVSQIoCaQovbyvARDJdw0MUDscx0FyKo360Vmca3Txn/4mjv7lnbh+8CLeemcdvv7gBJ5bvhwt/eMYX9mGjqEJrFsVxZ5CLY6diaCnzse94/34V7cDIxeziNVGMJyNYntmGjvbHDw7Mo2zd2wvR56C6qr913ShbJ+8JvUg120mYFwoFOb1ISdtmo6Xye9JnaPZjyCbofUzB2EmMGbimyxbA/1XaGnRmTNnKv7X1tZW/M/n8/iDP/iDRee/qIiTTWhsoImn4aQJIze6UuFrod6FRKF4OXxrA1l/Pp3CQZA29UVAiHtk/A052jST1jDRovBqp+e4Eae60rPa3jiaUaR2mRYRm6YgTUpE1ksrS/ajzIeH+DXi17U+59Nk/Bot9JdARgJwk1HhRlkadRNw0ja7pClD2/SEJpuarEp54ABJ8onLVjXASYIEOnNjQXLDp5w5oJKGhWRTOgGmN7y4DPE8pMxw+eURXb4wmfORRxz49Atvl+x7mYZTWcayc6H+o7XNuNjdiZsHLuKNr23CN74ziT3d3Wi9MI6x5c3oHJ3C1p4oUhfSKDUk4MUjyJ4ax+ab6/HO46P450QL8qkCnLCLA34drp0exzWtETw3Mo1zd+7Aih/sRTSbr6ij9lu2m8txkO6WMsj5IvPkMkL6kMsY7yfOL/m87HttWlj2o2wzH6Nav/I6cPngbZBt1MqW6WyO3hV66WnVqlXW+y9mKwJggRtgSsGtZhDy/zaSg0EOehMwWgyQklEH0/N8Xx1qvxxs3PBzoESbY8oIk+RHtXWUbaq2v7QoVFA/mHikbeAop79sAEXmY+O/iReybP5Fdh7hka/4m8risieBogTuJhAjn9HaagP9QTIpeajlJesn5czUz9p9U91kHxO/Y7FY+aCpSS4HtvZJ/kogbZIJIslvzhNg/vfbuMHWnqU28ile3hbZl6mWOkwsb8FNgxfwxtc24evfmcDuZV1oOzeKbE0cnQPj2LI8hNnzs3imvhnxdB5bd53AcGsD/uonJaxZX4tfjY4j7ANNIzNwAOyJNaMwncc1bR4aBsYxtnMt/FgkcJxoYEnTAxxUmJYa2P5Tv8g0cqNTkxOnAdEgWQz6rZFpPGg2wlQm1dfEg2p18c+S/Mt4vFzp2Wef/anmX3XEiXuSUmjltACdqxUqngcXaG16TvsvDQc9y4kUshwspCz5s1yBAlCjQ7wuxBtSGPTxTIow8UgU94hN3jrnI/emtAWS2oA2RZx4xMDUD5xX/JrkI09rUjQyCkIHLezWlLnWHiqDG2y++JvucZng0R++X5JJDiQfKE+ql+u6FR8T1tJLsCTXVlF9tLHC66XxmUeXuOzQNc0IVmtQbMRlgZ6VERzHccrfbCRHgY9pWTfezzRWubzzKJUmWxJEAiiXyfMALn1ImLb34O2gwxTJ45Fj4gWv70xjEoNrO3DD+DBe94Y2fO07E9izbBnazo0gU59E69A4Vm9twPT5WextaEUsk8eGZ88i5DjYvOc0Dl/bi//nqRm8/+ZavO1EGt/Kx9E0OovJtlo8F2/BtTPjuGp5DMeOzWL4uvXoevYU3EJRjcJpuk8CJ95ezn+SW85fHoXWeMTPxGfpnIXD4TL/uT7WdIPjOBV9aCMuW6R/Zd3oulwzKuVZRhwlabpsqQImossFel7OwOm6665Db28vfu3Xfg3vfe97L9unVoiqjjhp3oNmAORZHpJMHoTmWWnppXeleSW2+piAmKaw+Zl+8ygTX8PEvS7ZXt6+IC9Se6ZasuVn42U1kY+gcuXzxC9+mPpFgixtMTf3/DnA5pEQvjjblN7Gf1lPzjONx5KnZMAlUJD9b7um9ZOJ59p/0/gzyYWsj00WbP9NdTWBZf5bThnz6/I+5SnL0K7L+yZe2HQEb4MHYOXhC4hn83jwm8M4WNeMzhODaD07ipZzo2gcnMTMiQkcL8WRmM5g7e5TcF6of3wmi427T2E8Gcc/fncGpUwJa04OI5krYsueM4jkijgyE0GmbwbtF8bRODABJ2T+bI9N11VDNrkOkiXZr3LZgmndJOUZNA5tupHXfSHP2tq1UD17hZYm3XHHHfjSl76EVatW4d5778W///u/WzfwXQhVHXGSIW8ijvi1qFE1A5mMDP02GTVNUcsFuzwP+m06UzryIDUDwtuuRXAoqpROp5HJZOatYSK+yHqFw+EKb04aB85fufiXG3STceDtkcDFlI7zR5IEESZjZVM6XKlqeZAs0fN8UTWf8uFrh/jHnl3XLV/nr/1LACdlkfeT7HfJJ9mXJkVMz1PEUQNrPK38L8nGUzpLuTDJPD80798kJ7ztfKwDl/a2IoOpGXO+Jo+XIaMh5HRoOoM7KzIP0ziivpJRJE0fSR2gRTMoj+TIFADgTD6K/m1daD9yHnWj0/B9HzWzaWRdBxejtYjOZtB5cggegCKLeMSmS1i35zTObluBJ87NoN3z0Tk8A98JYcPes+hb24FToVp0e5NoGZoG4AIRt0JmNF6YZEaTBy6LMq0GJiRQ4/3CI308DX1mSDoPPG+SIVMfaFEhkjcqj8YvT0958MiTFl2ztUnyzwa8lwL5/pW36gDgf/7P/4m/+Iu/wDe/+U189atfxVve8ha0trbiPe95D379138d69evX3TeC4o4aaQZDn5PS6OlN4GshRxaPqYzH7QLiarQoOTrmPgu3xL4aHwLqnvQdX5N8/iriabY+qDa+7yNNo+SK5wg8MTbxae7+NolHjWSPNC8cZ5eTv9q8qG1SQvV22Sfy4r2UWLTeAqSE61PTGebnJuOhXr+Wl05z4PWdnHZ0CJKWsRCi1hVQ6ZyZX+ZyuT3eF/mYmG0nRwogybKqxgOITGZQvvxAcAQYQvnCug50I982EWJ3XPhYPnxAcSyBXjhkNpPCxn3vP2SH9XyzKQbNfAueSU39bXJzkJ1o6neso1BOtSWVxCfrtDSpHA4jPvuuw8PPvggzp07hw984AP42te+hk2bNuEVr3jF4vNdSGItTA7oYIXf44Pclrc0mrbIE7/Py7XVw6TcI5HIPAVK6TTFSpGl6elpZLNZZDKZ8kaWWrukp8X5Itc4yXrzPVJkREH+l9E/WQeT4Qkik+IwgQXZDu4ZA5jXZv6M41zyauPxOGKxWBkwEWDlO3NTpIOMNEWaaL8kkhu+kzfvSzrz+sq1LdpbV1SmTTFTfSkiwN/0o53DeaSGy4BJnk0gjvhMckBpZT05f3mf8fZrwF8bO7K/Xdctrwuke5SOIkied+mNPA6eeX/IlynkW4DSKMsxJmVR6hbJR56nZnB5pIwTpUmOTM31nSg3nM2j6dQgfMeBJ8YK57+b8dByeggF0VdhN4TOc6Nz+bEyuT7V+luCQskDLi9BgEFGmqTM8zLkGKIvIlAkKZFIzOsjXpbsZ8pbro/ibbI5YDJ6anKCNODN5YlHsYL06lKgK2ucdBnr7u7Gxz72MXzsYx/DQw89hK9+9auLzn/Rn1zRDKSm7DUvgechjcVCDl6uBpi0NJoBkMpWPkdt5Yu/KdIkvynH61HNADXVtdq0sv0acDKBIw2oyXxMBlWmk/na0pgMMxkAzXvmr51rXqkE1zYiA16NwtP4aQOSWv9LY0/l82dscqONG1mu9lurm2ksamPAJB/SQGvlUJ/5/qXPc/DIGy9L8kn2iQawTJEhmaeJZ1q9tbbbjKNpikuSaYzwMvnUoZxStuWj9b0GDk39bqq3Nrbk+OI80ojrTR6lM8mvTa/JPtH4I+9Vm7ess4k3QXplydAV5BQ43u+8807ceeedi85/wcDJZGhMgkoDz3H0T27w/KoJP5sMJDe6lLesB3+GLziWioDycV23PNiLxSJmZ2eRyWQwOTmJXC6HbDZb9o5tZZkUMC+PeCMNtUyvlSXn9+k5UlLEE83IyDeN6Cy9PAm+gpSJjNJworLJWGjRIw6WpKcro48aCOb84kCF7vG3rDSQGKR4+XN0nyIu3PBRnchw0Ntn1PfUVno7MAjIayCBiPczr7OMGkg+ES+lAed5aGuGOADla0247NBUa6lUQiQSKX8slr7LyJ+XG8NyZ4TXj9LyesmzHDMyOiUBnnwrTI5lrd85rzjg0eREc6JMAML3/XlbYPAInCQTKNKi8bzPtOc5T0guSa55GzVeybLoPu1jl8lkKvpMyruMEGnTeqa2Sz5LnSsjWVw2tL7hZ65XeTkvGyD1C0iPPPIImpubf2r5LyripBl+wB5p0gYdf44rs6CDlyHL5WdTnei/NFLyGSJtTROPNMlnNdCkkabsNCUQ9Iy8rwEB03/JK1l/zXDb8taMuqbMOMlpAA6SNHAigbOsr6yrVhdu7KWi1Mq1KUqTjEo+SYVN7SGjKB0LSUFelKmepvEj220y5No125mPd/6f8pcvdJicCqln+JSZBEi2dVDafclTXhebPlkoaX3G22S6z/nN5VIjk7yZ9DGvA92XfWVbK8XraSpPtlVOW5vkVP6XedpshykP/luL9Mr6auPIphOXIr2Mg0WXhW6//fafav6L+uSKZkh5GtNUihQ+7rGRl0WG07aw1DaYTV6WjEzwT2HI9BxQFYtFzMzMIJPJlNc00XomaYw1npFhlMqPR1NkHnxgygWWxB8NgNB//n0wmSdX1lQ/eZ+nM21kJxUQ/ZaAhM7SQPF+TiaTZY+WG0huJIlX/O0c3jaqJ0UtbIpfq5fkF79vmjrhsqW9bRSkxHlfEN+0scPrbCLb2DQBAd73cp2XLX/ZDgkC+DjjhpOiT77vl/c60xZb82dsESTtmtxzjeRBThdxGeTOj4yA0FkDYZI0UM7zkk4FyRbnJ9WNImp8PZomCzZwJNNQWXwvMd5fPB9TvWSetnpwvlCE0XVd5HK5eXLCeWLKK8juaGDbBLS4HFRLsi+XKvn+3HE58vl5pYGBARQKhUV/r27RH/klMiFzLb323/ac6ZD10upqyleb8jO1kRRgoVBAPp8vR5y44tQGkMlQaXyQ+UjFQcrVNMhtht/GF6BSmZsMI5UhlT7Pkz+vpZORHQ5i+W7UMg95SGMsFSk3WEGKfiGKrxoZN/G+GhnQrleTJwcqGj+09tvqY5Ilk6Hm9aU0fLpKGjFKR2AlqL81sFJtWhvg0mRD003SoFc7DqXhljyT8qv1HXcWtH62ybZ2jdeBgxUOBjgvtOkpnpessyxD8oLznztDprbwdnLZkWdZvm0MyDpKPau1VbaX94VWhyv08qA77rgDx48fX/S+TpftW3WagHIDqQ0QOdDIu5K7QFcDpKr9z19p1+pP6Txvbg+eTCZTXtvEQRMHCIB5Woino/J5eaY3NeR/6b3LMmV6bmz420mcL6bFtdLr1+ojgR6vkxZxony5gqb9XaheFDWiiB5fR0NTWTyCpxkYx3HKa1Z4mzmg0iKAGmnGhcsl31uKK3w+DccNkQl0BBlu+q/1t+269lv7z6+bxja1icsjL5/OfP8lzg+5BooiUFxWuEGVMib7W2s757NpDBJJ50ebKjatmSM55XJIJMGaCRDxMSFlhcsrrQnjYEf2l+mQYFZzFPlZ6ls5fk1gMMg2cL7wyBON8Wraxftb8pT/5vzj7eA6mLdVypkk2Se8b7R0S4H8KxGnQPr7v/97pNPpRT+/aOCkKewgYMPPmjfAB241gEnmqdVDqxdfEK7VjepHa5ko2mQL0WvKWeOhFnbnv2W+mrIwGUvNWEiloE2Z8rIkkJrtaISbyyM2NlORt1Yu/eaKpZiMIdvVjJqTFyvSUj/I9UzcK6X6muRMA3Amg8brpq1LM5HNQEg5NfFe1ttWpskIaePFJAda/jbDZhuTtuv8eQ6s6BkeoeFlm6K+NiNm46n238Ybnp8EYhKsclkzTW1KGbSVp/3mfJFpOG8lr7V62nRukOzxvGQ6Gy+r1cscPMklAJpsyrxs8smf0fSlnDqlvpa8lHnJ+gSNhaVA/gvH5cjn55Wuu+66F/X8gheHmxT7QtNpQimVqe1sWgtiGnx83ZRmDPmz9PZTJpNBJpOZt6jRRhIYSM88yDuVitPk1fL6c+XP00lPjhspvm6Kg4l5ijuVxejOtWh69gRi4zMqODNRMRnDxE2bUXOsf169KLJIEThtHYqcpuD1k2vDZD/zT7TwKJVc0G8CRpx43vxsAkvS0NkMlnyT0FYHSXLtDeeHTBc0XrW6ct6aQLmWnsorFApqO3jEyff98p5WXCYlP/lZ4wuPOEpAZOKFFiXlPKR0lDcfzzLyyZ/TrvEolcZ3oPLNOS4H3MBr/DfJLq+fBFxcl/J28/WB1ehu06yCJv9Up0KhgHA4jGKxqH75gerCdb0E5rI+vO+lvMo8qd6c57zPbGNP6tsrtLSpWCzi0KFDGBwcBAB0dnZi8+bNiEQiLyrfBQEnOUBNi+SkoMlrpnQaIDKBJxtoMhkZ+YqvVkfuFfFIUzXrmjSDzBWDBoSksuC/pcGQz2mKgpdv4gtf6yEjPETpjkZEplJoqHEQPdWH89dvQP2xftSeHpynvLWy8y31mLh5M5qPnkNrjY+JcAi55a1I9o1U9K30sjVFxsnknRLxaTTe37Ktck0HNyImWTXJKK+bBqJI8ZumJKTDUA1ospH0mm2gkKfTPHXKzyRjRHJqRAJfrc0SQNFLDxLQBAF0Keu8LpQPHzemdVha+3m+1B7enybQZJIFTUcQ/zgfOWDg7eJpiGdafpKP/DrXTZpjosmPzJ/INB2tEdet0mGTdeBlcz2h6VnOe23saAA/aPpSI5u+vUJLizzPw8c//nH8+Z//OaampiruNTQ04IMf/CD+x//4H/N0crVUNXDSlI9J4fA0GtiRFBRZ0ganNDLS6Mn03Ihy4yvnuj3PM07RSQDFDQA3GpIPnH9yDUfQdRM44fnTQQqVK0Rg/v5NXGmZgErRdTB+/XqsPH8BPTcvR+6ZQQxcvxEAUHNqYF57+bO5ljqMvuY6NJ69iI03dmLs2Cimbt6CyMRMBbCRckXtIX6a1qMRmYCVSflzoy5lRYt0Sj5r16kcWoPF0/Mzl2Ue/eT75MipK81g2WRDypLW/iDDINvF+cb7WyuD10cDJ0TUTtq7iiIPvu+Xv/1I1zWgrPW7BMB8LPDnZBptQ076TxEzKpsDFxP/6b6WxuRkSPDC19JImZX85PqXf7dRAkRJ/LlqgTXPU6av1gBxPcrXi3EbIvWrBMESDPE6mqJBXI45CJPt4uXzZwF9b7ogsHiFXhr6wz/8Q/zt3/4t/uRP/gR33303Ojo6AABDQ0P4wQ9+gI997GPI5/P4zGc+s6j8FwycpOIB7BEm26CU4EaCJQlKtPSyDJm3zFMrnw9KGswEnkh5awCHSE7HSZ4A5g3sNAC1EOBE5XOFID1h3i4TYJJlJPqG4XsezmxehcIzA9hwbQfwzEkMXL8Rvg/UnRmsaCc9n2upw+irr0Xj2YvYtjaBseNjONnYgfjAOOoOnYMron4moEN9z7eMkHzTSDNk2n0eAdLkxGREbAZG9r0G4iVwsn1Dj5cp628CTSZZqabesizZBm60pKGRwEmOK5kngUXHccoAiiKBtIWAHONanTXj7/uXIjFyLPB0cpE3paFxagLKQeA1KGoq26DxSYtoadOJVBYf+0HyK/tLS6Nd47q3Wjk1tVvqIC0PDk64vTGBJgnuOZ/kfTkmefogIKTZmaVEV9Y4zS3+vv/++3H33XdXXO/p6cFv/uZvYtWqVXj3u9/90wdOJiG3DUCZTvMotMEowZPNK9KmV3g6aZCkd0P14ZEm+fFemadUHHw6xmTIJHDS7mmK2GTwtHJMU3sc/FGexDepjHg/Js+PItdSjzOb1wJ7TmLDdS+Apxs2wnGA2tODFXXKtdRh5NXXouHMBWxbl8TY8XEcXdGDyOQs6g+fm8c7WV8ZzZN8pjQmoMzbQ9/IIlAilSWXD4r6aLLGeS3lS5M7kkm+GzqVEQ6Hy9/Si0ajFbLO86vWe+f9ZQNNQRFfzajYDKqtLE1uZdsoDfGdvkcIoCLak8/ny+NR7vNkckJ4XWVkk7fB9Bz9l9PXJvDKn5cG2yY3RJr+outcpiUIl/LHeUK8kmvxtGimrf3VgAJTfWygk/qxUCjAdd2K/elsdoLLp1Zvnk7aKl43DXTJti4EUC41ugKcgJmZGSxbtsx4v6urC6lUatH5LzjipAGPF0s20GRT+qZBK4GTnKbjaahtPNJEU3R8UTh/hit/4NJCUQ6efN+v8GjpOgdvQdNlkj/SWEjAJD1ozaPWeMmnBOhcqE8ilM6i7uRFeCEXpzevRWHfGWy4rr0ceQJQXvOUba4tg6btaxMYOTGOY6t6EJmYRePek3AcB4WmWoSnMxXKzXGcis/WED+54ZOgiAML2Ra++JsiVvwZHqbnaaSil+DSBgi0vpLTcQQO6OPDFGWReQaF/rn8kAzIsybnQUZQA08m0gC+SW657HKeO86lT+1wQ01ghaZpybjS9B1QGY3RjD4vn0dibBFf/p/yl+v+SB5s5drGMOWhOZ8a3yQwpudlf3I9AFz6oLKmV6WMa3yj/zLipbVJi+TLNvA8+RQdTdHSNb4NjXToOO9lPTlJ/mr1km2Sel3KA3/WVO4VWlr0yle+Eh/+8IfxD//wD2htba24Nzo6ij/4gz/AK1/5ykXnvyjgRP8BzBvgphCuTKflXw0QMl3X7skpOpMHog1o+YV2ahspfZ6XtmjTBF40b11Tnpoyl2/mSOBk+m8ycCaw5jgOsl3NyLY2IDEwBq8ugcTAOPq2rAP2nagAT74PhCdnKkDT8MlxHF23HqHZDCKzGaRXtiO9yoEfiyDx3Kl59ZBgVDMKdI/qXM10RKlUQjgcLp/JGJJh5GCKK2etH6oBOfyNPjL8/LdtOo6XVw1okW0lIMqvV5uvyVBUS7ZxLZ0fDpK4rHKjD6C8xxcZ11AoVPGpI9NeSto4sNVbyhDvVw2k8mf4UgVpsKUzYgIsJlmQ8sbLN8m+TCflVANjWlob2eRI08WmMcp1Gu9D/iwfe1I/yHK1PjKRtBs22yTBEu9TrS5LgXx/7rgc+bxc6ctf/jLuuecedHV1Ydu2bRVrnA4cOIDNmzfjgQceWHT+L/ojv9rA1oAMT6/lSffktF0QONKMGD+T0pVGhecnQROPNnHlK6MWvO6yLRyMSSVuAk901tLJN1G0ck1TdRr40Ij3Tf2Ji/DDIaS72xAfHEeusxmJ/pEK8OQ/cwIDN22GDx9NJ/qxjYEmdzaL+MA4UCiiGAnDcR20PnsCjjN/EaYmIxrYlUZXMwRE3GCHw+GyIZZtN4Egzn+ZltLL3c4jkUjFtBx9YoSuyX2rNOJlVquUNcMh+SYVvuTXQsvWwLYGhgGU+c6jS7xOdJ3SRSIReJ6HWCyGQqGASCSCXC43b/pOOhO+f2laWltTqAFEEwDh12SkU+oZ+aHwasCF5JGsp8mom/Shyeib5NuWnv+3pdeetUW1ZBtlxElOSXLikUPOC85vE7CxjQ2eXzWOh9a3QUDtZ01XpuqAFStWYN++ffj+97+Pp556qrwdwfXXX49PfepTeM1rXlP1kgiNFv2RX04SyMhpNhOZkL/mqWhgyfQfgFoHDdhxz4cf3Jvku0/TWihuxIlMU2+aRywHtClqpOVp6xetTJPXZO1LAI1Hz2Pw5k2Y2tyD+sNnkRfgaf3NyzCR85ErOejZ0oSRQxfnQFMqi+TgHGjKdTTBD4fQ+eDTcN3QXMasLrJc6jsuRxLg8vrLaTvJCz71o4Emzn8pFzbQRNFHXj5/M05+Z9E07awpYpuSNtWfX7ONT16GLV/TM7xOWjkmI8+nX7SxSsAKqJzKAyqBi+u65bfdaEqKR3z5VCzPl/7zNtA1/u1Hrf+5YdXADr9Gxl1+T9IEbnge9Lym3yQ/eVqNp1yPcFni7TYBZ03/ynQ8vWyj1OGa3FNak560jQ8pfxpoklPAkldcVk3yXA0tJcB0hSrJdV287nWvw+te97rLnveLijhpwEZOR2iCpQkwXxeiRZtkem1Q8vy1j64ClZEI4NLGi3JtE31k03GcsgfMlTQZZD5txgGYBp4kD2jgck9Z+6iuVDCS97xfKK2J5/IZU78Acxin/cnDGLp9G6Y3rULdobPwu5oR7xtB39b1mCx6uLG9iHTGw96ZOuQ3bkJoOoXkwDicQhHZjmb40TDaH9gFx/MBt7IPuSHixoeDD7nGSa45k5/H4K+f0wJUmqrj6TgPpEHnSheo/CAzGXRa4M3rR/cpusSn6KRsm6aPeb008GQbTxIYmNKbyDTOeJ004G/KS7aTPyPlW9aXZIPzml7aoA8E09YFtOca8VZO/0m54eVxp4jGtGbIgUtrh7hx5rpLPkv/eXu0KJjWvxq4pDPXGwTUtP7mZVI9eaRUghheXz6O+HXtbAL4vEx5nfgp3/TlMqPlZZJnCZ74WJBjqRpwqJFJhy8mr58q/YKHnPr6+hb08d4LFy6gu7t7QWVUHasyGV5pzCWoMXnaUlmYvAobaLIdcm0Tz4dfJwUrp9WA+XvvaEbXdGjEy5IKQ4KjoOgVLyPIUzL1idY3sh9cAO2P7kdkchYzW3oQHRiHEwsDno/pootUqoRIqYC8P8fTSDoLt1iaizRFw+j67m6EPfNnNngbTMBG4ynno4mXGv84P2xlBMlVNQcvxzZONP7LqFtQOVqUrppr1ciDzViZ/ge1L4h4erl2zHSYonzyWT6Vqv2XfJAyqzkzmvzwdpgcQhM/NICp8dqkUwH7flKSz/wZ3jaqg2nMyLrysyzDNCY0XWbiiwSJWvtt923/ZX2XFBi6QlXTddddh/e///145plnjGmmpqbwla98BVu3bsXXv/71BZexqE+umK5rCksb4BqQqSZCJcviIEje52/s0GDkdSODy/dr4ovCAZR3NJaACqiclpNroWRduKdDni+VwyNNxBtNKZvyNykrjX+SVzxvXv48XjoOOn98cC7ytL0XpWgYsXQGLfUh7Ekl4Hk+EiEP7tAUUh3NKNYk4Ho+VvzgWbhw4Yfnv2nmOJWfvNAUqwSwVB9ZX/KiZRreTsk/Ljtymo7ziYwel1P5WRci7tHzt+aoDC0ywOvM/8v9y2x9zKMadNaiODIP7brJqMo3zLhcm/5r48+2jkXmzXkjI3eOM/c2puNc2v/J8zxks9kKuaL+4buSa0CCj2cam4VCQX2Wy6UpYsR/c15I0KD1i7zGx4bkk8nAUz21+zLSy5+RURrbDACVofFB61NpEyRP5dIHbawEOaeUL6+TlEs+9iWPg0CqvBfktL4U9AsecMLhw4fxyU9+Eq9+9asRj8exc+dOLFu2DPF4HBMTEzh8+DAOHTqEa665Bp/97Gdxzz33LLiMBX9yhc7SI9LSBnkG8p7JczDlUY23wJUAv2/ywLTytQGj5aHlxY2aFlniaWQeQUpCpuMGx9QmUzvlM9Lzc30fDfvPYuC1O+GWPKxIljAy7cGriQGui/DoJJo7EsjP5FCoT6L1qaMIlXyA9YUNHEslLK9JRRfEH01OJPAJMgqSbBE6nr/NkHEjL0GTVmc5BoIAMu83GzAxPWvqm6B8eFSCGzpuvDWAyvtcliPvyf4DKqfPaEpWrgeUYE3ykcsRn4LnAEnyiAM7E6jReCf7yMZfXj9ZV60sEx+1OkmApJUpdZzW39WSlGkNsNnqTMRlSgIjzleTg1DNf3l9IXktBfL9ueNy5PNypJaWFnz+85/HJz/5STz44IN44okncO7cOWQyGbS2tuId73gH7r77bmzdunXRZSw64sQHFSkZaXxNQCfIUEhDK42RzbBQWvJsKBrENzkEUFaS3NMELm1eKL13fubKV04HceL3yYs17a1kIg0c8LIpDV3X3vDRnue/CUBIw8Ep31KP4VdtR8vJ83DWd+BcMYFCTQiuV4KbKWCmuRG5dA6xujA6D5zCxZ3rEAbQ2Dda7hf+FpqUIQBlD1/KlpyG4W2QQEHKCV8jQ2/WaeuPNL5yojbIqIcEZKY6Ur9TegAVPDEd1VA1ILnae5oMazIkAS4HE/I6f0auCfT9S9+o4x955v+54ebglEBoqVRCJBKp+A9c+lg3Ped5lz6LI3ULUalUKq+bMgEKGdEjWZLTW9IB4HymZ2WUxQRm+PPahpH0H0B5fSbnO0/H5ZHqqH2mhY9B3gZeVjUyysvQIrWmKUVJvH5S95nqogEdU942AEXAX6vPUgRPVwhIJBJ4y1vegre85S2XPe+qgZNm8KTAmBS4ySDYjIQGrmx58eek4dLaQPU1eXAmpWm6Jr1C05SAzbvideL10MCoVMy8ffwZk6KQJPuUtz/TVIuLt29F87lBbF2bwPDxPoyuXwv4QGQmC8BHKeYhn4hh+dGzWHN1C9znzuL8znVwHBfN58cCo02yTFkfmYaH4uX6HFP7OPjhZ5McB8mkzNsm4zxvKQeS70HjSuNLkAHR8llMWs3L52dZfx4FkX0n6y+BhsyLAwQyYnJncAKicidyExjWwIKMhPF7Whttfa71TxBVAwAoT82h0vSzrKNJJ8lneFm29sj2a3U3jZEgsERpgmyF5I0prckGaSTL1/i91OgXfaruZ0ELnqqTxlkqHZ4WqFyfIteOaBElTahN92VZpDA1wEGGUq5JkkqD6qspJZsRBC69vUNrp7j3LBWTaQ2TSSFpSknzuqitGggJIt52ej7dmMSF27aipW9oDjSdmsTh3l6Ep9NwQiEUauIIFYpwfA/JixM4vW4VQgfPYf3OVoT29uPcNWsQCYfRcnFiXr2pXTzy4DhOOTrIDS4ZTO61am3XQAkvSy4mroZscmJTwnxNh5Qd2WaTfJuMClfk1SpvTfFrY0njnZwqlYDHJG88osLT+v78N0j5NAyXEUpH/CZQw7cjyOfz5f888pTJZCq2D5ERaGob3edRI64veJuJpP6SU5OcFws1sCaZknznIFPKugnIENHznL90lm+rSvnnY5ePI1OZFF2VG8HKdUu8HB5ZlMBJAhpZPpEEzFyONaDOeSz7Q+NjEPB6Kcj/BZ+q+1nQZYk4BQmNKZ3NYNhAUjX3tDpwBRDkfVc7EKRRkCBIUwiLVaKyLbwfTO3hyk5LIxUPz78Qj2Lw2nVoOz+MzWvjGDk1hUO9vQinsqgZmoRTLGFqXTeK8SjaD55FrrUBtQMTOLFuFZyDfVh7dTPc58+jf9NyJNN5JKfSFWVK4yCnvDTwytPwNmj9arouDabkh4nvkkfVpNHkVfZbkGEzkQaybaQZGVvZ1YyBIMOl8dmmD6SjxQ06ETd+fOoNuBRhkntBUb5yqtC24FiOs2ooCLQsZOyb8pI8l7Jk62NTv5rGiqn+2jgLaoNN32v10coP+s+v87ba5M/Uz9XYtYXq8iv080GLWhxOvyV4CkLkJkQvF+maplyquSbX+HBlLOfHpWLWztqeTFQuKWIeaeL7xRDZQBWRnL4wGUXZHp6n9lFSqRC0OlCenIqJGAau6cWy0wPovaYZo2emcWh1D8LpHOpGpuF4PtJtjYikswinc5hYswwtJy8i0zYHno6vXQn3cD/WXNOMmt0XcXbzCiw/dhHJqXQFcAFQfgMtGo2WPVPXdcu7RBNFIpFy2iDlT33M17uYvjtIxBdsyzTVGENt0ap8m06uweP15tEKXqYNHGv10QytRlyGeD00eeD3ZVquBzgQkZEQWRcpmzwvepY+tUL8lQu2aZzSfTrz6A+9fVcoFJDJZJDP5yvGLIErAPPWonHgJyPVfB2U5AG1RbbNNP41QKLpTb4MQd7T3ljU+skEXOT40XQxz4/zlu5RNNhmG7Q2yjrzl0J4X2r5afny/LV7XH6C8r4Cjq6QpAVHnKQy59fkgAxC7DzvIG/EJtg2z0Gri6ZAgso3eaVEcpF4UPpqeKK1gStyqheVLwGSCTyRYbLR1MpWNJ8dRld7BJNnpnFwWTfC6fwcaCp5SLfWw4+E0fvwAaBUwvmbN2Js7SXwVDc4geOrlyO6/zzaV9fC2z+A4eXNWDWThSOMMylnAkymb7qZ+obzQfLd1hdSXqSsBMl0EHiT5dpkzAaOZP2CKKiOsv1aG4LK4mOo2vqYnAFZH/kmJf9tAhZyOQCdKSJFxpx/947GDIFryX8uG9yY87Ej70mZki+T0DNyUbi28FjWQcqNXMsp9YWNNP3G2yr1iwlMSJAqp/rlsxpAlO3l10y2xATEtP+mtgedq6nvFfrFpEW9VccHqmZk5H+pYE1CJ9Pb1pCYABRXvpr3zBUBKVX5Rpw0ehIQkbcqv2fHPUoJpKo5y7IlrzhPgPmve8s2Sn7zvDUwxtN2nB6GA2ByMowTr9iExGQKsXQObslDqrUeXjiEtT8+gpDjAOEwenafxLkb1mFs3TK0nRpCpr0BHf3jONKzDM7z/WjIFlF/cgROJDLPo+e7elM9OW9l+ySvtGsSONnkjhtZ3hecz3yNBo9ESNnizy4ENHNZ4H3Coxcyvc348Gc00EHXNaNuG59UrmYgNZ7zZ+VY1N4KJXAjHQK+psn3/YrffLxL/tBBMub7fvnbdxR5ojfveD25fuBjhrddtlfKqnZNAjrJLymrsgxN/5miUJKk3JoAB5dDai9FemW/8P7gdeVvz2mRTd5GuibbTKTZFtJ9EuiaxhyXFeIFB32myJbUzbK+QTx/Kch/4bgc+fw80P33348vf/nLOHPmDHbt2oVVq1bhi1/8IlavXo03vvGNi8pzQV+5M6F+7WxTvnS2DRAbIAuqiwQbtgFpylMqXgmktN9SMWjnag4bP0x15/nz/0EkgWp5DZHrwo+EcfaGdYjNZBFP5+EWPaRa6uBFwlj/xDFEwUCF66J3z2kkZrIYXdOJ2rFZFJNRtA1M4di25cjHI3C1cthib22xqCSNlxKEarww5cH5qH0eRR4aeOcGxGSMqqVqZUE7eDrtt6kti83fxltO8llpwCVftfsyCinPvByNKA/+4WU5XcOnAjV+SZmVwNnEi6C+tJVjkjmNt5Ln1fSfTcdJngS1jy9b4GNRlifrKXkjyaTTq5VJ23PyHCT/LwfyL+Pxcqe//Mu/xIc+9CHcc889mJycLEeXGxsb8cUvfnHR+S7qI7+AWdj4QOdKQBJ5MtUoBVOZ/Lc2tQNUetU8PQ1w+vYVjyDJ/3Sm/V14NEQqCG5Eg3hG9ZPeluY5c6WkRTk0wMTrIcvkHiPfl6i8sWDIQf/GZWgankYhHoHj+ZhtrYcXCWHTT07CBeDL/gHQu+c0zly3BsOr27GsbxwzLTVYeXoYJzd0ovfIRUSzhbKHl0gkynssSQ+SvFYtumSLLGj9weVCGgRN9vgeNVy25J5LWhTABLbkmZfH+19rV5DS1oynyQDZnpPtkryme7b68Lw0kMv/8zVJUv6lzpDGl3+IG5i/4zopSA6OCIwAQDQaLd/n45r3jdzfS9aN5EGbnpdTV1JWePvk2ORyIuXVJhNS3uW0peSxBlhk/rw9Jj3Oz7xPtbWhPE+Zj6ltJtugXSO+y7HNo2jEExldMoFgqc9N+ucKLT36sz/7M3zlK1/Bm970JvzJn/xJ+fq1116LD3/4w4vOd9Fv1fHfJvCk5REUUQn6z8vX6qFdl14p1UNuHaB5WvzgC8AlaLLxiZep8UDyRhoJvtBZKgWeTlNQGo/kegzu3ZKxuLiqBbXpPBwf8D0f6do4SpEQtjx1GmEAJaU9vu8j5LpY+9xZnNq5GkPdjVh2YRLp+gQ6Lkzg3Jp29B7oh8fWlEjPmvcD3TeBJ035ymk2E59Mi3Q1gyZfzZZ58rZIwCTrIvvdRNKQmICxzM8EjoL+S/mUhobKlek08GeTdU1mZF78Pzf6EkwD5hc8uGzTde50hEKh8se76R6XHY2fJkBOZRDP5EsaJlnVxqYWhaP6cSCl9aWWV5Ce4EDQpss0UGPqTxkBNoEKE5DTxpeso20canIqy5O80myRiRecJ0uRfH/uuBz5vNzpzJkzuPrqq+ddj8ViSKVSi8530REnG3EFEKS4Tc+bBj6gKx0e2TINDLpHyk1Gjvj36njkiTzSQqEwz5PSyrENMqmQuRGQSpZ71lKxA5insGXZmvKhZzjx9Qi0iHblxSmgWEKuWMSF3jZEckWs3tcP1/PgYf4+VFRf13URArBu7zkM9bZjqiGO3pMjiBRKaBibnVu/wqZNOGjiXit/u4nWvMg+5Ol4H3KjSzJRKBTKUSNt6oEDJM5fx7m0BkvuuRQUXeK/pZyYSAI+E2gyPSP7XTMcJoNjyp+TjDDI8rS6mUCglEVucDlgpnQyEiiBFsmCXKtGi8HpLLcscByn/MYmd6Ty+bzKEx6dlfUgOYi8sJaPyyYfKxwQ2nQHB3raeONnDdBJ/sv2SMDC28HrQ/Xn16k/eTRKAmA5JgmwmsBcNbqb39OI141f4/UzjUntGU3faveXCl1Z43SJVq9ejeeffx6rVq2quP69730PmzZtWnS+Lwo4mZC5PExCHJQ3DWBOMi+ZXrsujZeMIJHS5YcGoOQnWrSBroWAqzUysp3amgGueLmhkflLpUfPaNMPcm2P7/tAqYSS42B0WSNKkRBWHr4Ax/PmBiUzCJIH5TwBLDs7isGeVpzvaUHvyRGEPR9wKtcSSQXNAZHWHqlkJY/osy3UXtrokAynNq3CeaoBI1L0Uo60tSgaaDIBaQ0kaf9tZAJNpvFmGleybvw5LVrC85MevnxWM96c5HS1SWfIegGXQAyl51sMyPHB+55/BJzyCYVCZefI9/2ywdfayyNZXFYksOAyKtcLSVnTyCRHMkLO00tAZwImpv7UyASYbX1PxKdNTWNBA4GyTtWAelknU13pWpCt4qSNMa2+V2jp0Ic+9CF84AMfQDabhe/72L17N/7pn/4Jn/70p/HXf/3Xi853UTuHa4pYKgGTMZD5BeUv0/J73Hvggs/zkotANQVC/4vFYnnNU7FYLO9GrIElrRyg8m0TbhBMHh8vH7i0j4zmqco6y7yIN3KNA+eL9Bp5f3FjQe1uGphAc783B5oUI6L1I3mgLoDu/gl48UiF0pSGhaYhCKCS8dLScaArAZSm9Kh9tCiYdg3n7ZXRLQJKfHsEKcucz5q8VrO2ifNCG0MmQxNEpn7h5fH/Uh5NbZLtkzJtyouoGqPE5VMCHg4ueDl8LQ/fPZzykIaXb0dAZfOXFMLhMIrFYjk/vu8TbwePBnF5kXLB89f4wskGDrh8cMDI22HSJZqBl2NZA3D0bBA40urOx6Vc8qDJipyGpPpQH9qcDRtYkv9NY47rbMl3eV7SgOlKyKlM//E//kckEgl89KMfRTqdxn/4D/8By5Ytw5e+9CW8/e1vX3S+i/7kCr9mA0o24CTTyYOn4WdgvhLWpkToummdDCca0ASYCERxYy3BDC+bK2huVHhkSAM70vDz/G1rBLhCkzySwMnGL85rTcm51HYD70wKtKxYAMRLAIRC5jyiconv9J9vEkn148pXlqd5lDwqxD+3Qs/JSADfZJMMId8gkfLlfObXZF9o4EnLSwImPs1oIpvSrma88Wtav1ZjHHgaE3ji5ZrALb9OY4ZHdfh0EJXLDSvlQ+CEZEcCcAJVFIWkPHiUKhqNliOXpAPoN8kM72PKz/O8iq015JuAUldSO+RYt40zk3xw3SK3STGRCYxworZy8ML5b5IzahPXjXzsSuDNecHHAbWZ5EAb2yYn0gSaTOBJyp3kveSdSdav0NKid7zjHXjHO96BdDqN2dlZtLe3v+g8X9QGmPK+Bpb42ZReXpNlaulNIEum54NLG6Q0wPkbdhRxktEmLQLElZ6Nd1xRmtoor/F6a89RP5jK1jxKyUOpfLU1XDy9TdlpefN6kgLlEUC5TknLi6fja75k3bTytXVUHHTxPuFGTlvLofUn9ZNJDnn+Gj+lQQ3KKwgs2chWP1t6mxHhMmoyJJrM8Px4n9M1CawlQJL8p7QEXGi3cR4t5PynMigdlw/+OxKJAEBFJFZrD58u4/WhqW/pBPD22wywlLtqdQ7Jvslh43W3ATpZZ56XdBY1fSydMRrDjnMpKijz5wePmpvWJtpI6t1qdKJ8RuphKUdBdfhZ05WA0yU6c+YMisUi1q1bh2QyiWQyCQA4ceIEIpEIenp6FpXvojfAtAEn+h90th3SSzOVoRlZ4JLCJM+PR5y40qEBTZGmfD6PbDZbvsYXN8q36WyRJEly8GkkvT+ZXt6nPGU9KA1f22TqGw5iOD8kuDCBJ5McmKJenKh+HAxxw0XP0CE/nszbIBduy6kX/v077dMrprprBleTUU2BSqOvRZB4fWUEi6eRfWsied+UX9DzNpk2AQCZtlpvXMqW/A9UboTJowJS7skY860CeH3oGukEPi3IP+pLU7s0ZUfOFB0yXwnyuMOmfXtR01uas8J1H5EEEFL26D8tUDdN93OemACAlAN55jyU08t83PJ+pcgdRfUkKNF0iuSBvBdEGmgC5m/Noskf17P0DD8vNZqbHbg8+bzc6b3vfS9+7dd+DevWrau4/vTTT+Ov//qv8eijjy4q3wUDJ+mJaEg96PmgZzQlrykHmZbf48pLM8I0EGgNQ6FQKJ+16JIp2iTz4/+5gdVAjklZaAOY84C3mSsy+k0DWipYzQhJBa2tCeF14J4bL1vzOElpyvJNdTcpTuoneSbAIXktQQ2AMujSQDj1DwEsrkRN/NdAlClNNc9WOyZMAM02Hk1njSTv5fQIT0OAQwNNpvy0NvH/HMibAKuUMfm8lAdeFxkl4aCbrknAFYvF4Lpz+46RntDWD5naz42uxkOt7SYQYwIV2jNSH8jntfGtAQypP+WzRHIMaOOd61I5ZWpzDmzgzkY2Xaa1keteE6+ljC22blfop0979+7FLbfcMu/6jTfeiA9+8IOLzndBwIkrCm3eHqgUyoV4yTZhtj1nui53fpbgh37Thz8zmQzS6XR5yo57StoaJwmqJCjidSGjzKei5DNae4jPwCUlz40Dz4+DNQ6CbICOrwfhi+ilR8+Jl0nPcnngJBeBakqM/msKnc787Ua+zoTK5NEavsaEl0fPURsoGkXPRyIRRKPReQvBpVxJsEXP8/Q20CSBnYyUBcm9vK+Nm6Dr2j0ul6ZneT9yPbBQ0GQCWjwvHiHmvONjQsqJXGPk+3553PFv0/H28c+qkCwTOKdoRCgUqniBIZVKGT+3pDkrcjNOzm/t4ONL6oggB0uTHW1sStBnAlGSNB7ysmUURoJGkjFyWGlsanWw2YQgnWIiqY9kxAmYv00GkRY1pOtLDTT9PESLLgc5joOZmZl516empubNqiyEFrw43HZNDjiTITDdr0b4TMomqFwZ0ZBrmkzTcFqYm5+1exrg0NIC8wcp1VkCKm5sTe21GTA54G2KSfKNn+XaCk1xSZDG8+b3eTla2JsrXcqDT7vKqKI2dcZBjgbwNb5KMoEVU19o90x1Cyprofc5sFiMMpfGmOe7kPxs6U33pLzI//zMDR6vuwRZfOpMlsEdDQ4cKS9p8Alk0csDjuPMA0+m/uXgqhoAoI23asGBxldeBm+TViaVGyRrnCRPbX3Mf/PIk2ndltavNl7w8quR46Dxpv1eaD4/S/L9yzRV93OAvl7xilfg05/+NP7pn/7p0lcxSiV8+tOfxq233rrofBe1j5M0SPI3pZHPyLMWtVrIYOV10Qyl/EgnB0M80pTJZMprGPhaGxmOl0BKkgaW6GxadE11lO2Xb8XICIrsB2D+ppSmqBbxRvMOpXLggJLK4P0o+1xG9HhEigsu7z+KEtBZ7q1FZVJkjCtbage9ASflKej7c6b9pDQZC5JX6XlqwM0E8uQzJlqoIavmWSm3pmcl6JDAVksPVEY++XWtbF4GGVP+2zSlzPOX028c1Gjrg7TpPKozySAwN2XHr2ez2Yp1d5S/lBHOA619XA/wOmhjl5+165r8ULRMypymUzSHx0Ym/knea44V8ZkiT7TXmgQ9Jj2n8YCuVQveZFu0/5rjyUE3B+ZXaGnRZz7zGbziFa/Ahg0bcNtttwEAHn/8cUxPT+Phhx9edL4LeqtO86a066Z7Mi/5m/5XU7apPM0ASjBBoXv55hyllc9og1+S6Tl+j7ePDzRbW+h5uieVQjUAjogbbW5YOCjSwKLkoyyL10WCS+KtbC9vo7ZhH1e+UiZMaww4aYDFdGiAymY4pLHR7kkwZZNZjaoxWBLIVJuPKa3N4Jg87KB6SqAg5SmIv5reMBl2/pvkjS8C53Xg09Fa+dxYyylCPsXNr0vQoYERbSxrAIY/Z3LItPraQI8NpJpAgykPk4415WFKy/UE3/qFT8XLNgbJnUk/Bj1j+m+TkSu0tGnz5s3Yv38//s//+T/Yt28fEokE3v3ud+ODH/wgmpubF53vgqfq5FfBg8CSKUwuFYbJ+PF8bIOIr3GRxg9AeVDSW3PZbBaZTAa5XK5iE0ROfBEjH+gy6qQpAQ18UP04mYCP3CyP8rU9YzqIR/RVeFoELaNgMiLGy9Ha7DjOvHlird2chxyo0K7ecs2K1sc8b6ASkGhgmcrhm17KN+3ozaloNIpoNFqxb5PMl5el8V6TRX6YvncnDxOY0GihijvIiGjlSy87KK02hrkcSLnkJKOZNn2gpeVAhN4o42/AyTWGprWJ1MfhcLji+3aUB8ktN+58HJjWOnEekWNA+WsfkKb0PC8JULhsSTmUEVwN2EnwJseiphNlX/B62vQ6149SNzuOg3w+D8eZW0cm7QzlxesnI1tSDhYirxrvtXbz/Ez64AotLVq2bBk+9alPXdY8X9RHfm1nk2K25S0Ho+mads9klADdq+HTQBL4mA6Nqk2ntUsDQ1wB2MrTnpH8NP3mvJDgkCtGDfhp+ZrqwdttivbIdmrgia7bFJtMI/MwHUFARpOnILk3laFFsjRwoP0OIs0waPJWTT5a2Sajs9CzlpepbI03Mi/eLn5fRolktIi3g878ZQaevwQTMuLEnQJtfPKyOIjk0S8eFatGn3CSgMUkBzI/DUhpgEP2AfFTghb5vNbHQTpWOnNaXWw2ge5roMlEUpY03RZU3lIi/4XjcuTz80CTk5PYvXs3hoeH5wHgd7/73YvKc8FTdabrQUJtUoLcgMpnbetOiLTpFk3p02LwbDaLdDqNbDZbEWnSBiwfzNrAo/scgJnWUPA2EdGUobYAXbZBghwqX6al8rgCkB4rX1PA96riefDPksjrvEzOA56WRwBjsVj5zPuUr3nifJZ84ICIPH1tOpAbOY3/EszIKTp5XUb9pLzyswkU8jx5/eTZND40sML/m57VrsupKVPeJqPLz/wZE5CR96sBbxrg4pEieY3ykxEgyktOSVM6OfZpTMm1SCTDEhTQmOIbbvL6afugSX7ztXr8eVP/mfglIy+cR1wOpZPG/2trtIivvC4S/PMxKPUOr6MGQGh/POojvmfWvG9nCl7y8WOKPPE68rrIdHxcBAFHyYtqgO3Pmq4Ap0v07W9/G+94xzswOzuL+vr6ebrtJQNOWho58OXZZPBlXqY0NrCmKSjg0nQRX8ypgSTN07N5ftqgNBlByYNq+Kl5raY6aQpGepQc6JHx4Atggfmv3Wr1kn2p1UEDGzayedqaYbcZaa2u/L9JXmS9OZmmBxcStZL1l3UMqpftvylvjYc8vYm3NtIAjsZ/U8RAo4XqAA5ubDzmBo7O/MURSsun9OTzHBiQoZeRJx45Mo0PjS+avuGgRJNpUz7yOR7J0vSJrY7V6DHb87xtcqxysMZ5Z5o+1epmko9q9CA/a/rE9F/+DhonV+ilpf/yX/4Lfu3Xfg2f+tSnyruGXw5a8Ft1JgNoAzXaPLBN4IIMGv+tRZyonsAlwJTL5cprm3K5XHmzS74bsNxk0RRpkp4br4fvm3e+BjDPs5U8lQOVR1M436RXS8qGPyvzldOUplepeT15Xrx+sh387TfgkmGiPH3fr9jojp8prfw2IOczV6a8zUR87x2+ZoTXwQageDl0n+fB+0muV7IBJx6B4uVq9eBlyHothKoBQVxOtfzls1okNQg08XRUJu9vacDkVBUHLHJ9Et2na7wvZL5adEE6ERT5kYuTZf6yXqVSqfzR4Hw+j0gkgnw+X44i5fP5Mv/4WODt1PjL62zShbwtfIxy8MHlmHhvcvCkHjABUckPTV5soIfznvQCgArHltaXEX951I+XS/t0cV0h66UBT6lLOD/l+jkpM1r/LSXy/bnjcuTzcqcLFy7gd37ndy4raAIWGXEygZ5qPBRpoG3l8TxMA5h+mxYkUpky0qR5N5RWDg6ej/wdZAh5eq0MXmdpYExkGsASOMk8+FSf6W1CqofJM5UgRnqLmrGXSkcaH55OiwTa+G8qy0byvs0waXJYDWAygTVJ2n3T+JDyorVFy4tfMxk6Wx78WQ1omUATr7O8H/SfjJsET5yvGrggedae47/5s+QE0DS0Nn0qxwVvE49U+b5fYeipTGqjxheN+Dgx9YntP9cvMupkk0lZH61fTPJtIilzXG9wvkq9oulhznfTGNPk01YfyZeg81IES5yuTNVdorvvvht79uxBb2/vZc130d+qqzadaaBKIySf1fKQwk3Py6kgLuDFYrG8yWU+n5+3BYH8kC8fvNpaGgluHOfSuh8JXugav24LQZOS4/dNkTCaapPKnNdNKh0+NWcCi9I4yf7j3qGm6OR3uWhtmbb+gfOE14NHnXi7OP8kj4ko+shBIU9H7aMIA9WJRy75G3hyvZKUS16/IKPCDaE0/lwGNDKBahOA0HgjKWgc82d5xEc+y9sV5BDwepr6Ud7jxpIDCeobboC5IabfPJIggQj1t+d55W/T0U7h+Xy+PO5Itkk+eb4UeZLr4/jaHVpXKCO5XI/xazJqJPUk1ykmWZP9xt845nKtOTYmmZYkx4ZWH9PUJ9Wf6xQ+dm11orJ5PbQokiSTjHEKAlSmZ6qxi1foZ0u/9Eu/hN///d/H4cOHsW3btvJHu4ne8IY3LCrfF/WRX5OgBAnaQgQxyBMIEmwtwqKBIknS2zF5P/yQERftOVN5smz+WwN2Wv3lJnqyXNsidg0QaopdTs3J9mh1l4vZeT48UsWVvawfV4waD7mhNE2xyvRaGTyaxMGUScaqkUk5XqQBtI0TWUetDqZnKX/b/aB0dE/Kvqk+vB+q0RMaONaMmzRmcmGulAtTdMlUbw5O6O06bYxxGaX/HIx7nleONnHnRjPskscmXsr6amNV5iPrKvWTlNOg8cLroPGN188EWGS9eZ+ZwJIETlofaiBdk0HOT35N8lfWWxvjQc+9pHQl5FSm3/iN3wAAfOITn5h3j8bsYuhFLQ73PG/e672a0V3IfZlWIy7McvNEPjA8b25XWvoopzZNpw1cykdTxrIMOvM85D1bu/izvu9XvGUHwAr6eDoy8NQvPE9ZPxnhkfXlypCMicxT85w52KA0vHy+3wyA8jequGfOPWS5Noj4wevBgYXjVK6f0cCr5DuVFQqFyns58bf/eFpZF9NUXpBcSxmQ9eL3q1HSNoNlK9tmdE310a7L+kmDLw2XJv8m8M3LtgEgHj00GU8JHGQeFJHi+zTJcSaBGQcnJuNOa/v4ukAZUdJ4JesndZI06lpUSraVxqUWWQZgXL9nm5bm9ePlaXqS14PrJeI/LanguoA7V5q8Uf1kGp5W46dJN8t71YLKK7T0SHM8LwcteAPMaj0UTRnIfEwGxjQIpaIIMlKkJLRBKAeupvxN9aLyNBCiDTjNa9FAF9WXR2j4VAFPo4EB06C3RWpkXfhZ9rfMi6eRU1oyvZzKIW8cQAXgk3lqbz/xdknwaIpEBBGfXpEf7ZVlyzryPOgePy+ETGXRPRPZAIEpvTZ2TGXY6hDEK+26bcyawI/pOs+PrsupL9lXsg58SoxPwQGVn36h/3SfHAKgcl8n+k11pPzJWdCcFz5ugoin06Ygbc9IgCen7uRYth2Sx7IveNnV1IvrB41HnE+8bP7bBD4laTJlSvdyoisBp58+vagNMBfzLP03DTxb3jK9fGMJuKTU+Ntycq8k229eFv+OHC9fptOmrDR+Se+UgyK+RYCcBtAOTtoaL54nr5+mzDQFync4p7w03tC6CUpn6j/P8yq+gk59RGde92g0WrHGiK/x4uu6ZJ9x4MXXK4XD4XKetHs630VcKno+xRNkSHif0xQP5WUz9traEI00gMDXkPF6VwPYbGlsz1XrdWtj3QbaeX145EF7k4nzS/6XY4zLANUhyPs0lRc0/qX+oWu0LxHfwdtx5iKr2Wx2XnmyXVx2ZH8HTVVy3WYCPDLvah0EE2k6T8o4z0+WRWNcRvhMfOJ50tooyUfOH1lHWR8po1JetfGh1e2lJt+fOy5HPj8PlEql8Nhjj6Gvr6/8livR7/zO7ywqz6qBk6akTYJiG4iSTINaS6M9IwcgV240EG2fTLENSPktKq1tmmIz1Vt6oBwYaYvUNQ+MA6cgA8zz5bzhdZPKmIAQj/TI6UegcoNLvviWk1RC8rMUctNNbnT4R3s13mhlyLzkOiXt8yvSKMq+1Pik9av8bTNUmsG3kZZWMwCmtKZ0GuiQ7eLATRsjpvrIe0GGj6cLAnUSuGjl038eNdJIM6iyblxG5D0OhGU5lCeBfb5lRqFQqFgDJfki5YbGlwaqZL0pPY03Sk9lS15pfWMDXDzPINm06XVJmu6j+mjOqYlf9D8IyJjaIMezCTBdoaVPe/fuxT333IN0Oo1UKoXm5maMjo4imUyivb39pw+cgJ+dsNi8FW4ItdAyVxr8jTRN4XGFpAFDDsL4mUibtuJnDibkGiapTOV6IF5Pmbdcf8TXIVG5dL8aMEfEIzBUNkWJ5LM8jWn6TvJDRov420kSBGpARoJGqjOR67rldUr8+3MElLjcSMDJ+0reM00ZvBiygZBqy6gGUGnXNeNJaUzAYLF1rDatNFYmcOY4l/Yi0vpFjmWuH2Re/FmSQ+4o0dt2xAP6L8EOkYw88fVCPH+KjpDjoDkEkicUrZLjhLfFBBzkmKP7Un9q40Km1crjoI6vNZNyY3LyqB8p8ixnCXg6Dh413mvgh9dLOq48jSQTkOIkdfZSoCtTdZfo937v9/D6178eX/7yl9HQ0ICnnnoKkUgE73znO/Gf//N/XnS+C36rTgpbNd6ESfnayGYUJFiSdeCRJpNSku3R2iU9TQ6cbKBLEo/8kKepLXKWZfCyZfv5wafK5LPyHl2Ti/qBS8CJSHsbToI2DexpZw6UpBI3tY3zWVNQst+p/gSaCDjxqTkNPPH6Ubu5sZXl82ckwKtWzqXcaXlqXrMcD0HlyfsmYMpBkgaeZF7VGgobQJT3bf1MddMMM59a5X3EeSkjQUHAidJwY83Bu6ZT+HiMRCJlp4PWSFEdCDjRtge2TyjxOvJ2SPmV9aA0ElQSEfiUekQDSPRblid5Tde0+muATy6T4FOZ2lu7NEY1/SXXo3FemsapCeBpvFxKwCiI/CtTdWV6/vnn8Vd/9Vdlmcnlcujt7cVnP/tZvOc978Ev//IvLyrfBQMnIjlYTGmC8rCBL80IS69LGjMewdF2yOb5mTwOqVS1PYsonTS+QOUr+7IO5K1KxcujQ9KYmHiiGQB+zzQ9YVK49CyvuzQSss+CDKK2hozukfKjt5j4+iMOWqi+2q7HvI1yDybTt+i4kaApPO6FkpHje1LRf27ATFEMk1wHyTtPE0Ra3ra0pmc10CTl2TY2Nfk0gZ4gYKYRvydBlTatI42y1maNL9yoc1ChgQ9u5G2OGU05+75flnGgchE55VUoFKzAUfKER175Lv1aetmvWn6cvxofiRf8LWZNLmQ5mi6S0SGuS7TlCrKekiQIssm39hyvg3ZPA4ecXy8nUPWLRnzctbe3o6+vD5s2bUJDQwP6+/sXne+igRNgD+UvFDQtxJBI4MTrQuCEf0ZF7pJtK4sTPaOBHTKmQOUr+/yVY1KI/M0+vt6Kl6mBIA2YavwyKVptbYYJ7HHFI0GfBHjami9JHCxpSpADk2g0WgZOXDnz9mhTa7IufDG4nKKTYImuUzrHceZFwGidFa8X5WECFRovTGBXGwNB44E/Vw2ZwIIGYGxtCHqeX9OAl3Y9iGyGygQy+LMmUEW/6ZDTTARsKDLE0/BX+WmqTbaNgwUC5TSmKCJC0Sbf98ubbnLQQPpC62c+/W+LvHMAyOulkbZukgM0zj9btEvyQ+obk3xz/kk9aQLPmh7k/SivS1slxxsHySawr9XpCi1duvrqq/HMM89g3bp1uP322/Hxj38co6OjuP/++7F169ZF5/uigJNGNgFbCJiS+VVrYOQiai3kK42XnM7SFK42eKUh4GBDA20cvMk2SeUe1G5ZX36d2kOK1eS1SePCDQP3NLkCkUpaM14cNEnvWGsTjxDZtgSQylQDIVqbTMaFGwcpp9x4cH7ys2Y8TDIeBJqqIS0PrWybFy3PmlHQDIZWDxmNMQEpWTdNhrV2mO7TdSlj0tBrPJK84fWhNvHIqJQFAlFSJrjsafXj+XDngN72BFDWG8ClCLRNXqls7W1Orb+0+7LOcqzyNnP9IN9GlePLJNdynGnjgaeVfSH1jZRB09hYKNCR40KTbdmG/6+9f4+17aruw/Gxz2Ofc+6Fa0zwo0EuNIHQlpqCTO3GULWiqBC1JigpJaBigwqISi4RVlWZhx9AAaU/ybWUkvofkzZFKab6JpEqIieqFatJIFi1VBHaQgqJRJJiB6OE+zj3vPfvj+ux72d/zmeMOdba+1wf+64hbe2915pzzDHHnHOMzxxzrrmOC01s2OPk9OlPf9rOnDljZmaf+tSn7NZbb7V//s//ub385S+3Bx98sDffhQMnJ+/0OACjzYFotPC3omxgunPlj9po6MSzq2gGi4MWjQteV0cg8OZvdLpcvnJWqBf/73VlAIeGGduAdcSGksEGblxlA4HLZm5Qee+XmR0CrMq4egTHl+j82yM9+GQdAhgz/RoHrjdGEjBihH0HZ/fugHiJzn/7sgtGFSNDnZFyMC2HkznDjL/ioQAVA98IPHk+3KDNS7CV+nPZqFeVXoF/LJ/HV1Qey4n1xDZHe8GRWwRP3mfUBAknILxMh8DIefkxBWaHX3HDEXautwIg3A+UDTG7uKePJyWoL+7zODZ4GZx1rvTtuohkxbZV4AnBK5LXg/VX6ZtqvCj7yP1X5R3oeNBrX/va6e+rr77aHn744YXwbR/O8TSpjpfNBivp8L4yzqoj8yyfwUv04b0IkSPNZGR50XhlEaZoluW8svSYR314GYrBJ4fVGXhx/RhYsQ6wzgyOeDbI8rssuIyG789iIKTuq3ornWbtiG3m7zLkdxgqMBjVVfWvSJYWmMkAUgVwtYBX5EiUg52HsglIq64Z6FPyRWMq6pOVctHBK8eJfZSXiNmuRGMWf6uIazbRxLGtdMx6Ud9Knir45ah+9PRy1KbqN49zbkekVv/iMjBfRK0y2C5mtvKZpMlkcZ8+9NnPftZe+tKX2vr6ut1000322GOPpenvv/9+e8UrXmEbGxt23XXX2Yc+9KHpBMLM7N577z3Uj/7qX/2rJVne8IY32F/8xV8cun769Gl7wxve0KleSJ2PI0BH0ZWizo732cmazQ52vs77i9SGbLyHwGl1dXVmY2Yml3/jQMalGy4/A07IF2dyatavjADf8/u8SZRnz1HUTTmIKA1HBaJzoni2jhEk3juERyB4Wo9A+dNJOzs7cm8F6iIy/HgN5fWykF+00db1530NDTsS9snK7FQ5L0XV617XDDxlFAErptZYXgRxe+J/1Ju3h9/P7FOkF7Y7/AQo8/R+622MY90BOfcB/0a74eMWX/PC0R/WQbT8rnST6QDry3pB2VBmnkTg9f39/elZaUq3LcDMT7t6NBjHLEbqUB6sl6dDexeBIKZoQtSyoQNdoIceesjuuOMOe+CBB+ymm26y+++/3970pjfZN7/5Tbv66qsPpf/lX/5lu/POO+1zn/uc3XzzzfYHf/AH9u53v9tGo5Hdd99903SvfOUr7b/9t/82/Y99LKNHH3300KGXZmZbW1v227/92z1q+HT5fTOikWKHG80Ws1lj63406JyyaIAyPP7h5cRo1sGzCwZQ2TKfIjZ2DD6i74gYTKBsyhioe54Xy0TDyECAy89AAm/IjsAxloVLnVwOG04FILI6RrK3ZpBsfCOgxsY9689cp2j8RP9baSPnElG1DyMwwO+qbJxHgdVI/oqMqp3V/QxMYTrVN1xGXCbGpWG2DciDbRDaJbwX1QMBVNSHlH65fnivqldOh5OKCORk9lvVActi+xSNZ1VHZdMj3pmdaF0/LjR5+rMIPl3pvvvus/e97332nve8x8zMHnjgAfvSl75kn/vc5+zOO+88lP7LX/6yve51r7N3vvOdZmb20pe+1N7xjnfYV7/61Zl0Kysrdu2115bl+NrXvjb9/b//9/+2J554Yvp/f3/fHn74YXvxi1/cqW4z8vTO+TQxCs9mFXif76l1cnY4fN+v+WxH7W1SEQY8nl/NVrFuygH7bJRnpZUoXATsWG+qnp4feSnCQzZRJq+DOjsGDbmXzyDL7OK+BJQrWprw+54mijBx3Vz2yWQyXUrDvRzOA/XJS2sIvPb29mx1dVWCYJzh8tkwLWCk+j3nU07Ay+V+j9QCUVUwtWijrsYk38sATzZhUgCBeXK6aDyxk1NgLALB3h5uJ3Ccq0kSRhhxLPt13weFZSMocsAxGo2mYwTLRBlRPq4Hl6smJYoqE4cIdKL8TgcHB9N6MHhCwn1KKLsqA8ElyoMTX7+P+sXrHIHi+qj+w2nUysBxo0UDp9OnT89cX1tbs7W1tUPpd3Z27PHHH7cPf/jD02tLS0v2xje+0b7yla/IMm6++Wb7/Oc/b4899pjdeOON9od/+If267/+6/aud71rJt3//b//1374h3/Y1tfX7cd//MftM5/5jP3lv/yXQ9lf/epXT/uUWpLb2Niwn//5nw/zt2ghm8OjDqdmP4pa9zmNGsS8LKY6NDt2NvqqPupeVufsOsscXVd64HLxGhpQBHRqkGd1U2VmxtvsMADAe2gM3RFFwBrLwCVVjDq1ZMWy2egiuIr6BsrccjZcptIzO/yIMjCUAY3W+MrKzvSv0rYcKZeZ9WOUV/FVIAe/FfDBvFFdIqBkdvgtAFl+NYYYTGLfR0fu/xF0+benM7ND0SoEAcxb3VN9IutLSidYN6VXbBfWi4o8RWUruSu6jvTP7YD/mVdm46I+xrbmuU7XXXfdzP977rnH7r333kPpnnrqKdvf37drrrlm5vo111xj3/jGNyTvd77znfbUU0/Z61//eptMLkyUP/CBD9hHPvKRaZqbbrrJ/sN/+A/2ile8wr773e/axz/+cfs7f+fv2Ne//nV7/vOfL/n+0R/9kU0mE/uRH/kRe+yxx+yqq66a3huPx3b11VfLQ6Cr1Bs4caflARM5UTaAvLcjGgC8ERLLOji4eCI3fzw/PgXGA40HkFrKwplnxYnj2U+sM7PDewa43qhD/98CMa7b7e3tQ1E25xEtK7IxUnrCcr3d/HRub0PUu5eNe5a4jp4GZ6144vJoNJpGyJSzYMOH173NRqPRzGPebEzxRHEVPYv0zdf5P4+N7B73/9bGYEwbyVOduESAgZ2EkjPiF0UOsCxVtxawigjz4rIZkxq77OixTbK2ZpuB6XFCgaDI02NExGXC5TmzC4f3bW1t2c7OzjR6zv11Mrn4WiQGIPxR+wNRLzhe2DarfVDIw/XlsntEG187o3jiuOP3XvKESYEo1An2GwUqo7ZTpEAVti32tWMHoBYccvrjP/5jO3Xq1PSyijb1pUcffdQ+/elP2y/8wi/YTTfdZN/61rfsZ3/2Z+2Tn/yk3XXXXWZm9hM/8RPT9K961avspptuspe85CX2xS9+0f7ZP/tnku9LXvIS293dtdtuu81+6Id+yF7ykpcsTGazOSNOasaB307VGVDUAZUBQxnUh/NmTiabbVQ+SqaMuAzlINRAVxs0uW4MXtGhRDIrgMAGA4GVMsZq1uh5eQOqkoHBD+oGjafP2tXSHP5G8MtgkeXLPqwn9VtRBDo5jaKsz1bAUHYtcpwqPdYhAhIqbXS/D3H5lbTqP/cR5Itp+Fv9VtTSZQSAMeKEfHwp2kEFAq6WTYvKV+M4q4sChFWQULGTGU+Vl69l/Y7tXqu8Sn3m6ceXkha9VHfq1KkZ4BTRi170IlteXrYnn3xy5vqTTz4Z7k+666677F3vepe9973vNTOz66+/3s6dO2fvf//77aMf/ah8wOEFL3iB/diP/Zh961vfSuVZXV21X/3VX7W77767KXtX6vWuOjUYeHMgry/7b3ak2JmVQfDZBB645ve83OzMJp/R4J4eBZbU4PZ68KnfnB4jUSrShaAn0qfSA6fhSBiW49+TycUn9TCS49dxRsmGlOuCwIgNO+dVgNXb2SNNvK/K06noEdbPde+Ee5xQR/49Go2mTzVh2bjp1sv2d9vhPfWqFnZ0SgdVyhxyNkngunZ1ANX0yiFFzk05qC4yZIBEgTclAxIuC/G3So9yq/6H++14HCrH7t8cMcbXrKCc/uJgM5uxMT5uvI/6k6XOvwLiWW/KXnB6jhTii4hdFrbpEU/Pg3VC4nqwfKgPpgg84djwvWJcxwoIV/rBsgc6TOPx2G644QZ75JFH7K1vfauZXWjDRx55xG6//XaZZ3Nz81C/8CW0SM9nz561b3/724f2QSn6yZ/8Sfu1X/s1+9CHPtShJm0qA6cMaHhnjAyJp1G/o3veuXlA4vXImEWbdlF29VvVj6MV0SyIlwAyR9JyQlxHs9k3qCNAqzpaBm9ZGyBFG0y5Dbwc5qfaSjn+DEzwPQdbygn7N0eaGNCibLyswoCJdRzNcFkHWAb3X2W8VV/NHENGqi9WnUUlrerbLRDFdWvxU3mjCUiFlG4zUn1S9ePsfjTO8BsBuefzpSc/8kCNe+RZceaqbSLgw2Pay8z0xhO4TIeRDcT00bYCrgu3A8qC15ScKCv/VnmfDTSZXPgsgk9XuuOOO+y2226z1772tXbjjTfa/fffb+fOnZs+ZXfrrbfai1/8YvvMZz5jZma33HKL3Xffffaa17xmulR311132S233DIFUP/yX/5Lu+WWW+wlL3mJ/b//9//snnvuseXlZXvHO97RlOflL3+5feITn7Df/d3ftRtuuMFOnjw5c/+DH/xg90paz3Oc+BreU0ZF8eHBpe47RQ7WLD6IzQ0SR6QwMoVPneFA8f0EOzs7EhQpQIU8GPBEaZAfR3Q4f/bOPR7kuDfIzGYiZZ4+Miy4ORX/46zYzKYzT9YP8/b9Z65XT4+AheXOABTmRYDpH5fPyxqPxzYaXYxAjcfjaVn4ahd82S9Hlpgq/dt10QKeyC9aXlUGvQux84v4qP7bciDKKWWgyn+rurXAVMu2qEkEO2oem1k9eBktO5+Ny4uiUs4bXxjt6TE/nhGFL792u4V5UEaUI1pmQ51wPTFCjmWo/poBKdUOuP/JbV7Uxh7pW1pamh5Qi3rjfoPAjuVVhDYD27fL5EL5hsud3v72t9v3vvc9u/vuu+2JJ56wV7/61fbwww9PN4x/5zvfmemrH/vYx2w0GtnHPvYx+9M//VO76qqr7JZbbrFPfepT0zR/8id/Yu94xzvs+9//vl111VX2+te/3n7v935vZsN3RA8++KC94AUvsMcff9wef/zxmXuj0ejSACenaOZQAU2Ytm/ZkSwKoKj7vKTG/NS+GORdBYecJ5plRddYXtws2XIQio8Tz7T4evRfpTebdUAqPcqPBtRBC8uG+RlMRHXl/G4EVTuamYwsRRuyI4r0oa5leu1C7nCicqvjisGKAhYtimbrLJOXo8Bj1v9VGtWXMV02yeIymC+Xif0iswORDWQAlY0vdOT438cIHqvCtsvz8BN7rXZUtin6rhD3zchGtexnZKu5vRR/LFv5CiSlbwZlrfoeR9A0efqzCD596Pbbbw+X5h599NGZ/ysrK3bPPffYPffcE/L7whe+0FOSC0/XHQX1WqqL7kdGjf+rWVArXWTkeFCx0ZtMJtPTwX2fgM9gEIzguU/R+Uct8IHRIZ6xsUFThoC/0XCYzT4RhoaWdcRPELKBx3exsT4RDKHMDHawDOSBMz+1XwLBEBspFYlCuXFm7Ol8D5OnxfOfWM+oLzxXCuvs9zA9L+Fxe6LuMJKFxy9kESzMy22cEUezsrHXhSJQ7aTapM8SGvcdLl+BZZRBjS+2Q5kTVP2C5cG2W1lZke/Ew304LDOXxbaJy3He/hvH6mg0mr7SxSMy/q30mhHrFdsU5eIxF/FSIAzv45iP2ozHAMqj7Lzir3TQ8jFYNutG5cvs+HGgyeSZW6o7zqT6Tl8qv6tuUcQzrixda2YedVg1A+QlOxWJULMbHtyRUcL7PNCjPVJdB5w79ezD78vKPvhYM0dgVJ3QwChHo3TF0Sa+p16Lo2aYCEDQaePxAUhcJgNNz4v1iAyzAqlZG7GO1CcC4sp5RB+WM5OHZY/yqUlLxJPTZ7yZn5ooZJTdb+VV8ihQE9WZ2yZz6mqSFY0PJWPUT3Fs+2tN1FhXfS/Tm7JbWd/MeCFPrFNUfwVyo36V6ZV5sxwZcZmqrhnwPm6gaaDD9Eu/9Et2/fXX28bGhm1sbNirXvUq+0//6T/NxbNTxIk7ps+MsjxmtaWJlsHi6xyWdvJ9TdHeJnTmCkxNJhfPWFEGEuvFESY0PvgEmRqEfPiWGzs+mTvSIeqGeUXGho0/6wLrgrNZrDuf+s2zPWXcuO94egahChwpoICzQ5fdz/Fyed3RYDtWAQkCSy5fgTDsk5W+ju3NdcwADpeNESds42hmxc6Ix7Oqa0QtwNPiofpyK1KSTTzY0WP0BtNgHTPwosAEAhmM2EZOPQNIfI3Bv5o4oK11GdwG81hV+uQ2y0Ayy+3/o2Vi7qdYRgboJpPJ1NZ4GtwQz5MsfCqRyW23kqFCkV5Yz6r+A4g6nnTffffZXXfdZbfffru97nWvMzOz3/md37EPfOAD9tRTT/V+2q4zcFK/lRGKDIciZeCVE8V7XBbnY1BQ+Sg+kUHw/xxRiYwoy8z1ckDiG0FZH26wFQ8GW05cJ3bWuEzJr6lxIOK65APtstkz9xPlEDPDlrUDX3P+uMyKesPfETDjfRlZ/4vSRcCJ2z4DM6quUdpoXPB4ZF6KJ8qoZFVjuOu4Znm4zBZIq5THQKPK29NxW3Af9/vRgwnc7yNwyTpwh8+TEG4LBMqeDl8S7r+5TVGGDCyq9JFus/6q9K36uafFSZvXhWVBOxvVL7PVGVXGJE6muY7HETAdP4meGfr5n/95+/f//t/brbfeOr32lre8xV75ylfavffee+mAk9o305p9OnGnU4AiKhvzI79oIOKTc/7hvUcIGBQA5OU81gV/FABTy2Kj0Wh6DpHLji/AVdE0ftIL681LTqgLZfC4fir65sBpZ2dnZjbLs2yXrbU0qSgCCc7DlyRwhu+faLMs1105AK8jbwxXH+4Trm/UeeQoWN/qnnJYLpsaH5lzQh5ObuwjcIR5orJUeWosqzrifzXZyoCiarvKRCWqA8vF7cpPeal31fHYdtBjFu/ZyvTC7YJP0yE/j576h/sPTnL8w2faMbBDIIhjQYECHPcKZCpiPUQRWU+HT9uhTWH7xPaTyzC7+FRtpH+O6GWEOmn10YGOF333u9+1m2+++dD1m2++2b773e/25tvrOIIWeFIfs9klJAYHGShyvtEAxQGPxlUt1/F1rIsqk2eOWH8FEJQxXl5etvF4bMvLy7a+vj7d1Oz3EfxgRAfBgHJE6PTxO3N4UXuyXvzFugic8Bt1ORqNZow08qyQ2uQ8mUymG7hxWYIdQqR71F9WZ2/3aK+XAh2+DMg8M+L+GwEndIAReIp4+jX8jtJF/Fw2pBZIagEF/B2BJ76v/kfjsFJ+xcFxWyCQUv0JAbc7fASqLf6qTTCqzHv0lpaW5AG2Xp7LwYCJwRMDJ9UXlU1HPTLoZVK2v2WjojGN7e2TChwfkTzcBlG7VCgCfMcROE1sMRGn41ez7vSyl73MvvjFL868+87M7KGHHrKXv/zlvfnOfXK4d+hsr5NZHF1AvlneiNi5oHNV0SYVffIBjRGMqnNAw6A2aXvUxE+ndsCkntzCbzZuGHFSRsj/V/TZMkwe7Tk4OLC1tTU7ODg4FIHyz+rqqu3v79v29vb0qcXohGN2ikhqBuu/XZ8+ixyNLi5RcD1Rj7iEqYyvp/d7CjShc+SN82q/hwJD6p76sF5YX5HxboGiaNwhcEE+qp2U42Q+rk/Oq2TNwEVUNwa8UV2Vw0QeOGYZmClApsCb58dx6X0Cn7JD/WL+1uTG+30EXtgGMH+MVuGSPP7H/sQAJ3rjgdIF8miNmQgIo53DfYr4smN+jx6+3y4jBJeKlK2vgKIMOA50POjjH/+4vf3tb7f//t//+3SP0+/+7u/aI488Yl/84hd78+0FnHg2ExmglmHEtDwTixwF80IAYmYze3X82AHc/+LX+BFiLDeb9ah6el43FOvr67a+vm7j8djW1tZsZWXF1tfX0/qwc0ND4t9qaUnN4rhuyvko4IGOiTfSewTKXyDsfcCvb25u2vb29vQaG9OMFFhSBtL58XERyAcjeGrvFwLryWQyfcScjw7A377/jIEYt1fUhlnfVu2H7dHXMGfA1L/ZYSlwhBGQyPFFdY1k8m9uQ5+8ZMCGoxIZ/4i4DK4fAgYFnvy/5+V9fygrp1XlKv5s/5B3xheBmi/7+Vj2sToazU48XFacmOErYhSIVH2TbRLvw+N2i0CUT9J88ubtxa9PQdCk3nTP484pAt4ZuIroOAKnyeTCZxF8nu300z/90/bVr37V/u2//bf2a7/2a2Zm9tf+2l+zxx57zF7zmtf05tsLOPk3D1y1JygDUdHAd2JnkgEqNADqlPAup/6y3JGBdmfuBsKjS2tra1PA5Et0ft5QVF/esMxGGTeHo8P1vKxTlJkPmnSg4LxQd/7B/R24fMQnC7sx9mXI8Xhs6+vrU5CK52LxPimX1/lztMLzuMx8MjwTghDcG8XtyUvFDID5je5Rf+O2UuCPwW3Gk/vXIkjJxPdwHEYRhtZYiMqNiMc+yultg44yWx6PZFX14HpHhOMFZUJZ1H3/RPueFPjB/0zcX1gWrA+DYEyDAMNP5K7s88kAuLLHCJqiZTluM3VfTeDUvieeuLeAO9vHCBSyjBV/NtDxpBtuuME+//nPL5Rnp83haLx4oCtnpPYyKb7YmaOBGhlsNAAKNPnBlxh5QoPMM7oqePJIxPLysq2trdnq6qqtr6/PACaMVnC9eG8Vz84UAIiOHUCnh7NEv4cvSMZ2dLl4jxOmcbCDPLE9dnZ2ZvZE8ZLd9va2nTt3znZ3d21zc3MGDKHTUKDC0/orW7w+6JjYgbjBdhCLekUDjG3M+51w/xnr2vNEDkRdi6KD3PdU36+AKJUXifeQMWV5cfk6oj5AjwFca+yz/YnGZQSoGOhkcvPEw/tLtJTv7YTlYHRSyRv9dvKyfPx7GT6hYTkYUCE/n+z4BnMfqz6pwfJxUoL9lCcK0YcnHWqvII937gNePwd4vEKAS3Zuy1dXVw+1iWojvu5U6U9Zvxvo+NL+/r796q/+qv2f//N/zMzsr//1v24/+ZM/eehF8V2o88nhWcdpdbDKrCDirZwRztr8gxEOtTE8GhhqJsMOzct2hzwej6cRptXVVRuPxzMRJt5ng2XyOU/8ZBwvOeFeCtSJf/NMCu/j5moFUpUj8bpHwBcdxP7+vo3HYzs4OLDxeDxzSvvOzs702ng8tv39fdva2pqJQGXlq9k9p0V9qX0VHGXMDD8bfNX/1DKEl6XahvNXr3PZzDsqW11vgQXVvln6Fq/WGFe8sM04PQL9LrwVkGD5ozSqbXD8RDzxVH137hxhUvIpsIdHDKhIE8oS6cbLxvsYecKn1ThdBDQY1GZ9OJKr1Tdx7OL5TWwbWB/8OyqnBborAOs4AqjJsFQ3pf/1v/6XveUtb7EnnnjCXvGKV5iZ2c/93M/ZVVddZf/1v/5X+xt/42/04ts54oQfs9lXLmAoFSMXPHA5WoCdMTOKzgNBhA8oB0we8fBZlf/2dXMVKcPNk/yNg85nfydPnrTV1VU7efLkFCxxZAifklP1ZN7q9F/87enUN7YPfvMBjuopQteBE84YnZe3M8rCuvK6qP1k/pqbs2fP2s7Ojv3gBz+w3d1dO3PmTLp0ytEvBjbYJ3gfkqfD/oEzXQSkqG+MEjJhm2L7sNNjsJmBJPXh/n6pSIHvqhwtYOf8/X4WHfC0GcDiiVNEkaND0KHKZDullpNVegZOBwcH0/6fTTjVFgcnLxvlRdvC9lUBEP6YXRyrbh8j+ZTelA6QsI9HkwzFkwEPR51xe0K29ULpy7+Vn4kAbUuHxxI4Pf1ZBJ9nO733ve+1V77ylfY//sf/sCuvvNLMzP78z//c3v3ud9v73/9++/KXv9yLb6+IE15ToGARnQp5RI6H5UDQpp6eY/mU3GzQ0bGura3NAKeNjY2Zs4bU4+wRSERCx4+OgfcIRDMz5IPpVdQkcurMHwFxJAPuL0AwhnLj+VRmZru7u9NvfNu7G0gGdpFBw1kul5kZdtavgyj8X9Ety5IBAR4P2QRBXW/1f+RdJTXrRqcSyajyZbL3lU8Rjyd3nqqfZH0H/0d2S9kxBjiYBicYLlsEjBXflh1q9Qt1vQUm1FsK1J6sVr9VMmN5yl6rPqZkQZs+Gs0e+MmgiYGYAk4sX9ZHVBsrgHscwdNAF+h//s//OQOazMyuvPJK+9SnPmV/62/9rd58e53jxJ0JZ1fcoXADn+KHaVU5TgwmMK2v2/vy0Pb2tm1tbc280JcPsUP5MzCzvLxsJ06csJWVFTt16pSNx+Ppf95Dw8s8LL9/M3Bhx4/XVX7ngUbO5WWeXsdsrwpvQEdebJRcj7g3Ah2Kgx/8eNorrrhiejaUP4m3t7dnZ8+etd3dXTt9+vR0eQ9BlAIsHuH0NlAbur2+Sse+nOqb2f03OxMGkzwbxj6E/BmgohyREVebafE+f1yOzHBnYMbvY34GjpHjUQBSyWt2GHxzegVG1FhVbYBl+DXkH41vdoL4wT00aMOwb2Ofx8ioL+FjH+Ale+47ShfYpxAsZraCx0oEvvzb90zu7+9P9wipg0VxvDNFYDPr65ye29WJD7kdj8c2mUxmXs6NG915/LGt7ULsv6KViKh/PZM0GZbqpvRjP/Zj9uSTT9orX/nKmet/9md/Zi972ct68+0cccLfOHPw/8rgcX6klmHndNmMmzu5epS29d9sdn/RysqKnThxYro053ua+PRozIfyRoZELV+yw44cuOKP5aM8nobBlNIvRl/cqEZt65tUsX4HBwfTx/txqY/3Jfi+KDd8ZjZzTtTW1tYhwBstZbQiRRy5U8uhqt34t9KF+l3tz6x7BYoinqoPtMrFsYrfii+Pa7zHPKN7kR4rDkbpFnmh7NjX8Xpkr/Ca4s8OXckc5fMxjYc08vaAyOZkNhRBIYKESHesb25HBlhu66Jok493pdPMHjNxn+I6KvCE6XhCxiCT2y2irN9WSfWpgY4ffeYzn7EPfvCDdu+999rf/tt/28zMfu/3fs8+8YlP2M/93M/Z6dOnp2lPnTpV5ts74oTGAJF9NJPz/OgcePYYIXdMr2ZuuE7vEQvcV4DyRaDJ5fYZ43g8tlOnTtna2ppdeeWV06U53KCZOTv8jWkYkHAeNZM0s0MzKDeiyCd6QbDnx2vKKS4tLc1sakc98aF+CIZUn4ja33nhDP78+fO2t7c3/T537pzt7OzY2bNn7fz587a9vT2NQvlSn8vNT8Ch8fT6+FOOuBfNDyfFpVbsUzxzVw6cASpHHFsOxfsDAtaWIVYAOnIACvgpgIj/I2AVgchWmcy7RapP4djAtmVwg/0M31moylaAAsswOxwN4j7BhE+qbW1tzcjDzj6qJ6dhMON9BaP4kV65jJZtUZMdlB/LykCKGvOsX/zs7u7KqDHyw8i1j3u3+657tElVUFRJp9oKI2Fqj9UzSZOnP4vg82ynf/SP/pGZmf2Tf/JPDo2XW265Zfp/NLq4DFyh3k/VYYEto4T5u5TlpGbk3OE50sQzPVUHBhE+aP3gyhMnTtja2tp0L5MfMeAgIgNObJQR/Kk6IhjyPGaHnTIDFHYmmFcZkczYYgSGgQhHyFiXvBzLOuY6+jcud4xGFyNQfvid12tpaWl6sKbnwc3dKBMDbd5/loENRQpsuvwKyKAMeA0pAi5ROsVPARyVv49RV/m4fTlNdaav9Mn/I4cf8c10w32e7VdLzi6k+rzipYCR+mRyOnHd2caoJW+lJwRNKJOajHHb8NhTedgOqfaOSAEXtAXK3kdlZdQaU8qucT0HOj70W7/1W0fCd+49Thl4cmeYzUDM2jM5TsPl+B6n7e1tO3/+/HQPTSSv58EB53teTpw4YS984QttfX19Gmny98t5+WyIFJhAuZX8CrhxerPDB+C5wWCjo4CTG5IskoFtwccoOA+cAUdl8Eya64WEYMn3LhwcHNjGxobt7+/byZMnbW9vz06dOjWzZ217e9s2NzenbY115j1EHkXySNPa2tp0LxMejBnpBOvBoJDbvRJpYkJAiLJEhrsC0FB+zqvajuur8nL6DIhExCCBwQLvFeInNUejw0+nMuDGMeCgGuXkMlhX2NYoJ47taAy7fMrmYB1wjGBdMS1vL+B24IcasB9ixEbpX7VbZA9RX9gHeNKmltcigBYBO7afON7wAQDP43X1Me5P7iJPlIXryrpRelbEtjDKP9Dxob/7d//ukfBdSMSJqWJYo2tRR88chYo0VTo08sYluo2NDVtfX7eNjY0pmMjqiYZK6SaSmWd7yIuBE/JRs7yWPNkMCvNx2J6NYzRjdV4tQOjlYH0REPr33t6ejUYXT2P3z2g0mj6Rh+Wo4x3Uh/c0KX0wUMK6VQFNpGNPUwVYirKyFHFf9G92JNxeUT78Vg6Z76s+weAiWqpS9Wb5eAxhGt6kn+md5fRPNPFgGbO2Zz1HHya2A7isi0/iZktdGC1W5SvdY1S9JR8DtWiMZL8rhPJG+51Um7RAThX8sN76jt+jpmGpbpa2trbsa1/7mv3Zn/3ZoajkW97yll48e50cHhlbs8PhfA6rqpk+O3ceIH5PdVTcU+CRJp7Rms3OcpC/73U5ceKEXXHFFXbixAm78sorp0/PuYFCOf0dUCiXMo6qbk4IkDKAyIbGZ2BKf7isZ6ajQMjL8+JMFo0ytjnrjsvnPVEoF9ff0/D7sLy919fXp1FEfwqPX9jM53adO3duCqC9jZaWlmxjY2PmkFK/jk9Fukz8egfe/M/ANZpVKyDB93GZkfXGlIH26FoGeiKqODyXH4G/khujsigT9il+QjN6NQ+CA5SD9+FgGU4qjV/nvh05YnwEXoEOrDNSZdwwH+5feNQJ7s1Du4RpFXDCOnN7uNxcN3y/He5H9Jd8q8iYslf4HVF1EoFjZWdnxyaTybTOLWBXGWdIEbjEfsL7PI8LTSYXPovg82ynhx9+2G699VZ76qmnDt0bjbrta0KaK+LU6uyRMctIzfT9uppxekfmp+gyp4XkESXf0+TRJnSs2cZqJVtFV3ydZ4XKMTupUDxez5wcXnfHhsCJlwadP24cjRx0piOUi8GVy4IzXy/TwS2eBu9pdnd3p0uzbux9j5TXJTtnKzKouMTJbRG1jeoDqGOlC6U3BrRKf/jdAluKhwL4kawMwLhsJYPiz8ROSAEXJxx/kU4y+8Jy85JqJD/bErYrqq+rPNk314NldDvkoCkDTnhAqwIwDDwZOKH8Dpz8NS0OmMxsZnkUI1NRXbgNIlL5VLtiX9nf309fnaHK7Apy+vixgY4H/Yt/8S/sbW97m9199912zTXXLIxv5z1O/B87OA9AzsOzEyRlsFV6jFodHBxMn7jyD8+clINygzAej+35z3++nTp1yk6ePGkveMELpnuasledsB5w4zbex2hbZDQY9HB9KzMxVU/Mq6J8CkhxuB/b16NDHLmLeOK1yHghCEJdsPHmGTEaze3tbdvf37cXvvCF0/+e1+UejUbTyBMueXhdeJ8MP3rNdWFgGYFi5UQjAN+iqMyMTzbGovZTxOM8StO6ryJNGM1QbxvA8lXEGvfAZDaHJzHqqVH/j9EolJeBNdokFbVR9pD1iVEiXH5DEMS2iA+VRVmwblEfxfGe6U1NZjgS5eNve3v70LtAeTLQAqo4Nivk0ejR6OJbEdh2tVYsFKmxge163IHUsFR3kZ588km74447FgqazBYQccJZpzISnCebNVZlwP8eZeATwls8PBqxvr5uJ0+enEabONJUcXQ+WKP6e3lKlorja0UNVB4GOXwfr2eAIItytORCA81l4ncETKMznHi26ct7CKTcGbscvimc6+j8vf2yjfRcr8gx4ZhQID4CkpmT43Jb8qnfi6AIUPK4ywAUgorKPhXPh/Ym031UJvdNjKIiAFP9Q/Vb5M8AQ31QVu5DHkXybwZJvP8QJzksT9Q/UQa11y+bALAefRl9ZWVleiQAAslInqydsrGBYwivRe8gxb6S1Q1/Z3Z1oGcn/eN//I/t0UcftR/90R9dKN/eT9X5f3Y4EXhhYKUGiHLEajChA/X9L5FxZPKze06ePGkbGxt26tQpu+KKK6ZPXeFsj2dmkSx+DWc6rhvM13VQtkBVVY9sdJT8CuQgcQRKOZAIOEVyK50gX4/8RAbcwRN+e19Qy7aTyeTQm9bdgWRGlvtBi1TfYSDO6RRAVWVX+pKSX+mYAQJTBF6i+lbBEkctIoDMekAbwuUifwVa1HWuo+vZzwjyfsR7nBB0RYRlYB/AZTYcb14XZXtwTOJ1jyx5ebyM7teV/cJ2j/p0Bqz8FO+NjY0ZO+xPv+IKQNS+PLHj6Lzal8pA1+zi+Vlq3xXaPjV+K22YAWHld55pmkwufBbB59lO/+7f/Tt729veZr/9279t119/va2urs7c/+AHP9iL71wnh6MTVJ2VO1VrQ6nzrAxw5+GOUPFRsxCfwW1sbNjznve8KYDywxGV82SjpnTC9WMe6n+LsvSsj6ysaHYXgcyIl2qTDDhlUbYMyCneKg06yuhVEZ7GZ8gc3VByR6SATis9fjMP9Z/zqY+SOZInGkdZ/1G6V+NcycEUgRh8CpYPV43GD7Yv6icrKwJPnh6/ub+qJ8tYpy1biLZjeXl5+taBtbW1GWce1QmBPaZR+7SiNkO+0ZiL7Bbvi+Iy19bWpnb44ODANjc37fz587a1tWWj0Wgm8ptNqv0+Tz4RMKOMCBLVmFak+kuVFEA6jqBpoFn6z//5P9tv/uZv2vr6uj366KOHbN4lAU6qo6BR6fNx3kzRDAEHC840OD3Pbv3+yZMnbW1tzZ7//OdPQZMbMzZGOFNUs0OuAw96JXdkNJBnRC3nGF3HWXomi3LM2X6DzJFGRno0Gs0YPZZDgY2IMqfIezKcpwPtrPwIIFUBMeaNNtuzA4g29kcyVkCT52NjcSkNPYJXd6IYaVLLc1Gf4vbG+54vO78N5YmAFfL0NvHlYM/P9sHL5b1xvOTmgMkjT9gW7JBRDjVeMRIV9QfuP9V+wGkjnhwJc36+BWJjY8N2d3enr1A6f/78tP3NDp+TxWVnwJjtPbah2gun7FEL9FR8VuQXBzoe9NGPftQ+/vGP25133lneO1ehuYETD7LImWVIXQ3qaKaM/xkYKTl8IPmTKRhpOnnypI3H45mXRqqPuueyKSBZ0SXXOzKQTBWDxmWxgeOymR+3RSQ/31fAIioD82Rpsvop48X/eTmIwTGmj3QQAUzuC5HusvpGY8DzsaFuAZ9oEtKFquAqAjj8G8cq7j9TkSbOH7W72kdjdvgluSofpuGyGZz4t8vD4Goymcin2Bws4RNxfiDraHRxA3cE4hSxflUfbFFmJ1rjMhqTCDKXl5dtfX3ddnZ2pt+rq6u2tbU1PU7EgZPXNYq6qQkHRp5QPt4r1wJOqq9Feuk63p5pmgxLdVPa2dmxt7/97QsFTWY99jixQYpmbhEi5080kKOOPhqNDoX6VefFQba8vDx9fYqDJv/vBg0dKhvMbCC3ZnHKuOPAZ7CRAagIXCqqghjmr+qWOUglXwaGsjZnPi3QFG06RwfpUUCPBvgaN0YqzS6+A4yjnFhP3jxedVTepyobcrGPKVBV0R9TF3kxvefJ+nT0GyN+HuXDhzgQgCjAoAAj5o2e3FKbtJGnWtaJbBOC7clkMn2Kje1DtBkaN3DzOwmdR7SMlY19LMPLUXlbwIcJr0dR9sju+DUfZw4QnY/rzg+v9dO+o/pGdY1sgX/zUm6VMptWAbbHCUBNnv4sgs+znW677TZ76KGH7CMf+chC+S4k4sQGEw0jzxIqnVAZBZxFTCaTmcMQcSkG5XAn40t0J06csFOnTk2X58bj8SHQhIM9A01eXsuRKXAU5Y0MHaZTAMvTZDIwP1Uep80cZiRzRQbFOwNLqp4IePAeftD4+wzfDTqe+eRp1fIHAxjvh12NsnpKM3JkWbtGjiPKEzmELhQB6BbgcX25rjn6V7EFyDPao4ak9rzx/QhUobx4n0EQHqLaGvtsU5AflsuvguH6R8ABeSE/v6f0iHnVfyVvVFZWX9eRH/2yvLw8fTWKv5Td5Y1sUevBHAZe6G8iW6P0lNm2Vj89TqBpoFna39+3f/Nv/o39xm/8hr3qVa86tDn8vvvu68W3F3DCmTfO4nj209U4Zp2SB0lrI6CT719aX1+fvqsMX+PBzpIHK15XAISBRuTklXHIQBXyyEBFlicDSsoIcR4GD1G5bHgiR6vkjQBE5JA4DZelgNVoNHsI6Gh0Ya8T9tUI0KiPl5O1N9dfOaWMv+orynkgRfqOHGgLqGSAKSMEAyrSpDbwR+VyuugJLZWHl/LNam+zb7UPRo8qAFqNX6Xbll65/b3/9QFOEQjDe6o/4pN8kcxoR5Hcb+DbAKJVA/YHygYpfeBes8iuROOIfU3kuzKwdxxoMizVTen3f//37TWveY2ZmX3961+fuTdP+3UGTmiw0GGqTuYGi4EWGwvl9KLZBRtEToM0Go1sfX19ukTnp4Kvrq5O9zYpo6b2wVQclzJqVdCirqtrXQw1/lcgL8uX1cXvs2FtOeJINt4YHeV1Uk8U8X4VXqIzu2i4/SRyXjbCmWoUIaroP5ooYN+q8PZrDGojytoAZetzL0of5eFIk//mSQ+2HddBRY8YeGG0GfXj6TzKhTyZeOw7MHL7wK8y4W+lQ/7mByJU2QwgzfTBuNjvoz6hbAqODaWzCODhfwZOyBfrjMuZuDl+b2/PlpeXp9Emf22St5UCKFF9lD5axxIgD9Sf8mMqOon3jytwGugi/dZv/daR8O29VJfNECIQhbN+Np5qgOP/qKwojRs7XJZrRZqymRb/Vv9RFjVDivJmZUR5uzg55XgVEKqUW7mWyRkB1YxXBtjwPuubjaJ6cg2NIzsMtUyQ9ZHoOhvtCDhxHVWd2VGw3tgpRM6xK3GfVk7HfyNoUi/fZoDA+Z0vb/hFu4HfKAfv90H9K6fHQFkBp8q5btjXVfmqv5rNno8WbWBF3hHAVm2l7mf2jeVTesr6Peubx7/r1vW6sbExjfz6njVesuT+xstwUdmRfeT2w/oqHq3PcaTJ059F8BlIU2/ghEtz3rEVMseNnPytnn7IOiOXrzq82YUB6q9N8T1NJ0+enL6TDsGTMoiKlMGKZIwcTIVnBWhlvJX+orSZfApUdQVang6dGwOmlhFHeSIjibLh5m3kia+MwSUDXv4xu9gv8fUzSPwgAf72MlW7oIPkPVUVPSpHwfdd/sgRuw4i2VR6HN8MELhvIGjClzOrvU1YtgKXfLgpT8K69EcGbQyY8B1weEgltpGXh6804bIVOGOwqEBQtQ0ygI3plU78v4pisexsRxiQ82td1EMVGDHEp+587K2srNj+/r5tbm5O9xvu7u7OnP3E9Vd14c32uDyrADNGkyM7x6BdgXfFf6DjQT/1Uz9VSvcrv/IrvfjPtTlcdR6VljtVq7NVynBix+sDyDcjrq2tTV+3gU+0qJkjbwxukZpFsoGLjJcCAlwf5puVj9ci2VugjGXjNmuBx8iIRxtNGQiwU1BGTQESlgvzMh804KrOKBs/WcQOLwJQUd1adW5R1JeqebI+x2OL+zE6IiTuI+641BlNkQ2JIlDKaWV2hcEjgxSzi+3OS0h+ZACDWtVWqr+19I+AXvXVVv9WoKlL+dXrEZD18jniEy0lcltim7pNcL2Mx2NbWlqaHgpqZlOwhWWptlZjKqNqukgXyscNdPzoiiuuOFL+vY4jwMe42TBEBs7z+wzEzJqbKxk8IfkAcDA0rdDTS3QveMELbG1tbRppciDlxw8oEMUOMpt5ZdQCTViG0mOkh6ocERiNZFUOAaMvSl6/VjVCGVhQjqklN8uj2o7Ts/FXDzhgm6NxR8Lr3gczUIT9K3LKWV1bOlJpM4CU6TlqUwSYOIYZ5PieFX6KLgM/vFTq1z3yoPKpa6PR6NDrUfD0b48iuR3glz4jqGLgXOm/0URDAQnWOy7ZMY8oL7Y1kuKl5GY51HKqqiPqAevJRy1Ebeb9wQ8WXV5envqU3d1d29zcnHlhu+sf+4kCvlG5GcBWemCboMC7mcm9VMeBhqU6s1/8xV88Uv5zveQX/yuAxPsPoo4coXkuX82EeBB5mN33NeE5TZHjYgOHxop/4zcSz4iydOp/NINsObIKtQAOA6fIuVb+Z7J1BU6R3ErPvEQXEaeN+nPmKP0af1RkTfW1TLauIDnio6gFjio8I90oR9NyKmgnkHhZTjlgBewVuHcwxOcp4UufM4Ck+mqrf2O6qp4ViI6Ab1Qe56uOXdVGrQkLL78ru85l4rjjpbXRaDR9VHxlZWUGYKFufBk9igi2fIjSg6oz84lsxLEETpMLn0XwGUhTJ+DkBss7us8CzC4OJJyxeDrv7NlMQIGuFkjzwXZwcDBdkjtx4oStrKzYFVdcMT16APcr+OxEGUwzCwch30NqGSA1UHFZMCsjM5bRgFU8I4OqrisHHhmdPqCOnS/ni+RgmTAShAbd/+MHo0T+H5089k+WJ+sHDNzV0kW0DIRpuCz19BfqjgE+y6z01QJlXE+Vjpezcf/Szs7OdI9KdBaS52GghX1C7W1yuTyf74nB9sZ28fbwSLMvB2E9UO+8R4d1o35jm3HfUDYl0zEDxKgdGWi2xpD/zsYp7xfLgBTrW+mReXCf8XsOkDjiNBqNbHt7e/o0pufxfYq4tBodWtsH0EQAPVp2xnoeN/A00NHSwg7AzD6VdJ6G06pykHzw4iD0jZ48q8wiTcyTHRTew2/Oxzprga2WsVbAK7oeEQMVNTtVvKP7TJGDaVFFh0qneL0iX5TO+4XzxX08WT0YOEV9SQFB1Q4RbwV8MtCUUZZWjUElUyu/emCD61tx0BXHx47ar/lSvY97nDjxo/QsW7UvZfJE11v9KrpeGYNZf/LrlTbscj+y2dHeMtYzAiFvMz9dHN8NOBpdfPLVCScpPAlhGRW4Rb1k/S3zP8z7ONHEFhRxmp/Fc5bKwInD8D4AVMQJn5ZDh6SedEB+ClChMebZKUeSzGxqKH2GmW0Ex++IWs7NCQfPPIasi5FUxgmv80ZMlS9ylMzbSW2UjuoU8fDr2X4urifPYFtltYyhbz5VfY31g/rEMjCKhXstVD1bS3YKoCvDrAw317sKblWdWY8ciWNZ8EXbOFYdvLg82Bc92hfxVo4S+yQ6W7+Hp3mrce+OtgLKMv1nuue8XE4rj/PmPsfl4xisgCKObmM9FHBgO4KkIqGj0cW9ZdEkAu0Q213ck4WRJ98r509nYn2wvbNXJVXamvsgLxVj3ZU/4uvHgY6PJM9N6gSclNFRgy/6tNIjta6bHR6APsPEGWdrOS6iljFqzSQrs9Wus0+8j2WqbzaCirfziAxmRb4IOCn5+HrlXgQCsnyYLlrycueN6bI2jOrDjoLvsXOr9AvM24WUjMyD66TGJ8odAU+Vn8cm8lN9K9KJj1eVFuVEQMqvQWGwoPSuAGmUNqK+Y5jlUP0m6tdRnoqcCly08kSgmftJtq9N2UkGTt52vtcJJ+XIt7ppX/VVRQpktXyS0slAlw+VgZO/kHF3d3dmVodPseCA94GEswiOTvkpshihMovXjdXMazwem9nFQYNPxvh/NrxHAXQix8pUna1ieryO/1sAJ9pHpWbwXBe+p8AZGy1v46yOWG4kHxPXPQMDrXbl/SEoCz9R5PXAvs11dwMeRZT8Pp8bhtRykJFOomuZ7tUYxbKi8cFy4FN0eGghjzUGX6PRbCTKAZBZfkp2NE6wDTCd18P3YPmp1Lz3StUXo1T47fK6g8/sQRU4qckLfyMoyWxMS1ecDuvObdYak6oevh8IxwKXgR+/7sBpPB5P+6OvGOB+Jo9sYpmRLFhuVge/F0WPvF7qPo+lY0MTW0zI6RhV6bhRGTg5+MEnHRzwqI1zXT5mh9E+D1z1H2cdaDhx4HOkqbKxMiOVRhm0ajr1OzKKDKgiY6jKr5TB6VoAMwJPXXh2cTJ9iHnjsgDeZ1DGfZHzqI8qVz3900V2Bh1R3TLwhTJj+opDifqxevJNOUVVRuTIow3bGRCIwDcftsmHnSq743wRKKMM0bJ+BDJa7a36VsSbgU2WVl2vgqms7SL+DD5Vm2d9jfWLe54QrCCfFlBpTQqVD1J1wt+R3xro8qMycDp37pytrq7a+fPnbTQaTV+eiwbGzKYvWcTTYvEJJrOLs37M43wODg6mM1LslKqTs1HzdGazkabIQOA3El/rYhAjvhGwib6zdGgAuIzMeKr0bLwjQBfVr2WQIx0osBWBZCfVHzJZVb3VTFQZQu+L6Ei5jrx/RoE09UF5I/25HBHQU/XEOip5cXY9r8Fnh+b6cF3hPiYlnyI8141BGLePGvcYHfAnsvibQZ7qR8gb64HyRe0Z/Vb9UKVn3aANzRw9UlQfpgh0uh4V35ZtzAAFth2OQezrZjaNPE0mk5lN4Ohb8IBMrEMXWVQUCScC0X38HLe9TWZDwOlSUBk47e7uTr9xuY6X37wzoRGNEHvUAXn2woZFOV7ltLLZGubJgFU0w6vOEPlehVcf3q286p6a8Wb5/X6XtMpBRPqu8HO5o3tZPjO9pOzgCPfV8P1IXhUVqfzP9BGBIMWjZbQVP/xW4CHiEwFX5ahRbt4MHtU/Ak5qf2U07j2NO1dfqsMlRZelBZz8Hsrt8ni9Wu3DOmR9ZfcYdGXASdnOTE9+r9UmyL81PiPCvsMTF2V/vB/weU5YT5zMZHIpfbV8UTUNynOcaABOR0+dgNNkMrGzZ89OkT+CEzdGfg+frvPf/CJHHyCczq/xE3yqw7YGfMthVY1eRl0ATStNFbiwPlRZyvFXeFfkrfBUTlTx4G926hn/DPShYXbiyCQbcs7jjhbL5M2puBznZbSWmSqgyXlVdMD15vHB9xW1HDLyzp4mQofsedQkS+lC6Yt5Yb1Go9H0DKn9/X3b2tqyg4OD6cnTfnq5eiKKn+pzXXKEUTlts8OvBUGZM8psTgSaOZ0CfJhP8WXd8Z6yqK09rQLLOAbwjLyojzNFIHJp6eI7A/2/n0aPeld7CzNdqOgRpuVP5am5DNAO9Nykznuctre3pwAJgY13MuxsfA3vmdmhDor/sZPzxvEWYPDfVVDEBiTimd2vAgn8jma6FWqljYAl3q+AoiqYy2bRGWhqlVEBT+p3K302s1TXMX8EnLAu3J6u78jAKz1k4IfzsUOLeET3I8oci3Iq0bhDQIqOu9rvVf9F8oiSAygHTPjC2AjIKbBspg9TZeDC91r2gNOpekbtzvqMgG7Xce181Ku0sM3QTuN9fjii+gSzmtigfLgVJOLV1W5mY53vRz4Lv48jTSYXPovgM5CmzieHb29vm5nZ5uamHRwc2IkTJ8zMZqJHHC3Cjui8cGbHndXTeOTK7PAavwIdng5l7jMT9LzR/dZMMePNeTMjyTJUDKLiUXXGkTPPyuB0yqBnDsBM77WInEImO/Pg+kdtyn2KnUUGyJWzZHCkNhizrltt2zLUKGvf/SmRk0IZ/NTv6gQGCccw64LrGgEAdGh4Wvnm5ub0vwMmT8PgL5IzAnQZuMboVNS2qsxsPFXGvqpTBpr8fgTw8Br2HwYK3GcdMKn3f1bBDPdx1idPOrwsrg/vJVTlZ3uWeJKPOsv6QGs8XGoaluqOnjoDJz+WYGtry8xs+j44Xm7zpTk35PjthNd5H0S2IY/lwgEXOZrWQK4Ag77AIgMOXWXqWn7L8SoHXgVVTNUyWN7sfmVWnelAOSHmj2kYMGUOLHJAfF99oj14+I33Vb+P6trV8XJeJT/LGY1F1guDBvzPe5qceP+KKtdB3Pnz5213d9fOnz8/3dMUOUEshyPZqs4KAKGzZuepdBbpm+vc5R7zbQFN/M76I+4l8jzcp/y4FwYrvEzXtR6ZXfP9tP7fl+owEpTVjevET1yq/lL5mB0+Y2qgy4PKwMnJAdH58+ft4ODCO+IQ5bc6YLZUh/fUUyRZB+VZTmQokLIZWgVItdJGDj0zqmyou/KOyoicagU0te6xrBGwcUKHlTmoSHbl5FU5GQCJ7vk3/ub9HUp25KMiTNFMnHWBckXtpOqI6Vr7ojKAq+rH8vDYwg3GPF5VGZ6W+7B/84ZlJwdGfqq0f/PJ5RUnxsCM28rlUP0+Ayh+n/fSsd4ieboS95MI1CpAo/TPkZqKvY2W6Vo8/B7b7KieCNrMLvoilAlPiGee7Jf8Gv92vtk76rx8T3scn64b6OioE3BytG5mdv78edvb27ONjQ1bWVmZfrzjOdJncITGla+r5T1lFJQh4wHLhjHax1Qd5BEQyAAMyxCVERnNyt6rlpFjWRXwaMkZ3ed07FAjudloV5yGMq4VPbbAk2pL5Xhwpsp1iX6zY1HtydfUMhvXrWWg2ZlG+ZRuWmVH91ivkbNhflE/wP/Ow5fitre3Dy3NcRQhI1WOcv7qw/l4TKl6RW2q6hrJ6Xpo1cfMpjY6kifSw2Qyuz0iGtctHam+Oi+ocOCE/FlOXC706xEwinyL30fwpPqz90fc6zsAp8uHOi3V+fdkMpm+O2h7e3vmxbq49oydVG2046U61Zn5nhrELdDC1/rM/NQMrVJWlJ5liWTq+j8Clqo+Ss5MbnVdgY/omv/mPU0tflw/lS4DjfO2N+bnPor5uzoTs4tjgHUSydaalXuaLmA0K69r+VHZ6lrUD9hB+REoW1tb06U5f3rON3/jUQMoKztOBkqZrlTkSdkblp+/8WiWih49b1ROBqAq4z+yY7hdIipH7ePK+rqiCNQz+ETeWP5kMvveO9SziphxH+BvNZFXT96xT9vb25s+lHCcgNOwx+noqTNwcgPgHebcuXO2v79v4/HY1tbWZjocInfMi8DJv7OOyv/N2lGQroNZ5Y/4VdNmvBVYaOVRZUVyVAABkpIhAi18T4GdTF5enmrxV2lUZIHzR3qttE0E6tBwqnplwAllcl4cceoKXrqAQbyvIgFVh4d6iHijDqN0ap+Xp0fb4YBpc3PTzp07N12u47ZgmbJ6qv8IGrDNokgU16d1nQGcAgmYB/VeaVOsi9enaq/MLi51sXxoc3m5zAlBJvNmYMJ1x2sV+7a0dOEVRnt7ezPlIXBiv6H8C5bPPos3kbNfc0DvDydwNPqZpMnkwmcRfAbS1Dvi5EZmd3fXlpaWbHt727a2tqbnb6gBgx2TeUVryWrAqZkODu6q888ctTLoERjoCsqYqoBHpc0Ga1VedHQZ4MmMfVauclRR/i7AwdPyf6xTdi+TWV3jfhjNjlX/jPTaFcBgfVTdqlRxVFimGpuRHpgicKiibGgP8Im5zc1NO3/+vG1tbU33Onl6zhvVl+uE2wIODg6moIDzKUAUUcvxsx3rM36zsrBNo4haJiPvj+N+GT2tFo3pSh9V0aOMENBiHbnc1iScr6utJarv+xKdR0KHDeKXH3Xe44TGaTK58HTd3t7e9GW7S0tLtra2ZqPRaGad2OziwZf4cl9Pp8ATL9OhoXOKnCcbPDXLUBQZh+y/MhQtPaKMEd/IMWO6DJRgnsggMRCNeGD6DDwpXqoNlKHrCgAiAMXlZ23tpDYCK4Ps19UncigV5xs9SabqWgHaTJEDrY4LXApDvWRLFBGAjPoZRqD39vbs3Llztrm5aWfOnLGzZ89O9ze58/IICdYFNwtjGbzHjOXG9uf2bLVhxeEr0ITXs3wMUKPy/H60OTrLw2VFZfD+oQoo4/6qdBvlzWTFCBnKZna4fb1vtB5acn/FH0y3vb0980TnsYs42bBUd9TU+ak6Ru7e2dyo7ezs2M7OjpnZzBMO3EnRGHDn5Zkgl9fVwaLsiiKw1QU8tdJEoCFLzwanZWBajjuTCa+jAVW8W+BOyduaeVbaFHXCvyMerMfI2LshjuSqyKf6EQMyntFnfS4DT6rcyuye+UVp1ViJgHw0rtgBRwAExzZGmra3t6c2BfeT4OSN+xgDeywrqhM72Kp+sv7G9VSgqVUGUsv2qImjsiGqnllZfWxgVIaSCe9l8kV9T42drJ2xvdHvsK9R/QIjTd4XjxNgcpoMS3VHTr2BkwMYR/Gbm5vTNefl5WU7ceKEra6uzkSc/L53cIw44Rks6GS8jGg/BBtvNftoRUmQTwvQRDMxNXiiPIqH+s8zs4iUM0KKnjhUTobl6zLTVTN4vx7ljRwA34ucQFfnpgBhBJxafSbiiXti+BUUXIZarsLrLAeD0KwfKUeETgH7GI5JpigvyqnGGMqgdOD33Pk4QDpz5oxtb2/bmTNn7Pz583b+/Pnp8QP+zkzWC8vg9UD9o6y4F4brpo5LYT1UwQ5vtOZvlqEyzqP6dxljasyyXEdBmZ3ivpv1e9eVOs5DtSEfL8APK7n/YUCE6XDp2E+oH56ouzyp0x6nbAAiGt/e3rbV1VXb29s7NBNkA+XASUWmeIDzYPLrZodnG5w+MuotQxX95/KqxqB6X4GmljHLZnLzzBwr5WYgpSp3Fx4tnq2IAPKJzuvBPJnsDD6YJ38UjxaxjjKd8Hc1usD14b6NdcA64/ltkTxcd5TNnY8DI49aV5ZAOCqg7APaIJU2AhJsgzLK7IzXV7VdNHHJSNnhzM4sGgQpm1dtI1XHKuio6CxqvwgAR2mQuH/6k5xd+sdAzy3qvMcJf6Nx9c2a586dmxrD5eVlW19ft5WVC8Xwo6S+sc43k6uTxv2lwTzTReAVOSY1OFtgieuneFVpHoPFzkmBKnamVaAV6UoZAQVWleOuOnGXN0rLfFtORulCyeN1U4/AR5EmxUPJj08UqaeyKuCMqRJ9yNL06XuttkddsY587OI4VeOS28ln8nt7e3b69Gnb3t62s2fPzizRefQA9zRlDlLVC4Edgj9sUzyR2mXzumRPP0aTuj5UHbsqD7eVSof1RhvK+Zk3RnDmoT6TIMXD5cDo7mQymT5tifWLAHX0BB33LQfx586dm25JUfttB7p8qPNSHRMaDQc6OHNcXl4+BIiw02aRJvVRM28zHcpV95yYj6qToszI4P0u1AXgYPoMwGROOroXAYVW2qrzrugmKitq72oZGbiMgBrnx2/mYXZ4g7kCDpFsUZ0z6tJvWxSBwkq5fo37RFZvtAFuL3BGr5ZB0EFGY7+P7BHwYQea8WhRS7/z2o2o7SPbgNe6lN2axHBarndmd5Hmac+MJ8pT+fiDCrzHbp6xdtQ0GfY4HTnNDZyQHPGb2RQoPe95z7OVlRUbj8eHzvrAvU/+f2lpaXo92uOE5SmD5LNHl0NFFxzERXtMkOeiBoiaEWbGrgJ8MtDEhlXlj+Rj3pEhy043j2RmnhWnlIFkRXwfo52ZfiNAZmbSieN3BsxauuwLgpSzz3SSRWUq1/mgWteJOngwksEBkT+Re/r0advZ2bHNzc2Zs3F4qQ4jehwV4r7EkT8+zBJfSIv5cE+Lsg8KDFftQ6TjKK0T6xXbuGUHIkK9tOTiPuXtnd3PeGV1q5CaLPm4jcAP9g/+79dwH9Te3p5tbW3Zzs6OnTlzZub1PmoPXJe2PWqaPP1ZBJ+BNM0NnHAGgR3QD6nzjwMg7+B8oBhv1lORKKRoNsgDgo1cV0czL2jqMhv29P6t8rYMtpr5q3ooY5zJz7IoQ12liGeURl1XdYhkiWbYfds2cqJ8XZXRpf9FeRZBmbPj3xHQ6yM72giPLvmeJow0YdnYtl5u69TvqC0qwCfiG/Wj6D/qKaNsEsN65jHIsmaAKuKv7qnxHo07Hs+tOqu+l+lAyZn1u1Zf5n6lgBZuFvcPA655fcNAz17qDZyiju4dz99Y7h1tfX3dzGwaeVpeXp4+Red7nfxddzjL8w6K+xtwNqhmTpPJxfeKsaF0/jxzZUPammVlOskMalf9dplJRg6hZXRasyXUBwO6at2qAIjlVsZTGWYFMPF6FFlU+mWjive7tG2l7SOHGNVL5Y9kxD06SAxGojIqM2ruD6w7v+fOyG3D/v6+nT171nZ3d+3MmTMzzsnsYnSJy8X6OX/cp+M2InqaEaOEraVVToM2R/HyKJZ/83hxPah2zUBsNvHBumVpuF0jYJgBoVZfN5vtc2gzvO5VWSrEOsM+zRNxFZlUgMkjTVtbW3b69OmZSFMLeB0XmgxLdUdOcz1VF808GLVvb2/b0tKS7ezs2Gh0OPKkDsLk85zwExl7TutyRTJiHsUrq3uUvgVaKqSceYVnlM//RzPXPrL1AUzKOXQBCcw3m5Gq9BW94f/MuSFPxTsCZIugat9Us+O+TqolR0Q8/lRE2n/zk3mZXnEcK0DLS7KtD6djGbIPT+D4Puu/ClxcZ/hf9aWsD2RtxLruCpqULUb5sjERycHpsjJQ7ir4x/IUEMJIU3QyOOv+uNGwVHf0tLA9TmomMZlMppEn33Pkp4qvrq7a85//fFtZWZk5WXw0GtnKysrMTArXnp23f/v+JyecGbhc2LmRB+97QeOH9fB0KjqV6SIyjvw/cgLKgEd8W+UqXWRyseFrOckKyKhSBo6rFOm5Ly9lvLOzxZQM6n4LpLUAYvafD9vkk5UjUuDEZVTXnLL2wkkSvrTXv32ZzsxsZWXl0P4jL5ujKysrK/LA3AzcjEajmagQAx+PVrkcGEnyvPjN6ZAn2g4GU6gz7jO89ypqY9UG3O5Rvux+NAYrk0jnlYEattH4HUVysr6uJtUI1Jknn9+0vb1t586ds62tLTtz5sz06Tl+SCGSbaDLi3ofR6Ao6vh+ntPW1paZ2fS1CX4dI07YqTkSxYMDBwEbTpaLB5M/dqyMTGsmhmm6gIvMyfrvKiiLyqvIUBnwXeoV5e1qqJEWBZoUSIlIgYFoBs1tVQW5LE+rrVsz7uia6p9YbuRcmQfXw/Mz8GL9ZBEA3IjLe0jM7BCQ4eU7loeXYxg0KZDL4Cb6xk/EF0GTSudltiI51XEWARouR+m+wjtLXwVN0XU1xvgelt+akGXlVD7ebzDC5Iet8sngmG+gy5sW+lSdIu9o/lqWyWRiP/jBD6bvtvMI1Hg8ngIpfP/QZDKx5eXl6bEGfO6Ip/PZajaT9jzqW6XJjBySclqR4Yr2SbWcYTbb8v/RzC2Ts0qtvFWw1CojcvhcZqstIh1k5WZGvQXGovvRdyYng7WoDl1BcgWsqfwOEMwuRnQxkoL/s/HkxPuXcILlaX3Po499Jbv/9/L9TCgsD5+iQ1DkvJEvpllaWppGvv2cOY48YWQsW65zOXiSl7UDR9v8d9SnlM4r5ShCubmNkH+UtzXxVP2af/N/BqBc1+zj+ZAcvHukyd+J6A8qdDl4Vck80HObjgQ4RYPOwY0v3a2trdnBwYGdOHFiCoz43CcVKvWPmsHwYGFnrJxjNjtWxkcZowhYdDFayil0Jeah5OA6VWd1LWDTkmfR6StAtgVImSqAUAGfliOLnL6XGeWvOD7umy2aR8fKKeFkxcdt5Bgj8Iazfwcmnl5FmpAXysFnP0XRo+Xl5SkwQsDDadQSHd5n8IW8lA5b/aRLW0TXov5UBVHKVmAbR2NE2Vn8r74VT3VYaVS2ogg84X1cpvNlOV865ifoFH/1fVxo2ON09LRw4KQMGw4s77A7OzvTk1hXVlamkScHTciL31RtdnEGl82M2MljxCcCP5FhX7RumNjQZ2n7GF9+omWRgz0CYH14ZHxagCi7zmkywO2kloUifq17GdBSs2iWNUqjdBLN0Pv0G8UHHamPKR+X2azf+WBEx4ESLptzFMsjPkrPaAcwD9e5tfyG//npOAdYvByH/cP/KzkjENCi1njqOgaUvVNluD5V34qeClQUjS1ll/lexpP7uepn6j/ur/N3IJ45c8bOnDkzBU3ej5GUno4bWEKaTC58FsFnIE0LAU7KWEQzIY88TSaT6aZQf68dHlngxhT3Q/gHZ7U4oKMBhOQGmmWaFyipSEx0jR1YBPQyitJEhrBLPTldBIz6OOCuEZEMLChHUJWBgUAWaao4vEr9Ml5V4Fh1ptHMvms/V6AP9YZlqFk6gyb/xogNAye0Ewz81FI3XsNlflUPBDgIfCJgxUtzEUDy334cQuRslfwtp5z1DS5HtVVrEtYVoLXk7QKEOJ8aixEvBk1ZWX7f9zJtbW3Z5ubmFEDhS3uRf8Sna90Gem7Rke1xyowXpsF9CX6uy2g0st3dXdvY2LDxeDydmTqIcl5mF/c28YwXSYXNcdbM95TcyjhEDimbUVWcWWTslLFm/kwtg1IpswvNC0Bb/LI2ajkI/K0iIYoff8wOt6d/lGFX+S8VVRxi177h3/hEqqfhp09VpMnTIXDy89vG4/HMBMjT+9jGpTGXgUEQy63aiiNFeF19FFhSYEuNTaVDvNZqF/7N6SKadzJYtd8qHwMLnqCoyWx2vyKrAjPeF32FY39/3zY3N2f2NeEZTVWqjptnioaluqOnIwFO1U7lUaOdnR07ODiws2fP2s7Oji0tLU03io9Go+mmUVyq8wGMh2JmM4Fo0PMMQxlhjlAoykAUO9zM+Vf4Z+VhufidURTxWjRomtfYzAOaIqdVmZlHgFXJxI5uXtDUx4lcCuJIi48Ztb+JwRaCDQdDGLXivUp8xAg+IccAB8tzeRR4UrJVlvEYMI1Gs0cbKB1F9qPqgFtjPaJFgqeKrF1BE9/j31k5yparstxn+Mn0HmU6d+7coUhTZCcyf3IcAdRkWKo7cqq9aAyoNVNX1yqO2GcHfqbG+fPnbXNzczoz2NzcnL47yDfw8ccHgPNSxxuoMzm4btmHeajv1pkfFVCjdBwZC/Wp8FXUmlFmfLMZqHrasY9RjyJB0Uc5tBZfVU6UJsur+EePtbeiFf7JwFgL2Luhb/W/FthjR66iMgyMMLq0urpqq6urtr6+buvr67axsWEbGxu2trZma2trNh6Pp5Fmz8fgKNKLimY5HyUfbwLH8vh/FpGK+gLqqwLMW30q68vqXjWCo+yVsllZPThtVG5mX1UaZbfR5jJQwo3fviR37tw5O3v27NSHoK/oC366TE4vJ/rsZz9rL33pS219fd1uuukme+yxx9L0999/v73iFa+wjY0Nu+666+xDH/rQ9OiivjyPmha6x8l/O7WcP9JkcvFx5PPnz09PbOXHi5eXl211dXWaB2e6fl/Jhh80tjwIozC+IjxnijerswyoDy+372wQByzz5jKj/FXj1+LFaRXvLrwiyvTKbYR6zmamFf5Rv61OBjI5W/kicN9Xh4o/fiNVy/B0S0sXz0XzscB8fJyNRqPpwberq6vTCZM7NN+ki5vOvYyoTRm88T5GtX8FPwyY1FN1GGFSIDgj3rTeRbf8G+ut7mEatzWttIov/1f8MnBUKYcnVVn5rXKwnX0vky/H+WqGL83xSfWso2r/H8DTLD300EN2xx132AMPPGA33XST3X///famN73JvvnNb9rVV199KP0v//Iv25133mmf+9zn7Oabb7Y/+IM/sHe/+902Go3svvvu68XzUlAv4BTNDtRMHL+ZIqePYAY387kR29vbMzObOTWcy2fnyQALAQ+XjfzQ2LPcCIA4japfdbaIZXcFLVx/lTbinYGTTP6qMWUZMp6RHF1lrvDE/6ofd+Gv+p4C4cqZtdpPpa3IxW2ook7cHyJHnZVvZtMxqsajT0x8PK6vr0+X4fwhEX/yCQEUysRghZ988/Hs6VxOdYiu80Tg5KAOeUftqABxV8df6Q9ZOyjKwE4f4B2N7Va/jSJIamJQKSMbF96+3mf8EEs8ZiB73xzXt6LngQ7TfffdZ+973/vsPe95j5mZPfDAA/alL33JPve5z9mdd955KP2Xv/xle93rXmfvfOc7zczspS99qb3jHe+wr371q715XgrqDJx44LWiLMoJKUODHRlPczUz29zcnBrS3d1dW1tbs729vekhmmhQFcjhKJKXwU/x8D4N/Ga5K6ApczaRk+ozS2TeragPUx+AoNJ2nXVVjTjPAPsCo8o95QydusjraZWjreStpHOZIvlaQLcLeGLnq77NZgFLdBitbwZ3oOQAigETOzuXw0EN/scxjnKgbjAioYCcWrrDtlNLkpmeld4xGoeyKf237mXlZBOZyuRAlakmlS3bpex7C7RU5OH+63uZ/Entzc1N293dtbNnz9r29vb0bCZs/6iMygTmONNkcuGzCD5mZqdPn5657kvqTDs7O/b444/bhz/84em1paUle+Mb32hf+cpXZBk333yzff7zn7fHHnvMbrzxRvvDP/xD+/Vf/3V717ve1ZvnpaDeS3XZwIxAUwawFH8GU75uvbS0NH1tC5/xwofaKSOrZHAApAwbpotm+gx0eJC36loxYBEfdmDVAd91VpWBOeVEkZRDrgK2CHxH1KpPH7AWld8CuH3AJ9dXtVNm+FtUdQYtAN4C+BgNxvSYD5f4fAz68QSrq6uHgJPz4c3grLMokszAiYER7ltC4OQ8VdlKF30crupT/l8B12p+RV36QJf0LgfrQgGmDECq6wz4+QECB9u+37W1jymbAChqTU6PEy0S7l133XUz/++55x679957D6V76qmnbH9/36655pqZ69dcc4194xvfkLzf+c532lNPPWWvf/3rbTK5EHn+wAc+YB/5yEd687wUNPceJzXLMNOgqTrrRt4OmjwMa2bTzeDj8fiQoxmPxzMzwvX19emGVAdQPHidB58Bw2F6fl0CH3OAvHjPU8sBqd9Zepaf7yknW+XN91S+yJhXgAT3g8iwRbQIg+UyVIAe/s/6cAa0uA0yEI73+4BaVWbV8WLaSMZIbgb3WJ6qh0ekOPLb+jh//K62IzpajBTjNy73KV4c3crKR8rSRMCLdZjx6AqGuPwsfRVUKNDTFTQp0IWEZ/ttb2/PRJL8P0crK/0/oszeXg70x3/8x3bq1KnpfxVt6kuPPvqoffrTn7Zf+IVfsJtuusm+9a1v2c/+7M/aJz/5SbvrrrsWVs6iqfcepy4zoAgY9HGACKR8wKChVzNIPifEw/Aug1/j/FzXLs4sSt+3zpg/03tkYJUcWf6ofM6vjL3fx2//HQGPVvRCObgWtXi2+GRAKEuDfbFClT5ViSZEzgj/d3EeEfCq6LUyXlhXODFRztPHPpZZ0QvL7t/MC+sa1SuqK//PgEGUh69X0ijZKiCyAsQyXllaBZJU34u++RwwXlrD1Qd8PUr0eq6sHpyOqQUojyNNJotdqjt16tQMcIroRS96kS0vL9uTTz45c/3JJ5+0a6+9Vua566677F3vepe9973vNTOz66+/3s6dO2fvf//77aMf/WgvnpeC5lqqqwAJNVPPDGmUHo0CgiY/MNMH2/b29gy/9fV1W15etvX19elj0P6YMj92jEt1PKtU4KyvbpQTYicV6ak6+1Oz4UgelV45my4gKTvXhknpWPGt8ot4u9wREMwcTwWwcUSCKQOlWfl9wbZyTNymXagCUjBtpZ9iX8MoLeqqIn8VACBIa4EZLoOXfRBQKqAQ1Te6F/1Xv9X4q4LHCkhrtV8GRBR4UTpym43ffp3tPEaPcBnOJ874pgneW8fAu2VD2R7hddXvKjb5UtLk6c8i+HSh8XhsN9xwgz3yyCP21re+1cwutOkjjzxit99+u8yzubl5yF7iylAfnpeCysBJOdPIMFc7JX6rNC15WgPT7OIrGPBATUyDxxfwPQXesP6Rg+wTdeC6tYBLRsroRWCuNSNjXpmB7dKmFQCheFbBUxdDNg8gq16vUNV5VUFC9jsqo48uMp4tB4x9UvXRClCNJgRZHhzPrT7O19TYYvsTbYxXp6q3yogAj5Id65i1QdQXWmnwHsuYgSUFWrKz8BwgIVBCPrz3rTLelZ9SuquA/oE03XHHHXbbbbfZa1/7Wrvxxhvt/vvvt3Pnzk2fiLv11lvtxS9+sX3mM58xM7NbbrnF7rvvPnvNa14zXaq766677JZbbpn65hbPZ4I6RZx4oESGJyI2WvzpKgtGnHy26udzoOFC8LS3tzcTccJD9lZWVmaepsHHkvF/5TwX5fxRhwoMKX1mTq3CE/PyU4KYVoGfVrRGAbGIWulUH2g5zxa/yBHNA27myR/VT+m169jqKodq35a+M4ejyuDfDCa4PHeYSo4K+KrKg3m4D2fgJwMwETjg/JnuKsCpontFXSYDrbRKDgWcOHLk5/QpYMTfCDCxX7j9ivqS/1bjifvTvH0qKv9ypre//e32ve99z+6++2574okn7NWvfrU9/PDD083d3/nOd2YCDh/72MdsNBrZxz72MfvTP/1Tu+qqq+yWW26xT33qU2WezwSNJsXe4RvC1Am8Dir8PBUGJXjPAYf/x29/ua+fGuz5/TRhPoXY7znPyWQyfX2Ln/+ytrZmy8vLtrGxMd0kjryVnA6I+Nvve8NHL/3EJ3PU0z8tx4W/GdDw7wogyMqJQJaniZ5OivhG4DEqPyq3WqeMuoD5ap4q0Gc98ZEYniZzompGrRyWysd5uA78HQEWrmcUHajooVXfKEoTAbYuwEqlUfrBZaaIbws4cT5uE/8o+VvlZXrKSAGBruNTyeKkok0MnHZ3d2cAEi7FMaDiyR3aQdUP/IgLPzDZ9z6dPn16ulHcZfCzAX2SrfZGOdDD+/4fgdxkMrHvfe97dvr0afvzP/9zO3PmTKd2WeSk6PTp03bFFVfYT//Sx2z1xPrc/HY3t+z/u/Vf2w9+8IPSHqfLieY+jgA70LwUOSU1IB0o+SGY/GSODzwfHCsrF6qqzmDB99/xoOBIDcroRyPwqxcy4OTf6oRj1gXWPzNqLYdXjSxUQUvrXkWmiNihVEkBzBZ1LWfeWWWf/BwZWUTeDPz6fW435BEBGeZdua7kVelRhgxkVCgDnkqW1r1IF6pcBaJUGvVf6T8rq/Vb1aU1ifO0DJgjsIS/GXi43VVAFeWIwDkD/yhNBQj2oXntwUDPXuq8x4l/t/JUjIkiBlHK6LTK4MEc/WfevkmcH1dWHwaQFfBSmdlVgRM7R55dV9OrcpU+q2n5fqXOlfsVuebhpaITLfAXRTT8XiSHus7lRm2VjSsep1nePm1YkWFRFPXRCnhS7dICTTyuW3XOgF4L8KrrrbRVoKryVAFnNlbZhvJ1vK/OWfLfbIcjOVqTPAXqKhS1fZXHcQZNk8mFzyL4DKSpDJwiAxJ1WDbODIS6EpbDERseYFyOAkfKiHQFeQi0FNDDgahOL/fZFFLmqFQduRwF4CKgW3Ho2UyQ83RtX2X8uuTrQlXQodJnjoTTRQ434tUy/JEDjgCRGqcqb1VG1aaqzi39qjK5z1YmRX2dY6WvuRwYzVb3eTmuBdwjAKwcNR8aiul4YsQ2LdKBKj+z2VkfVmAnay8sEw8XVqArIpZXnaOV5cWofzT54/6XpfM08/izgZ7d1CvilKVR3xXercFfNcZ9ARobpmqeyKFx1AqjV8yD81aiAC0H3crfcp6RjJin5ZBbs8Ss/C5Aj2XNHL2SO6MM6FTBQvW6SqMcrrqeOe8MOFcBHvPLeCtHnwE6Jb+a5FQpc95RXfg6y5yBu4hnH6C7KFJtlPWljAdfi3SQ6cL/83dLB5FsaotDdQwy6OliD54NNHn6swg+A2nq/VQdX+8DlswOG6dWGVFZyI9f8JkBK/xWZw8p8vzRoZlZngooUt+R7Iony5TVuSKHAjr8rfZyKZmycivyMEWgTuWp8uB7fUFclLbFM3K4LUfcckAZkG3Vh8uuON6s3NFo9sDLSH4GAMynCwCOwGgGOlGGSoQnKx954bWIon6i+gHzQ/Bakc3Lqm48z6IzzBvtJObD9le6zni2ZEP+vCpRqRvXq1rf40CTYanuyOlIXvLbmsF0mWnhgFLgSaVHQ6KcQwU4RLy7gBf1u1JuJGeVJ8sZbVBn4vaJjE3EIwNYLFtUdlSWIjZsXdq16rDV9Sr/LL8CPdFkQqXPACPnw/tRe1Tq1HLYVSeteKh0FV1XwVO13KiOfi+LrkR8ME0F3Lb6ZWZ/GRxG6ZRsHBVXwIFlqdphM5P7RiP/wbrvA3qUH+C6dPUBlfIGeu7T3K9cwZlNNfLUcqYR2scNh3wmER5kmZWnAI8CRCpNtR4MWlRaxavqkLuAtkpZmaGOeCpdtcrsSlGeLgCir2FUTrPaRlWKnGsrfVXXPEvO9FYp22fxLEuXsd6KGrmOJ5PJzJOyGY+M+rQX27BIV5kOKqBH3cN+xuV3HWNRm0d88PVUnCcrU+kpKgvHED8JzekrYCSKBLUm2qqNq0droM8b6PKk3nucopmw3+P/kWGpdj7n4ccPdEX6EeDoYlhVvgx8Rd9YJ5atVb76Xflf5csURXIymVtlVyMJLV4KIHSRo0VHnb8ibxcwy9ergKlCfWbWEXiI7lX03TW61JdvBp4yoFTp26rszJbOMylR0ZWMJ27gZh4VUIG/ozbmsY3yZJPxVtmtPBUArtpZBQS6+q9LSZNhqe7IaaF7nFQHU7NJpK4GFGe+arZTGXDK6LVASdUYetrofKaIlPFAflXdcR6Wv1UXpYe+6Sv5M57Me9EAKQMU84KYqO7zgjGzdrRI6U05NkyjHKZK35okZTL3AXCViEklApBN5jKbpaIh89Yl62stoKNAW9QfIjkrQKwKUDkKk+Vnu6QiTi5nq/xWP8QIEvOL8mb9gKkPQB7ouUNz73GK0qjvLqQ6t/PxpTp+dBcHy7yUzZYUkFEzqUVELFqAKQJ5kayZAWaeFWCWOWxM69TVyUTgKUrf16C18nfheZSgKSvPf0dtHDmkSp9QeRnMttom4hsROn+eWGR8WwBQgcioHhHIUZGJClXAegvEj0aHN3Fn4KkLRbpeBG/P17IvXYCT64LbLDqrj/NjHiw769eL8C9HSZMh4nTkNNceJ75WncV1BRZsPNVgwP9uVHyQZqdz80CO/leiDa101fohzyx9F8eMZeD/rC6KZxUwYVrFv2V8WF5sd8WvVY8ujo0dcwZUu/BWDokNvutMGWvlADLZeWywg2GwiLzVOMvGd6QP1f4KdKj2bfFW9ecylVPNviOe1X6HaaO+wmO9RcyvDw/m1ZW47Ay4dQWRHnmKeFbslhOfWB71qRYwUvn61HGg5yb1fuUKU9XIZsCgBTwy/nyMv/NTRwZkDj1KW8k3DyndZPrIrnM+NjaRY+sKmjJQOa8+WO4WYIiud3VOUfl98kUTDP4d1UsZ7sjQZ+Xx+9fM8ogu/lfvpFOTlUwfTFHfjPi09KTqw3XryrMCkKO2VcAX82TjMSI1TrPl1YwWAZ7M7NCDAlXerQmfAlFqIpD1dQWeqmCfr7cA1HEDUZOnP4vgM5CmuYBT1AEzg9/q/Iofz0rN7JBD5ZdCOmXOHdPwdyVfxgtlj+pS5dP6HQGtLrJHoKkLUGwZRL6n+k8GNFppW2WqNKo/LYL6OEcmFYVplcfjJEuPZfD1CBwp55O1ZQvQqP6KdYicHffDKgBifVb6UGW8Kh4tMM59r8UP81Rk7nI/as8oXwZGI/lasrMdi8aQ0kULIEX+h+VTvkrRcQNLSANwOnqa6yW/LaOIoIY7ZhdHFRlYvxeBJkwfgaEWaGp9MpmVHCx/H/kieRVvlol5q7zVMlXdmHeki3mo6sS4rqrPYr/E+rHR7eo4kRY9K40AmQLmFYCj+ODYVZMhJROXr/pJFXBF5XWZGETt1gJOLV4VYJql6wKYIp5dJxhRnStgJgISXft0S2+8ZKfkRuCDffzg4MD29/fD999hX64e8hnJjfbiOAOogY6OFrZUZ9aehagOXXH4nrdliJlvBm4y55/lqwBG5helaYGWrmBJ6VLJkF3LeLV4V9qwki6jan/J8lZkysBrxjObFWfU0k3VUUflMrBBvl3BA/JQzkP1T5U+sgURMIj039WJVccEyshgowXEj5qi9sX/mFYBW6U3bgNOowA1g8oWz8rYyEA114/1kgH9qO+12kzpYKDLlxa6x8m/fWCpSFM2GCJSYALLUSfSMvgZjS7sd/JPBqjwtzJAfSlz0srZRAY+S6cAlaqbokx/SgbOU6WWHjPn37fMKmVgGqlP1IKpYny7GGj1gli/js6u4ty53tmeE86j8ivAFpXJ91tjkMtolRNRq9/hf9Yj26UMQGf5KsCijx3KwFKrjkge1dnf35/pU/jS9YiwblnUR4GvTFb0N6j7yO+0JvPRCecq73GkYanu6GmhESczO9RxF8VTObAKCItAVJSmBRoyGZlfVAclQ1QHBWYqwKhVfiRrl3pnAIZ5Rm3VtY+oMhcNoCqAs2uZUXtE0Rp0pJWZeQZylUOOQGjUT6NyukSvGDAo8JBdZ5mYqmCQ00btHdUnijj1ATRRWZmuIx31paxN/b/6RFGnPmVm99mfYFkVWSNqRaUq+Qa6PGnhwMlJof6I+gAW5pk5DpwNVUETG+pMvsrsmQ0tA6KMlOxdAAS2Bc4IM51F1yqgIuPZ6gddeLWuVwwcA5Mu9cucRRRdbJXTSj8ajQ7NhjkNlx2BnxYP/M3O0b898sBRlgyoq98VIKn0UwFLqn0roF2BSlW/SDeYx7+jSItqm8yZq/7DTz72dfBKNw6UOOJUIQX4VB2UTY/8RzRBZ9DUx7eocliO6PdxoMnkwmcRfAbSdKR7nKLOxJ2aqTobyUBMBeBkYOkoKAJklXxdyqjc61PfqnNv8egDVLiN+gCxKK3iFfXLKE3GuwrwI1IAA69X87bSorxRGRHwj8ZWxtvrg/eUjJXIT1ROFMlpRUgigJfJE8mXyauAaouqesTrXSnrz6ptcWIXTSQrskSgP0rXB7T08TkDDYR0ZBEnJ0TqvOdpHvLB6wNWzezUO+1wYEagqRItyAyr81CDH+XGa62XAWcOO6tDRf4WLdrQ9AXGkbNmJ9IFMKmZbJf6Zg4vav8K3xYpEInyqDrjuT88Y0YevE8lmwhh3/Uxl+mv4kAjwMUyRKCJKYo4qfuRzBFFACaqB7+cvKqXCDzzfQWaFhEN8TZeWVmxyWRiy8vLh/pP1E6RDNk4b0Xf0I+oiJPny+y8ItQj+i0+H+o407DH6ejpSJfqVAfrMuvw35GT6MKHKeLZFVR0oXn5ZgazqxxsaDOQctTUF5hVZ7GVcvoawy6gKUvvVIloMW9Vh8wZYT+KgIdyXkrWCBRW+01LDiynCrg4fdbG0bVMfuadRbeivK0+X42UVXWjZO9KDpIZfFfaugKkuKwKYO5TlxZgU/davI4TTYaluiOnI9kczv/VzADTRmmUMVWzB549m9mhWbAKAbshqM5Kqk42yp/N8iPD2CqnOpNiOVRZLSfPDveZApiRY+xLGeCYh1S7VJ1M1jcY0FRn0fjUXQWIcRmYhyMm/CRSRZ55nX01kqj06ZGEipz8v3U9smMcDWH5FDjIeHN6/3DbRGVU6p7ZYLbbLd6crk/+6LpHg5T8Sk9d+ivLz2V0tb8DPfvpSCJOXWYD1cHSAgkMSFoAjL+VMWzNCpF/NluM8nWlyLFhuX34ta514VOJemC6qC4tWhRoQrmULBVQUokg8G+VJ4qQMGiq1kfJ0qePZP1b1bEL8M/kVPejKE52H68jaKrqgidji3SSfces6iuRPrNJWZ9IEE+gItkyYvsc9f0sX7UsJLTrGRDuynegy4uOfI+TU9eOWJmBIF82jMvLyyU+CiCxgYyMFfJAXpFhVQZelaVAovqvZEHe0f0WqFPO8CgMSVaHzHi1HNc80bAWMEa51DXkw/czQMYgqUUqCtWXMseKxPVRYKQrKX1GcnQBOv5RT/0pm8DOW6VdXl620Wg0/W6NdTVRiORcxPhCebBc3LPG7dSS0dNUylYAG6lLPXmseIRITYgVCENwnIFtljcC1V63o7SHi6LJsFR35HQkT9XxtUUbhaz8aLC2jEIGhtT9Kp8KZaApAlF9ysh4VGZhfcp0iiILGf+KE4+oC3hqRb+qsiKfPv2nz+Siki8CIexwKoCfCZc8svaOeGaRhgzoVEk50AgoRJMwlJGX/RVYyOqC/xHEtMZHxIfTq3aM+maVb2viGeXP6s/povteH95b1eK7SGCTAa/jDKAGOjpa6MnhldlLH8qMSDSTVwZEgShcG/coVavcecgNVxZpyvJm31F6tY9L5eN7EUBoydgy3l34sZzVyE2l7FZZXYnLycCgkluNn8yhZQAu6xMVXXQBnUqWTBctp8N6aDluFWXg7xa/DDSxvTCLo9LcVz3ixZEvl2t/f/+QLnCc4thl/lkdKmCHy414KlAXgfYu4Cbai6Vk5XbGcvCJN0+r+iPrskVd+spxosnTn0XwGUjTke5xmpeyTp4NzMpsQM1AIxn6yFrJF4GmFqBR35HMDJiysiLQpPhV6+XUF7hk/7mcPlGTrnJ1je602gevVZxYdL1rvSt5I37zjO++dc/4oFNVgKkKKJg4v3qFVCs/AiSUka8z+XKg2SxIY4DVVW+VyFZmFzPQlOXvEhlS9VRtrIBUSyeR3csmYFlbH1fwNNDR0iXb42QWd0B25l34RddxgPj76ZaXl8NZB88GPR+WwefbZECH6xXljShz9BXjpeStltfVmSoeWRo0cvOScqDz8DhqyspSfZLrlDmlyAmqqIByOF3qoGb8FWeDYy9yOpwX+7uSlc/ZUeV1cXAKdCn5uH1UtMs//G43BaiQ+G0HbrvUuzaxfK67uo73W+3vdeSlsj772RSQVTLhb57kse3O2kqBL1XXlhzPNppMLnwWwWcgTWXg1MWZomGszs4wrwI2lc6eyYJGpwKeupSh5KukqYAndjLsRFB2xTuKNDF/lkeVEUVdVMQniyxEZSqerXQZ7xb1AYjz9sN5KHIM+K3KiTa7+kc9LVZxJgyaWB7lXHkSEQHBSK/cZxm0tNpDgeuoX2f6VrpXryTB6ypawte5jm6rVlZWbHl5ebqdIAJPrchIpJOMIluQ8azK0wI7vKfM/0cRqKw+2eTceTLQfjbSsFR39NQp4lQZfNkg7AqiVBnZrIGNL4MH3uuTyal4oBwqT2XAZmAl4p3xM7vooFxu3qvV4tWStypXq5wqUKmA5gyYdZWpqzzVe4ukzMHg3g7UTQRg2PFjumqUUkVVsByMSrBDy4AV5s+AHDpOdKR9+gDLFdkoth14CriDID5hmiNLCJRYjypC4mXt7+9PgdPKyootLS3ZyspKaIuyelQjPniNTzxnGaNN7hlxP2jlRb0pmRH0MJCad4Kk5IsmpAM996nzUl0LIER55kHwmSOtRIccNGWhbp454kxHAa4+A6YFrFq8le4jMFqRrxLF4XTzzMay2X5fGVkniwBP6EjnNYhV+frqlfsu8lH9Ql2LlqZRNs+LfHgZisGc6pstJ8vjsuLAVF5V51bfy9ogksPrj5EmvMfgMoo8ZYDA7AJwGo0uRJ4ODg6moMnbLasztxt+t+qoACm3ZxfAyumqvkH18wpftGHV8YV1UqB6UZPJgZ69dEn2OFUAhnL0/Dv7z4NZ/W4RzlAyhzMPWOoKFKp14cHeBzAxcFPU1blXHGEE0Co8s/uRrBWw3UWeLsRld5E1iuh03W+iwAxejxwOzuYxuhIBEzXzV/VR723DTzQpwN8O+lqgLAPDEdBz4n1He3t7NplMbG9vb6oPBiwcaWo9ZReRT/gwvdfdI8yqL3UBNJ637+QD2ysCWliWU9S+mQw8OcA+xn0C+zT3HZYps42Rf6rY3EtNwzLb0dIl3RzOCD4aMMowRoAimyGqD5OamamBr0BbxLsFsOYFkSo9G4ZM3krZR02qPSt1jChziJyuMsvtCrj7APRWXpSTl8J4Q3bLSVXGncqjQBMDJ7XMlOlXLV9hXowKZ1Gw0Wg0E3nBV2ioOkagIOoPrBN/0g1f57S/vz8DnLBs1hFGnNRm8UgeBAIY3UL9IKBzHlmduW25zn2iMyhrZXwpm8nyKPus7jFfPF+M9YtlsK9BO6rk7QK2Bnru0pEfgJmlUZ23RV1AgKdHg5IZhmxGUpVNyViVNXKiSh4Gelgu58tkVaAwy6+MLTvXqv76go0MaLSusSFWhhedtln76cRMTyoNOxbUGUcgIlkRSPHsm8tR5eFvfIedqkPmyDKdY11QHpSbIwJ+vfXovwMZjLww0IomQ63+EzlN7xdYLwaP+InuZ22L7ZsBEgeNCJpYXq4D94VorPN4xvtRZA/l5A3crOMIWHFboQxdgBx+FKjKbGyFfzROjgtNzGwRIh2vWh0vWvgBmK00TDx4K86+xTMaLJy/MiBbwEcBrahOWd0q+qvK3Sozq0urXPV7UTOuLjqICA0bf5tdXBbyb1xi8fz+6DeCiq71UNda7e/fanOxcroccVLgQjkP1gvu6VPtqkBN9jQd1ycDCOyE2UG7fAywONLiG6aXl5dnnDNGs1rgSYEvvObRrZ2dHTs4OJhGmqKjBrgds03jrEveN+ZyYHn8lB0eXcD14rq3xi9H+hjEqjZ3PWF/8ihZVhZPGua1y+reomwU88rG30DPXbqkS3UVUgMSKQNBeD9Ly/xU2q4DTYEnJWNX0KJmnC3dRDxbdWT5KuCoi75aaRbBIwJNbOCip8FYP+issfxWP63IrfK2ohEtENIiNVvmfsXONXMUkaOLrqlvBWbUfi7VFmqfF4MfBmdKTxFodCCC/aICkqJrWVpuAwaLSEtLS9M9VgrouQ6wPi3gyGmjvKwf1CHLgGW1+ifWN1qGjgAb9wtuL65fZAcXCbCeKZrYYqJFAwyMaWHAaREdLnIAXSIhmMeNBz9Fh/e7kAJlSs4IfPA95JN9VL5IthZYiuRU8kbp8H+fiExLhlaeFkUO0+wiMNnd3Z06Hl7ucWfk5alzjuahCGREDlmBFHa+TNW29eteb3zsPHI+DDwZPKn+ogABp/F8XB/WBQM9jG7wWM8idhGIYrlWV1dn9LC3tzf9RE/MRe2nNokjeI+WX/3//v7+TFTHI23YZq4jv8ftUAEyVaDfAidYfrS8x/mxD2Ld+b/ZbNtjf3Cw608jRvVS9hzHO9qEZwtNJgtaqnv2VPmS00IPwOzrWKJ8XYBDNuPoI3dXo+J5ondYoVwVmSrlKf4tPn10kjnEiFcfYOr5WsY9ay8Fvtlx4TILzujVTLXiWFWaCKRU5K58WjJl5bGO8brilTmPllyRrMiPy834sJ4QcCA/dn68cVyBalVvB2NcVxVVUmki4NZaqovqi+CSQRQCDtyLFE1uVJuijloAC/sRtz/3M/yuUKaHTKYov5Kd7de8AGlRE6uBjj/1PgCzr1PMwI1yXiptJh8bTBVtYpmi+kWzKM4X1TOr26IHWcZfvSg0cpKLkGNeXpmTroKQyFFtb29PowW+9wJ15g5neXl55kyeVntnBjcDO8qJdwVP1bZE/WTgH3lwxMK/edzw0hrLgHlwf5LZ4UgCL7txu2KZDhT8t+9DWl1dlU/neX08EuEAhAGi8/LohZnZzs6O7e3tTaOVfCQDL/9yFGoymUyjnAjgFXBiwmibf/b29szMbHV1dSZCiPXEsV8BEVUwG4GhCrBXaZUMEXhkOTBNtsSX2XN1HftpRYcDXT7UK+KEnemoicvgTtxlhlCdrbTqNS9ozK4hsWFS+TP52HFV8sxDVfm68orqryhzPO7I0Olhn+bZu+pflf4Wgb5WHbqAJnY6CkixU6lQNrZ5/ESOTsnEFMnG4C5yeiwvOk7/f3BwIDdKm9lMFIk3NPt91oOKICnnHH1UlAr/Ix8lM+on2pyPMmM0DuvbZVwqvau2bYF7lbZLuRn4ycZb5XoE1Jx/BCK7jKtLSZNhqe7IqXPEqevAa/Hq0vmUY44GU/ROumyQqPK61DUDJdkH86pBynJks6SMJ+shK7NVpyop3XflW4mO8HV2WNvb27a7uzuzt0nNJvEpIObTmpVHMjHIMdOOmdOrvTJRGa3+EaXN0jAgmUwuRkwyPqyvqL/6t9rXo75RLlWe/0Yde5vyuHAb4eUzkMH7Xn/vOyo9y4AgHdNgxAn/+8evt8awp/VN4gzwvF4YQcXjFLBtIztcASotkKioAq4wnRoDEaGeMiBXAXeZ3JX0Az136UieqmMDtcjIFDu6RZICHX149M2Tld0VdER6r0aFWo6vVXb1ehR5WFSfQeOLhwdymREI71NWi6qRMwUcKkA/iwRFMrT6HjvFTG6M5DnPTDfsxDPKQD7+Z0CDwBh5IYjyeqlJiCpP/Y6ABAPh6BPVK6o7l+uAaTQaHXovnpnNgKesLFWvLE0XINQi1fdb/b5KrXGldNoCV9W+e6lo8vRnEXwG0nRkxxFEszu+77SITseGUL2frhX5UbIvCvzxTA/LyupUJZY326jeRd4ucs4LPFX5KIdfz2TAdL4st7OzY7u7u1NnospCPtwfFBBwUk+WqTZWIDGa1Ud1zfopnumDwIGBS/aUKfd319fu7q5NJrOvCkH5+JTsbOyoNs1sg5eTAQdO5yCJ9cKgjpfsEGiwfvG3AiBqj1O0CbwForA+UZsx4dKcAyiv3/Lysq2urs5EnpSO+bf6jvo5Er/uRFELcHEZmcxVUBbxjmTjaOJRTNgHevbRwoFTywC2ZnFMfWccESDi612iIxlFjhad5aIiNypd5uiR1zyApivI65I+asMufCOQwSAmStcC1FF5VQeQyRBRVn4ElPkwywgkZbxQdnb4CvghGIiAUwsoVftmpGPUK8vMp1lnfS+aBET9IQI/2UeB7Sq19MXABsGT58FJVRUw4Tf/Ztlak4NI3kgO5u/3orFU0WlUZkuGruVcappMLnwWwWcgTcfqAMyq44mIZ4McZZqXIj4VB89yRE//tUClKoNfEYJ5qyCA65HN8hZBXfiysczSuezunPwpq7W1tekrOtD585NXfjaOz9DV7LxiUBVhvsw5u1xRWapdR6PRjGN0HrxPivXk/7n/uQ7VO+nQ8ft9j+Yp4ORl8Lve1N4jFc1g0JE5S7/nMuzt7YURNvytxianVaAy0k3lEwHQaJLFINlPDkcwiE/yOQ8Hjr4nyp8WzPq2Ey9rc3vxb9VmEbXGVfakIZaHcvBewL7glGlRfC4FDUt1R08LPcfJaVFApVoOdmYeyGrGG3X+LnXEMvhaJR+n7aqzKG1XvWdGui9PxSdzdJX8+L9lvNCgeqRhZeVCV8cD8Xw2zh90LApQ8HdmUNWMHuWrOhbVz9mRoiPE+pvNvlZFgTUFuqMIid/PQIEaf9F1PsSQdcvEesjGMz+txu2o7EOma0ynZFX6Ug48+6/GRau9MT2DMmxfX7b0V9Oodkdi4MTHOrCMiwAo6ht/d7Gbmc772NBnA3Aa6Ohp7oiTGrh4TxnKKH2rDORpdtiw8uw2izgphxfVZZFAsAXm+gC3SM+qzoq/0kFWZh95lVHN8s5rhBEweV9Ax47ls+58Fu9OJgIw7CS5XpEjxvwR8OZ9SpiX87sTVHywPCY1NtBRHhwcyKfIJpPJ9Dp/VxwT1oPHbKRXvBbxU3VTYJLbvRrtxTOdovaMIh4qMoXpFTBVJ1i7DCsrKzMRUY808bfzGY0unkvl36urqzOThKydXC7cP6XGxTzjNgLpKo0as0qXys4jZfYw8mmR7ANdPtT7AEykyAFFaSvOucWn4gxaj3z7d2Ts2bFlclUARJQnKrPPjCjjjaScdhcwlIHgTG41k+yTTl1XciCAYscWAeQIhHKZmWGuAsoIzKIjUvXFOkQ8VD7Oi3VkBxk5fL/vH35tSFS3TE6WAyNkng83O2flcN0i/WbtrWRvLdsy8OHrCgC3HrVX8jnQ4aVZtSEdo3yuP9YjvhhZkQLrHL3MiPtwtZyMmFfFr3BelK+rv6pMTJ4pGpbqjp6OdI9TZpiidBXCmY13Wt6nwh2bjTGWHckTzcJUevXdl9BIs6yoJ7VXJHL6LFfLGFTrEpWRgdWIlNFU7ei/VRnqSUJM1zL4Sr8sIy//qLpVAR/LiU9GZTNuz8MOWpXVctxOaq/O7u7uTPTCP/yUWETYl7Gfqj7Ly4oom/Op6pX7Ada55WxRPs83Gl18Z52fKu+2hqMvqCPXHZ8yzu+s8+vc99imrays2Hg8nkaLzOxQpMk//iQkn0fFoNT382H98Tf3E0yD0dxsAooURYYURRMHlaarH2lRS7aBLl868uMIWtdaabrMpD195rQz0NQ1cqDAicrXdSZUyZsZixZoyvi1rrHjafGuAopqegQtSucIqhkwRcQA1a8p2aKPSteqI8uZ8Yz4qLoyLywzAlMqAuJLcJPJ4YMaWzpA+ZC4b0ZAH+vG+fl3pRymzMFGEyePWqq9bywP6lNtCudvP3RVHdvCe/B8qU4tT0Xl8ROXGIny61z/CJhj/82AjWq/Lv0nat9qWVF5zL/F49lGk8mFzyL4DKTpkkacFGUDS91XaRVowHX7bFBW5WyRksNs1iDxjIydQ2QcMlm7gtEKEMvStSgyXl3zR3wYOLGz9d8toFS5VpEpazP8r3i4Q1N9pzUDN5uNsir5+VwiHlcYKckcmooMKIeqZMXx6E84+rcvNbHzbUUkMocXTWC6jJuonR2o+NNs0YMDzAsBTfRSX7QH+HGQhE96jsfjqQ4r9cK2xmU6lwf3bimdmdnMafqYTu0XzMYB6sTvcz/Fazg2WFdcLoM/rEOkmy52zuVpRbWfaRqW6o6ejvw4gtaA9m9lgKsONzJ0lZlmJFd1ILDjVLyVc0XQtOhBp+reAkxK3swhIFXuR44t4hU5aOVE8eMOQhlR/B/pPeqDCvhUnATXn3lEoEnx5joopxDpBuVQzkgBFQZPSiettkXgxHtzcI9OC6yxXrP+nekqWspXcjPhEQAM+hQv1q3aHI7pGATwRnD/xk3hlX4Q2ZzJ5OJrW/BpU9QBgizVBgi+I7sRjYuK/UNe/Bvz4dJuy9aoelTtEss10OVJRx5xat2vDJpKOa2ZRTU/llvhhwO6Um6LZx8gN0/d2Qi16tIF+LhhzGaK2Ww0Ak2KRwVARXXvSixjBvZUHdnJR8Au++91w++WrFH5qE+c9aP+VNux/BFo4/2H+F/pJwJvqm4sl5JNgUeuR0VvnoeXyngpzeWqPpyC5DwcIPl+Jj6ziR9ywKflPDrEdUbZVP14PCBg5nbAiJDroCv4ULrFb8yjgL6Zyagp/+YyFNhtyabqcWzB0xByOnJaKHCqOu4I6ETXFLGx5LKVk60AjKjcCghk+RSPqG4tuZSTUDJEzqNCFdCUOQH1m/8rPfF/nt2qpSbk53ph4ISOOdJXH6oY6MwYo54jYKecB16PAIjSZ0RqzPB9tcla8cjq6nx8eStaokM5eJM68uN2x3x4hEQ03tQYUjpmp+zke51WVlZmQAMCJwdVrTHNunL9jMdjW1tbmwIn1hcva7lO/cXCfr21zOrfbF9YRsWDgTaOs6xtW5TZGJQR5c76cUYZuKq0WwbsB3ru0sKAU2ump9JVqNIxM1CU/V/UjKEC/LLvlo4Uf1Ve1eBU6+L5I+cTGeIKKbCljHRk9JWO0HC3ZsItAKiuR7PfKG9WbqUPsq7ZuaPDjpwf9w/lrJXsztOBkwMBrC/qWD11xQBRLS8pHShQinWLnDLWRTnyqBwlQ5TGQYoDp8lkduM8PmXXsgsor+tmfX19Cpx8SS7Si5eDYHFpacnG4/H0/YxmNn26jollqowzJQsv180DmlC2DIxXJyuZfYx0ovqFyrso/7FoGgJOR08LAU4RaMrSLYoUeFAGig139rhy17K63MMyszx4n/NEef06D+oI2OB/1w1uEmUZFGXAtgJOItDUOsSODTQ7It4M2zJ8LaOudFjpL5XvLC+Wo+qPUQ6VBtOq/uXfCiA4OOAnthDEIFDI5KsCJ25/1HnFWSFoicZSlRikuc3wCNB4PLbRaDTdH8Rg3evPG7LNDj/F5stsJ06csNXV1ekrglgH3BZevgMmB3Z+HIEv3bXaBnXv/Dmt/49Ak+uotTzO/VT1W+xjFYCTgSy1p60PaMrA3HGiyeTCZxF8BtK08KU6/s6AgcpbITUbyhxDS95I/ipFcijw1JWfchYZTxV1MNPvnEJ+aqbZAkz+HRmTyNEp8MTGOAJMWRlqxow8ImfdoswoowzKOamxwPlbZan2bAEQs8PnfCm+LB8CaK8XPvWk2kbxVpvBoz6l+jfrVtU74oN5o3K4jIgYlKOeHKD4GUh+jpLrCs968rbwKJWT64ZP9UbwomTi+ir58P2MvnyX2SfnrYBNy+awvIofy10BIZwWx0Jkw1q8Kn0QSU2aBrq8aeGbw1XnrAAnxafl5NSARuPftcyW3K1PdSmiWn5U1ygdOnA0OGjMo7rhjBj/M4jz767GJANX/Gh26xDIyHCPRqOZiAPeq0QrWvK3ZqrKeXE/6Dob5z7E7YFtyHXlZR7XDwNJL483NqNM7oD54MbRaDTdjIzkm5n9UfpsTEbjJKtz67iJaLz4N4JJ1aatNsDjFUaj0cwBkmYX+u7Kyort7e1N/yNPL9+X43z/F44B3HiOfFU0COviUeOTJ09OeeBLmFGPmX1UNoNPK0d5Wd8MuFmfXYFIBI4qdj4bR8zHqY+dOw40LNUdPR3ZHif/zjp0y2Dy72zQRGX3oT4AL6tjxUl0KaeiX3SieOoz80PAhMsKnp4dVBTViWRW0aWMjsJAqchDFo3wPK1oV5S/D4jOgF1l/FTz8+/IoTBvdLS4NKeibWY2AwZYD1yGAuRRnSpOMtJZpp8u/Y7rghvCV1dXZwCHg02sp9lF4ITgqyULA0YGTszHQZcv4TF4yoACA6ysf2H7ef+Ilo8jXTK/lu1o9ZNIxpb8kcwK7B1XMDUZluqOnC5JxMn/txxJxcHMw7NPXVqfSn51PZNfpWWeyliazRoBfkEr88SokhsgnPUqo4SGVRkYzJvpRxkrlG/eCBGWE+k1MoJoJLsAqKhtVBtXwFyF2FEy+EDeURlq/PBY8igGH06Jrx9BgI6HRHKUgsvrctAl1lXpkcuIqAUEKmUjYBqNLmzsxrOW9vb2bG1tbWajNreNE74kWRE/CMAyYZ3943uwfJ/a5uam7ezszESzVBsg2Mv6TjQ+1IZ2rjOOA+6nvI8uIgTuWDaCfI6aKR4spxpDrfwDXV50JHucWtda9zI+PAOq8lBOAe9l4Gte6sorkq/KV71+QYEhNHpslKNHqVV0oApyWpGqVgQroz7thYa5AoIr4C4CSlF/dIpm9oswzC0eXC+WW8nGoAHbTp1t5HmyiULmsBQ4yKhLf+T/1X7BdcEn7lBXvHk8GgcKVGd9SQERpScEsA6AWyAous+6UtdbE47qJKES3ZlngqV4Rn3CCe3mQJcvHfnJ4Wbt6FMrn0rLM8DIwLTKwqd9Mjmywd5n8HZxAF3A52RyMdIUzWK9zup8HDTiOHPkp4KwPCVrJLNyGsrQ9gVC2f8oT9VYtvJiVCBzapkcCF4jx1HVTaRbBtL8jW0fzfw9ve/t8ciTf3hzeKSfyWRyaI8URg2wPAXoohOt1R491g2mV0Ag6k8IBJEXbvAej8czY3Bvb8/29/dte3vbJpPJ9IgAP8qAo4X+7aAHdcbfUVu6Dn05cHd318zMdnZ2QtDg0Sbfm6X2T3EfRV5qL1NEEehS6brwUfciIJfJmPGsyDXQc5fmBk5Vp94HWET5KkBF3Y8MTV8ZFZ+MZ8Q/u66AU5Q+ijQpp6sGP2/wxEee540GVWeYkaNWPCv3+4Anjjhk+ovuK6ff4uf3OI3SvQLMUSQjOgSRy4vGTAQksV68Fy6a0DAg5zwZ4IyAuRofKh2P16ivVSdCqm78MZuN3voeI//m9NF5WKpOkV2I9IH7zhD8KD1FAEb1I6VX/FZ9tUqtSU2Lqu1Y5fVsAEuTpz+L4DOQpiPZHM7X2fApMNDik/F2oxA9xZSVx+VmgKsvqfpXyq3Iic7RZ7e+j4ENID8554YaDSk6DbWvAo1h17ZiRxXNBucxjl37W8YzysOgiZeiVHQAf2cApWWcWzrCKIx/e7/AcrCdva4VvbOD9bz+mD2ePYS8eZx6fs9jZtPICPLmMrnfR+eOYTr8qIcdVHso4Mrl8B4hnKz4uHJ94PEEHmHz/5PJxQc48DBNM5t5ek+NUdSJ0h3K6k/wKYCtjivBOioQzukj/SlqTQJU+qzvKwAX8W9RBBxbMh4XGoDT0dNcwCmaASmn0wX5d5nttXhlfLvI2AfQdUlfKSNK5wMdZ7LKEEZREjYU6MDRCbTkQoOtjFjfGVsWAai0bUW/Sqcsr9JhNAb8d7WPtUATOswWsMJ2829+Eq5Vf+SXpUEH2wJ10SSGgRVHs1oyKl4RRc6V06gxospS8vNJ2thPHEgheMzSt/qXkif67bp1QMdLtln7dhm3kVx9wYZqh3mAS6WvZ/cXIcNAz266pHucePaJ9zOrdtd4AAAgZElEQVTD0DK0+FF8cebE5UfpkXD2l6XP8nOa1h6MzJAhcaQJZ69RHnQMo9HFs31QRncA+Nb0SCZ01qxjBmEqwoS8MwfFwEw5lWx5qOJ4nbeSIZrpR/+jemT3uOxMb/zIOEYUETypBwTwmx9xj3QQ5eHrrXPDOI8vH3m52B+xT2BeBodMFedWAVgKWPA1BaaVrGYXo2rYJqPRaGbMcvtkUSaVnvu853U9+0TI9zKxvvFJyOg7ewIQZVBjhOvJkzzFC9sjiwhF9kXprZI/+2D7HycQNZlc+CyCz0CaFr7HqQWCorSYJuKB91pOKwJJ6nqXukY8ou8WvyhtRT4fsBhlag1iBk1RFKPPrIrTtpwwpouco+JXocxRK2IQp/4r8KTKXBRFzgJBg/9nx676QVQnll21Qea4o3vVMYCgi8vL2oL35EV9OSubSQH6FohU/Ywfycflcd4wr/pU1H+jCUP0rewfPvmnlu8RdPGRJbx0p9ons40Z4MFvVedqux4liOH+cZwAE9LxlOq5Q72BUx/g0krL91Q6HMgqusB7naJBnNUrW5ZScmdLEEoXLcCVOWB2nn5GDJ7qzPVsRVCUYeITxNWJ4pFjb7Uh52cZ2YhGfJVT4Lav7nFT5PlwmYudBsueETuYSlr85k3eEahRoCkCIRUdqVl2C7S4g87qxoDJ90m1IqZcZ5dH1ZO/1flnLWfOxGOWQRJvvPZ2w/1d/gSeR3TVuUkoY3Skg9KFsiWYD6NN/rSff+OLi70NedxjXdkGOPHRDEpvVcJ8rlt1NhOWU2nfqIw+9qKPfRno2UsL3+PEnS7qUOp6NPijayq/AicR/4xfdSBEPCpGoqU/dnROGHHwx7/RmLSce+bw8Hq0kVSBsgicoTzqG3mq+1inSJ8RoIqAQRdDmskdyYPE9WR9cNooUoTtq5Y2MiemQB/LXwVyzDP6H/FsRSrMLgKpFv8sEhHpGMvK9KL6OwMULAcjRyoqwWMcgZACW1wG92fMq/q/yo/ATS3P+jjh6Bh+M2FfxI868kS1gyIGW8qWqbHDOmA71Rr3ytco/seeJraYkNOzqMqXmo5sj1MFeHQFJ/6bnaCagSiH0HLuLA8bjQogYxnRKKlyIjkVeELDhHubeL9B5JzwWlReyxmzo3HdeHQhAisMhrJ2wToqZ6VI6TVqr67kPFhuvK9+RxSBx1Ye//C5R86DgRXLlY0RbDfV5pinCpJUHfA3t2ulbMyH6VVEhJ2uO/RKn8jGqLIH6mBL/I19GTeQe+QJ03DdWW5l//A3y84nuDO4w6dq+ZUxLd1guTxm/aNeOcP8cHwpO8Pp+TrqlPsMAsaIIlvH1wcayMystia1YMoMVzR74ntOkYGNeCLfbMYTpY+cuHJC6p6iCjBwudw4cbQpMtrRTEsZhcxp4T212RgNVAQ4syXUCLBF+qo46gg8dQFT3OZdPhm19B4Zbn5SrpI/qpeqH35n+aL68LVWH1T8M31GfSlbouc8arkrk0Hpi/nh+Uj8upns4RVP469p8Q++HJl5ZTxRr0o/KB9+vLzxeGzj8djW1tZsPB5PZcnyqA++p7AFViv9rgLUVRnV8RiV0/X+caDJAj996LOf/ay99KUvtfX1dbvpppvsscceC9P+vb/39+RY/Yf/8B9O07z73e8+dP/Nb35zT+kWQ5fkqTqnqGNH9zI+0Zo/r+VnTg95ZUY6qkfLuEay47eZDj37dSY8nZnPfMlIAUt1jQ07E0aY2Fl5nlZbYlpVd5YvkjNyqDy7zuTgiERGLdAQ9RWVtsXT0/JMnnlks2E18+boRbQEE7UJLufM60S4nbktVQSC8+PTeBlvBhNO3P6ZLiJgpiYu2J/w0X9eZvN9QMgH25vrjvWKJjo8RhHIeWQGz5lSy4QsR9b/UGdqgz/qHZdhW1GtypN7mf3IbFE02VD3mXfFVjyTNJlc+CyCT1d66KGH7I477rAHHnjAbrrpJrv//vvtTW96k33zm9+0q6+++lD6X/mVX5m+x9HM7Pvf/779zb/5N+1tb3vbTLo3v/nN9ou/+IvT/2tra92FWyAdOXDCDpkBEfU7SsPX2JDxTKx1XfFnmdT/CDRV65IN/MiI4+sbskeYM8qMQouH69Bnw+i82JmoMpyHKrdqjDLdMyio8PKyUe9VgBO1U4Wy+rYMeotPBHr9nurDUV52jAwWWvJUgJnKpxy6qk+r3Jbz9TQtkJ1FTJW8yFtFxDAPjxkGT0zRPjdlBx04KTvJPFA2tzUKQCGgi2xQBPpa40XpgsdkZiP5PsuT2SYk1Z+ySdJAZvfdd5+9733vs/e85z1mZvbAAw/Yl770Jfvc5z5nd95556H0L3zhC2f+f+ELX7ATJ04cAk5ra2t27bXXHp3gHenIgVOG+p2iGaeizFlHZWWOJQJF2T3luLuAMJVGzVTxGr6qQUWaukQyVL2idP6tIk3KEbRAYVSGAi6j0Sh1EFgX5TCqTjGqM5cbpVezdeSh6qruV+WL+g7zzSIolXET9VtVflVfLHNUHssaObsIXGX9O4qItCYS2fhH3kqP3i/xpcgqooL5oyfIeGx4GT42/YRw/8Z9VCyPkhPLUMAFZWqBeowwmc2+1kmNtcgWR20c9beWz0GZVfQJeXAfxDLw+7jQ3tb2QvZ1729tm5nZ6dOnZ66vra3JiM/Ozo49/vjj9uEPf3h6bWlpyd74xjfaV77ylVKZDz74oP3Mz/yMnTx5cub6o48+aldffbVdeeWV9oY3vMH+9b/+1/ZDP/RDXau0MFroK1danVWliUKhmdFWywuZA6jIwb9b+yWUo47KUvVQFDk6N1T4CHGVlNHPZMP/XEc0znhoYZWn14VBHy9XuFNAg8WGmmfX2A5qL8lRUh/wpIidEOsKN8Byvq5ABB1nNmZa4ypyOpU6cjkqOsF14fwqKpONswhkRmUqJx8tb3IeJ9x8zVsMohP+2VmzQ1f1ZeA0Ho9nxoOPI9X+KJOXh7IhyKucF8dyIciLlugycKLqy9ej8hVF47VFkRzHgcbjsV177bX2+3f+/xbG83nPe55dd911M9fuueceu/feew+lfeqpp2x/f9+uueaamevXXHONfeMb32iW9dhjj9nXv/51e/DBB2euv/nNb7af+qmfsr/yV/6Kffvb37aPfOQj9hM/8RP2la98JTzy5Kjpkp4crq61gBb+ZuOl7nUtg9NzOZEMmbyZs1EyKaOpBja/TkWVqeqjZMLr0QyLr6k9TapuGbFD8LqhgXQHw2DK72PUER2RWoptUdX4Y9rMcCOAyJwr580AhQMmdKhmhx9HR4CFsvjvrC+gHlHGDMhUwI1KU3VSijeXg1GZap90GTL9R4AKy1bXW30Ode7y+34jbi/8jvohAjmPLDlwivb5YV2zZXbnraIwqEfFG9OpSU6mK+7zmDaaICg73RpfVbBf9VHPNK2vr9sf/dEfzewZmpeUHTuq/UUPPvigXX/99XbjjTfOXP+Zn/mZ6e/rr7/eXvWqV9mP/uiP2qOPPmp//+///SORpUWXbHN4ZIjUf76n0jvS5EHJPCMAU5G38qk46ooTcooGMT9Fh+kZRDq19nOxscxAU+tJnqx9s7oiOMJlFz4fBsGAagferF6hrg68xTcCUdV8ypBH7YdgJ5IRn7hsgabIsakyuA26zsIr4CnTAfehyis7uOzI6bdsRQT4uZxMFtWO3k7c7yOZsd2833uEyV/r4jYy2mSt+hbXA2XDcYiyRADE+WCkFOuLoLcy4cj0GYG5CjDydK1yqmmfSVpfX7f19fVnpOwXvehFtry8bE8++eTM9SeffLK5P+ncuXP2hS98wT7xiU80y/mRH/kRe9GLXmTf+ta3njHgNNdxBGrgsMGLDJFyvF0AjjL0Ubrovxp0XagF1JRslTJYn/MOfHaEkbOMQFNWF6XPihwZiFPls5OIHH+FqjrtQ9HMtg8pB8vgFTf/qsfWsz1plfbmdOzQMS/Ljf9bjocjLOp+lCbST7YPj9MrGfmjjoKIXpSrxkUkXwRcM305MMJjAXD5PNJ/NK5axHkq0eeu/QsjyK1+6tRl7FftcsWWKr6XO43HY7vhhhvskUcemV47ODiwRx55xH78x388zftf/st/se3tbfun//SfNsv5kz/5E/v+979vf+kv/aW5Ze5LvSNO88wMqoMpKhd5RgM/c/TZwGkZAWUQq3qIysD/0SGF+D/bcBmV26q7ilpV26RCKj8vx+F1tRxpFi85dQVPi6SW0+d7VSOPeVWd/T8ePoqEJ8qjjMo5+f9WBFVNjroAw5aOnF/FkUVyKzmRP+Zl/tmEJQIw0Z46r4tHgbg9uN9Er/aJyvSlOY8wRZFnbGNfFoz2ynE5Tj5WfT+iH2rJexGVfrmdXAe870vZNM+rIm6ZHeU00ZhTcipd+H3uKwPN0h133GG33Xabvfa1r7Ubb7zR7r//fjt37tz0Kbtbb73VXvziF9tnPvOZmXwPPvigvfWtbz204fvs2bP28Y9/3H76p3/arr32Wvv2t79t/+pf/St72cteZm9605suWb2Y5l6qUwBq3g7VGnz+nYGw6Jq6rvJV65uBM5Umy+vXohk1846MSGYkeEba0nUFPFWMEl9TyxCcLrqO31FE4agpcsocjVFtiUtCyklGdWc+/q3qjksh/h/L7TsGuNwKaOxCEXjCMqrjieVTdcL7CNazCBfzV1E4JYPSM0+ClHyKt9rDlI0XNd6iPqrkxnIdQHE7cVtEE6DITmM6/ERl8H/u39U+2dVeKB0OdIHe/va32/e+9z27++677YknnrBXv/rV9vDDD083jH/nO9855IO++c1v2u/8zu/Yb/7mbx7it7y8bF/72tfsP/7H/2h/8Rd/YT/8wz9s/+Af/AP75Cc/+Yye5dQZOM2zzNGlQ6uBpf7zLKtruJ4/Wdg8mvlHoIINTmWQcXmez0PyaKw9TaY/rL8bOy4rc5KVJZ6sHtU6M5iIXp/A36ptjxNFTgl/R6ApilKx/jna5t/Z2TvIp9WP2fGjfAw2uuiB69UCORGpukdRpOgeP3TRZYyxXqO0uBSFT5KaXQQkftQIvxEgG3sKHEcyYFmeJ+pznocBCerIwZE/uMJgazQ6/Doa3gzv/Ve9Osr1xq8RikAiPuTQF9xEY6EyVgYyu/322+3222+X9x599NFD117xileEY2xjY8N+4zd+Y5HiLYTmiji1QsoZVTtc5oCx42Zh5mrZVYcSyRLxVGCF/2cOFkEQh9rRsGX1jQxBS/aMsnp1Sa+ieFG9VBtF5WcAoAtVgT7L23VcZG0Z6ULpgPlUdKh4RdEzdqZO6Az79qlKfSPKQB//RzAVLZ11iaZl9eb+7GMZ+fNSGJev2kbJVx1HKl8L3DLIMpt9gjPSlepT0X2WvdqXseyWXVN557Ht1fIGeu7QwvY4ZcYlc9iVzhbtXxmNZp+uUzPvyDFksnJe3Ijr8mR5+1AE/DBahNfR4HM4XA1orAunZb54n/kr6gqa1D0u18GhMppd23ReypwK3q84HycFFrmu6Ng9D6ZXm+QrsmfjBGXN6qP2p5jNnvHD/VI5cOX0M8CgdKkokh2jSy3gpMaE4sdACGXGa2g/cGzhNwMnlAuv7e/v2+7urpld3A+kouyoC5crenJPjcMI6PD+RPWEHOqHX3KMdeN6si69jngvm1RVKLMdka/h38c92j3Q0dHcEadKtKPL9Shdy2h2GUTzzBAWNbto6Y3LYAepdI/GkT9sTJFnVJ/I2S2ClGPBOrBMLScf1aEaZZq3nhl4ahlWpWc1u1c8lT4UKIvysnwqbRZ5UnKh/Fl9Ix6VCE9ULvNQ39kn48HlYB0ZKHB6/lb7z/w+ju0MPFVBOl5TfRRBk2rjrP0jcMtld+n/aqxH9j0bMy1fsShbPtDlR8/YS36j2WBrZt+aKVR59hk0mbPysrKBHBnACvFMEvcAqQ3fo9HFPU3+9A3usVDpmXjmmOnxKKiLIW3xWFQ6s9ix89NByoFmzg7v4ZNvrHvlhNX1CEyoe9G1FjFgw2XkKnhiwmhGH/LIh9nhfV7qO4qodgXdWdtynbxNfU8TtzOe14Z8cT8R7/vByHgELJRc+L9qj9iuKeAelacAK46dKK/X3f+j/BitwnqzrYjGSGRjWjZ/oMuTFgqcqoamygepMvvoWnZrcHXhEc3knFrGNSsX5fSnaZwnAxvUERvSytENLGMLOM1LDCgyg1xpp8jhRrIrcBsB4Uz+yrUM/KiyKv0hu6Z02uLNMmX/kVQEI6tP5iBV9CGSMQOHreiSmsh06VNR2lb6LLqiNkFz3RSQjhy8kqFVT9UmLAvz4npk0Z9W38N+FgEcvq/+qzpk91r2ucJroMuDFgKcqk5VOXe+lzkXdP5qBhAZI8+nDm1TA4+BRzQgI9CUDfZIX9FMif/7oXf+5nKlO0yLjy1zGSwTl4sG1mfo/mTfURqPFnhq5c14RukzMJLxakVV+H/UJzLnFMlSARfzRAk5f9WxtMpRbZuV2+Kv7Ag+laYiTJG9UUBlHiCAfFTbel7cM6YADMvuedBW4TiPAFCk+y4TDrZ7eA0j4urJWE6L50lxVI5tkYroqv1Qnl4B/a79V324PY9qUjnQ8aWFnuN0lBEJ/B05pAw8qfyZQ86MoUofze75WxnmiH8Gosxs5pUK+I3AKQKAkTFpgb6MKjpsgYyqHi8ltfp1FolRFNUlmvFXePQFlJVyVP8wiyMQmE4Bkww0eZ6oL1Xr3SXaxPVQ/1syR/aA/1fGf8QT6+X3eXxnUeVWW0RgKmrTDDwyyIjqlaXD+0q+vnY8kknlb1GX9hzouUO9gBMPXmWM/B5SpWNWjAkaCV7Pj8pogaYIfEX3ulBr8EbGIAM9HnlCXmzQ8IC8CDQpo4X3o5PMK1GDPoT55jmLpUKZI2SZUEesk6zPRk6iWh/lcLvyqIIxLHOe9mvZhKpDVpGE1jhUT3VFgInr3DW6wvKoBzB4UsOONrKZGElZWlqy/f39qc78N06MlpYOnyAeAUMsS41jbD91wvhoNPuUHMqNaSJbik/I4ROBOPFD3rgPi5/UVAeIRnZb9R3kkdlI/I96PQq7NNDxp14HYHInQuOyiLBlF0cZDc4oLX63+FbK7BptqPDM5Izqms1EFU82koq/iiZW2kYBwShNZZbbpd26UIVfNXKQRWWUU0EekRxcVgZW5xlzEb8u+u4CBKM6tMYcp+G+qyJJVdDUlSpOOSo76zuqvgpkms0u7+N4b42naqSJy8P7eC9qS/xEZXH9Ij2rBwaULYzuZ7w5byaP0sUQabr8aOF7nLJO1OpkLeCVGRhVRlfnUgVsWYRGpUOjwXrqeiYUGzX/rc5nqoCmVrlch0jeltxd03dxqq28884MFYBpOb++5VXKagGzrlQBwtHYU/VuyRTdz3hFfRrztgAS5lN6blHFAbfkyUCU4jUaXYjQeHTJf2N6fJGzGjeuQ44SefldQRPqMGpLBjxms1E3rmP0RCoDLgWO8B6ftdc3ap0B4y7AaqDnJh3JcQQt49WXJ/JGygBANmBaMxKVPjIykQHiGZ8CdmoGxpQ5o8yxVEBTBFKymaSqSxdAFlFWtkrbpY+x0+xCkePDayhTq29x38nKimTJ+C+aKn0y0kGFMl6tvtVlooXyZRSNCTVW1ZiNQJOSrWUP8I0B/lH6wUmNsj/KHrEuuB7Mk2VXvFAefMMB1q8P4Fegie9FH86Tld2nfwx0edHce5zwmnpaRc28OIrBfJVjwm9FFScbAQsFBpTBw9lQlD8z7K6jirxM6mnC7PyeLqAMKQNUEb9oRncpjEvLyGUGumW8+YRlnjkjH5eli75bsnWRVdE8QLFSVqb7vqDW7HBdIyeo+EfjUP2PdBxNFtSYV7JFdjCSWdUHxzjyUrJwtMnTRad4V8ZLq/3VAZ6TSfxUoMtaIQRdrBfWj9cTr2FZqt/0pUXxGejZTwuLOKlZcgaEIqDSmj32AU9qMKk8WVQB5c6cRUYcmeC8LYMcXePvFnCKZpgZ+Ktcj4BWNqPt69S5P3B/Uo5YOeSIWsA/a0clb1aOGgsog+KR3avKVSEGX+q/0oVqg4osCiB2cVjcF5XzVrJz+REAbo3RyA7ydxVYqnJ5WV4t01VsKpOa0Eb9TrUHTyAyOxaVz/2kAr7YrnXp+xVgpUBrH7s10HOHem0Oj673+Xgn5A/PlpgqHb0lM99TBhB/Z0Yjki/KqwxKxCPKx3K3QBPXy//3dapV6sq/YphUHaO6YNqs/7YMbAu8R862KymQF6U76rbDsvh/axJTGS+VNFFbZ/yyvChfl7Gsxh2CFgWaIvkiYKPAEeflpbroCAJ8f5ziVdEnkgIOXfP5f/9ugbSoj2cAiikbr0r/Aw3UooW95NevIfDhkHX10wJNTso4qxm8388GlnLAi5hVRNGDbEaGabBuEWWg6Zk0BH3KroCcLuVVHX4FNFWB/Dw6R2fSAiZdefaRZR7+87R/hargCflmwEq1bzTRYdAU8UfeKB/bOid+9Qimd17RHqeozqp9Wn0iApXq8f8Wob74eINs3LCM6r5Km+kkIgZwEahUPm+gy49673HCb//dAkF9wZOKkuBHAQfMF83uIqoMODZsWA6DOAWa+pAy4krerk6VKXIeKk1UFs8mo98t2VR7RbNlNp5Kxj5gLOKjQGoVvEbXuugm4tOqR4VvV4ocCgPBSIecLysn4h3Jz8CX86tryokiAGDg1NJLZIuy+vIeO+enluq47gpIsL1WbYH2NKqDsmHKHqIcrEO8pgAVpmWwyHVlqkxuIloEcB/ouU+9z3FSA88BD378WvRyRwRIPniiiFMGhhg8sWHqMktqgZvIuXE9Krwr/6PvDDxVqK+TzAxwxD/63YcyoBgZfNRTl36g6heBoy7AqVWmyqfAWhdq1X3edmmVq/SI47MLP8/TApt+XR2uiPbJ/2Me/M1O3F9xwnYN0zqhnBlwYvuFcvt/dVYTktKF2rDNfaHSZ1tgimXgMYfffOAlbzZnffhH2VYF9uaZrLbSKr83gKjLi+aOOEXgiX9zBIlD1MwjMzKcTzmtjGdEaqC2BlE2c1P8PY16dJj/4yPImD8ybi1wUr3WlTIw3dUIqXyRQazw9/wtnsoRqH7Gafg7a6NKX2rVo889TteauVflzIBYpKssfRS1iEg5ZAUuI75+Dd8Tp2T2dvWzlPhVRkoe9dQZUtSH8H4Erpx4HxQ++q/6LtsV3k6h5FI6z/6r9ojSR+2l+o6nRVvocmf2QZWtfFaLBoA0ENLce5wi8LS/vz8TecIZBv6PIlFdQROHrx2c4Ysmu3R6NIwRiIocdzZ4ccaE+mP+/ILMKpCrGrwsbZUyo1jlz4YzAzicpmW0q9fVPUUsp/+ODP8iQOlR0CLlysDTUfKK2jeKrpgdPoCRy1SPv6MdWFlZmVmew03hCFqQr1pu43pwX+YJJtYB+ywfQaB0iR/UEW4Y5/K4/i1go8pVAL01vtVhmcybeaGOuD6K+vR91R4DXd5UBk4KfESzCh6E/BtBDaaf9xMNimi21yKVjw1YZjzwf5XUjC8CixnfVvkZOKnwbM3sWqAqy99qnxY4jACc+s7kUGkikJWBpr5AJZKH77X6W1d9dgVCmSNVPJWs2O8zgNHin02weLLG+VWbIUDJJlIIZjIbpeql6qK2KyAAVMCQ02V22T/7+/sz5WG5qq7zgu6++TPbjm2udNzqe3yP03P7dR0fAz33aKFP1ZldHNQ4MPf396f3zMz29/dnZj0+eP1VAmqflLquwBzK59+q07c6PwOyyOkqg4Izk+hAuMjoZfI809TSM9Nxjbg49QUI3Jb8zrBFyBTJpsYdX2OAXynzUrVVn37cZUIU8ce2UTYBxywDBt4Mzktkzhcf/2eQokCQakfMh3kQlDEPtTlc8XU7u7e3N2ObUUa01cibv5U9jCZMERiO5MwmXaqvcx71uwVGlX+I7F1rsjXQc5/mOgBTdS40Fv4Wbx+Me3t7h/YT8GzON10qsLS8vDwd7A609vf3p99s8Eaj0bTMvb09W15ettXV1emmTnzHk/9XPCIDhQYzy8d5RqPD+yT8PxpKNtb4UYaU5WNwFs1MmaqOiq9F9Y2oZXQyg7lIqoDoLB237SJkicpU/CvtmtWxJXPXiJSyCVneCEC0ZFSTo1Y+nIhherXnkm1UtLeJy3fbxxGdSAfs3FEetgdoc1ZWVmbsEvPkKBLKhL8xHUec2KZET/AhQOIPR7X8P3/zqgTKxnrzyTnyODg4sO3t7Znv3d1d29/ft62tLdvb27Pt7W3b29ub6mB/f38GSKLv2t3dnfJwwMltaWaH5BzouU9zRZz42wcODkTv2EtLS1Nw4wOev1dXV21pacnOnz8/BTkrKyvTz/Ly8vTjaf17PB7LgY7pML/aqxCF4rNr0e/Whm4uE4GT60vJqGRR/LGdVDqm1vXMKLTKOCrAswhqOfIWaOL0i6prVK6SI4qARDwraav3W2VU5OdyGGi16sOgiScMmawqH8qEYzmKLPKWA97ficSbxtVxLciLSdkMHvsMBlWkiUEVypPpMJocIJhkAMVl8UpDBBbVqgPKocDYzs6OHRwcTL8d/Ozs7EzBkAKODHIVYPJvBJaTycS2t7en5Qx0edDcr1xRhk3NwHyGgGd2+Dcv3eF1HKg8A3ND5kAoivJ4Ot6s3gJNEXiK/vP1CDSpcn2Z0utXBU3Rd9RGqEtlFDNH1YWYl/9X9zJHF8nTR07O0wJD7MCjdNn/eeTqAjqUvlW+Vrvzd8RL9ZWKvJEsyoa0KAJOEUVtmuVV4w/lZVuHjpdBCYMOdPgV0OTlukxKLuTNkSQGDFG5bGdV+ZGemNQ+19Y3ylIFTp7Oo0kOEvHbr6toIC9Zqu0iDOwq7TXQc5NGk6HFBxpooIEGGmiggUp0eIow0EADDTTQQAMNNJCkATgNNNBAAw000EADFWkATgMNNNBAAw000EBFGoDTQAMNNNBAAw00UJEG4DTQQAMNNNBAAw1UpAE4DTTQQAMNNNBAAxVpAE4DDTTQQAMNNNBARRqA00ADDTTQQAMNNFCRBuA00EADDTTQQAMNVKT/P/1bO6AtkxMPAAAAAElFTkSuQmCC\n" }, "metadata": {} } diff --git a/tutorials/cardiac-hemodynamics-assesment/remap_model_parameters.py b/tutorials/cardiac-hemodynamics-assesment/remap_model_parameters.py deleted file mode 100644 index a407dfe..0000000 --- a/tutorials/cardiac-hemodynamics-assesment/remap_model_parameters.py +++ /dev/null @@ -1,18 +0,0 @@ -# Remap model parameters from the pre-trained checkpoints to adjust with new parameter name. - - -def remap_state_dict_keys(state_dict): - mapping = [ - ("ecg_encoder.", "signal_encoder."), - ("ecg_decoder.", "signal_decoder."), - ("fc_logvar", "fc_log_var"), - ("signal_encoder.fc_logvar.weight", "signal_encoder.fc_log_var.weight"), - ("signal_encoder.fc_logvar.bias", "signal_encoder.fc_log_var.bias"), - ] - new_state_dict = {} - for k, v in state_dict.items(): - for old, new in mapping: - if old in k: - k = k.replace(old, new) - new_state_dict[k] = v - return new_state_dict