From dcf93a4c214c044854dbd6a89295bfd71ec94926 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 00:15:42 +0100
Subject: [PATCH 01/44] cast site to numpy
---
tutorials/brain-disorder-diagnosis/preprocess.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/preprocess.py b/tutorials/brain-disorder-diagnosis/preprocess.py
index 21ef6f4..2c02204 100644
--- a/tutorials/brain-disorder-diagnosis/preprocess.py
+++ b/tutorials/brain-disorder-diagnosis/preprocess.py
@@ -114,7 +114,7 @@ def process_phenotypic_data(data, standardize=False):
# Separate the class labels, sites, and phenotypes
labels = data["DX_GROUP"].map({"CONTROL": 0, "ASD": 1})
- sites = data["SITE_ID"]
+ sites = data["SITE_ID"].to_numpy()
phenotypes = data.drop(columns=["DX_GROUP"])
# One-hot encode categorical valued phenotypes
phenotypes = pd.get_dummies(phenotypes)
From f0d92aa8ae28b0edad51e5a9d71bf928b11d9951 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 00:20:39 +0100
Subject: [PATCH 02/44] add num_solver_iter and rename extension
---
tutorials/brain-disorder-diagnosis/experiments/base.yaml | 2 --
tutorials/brain-disorder-diagnosis/experiments/base.yml | 5 +++++
2 files changed, 5 insertions(+), 2 deletions(-)
delete mode 100644 tutorials/brain-disorder-diagnosis/experiments/base.yaml
create mode 100644 tutorials/brain-disorder-diagnosis/experiments/base.yml
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yaml b/tutorials/brain-disorder-diagnosis/experiments/base.yaml
deleted file mode 100644
index 79be874..0000000
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yaml
+++ /dev/null
@@ -1,2 +0,0 @@
-DATASET:
- ATLAS: aal
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
new file mode 100644
index 0000000..1952e90
--- /dev/null
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -0,0 +1,5 @@
+DATASET:
+ ATLAS: aal
+
+TRAINER:
+ NUM_SOLVER_ITER: 100
From 7047c23d27ef788fdef2b5bb9013f635c9936e56 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 00:23:45 +0100
Subject: [PATCH 03/44] update notebook objectives and trainer imports
---
.../brain-disorder-diagnosis/notebook.ipynb | 87 ++++++++++---------
1 file changed, 46 insertions(+), 41 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index b8285e5..4c8ad5d 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -3,7 +3,7 @@
"nbformat_minor": 5,
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "embc25",
"language": "python",
"name": "python3"
}
@@ -12,7 +12,6 @@
{
"metadata": {},
"source": [
- " #%% md\n",
"# Brain Disorder Diagnosis\n",
"\n",
"In this tutorial, we demonstrate how to leverage **patient phenotypic information** to reduce **site-specific biases** in functional connectivity data using **domain adaptation**, with the goal of improving **multi-site autism classification**.\n",
@@ -26,12 +25,12 @@
"**Objectives**\n",
"\n",
"1.\t**Load** the ABIDE dataset using different preprocessing pipelines and brain atlases.\n",
- "2.\t**Extract** functional connectivity features from ROI-based time series.\n",
- "3.\t**Preprocess** phenotypic variables for use in domain adaptation, and obtain class labels (ASD vs CONTROL) and site labels.\n",
- "4.\t**Build** a training and evaluation pipeline to assess classification performance under various domain adaptation strategies.\n",
+ "2.\t**Preprocess** phenotypic variables for use in domain adaptation, and obtain class labels (ASD vs CONTROL) and site labels.\n",
+ "3.\t**Extract** functional connectivity **embedding** from ROI-based time series.\n",
+ "4.\t**Build** a **training** and **evaluation** pipeline to assess classification performance under various domain adaptation strategies.\n",
"5.\t**Interpret** the learned model by extracting weights for pairwise ROI feature importance and visualizing them using a connectome plot."
],
- "cell_type": "raw"
+ "cell_type": "markdown"
},
{
"metadata": {
@@ -73,11 +72,15 @@
"source": [
"## Packages\n",
"\n",
- "The main packages required for this tutorial are PyKale and Nilearn.\n",
+ "The main packages required for this tutorial are `pykale`, `nilearn`, `pandas`, and `yacs`.\n",
+ "\n",
+ "`pykale` is an open-source interdisciplinary machine learning library developed at the University of Sheffield, with a focus on applications in biomedical and scientific domains.\n",
"\n",
- "**PyKale** is an open-source interdisciplinary machine learning library developed at the University of Sheffield, with a focus on applications in biomedical and scientific domains.\n",
+ "`nilearn` is a Python library for neuroimaging analysis, widely used for processing and visualizing functional MRI (fMRI) data.\n",
"\n",
- "**Nilearn** is a Python library for neuroimaging analysis, widely used for processing and visualizing functional MRI (fMRI) data."
+ "`pandas` is a popular data wrangling library.\n",
+ "\n",
+ "`yacs` is a configuration management used to store experiment settings."
],
"cell_type": "markdown"
},
@@ -88,9 +91,9 @@
]
},
"source": [
- "!pip install --quiet git+https://github.com/pykale/pykale@main nilearn \\\n",
- " && echo \"PyKale and Nilearn installed successfully \u2705\" \\\n",
- " || echo \"Failed to install PyKale and Nilearn \u274c\""
+ "!pip install --quiet git+https://github.com/pykale/pykale@main nilearn pandas yacs \\\n",
+ " && echo \"pykale, nilearn, pandas, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, nilearn, pandas, and yacs \u274c\""
],
"cell_type": "code",
"outputs": [
@@ -98,7 +101,7 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "PyKale and Nilearn installed successfully \u2705\n"
+ "pykale, nilearn, pandas, and yacs installed successfully \u2705\n"
]
}
],
@@ -123,7 +126,7 @@
"from config import get_cfg_defaults\n",
"\n",
"cfg = get_cfg_defaults()\n",
- "cfg.merge_from_file(\"experiments/base.yaml\")\n",
+ "cfg.merge_from_file(\"experiments/base.yml\")\n",
"cfg.freeze()\n",
"print(cfg)"
],
@@ -152,7 +155,7 @@
" CLASSIFIER: lr\n",
" NONLINEAR: False\n",
" NUM_SEARCH_ITER: 100\n",
- " NUM_SOLVER_ITER: 1000000\n",
+ " NUM_SOLVER_ITER: 100\n",
" N_JOBS: -4\n",
" REFIT: accuracy\n",
" SCORING: ['accuracy', 'roc_auc']\n",
@@ -187,7 +190,6 @@
"source": [
"from nilearn.datasets import fetch_abide_pcp\n",
"\n",
- "\n",
"# Fetch the preprocessed ABIDE dataset using the specified preprocessing options\n",
"# This returns a dictionary containing region-wise time series and associated metadata\n",
"dataset = fetch_abide_pcp(\n",
@@ -262,9 +264,6 @@
"source": [
"from preprocess import process_phenotypic_data\n",
"\n",
- "# Standardize continuous phenotypes (e.g., age, FIQ) within each site\n",
- "standardize = \"site\"\n",
- "\n",
"# Process the phenotypic metadata from the ABIDE dataset\n",
"# This function handles:\n",
"# - Imputation of missing values (e.g., assuming right-handed for missing handedness)\n",
@@ -275,7 +274,9 @@
"# - `labels`: Binary class labels (0 = control, 1 = ASD)\n",
"# - `sites`: Site identifiers for domain adaptation\n",
"# - `phenotypes`: Feature matrix containing encoded and standardized phenotypic variables\n",
- "labels, sites, phenotypes = process_phenotypic_data(dataset[\"phenotypic\"], standardize)"
+ "labels, sites, phenotypes = process_phenotypic_data(\n",
+ " dataset[\"phenotypic\"], cfg.PHENOTYPE.STANDARDIZE\n",
+ ")"
],
"cell_type": "code",
"outputs": [],
@@ -286,13 +287,13 @@
"tags": []
},
"source": [
- "## Feature Extraction\n",
+ "## Embedding Extraction\n",
"\n",
"Functional MRI (fMRI) time series data often vary in temporal length. However, many machine learning models, including those used in this study require fixed-size input. To address this, a common approach in fMRI analysis is to compute the functional connectivity (e.g., correlation) between regions of interest (ROIs), resulting in a fixed-size feature representation.\n",
"\n",
"Specifically, we compute a connectivity matrix for each subject, and extract the upper or lower triangular part (excluding the diagonal) to obtain a feature vector suitable for model training.\n",
"\n",
- "The available arguments for feature extraction are:\n",
+ "The available arguments for embedding extraction are:\n",
"- `measures`: A sequence of connectivity transformations applied to the ROI time series. Supported options include: `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, and `\"precision\"`. Default: `[\"pearson\"]`.\n",
"\n",
"Multiple transformations can be chained to compute composite connectivity representations. For example, the **Tangent-Pearson** method proposed by *Kunda et al.* can be specified via `measures = [\"tangent\", \"pearson\"]`. This design also allows for future extensions to support higher-order connectivity features.\n",
@@ -349,7 +350,6 @@
"source": [
"from sklearn.utils.validation import check_random_state\n",
"\n",
- "\n",
"# Convert the seed into a numpy-compatible RandomState instance\n",
"# This ensures consistent behavior across scikit-learn functions that rely on randomness\n",
"random_state = check_random_state(cfg.RANDOM_STATE)"
@@ -431,8 +431,7 @@
},
"source": [
"from sklearn.base import clone\n",
- "from kale.pipeline.mida_trainer import AutoMIDAClassificationTrainer as Trainer\n",
- "\n",
+ "from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
"\n",
"# Configuration with cv included\n",
"trainer_cfg = {k.lower(): v for k, v in cfg.TRAINER.items()}\n",
@@ -460,11 +459,11 @@
"tags": []
},
"source": [
- "# Cross-Validation\n",
+ "# Training\n",
"\n",
"We train each model configuration using the previously defined cross-validation strategy. The training process involves fitting the model on functional connectivity features and evaluating its performance using multiple scoring metrics (e.g., accuracy, F1-score, AUROC).\n",
"\n",
- "For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of feature representations. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
+ "For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of embedding. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
],
"cell_type": "markdown"
},
@@ -473,7 +472,6 @@
"tags": []
},
"source": [
- "from sklearn.preprocessing import LabelBinarizer\n",
"import pandas as pd\n",
"from tqdm import tqdm\n",
"\n",
@@ -484,9 +482,9 @@
"for model in (pbar := tqdm(trainers)):\n",
" args = clone(fit_args, safe=False)\n",
" if model == \"site_only\":\n",
- " args[\"factors\"] = LabelBinarizer().fit_transform(sites)\n",
- " elif model == \"all_phenotypes\":\n",
- " args[\"factors\"] = phenotypes\n",
+ " args[\"group_labels\"] = sites\n",
+ " if model == \"all_phenotypes\":\n",
+ " args[\"group_labels\"] = phenotypes\n",
"\n",
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
@@ -498,7 +496,14 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [40:08<00:00, 802.99s/it]\n"
+ "Fitting baseline model: 0%| | 0/3 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [08:17<00:00, 165.94s/it]\n"
]
}
],
@@ -572,13 +577,13 @@
" \n",
"
\n",
"
Site Only
\n",
- "
0.6692 \u00b1 0.1000
\n",
- "
0.7057 \u00b1 0.0944
\n",
+ "
0.6699 \u00b1 0.0929
\n",
+ "
0.7098 \u00b1 0.1025
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6638 \u00b1 0.0769
\n",
- "
0.7140 \u00b1 0.0871
\n",
+ "
0.6583 \u00b1 0.0900
\n",
+ "
0.7059 \u00b1 0.0998
\n",
"
\n",
" \n",
"\n",
@@ -588,8 +593,8 @@
" Accuracy AUROC\n",
"Model \n",
"Baseline 0.6658 \u00b1 0.0852 0.7157 \u00b1 0.1028\n",
- "Site Only 0.6692 \u00b1 0.1000 0.7057 \u00b1 0.0944\n",
- "All Phenotypes 0.6638 \u00b1 0.0769 0.7140 \u00b1 0.0871"
+ "Site Only 0.6699 \u00b1 0.0929 0.7098 \u00b1 0.1025\n",
+ "All Phenotypes 0.6583 \u00b1 0.0900 0.7059 \u00b1 0.0998"
]
},
"metadata": {}
@@ -635,9 +640,9 @@
" trainers[\"baseline\"].coef_.ravel(),\n",
" labels,\n",
" coords,\n",
- " 0.002,\n",
+ " 0.002, # Take top 0.2% of connections\n",
" legend_params={\n",
- " \"bbox_to_anchor\": (2.75, -0.1),\n",
+ " \"bbox_to_anchor\": (2.75, -0.1), # Align legend outside the plot\n",
" \"ncol\": 2,\n",
" },\n",
")\n",
@@ -658,7 +663,7 @@
"output_type": "display_data",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {}
From 092bf9dc59b9e0c63580adfaa0afb766af7b8815 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 08:32:36 +0100
Subject: [PATCH 04/44] update base exp yaml
---
tutorials/brain-disorder-diagnosis/experiments/base.yml | 1 +
1 file changed, 1 insertion(+)
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 1952e90..26e5ec5 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -2,4 +2,5 @@ DATASET:
ATLAS: aal
TRAINER:
+ NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
From 448c359efb59ebcce9a36dbb3b0e33ee0606789b Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 11:11:06 +0100
Subject: [PATCH 05/44] use skf by default
---
tutorials/brain-disorder-diagnosis/config.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index caadcd6..2ada3f1 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -28,9 +28,9 @@
# Cross-validation configuration
_C.CROSS_VALIDATION = CfgNode()
# Cross-validation split method (e.g., leave-p-groups-out)
-_C.CROSS_VALIDATION.SPLIT = "lpgo"
+_C.CROSS_VALIDATION.SPLIT = "skf"
# Number of folds for cross-validation
-_C.CROSS_VALIDATION.NUM_FOLDS = 1
+_C.CROSS_VALIDATION.NUM_FOLDS = 10
# Number of repeats for cross-validation
_C.CROSS_VALIDATION.NUM_REPEATS = 1
@@ -53,7 +53,7 @@
# Number of parallel jobs (-1: all CPUs, -4: all but 4 CPUs)
_C.TRAINER.N_JOBS = -4
# Verbosity level
-_C.TRAINER.VERBOSE = 1
+_C.TRAINER.VERBOSE = 0
# Random state for reproducibility
# Seed for random number generators
From 1e32ba21857c74054cbc6069c1325ac48d5c2691 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 11:13:31 +0100
Subject: [PATCH 06/44] add handle for google colab runtime
---
.../brain-disorder-diagnosis/notebook.ipynb | 26 +++++++++++++++----
1 file changed, 21 insertions(+), 5 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 4c8ad5d..d49e6a6 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -44,7 +44,9 @@
"Moreover, we provide helper functions that can be inspected directly in the `.py` files located in the notebook\u2019s current directory. The three additional helper scripts are:\n",
"- `config.py`: Defines the base configuration settings, which can be overridden using a custom `.yml` file.\n",
"- `parsing.py`: Contains utilities to compile evaluation results from the training process.\n",
- "- `preprocess.py`: Handles phenotype preprocessing (e.g., imputing missing values and encoding categorical variables) and feature extraction from the fMRI time series."
+ "- `preprocess.py`: Handles phenotype preprocessing (e.g., imputing missing values and encoding categorical variables) and feature extraction from the fMRI time series.\n",
+ "\n",
+ "For Google Colab, these helper scripts are found in `embc-mmai25/tutorials/brain-disorder-diagnosis`."
],
"cell_type": "markdown"
},
@@ -59,7 +61,20 @@
"import warnings\n",
"\n",
"warnings.filterwarnings(\"ignore\")\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\"\n",
+ "\n",
+ "# Test if running in Colab\n",
+ "data_dir = None\n",
+ "if \"google.colab\" in str(get_ipython()):\n",
+ " from google.colab import drive\n",
+ "\n",
+ " mount_dir = os.path.join(\"/content\", \"drive\")\n",
+ " drive.mount(mount_dir)\n",
+ " # Assign it to your dataset's location\n",
+ " data_dir = os.path.join(mount_dir, \"MyDrive\", \"data\")\n",
+ " %cd /content\n",
+ " !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
+ " %cd /content/embc-mmai25/tutorials/brain-disorder-diagnosis"
],
"cell_type": "code",
"outputs": [],
@@ -91,9 +106,10 @@
]
},
"source": [
- "!pip install --quiet git+https://github.com/pykale/pykale@main nilearn pandas yacs \\\n",
- " && echo \"pykale, nilearn, pandas, and yacs installed successfully \u2705\" \\\n",
- " || echo \"Failed to install pykale, nilearn, pandas, and yacs \u274c\""
+ "!pip install --quiet git+https://github.com/pykale/pykale@main \\\n",
+ " nilearn==0.11.1 yacs==0.1.8 \\\n",
+ " && echo \"pykale, nilearn, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, nilearn, and yacs \u274c\""
],
"cell_type": "code",
"outputs": [
From cf9e37089140c57693b0cf39fef01d1392502f26 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Thu, 5 Jun 2025 11:24:01 +0100
Subject: [PATCH 07/44] update output
---
.../brain-disorder-diagnosis/notebook.ipynb | 40 ++++++++-----------
1 file changed, 17 insertions(+), 23 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index d49e6a6..ee9039d 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -117,7 +117,7 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "pykale, nilearn, pandas, and yacs installed successfully \u2705\n"
+ "pykale, nilearn, and yacs installed successfully \u2705\n"
]
}
],
@@ -155,9 +155,9 @@
"CONNECTIVITY:\n",
" MEASURES: ['pearson']\n",
"CROSS_VALIDATION:\n",
- " NUM_FOLDS: 1\n",
+ " NUM_FOLDS: 10\n",
" NUM_REPEATS: 1\n",
- " SPLIT: lpgo\n",
+ " SPLIT: skf\n",
"DATASET:\n",
" ATLAS: aal\n",
" BANDPASS: False\n",
@@ -170,13 +170,13 @@
"TRAINER:\n",
" CLASSIFIER: lr\n",
" NONLINEAR: False\n",
- " NUM_SEARCH_ITER: 100\n",
+ " NUM_SEARCH_ITER: 50\n",
" NUM_SOLVER_ITER: 100\n",
" N_JOBS: -4\n",
" REFIT: accuracy\n",
" SCORING: ['accuracy', 'roc_auc']\n",
" SEARCH_STRATEGY: random\n",
- " VERBOSE: 1\n"
+ " VERBOSE: 0\n"
]
}
],
@@ -209,6 +209,7 @@
"# Fetch the preprocessed ABIDE dataset using the specified preprocessing options\n",
"# This returns a dictionary containing region-wise time series and associated metadata\n",
"dataset = fetch_abide_pcp(\n",
+ " data_dir=data_dir,\n",
" # Select the atlas-specific ROI time series (e.g., 'rois_aal')\n",
" derivatives=[f\"rois_{cfg.DATASET.ATLAS}\"],\n",
" # Whether to apply band-pass filtering\n",
@@ -512,14 +513,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting baseline model: 0%| | 0/3 [00:00, ?it/s]"
- ]
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [08:17<00:00, 165.94s/it]\n"
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [02:14<00:00, 44.96s/it]\n"
]
}
],
@@ -588,18 +582,18 @@
" \n",
"
\n",
"
Baseline
\n",
- "
0.6658 \u00b1 0.0852
\n",
- "
0.7157 \u00b1 0.1028
\n",
+ "
0.6736 \u00b1 0.0489
\n",
+ "
0.7329 \u00b1 0.0480
\n",
"
\n",
"
\n",
"
Site Only
\n",
- "
0.6699 \u00b1 0.0929
\n",
- "
0.7098 \u00b1 0.1025
\n",
+ "
0.6860 \u00b1 0.0304
\n",
+ "
0.7307 \u00b1 0.0273
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6583 \u00b1 0.0900
\n",
- "
0.7059 \u00b1 0.0998
\n",
+ "
0.6794 \u00b1 0.0554
\n",
+ "
0.7319 \u00b1 0.0517
\n",
"
\n",
" \n",
"\n",
@@ -608,9 +602,9 @@
"text/plain": [
" Accuracy AUROC\n",
"Model \n",
- "Baseline 0.6658 \u00b1 0.0852 0.7157 \u00b1 0.1028\n",
- "Site Only 0.6699 \u00b1 0.0929 0.7098 \u00b1 0.1025\n",
- "All Phenotypes 0.6583 \u00b1 0.0900 0.7059 \u00b1 0.0998"
+ "Baseline 0.6736 \u00b1 0.0489 0.7329 \u00b1 0.0480\n",
+ "Site Only 0.6860 \u00b1 0.0304 0.7307 \u00b1 0.0273\n",
+ "All Phenotypes 0.6794 \u00b1 0.0554 0.7319 \u00b1 0.0517"
]
},
"metadata": {}
@@ -679,7 +673,7 @@
"output_type": "display_data",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {}
From bff672bf642178bc4d296804ccd1f0095b258426 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 01:30:36 +0100
Subject: [PATCH 08/44] reduce preprocess_phenotypic_data functionality and use
polars to replace pandas
---
.../brain-disorder-diagnosis/preprocess.py | 186 ++++++++----------
1 file changed, 79 insertions(+), 107 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/preprocess.py b/tutorials/brain-disorder-diagnosis/preprocess.py
index 2c02204..226014d 100644
--- a/tutorials/brain-disorder-diagnosis/preprocess.py
+++ b/tutorials/brain-disorder-diagnosis/preprocess.py
@@ -1,123 +1,95 @@
-import logging
-
import numpy as np
-import pandas as pd
-from nilearn.connectome import ConnectivityMeasure
+import polars as pl
from sklearn.preprocessing import StandardScaler
-from sklearn.utils._param_validation import (
- Integral,
- Interval,
- StrOptions,
- validate_params,
-)
+from sklearn.utils._param_validation import StrOptions, validate_params
-SELECTED_PHENOTYPES = [
- "SUB_ID",
- "SITE_ID",
- "SEX",
- "AGE_AT_SCAN",
- "FIQ",
- "HANDEDNESS_CATEGORY",
- "EYE_STATUS_AT_SCAN",
- "DX_GROUP",
-]
-
-MAPPING = {
- "SEX": {1: "MALE", 2: "FEMALE"},
- "HANDEDNESS_CATEGORY": {
- "L": "LEFT",
- "R": "RIGHT",
- "Mixed": "AMBIDEXTROUS",
- "Ambi": "AMBIDEXTROUS",
- "L->R": "AMBIDEXTROUS",
- "R->L": "AMBIDEXTROUS",
- "-9999": "LEFT",
- np.nan: "LEFT",
- },
- "EYE_STATUS_AT_SCAN": {1: "OPEN", 2: "CLOSED"},
- "DX_GROUP": {1: "ASD", 2: "CONTROL"},
-}
+__all__ = ["preprocess_phenotypic_data", "extract_functional_connectivity"]
-AVAILABLE_FC_MEASURES = {
- "pearson": "correlation",
- "partial": "partial correlation",
- "tangent": "tangent",
- "covariance": "covariance",
- "precision": "precision",
-}
+CATEGORICAL_PHENOTYPES = ["SITE_ID", "SEX", "HANDEDNESS_CATEGORY", "EYE_STATUS_AT_SCAN"]
+CONTINUOUS_PHENOTYPES = ["AGE_AT_SCAN", "FIQ"]
@validate_params(
- {"data": [pd.DataFrame], "standardize": [StrOptions({"site", "all"}), "boolean"]},
+ {
+ "data": [pl.DataFrame],
+ "standardize": [StrOptions({"site", "all"}), "boolean"],
+ },
prefer_skip_nested_validation=False,
)
-def process_phenotypic_data(data, standardize=False):
- """Process phenotypic data to impute missing values and and encode categorical
- variables including sex, handedness, eye status at scan, and diagnostic group.
+def preprocess_phenotypic_data(data, standardize=False):
+ """
+ Preprocess phenotypic data by encoding labels, one-hot encoding categorical variables,
+ and optionally standardizing continuous variables.
Parameters
----------
- data : pd.DataFrame of shape (n_subjects, n_phenotypes)
- The phenotypes data to be processed.
-
- standardize: boolean or str of ("site", "all")
- Standardize FIQ and age. The default is 0.
- Setting to True or "all" standardizes the
- values over all subjects while "site"
- standardizes according to the site.
-
- verbose : int, optional
- The verbosity level. The default is 0.
- verbose > 0 will log the current processing step.
+ data : pl.DataFrame
+ The input phenotypic dataframe containing both labels and covariates.
+ standardize : {'site', 'all', True, False}, optional
+ Strategy for standardizing continuous variables:
+ - 'site': standardize AGE_AT_SCAN and FIQ within each site.
+ - 'all' or True: standardize AGE_AT_SCAN and FIQ across all subjects.
+ - False (default): no standardization applied.
Returns
-------
- labels : pd.Series of shape (n_subjects)
- The encoded classification group. 0 is "CONTROL" and
- 1 is "ASD"
-
- phenotypes : pd.DataFrame of shape (n_subjects, n_selected_phenotypes)
- The processed selected phenotype data with imputed values.
+ labels : np.ndarray of shape (n_subjects,)
+ Binary classification labels encoded as 0 (CONTROL) and 1 (ASD).
+ sites : np.ndarray of shape (n_subjects,)
+ Site identifiers for each subject.
+ phenotypes : pl.DataFrame
+ Preprocessed phenotypic features, with categorical variables one-hot encoded
+ and continuous variables optionally standardized.
"""
- # Avoid in-place modification
- data = data.copy()
+ # Encode labels
+ labels = data["DX_GROUP"].replace({"CONTROL": 0, "ASD": 1})
+ labels = labels.cast(pl.Int8).to_numpy()
+
+ # Extract site information
+ sites = data["SITE_ID"].to_numpy()
+
+ # Drop label column before feature processing
+ data = data.drop("DX_GROUP")
- # Check for missing values, either -9999 or NaN
- # and impute them with FIQ = 100 following original code.
- fiq = data["FIQ"].copy()
- data["FIQ"] = fiq.where((fiq != -9999) & (~np.isnan(fiq)), 100)
+ # One-hot encode categorical phenotypes
+ data = data.to_dummies(CATEGORICAL_PHENOTYPES)
- # Standardize FIQ and age by site
if standardize == "site":
- for site in data["SITE_ID"].unique():
- mask = site == data["SITE_ID"]
- values = data.loc[mask, ["AGE_AT_SCAN", "FIQ"]]
- values = StandardScaler().fit_transform(values)
- data.loc[mask, ["AGE_AT_SCAN", "FIQ"]] = values
+ sites_unique = np.unique(sites)
+ scaled_data = []
+
+ for site in sites_unique:
+ # Select data for the current site
+ site_data = data.filter(sites == site)
+
+ values = site_data.select(CONTINUOUS_PHENOTYPES).to_numpy()
+ scaler = StandardScaler()
+ values_scaled = scaler.fit_transform(values)
+ age, fiq = values_scaled.T
+
+ scaled_site_data = site_data.with_columns(
+ [pl.Series("AGE_AT_SCAN", age), pl.Series("FIQ", fiq)]
+ )
+
+ scaled_data.append(scaled_site_data)
+
+ data = pl.concat(scaled_data)
+
elif standardize:
- values = data.loc[:, ["AGE_AT_SCAN", "FIQ"]]
- values = StandardScaler().fit_transform(values)
- data.loc[:, ["AGE_AT_SCAN", "FIQ"]] = values
-
- # Encode categorical variables to be more explicit categorical
- # values. For handedness, if we found missing values, we
- # impute them by using 'LEFT' as default. Values
- # like 'Ambi', 'Mixed', 'L->R', and 'R->L' are mapped to
- # 'AMBIDEXTROUS'. The rest of the values are mapped to 'LEFT' or 'RIGHT'
- # for 'L' or 'R' respectively.
- for key in MAPPING:
- values = data[key].copy().map(MAPPING[key])
- data[key] = values.astype("category")
-
- # Subsets the phenotypes
- data = data[SELECTED_PHENOTYPES].set_index("SUB_ID")
-
- # Separate the class labels, sites, and phenotypes
- labels = data["DX_GROUP"].map({"CONTROL": 0, "ASD": 1})
- sites = data["SITE_ID"].to_numpy()
- phenotypes = data.drop(columns=["DX_GROUP"])
- # One-hot encode categorical valued phenotypes
- phenotypes = pd.get_dummies(phenotypes)
+ values = data.select(CONTINUOUS_PHENOTYPES).to_numpy()
+ scaler = StandardScaler()
+ values_scaled = scaler.fit_transform(values)
+ age, fiq = values_scaled.T
+
+ data = data.with_columns(
+ [
+ pl.Series("AGE_AT_SCAN", age),
+ pl.Series("FIQ", fiq),
+ ]
+ )
+
+ data = data.sort("SUB_ID").drop("SUB_ID")
+ phenotypes = data.to_numpy()
return labels, sites, phenotypes
@@ -126,17 +98,19 @@ def process_phenotypic_data(data, standardize=False):
{"data": ["array-like"], "measures": [list]}, prefer_skip_nested_validation=False
)
def extract_functional_connectivity(data, measures=["pearson"]):
- """Extract functional connectivity features from time series data.
+ """
+ Extract functional connectivity features from time series data using
+ specified connectivity measures.
+
+ To extract Tangent-Pearson connectivity, set `measures=["tangent", "pearson"]`.
Parameters
----------
data : list[array-like] of shape (n_subjects,)
An array of numpy arrays, where each array is a time series of shape (t, n_rois).
The time series data for each subject.
-
- measures : list[str], optional
+ measures : list[str], optional (default=["pearson"])
A list of connectivity measures to use for feature extraction.
- The default is ["pearson"].
Supported measures are "pearson", "partial", "tangent", "covariance", and "precision".
Multiple measures can be specified as a list to compose a higher-order measure.
@@ -144,13 +118,11 @@ def extract_functional_connectivity(data, measures=["pearson"]):
-------
features : array-like
An array of shape (n_subjects, n_features) containing the extracted features.
- n_features is equal to `n_rois * (n_rois - 1) / 2` for each subjects.
+ n_features is equal to `n_rois * (n_rois - 1) / 2` for each subject if vectorized.
"""
for i, k in enumerate(reversed(measures), 1):
k = AVAILABLE_FC_MEASURES.get(k)
- # If it is the last transformation, vectorize and discard the diagonal
- # of shape (n_rois * (n_rois - 1) / 2)
islast = i == len(measures)
measure = ConnectivityMeasure(kind=k, vectorize=islast, discard_diagonal=islast)
data = measure.fit_transform(data)
From 72161f0467f6a686dd68816c76d5eb7d84774e05 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 01:31:02 +0100
Subject: [PATCH 09/44] use polars to replace pandas
---
tutorials/brain-disorder-diagnosis/parsing.py | 45 +++++++++++--------
1 file changed, 26 insertions(+), 19 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/parsing.py b/tutorials/brain-disorder-diagnosis/parsing.py
index 33f2733..bb113aa 100644
--- a/tutorials/brain-disorder-diagnosis/parsing.py
+++ b/tutorials/brain-disorder-diagnosis/parsing.py
@@ -1,6 +1,7 @@
-import pandas as pd
from collections import defaultdict
-from sklearn.utils._param_validation import validate_params, StrOptions
+
+import polars as pl
+from sklearn.utils._param_validation import StrOptions, validate_params
# Mapping for model and score display names
MODEL = ["baseline", "site_only", "all_phenotypes"]
@@ -18,13 +19,13 @@
)
def compile_results(cv_results, sort_by):
"""
- Compile and summarize cross-validation results into a formatted DataFrame.
+ Compile and summarize cross-validation results into a formatted Polars DataFrame.
Parameters
----------
- cv_results : dict of str -> pd.DataFrame or dict of str -> dict of str -> list
+ cv_results : dict of str -> pl.DataFrame or dict of str -> dict of str -> list
Dictionary mapping model names to cross-validation results.
- Each entry should either be a DataFrame or a dictionary of dictionary of list.
+ Each entry should either be a Polars DataFrame or a dictionary of dictionary of list.
sort_by : str
Metric to use for selecting the best-performing model variant.
Available ones include: "accuracy", "precision", "recall", "f1", "roc_auc",
@@ -32,35 +33,41 @@ def compile_results(cv_results, sort_by):
Returns
-------
- compiled_results : pd.DataFrame
+ compiled_results : pl.DataFrame
Summary table with models as rows and formatted score strings (mean ± std) as columns.
"""
compiled_results = defaultdict(list)
for model in cv_results:
- # Ensure results are in DataFrame format
- if not isinstance(cv_results[model], pd.DataFrame):
- cv_results[model] = pd.DataFrame(cv_results[model])
+ # Ensure results are in Polars DataFrame format
+ if not isinstance(cv_results[model], pl.DataFrame):
+ cv_results[model] = pl.DataFrame(cv_results[model])
+
+ df = cv_results[model]
# Extract all available test scores
scores = [
- score.replace("rank_test_", "")
- for score in cv_results[model].columns
- if "rank_test" in score
+ col.removeprefix("rank_test_")
+ for col in df.columns
+ if col.startswith("rank_test_")
]
- # Select the best row (lowest rank) based on the given metric
- cv_result = cv_results[model].sort_values(f"rank_test_{sort_by}").iloc[0]
+ # Sort and select best row based on rank of the chosen metric
+ sort_col = f"rank_test_{sort_by}"
+ best_row = df.sort(sort_col).row(0) # get first row as tuple
+
+ columns = df.columns
+ row_dict = dict(zip(columns, best_row))
compiled_results["Model"].append(MODEL[model])
for score in scores:
- mean_score = cv_result[f"mean_test_{score}"]
- std_score = cv_result[f"std_test_{score}"]
+ mean_score = row_dict[f"mean_test_{score}"]
+ std_score = row_dict[f"std_test_{score}"]
compiled_results[SCORE[score]].append(f"{mean_score:.4f} ± {std_score:.4f}")
- # Convert to DataFrame and index by model name
- compiled_results = pd.DataFrame(compiled_results)
- compiled_results = compiled_results.set_index("Model")
+ # Convert to Polars DataFrame and index by model
+ compiled_results = pl.DataFrame(compiled_results)
+ compiled_results = compiled_results.sort("Model")
return compiled_results
From 11da26e93f6adf1253959439068c9c7f6c50ca26 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 01:32:45 +0100
Subject: [PATCH 10/44] add manifest and load_data function to fetch data from
gdrive
---
tutorials/brain-disorder-diagnosis/data.py | 161 ++++++++++
.../manifests/abide.json | 296 ++++++++++++++++++
.../manifests/atlas.json | 46 +++
3 files changed, 503 insertions(+)
create mode 100644 tutorials/brain-disorder-diagnosis/data.py
create mode 100644 tutorials/brain-disorder-diagnosis/manifests/abide.json
create mode 100644 tutorials/brain-disorder-diagnosis/manifests/atlas.json
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
new file mode 100644
index 0000000..a0cc411
--- /dev/null
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -0,0 +1,161 @@
+import os
+import json
+import numpy as np
+import polars as pl
+import gdown
+from sklearn.utils._param_validation import StrOptions, validate_params
+
+
+@validate_params(
+ {
+ "data_dir": [str],
+ "atlas": [
+ StrOptions(
+ {
+ "aal",
+ "cc200",
+ "difumo64",
+ "dos160",
+ "hcp-ica",
+ "ho",
+ "tt",
+ }
+ )
+ ],
+ "fc": [
+ StrOptions(
+ {
+ "pearson",
+ "partial",
+ "tangent",
+ "precision",
+ "covariance",
+ "tangent-pearson",
+ }
+ )
+ ],
+ "vectorize": [bool],
+ "verbose": [bool],
+ },
+ prefer_skip_nested_validation=False,
+)
+def load_data(
+ data_dir="data", atlas="cc200", fc="tangent-pearson", vectorize=True, verbose=True
+):
+ """
+ Load functional connectivity data and phenotypic data with gdown support.
+
+ This function uses manifest files to download the required files from Google Drive if not present locally.
+ It automatically downloads files listed in manifests/abide.json and folders listed in manifests/atlas.json.
+
+ Parameters
+ ----------
+ data_dir : str, optional (default="data")
+ Local directory to store the dataset.
+ atlas : str, optional (default="cc200")
+ Atlas name (subfolder inside fc/).
+ fc : str, optional (default="tangent-pearson")
+ Functional connectivity file name (without extension).
+ vectorize : bool, optional (default=True)
+ Whether to vectorize the upper triangle of the connectivity matrices.
+ verbose : bool, optional (default=True)
+ Whether to print download and progress messages.
+
+ Returns
+ -------
+ fc : np.ndarray
+ Functional connectivity data (vectorized if requested).
+ phenotypes : pl.DataFrame
+ Phenotypic data loaded via Polars with proper missing value handling.
+ rois : np.ndarray
+ ROI labels.
+ coords : np.ndarray
+ ROI coordinates.
+
+ Raises
+ ------
+ FileNotFoundError
+ If the required file paths are not found after attempted download.
+ """
+
+ # Paths
+ fc_path = os.path.join(data_dir, "abide", "fc", atlas, f"{fc}.npy")
+ is_proba = atlas in {"difumo64"}
+ atlas_type = "probabilistic" if is_proba else "deterministic"
+ atlas_path = os.path.join(data_dir, "atlas", atlas_type, atlas)
+ phenotypes_path = os.path.join(data_dir, "abide", "phenotypes.csv")
+
+ # Ensure all files exist (download if needed)
+ _ensure_abide_file(data_dir, fc_path, verbose)
+ _ensure_abide_file(data_dir, phenotypes_path, verbose)
+ _ensure_atlas_folder(data_dir, atlas_path, verbose)
+
+ # Load connectivity data
+ fc = np.load(fc_path)
+ if vectorize:
+ row, col = np.triu_indices(fc.shape[1], 1)
+ fc = fc[..., row, col]
+
+ phenotypes = pl.read_csv(phenotypes_path)
+
+ with open(os.path.join(atlas_path, "labels.txt"), "r") as f:
+ rois = np.array(f.read().strip().split("\n"))
+ coords = np.load(os.path.join(atlas_path, "coords.npy"))
+
+ return fc, phenotypes, rois, coords
+
+
+def _ensure_abide_file(data_dir, target_path, verbose):
+ """Ensure abide file exists locally; download from manifest if missing."""
+ if os.path.exists(target_path):
+ if verbose:
+ print(f"✔ File found: {target_path}")
+ return
+
+ manifest_path = os.path.join("manifests", "abide.json")
+ with open(manifest_path, "r") as f:
+ manifest = json.load(f)
+
+ rel_path = os.path.relpath(target_path, data_dir).replace("\\", "/")
+ for file_entry in manifest:
+ if file_entry["path"] == rel_path:
+ if verbose:
+ print(f"⬇ Downloading {rel_path} ...")
+ os.makedirs(os.path.dirname(target_path), exist_ok=True)
+ gdown.download(file_entry["url"], output=target_path, quiet=not verbose)
+ if os.path.exists(target_path):
+ return
+ else:
+ break
+
+ raise FileNotFoundError(f"File not found and not found in manifest: {target_path}")
+
+
+def _ensure_atlas_folder(data_dir, atlas_path, verbose):
+ """Ensure atlas folder exists locally; download using gdown.download_folder if missing."""
+ if os.path.exists(atlas_path):
+ if verbose:
+ print(f"✔ Atlas folder found: {atlas_path}")
+ return
+
+ manifest_path = os.path.join("manifests", "atlas.json")
+ with open(manifest_path, "r") as f:
+ manifest = json.load(f)
+
+ rel_path = os.path.relpath(atlas_path, data_dir).replace("\\", "/")
+ for folder_entry in manifest:
+ if folder_entry["path"] == rel_path:
+ if verbose:
+ print(f"⬇ Downloading atlas folder {rel_path} ...")
+ os.makedirs(os.path.dirname(atlas_path), exist_ok=True)
+ gdown.download_folder(
+ id=folder_entry["id"], output=atlas_path, quiet=not verbose
+ )
+ if os.path.exists(atlas_path):
+ return
+ else:
+ break
+
+ raise FileNotFoundError(
+ f"Atlas folder not found and not found in manifest: {atlas_path}"
+ )
diff --git a/tutorials/brain-disorder-diagnosis/manifests/abide.json b/tutorials/brain-disorder-diagnosis/manifests/abide.json
new file mode 100644
index 0000000..61fde12
--- /dev/null
+++ b/tutorials/brain-disorder-diagnosis/manifests/abide.json
@@ -0,0 +1,296 @@
+[
+ {
+ "id": "1DHoQOInWgZlYiCATzPVHfolAhF1WLfFN",
+ "name": "phenotypes.csv",
+ "path": "abide/phenotypes.csv",
+ "url": "https://drive.google.com/uc?id=1DHoQOInWgZlYiCATzPVHfolAhF1WLfFN"
+ },
+ {
+ "id": "19pydQA5n6nNko6fUL-AWOtzZE3s_ZFKo",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/hcp-ica/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=19pydQA5n6nNko6fUL-AWOtzZE3s_ZFKo"
+ },
+ {
+ "id": "13VsKOnKhhPhzgA1PLHxu8zBPPVg20oT-",
+ "name": "covariance.npy",
+ "path": "abide/fc/hcp-ica/covariance.npy",
+ "url": "https://drive.google.com/uc?id=13VsKOnKhhPhzgA1PLHxu8zBPPVg20oT-"
+ },
+ {
+ "id": "1XqdZcrPIzUvmyDZYga0CsB-Cz_1bnyhW",
+ "name": "precision.npy",
+ "path": "abide/fc/hcp-ica/precision.npy",
+ "url": "https://drive.google.com/uc?id=1XqdZcrPIzUvmyDZYga0CsB-Cz_1bnyhW"
+ },
+ {
+ "id": "1zAOgfoTBeLUHXok0GOEuDnqZ-5Ome1sd",
+ "name": "tangent.npy",
+ "path": "abide/fc/hcp-ica/tangent.npy",
+ "url": "https://drive.google.com/uc?id=1zAOgfoTBeLUHXok0GOEuDnqZ-5Ome1sd"
+ },
+ {
+ "id": "1-CUiUrzZb2nZhdlua_EMIpAroysra392",
+ "name": "pearson.npy",
+ "path": "abide/fc/hcp-ica/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1-CUiUrzZb2nZhdlua_EMIpAroysra392"
+ },
+ {
+ "id": "1nupIrwbVw-UFrvaLmjKShgVdNtwXYsSP",
+ "name": "partial.npy",
+ "path": "abide/fc/hcp-ica/partial.npy",
+ "url": "https://drive.google.com/uc?id=1nupIrwbVw-UFrvaLmjKShgVdNtwXYsSP"
+ },
+ {
+ "id": "1f8QPkO3n9uW6eDualnrKXyQJv-D-Z5Ao",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/aal/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1f8QPkO3n9uW6eDualnrKXyQJv-D-Z5Ao"
+ },
+ {
+ "id": "1nT9dWeQOM8sXhQkX-e97ExhGZOrPkpBh",
+ "name": "precision.npy",
+ "path": "abide/fc/aal/precision.npy",
+ "url": "https://drive.google.com/uc?id=1nT9dWeQOM8sXhQkX-e97ExhGZOrPkpBh"
+ },
+ {
+ "id": "1YZhjow-OSydrcq9EC7Hggp6RGPHz_jXP",
+ "name": "covariance.npy",
+ "path": "abide/fc/aal/covariance.npy",
+ "url": "https://drive.google.com/uc?id=1YZhjow-OSydrcq9EC7Hggp6RGPHz_jXP"
+ },
+ {
+ "id": "1V47WxQgHZpkMtEmqljdbCfVhGQBICnaV",
+ "name": "tangent.npy",
+ "path": "abide/fc/aal/tangent.npy",
+ "url": "https://drive.google.com/uc?id=1V47WxQgHZpkMtEmqljdbCfVhGQBICnaV"
+ },
+ {
+ "id": "1xHIelH5a_K-KOmnC-Ovhm4h7y0UOChp5",
+ "name": "partial.npy",
+ "path": "abide/fc/aal/partial.npy",
+ "url": "https://drive.google.com/uc?id=1xHIelH5a_K-KOmnC-Ovhm4h7y0UOChp5"
+ },
+ {
+ "id": "1IDyUNIKo6Oi5RSdQ6h4BSwpx-MzjBzqP",
+ "name": "pearson.npy",
+ "path": "abide/fc/aal/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1IDyUNIKo6Oi5RSdQ6h4BSwpx-MzjBzqP"
+ },
+ {
+ "id": "1oPEeGWeZMJcodr_1O_hjg_I5CojSOQHA",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/cc200/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1oPEeGWeZMJcodr_1O_hjg_I5CojSOQHA"
+ },
+ {
+ "id": "1ZmIIN6hRijJJfk-_UibxSBGzLraB-4Yx",
+ "name": "precision.npy",
+ "path": "abide/fc/cc200/precision.npy",
+ "url": "https://drive.google.com/uc?id=1ZmIIN6hRijJJfk-_UibxSBGzLraB-4Yx"
+ },
+ {
+ "id": "138lGGR3_tskE-BxweEZ_hXt8NK-Q0F-h",
+ "name": "covariance.npy",
+ "path": "abide/fc/cc200/covariance.npy",
+ "url": "https://drive.google.com/uc?id=138lGGR3_tskE-BxweEZ_hXt8NK-Q0F-h"
+ },
+ {
+ "id": "1aRLyCqEnRGrhpWVagXnADs5caLH_muEp",
+ "name": "tangent.npy",
+ "path": "abide/fc/cc200/tangent.npy",
+ "url": "https://drive.google.com/uc?id=1aRLyCqEnRGrhpWVagXnADs5caLH_muEp"
+ },
+ {
+ "id": "1Bq2jD0F8gh7gB8JYxxqrNQa48Iw-mODo",
+ "name": "partial.npy",
+ "path": "abide/fc/cc200/partial.npy",
+ "url": "https://drive.google.com/uc?id=1Bq2jD0F8gh7gB8JYxxqrNQa48Iw-mODo"
+ },
+ {
+ "id": "1ko1GXeqOQvSTCjHk6ePo93jTMdPJYIyM",
+ "name": "pearson.npy",
+ "path": "abide/fc/cc200/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1ko1GXeqOQvSTCjHk6ePo93jTMdPJYIyM"
+ },
+ {
+ "id": "1rdBd8tm-G4GFwsYYfG5V9fN13D9XxSV4",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/difumo64/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1rdBd8tm-G4GFwsYYfG5V9fN13D9XxSV4"
+ },
+ {
+ "id": "10hrnAIRTnwlk-b5XD3Q7-rRwkHFo_r-3",
+ "name": "covariance.npy",
+ "path": "abide/fc/difumo64/covariance.npy",
+ "url": "https://drive.google.com/uc?id=10hrnAIRTnwlk-b5XD3Q7-rRwkHFo_r-3"
+ },
+ {
+ "id": "19po8WQP6OonrL-6TsSBZW4X-qhpZbg8d",
+ "name": "tangent.npy",
+ "path": "abide/fc/difumo64/tangent.npy",
+ "url": "https://drive.google.com/uc?id=19po8WQP6OonrL-6TsSBZW4X-qhpZbg8d"
+ },
+ {
+ "id": "1N0RVZ4IkPNL7BjEXjuQ7H1nfe3RRE7es",
+ "name": "precision.npy",
+ "path": "abide/fc/difumo64/precision.npy",
+ "url": "https://drive.google.com/uc?id=1N0RVZ4IkPNL7BjEXjuQ7H1nfe3RRE7es"
+ },
+ {
+ "id": "1pDTTpWw8u09NNShOpqriIwGxVuwQ2Gmq",
+ "name": "partial.npy",
+ "path": "abide/fc/difumo64/partial.npy",
+ "url": "https://drive.google.com/uc?id=1pDTTpWw8u09NNShOpqriIwGxVuwQ2Gmq"
+ },
+ {
+ "id": "1qWtrsIQIEC662pNAy2QW-7btOp3WS5LE",
+ "name": "pearson.npy",
+ "path": "abide/fc/difumo64/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1qWtrsIQIEC662pNAy2QW-7btOp3WS5LE"
+ },
+ {
+ "id": "1CTCjMwiRumJ3wTMo9Eht4SXpCeSKoJtE",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/tt/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1CTCjMwiRumJ3wTMo9Eht4SXpCeSKoJtE"
+ },
+ {
+ "id": "1aMMw2S01oW2hPdml3dzgxGUdUdKzCFWh",
+ "name": "precision.npy",
+ "path": "abide/fc/tt/precision.npy",
+ "url": "https://drive.google.com/uc?id=1aMMw2S01oW2hPdml3dzgxGUdUdKzCFWh"
+ },
+ {
+ "id": "12LxphE-5Z0JylVlD73mrEkTKyWsEPGYF",
+ "name": "tangent.npy",
+ "path": "abide/fc/tt/tangent.npy",
+ "url": "https://drive.google.com/uc?id=12LxphE-5Z0JylVlD73mrEkTKyWsEPGYF"
+ },
+ {
+ "id": "1vjlHpBpz-mrifp74QPXrWjtotz_pwzJW",
+ "name": "covariance.npy",
+ "path": "abide/fc/tt/covariance.npy",
+ "url": "https://drive.google.com/uc?id=1vjlHpBpz-mrifp74QPXrWjtotz_pwzJW"
+ },
+ {
+ "id": "1OqsfrAg6pTWi_TGrlyQpw9jNCVFUKdCK",
+ "name": "partial.npy",
+ "path": "abide/fc/tt/partial.npy",
+ "url": "https://drive.google.com/uc?id=1OqsfrAg6pTWi_TGrlyQpw9jNCVFUKdCK"
+ },
+ {
+ "id": "14sOs6AUmnyj3-U9Z1DOjk_wtBAcGfkLU",
+ "name": "pearson.npy",
+ "path": "abide/fc/tt/pearson.npy",
+ "url": "https://drive.google.com/uc?id=14sOs6AUmnyj3-U9Z1DOjk_wtBAcGfkLU"
+ },
+ {
+ "id": "1CVSQiCDM0dfa0HCCZRuHYRY7uc67DAhd",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/cc400/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1CVSQiCDM0dfa0HCCZRuHYRY7uc67DAhd"
+ },
+ {
+ "id": "1UDjNd6wAyX2lxAY8-ZXUgT520mcjlEm6",
+ "name": "precision.npy",
+ "path": "abide/fc/cc400/precision.npy",
+ "url": "https://drive.google.com/uc?id=1UDjNd6wAyX2lxAY8-ZXUgT520mcjlEm6"
+ },
+ {
+ "id": "1ybIrLrheCLjHWrIsZVhVsCAOo1Z6pDAp",
+ "name": "covariance.npy",
+ "path": "abide/fc/cc400/covariance.npy",
+ "url": "https://drive.google.com/uc?id=1ybIrLrheCLjHWrIsZVhVsCAOo1Z6pDAp"
+ },
+ {
+ "id": "1gtf8957rXkfS1e1Z7YeFzGs12dH9duZy",
+ "name": "tangent.npy",
+ "path": "abide/fc/cc400/tangent.npy",
+ "url": "https://drive.google.com/uc?id=1gtf8957rXkfS1e1Z7YeFzGs12dH9duZy"
+ },
+ {
+ "id": "1JCMjsWVbgjOVESpnWs8Cn6tkCn4ialZ1",
+ "name": "partial.npy",
+ "path": "abide/fc/cc400/partial.npy",
+ "url": "https://drive.google.com/uc?id=1JCMjsWVbgjOVESpnWs8Cn6tkCn4ialZ1"
+ },
+ {
+ "id": "1ofQOemsme9bhHobSXMY5g-0CDXqUqlzE",
+ "name": "pearson.npy",
+ "path": "abide/fc/cc400/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1ofQOemsme9bhHobSXMY5g-0CDXqUqlzE"
+ },
+ {
+ "id": "1XZCSo_TkTaI26qkSA2XBNtI8Qx8uIIFh",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/ho/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1XZCSo_TkTaI26qkSA2XBNtI8Qx8uIIFh"
+ },
+ {
+ "id": "1yf-x0gKKknfYNqX9WXx-cfbWeUpe2zP6",
+ "name": "precision.npy",
+ "path": "abide/fc/ho/precision.npy",
+ "url": "https://drive.google.com/uc?id=1yf-x0gKKknfYNqX9WXx-cfbWeUpe2zP6"
+ },
+ {
+ "id": "17CQYW2RIg6i9uyo0J91M4kLEuIaGkVQi",
+ "name": "tangent.npy",
+ "path": "abide/fc/ho/tangent.npy",
+ "url": "https://drive.google.com/uc?id=17CQYW2RIg6i9uyo0J91M4kLEuIaGkVQi"
+ },
+ {
+ "id": "1S5Rufop8sz-5UjvNl_IH9pxKBbbAOuxj",
+ "name": "covariance.npy",
+ "path": "abide/fc/ho/covariance.npy",
+ "url": "https://drive.google.com/uc?id=1S5Rufop8sz-5UjvNl_IH9pxKBbbAOuxj"
+ },
+ {
+ "id": "1KoTmVgCkhq_zV7HyqR7yLb_yyWR2PbQG",
+ "name": "partial.npy",
+ "path": "abide/fc/ho/partial.npy",
+ "url": "https://drive.google.com/uc?id=1KoTmVgCkhq_zV7HyqR7yLb_yyWR2PbQG"
+ },
+ {
+ "id": "19C9VSIq1XmPL0S7LPuFmAWvKQ0fbUJ0V",
+ "name": "pearson.npy",
+ "path": "abide/fc/ho/pearson.npy",
+ "url": "https://drive.google.com/uc?id=19C9VSIq1XmPL0S7LPuFmAWvKQ0fbUJ0V"
+ },
+ {
+ "id": "1h0moD1Uopvm-7BOVzxlBPoFS1-Vt9euz",
+ "name": "tangent-pearson.npy",
+ "path": "abide/fc/dos160/tangent-pearson.npy",
+ "url": "https://drive.google.com/uc?id=1h0moD1Uopvm-7BOVzxlBPoFS1-Vt9euz"
+ },
+ {
+ "id": "1-kd7qPSDHyi_K6O_pK-kbwdSIkEBjvnC",
+ "name": "precision.npy",
+ "path": "abide/fc/dos160/precision.npy",
+ "url": "https://drive.google.com/uc?id=1-kd7qPSDHyi_K6O_pK-kbwdSIkEBjvnC"
+ },
+ {
+ "id": "1N-rOxLFsEWw3h7x2XLZPwQ9syb7Rxhb9",
+ "name": "covariance.npy",
+ "path": "abide/fc/dos160/covariance.npy",
+ "url": "https://drive.google.com/uc?id=1N-rOxLFsEWw3h7x2XLZPwQ9syb7Rxhb9"
+ },
+ {
+ "id": "1Q8CJEW4HQlTNOtLLFBUhlHvm11LH5Deu",
+ "name": "tangent.npy",
+ "path": "abide/fc/dos160/tangent.npy",
+ "url": "https://drive.google.com/uc?id=1Q8CJEW4HQlTNOtLLFBUhlHvm11LH5Deu"
+ },
+ {
+ "id": "10K8JeSi0oaA9gNzzL7h8_Mwydpn0O2Wu",
+ "name": "partial.npy",
+ "path": "abide/fc/dos160/partial.npy",
+ "url": "https://drive.google.com/uc?id=10K8JeSi0oaA9gNzzL7h8_Mwydpn0O2Wu"
+ },
+ {
+ "id": "1dkj6i-zo1ZO6IbN87IAPLvJRNQ8X_KYM",
+ "name": "pearson.npy",
+ "path": "abide/fc/dos160/pearson.npy",
+ "url": "https://drive.google.com/uc?id=1dkj6i-zo1ZO6IbN87IAPLvJRNQ8X_KYM"
+ }
+]
diff --git a/tutorials/brain-disorder-diagnosis/manifests/atlas.json b/tutorials/brain-disorder-diagnosis/manifests/atlas.json
new file mode 100644
index 0000000..78f97fd
--- /dev/null
+++ b/tutorials/brain-disorder-diagnosis/manifests/atlas.json
@@ -0,0 +1,46 @@
+[
+ {
+ "id": "1BSpl4xBbIsQ709b5_QRcy-Uh0hNEfSBe",
+ "path": "atlas"
+ },
+ {
+ "id": "1cGEKgOM1sT_JZnV4GKa8j0H8oh_z3K9a",
+ "path": "atlas/deterministic"
+ },
+ {
+ "id": "1Er9eoLqSY6KYgYd516XHNbQole1pok6-",
+ "path": "atlas/deterministic/tt"
+ },
+ {
+ "id": "1b7EhBoAr_cany3GAYmGRbNtBvValq107",
+ "path": "atlas/deterministic/cc200"
+ },
+ {
+ "id": "1dy3ACTD5_0CJ7BIy2lPBye1ep_Kvw-Py",
+ "path": "atlas/deterministic/ho"
+ },
+ {
+ "id": "1gUpE8tSFjlmACFiDzGYGbqAuY4yUtyKd",
+ "path": "atlas/deterministic/aal"
+ },
+ {
+ "id": "1kZmHdVfZQh_prqzc5LdIpAg1bITzwIh2",
+ "path": "atlas/deterministic/dos160"
+ },
+ {
+ "id": "1P90qp_z0A05bgFrKWN_L4W0RAdEp0HXE",
+ "path": "atlas/deterministic/hcp-ica"
+ },
+ {
+ "id": "17WoiOgQGIq00SLzMQaItJDvmUEUTP9bn",
+ "path": "atlas/deterministic/cc400"
+ },
+ {
+ "id": "1jNzbR3UhNxcavEs7PqusPDeadiUx4FfY",
+ "path": "atlas/probabilistic"
+ },
+ {
+ "id": "18dAJp1gcxEQ8qRnp5tdZJiI_PaLVGqwv",
+ "path": "atlas/probabilistic/difumo64"
+ }
+]
From d22141d19a1e7644b324869dc4f00c3c0e33eae3 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 01:33:08 +0100
Subject: [PATCH 11/44] update default cfg and base exp yml
---
tutorials/brain-disorder-diagnosis/config.py | 47 +++++++++++++------
.../experiments/base.yml | 6 ++-
2 files changed, 37 insertions(+), 16 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index 2ada3f1..07e5fa7 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -1,24 +1,34 @@
+import os
from yacs.config import CfgNode
+DEFAULT_DIR = os.path.join(os.getcwd(), "data")
+
_C = CfgNode()
# Dataset configuration
_C.DATASET = CfgNode()
# Path to the dataset directory
-_C.DATASET.PATH = "nilearn_data"
+_C.DATASET.PATH = DEFAULT_DIR
# Name of the brain atlas to use
+# Available options:
+# - "aal" (AAL)
+# - "cc200" (Cameron Craddock 200)
+# - "cc400" (Cameron Craddock 400)
+# - "difumo64" (DiFuMo 64)
+# - "dos160" (Dosenbach 160)
+# - "hcp-ica" (HCP-ICA)
+# - "ho" (Harvard-Oxford)
+# - "tt" (Talairach-Tournoux)
_C.DATASET.ATLAS = "cc200"
-# Whether to apply bandpass filtering
-_C.DATASET.BANDPASS = False
-# Whether to apply global signal regression
-_C.DATASET.GLOBAL_SIGNAL_REGRESSION = False
-# Whether to use only quality-checked data
-_C.DATASET.QUALITY_CHECKED = False
-
-# Connectivity configuration
-_C.CONNECTIVITY = CfgNode()
-# List of connectivity measures to compute
-_C.CONNECTIVITY.MEASURES = ["pearson"]
+# Functional connectivity to use
+# Available options:
+# - "pearson"
+# - "partial"
+# - "tangent"
+# - "precision"
+# - "covariance"
+# - "tangent-pearson"
+_C.DATASET.FC = "pearson"
# Phenotype configuration
_C.PHENOTYPE = CfgNode()
@@ -43,21 +53,28 @@
# Search strategy for hyperparameter tuning
_C.TRAINER.SEARCH_STRATEGY = "random"
# Number of iterations for hyperparameter search
-_C.TRAINER.NUM_SEARCH_ITER = 100
+_C.TRAINER.NUM_SEARCH_ITER = int(1e3)
# Number of iterations for solver
_C.TRAINER.NUM_SOLVER_ITER = int(1e6)
# List of scoring metrics
+# Available options:
+# - "accuracy"
+# - "precision"
+# - "recall"
+# - "f1"
+# - "roc_auc"
+# - "matthews_corrcoef"
_C.TRAINER.SCORING = ["accuracy", "roc_auc"]
# Refit based on the best hyperparameters on a scoring metric
_C.TRAINER.REFIT = "accuracy"
# Number of parallel jobs (-1: all CPUs, -4: all but 4 CPUs)
-_C.TRAINER.N_JOBS = -4
+_C.TRAINER.N_JOBS = 1
# Verbosity level
_C.TRAINER.VERBOSE = 0
# Random state for reproducibility
# Seed for random number generators
-_C.RANDOM_STATE = 0
+_C.RANDOM_STATE = None
def get_cfg_defaults():
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 26e5ec5..9b438b2 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -1,6 +1,10 @@
DATASET:
- ATLAS: aal
+ ATLAS: hcp-ica
+ FC: tangent-pearson
TRAINER:
NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
+ N_JOBS: -1
+
+RANDOM_STATE: 0
From b5b5923f393994a42dba243f2d0774d982888d5f Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 01:33:34 +0100
Subject: [PATCH 12/44] update notebook contents
---
.../brain-disorder-diagnosis/notebook.ipynb | 376 ++++++++----------
1 file changed, 163 insertions(+), 213 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index ee9039d..8e2677a 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -41,12 +41,15 @@
"\n",
"As a starting point, we will install the required packages and load a set of helper functions to assist throughout this tutorial. To keep the output clean and focused on interpretation, we will also suppress warnings.\n",
"\n",
- "Moreover, we provide helper functions that can be inspected directly in the `.py` files located in the notebook\u2019s current directory. The three additional helper scripts are:\n",
- "- `config.py`: Defines the base configuration settings, which can be overridden using a custom `.yml` file.\n",
- "- `parsing.py`: Contains utilities to compile evaluation results from the training process.\n",
- "- `preprocess.py`: Handles phenotype preprocessing (e.g., imputing missing values and encoding categorical variables) and feature extraction from the fMRI time series.\n",
+ "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook\u2019s current directory. The helper scripts include:\n",
"\n",
- "For Google Colab, these helper scripts are found in `embc-mmai25/tutorials/brain-disorder-diagnosis`."
+ "- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
+ "- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
+ "- **`parsing.py`**: Contains utilities to compile and summarize evaluation results from the training process.\n",
+ "- **`preprocess.py`**: Handles phenotype preprocessing, including missing value imputation, categorical variable encoding, and feature extraction from fMRI time series data.\n",
+ "\n",
+ "> **Note:** \n",
+ "> For Google Colab, these helper scripts are located in the `embc-mmai25/tutorials/brain-disorder-diagnosis` directory."
],
"cell_type": "markdown"
},
@@ -63,18 +66,10 @@
"warnings.filterwarnings(\"ignore\")\n",
"os.environ[\"PYTHONWARNINGS\"] = \"ignore\"\n",
"\n",
- "# Test if running in Colab\n",
- "data_dir = None\n",
"if \"google.colab\" in str(get_ipython()):\n",
- " from google.colab import drive\n",
- "\n",
- " mount_dir = os.path.join(\"/content\", \"drive\")\n",
- " drive.mount(mount_dir)\n",
- " # Assign it to your dataset's location\n",
- " data_dir = os.path.join(mount_dir, \"MyDrive\", \"data\")\n",
- " %cd /content\n",
" !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
- " %cd /content/embc-mmai25/tutorials/brain-disorder-diagnosis"
+ " %cp -r /content/embc-mmai25/tutorials/brain-disorder-diagnosis/* /content/\n",
+ " %rm -r /content/embc-mmai25"
],
"cell_type": "code",
"outputs": [],
@@ -87,15 +82,17 @@
"source": [
"## Packages\n",
"\n",
- "The main packages required for this tutorial are `pykale`, `nilearn`, `pandas`, and `yacs`.\n",
+ "The main packages required for this tutorial are:\n",
+ "\n",
+ "- **pykale**: An open-source interdisciplinary machine learning library developed at the University of Sheffield. It focuses on applications in biomedical and scientific domains, providing tools for multimodal learning, domain adaptation, and model interpretability.\n",
"\n",
- "`pykale` is an open-source interdisciplinary machine learning library developed at the University of Sheffield, with a focus on applications in biomedical and scientific domains.\n",
+ "- **gdown**: A utility package that simplifies downloading files and folders directly from Google Drive.\n",
"\n",
- "`nilearn` is a Python library for neuroimaging analysis, widely used for processing and visualizing functional MRI (fMRI) data.\n",
+ "- **nilearn**: A Python library for neuroimaging analysis. It offers convenient tools for processing, analyzing, and visualizing functional MRI (fMRI) data.\n",
"\n",
- "`pandas` is a popular data wrangling library.\n",
+ "- **polars**: A high-performance data wrangling library, similar to `pandas`, but optimized for speed and memory efficiency, particularly suited for large-scale datasets.\n",
"\n",
- "`yacs` is a configuration management used to store experiment settings."
+ "- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
],
"cell_type": "markdown"
},
@@ -106,10 +103,11 @@
]
},
"source": [
- "!pip install --quiet git+https://github.com/pykale/pykale@main \\\n",
- " nilearn==0.11.1 yacs==0.1.8 \\\n",
- " && echo \"pykale, nilearn, and yacs installed successfully \u2705\" \\\n",
- " || echo \"Failed to install pykale, nilearn, and yacs \u274c\""
+ "!pip install --quiet \\\n",
+ " git+https://github.com/pykale/pykale@main \\\n",
+ " gdown==5.2.0 nilearn==0.11.1 polars==1.3.0 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, polars, and yacs \u274c\""
],
"cell_type": "code",
"outputs": [
@@ -117,7 +115,7 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "pykale, nilearn, and yacs installed successfully \u2705\n"
+ "pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\n"
]
}
],
@@ -152,18 +150,14 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "CONNECTIVITY:\n",
- " MEASURES: ['pearson']\n",
"CROSS_VALIDATION:\n",
" NUM_FOLDS: 10\n",
" NUM_REPEATS: 1\n",
" SPLIT: skf\n",
"DATASET:\n",
- " ATLAS: aal\n",
- " BANDPASS: False\n",
- " GLOBAL_SIGNAL_REGRESSION: False\n",
- " PATH: nilearn_data\n",
- " QUALITY_CHECKED: False\n",
+ " ATLAS: hcp-ica\n",
+ " FC: tangent-pearson\n",
+ " PATH: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data\n",
"PHENOTYPE:\n",
" STANDARDIZE: site\n",
"RANDOM_STATE: 0\n",
@@ -172,7 +166,7 @@
" NONLINEAR: False\n",
" NUM_SEARCH_ITER: 50\n",
" NUM_SOLVER_ITER: 100\n",
- " N_JOBS: -4\n",
+ " N_JOBS: -1\n",
" REFIT: accuracy\n",
" SCORING: ['accuracy', 'roc_auc']\n",
" SEARCH_STRATEGY: random\n",
@@ -191,11 +185,23 @@
"\n",
"Typically, raw fMRI scans require extensive preprocessing before they can be used in a machine learning pipeline. However, the **ABIDE** dataset provides several preprocessed derivatives, which can be downloaded directly from the [Preprocessed Connectomes Project (PCP)](https://preprocessed-connectomes-project.org/abide/), eliminating the need for manual preprocessing.\n",
"\n",
+ "Given the long runtime required to extract the functional connectivity (FC) embedding, we will omit this step from this notebook and provide pre-computed embeddings through the provided `load_data` function with the associated atlas.\n",
+ "\n",
+ "For users interested in computing the time series and functional connectivity embeddings from scratch, assuming preprocessed images are available, please refer to:\n",
+ "\n",
+ "- [`NiftiLabelsMasker` (Deterministic / 3D Atlas)](https://nilearn.github.io/stable/modules/generated/nilearn.maskers.NiftiLabelsMasker.html)\n",
+ "- [`NiftiMapsMasker` (Probabilistic / 4D Atlas)](https://nilearn.github.io/stable/modules/generated/nilearn.maskers.NiftiMapsMasker.html)\n",
+ "- `extract_functional_connectivity` function implemented in `preprocess.py`.\n",
+ "\n",
"In this tutorial, we focus on the following preprocessing options:\n",
- "- `atlas`: The **brain atlas** used to **extract ROI time series**. Available options include: `\"aal\"`, `\"cc200\"`, `\"cc400\"`, `\"dosenbach160\"`, `\"ez\"`, `\"ho\"`, and `\"tt\"`. Default: `\"aal\"`\n",
- "- `bp`: Whether to apply **band-pass filter** to the time series between [0.01, 0.1] Hz. Default: `False`\n",
- "- `gsr`: Whether to apply **global signal regression** to remove shared global noise from the signals. Default: `False`\n",
- "- `qc`: Whether to include **only scans that passed all quality checks** provided by the dataset curators. Default: `True`"
+ "\n",
+ "- **`atlas`**: The brain atlas used to extract ROI time series. Available options include:\n",
+ " - `\"aal\"`, `\"cc200\"`, `\"cc400\"`, `\"dosenbach160\"`, `\"ez\"`, `\"ho\"`, and `\"tt\"`.\n",
+ " - *Default:* `\"cc200\"`\n",
+ "\n",
+ "- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
+ " - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
+ " - *Default:* `\"tangent-pearson\"`"
],
"cell_type": "markdown"
},
@@ -204,23 +210,11 @@
"tags": []
},
"source": [
- "from nilearn.datasets import fetch_abide_pcp\n",
- "\n",
- "# Fetch the preprocessed ABIDE dataset using the specified preprocessing options\n",
- "# This returns a dictionary containing region-wise time series and associated metadata\n",
- "dataset = fetch_abide_pcp(\n",
- " data_dir=data_dir,\n",
- " # Select the atlas-specific ROI time series (e.g., 'rois_aal')\n",
- " derivatives=[f\"rois_{cfg.DATASET.ATLAS}\"],\n",
- " # Whether to apply band-pass filtering\n",
- " band_pass_filtering=cfg.DATASET.BANDPASS,\n",
- " # Whether to apply global signal regression\n",
- " global_signal_regression=cfg.DATASET.GLOBAL_SIGNAL_REGRESSION,\n",
- " # Whether to include only subjects that passed QC\n",
- " quality_checked=cfg.DATASET.QUALITY_CHECKED,\n",
- ")\n",
+ "from data import load_data\n",
"\n",
- "time_series = dataset[f\"rois_{cfg.DATASET.ATLAS}\"]"
+ "fc, phenotypes, rois, coords = load_data(\n",
+ " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
+ ")"
],
"cell_type": "code",
"outputs": [
@@ -228,7 +222,9 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "[get_dataset_dir] Dataset found in /home/zarizky/nilearn_data/ABIDE_pcp\n"
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
+ "\u2714 Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
]
}
],
@@ -239,85 +235,46 @@
"tags": []
},
"source": [
- "## Phenotype Preprocessing \n",
+ "## Phenotype Preprocessing\n",
"\n",
- "The phenotypic information in the dataset contains several missing values. We impute and encode it to make it suitable for modeling.\n",
+ "The phenotypic information in the dataset contains several missing values. We impute and encode these variables to make them suitable for modeling.\n",
"\n",
- "**Categorical Variables**\n",
+ "### Categorical Variables\n",
"\n",
"The following categorical phenotypes are used and will be **one-hot encoded**:\n",
+ "\n",
"- `SITE_ID`\n",
"- `SEX`\n",
"- `HANDEDNESS_CATEGORY`\n",
"- `EYE_STATUS_AT_SCAN`\n",
"\n",
- "**Continuous Variables**\n",
+ "### Continuous Variables\n",
"\n",
"The following continuous phenotypes will optionally be **standardized**:\n",
+ "\n",
"- `AGE_AT_SCAN`\n",
"- `FIQ`\n",
"\n",
- "Possible options to `standardize` the continuous phenotypes includes:\n",
- "- `\"all\"` or `True`: Standardize across all subjects\n",
- "- `\"site\"`: Standardize within each site\n",
- "- `False`: No standardization\n",
+ "Standardization options for continuous phenotypes (`standardize` argument):\n",
+ "\n",
+ "- `\"all\"` or `True`: Standardize across all subjects.\n",
+ "- `\"site\"`: Standardize within each site.\n",
+ "- `False`: No standardization.\n",
+ "\n",
+ "### Handling Missing Values\n",
"\n",
- "**Handling Missing Values**\n",
"- `HANDEDNESS_CATEGORY`: Missing values are assumed to correspond to `right-handed` subjects.\n",
"- `FIQ`: Missing values are imputed with a default score of `100`.\n",
"\n",
- "**Label Encoding**\n",
+ "### Label Encoding\n",
"\n",
"The diagnostic label `DX_GROUP` is used to assign the target class:\n",
- "- `CONTROL` \u2192 `0`\n",
- "- `ASD` \u2192 `1`"
- ],
- "cell_type": "markdown"
- },
- {
- "metadata": {
- "tags": []
- },
- "source": [
- "from preprocess import process_phenotypic_data\n",
- "\n",
- "# Process the phenotypic metadata from the ABIDE dataset\n",
- "# This function handles:\n",
- "# - Imputation of missing values (e.g., assuming right-handed for missing handedness)\n",
- "# - One-hot encoding of categorical variables (e.g., sex, site, eye status)\n",
- "# - Standardization of continuous variables based on the chosen strategy ('site' or 'all')\n",
- "\n",
- "# Returns:\n",
- "# - `labels`: Binary class labels (0 = control, 1 = ASD)\n",
- "# - `sites`: Site identifiers for domain adaptation\n",
- "# - `phenotypes`: Feature matrix containing encoded and standardized phenotypic variables\n",
- "labels, sites, phenotypes = process_phenotypic_data(\n",
- " dataset[\"phenotypic\"], cfg.PHENOTYPE.STANDARDIZE\n",
- ")"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
- },
- {
- "metadata": {
- "tags": []
- },
- "source": [
- "## Embedding Extraction\n",
- "\n",
- "Functional MRI (fMRI) time series data often vary in temporal length. However, many machine learning models, including those used in this study require fixed-size input. To address this, a common approach in fMRI analysis is to compute the functional connectivity (e.g., correlation) between regions of interest (ROIs), resulting in a fixed-size feature representation.\n",
- "\n",
- "Specifically, we compute a connectivity matrix for each subject, and extract the upper or lower triangular part (excluding the diagonal) to obtain a feature vector suitable for model training.\n",
- "\n",
- "The available arguments for embedding extraction are:\n",
- "- `measures`: A sequence of connectivity transformations applied to the ROI time series. Supported options include: `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, and `\"precision\"`. Default: `[\"pearson\"]`.\n",
"\n",
- "Multiple transformations can be chained to compute composite connectivity representations. For example, the **Tangent-Pearson** method proposed by *Kunda et al.* can be specified via `measures = [\"tangent\", \"pearson\"]`. This design also allows for future extensions to support higher-order connectivity features.\n",
+ "- `CONTROL` \u2192 `0`\n",
+ "- `ASD` \u2192 `1`\n",
"\n",
- "```{warning}\n",
- "Given the long runtime needed for Tangent-Pearson, we opt to use `\"pearson\"` by default.\n",
- "```"
+ "> **Note:** \n",
+ "> To reduce the file size for the phenotypic information, we provide a pre-imputed file that includes only the variables listed above. The function `preprocess_phenotypic_data` handles the separation of the target label (`DX_GROUP`) and site label (`SITE_ID`) from the phenotypes, performs one-hot encoding for categorical variables, and applies standardization to continuous variables as specified."
],
"cell_type": "markdown"
},
@@ -326,9 +283,11 @@
"tags": []
},
"source": [
- "from preprocess import extract_functional_connectivity\n",
+ "from preprocess import preprocess_phenotypic_data\n",
"\n",
- "features = extract_functional_connectivity(time_series, cfg.CONNECTIVITY.MEASURES)"
+ "labels, sites, phenotypes = preprocess_phenotypic_data(\n",
+ " phenotypes, cfg.PHENOTYPE.STANDARDIZE\n",
+ ")"
],
"cell_type": "code",
"outputs": [],
@@ -386,10 +345,18 @@
"\n",
"Alternatively, we can also use **Leave-P-Groups-Out (LPGO)** cross-validation. This strategy is particularly useful in multi-site studies, as it ensures that data from the same group (e.g., imaging site) are not shared between training and test sets, enabling more realistic generalization assessment under domain shift.\n",
"\n",
- "For this tutorial we will specify several arguments:\n",
- "- `split`: Defines the cross-validation strategy. `\"skf\"` for stratified k-fold to maintain label balance in each fold or use `\"lpgo\"` to evaluate generalization across sites by holding out entire groups (e.g., imaging sites). Default: `\"lpgo\"`\n",
- "- `num_folds`: Sets how many folds to use for stratified k-fold or how many groups to leave out in LPGO. Default: `1`\n",
- "- `num_cv_repeats`: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO). Default: `1`"
+ "In this tutorial, we specify the following arguments:\n",
+ "\n",
+ "- **`split`**: Defines the cross-validation strategy.\n",
+ " - `\"skf\"`: Stratified K-Fold to maintain label balance in each fold.\n",
+ " - `\"lpgo\"`: Leave-P-Groups-Out to evaluate generalization across sites by holding out entire groups (e.g., imaging sites).\n",
+ " - *Default:* `\"lpgo\"`\n",
+ "\n",
+ "- **`num_folds`**: Sets the number of folds for stratified k-fold or the number of groups to leave out in LPGO.\n",
+ " - *Default:* `1`\n",
+ "\n",
+ "- **`num_cv_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
+ " - *Default:* `1`"
],
"cell_type": "markdown"
},
@@ -427,18 +394,30 @@
},
"source": [
"### Model Definition\n",
- "We define different model configurations used for classification. Each model shares the same base classifier (e.g., logistic regression), but differs in how domain adaptation is applied:\n",
+ "\n",
+ "We define several model configurations used for classification. Each model shares the same base classifier (e.g., logistic regression), but differs in how domain adaptation is applied:\n",
+ "\n",
"- **Baseline**: A standard model trained directly on functional connectivity features without domain adaptation.\n",
- "- **Site Only**: A domain-adapted model that uses site labels as the adaptation factor, reducing site-specific bias.\n",
+ "- **Site Only**: A domain-adapted model that uses site labels as the adaptation factor to reduce site-specific bias.\n",
"- **All Phenotypes**: An extended domain-adapted model that incorporates multiple phenotypic variables (e.g., age, sex, handedness) to further reduce inter-site variability.\n",
"\n",
"We also specify the hyperparameter search strategy and other training parameters for each configuration, including:\n",
- "- `classifier`: The base model to use for classification. Available options include `\"logistic\"` for logistic regression, `\"ridge\"` for ridge classifier, and `\"svm\"` for support vector machines. Default: `\"logistic\"`\n",
- "- `scoring`: A list of performance metrics (e.g., accuracy, F1, AUROC) used during cross-validation.\n",
- "- `num_solver_iterations`: Maximum number of iterations allowed for the solver to converge during model fitting.\n",
- "- `num_search_iterations`: Number of hyperparameter combinations to evaluate in a randomized search.\n",
- "- `num_jobs`: Number of CPU cores used in parallel for hyperparameter tuning and model training. Set to `-1` to use all of the available CPU cores or `-k` to use all but `k` CPU cores.\n",
- "- `verbose`: Controls the verbosity of the training output. Higher values provide more detailed logs."
+ "\n",
+ "- **`classifier`**: The base model used for classification.\n",
+ " - Available options: `\"logistic\"` (logistic regression), `\"ridge\"` (ridge classifier), `\"svm\"` (support vector machines).\n",
+ " - *Default:* `\"logistic\"`\n",
+ "\n",
+ "- **`scoring`**: A list of performance metrics (e.g., accuracy, F1, AUROC) used during cross-validation.\n",
+ "\n",
+ "- **`num_solver_iterations`**: Maximum number of iterations allowed for the solver to converge during model fitting.\n",
+ "\n",
+ "- **`num_search_iterations`**: Number of hyperparameter combinations to evaluate in a randomized search.\n",
+ "\n",
+ "- **`num_jobs`**: Number of CPU cores used in parallel for hyperparameter tuning and model training.\n",
+ " - Set to `-1` to use all available CPU cores.\n",
+ " - Set to `-k` to use all but `k` CPU cores.\n",
+ "\n",
+ "- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
],
"cell_type": "markdown"
},
@@ -489,11 +468,11 @@
"tags": []
},
"source": [
- "import pandas as pd\n",
+ "import polars as pl\n",
"from tqdm import tqdm\n",
"\n",
"# Define common training arguments for all models: features (X), labels (y), and group info (sites)\n",
- "fit_args = {\"x\": features, \"y\": labels, \"groups\": sites}\n",
+ "fit_args = {\"x\": fc, \"y\": labels, \"groups\": sites}\n",
"\n",
"cv_results = {}\n",
"for model in (pbar := tqdm(trainers)):\n",
@@ -505,7 +484,7 @@
"\n",
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
- " cv_results[model] = pd.DataFrame(trainers[model].cv_results_)"
+ " cv_results[model] = pl.DataFrame(trainers[model].cv_results_)"
],
"cell_type": "code",
"outputs": [
@@ -513,7 +492,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [02:14<00:00, 44.96s/it]\n"
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:50<00:00, 16.87s/it]\n"
]
}
],
@@ -552,59 +531,26 @@
"output_type": "display_data",
"data": {
"text/html": [
- "
"
- ]
- },
- "metadata": {}
- }
- ],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -643,7 +638,7 @@
"This plot shows the **most discriminative ROI connections** for classifying ASD vs Control subjects.\n",
"- **Red edges** indicate connections **stronger in ASD**.\n",
"- **Blue edges** indicate connections **stronger in Control**.\n",
- "- Color intensity reflects the **magnitude of contribution** to the model\u2019s decision.\n",
+ "- Color intensity reflects the **magnitude of contribution** to the model’s decision.\n",
"\n",
"---\n",
"\n",
@@ -674,8 +669,16 @@
" - Linked to **motor coordination** and **sensorimotor integration**, commonly atypical in ASD.\n",
"\n",
"The interpretability analysis of the trained model highlights that **functional connectivity alterations across DMN, attention, salience, language, and sensorimotor systems** are key discriminative factors for distinguishing **ASD** from **Control** subjects."
- ],
- "cell_type": "markdown"
+ ]
}
- ]
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "embc25",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
}
From 8567ddd543052dd17673bbed0f1977df65e196d3 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 04:59:57 +0100
Subject: [PATCH 17/44] use single core only
---
tutorials/brain-disorder-diagnosis/experiments/base.yml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 9b438b2..f5ef4ac 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -5,6 +5,6 @@ DATASET:
TRAINER:
NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
- N_JOBS: -1
+ N_JOBS: 1
RANDOM_STATE: 0
From ac4a5e5892c4104788080f5a7ce9001f76f05b4d Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 05:09:34 +0100
Subject: [PATCH 18/44] update pre_dispatch config
---
tutorials/brain-disorder-diagnosis/config.py | 2 ++
tutorials/brain-disorder-diagnosis/experiments/base.yml | 3 ++-
2 files changed, 4 insertions(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index 07e5fa7..b0489b8 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -69,6 +69,8 @@
_C.TRAINER.REFIT = "accuracy"
# Number of parallel jobs (-1: all CPUs, -4: all but 4 CPUs)
_C.TRAINER.N_JOBS = 1
+# Pre-dispatch of jobs for parallel processing
+_C.TRAINER.PRE_DISPATCH = "2*n_jobs"
# Verbosity level
_C.TRAINER.VERBOSE = 0
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index f5ef4ac..96af976 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -5,6 +5,7 @@ DATASET:
TRAINER:
NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
- N_JOBS: 1
+ N_JOBS: -1
+ PRE_DISPATCH: "1*n_jobs"
RANDOM_STATE: 0
From 7a175ba95274a6af5582974e4158757cfcdce8fb Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 05:09:47 +0100
Subject: [PATCH 19/44] add --user to handle site-packages
---
tutorials/brain-disorder-diagnosis/notebook.ipynb | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 1e8154a..ad7c482 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -108,7 +108,7 @@
}
],
"source": [
- "!pip install --quiet \\\n",
+ "!pip install --quiet --user \\\n",
" git+https://github.com/pykale/pykale@main \\\n",
" gdown==5.2.0 nilearn==0.10.4 polars==1.3.0 yacs==0.1.8 \\\n",
" && echo \"pykale, gdown, nilearn, polars, and yacs installed successfully ✅\" \\\n",
From fe52be193ddede6c23a3bf9d44250a374c13e27a Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 05:15:06 +0100
Subject: [PATCH 20/44] use default n_jobs
---
tutorials/brain-disorder-diagnosis/experiments/base.yml | 2 --
1 file changed, 2 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 96af976..6027578 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -5,7 +5,5 @@ DATASET:
TRAINER:
NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
- N_JOBS: -1
- PRE_DISPATCH: "1*n_jobs"
RANDOM_STATE: 0
From bebe42fa7aeca7b7b1b3983b72c6a916c880599e Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:11:33 +0100
Subject: [PATCH 21/44] fallback to pandas
---
requirements.txt | 1 -
tutorials/brain-disorder-diagnosis/data.py | 13 +-
.../brain-disorder-diagnosis/notebook.ipynb | 370 ++++++++++--------
tutorials/brain-disorder-diagnosis/parsing.py | 50 +--
.../brain-disorder-diagnosis/preprocess.py | 171 ++++----
5 files changed, 336 insertions(+), 269 deletions(-)
diff --git a/requirements.txt b/requirements.txt
index f86d766..c8d6a96 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -5,5 +5,4 @@ numpy==1.26.4
git+https://github.com/pykale/pykale@main
nilearn==0.10.4
yacs==0.1.8
-polars==1.3.0
gdown==5.2.0
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index 63a777f..dfc7ff2 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -1,7 +1,7 @@
import os
import json
import numpy as np
-import polars as pl
+import pandas as pd
import gdown
AVAILABLE_ATLAS = {"aal", "cc200", "difumo64", "dos160", "hcp-ica", "ho", "tt"}
@@ -28,12 +28,16 @@ def load_data(
----------
data_dir : str, optional (default="data")
Local directory to store the dataset.
+
atlas : str, optional (default="cc200")
Atlas name (subfolder inside fc/).
+
fc : str, optional (default="tangent-pearson")
Functional connectivity file name (without extension).
+
vectorize : bool, optional (default=True)
Whether to vectorize the upper triangle of the connectivity matrices.
+
verbose : bool, optional (default=True)
Whether to print download and progress messages.
@@ -41,10 +45,13 @@ def load_data(
-------
fc : np.ndarray
Functional connectivity data (vectorized if requested).
- phenotypes : pl.DataFrame
+
+ phenotypes : pd.DataFrame
Phenotypic data loaded via Polars with proper missing value handling.
+
rois : np.ndarray
ROI labels.
+
coords : np.ndarray
ROI coordinates.
@@ -81,7 +88,7 @@ def load_data(
row, col = np.triu_indices(fc.shape[1], 1)
fc = fc[..., row, col]
- phenotypes = pl.read_csv(phenotypes_path)
+ phenotypes = pd.read_csv(phenotypes_path)
with open(os.path.join(atlas_path, "labels.txt"), "r") as f:
rois = np.array(f.read().strip().split("\n"))
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index ad7c482..62480f2 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -1,7 +1,15 @@
{
+ "nbformat": 4,
+ "nbformat_minor": 5,
+ "metadata": {
+ "kernelspec": {
+ "display_name": "embc25",
+ "language": "python",
+ "name": "python3"
+ }
+ },
"cells": [
{
- "cell_type": "markdown",
"metadata": {},
"source": [
"# Brain Disorder Diagnosis\n",
@@ -21,10 +29,10 @@
"3.\t**Extract** functional connectivity **embedding** from ROI-based time series.\n",
"4.\t**Build** a **training** and **evaluation** pipeline to assess classification performance under various domain adaptation strategies.\n",
"5.\t**Interpret** the learned model by extracting weights for pairwise ROI feature importance and visualizing them using a connectome plot."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -33,7 +41,7 @@
"\n",
"As a starting point, we will install the required packages and load a set of helper functions to assist throughout this tutorial. To keep the output clean and focused on interpretation, we will also suppress warnings.\n",
"\n",
- "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook’s current directory. The helper scripts include:\n",
+ "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook\u2019s current directory. The helper scripts include:\n",
"\n",
"- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
"- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
@@ -42,17 +50,15 @@
"\n",
"> **Note:** \n",
"> For Google Colab, these helper scripts are located in the `embc-mmai25/tutorials/brain-disorder-diagnosis` directory."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "outputs": [],
"source": [
"import os\n",
"import site\n",
@@ -67,10 +73,12 @@
" !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
" %cp -r /content/embc-mmai25/tutorials/brain-disorder-diagnosis/* /content/\n",
" %rm -r /content/embc-mmai25"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -88,54 +96,62 @@
"- **polars**: A high-performance data wrangling library, similar to `pandas`, but optimized for speed and memory efficiency, particularly suited for large-scale datasets.\n",
"\n",
"- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "source": [
+ "!pip install --quiet --user \\\n",
+ " git+https://github.com/pykale/pykale@main \\\n",
+ " gdown==5.2.0 nilearn==0.10.4 polars==1.3.0 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, polars, and yacs \u274c\""
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- "pykale, gdown, nilearn, polars, and yacs installed successfully ✅\n"
+ "pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\n"
]
}
],
- "source": [
- "!pip install --quiet --user \\\n",
- " git+https://github.com/pykale/pykale@main \\\n",
- " gdown==5.2.0 nilearn==0.10.4 polars==1.3.0 yacs==0.1.8 \\\n",
- " && echo \"pykale, gdown, nilearn, polars, and yacs installed successfully ✅\" \\\n",
- " || echo \"Failed to install pykale, gdown, nilearn, polars, and yacs ❌\""
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "source": [
+ "from config import get_cfg_defaults\n",
+ "\n",
+ "cfg = get_cfg_defaults()\n",
+ "cfg.merge_from_file(\"experiments/base.yml\")\n",
+ "cfg.freeze()\n",
+ "print(cfg)"
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
"CROSS_VALIDATION:\n",
" NUM_FOLDS: 10\n",
@@ -154,6 +170,7 @@
" NUM_SEARCH_ITER: 50\n",
" NUM_SOLVER_ITER: 100\n",
" N_JOBS: -1\n",
+ " PRE_DISPATCH: 2*n_jobs\n",
" REFIT: accuracy\n",
" SCORING: ['accuracy', 'roc_auc']\n",
" SEARCH_STRATEGY: random\n",
@@ -161,17 +178,9 @@
]
}
],
- "source": [
- "from config import get_cfg_defaults\n",
- "\n",
- "cfg = get_cfg_defaults()\n",
- "cfg.merge_from_file(\"experiments/base.yml\")\n",
- "cfg.freeze()\n",
- "print(cfg)"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -197,35 +206,35 @@
"- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
" - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
" - *Default:* `\"tangent-pearson\"`"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
+ "source": [
+ "from data import load_data\n",
+ "\n",
+ "fc, phenotypes, rois, coords = load_data(\n",
+ " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
+ ")"
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
- "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
- "✔ Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
+ "\u2714 Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
]
}
],
- "source": [
- "from data import load_data\n",
- "\n",
- "fc, phenotypes, rois, coords = load_data(\n",
- " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
- ")"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -265,30 +274,30 @@
"\n",
"The diagnostic label `DX_GROUP` is used to assign the target class:\n",
"\n",
- "- `CONTROL` → `0`\n",
- "- `ASD` → `1`\n",
+ "- `CONTROL` \u2192 `0`\n",
+ "- `ASD` \u2192 `1`\n",
"\n",
"> **Note:** \n",
"> To reduce the file size for the phenotypic information, we provide a pre-imputed file that includes only the variables listed above. The function `preprocess_phenotypic_data` handles the separation of the target label (`DX_GROUP`) and site label (`SITE_ID`) from the phenotypes, performs one-hot encoding for categorical variables, and applies standardization to continuous variables as specified."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from preprocess import preprocess_phenotypic_data\n",
"\n",
"labels, sites, phenotypes = preprocess_phenotypic_data(\n",
" phenotypes, cfg.PHENOTYPE.STANDARDIZE\n",
")"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -300,10 +309,10 @@
"We explore different configurations including a baseline model, domain adaptation using site information, and an extended approach that incorporates additional phenotypic variables.\n",
"\n",
"Each model is evaluated using cross-validation, and we analyze the impact of domain adaptation on classification performance."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -311,25 +320,25 @@
"### Random Seed\n",
"\n",
"To ensure reproducibility across runs, we define a fixed random seed. This guarantees that all operations involving randomness, such as cross-validation splits, model initialization, and hyperparameter search to produce consistent results."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.utils.validation import check_random_state\n",
"\n",
"# Convert the seed into a numpy-compatible RandomState instance\n",
"# This ensures consistent behavior across scikit-learn functions that rely on randomness\n",
"random_state = check_random_state(cfg.RANDOM_STATE)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -352,15 +361,13 @@
"\n",
"- **`num_cv_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
" - *Default:* `1`"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.model_selection import LeavePGroupsOut, RepeatedStratifiedKFold\n",
"\n",
@@ -380,10 +387,12 @@
"if cfg.CROSS_VALIDATION.SPLIT == \"lpgo\":\n",
" # Use group-based CV for domain adaptation or site bias evaluation\n",
" cv = LeavePGroupsOut(cfg.CROSS_VALIDATION.NUM_FOLDS)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -413,15 +422,13 @@
" - Set to `-k` to use all but `k` CPU cores.\n",
"\n",
"- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.base import clone\n",
"from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
@@ -442,10 +449,12 @@
"# Clone the 'site_only' trainer to create 'all_phenotypes' trainer\n",
"# This enables reusing the same training configuration, while modifying only the input domain factors\n",
"trainers[\"all_phenotypes\"] = clone(trainers[\"site_only\"])"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -455,25 +464,15 @@
"We train each model configuration using the previously defined cross-validation strategy. The training process involves fitting the model on functional connectivity features and evaluating its performance using multiple scoring metrics (e.g., accuracy, F1-score, AUROC).\n",
"\n",
"For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of embedding. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:50<00:00, 16.87s/it]\n"
- ]
- }
- ],
"source": [
- "import polars as pl\n",
+ "import pandas as pd\n",
"from tqdm import tqdm\n",
"\n",
"# Define common training arguments for all models: features (X), labels (y), and group info (sites)\n",
@@ -489,11 +488,21 @@
"\n",
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
- " cv_results[model] = pl.DataFrame(trainers[model].cv_results_)"
- ]
+ " cv_results[model] = pd.DataFrame(trainers[model].cv_results_)"
+ ],
+ "cell_type": "code",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:50<00:00, 16.95s/it]\n"
+ ]
+ }
+ ],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -503,66 +512,99 @@
"We evaluate and compare the performance of different model configurations using cross-validation results. We aggregate the top-performing scores for each model based on a specified evaluation metric (e.g., accuracy), allowing us to assess the effectiveness of domain adaptation strategies.\n",
"\n",
"By comparing models with and without domain adaptation, we can determine the impact of incorporating site and phenotypic information on multi-site autism classification performance. This analysis helps identify which configurations generalize best across heterogeneous imaging sites."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
+ "source": [
+ "from parsing import compile_results\n",
+ "\n",
+ "# Compile the cross-validation results into a summary table,\n",
+ "# sorting by the model with the highest test accuracy across CV folds\n",
+ "compiled_results = compile_results(cv_results, \"accuracy\")\n",
+ "\n",
+ "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
+ "display(compiled_results)"
+ ],
+ "cell_type": "code",
"outputs": [
{
+ "output_type": "display_data",
"data": {
"text/html": [
- "
\n",
- "shape: (3, 3)
Model
Accuracy
AUROC
str
str
str
"All Phenotypes"
"0.6610 ± 0.0612"
"0.7188 ± 0.0627"
"Baseline"
"0.6629 ± 0.0523"
"0.7105 ± 0.0556"
"Site Only"
"0.6677 ± 0.0423"
"0.7235 ± 0.0278"
"
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Accuracy
\n",
+ "
AUROC
\n",
+ "
\n",
+ "
\n",
+ "
Model
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Baseline
\n",
+ "
0.6629 \u00b1 0.0523
\n",
+ "
0.7105 \u00b1 0.0556
\n",
+ "
\n",
+ "
\n",
+ "
Site Only
\n",
+ "
0.6667 \u00b1 0.0428
\n",
+ "
0.7238 \u00b1 0.0277
\n",
+ "
\n",
+ "
\n",
+ "
All Phenotypes
\n",
+ "
0.6667 \u00b1 0.0538
\n",
+ "
0.7191 \u00b1 0.0583
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ ""
],
"text/plain": [
- "shape: (3, 3)\n",
- "┌────────────────┬─────────────────┬─────────────────┐\n",
- "│ Model ┆ Accuracy ┆ AUROC │\n",
- "│ --- ┆ --- ┆ --- │\n",
- "│ str ┆ str ┆ str │\n",
- "╞════════════════╪═════════════════╪═════════════════╡\n",
- "│ All Phenotypes ┆ 0.6610 ± 0.0612 ┆ 0.7188 ± 0.0627 │\n",
- "│ Baseline ┆ 0.6629 ± 0.0523 ┆ 0.7105 ± 0.0556 │\n",
- "│ Site Only ┆ 0.6677 ± 0.0423 ┆ 0.7235 ± 0.0278 │\n",
- "└────────────────┴─────────────────┴─────────────────┘"
+ " Accuracy AUROC\n",
+ "Model \n",
+ "Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
+ "Site Only 0.6667 \u00b1 0.0428 0.7238 \u00b1 0.0277\n",
+ "All Phenotypes 0.6667 \u00b1 0.0538 0.7191 \u00b1 0.0583"
]
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {}
}
],
- "source": [
- "from parsing import compile_results\n",
- "\n",
- "# Compile the cross-validation results into a summary table,\n",
- "# sorting by the model with the highest test accuracy across CV folds\n",
- "compiled_results = compile_results(cv_results, \"accuracy\")\n",
- "\n",
- "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
- "display(compiled_results)"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Interpretation"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -570,35 +612,13 @@
"We interpret the trained models by analyzing the learned weights associated with functional connectivity features. Specifically, we extract the top-weighted ROI pairs that contributed most to the classification decision.\n",
"\n",
"These weights are visualized as a **connectome plot**, allowing us to examine which brain region interactions are most informative for distinguishing individuals with autism from controls. This not only enhances the interpretability of the model but also provides potential insights into neurobiological patterns relevant to autism."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
"source": [
"import seaborn as sns\n",
"import numpy as np\n",
@@ -625,10 +645,32 @@
"\n",
"# Display the resulting connectome plot\n",
"display(proj)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -638,7 +680,7 @@
"This plot shows the **most discriminative ROI connections** for classifying ASD vs Control subjects.\n",
"- **Red edges** indicate connections **stronger in ASD**.\n",
"- **Blue edges** indicate connections **stronger in Control**.\n",
- "- Color intensity reflects the **magnitude of contribution** to the model’s decision.\n",
+ "- Color intensity reflects the **magnitude of contribution** to the model\u2019s decision.\n",
"\n",
"---\n",
"\n",
@@ -669,16 +711,8 @@
" - Linked to **motor coordination** and **sensorimotor integration**, commonly atypical in ASD.\n",
"\n",
"The interpretability analysis of the trained model highlights that **functional connectivity alterations across DMN, attention, salience, language, and sensorimotor systems** are key discriminative factors for distinguishing **ASD** from **Control** subjects."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "embc25",
- "language": "python",
- "name": "python3"
+ ],
+ "cell_type": "markdown"
}
- },
- "nbformat": 4,
- "nbformat_minor": 5
+ ]
}
diff --git a/tutorials/brain-disorder-diagnosis/parsing.py b/tutorials/brain-disorder-diagnosis/parsing.py
index 4aea13f..dc6fba4 100644
--- a/tutorials/brain-disorder-diagnosis/parsing.py
+++ b/tutorials/brain-disorder-diagnosis/parsing.py
@@ -1,7 +1,8 @@
+import pandas as pd
from collections import defaultdict
+from sklearn.utils._param_validation import validate_params, StrOptions
-import polars as pl
-
+__all__ = ["compile_results"]
# Mapping for model and score display names
MODEL = ["baseline", "site_only", "all_phenotypes"]
@@ -13,15 +14,20 @@
SCORE["matthews_corrcoef"] = "MCC"
+@validate_params(
+ {"cv_results": [dict], "sort_by": [StrOptions(set(SCORE))]},
+ prefer_skip_nested_validation=True,
+)
def compile_results(cv_results, sort_by):
"""
- Compile and summarize cross-validation results into a formatted Polars DataFrame.
+ Compile and summarize cross-validation results into a formatted DataFrame.
Parameters
----------
- cv_results : dict of str -> pl.DataFrame or dict of str -> dict of str -> list
+ cv_results : dict of str -> pd.DataFrame or dict of str -> dict of str -> list
Dictionary mapping model names to cross-validation results.
- Each entry should either be a Polars DataFrame or a dictionary of dictionary of list.
+ Each entry should either be a DataFrame or a dictionary of dictionary of list.
+
sort_by : str
Metric to use for selecting the best-performing model variant.
Available ones include: "accuracy", "precision", "recall", "f1", "roc_auc",
@@ -29,41 +35,35 @@ def compile_results(cv_results, sort_by):
Returns
-------
- compiled_results : pl.DataFrame
+ compiled_results : pd.DataFrame
Summary table with models as rows and formatted score strings (mean ± std) as columns.
"""
compiled_results = defaultdict(list)
for model in cv_results:
- # Ensure results are in Polars DataFrame format
- if not isinstance(cv_results[model], pl.DataFrame):
- cv_results[model] = pl.DataFrame(cv_results[model])
-
- df = cv_results[model]
+ # Ensure results are in DataFrame format
+ if not isinstance(cv_results[model], pd.DataFrame):
+ cv_results[model] = pd.DataFrame(cv_results[model])
# Extract all available test scores
scores = [
- col.removeprefix("rank_test_")
- for col in df.columns
- if col.startswith("rank_test_")
+ score.replace("rank_test_", "")
+ for score in cv_results[model].columns
+ if "rank_test" in score
]
- # Sort and select best row based on rank of the chosen metric
- sort_col = f"rank_test_{sort_by}"
- best_row = df.sort(sort_col).row(0) # get first row as tuple
-
- columns = df.columns
- row_dict = dict(zip(columns, best_row))
+ # Select the best row (lowest rank) based on the given metric
+ cv_result = cv_results[model].sort_values(f"rank_test_{sort_by}").iloc[0]
compiled_results["Model"].append(MODEL[model])
for score in scores:
- mean_score = row_dict[f"mean_test_{score}"]
- std_score = row_dict[f"std_test_{score}"]
+ mean_score = cv_result[f"mean_test_{score}"]
+ std_score = cv_result[f"std_test_{score}"]
compiled_results[SCORE[score]].append(f"{mean_score:.4f} ± {std_score:.4f}")
- # Convert to Polars DataFrame and index by model
- compiled_results = pl.DataFrame(compiled_results)
- compiled_results = compiled_results.sort("Model")
+ # Convert to DataFrame and index by model name
+ compiled_results = pd.DataFrame(compiled_results)
+ compiled_results = compiled_results.set_index("Model")
return compiled_results
diff --git a/tutorials/brain-disorder-diagnosis/preprocess.py b/tutorials/brain-disorder-diagnosis/preprocess.py
index 9ca675f..b400796 100644
--- a/tutorials/brain-disorder-diagnosis/preprocess.py
+++ b/tutorials/brain-disorder-diagnosis/preprocess.py
@@ -1,12 +1,44 @@
+import logging
+
import numpy as np
-import polars as pl
+import pandas as pd
+from nilearn.connectome import ConnectivityMeasure
from sklearn.preprocessing import StandardScaler
-
+from sklearn.utils._param_validation import (
+ Integral,
+ Interval,
+ StrOptions,
+ validate_params,
+)
__all__ = ["preprocess_phenotypic_data", "extract_functional_connectivity"]
-CATEGORICAL_PHENOTYPES = ["SITE_ID", "SEX", "HANDEDNESS_CATEGORY", "EYE_STATUS_AT_SCAN"]
-CONTINUOUS_PHENOTYPES = ["AGE_AT_SCAN", "FIQ"]
+SELECTED_PHENOTYPES = [
+ "SUB_ID",
+ "SITE_ID",
+ "SEX",
+ "AGE_AT_SCAN",
+ "FIQ",
+ "HANDEDNESS_CATEGORY",
+ "EYE_STATUS_AT_SCAN",
+ "DX_GROUP",
+]
+
+MAPPING = {
+ "SEX": {1: "MALE", 2: "FEMALE"},
+ "HANDEDNESS_CATEGORY": {
+ "L": "LEFT",
+ "R": "RIGHT",
+ "Mixed": "AMBIDEXTROUS",
+ "Ambi": "AMBIDEXTROUS",
+ "L->R": "AMBIDEXTROUS",
+ "R->L": "AMBIDEXTROUS",
+ "-9999": "LEFT",
+ np.nan: "LEFT",
+ },
+ "EYE_STATUS_AT_SCAN": {1: "OPEN", 2: "CLOSED"},
+ "DX_GROUP": {1: "ASD", 2: "CONTROL"},
+}
AVAILABLE_FC_MEASURES = {
"pearson": "correlation",
@@ -17,96 +49,89 @@
}
+@validate_params(
+ {"data": [pd.DataFrame], "standardize": [StrOptions({"site", "all"}), "boolean"]},
+ prefer_skip_nested_validation=False,
+)
def preprocess_phenotypic_data(data, standardize=False):
- """
- Preprocess phenotypic data by encoding labels, one-hot encoding categorical variables,
- and optionally standardizing continuous variables.
+ """Process phenotypic data to impute missing values and and encode categorical
+ variables including sex, handedness, eye status at scan, and diagnostic group.
Parameters
----------
- data : pl.DataFrame
- The input phenotypic dataframe containing both labels and covariates.
- standardize : {'site', 'all', True, False}, optional
- Strategy for standardizing continuous variables:
- - 'site': standardize AGE_AT_SCAN and FIQ within each site.
- - 'all' or True: standardize AGE_AT_SCAN and FIQ across all subjects.
- - False (default): no standardization applied.
+ data : pd.DataFrame of shape (n_subjects, n_phenotypes)
+ The phenotypes data to be processed.
+
+ standardize: boolean or str of ("site", "all"), (default=False)
+ Standardize FIQ and age. The default is 0.
+ Setting to True or "all" standardizes the
+ values over all subjects while "site"
+ standardizes according to the site.
Returns
-------
- labels : np.ndarray of shape (n_subjects,)
- Binary classification labels encoded as 0 (CONTROL) and 1 (ASD).
- sites : np.ndarray of shape (n_subjects,)
- Site identifiers for each subject.
- phenotypes : pl.DataFrame
- Preprocessed phenotypic features, with categorical variables one-hot encoded
- and continuous variables optionally standardized.
- """
- # Encode labels
- labels = data["DX_GROUP"].replace({"CONTROL": 0, "ASD": 1})
- labels = labels.cast(pl.Int8).to_numpy()
+ labels : pd.Series of shape (n_subjects)
+ The encoded classification group. 0 is "CONTROL" and
+ 1 is "ASD"
- # Extract site information
- sites = data["SITE_ID"].to_numpy()
-
- # Drop label column before feature processing
- data = data.drop("DX_GROUP")
+ phenotypes : pd.DataFrame of shape (n_subjects, n_selected_phenotypes)
+ The processed selected phenotype data with imputed values.
+ """
+ # Avoid in-place modification
+ data = data.copy()
- # One-hot encode categorical phenotypes
- data = data.to_dummies(CATEGORICAL_PHENOTYPES)
+ # Check for missing values, either -9999 or NaN
+ # and impute them with FIQ = 100 following original code.
+ fiq = data["FIQ"].copy()
+ data["FIQ"] = fiq.where((fiq != -9999) & (~np.isnan(fiq)), 100)
+ # Standardize FIQ and age by site
if standardize == "site":
- sites_unique = np.unique(sites)
- scaled_data = []
-
- for site in sites_unique:
- # Select data for the current site
- site_data = data.filter(sites == site)
-
- values = site_data.select(CONTINUOUS_PHENOTYPES).to_numpy()
- scaler = StandardScaler()
- values_scaled = scaler.fit_transform(values)
- age, fiq = values_scaled.T
-
- scaled_site_data = site_data.with_columns(
- [pl.Series("AGE_AT_SCAN", age), pl.Series("FIQ", fiq)]
- )
-
- scaled_data.append(scaled_site_data)
-
- data = pl.concat(scaled_data)
-
+ for site in data["SITE_ID"].unique():
+ mask = site == data["SITE_ID"]
+ values = data.loc[mask, ["AGE_AT_SCAN", "FIQ"]]
+ values = StandardScaler().fit_transform(values)
+ data.loc[mask, ["AGE_AT_SCAN", "FIQ"]] = values
elif standardize:
- values = data.select(CONTINUOUS_PHENOTYPES).to_numpy()
- scaler = StandardScaler()
- values_scaled = scaler.fit_transform(values)
- age, fiq = values_scaled.T
-
- data = data.with_columns(
- [
- pl.Series("AGE_AT_SCAN", age),
- pl.Series("FIQ", fiq),
- ]
- )
-
- data = data.sort("SUB_ID").drop("SUB_ID")
- phenotypes = data.to_numpy()
+ values = data.loc[:, ["AGE_AT_SCAN", "FIQ"]]
+ values = StandardScaler().fit_transform(values)
+ data.loc[:, ["AGE_AT_SCAN", "FIQ"]] = values
+
+ # Encode categorical variables to be more explicit categorical
+ # values. For handedness, if we found missing values, we
+ # impute them by using 'LEFT' as default. Values
+ # like 'Ambi', 'Mixed', 'L->R', and 'R->L' are mapped to
+ # 'AMBIDEXTROUS'. The rest of the values are mapped to 'LEFT' or 'RIGHT'
+ # for 'L' or 'R' respectively.
+ for key in MAPPING:
+ values = data[key].copy().map(MAPPING[key])
+ data[key] = values.astype("category")
+
+ # Subsets the phenotypes
+ data = data[SELECTED_PHENOTYPES].set_index("SUB_ID")
+
+ # Separate the class labels, sites, and phenotypes
+ labels = data["DX_GROUP"].map({"CONTROL": 0, "ASD": 1})
+ sites = data["SITE_ID"].to_numpy()
+ phenotypes = data.drop(columns=["DX_GROUP"])
+ # One-hot encode categorical valued phenotypes
+ phenotypes = pd.get_dummies(phenotypes)
return labels, sites, phenotypes
+@validate_params(
+ {"data": ["array-like"], "measures": [list]}, prefer_skip_nested_validation=False
+)
def extract_functional_connectivity(data, measures=["pearson"]):
- """
- Extract functional connectivity features from time series data using
- specified connectivity measures.
-
- To extract Tangent-Pearson connectivity, set `measures=["tangent", "pearson"]`.
+ """Extract functional connectivity features from time series data.
Parameters
----------
data : list[array-like] of shape (n_subjects,)
An array of numpy arrays, where each array is a time series of shape (t, n_rois).
The time series data for each subject.
+
measures : list[str], optional (default=["pearson"])
A list of connectivity measures to use for feature extraction.
Supported measures are "pearson", "partial", "tangent", "covariance", and "precision".
@@ -116,11 +141,13 @@ def extract_functional_connectivity(data, measures=["pearson"]):
-------
features : array-like
An array of shape (n_subjects, n_features) containing the extracted features.
- n_features is equal to `n_rois * (n_rois - 1) / 2` for each subject if vectorized.
+ n_features is equal to `n_rois * (n_rois - 1) / 2` for each subjects.
"""
for i, k in enumerate(reversed(measures), 1):
k = AVAILABLE_FC_MEASURES.get(k)
+ # If it is the last transformation, vectorize and discard the diagonal
+ # of shape (n_rois * (n_rois - 1) / 2)
islast = i == len(measures)
measure = ConnectivityMeasure(kind=k, vectorize=islast, discard_diagonal=islast)
data = measure.fit_transform(data)
From 79f03368202dcb8caf02df332b1c695558777439 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:16:26 +0100
Subject: [PATCH 22/44] update config and base yml
---
tutorials/brain-disorder-diagnosis/config.py | 2 +-
tutorials/brain-disorder-diagnosis/experiments/base.yml | 3 +++
2 files changed, 4 insertions(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index b0489b8..42fd3cb 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -42,7 +42,7 @@
# Number of folds for cross-validation
_C.CROSS_VALIDATION.NUM_FOLDS = 10
# Number of repeats for cross-validation
-_C.CROSS_VALIDATION.NUM_REPEATS = 1
+_C.CROSS_VALIDATION.NUM_REPEATS = 5
# Trainer configuration
_C.TRAINER = CfgNode()
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 6027578..45998e0 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -2,6 +2,9 @@ DATASET:
ATLAS: hcp-ica
FC: tangent-pearson
+CROSS_VALIDATION:
+ NUM_REPEATS: 1
+
TRAINER:
NUM_SEARCH_ITER: 50
NUM_SOLVER_ITER: 100
From d93784df872395f9963277229f446b649eb8fb78 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:16:59 +0100
Subject: [PATCH 23/44] remove polars
---
.../brain-disorder-diagnosis/notebook.ipynb | 26 +++++++++----------
1 file changed, 12 insertions(+), 14 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 62480f2..11f3a95 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -93,8 +93,6 @@
"\n",
"- **nilearn**: A Python library for neuroimaging analysis. It offers convenient tools for processing, analyzing, and visualizing functional MRI (fMRI) data.\n",
"\n",
- "- **polars**: A high-performance data wrangling library, similar to `pandas`, but optimized for speed and memory efficiency, particularly suited for large-scale datasets.\n",
- "\n",
"- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
],
"cell_type": "markdown"
@@ -108,9 +106,9 @@
"source": [
"!pip install --quiet --user \\\n",
" git+https://github.com/pykale/pykale@main \\\n",
- " gdown==5.2.0 nilearn==0.10.4 polars==1.3.0 yacs==0.1.8 \\\n",
- " && echo \"pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\" \\\n",
- " || echo \"Failed to install pykale, gdown, nilearn, polars, and yacs \u274c\""
+ " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, and yacs \u274c\""
],
"cell_type": "code",
"outputs": [
@@ -118,7 +116,7 @@
"output_type": "stream",
"name": "stdout",
"text": [
- "pykale, gdown, nilearn, polars, and yacs installed successfully \u2705\n"
+ "pykale, gdown, nilearn, and yacs installed successfully \u2705\n"
]
}
],
@@ -496,7 +494,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:50<00:00, 16.95s/it]\n"
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:49<00:00, 16.50s/it]\n"
]
}
],
@@ -570,13 +568,13 @@
" \n",
"
\n",
"
Site Only
\n",
- "
0.6667 \u00b1 0.0428
\n",
- "
0.7238 \u00b1 0.0277
\n",
+ "
0.6638 \u00b1 0.0355
\n",
+ "
0.7210 \u00b1 0.0320
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6667 \u00b1 0.0538
\n",
- "
0.7191 \u00b1 0.0583
\n",
+ "
0.6687 \u00b1 0.0540
\n",
+ "
0.7202 \u00b1 0.0585
\n",
"
\n",
" \n",
"\n",
@@ -586,8 +584,8 @@
" Accuracy AUROC\n",
"Model \n",
"Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
- "Site Only 0.6667 \u00b1 0.0428 0.7238 \u00b1 0.0277\n",
- "All Phenotypes 0.6667 \u00b1 0.0538 0.7191 \u00b1 0.0583"
+ "Site Only 0.6638 \u00b1 0.0355 0.7210 \u00b1 0.0320\n",
+ "All Phenotypes 0.6687 \u00b1 0.0540 0.7202 \u00b1 0.0585"
]
},
"metadata": {}
@@ -652,7 +650,7 @@
"output_type": "display_data",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {}
From 1ad406b76f9b4c56f0984dca2ebd2a6cc4824fca Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:33:40 +0100
Subject: [PATCH 24/44] use tangent-pearson by default
---
tutorials/brain-disorder-diagnosis/config.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index 42fd3cb..cc354d9 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -28,7 +28,7 @@
# - "precision"
# - "covariance"
# - "tangent-pearson"
-_C.DATASET.FC = "pearson"
+_C.DATASET.FC = "tangent-pearson"
# Phenotype configuration
_C.PHENOTYPE = CfgNode()
From 544fb50d5bbcd764f89c93cbffbd4842335ad78c Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:34:51 +0100
Subject: [PATCH 25/44] remove fc cfg
---
tutorials/brain-disorder-diagnosis/experiments/base.yml | 1 -
1 file changed, 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 45998e0..006b5e5 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -1,6 +1,5 @@
DATASET:
ATLAS: hcp-ica
- FC: tangent-pearson
CROSS_VALIDATION:
NUM_REPEATS: 1
From 63d78c44ff28d61bd94257a7605e116d3be32bbc Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:35:43 +0100
Subject: [PATCH 26/44] reduce search iter
---
tutorials/brain-disorder-diagnosis/experiments/base.yml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/experiments/base.yml b/tutorials/brain-disorder-diagnosis/experiments/base.yml
index 006b5e5..3658c80 100644
--- a/tutorials/brain-disorder-diagnosis/experiments/base.yml
+++ b/tutorials/brain-disorder-diagnosis/experiments/base.yml
@@ -5,7 +5,7 @@ CROSS_VALIDATION:
NUM_REPEATS: 1
TRAINER:
- NUM_SEARCH_ITER: 50
+ NUM_SEARCH_ITER: 20
NUM_SOLVER_ITER: 100
RANDOM_STATE: 0
From d41007a5bd2416e7641e63de0df3eedfbc63d111 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 09:44:03 +0100
Subject: [PATCH 27/44] update notebook with new cfg
---
.../brain-disorder-diagnosis/notebook.ipynb | 326 +++++++++---------
1 file changed, 162 insertions(+), 164 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 11f3a95..501e26a 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -1,15 +1,7 @@
{
- "nbformat": 4,
- "nbformat_minor": 5,
- "metadata": {
- "kernelspec": {
- "display_name": "embc25",
- "language": "python",
- "name": "python3"
- }
- },
"cells": [
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"# Brain Disorder Diagnosis\n",
@@ -29,10 +21,10 @@
"3.\t**Extract** functional connectivity **embedding** from ROI-based time series.\n",
"4.\t**Build** a **training** and **evaluation** pipeline to assess classification performance under various domain adaptation strategies.\n",
"5.\t**Interpret** the learned model by extracting weights for pairwise ROI feature importance and visualizing them using a connectome plot."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -41,7 +33,7 @@
"\n",
"As a starting point, we will install the required packages and load a set of helper functions to assist throughout this tutorial. To keep the output clean and focused on interpretation, we will also suppress warnings.\n",
"\n",
- "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook\u2019s current directory. The helper scripts include:\n",
+ "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook’s current directory. The helper scripts include:\n",
"\n",
"- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
"- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
@@ -50,15 +42,17 @@
"\n",
"> **Note:** \n",
"> For Google Colab, these helper scripts are located in the `embc-mmai25/tutorials/brain-disorder-diagnosis` directory."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "outputs": [],
"source": [
"import os\n",
"import site\n",
@@ -73,12 +67,10 @@
" !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
" %cp -r /content/embc-mmai25/tutorials/brain-disorder-diagnosis/* /content/\n",
" %rm -r /content/embc-mmai25"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -94,62 +86,54 @@
"- **nilearn**: A Python library for neuroimaging analysis. It offers convenient tools for processing, analyzing, and visualizing functional MRI (fMRI) data.\n",
"\n",
"- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "source": [
- "!pip install --quiet --user \\\n",
- " git+https://github.com/pykale/pykale@main \\\n",
- " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
- " && echo \"pykale, gdown, nilearn, and yacs installed successfully \u2705\" \\\n",
- " || echo \"Failed to install pykale, gdown, nilearn, and yacs \u274c\""
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
- "pykale, gdown, nilearn, and yacs installed successfully \u2705\n"
+ "pykale, gdown, nilearn, and yacs installed successfully ✅\n"
]
}
],
- "execution_count": null
+ "source": [
+ "!pip install --quiet --user \\\n",
+ " git+https://github.com/pykale/pykale@main \\\n",
+ " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, and yacs installed successfully ✅\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, and yacs ❌\""
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "source": [
- "from config import get_cfg_defaults\n",
- "\n",
- "cfg = get_cfg_defaults()\n",
- "cfg.merge_from_file(\"experiments/base.yml\")\n",
- "cfg.freeze()\n",
- "print(cfg)"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"CROSS_VALIDATION:\n",
" NUM_FOLDS: 10\n",
@@ -165,7 +149,7 @@
"TRAINER:\n",
" CLASSIFIER: lr\n",
" NONLINEAR: False\n",
- " NUM_SEARCH_ITER: 50\n",
+ " NUM_SEARCH_ITER: 20\n",
" NUM_SOLVER_ITER: 100\n",
" N_JOBS: -1\n",
" PRE_DISPATCH: 2*n_jobs\n",
@@ -176,9 +160,17 @@
]
}
],
- "execution_count": null
+ "source": [
+ "from config import get_cfg_defaults\n",
+ "\n",
+ "cfg = get_cfg_defaults()\n",
+ "cfg.merge_from_file(\"experiments/base.yml\")\n",
+ "cfg.freeze()\n",
+ "print(cfg)"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -204,42 +196,42 @@
"- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
" - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
" - *Default:* `\"tangent-pearson\"`"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
- "source": [
- "from data import load_data\n",
- "\n",
- "fc, phenotypes, rois, coords = load_data(\n",
- " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
- ")"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
- "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
- "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
- "\u2714 Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
+ "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
+ "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
+ "✔ Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
]
}
],
- "execution_count": null
+ "source": [
+ "from data import load_data\n",
+ "\n",
+ "fc, phenotypes, rois, coords = load_data(\n",
+ " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
+ ")"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Phenotype Preprocessing\n",
"\n",
- "The phenotypic information in the dataset contains several missing values. We impute and encode these variables to make them suitable for modeling.\n",
+ "The phenotypic information in the dataset contains several missing values. We impute and encode these variables to make them suitable for modeling. The `preprocess_phenotypic_data` function handles this functionality for us.\n",
"\n",
"### Categorical Variables\n",
"\n",
@@ -272,30 +264,27 @@
"\n",
"The diagnostic label `DX_GROUP` is used to assign the target class:\n",
"\n",
- "- `CONTROL` \u2192 `0`\n",
- "- `ASD` \u2192 `1`\n",
- "\n",
- "> **Note:** \n",
- "> To reduce the file size for the phenotypic information, we provide a pre-imputed file that includes only the variables listed above. The function `preprocess_phenotypic_data` handles the separation of the target label (`DX_GROUP`) and site label (`SITE_ID`) from the phenotypes, performs one-hot encoding for categorical variables, and applies standardization to continuous variables as specified."
- ],
- "cell_type": "markdown"
+ "- `CONTROL` → `0`\n",
+ "- `ASD` → `1`"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from preprocess import preprocess_phenotypic_data\n",
"\n",
"labels, sites, phenotypes = preprocess_phenotypic_data(\n",
" phenotypes, cfg.PHENOTYPE.STANDARDIZE\n",
")"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -307,10 +296,10 @@
"We explore different configurations including a baseline model, domain adaptation using site information, and an extended approach that incorporates additional phenotypic variables.\n",
"\n",
"Each model is evaluated using cross-validation, and we analyze the impact of domain adaptation on classification performance."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -318,25 +307,25 @@
"### Random Seed\n",
"\n",
"To ensure reproducibility across runs, we define a fixed random seed. This guarantees that all operations involving randomness, such as cross-validation splits, model initialization, and hyperparameter search to produce consistent results."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from sklearn.utils.validation import check_random_state\n",
"\n",
"# Convert the seed into a numpy-compatible RandomState instance\n",
"# This ensures consistent behavior across scikit-learn functions that rely on randomness\n",
"random_state = check_random_state(cfg.RANDOM_STATE)"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -359,13 +348,15 @@
"\n",
"- **`num_cv_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
" - *Default:* `1`"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from sklearn.model_selection import LeavePGroupsOut, RepeatedStratifiedKFold\n",
"\n",
@@ -385,12 +376,10 @@
"if cfg.CROSS_VALIDATION.SPLIT == \"lpgo\":\n",
" # Use group-based CV for domain adaptation or site bias evaluation\n",
" cv = LeavePGroupsOut(cfg.CROSS_VALIDATION.NUM_FOLDS)"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -420,13 +409,15 @@
" - Set to `-k` to use all but `k` CPU cores.\n",
"\n",
"- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from sklearn.base import clone\n",
"from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
@@ -447,12 +438,10 @@
"# Clone the 'site_only' trainer to create 'all_phenotypes' trainer\n",
"# This enables reusing the same training configuration, while modifying only the input domain factors\n",
"trainers[\"all_phenotypes\"] = clone(trainers[\"site_only\"])"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -462,13 +451,23 @@
"We train each model configuration using the previously defined cross-validation strategy. The training process involves fitting the model on functional connectivity features and evaluating its performance using multiple scoring metrics (e.g., accuracy, F1-score, AUROC).\n",
"\n",
"For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of embedding. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:21<00:00, 7.32s/it]\n"
+ ]
+ }
+ ],
"source": [
"import pandas as pd\n",
"from tqdm import tqdm\n",
@@ -487,20 +486,10 @@
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
" cv_results[model] = pd.DataFrame(trainers[model].cv_results_)"
- ],
- "cell_type": "code",
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:49<00:00, 16.50s/it]\n"
- ]
- }
- ],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -510,27 +499,16 @@
"We evaluate and compare the performance of different model configurations using cross-validation results. We aggregate the top-performing scores for each model based on a specified evaluation metric (e.g., accuracy), allowing us to assess the effectiveness of domain adaptation strategies.\n",
"\n",
"By comparing models with and without domain adaptation, we can determine the impact of incorporating site and phenotypic information on multi-site autism classification performance. This analysis helps identify which configurations generalize best across heterogeneous imaging sites."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
- "source": [
- "from parsing import compile_results\n",
- "\n",
- "# Compile the cross-validation results into a summary table,\n",
- "# sorting by the model with the highest test accuracy across CV folds\n",
- "compiled_results = compile_results(cv_results, \"accuracy\")\n",
- "\n",
- "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
- "display(compiled_results)"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "display_data",
"data": {
"text/html": [
"
\n",
@@ -563,18 +541,18 @@
" \n",
"
\n",
"
Baseline
\n",
- "
0.6629 \u00b1 0.0523
\n",
- "
0.7105 \u00b1 0.0556
\n",
+ "
0.6629 ± 0.0523
\n",
+ "
0.7105 ± 0.0556
\n",
"
\n",
"
\n",
"
Site Only
\n",
- "
0.6638 \u00b1 0.0355
\n",
- "
0.7210 \u00b1 0.0320
\n",
+ "
0.6667 ± 0.0428
\n",
+ "
0.7238 ± 0.0277
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6687 \u00b1 0.0540
\n",
- "
0.7202 \u00b1 0.0585
\n",
+ "
0.6610 ± 0.0612
\n",
+ "
0.7188 ± 0.0627
\n",
"
\n",
" \n",
"\n",
@@ -583,26 +561,37 @@
"text/plain": [
" Accuracy AUROC\n",
"Model \n",
- "Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
- "Site Only 0.6638 \u00b1 0.0355 0.7210 \u00b1 0.0320\n",
- "All Phenotypes 0.6687 \u00b1 0.0540 0.7202 \u00b1 0.0585"
+ "Baseline 0.6629 ± 0.0523 0.7105 ± 0.0556\n",
+ "Site Only 0.6667 ± 0.0428 0.7238 ± 0.0277\n",
+ "All Phenotypes 0.6610 ± 0.0612 0.7188 ± 0.0627"
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
],
- "execution_count": null
+ "source": [
+ "from parsing import compile_results\n",
+ "\n",
+ "# Compile the cross-validation results into a summary table,\n",
+ "# sorting by the model with the highest test accuracy across CV folds\n",
+ "compiled_results = compile_results(cv_results, \"accuracy\")\n",
+ "\n",
+ "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
+ "display(compiled_results)"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Interpretation"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -610,13 +599,35 @@
"We interpret the trained models by analyzing the learned weights associated with functional connectivity features. Specifically, we extract the top-weighted ROI pairs that contributed most to the classification decision.\n",
"\n",
"These weights are visualized as a **connectome plot**, allowing us to examine which brain region interactions are most informative for distinguishing individuals with autism from controls. This not only enhances the interpretability of the model but also provides potential insights into neurobiological patterns relevant to autism."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"import seaborn as sns\n",
"import numpy as np\n",
@@ -624,7 +635,8 @@
"from kale.interpret.visualize import visualize_connectome\n",
"from nilearn.datasets import fetch_atlas_aal\n",
"\n",
- "coef = trainers[\"all_phenotypes\"].coef_.ravel()\n",
+ "\n",
+ "coef = trainers[\"site_only\"].coef_.ravel()\n",
"# check if coef != features\n",
"if coef.shape[0] != fc.shape[1]:\n",
" coef, _ = np.split(coef, [fc.shape[1]])\n",
@@ -643,32 +655,10 @@
"\n",
"# Display the resulting connectome plot\n",
"display(proj)"
- ],
- "cell_type": "code",
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {}
- }
- ],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -678,7 +668,7 @@
"This plot shows the **most discriminative ROI connections** for classifying ASD vs Control subjects.\n",
"- **Red edges** indicate connections **stronger in ASD**.\n",
"- **Blue edges** indicate connections **stronger in Control**.\n",
- "- Color intensity reflects the **magnitude of contribution** to the model\u2019s decision.\n",
+ "- Color intensity reflects the **magnitude of contribution** to the model’s decision.\n",
"\n",
"---\n",
"\n",
@@ -709,8 +699,16 @@
" - Linked to **motor coordination** and **sensorimotor integration**, commonly atypical in ASD.\n",
"\n",
"The interpretability analysis of the trained model highlights that **functional connectivity alterations across DMN, attention, salience, language, and sensorimotor systems** are key discriminative factors for distinguishing **ASD** from **Control** subjects."
- ],
- "cell_type": "markdown"
+ ]
}
- ]
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "embc25",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
}
From df965582089b524144d47ec56280c54a5a1f319e Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:19:27 +0100
Subject: [PATCH 28/44] revert to use param_validation for load_data
---
tutorials/brain-disorder-diagnosis/data.py | 59 ++--
.../brain-disorder-diagnosis/notebook.ipynb | 316 +++++++++---------
2 files changed, 195 insertions(+), 180 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index dfc7ff2..d33f40a 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -4,17 +4,42 @@
import pandas as pd
import gdown
-AVAILABLE_ATLAS = {"aal", "cc200", "difumo64", "dos160", "hcp-ica", "ho", "tt"}
-AVAILABLE_FC = {
- "pearson",
- "partial",
- "tangent",
- "precision",
- "covariance",
- "tangent-pearson",
-}
-
-
+from sklearn.utils._param_validation import StrOptions, validate_params
+
+
+@validate_params(
+ {
+ "data_dir": [str],
+ "atlas": [
+ StrOptions(
+ {
+ "aal",
+ "cc200",
+ "difumo64",
+ "dos160",
+ "hcp-ica",
+ "ho",
+ "tt",
+ }
+ )
+ ],
+ "fc": [
+ StrOptions(
+ {
+ "pearson",
+ "partial",
+ "tangent",
+ "precision",
+ "covariance",
+ "tangent-pearson",
+ }
+ )
+ ],
+ "vectorize": [bool],
+ "verbose": [bool],
+ },
+ prefer_skip_nested_validation=False,
+)
def load_data(
data_dir="data", atlas="cc200", fc="tangent-pearson", vectorize=True, verbose=True
):
@@ -47,7 +72,7 @@ def load_data(
Functional connectivity data (vectorized if requested).
phenotypes : pd.DataFrame
- Phenotypic data loaded via Polars with proper missing value handling.
+ Loaded phenotypic data.
rois : np.ndarray
ROI labels.
@@ -60,16 +85,6 @@ def load_data(
FileNotFoundError
If the required file paths are not found after attempted download.
"""
- if atlas not in AVAILABLE_ATLAS:
- raise ValueError(
- f"Invalid atlas '{atlas}'. Available options: {AVAILABLE_ATLAS}"
- )
-
- if fc not in AVAILABLE_FC:
- raise ValueError(
- f"Invalid functional connectivity '{fc}'. Available options: {AVAILABLE_FC}"
- )
-
# Paths
fc_path = os.path.join(data_dir, "abide", "fc", atlas, f"{fc}.npy")
is_proba = atlas in {"difumo64"}
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 501e26a..dcd7df3 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -1,7 +1,15 @@
{
+ "nbformat": 4,
+ "nbformat_minor": 5,
+ "metadata": {
+ "kernelspec": {
+ "display_name": "embc25",
+ "language": "python",
+ "name": "python3"
+ }
+ },
"cells": [
{
- "cell_type": "markdown",
"metadata": {},
"source": [
"# Brain Disorder Diagnosis\n",
@@ -21,10 +29,10 @@
"3.\t**Extract** functional connectivity **embedding** from ROI-based time series.\n",
"4.\t**Build** a **training** and **evaluation** pipeline to assess classification performance under various domain adaptation strategies.\n",
"5.\t**Interpret** the learned model by extracting weights for pairwise ROI feature importance and visualizing them using a connectome plot."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -33,7 +41,7 @@
"\n",
"As a starting point, we will install the required packages and load a set of helper functions to assist throughout this tutorial. To keep the output clean and focused on interpretation, we will also suppress warnings.\n",
"\n",
- "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook’s current directory. The helper scripts include:\n",
+ "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook\u2019s current directory. The helper scripts include:\n",
"\n",
"- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
"- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
@@ -42,17 +50,15 @@
"\n",
"> **Note:** \n",
"> For Google Colab, these helper scripts are located in the `embc-mmai25/tutorials/brain-disorder-diagnosis` directory."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "outputs": [],
"source": [
"import os\n",
"import site\n",
@@ -67,10 +73,12 @@
" !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
" %cp -r /content/embc-mmai25/tutorials/brain-disorder-diagnosis/* /content/\n",
" %rm -r /content/embc-mmai25"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -86,54 +94,62 @@
"- **nilearn**: A Python library for neuroimaging analysis. It offers convenient tools for processing, analyzing, and visualizing functional MRI (fMRI) data.\n",
"\n",
"- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "source": [
+ "!pip install --quiet --user \\\n",
+ " git+https://github.com/pykale/pykale@main \\\n",
+ " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, and yacs installed successfully \u2705\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, and yacs \u274c\""
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- "pykale, gdown, nilearn, and yacs installed successfully ✅\n"
+ "pykale, gdown, nilearn, and yacs installed successfully \u2705\n"
]
}
],
- "source": [
- "!pip install --quiet --user \\\n",
- " git+https://github.com/pykale/pykale@main \\\n",
- " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
- " && echo \"pykale, gdown, nilearn, and yacs installed successfully ✅\" \\\n",
- " || echo \"Failed to install pykale, gdown, nilearn, and yacs ❌\""
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "source": [
+ "from config import get_cfg_defaults\n",
+ "\n",
+ "cfg = get_cfg_defaults()\n",
+ "cfg.merge_from_file(\"experiments/base.yml\")\n",
+ "cfg.freeze()\n",
+ "print(cfg)"
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
"CROSS_VALIDATION:\n",
" NUM_FOLDS: 10\n",
@@ -160,17 +176,9 @@
]
}
],
- "source": [
- "from config import get_cfg_defaults\n",
- "\n",
- "cfg = get_cfg_defaults()\n",
- "cfg.merge_from_file(\"experiments/base.yml\")\n",
- "cfg.freeze()\n",
- "print(cfg)"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -196,35 +204,35 @@
"- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
" - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
" - *Default:* `\"tangent-pearson\"`"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
+ "source": [
+ "from data import load_data\n",
+ "\n",
+ "fc, phenotypes, rois, coords = load_data(\n",
+ " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
+ ")"
+ ],
+ "cell_type": "code",
"outputs": [
{
- "name": "stdout",
"output_type": "stream",
+ "name": "stdout",
"text": [
- "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
- "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
- "✔ Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
+ "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
+ "\u2714 Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
]
}
],
- "source": [
- "from data import load_data\n",
- "\n",
- "fc, phenotypes, rois, coords = load_data(\n",
- " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
- ")"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -264,27 +272,27 @@
"\n",
"The diagnostic label `DX_GROUP` is used to assign the target class:\n",
"\n",
- "- `CONTROL` → `0`\n",
- "- `ASD` → `1`"
- ]
+ "- `CONTROL` \u2192 `0`\n",
+ "- `ASD` \u2192 `1`"
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from preprocess import preprocess_phenotypic_data\n",
"\n",
"labels, sites, phenotypes = preprocess_phenotypic_data(\n",
" phenotypes, cfg.PHENOTYPE.STANDARDIZE\n",
")"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -296,10 +304,10 @@
"We explore different configurations including a baseline model, domain adaptation using site information, and an extended approach that incorporates additional phenotypic variables.\n",
"\n",
"Each model is evaluated using cross-validation, and we analyze the impact of domain adaptation on classification performance."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -307,25 +315,25 @@
"### Random Seed\n",
"\n",
"To ensure reproducibility across runs, we define a fixed random seed. This guarantees that all operations involving randomness, such as cross-validation splits, model initialization, and hyperparameter search to produce consistent results."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.utils.validation import check_random_state\n",
"\n",
"# Convert the seed into a numpy-compatible RandomState instance\n",
"# This ensures consistent behavior across scikit-learn functions that rely on randomness\n",
"random_state = check_random_state(cfg.RANDOM_STATE)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -348,15 +356,13 @@
"\n",
"- **`num_cv_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
" - *Default:* `1`"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.model_selection import LeavePGroupsOut, RepeatedStratifiedKFold\n",
"\n",
@@ -376,10 +382,12 @@
"if cfg.CROSS_VALIDATION.SPLIT == \"lpgo\":\n",
" # Use group-based CV for domain adaptation or site bias evaluation\n",
" cv = LeavePGroupsOut(cfg.CROSS_VALIDATION.NUM_FOLDS)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -409,15 +417,13 @@
" - Set to `-k` to use all but `k` CPU cores.\n",
"\n",
"- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [],
"source": [
"from sklearn.base import clone\n",
"from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
@@ -438,10 +444,12 @@
"# Clone the 'site_only' trainer to create 'all_phenotypes' trainer\n",
"# This enables reusing the same training configuration, while modifying only the input domain factors\n",
"trainers[\"all_phenotypes\"] = clone(trainers[\"site_only\"])"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -451,23 +459,13 @@
"We train each model configuration using the previously defined cross-validation strategy. The training process involves fitting the model on functional connectivity features and evaluating its performance using multiple scoring metrics (e.g., accuracy, F1-score, AUROC).\n",
"\n",
"For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of embedding. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:21<00:00, 7.32s/it]\n"
- ]
- }
- ],
"source": [
"import pandas as pd\n",
"from tqdm import tqdm\n",
@@ -486,10 +484,20 @@
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
" cv_results[model] = pd.DataFrame(trainers[model].cv_results_)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:21<00:00, 7.25s/it]\n"
+ ]
+ }
+ ],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -499,16 +507,27 @@
"We evaluate and compare the performance of different model configurations using cross-validation results. We aggregate the top-performing scores for each model based on a specified evaluation metric (e.g., accuracy), allowing us to assess the effectiveness of domain adaptation strategies.\n",
"\n",
"By comparing models with and without domain adaptation, we can determine the impact of incorporating site and phenotypic information on multi-site autism classification performance. This analysis helps identify which configurations generalize best across heterogeneous imaging sites."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
+ "source": [
+ "from parsing import compile_results\n",
+ "\n",
+ "# Compile the cross-validation results into a summary table,\n",
+ "# sorting by the model with the highest test accuracy across CV folds\n",
+ "compiled_results = compile_results(cv_results, \"accuracy\")\n",
+ "\n",
+ "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
+ "display(compiled_results)"
+ ],
+ "cell_type": "code",
"outputs": [
{
+ "output_type": "display_data",
"data": {
"text/html": [
"
\n",
@@ -541,18 +560,18 @@
" \n",
"
\n",
"
Baseline
\n",
- "
0.6629 ± 0.0523
\n",
- "
0.7105 ± 0.0556
\n",
+ "
0.6629 \u00b1 0.0523
\n",
+ "
0.7105 \u00b1 0.0556
\n",
"
\n",
"
\n",
"
Site Only
\n",
- "
0.6667 ± 0.0428
\n",
- "
0.7238 ± 0.0277
\n",
+ "
0.6531 \u00b1 0.0364
\n",
+ "
0.7142 \u00b1 0.0339
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6610 ± 0.0612
\n",
- "
0.7188 ± 0.0627
\n",
+ "
0.6667 \u00b1 0.0538
\n",
+ "
0.7191 \u00b1 0.0583
\n",
"
\n",
" \n",
"\n",
@@ -561,37 +580,26 @@
"text/plain": [
" Accuracy AUROC\n",
"Model \n",
- "Baseline 0.6629 ± 0.0523 0.7105 ± 0.0556\n",
- "Site Only 0.6667 ± 0.0428 0.7238 ± 0.0277\n",
- "All Phenotypes 0.6610 ± 0.0612 0.7188 ± 0.0627"
+ "Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
+ "Site Only 0.6531 \u00b1 0.0364 0.7142 \u00b1 0.0339\n",
+ "All Phenotypes 0.6667 \u00b1 0.0538 0.7191 \u00b1 0.0583"
]
},
- "metadata": {},
- "output_type": "display_data"
+ "metadata": {}
}
],
- "source": [
- "from parsing import compile_results\n",
- "\n",
- "# Compile the cross-validation results into a summary table,\n",
- "# sorting by the model with the highest test accuracy across CV folds\n",
- "compiled_results = compile_results(cv_results, \"accuracy\")\n",
- "\n",
- "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
- "display(compiled_results)"
- ]
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Interpretation"
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -599,35 +607,13 @@
"We interpret the trained models by analyzing the learned weights associated with functional connectivity features. Specifically, we extract the top-weighted ROI pairs that contributed most to the classification decision.\n",
"\n",
"These weights are visualized as a **connectome plot**, allowing us to examine which brain region interactions are most informative for distinguishing individuals with autism from controls. This not only enhances the interpretability of the model but also provides potential insights into neurobiological patterns relevant to autism."
- ]
+ ],
+ "cell_type": "markdown"
},
{
- "cell_type": "code",
- "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
"source": [
"import seaborn as sns\n",
"import numpy as np\n",
@@ -655,10 +641,32 @@
"\n",
"# Display the resulting connectome plot\n",
"display(proj)"
- ]
+ ],
+ "cell_type": "code",
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "execution_count": null
},
{
- "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -668,7 +676,7 @@
"This plot shows the **most discriminative ROI connections** for classifying ASD vs Control subjects.\n",
"- **Red edges** indicate connections **stronger in ASD**.\n",
"- **Blue edges** indicate connections **stronger in Control**.\n",
- "- Color intensity reflects the **magnitude of contribution** to the model’s decision.\n",
+ "- Color intensity reflects the **magnitude of contribution** to the model\u2019s decision.\n",
"\n",
"---\n",
"\n",
@@ -699,16 +707,8 @@
" - Linked to **motor coordination** and **sensorimotor integration**, commonly atypical in ASD.\n",
"\n",
"The interpretability analysis of the trained model highlights that **functional connectivity alterations across DMN, attention, salience, language, and sensorimotor systems** are key discriminative factors for distinguishing **ASD** from **Control** subjects."
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "embc25",
- "language": "python",
- "name": "python3"
+ ],
+ "cell_type": "markdown"
}
- },
- "nbformat": 4,
- "nbformat_minor": 5
+ ]
}
From 868847233cca49792eb685bfe938315100ccde34 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:25:22 +0100
Subject: [PATCH 29/44] fix pydoc typo
---
tutorials/brain-disorder-diagnosis/preprocess.py | 5 ++---
1 file changed, 2 insertions(+), 3 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/preprocess.py b/tutorials/brain-disorder-diagnosis/preprocess.py
index b400796..9950978 100644
--- a/tutorials/brain-disorder-diagnosis/preprocess.py
+++ b/tutorials/brain-disorder-diagnosis/preprocess.py
@@ -63,9 +63,8 @@ def preprocess_phenotypic_data(data, standardize=False):
The phenotypes data to be processed.
standardize: boolean or str of ("site", "all"), (default=False)
- Standardize FIQ and age. The default is 0.
- Setting to True or "all" standardizes the
- values over all subjects while "site"
+ Standardize FIQ and age. Setting to True or "all"
+ standardizes the values over all subjects while "site"
standardizes according to the site.
Returns
From c0fb3f4080584d85699b9d555f6463f6e19f1ab6 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:26:33 +0100
Subject: [PATCH 30/44] explicitly name loaded fc as fc_data
---
tutorials/brain-disorder-diagnosis/data.py | 10 +++++-----
1 file changed, 5 insertions(+), 5 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index d33f40a..260a040 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -68,7 +68,7 @@ def load_data(
Returns
-------
- fc : np.ndarray
+ fc_data : np.ndarray
Functional connectivity data (vectorized if requested).
phenotypes : pd.DataFrame
@@ -98,10 +98,10 @@ def load_data(
_ensure_atlas_folder(data_dir, atlas_path, verbose)
# Load connectivity data
- fc = np.load(fc_path)
+ fc_data = np.load(fc_path)
if vectorize:
- row, col = np.triu_indices(fc.shape[1], 1)
- fc = fc[..., row, col]
+ row, col = np.triu_indices(fc_data.shape[1], 1)
+ fc_data = fc_data[..., row, col]
phenotypes = pd.read_csv(phenotypes_path)
@@ -109,7 +109,7 @@ def load_data(
rois = np.array(f.read().strip().split("\n"))
coords = np.load(os.path.join(atlas_path, "coords.npy"))
- return fc, phenotypes, rois, coords
+ return fc_data, phenotypes, rois, coords
def _ensure_abide_file(data_dir, target_path, verbose):
From 7aa3355623f467786c20198be872f98d65a739f9 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:32:09 +0100
Subject: [PATCH 31/44] add dirname(__file__) to prevent relative dir errors
---
tutorials/brain-disorder-diagnosis/data.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index 260a040..54ee162 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -119,7 +119,7 @@ def _ensure_abide_file(data_dir, target_path, verbose):
print(f"✔ File found: {target_path}")
return
- manifest_path = os.path.join("manifests", "abide.json")
+ manifest_path = os.path.join(os.path.dirname(__file__), "manifests", "abide.json")
with open(manifest_path, "r") as f:
manifest = json.load(f)
From ed386a1f2d18d6a827ae382a48285c694449b4bf Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:34:34 +0100
Subject: [PATCH 32/44] use dirname(__file__) for atlas_folder
---
tutorials/brain-disorder-diagnosis/data.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index 54ee162..a8a0290 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -145,7 +145,7 @@ def _ensure_atlas_folder(data_dir, atlas_path, verbose):
print(f"✔ Atlas folder found: {atlas_path}")
return
- manifest_path = os.path.join("manifests", "atlas.json")
+ manifest_path = os.path.join(os.path.dirname(__file__), "manifests", "atlas.json")
with open(manifest_path, "r") as f:
manifest = json.load(f)
From 627008b7755c1a8c39377a73724e16ab427ab20b Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 10:58:19 +0100
Subject: [PATCH 33/44] remove note for colab
---
.../brain-disorder-diagnosis/notebook.ipynb | 21 ++++++++-----------
1 file changed, 9 insertions(+), 12 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index dcd7df3..81a6cdc 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -46,10 +46,7 @@
"- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
"- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
"- **`parsing.py`**: Contains utilities to compile and summarize evaluation results from the training process.\n",
- "- **`preprocess.py`**: Handles phenotype preprocessing, including missing value imputation, categorical variable encoding, and feature extraction from fMRI time series data.\n",
- "\n",
- "> **Note:** \n",
- "> For Google Colab, these helper scripts are located in the `embc-mmai25/tutorials/brain-disorder-diagnosis` directory."
+ "- **`preprocess.py`**: Handles phenotype preprocessing, including missing value imputation, categorical variable encoding, and feature extraction from fMRI time series data."
],
"cell_type": "markdown"
},
@@ -491,7 +488,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:21<00:00, 7.25s/it]\n"
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:23<00:00, 7.76s/it]\n"
]
}
],
@@ -565,13 +562,13 @@
" \n",
"
\n",
"
Site Only
\n",
- "
0.6531 \u00b1 0.0364
\n",
- "
0.7142 \u00b1 0.0339
\n",
+ "
0.6261 \u00b1 0.0299
\n",
+ "
0.6765 \u00b1 0.0357
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6667 \u00b1 0.0538
\n",
- "
0.7191 \u00b1 0.0583
\n",
+ "
0.6310 \u00b1 0.0558
\n",
+ "
0.6656 \u00b1 0.0745
\n",
"
\n",
" \n",
"\n",
@@ -581,8 +578,8 @@
" Accuracy AUROC\n",
"Model \n",
"Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
- "Site Only 0.6531 \u00b1 0.0364 0.7142 \u00b1 0.0339\n",
- "All Phenotypes 0.6667 \u00b1 0.0538 0.7191 \u00b1 0.0583"
+ "Site Only 0.6261 \u00b1 0.0299 0.6765 \u00b1 0.0357\n",
+ "All Phenotypes 0.6310 \u00b1 0.0558 0.6656 \u00b1 0.0745"
]
},
"metadata": {}
@@ -648,7 +645,7 @@
"output_type": "display_data",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {}
From a584d53a545a7725cdfe7d28181978c21d18ff09 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 11:35:31 +0100
Subject: [PATCH 34/44] remove check_random_state
---
.../brain-disorder-diagnosis/notebook.ipynb | 54 ++++++-------------
1 file changed, 16 insertions(+), 38 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 81a6cdc..199aa62 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -304,32 +304,6 @@
],
"cell_type": "markdown"
},
- {
- "metadata": {
- "tags": []
- },
- "source": [
- "### Random Seed\n",
- "\n",
- "To ensure reproducibility across runs, we define a fixed random seed. This guarantees that all operations involving randomness, such as cross-validation splits, model initialization, and hyperparameter search to produce consistent results."
- ],
- "cell_type": "markdown"
- },
- {
- "metadata": {
- "tags": []
- },
- "source": [
- "from sklearn.utils.validation import check_random_state\n",
- "\n",
- "# Convert the seed into a numpy-compatible RandomState instance\n",
- "# This ensures consistent behavior across scikit-learn functions that rely on randomness\n",
- "random_state = check_random_state(cfg.RANDOM_STATE)"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
- },
{
"metadata": {
"tags": []
@@ -351,8 +325,10 @@
"- **`num_folds`**: Sets the number of folds for stratified k-fold or the number of groups to leave out in LPGO.\n",
" - *Default:* `1`\n",
"\n",
- "- **`num_cv_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
- " - *Default:* `1`"
+ "- **`num_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
+ " - *Default:* `1`\n",
+ "\n",
+ "- **`random_state`**: Controls the randomness of algorithms relying on randomization."
],
"cell_type": "markdown"
},
@@ -370,8 +346,8 @@
" n_splits=cfg.CROSS_VALIDATION.NUM_FOLDS,\n",
" # Number of repeat rounds\n",
" n_repeats=cfg.CROSS_VALIDATION.NUM_REPEATS,\n",
- " # Ensures reproducibility\n",
- " random_state=random_state,\n",
+ " # Ensures reproducibility, intentionally set to the seed to have the same splits across runs\n",
+ " random_state=cfg.RANDOM_STATE,\n",
")\n",
"\n",
"# Override with leave-p-proups-out if specified\n",
@@ -413,6 +389,8 @@
" - Set to `-1` to use all available CPU cores.\n",
" - Set to `-k` to use all but `k` CPU cores.\n",
"\n",
+ "- **`random_state`**: Controls the randomness of algorithms relying on randomization.\n",
+ "\n",
"- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
],
"cell_type": "markdown"
@@ -488,7 +466,7 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:23<00:00, 7.76s/it]\n"
+ "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:23<00:00, 7.88s/it]\n"
]
}
],
@@ -562,13 +540,13 @@
" \n",
"
\n",
"
Site Only
\n",
- "
0.6261 \u00b1 0.0299
\n",
- "
0.6765 \u00b1 0.0357
\n",
+ "
0.6628 \u00b1 0.0534
\n",
+ "
0.7159 \u00b1 0.0597
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6310 \u00b1 0.0558
\n",
- "
0.6656 \u00b1 0.0745
\n",
+ "
0.6329 \u00b1 0.0616
\n",
+ "
0.6539 \u00b1 0.0658
\n",
"
\n",
" \n",
"\n",
@@ -578,8 +556,8 @@
" Accuracy AUROC\n",
"Model \n",
"Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
- "Site Only 0.6261 \u00b1 0.0299 0.6765 \u00b1 0.0357\n",
- "All Phenotypes 0.6310 \u00b1 0.0558 0.6656 \u00b1 0.0745"
+ "Site Only 0.6628 \u00b1 0.0534 0.7159 \u00b1 0.0597\n",
+ "All Phenotypes 0.6329 \u00b1 0.0616 0.6539 \u00b1 0.0658"
]
},
"metadata": {}
@@ -645,7 +623,7 @@
"output_type": "display_data",
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {}
From 667e097e098ba51a4d2f44df9f2ccaeec9081e85 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 11:47:22 +0100
Subject: [PATCH 35/44] annotate config for classifier and split
---
tutorials/brain-disorder-diagnosis/config.py | 17 ++++++++++++++---
1 file changed, 14 insertions(+), 3 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/config.py b/tutorials/brain-disorder-diagnosis/config.py
index cc354d9..8392c67 100644
--- a/tutorials/brain-disorder-diagnosis/config.py
+++ b/tutorials/brain-disorder-diagnosis/config.py
@@ -37,18 +37,29 @@
# Cross-validation configuration
_C.CROSS_VALIDATION = CfgNode()
-# Cross-validation split method (e.g., leave-p-groups-out)
+# Cross-validation split method
+# Available options:
+# - "skf" (Stratified K-Folds)
+# - "lpgo" (Leave-P-Groups-Out)
_C.CROSS_VALIDATION.SPLIT = "skf"
# Number of folds for cross-validation
+# or number of groups for Leave-P-Groups-Out
_C.CROSS_VALIDATION.NUM_FOLDS = 10
# Number of repeats for cross-validation
_C.CROSS_VALIDATION.NUM_REPEATS = 5
# Trainer configuration
_C.TRAINER = CfgNode()
-# Classifier to use (e.g., auto-select)
+# Classifier to use
+# Available options:
+# - "lda"
+# - "lr"
+# - "linear_svm"
+# - "svm"
+# - "ridge"
+# - "auto"
_C.TRAINER.CLASSIFIER = "lr"
-# Use non-linear transformations
+# Use non-linear transformations (no interpretability)
_C.TRAINER.NONLINEAR = False
# Search strategy for hyperparameter tuning
_C.TRAINER.SEARCH_STRATEGY = "random"
From 7efc7c2fc03cdeb18ec703c589b21af136900d96 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 11:56:22 +0100
Subject: [PATCH 36/44] fix seed with trainer
---
.../brain-disorder-diagnosis/notebook.ipynb | 306 +++++++++---------
1 file changed, 153 insertions(+), 153 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 199aa62..e88bcc8 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -1,15 +1,7 @@
{
- "nbformat": 4,
- "nbformat_minor": 5,
- "metadata": {
- "kernelspec": {
- "display_name": "embc25",
- "language": "python",
- "name": "python3"
- }
- },
"cells": [
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"# Brain Disorder Diagnosis\n",
@@ -29,10 +21,10 @@
"3.\t**Extract** functional connectivity **embedding** from ROI-based time series.\n",
"4.\t**Build** a **training** and **evaluation** pipeline to assess classification performance under various domain adaptation strategies.\n",
"5.\t**Interpret** the learned model by extracting weights for pairwise ROI feature importance and visualizing them using a connectome plot."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -41,21 +33,23 @@
"\n",
"As a starting point, we will install the required packages and load a set of helper functions to assist throughout this tutorial. To keep the output clean and focused on interpretation, we will also suppress warnings.\n",
"\n",
- "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook\u2019s current directory. The helper scripts include:\n",
+ "In addition, several helper scripts are provided to modularize the code and simplify the workflow. These can be inspected directly as `.py` files in the notebook’s current directory. The helper scripts include:\n",
"\n",
"- **`config.py`**: Defines the base configuration settings, which can be customized and overridden using external `.yml` files.\n",
"- **`data.py`**: Provides data loading functions and utilities to automatically download any required datasets.\n",
"- **`parsing.py`**: Contains utilities to compile and summarize evaluation results from the training process.\n",
"- **`preprocess.py`**: Handles phenotype preprocessing, including missing value imputation, categorical variable encoding, and feature extraction from fMRI time series data."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
+ "outputs": [],
"source": [
"import os\n",
"import site\n",
@@ -70,12 +64,10 @@
" !git clone -b brain-decoding https://github.com/pykale/embc-mmai25.git\n",
" %cp -r /content/embc-mmai25/tutorials/brain-disorder-diagnosis/* /content/\n",
" %rm -r /content/embc-mmai25"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -91,62 +83,54 @@
"- **nilearn**: A Python library for neuroimaging analysis. It offers convenient tools for processing, analyzing, and visualizing functional MRI (fMRI) data.\n",
"\n",
"- **yacs**: A lightweight configuration management library used to store and organize experiment settings in a hierarchical and human-readable format."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "source": [
- "!pip install --quiet --user \\\n",
- " git+https://github.com/pykale/pykale@main \\\n",
- " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
- " && echo \"pykale, gdown, nilearn, and yacs installed successfully \u2705\" \\\n",
- " || echo \"Failed to install pykale, gdown, nilearn, and yacs \u274c\""
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
- "pykale, gdown, nilearn, and yacs installed successfully \u2705\n"
+ "pykale, gdown, nilearn, and yacs installed successfully ✅\n"
]
}
],
- "execution_count": null
+ "source": [
+ "!pip install --quiet --user \\\n",
+ " git+https://github.com/pykale/pykale@main \\\n",
+ " gdown==5.2.0 nilearn==0.10.4 yacs==0.1.8 \\\n",
+ " && echo \"pykale, gdown, nilearn, and yacs installed successfully ✅\" \\\n",
+ " || echo \"Failed to install pykale, gdown, nilearn, and yacs ❌\""
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": [
"hide-input"
]
},
- "source": [
- "from config import get_cfg_defaults\n",
- "\n",
- "cfg = get_cfg_defaults()\n",
- "cfg.merge_from_file(\"experiments/base.yml\")\n",
- "cfg.freeze()\n",
- "print(cfg)"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"CROSS_VALIDATION:\n",
" NUM_FOLDS: 10\n",
@@ -173,9 +157,17 @@
]
}
],
- "execution_count": null
+ "source": [
+ "from config import get_cfg_defaults\n",
+ "\n",
+ "cfg = get_cfg_defaults()\n",
+ "cfg.merge_from_file(\"experiments/base.yml\")\n",
+ "cfg.freeze()\n",
+ "print(cfg)"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -201,35 +193,35 @@
"- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
" - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
" - *Default:* `\"tangent-pearson\"`"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
- "source": [
- "from data import load_data\n",
- "\n",
- "fc, phenotypes, rois, coords = load_data(\n",
- " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
- ")"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
- "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
- "\u2714 File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
- "\u2714 Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
+ "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/fc/hcp-ica/tangent-pearson.npy\n",
+ "✔ File found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/abide/phenotypes.csv\n",
+ "✔ Atlas folder found: /home/zarizky/projects/embc-mmai25/tutorials/brain-disorder-diagnosis/data/atlas/deterministic/hcp-ica\n"
]
}
],
- "execution_count": null
+ "source": [
+ "from data import load_data\n",
+ "\n",
+ "fc, phenotypes, rois, coords = load_data(\n",
+ " cfg.DATASET.PATH, cfg.DATASET.ATLAS, cfg.DATASET.FC\n",
+ ")"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -269,27 +261,27 @@
"\n",
"The diagnostic label `DX_GROUP` is used to assign the target class:\n",
"\n",
- "- `CONTROL` \u2192 `0`\n",
- "- `ASD` \u2192 `1`"
- ],
- "cell_type": "markdown"
+ "- `CONTROL` → `0`\n",
+ "- `ASD` → `1`"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from preprocess import preprocess_phenotypic_data\n",
"\n",
"labels, sites, phenotypes = preprocess_phenotypic_data(\n",
" phenotypes, cfg.PHENOTYPE.STANDARDIZE\n",
")"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -301,10 +293,10 @@
"We explore different configurations including a baseline model, domain adaptation using site information, and an extended approach that incorporates additional phenotypic variables.\n",
"\n",
"Each model is evaluated using cross-validation, and we analyze the impact of domain adaptation on classification performance."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -329,13 +321,15 @@
" - *Default:* `1`\n",
"\n",
"- **`random_state`**: Controls the randomness of algorithms relying on randomization."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from sklearn.model_selection import LeavePGroupsOut, RepeatedStratifiedKFold\n",
"\n",
@@ -355,12 +349,10 @@
"if cfg.CROSS_VALIDATION.SPLIT == \"lpgo\":\n",
" # Use group-based CV for domain adaptation or site bias evaluation\n",
" cv = LeavePGroupsOut(cfg.CROSS_VALIDATION.NUM_FOLDS)"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -392,20 +384,22 @@
"- **`random_state`**: Controls the randomness of algorithms relying on randomization.\n",
"\n",
"- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [],
"source": [
"from sklearn.base import clone\n",
"from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
"\n",
"# Configuration with cv included\n",
"trainer_cfg = {k.lower(): v for k, v in cfg.TRAINER.items()}\n",
- "trainer_cfg = {**trainer_cfg, \"cv\": cv}\n",
+ "trainer_cfg = {**trainer_cfg, \"cv\": cv, \"random_state\": cfg.RANDOM_STATE}\n",
"\n",
"# Initialize dictionary for different trainers\n",
"trainers = {}\n",
@@ -419,12 +413,10 @@
"# Clone the 'site_only' trainer to create 'all_phenotypes' trainer\n",
"# This enables reusing the same training configuration, while modifying only the input domain factors\n",
"trainers[\"all_phenotypes\"] = clone(trainers[\"site_only\"])"
- ],
- "cell_type": "code",
- "outputs": [],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -434,13 +426,23 @@
"We train each model configuration using the previously defined cross-validation strategy. The training process involves fitting the model on functional connectivity features and evaluating its performance using multiple scoring metrics (e.g., accuracy, F1-score, AUROC).\n",
"\n",
"For models with domain adaptation, we pass additional domain factors (such as site or phenotypic variables) to guide the alignment of embedding. Cross-validation is performed to ensure robust performance estimates and to select the best hyperparameter configuration for each model."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:21<00:00, 7.11s/it]\n"
+ ]
+ }
+ ],
"source": [
"import pandas as pd\n",
"from tqdm import tqdm\n",
@@ -459,20 +461,10 @@
" pbar.set_description(f\"Fitting {model} model\")\n",
" trainers[model].fit(**args)\n",
" cv_results[model] = pd.DataFrame(trainers[model].cv_results_)"
- ],
- "cell_type": "code",
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "Fitting all_phenotypes model: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3/3 [00:23<00:00, 7.88s/it]\n"
- ]
- }
- ],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -482,27 +474,16 @@
"We evaluate and compare the performance of different model configurations using cross-validation results. We aggregate the top-performing scores for each model based on a specified evaluation metric (e.g., accuracy), allowing us to assess the effectiveness of domain adaptation strategies.\n",
"\n",
"By comparing models with and without domain adaptation, we can determine the impact of incorporating site and phenotypic information on multi-site autism classification performance. This analysis helps identify which configurations generalize best across heterogeneous imaging sites."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
- "source": [
- "from parsing import compile_results\n",
- "\n",
- "# Compile the cross-validation results into a summary table,\n",
- "# sorting by the model with the highest test accuracy across CV folds\n",
- "compiled_results = compile_results(cv_results, \"accuracy\")\n",
- "\n",
- "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
- "display(compiled_results)"
- ],
- "cell_type": "code",
"outputs": [
{
- "output_type": "display_data",
"data": {
"text/html": [
"
\n",
@@ -535,18 +516,18 @@
" \n",
"
\n",
"
Baseline
\n",
- "
0.6629 \u00b1 0.0523
\n",
- "
0.7105 \u00b1 0.0556
\n",
+ "
0.6629 ± 0.0523
\n",
+ "
0.7105 ± 0.0556
\n",
"
\n",
"
\n",
"
Site Only
\n",
- "
0.6628 \u00b1 0.0534
\n",
- "
0.7159 \u00b1 0.0597
\n",
+ "
0.6609 ± 0.0509
\n",
+ "
0.7127 ± 0.0596
\n",
"
\n",
"
\n",
"
All Phenotypes
\n",
- "
0.6329 \u00b1 0.0616
\n",
- "
0.6539 \u00b1 0.0658
\n",
+ "
0.6474 ± 0.0597
\n",
+ "
0.7057 ± 0.0514
\n",
"
\n",
" \n",
"\n",
@@ -555,26 +536,37 @@
"text/plain": [
" Accuracy AUROC\n",
"Model \n",
- "Baseline 0.6629 \u00b1 0.0523 0.7105 \u00b1 0.0556\n",
- "Site Only 0.6628 \u00b1 0.0534 0.7159 \u00b1 0.0597\n",
- "All Phenotypes 0.6329 \u00b1 0.0616 0.6539 \u00b1 0.0658"
+ "Baseline 0.6629 ± 0.0523 0.7105 ± 0.0556\n",
+ "Site Only 0.6609 ± 0.0509 0.7127 ± 0.0596\n",
+ "All Phenotypes 0.6474 ± 0.0597 0.7057 ± 0.0514"
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
}
],
- "execution_count": null
+ "source": [
+ "from parsing import compile_results\n",
+ "\n",
+ "# Compile the cross-validation results into a summary table,\n",
+ "# sorting by the model with the highest test accuracy across CV folds\n",
+ "compiled_results = compile_results(cv_results, \"accuracy\")\n",
+ "\n",
+ "# Display the compiled results DataFrame (models as rows, metrics as formatted strings)\n",
+ "display(compiled_results)"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Interpretation"
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -582,13 +574,35 @@
"We interpret the trained models by analyzing the learned weights associated with functional connectivity features. Specifically, we extract the top-weighted ROI pairs that contributed most to the classification decision.\n",
"\n",
"These weights are visualized as a **connectome plot**, allowing us to examine which brain region interactions are most informative for distinguishing individuals with autism from controls. This not only enhances the interpretability of the model but also provides potential insights into neurobiological patterns relevant to autism."
- ],
- "cell_type": "markdown"
+ ]
},
{
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {
"tags": []
},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"import seaborn as sns\n",
"import numpy as np\n",
@@ -616,32 +630,10 @@
"\n",
"# Display the resulting connectome plot\n",
"display(proj)"
- ],
- "cell_type": "code",
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGrCAYAAAAMxGVvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXah+/Zlt47SSAECC1A6CBFQASxI/beC6goioINETuiHEXFejiCYuOzCyggoPTeAiSQHtLLpm6f7491h2zqpkHQ976uvWBnZ2ZnNjPv/N6nSrIsywgEAoFAIBAIBB0E1dk+AIFAIBAIBAKBoCZCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBB0QN59911iYmJwd3dn+PDh7Ny5s9H1S0tLmTFjBhEREbi5uREXF8evv/6qfF5eXs4jjzxCly5d8PDw4LzzzmPXrl3tfRotQghUgUAgEAgEgg7GV199xaxZs5g3bx579+5lwIABTJ48mfz8/HrXN5lMXHjhhaSlpfHtt99y/PhxPvroIyIjI5V17r77bn7//XeWL1/OoUOHmDRpEhMnTiQ7O/tMnZbLSLIsy2f7IAQCgUAgEAgEpxk+fDhDhw5lyZIlANhsNqKjo3nooYeYM2dOnfWXLl3KwoULOXbsGFqtts7n1dXV+Pj48MMPP3DJJZcoywcPHsyUKVN48cUX2+9kWoCwoAoEAoFAIBB0IEwmE3v27GHixInKMpVKxcSJE9m2bVu92/z444+MHDmSGTNmEBYWRnx8PC+//DJWqxUAi8WC1WrF3d3daTsPDw/++uuvZh2fwWCgrKzMpZfBYGjm2dvRtGgrgUAgEAgEAkG7UFhYiNVqJSwszGl5WFgYx44dq3eblJQUNmzYwE033cSvv/7KiRMnmD59OmazmXnz5uHj48PIkSNZsGABvXv3JiwsjJUrV7Jt2za6d+/u8rEZDAa6eniQ6+L64eHhpKam1hHGTSEsqAKBQCAQCATnODabjdDQUD788EMGDx7Mddddx9NPP83SpUuVdZYvX44sy0RGRuLm5sbbb7/NDTfcgErluhw0mUzkApmShL6JV6YkkZubi8lkavb5CAuqQCAQCAQCQQciODgYtVpNXl6e0/K8vDzCw8Pr3SYiIgKtVotarVaW9e7dWxGIOp2Obt26sWnTJiorKykrKyMiIoLrrruO2NjYZh+jL+ArSY2v1Io0J2FBFQgEAoFAIOhA6HQ6Bg8ezPr165VlNpuN9evXM3LkyHq3GTVqFCdOnMBmsynLkpKSiIiIQKfTOa3r5eVFREQEJSUlrF27liuuuKL5B6lSufZqIUKgCgQCgUAgEHQwZs2axUcffcT//vc/jh49ygMPPEBlZSV33HEHALfeeitz585V1n/ggQcoLi5m5syZJCUl8csvv/Dyyy8zY8YMZZ21a9eyZs0aUlNT+f333xk/fjy9evVS9tks2lmgChe/QCAQCAQCQQfjuuuuo6CggOeee47c3FwSEhJYs2aNkjiVkZHhFDsaHR3N2rVrefTRR+nfvz+RkZHMnDmTJ598UllHr9czd+5csrKyCAwMZNq0abz00kv1lqVqEpUK2tHFL+qgCgQCgUAgEAhcoqysDD8/P/QeHk3GoJbJMn7V1ej1enx9fZv1PcLFLxAIBAKBQCDoUAgXv0AgEAgEAoGgebSzi18IVIFAIBAIBAJB8xACVSAQCAQCgUDQoRACVSAQCAQCgUDQoRACVSAQCAQCgUDQoZCkpuuc1mga0FxEFr9AIBAIBAKBoEMhLKgCgUAgEAgEgubRyk5RTSEEqkAgEAgEAoGgeQiBKhAIBAKBQCDoUAiBKhAIBAKBQCDoULSzQBVJUgKBQCAQCASCDoWwoAoEAoFAIBAImodw8QsEAoFAIBAIOhRCoAoEAoFAIBAIOhRCoAoEAoFAIBAIOhQiSUogEAgEAoFA8G9CWFAFAoFAIBAIBM1Dkpq2oMpyi3cvBKpAIBAIBAKBoHm44uIXAlUgEAgEAoFAcMYQAlUgEAgEAoFA0KFoZ4EqkqQEAoFAIBAIBB0KYUEVCAQCgUAgEDQP4eIXCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQohEAVCAQCgUAgEHQoRBa/QCAQCAQCgeDfhLCgCgQCgUAgEAiahyutTm22Fu9eCFSBQCAQCAQCQfNwxcXf1OeNIASqQCAQCAQCgaB5CIEqEAgEAoFAIOhQtLNAFUlSAoFAIBAIBIIOhbCgCgQCgUAgEAiah3DxCwQCgUAgEAg6FEKgCgQCgUAgEAg6FEKgCgQCgUAgEAg6FCJJSiAQCAQCgUDwb0JYUAUCgUAgEAgEzUO4+AUCgUAgEAgEHQpXWp1KUot3LwSqQCAQCAQCgaB5CAuqQCAQCAQCgaBDIQSqQCAQCAT/biorKyksLESv11NaWgpAcHAwwcHBBAYGotG0/eO8tLSUffv2cejQIUpKSlCpVOTl5WGxWPD19SUgIIDAwECCg4OJi4ujR48euLu7t/lxCP6dCIEqEAgEAkEHw2w2c/jwYfbv38+ePXtIT09vcF2NRkO/fv0YOnQoQ4YMISIiosXfq9frWb16Ndu2bSMlJcXpMx8fH8rLywHIzs6us61KpSImJoZ+/foxZswY4uLikFoRgyjo4LSzBVWSZVlu8dYCgUAgEAjajIyMDFatWsXWrVsxGAwABAUFUVRU5PI+4uLiuPTSSxk9ejRardalbU6dOsWvv/7K6tWrMZlM9a6jVqvRaDSoVCqqq6ub3Gd4eDhjx45l4sSJrRLNgo5FWVkZfn5+6C+7DN8mrq8ysxm/n35Cr9fj6+vbrO8RAlUgEAgEgrPM8ePH+eabb9ixY0edz6KiovDw8KBLly74+/vj7++PzWajsLCQwsJCkpKSKCwsdNomMjKSiooKpkyZwujRo+ncuXMda6bBYGDv3r1s3LiR7du3Ex0dTUZGhvJ5t27dGDRoEAMHDqRz5854e3ujVqsBu4W3pKSEkpISsrKyOHbsGEePHiUjI4PaskKSJCZMmMC0adOIjo5uq59McJZQBOoVV7gmUH/4QQhUgUAgEAjOFWRZZt++fXz77bccOnTI6TMvLy9GjBjBkCFDSEhIwNvbu9H9JCYmcvToUTZv3kxqaiphYWHk5eUp6wQFBTFw4EC8vb2RJIns7Gz27dtHbm4uHh4euLu74+bmhqenJ+PGjePyyy8nNDS02edUUVHB9u3b2bRpEwcOHFDEateuXUlLS2PixInceOONBAcHN3vfgo6BIlCnTnVNoH73nRCoAoFAIBB0dGRZZuvWrXz99dd14jyDgoKYOnUqkydPbjLhyGazkZKSQlFREVVVVYwfP14Rqz/99BPbtm3DZrMhyzJms5nq6mo8PT0Vt7/JZGL//v2A3R3/7LPPMnnyZHx8fNrkPEtKSvj999/56aefqK6uxmg0AqDT6bj88su59tpr8fDwaJPvEpw5FIE6bZprAnXVKiFQBQKBQCDoyBw+fJhPP/2U5ORkp+WRkZFMmzaN8ePHu5SRb7FYSExMpKSkBLCLhtjYWCIiIggMDASgsLCQbdu28fHHH7Nz505sNhvx8fH4+vpisViw2WxkZGQQEBDArbfeyt13313ne0wmE0lJSWi1Wnx9fVsUS2owGPj555/59ttvqaysVJYHBgZy1113MWbMGJFMdQ5xpgSqyOIXCAQCgaCdycrKYtmyZXViTLt3784111zDiBEjULmY8Wyz2Thy5IhSbsrPz0+JSQ0ICFDWCw4O5rLLLkOr1WKxWKiqquKqq65i/PjxeHt7c/LkSd58800AwsLC6v2upKQkioqKcHNzIy8vD09PT/z8/Jp17u7u7lx99dVMnjyZb775hp9++gmLxUJxcTELFy5k9erV3HfffcTExDRrv4KzTDtn8bd8S4FAIBAIzgGWLVuGJEns3r37jH93aWkp77//PjNmzHASpzExMTz//PO8+eabnHfeeS6LU1mWSUpKUsRpdHQ0/fv3V7avz/oaGBiISqXC29ubkJAQ+vTpQ+fOnZ2y9d3c3Or9vqqqKmRZpqKiAlmWOXr0KBaLxdXTB6C6uhpZlvHx8eHOO+/kvffeY+jQocrnhw8fZubMmXz00UdOFta2xnEdOF4ajYbIyEhuv/32estmCZrA0eq0sZdodSoQCAQCQcfBZDLx3XffsW7dOnJzc5XlgYGB3HLLLUyYMMFJlJpMJmw2W5Nxp5mZmRQUFAB2q2fXrl2xWq3Kdo4s+5rUXFZTXDYlUG02GwaDAUmSiImJITs7G6PRSEZGBrGxsU39BMiyTFpaGhkZGXh4eNCvXz88PDyIiIjgueeeY9euXXz00Ufk5ORgs9n48ccf2bRpE3fccQcTJkxoN7f/Cy+8QNeuXTEYDGzfvp1ly5bx119/cfjwYdFooDmITlICgUAgEJwbyLLMn3/+ybJlyygoKMBsNgP2IvdXX301V1xxRR0R5HDZl5WV4eHhQXBwMBEREU4JRLIsk5mZSWpqKlqtlsDAQKUQvtVqVWqm1meJrWlVtVqtyv8dSUvQsEB1pKkEBARgtVrJycmhqKiI0NDQRisLABQXFzuVnTp06BDDhg1TPh86dCgDBgzg+++/56uvvsJkMqHX61m8eDGrV6/m/vvvp3v37o1+R0uYMmUKQ4YMAeDuu+8mODiY1157jR9//JFrr722zb/vH4tw8QsEAoFA0PE5fvw4s2fPZuHChYqV8+jRowwfPpyPPvqI6667rl4LXUlJCWVlZYDdHZ6ZmcnBgwc5cOAA6enp5OTkcOTIEVJTUwF7FnzPnj0VMWqz2ZR9NceCWlOg6nS6OtvVzqHu2rUrPj4+VFVVceLEiTqf1yY3NxeVSoXZbKaqqqreBgA6nY5rr72WpUuXMmrUKGX5kSNHeOSRR3j33XeV7lXtxZgxYwA4efJku36PoHkIC6pAIBAIBK3AbDbz+eef83//939Oom3QoEH06tWLfv364e/v3+D2/v7+aLVaxdrq7u6OwWDAYDAosaYO/Pz86NOnT4NW0ba0oNZGp9MRERFBcnIyer2enJwcOnXqVO+6er2ewsJCVCoVnTp1qtNIoDYhISHMmTOH/fv388EHH7Bx40a8vLxYs2YNW7Zs4f7772+3bP+0tDQApwQzgQsIC6pAIBAIBB2TtLQ0Zs2axapVqxRxGh0dzfPPP8/8+fMZM2ZMnSL8tVGr1URGRirv4+Li6NGjB4GBgUrNUi8vLzp37kz//v3rWDtris62tKBWV1djNpsxm82K8I2IiFDKBZ08eRK9Xl9nO4vFwvHjxwGU8lSAS+IyISGBd955h4SEBEU0l5eXs3DhQl566SWKi4ub3EdTOMRzVlYWq1atYv78+bi5uXHppZe2et//KppKkHJFwDaCsKAKBAKBQNBMbDYb33//PcuXL1dEn0aj4aabbmLq1KmKKBw4cCD/+9//KC4uVuqT1kdUVBSFhYWYzWbS0tJISEigU6dOyLKM1WpttDZqUwK1IQtqTZd7faEHKpVKEciOfyVJonfv3uzduxez2cyRI0cYNGiQsr3NZuP48eNUV1cD9jJajlqtriYgaTQaBg0axOTJk8nNzWXLli0A7Nixg6qqKi6//HJGjBjh0r7qY+LEiU7vY2JiWLFiBVFRUS3e578SYUEVCAQCgaDjUFlZybPPPst///tfRZzGxMTw5ptvcvXVVzuJxOjoaAYOHMiqVasa3adaraZTp04YjUbKysooKioCUMohNUbNBKn61q25rCELqisufgfu7u707dtXiS/du3cvWVlZFBUV8fvvv7Ny5UpsNhtRUVEEBwdTVVUF4HLXKFmWycrKokuXLsyZM4e5c+fi7++Pv78/R44c4aWXXuKzzz5rMga2Id59911+//13vv32Wy6++GIKCwubdf6CvxEWVEFDWCwWDh8+zM6dO9m1axfl5eWoVCokSUKlUuHn58fo0aMZO3Zsg3FCAoFAIHCdiooKnnvuOaUTlCRJTJ06lZtvvlmxMtbmxhtvZPbs2Vx22WWEh4c3uO/w8HCysrKoqqoiPz/f5X71jtqhHh4edle8LIO5CqwmUOtQ1xAJDZWZqs/F3xh+fn706NGDpKQk1Gq1kmBUUVHB4cOHqaioYOHChYBdQLu5uTWZ9e/gu+++w9PTU8m0P++88+jXrx8ffPABmzZtAuCbb75BkiRuueWWZh03wLBhw5R9X3nllYwePZobb7yR48ePu3yMgvZHCNRW4Gg1t2fPHlJSUjAYDBiNRvz9/YmKiiIqKorIyEi6d++Ol5dXm3xndXU1H3zwAZs3b0aj0ShulPooLS0lPT2dzz//nO7du3P++edz/vnni0BwQbtitVrJzc11ss440Ol0+Pv74+XlJVobCs45KioqWLx4sSJOfX19mTt3LvHx8Y1uFxsby8SJE3nnnXd48cUXG7z2JUkiKCiIqqoq9Ho9siy7dJ9UVFTYj8dTBxlbIHMrVJ+O1QzV+XFZQhAbEkuaZUGVZRmbzdZgE4Hw8HA8PT3JyspSrLjh4eEsWrSIRYsW8fHHH3P33Xcrn7ni4q+qquLLL79k3rx5+Pj4KMt9fHx47LHHiIuL46OPPgLg66+/xs3NrVWlodRqNa+88grjx49nyZIlzJkzp8X7+tch6qB2LKxWK4cOHWLz5s1s27aNiooKIiIiyMnJcVpv3759yv81Gg0DBgxg1KhRDBs2rNlt4gCys7P56KOPWLFihVJyIyEhQZn1ajQawsLClLp1VqtVKXMCcOLECU6cOMFnn33GhRdeyLRp0wgNDW3JTyAQKJjNZo4ePUpKSgppaWlKUW5HNnJDaDQa4uLiMBgM+Pj44Ovri6+vL97e3nh6eiovDw8PPDw8nN57eno2aKkSCNoLg8HA/PnzOXHiBGFhYRiNRl566SU6d+5cZ129Xo9Op0Oj0SjX6h133MGTTz7Jn3/+ydixYxv8Hj8/PzIzMzGZTBgMBie3+NatW+nTp49TRQBZlqmsrCTAVkD3nHUgW5CBmrJWbdJz99hwbhkZyvepp0VpU0lS5eXlaDQaoqOj8fT0rPd4fX196d27NzExMajVajQaDWq1mueff57HHnuMgIAAIiIiANdc/Pv37yckJIS+ffvW+UySJC6//HI0Gg3vv/8+AMuXL0en03HllVc2ue+GGDduHMOGDWPx4sU88sgjoli/qwiBevaRZZkTJ06wYcMG/vzzzzpZizVnpBqNpk4bOIvFwp49e9izZw+xsbFUVlYSFhbG9OnTnTI3a2OxWNi5cyerV69m48aNJCcnO8XcmEwmJk+ezLBhwxg0aFCdAaSwsJA///yTTZs2Ke4Xs9nMr7/+ytq1a5kyZQqXXnppo8cgENTGaDSyd+9etm7dys6dO5X4suZgsVjQ6/Uutxf08vJyaoGo0Wjw8PDA29ubiIgIIiMjFY9FZGQkQUFBwkIrqMOnn37KmjVr6iyfOXOmk7WuNrIs8/rrr3Ps2DHAPva++OKL9YpTi8XCwYMH8ff3p6ysjJ49exIcHIy7uzvnn38+GzZsaFKgOnAU7nfwySefMGvWLCeBWlVVha85l37WPcqy2le+hF3cuWlUXBdXDUVJEBSnCFSHqKyJ2Wzm1KlT2Gw2SktL6dKlS4PHLElSnedPaGgozz77LE888QSTJ0+mT58+9SZw1cZkMjXpcbz44osxGo18+umngP13CQsLY+TIkU3uvyFmz57NNddcw7Jly7j//vtbvJ9/FY5Wp02t00KEQG2EyspKNm3axNq1a0lJSanzubu7OyNGjGD48OH069cPHx8fJElCr9eTlZVFVlYWaWlp7NixQ6kBV1RUxO7duykpKeGzzz4jISGBkSNHKgOY2WzGZDKRkpLCyZMnMZlMZGZmKu4elUpFr169ePDBB7niiisaDZ4PDg5m6tSpTJ06lezsbNauXcvq1asVq9VPP/3EL7/8wnnnncc111xDt27d2u23FJzbVFdXs2vXLrZu3cru3bvrdd+D/UHVqVMnYmJilAdtzUmVwWCgpKSE0tJSNBpNvRM6xzZZWVmEh4ej1WrrWEwtFgvl5eWUl5eTk5PD3r17nT53c3OjS5cuDBo0iCFDhtCjRw+Xe50L/rk4rG61uf322xsVqF999RW7du0C7JOl559/vkHBVlxcjNVqJS0tDR8fHxITE+nVqxehoaEMGjSIzz//vNFjVKvVSJKELMt1koCMRmMdS2deVhp9rftBbloLqFQSNhk4+DmMnqPEoNZnPc3IyKCiogJPT0+6devWoglfXFwc06dP59VXX+Xhhx92KampW7dunDx5EoPB0Kglc+rUqRiNRuX3fPvtt+nRo4fLcbu1ueqqq+jWrRtvvPEG99xzj0ti+l+PsKCeWWRZJjk5mTVr1rB58+Y6D2KtVsvQoUMZM2YMQ4cOrTdux5Ft6IhLuu+++0hOTmbHjh2sX79escCaTCZ27dpFaWkp/v7+hIWFkZeX57SvgoICcnNzlRp4d955J/fff3+zB4vIyEjuvPNOrrnmGn788Ud2795NaWkpsiyzZcsWtmzZwsCBA7niiisYNGiQsD4JkGWZQ4cOsW7dOrZs2VJvFxgvLy+GDRtGv379iImJoXPnzs3KhpVlmerqasrKyigrK6OqqoqqqirS0tJYsmQJN998MyaTCavVSmlpKdXV1VRVVSn/lpaWKvFtNTEajSQlJZGUlMSXX36Jr68vI0eOpGfPnvTr14+wsDBxjf+LuP3227n99ttbtO3+/fv54osvAPsEbM6cOY32oS8rK1NiSVUqFUajkWPHjmGz2fD19VWu54YEkMViQaVSIcuykwGivLwcvV7vlPBqsVggZy8qrC4bqlQS9uSpnL1Kyanax2K1Wjl16hSSJOHv79+oeG+KkSNHMmDAAL766ismTJjQ5PqO/I2ff/6Zq6++utF1r7vuOlJTU9m6dSsVFRW88cYbvPTSSw3+to1dByqVihMnTjR5fIIzhxCof+Owlq5Zs0ZpJ1eTuLg4Jk+ezOjRoxuMxWkISZKIi4sjLi6Om2++mS1btvDGG29w5MgRKisrOXnyJH369Klj4fH19SU9PZ1evXrh6+vL9OnTmTJlSqvO08fHR6nT9+uvv/LDDz8onUr27dvHvn37CA8P56KLLuLCCy9UCiwL/j3k5eWxceNG1q5d6xTH7MDHx4cRI0YwatQoBgwY0GQJnMZwuAY9PT2dspvLysoYP348N998c6Pby7JMSUkJp06dIisri+zsbLKzs8nKynKKCy8vL2fDhg2sXbsWsHetiY+Pp1u3bnTt2lVp4SgQ1KSwsJCFCxcqlr+bbrqJhISERrexWq1otVp8fHzo3r07Bw8exGQykZqaik6nQ6vVNjo5MpvNinCsadlMT08nODjYyf2dm5NDJ2sadYJOXSFzq/I9tZ89JpNJaZ8aEhLSzB07o1arufjii3n33Xf56quvuOeeexpdX5Ik7r//fp599llGjx7daNUDSZJ46KGHSE5OpqCggCNHjvDVV19x4403tuqYBS7yT7WgLlu2jDvuuINdu3Yp5R7ONLIsk5SUxJo1a/jzzz/rWEs9PT0ZN24ckydPbnTG3BwkSWL06NGMGjWKV155hW3btmEwGAgJCWHWrFlK1mZoaCgvvvii0p95ypQprRanNfH09OTqq6/m8ssvZ/369axatUqx3ubm5rJs2TK+//57+vfvz5QpU+jbt2+7W5wc14QDtVpNWFgYF154IS+99JKIlW1HTCYT27Zt47fffuPgwYN07tzZSZx6eXkxduxYRo8eTd++fdvd/XXkyBH69OnT5HqSJBEYGEhgYGCdTOqioiL27NnD7t27yc3NdZp4FhQU8Mcff/DHH38oy4KDg4mNjSU2NpbOnTvTpUsXoqKiRGjAvxSLxcJrr72mjMFDhgxxKVvcYDBgNpvRarV4eHiQkJDAkSNHKC8vZ8eOHYSFhTV6TdX0CNT0Rhw+fNjpOWS1WsnJPEmUXNV8cQpQXYyHxi68ax9PzWL+paWlrar84u7ujru7O9dffz3Lly/nvPPOqzcBqia9e/dm/PjxvPnmmyxYsKBRr4y3tzezZ89mzpw52Gw2vvzyS/r3799kZQVBG/BPFahnk6qqKjZt2sSvv/6q9OCtSc+ePZk8eTJjxoxpt2w+SZKYNWsWs2fPJi0tjfLycgwGgzI7X7NmjVLKJDIykrvuuqtdjkOn0zFlyhQmTZrErl27+PXXX5UKBL6+vmzevJnNmzcTHR3NRRddxEUXXdTsennN5YUXXqBr164YDAa2b9/OsmXL+Ouvvzh8+LDIrmxjUlJS+O2339i4caNTElJ+fr5SfWLixIkMGzas3f/uNTly5AgXXHBBq/YRFBTEpEmTmDRpEmazmRMnTnDw4EEOHjzIsWPH6oQsFBYWUlRUxK5duxSLmaenJ71796ZPnz706dOHuLi4M/o7CM4e33zzjZIUFRoayqxZs1yapNeO63Rzc6Nv374cOHCAPXv20K1bN/Lz8xusouIIAdNoNMo+LBYLq1evZsaMGcp6eXl5WE0Nlxl0BXeN/XxqC1Rvb28CAgIoKysjOzsbm82mZOk3F5VKhYeHB+Hh4Vx++eW88cYbvPPOO03WG7377rt57rnneO2113jqqaecPDW1k7t69+7NjTfeyIoVK5BlmUWLFvHee++53BhA0EKEQG07MjIy+OWXX9iwYQNhYWGkp6crn3l6ejJ+/HgmT55M165dz8jxuLu7c8MNN/DKK68AsHbtWkWg/vbbb8p6jzzySLt3uVCr1YwYMYIRI0aQk5PDr7/+yvbt25XPMzMz+eijj/j++++5/fbbGTNmTLtZVKdMmaJY1e+++26Cg4N57bXX+PHHH1tV705gx2q1smXLFr777rt6Y64iIiK48MILmTBhAkFBQWfhCO0WzrZsLqHVaunduze9e/fmuuuuU9pJpqWlkZKSQmpqKikpKXh4eDj1+q6qqlIqcID9nh01ahQTJ048I14FwdkhMzOTr7/+GrALrDlz5rgUAmI0GpWqFjVDwdzc3PDx8SEzM5Nrr7220bAYx/UXEBCgXF9r1qzBzc2NoUOHAijXr9zKR3iVqX4XP0CvXr1ISkqiqKhI6RLVo0ePFllTfXx8qK6uZsSIEeTm5rJkyRKefPLJRu8fNzc3nnvuOebOnct//vMfZs2ahcFgIDU1lYKCAry8vKiurqZHjx6Eh4dzzTXXKBPQwsJCPv/8c+6+++5mH6ugGQiB2noOHTrEl19+ycGDB5VlZWVlyLJMr169uOiiixg9erTL1jmr1UpZWRl6vR69Xk91dTUWi0Vx6fTp08fluLxhw4bh7+9PaWkp27Zto7S0lNLSUsV62q1bN3r16uXyuTpKYuXn5+Pu7o7JZMLNzQ0/Pz/l1VQNyYiICO666y5uueUWtm3bxpo1azh8+DBgFw4LFy7kxx9/5J577qFnz54uH1tLGTNmDK+99ppSKkvQMkwmE+vWreO7774jNzfX6TOdTsfo0aO58MILO4Tw0mg0Tm7Gtkar1dKjRw969OihLJNlmby8PNLT00lPT+fkyZMkJiYqMdpgd7+uX7+e9evXExoayoQJE5gwYYJS51Fw7mOz2Xj77beV6hLTpk1zuk4qKysxmUxoNBo8PT2drIqOai2O0BMHsizz3XffMXr0aLy8vEhJSXH63IHJZFKK7js+P378OMuWLeP5559X7suTJ09iNpuRJB02N38kY2nzvfwegZRVZwL1C1SdTqeI1IKCAiRJ4uDBg3Tt2rXe8lqN4ebmhs1mo7q6mkceeYRZs2bxxRdfcNNNNzW6nZeXFy+88AKzZ8/mlVdeYfTo0Yp3w2KxYLPZSE9PJzw8HJVKxUMPPcSMGTMwmUz8+OOPTJgwoc3C884W7777LgsXLiQ3N5cBAwbwzjvvMGzYsHrX/b//+z9efvllTpw4gdlspkePHjz22GMNdtu6//77+eCDD3jrrbd45JFHmn9wQqC2nMOHD/PFF19w6NAhp+Xu7u6MHDnS5dhSm81GeXk5JSUlyr/1lcuwWCwYDAb2799PQkKCSyJVo9EwceJEvv32W6xWKzt37nSqszp+/HgXztSOLMscO3aM/Px8wP4wtVgsmEwmysvLycrKQpIkAgIC8PT0xN/fHz8/vwaPU6fTKd2n0tLS+O9//6uU8zl+/DiPP/44Y8eO5fbbb291IH1jOMIwRAesllFRUcGvv/7Kjz/+WKeGb7du3bjooosYM2ZMm3U7awtCQkLIyMg4o8JPkiTCw8MJDw9n+PDhgP2eysnJITExkUOHDrF9+3bFQpafn8+XX37Jl19+SZ8+fZg4cWK7hgUJzgy//PKL4trv1KkT119/vfKZLMskJiYq14BarSY4OBg/Pz+MRqMSx+/j4+MUCrJ69WqOHTvGnXfeiUqlarAUUk3rfWBgIDt27ODNN9/ktttuU2IqS0pKlO+Jio5GpdEgJ/3c/BONPg+bzR7O1VBMrEajoU+fPhQVFSkGgtTUVDQaTbM8HA5rstFoVMp0zZ49m/Dw8CZDeXx8fLj11lt59dVXyc/PZ9q0aURHR1NVVVUniTM8PJzrr7+ezz77DFmWWbJkCW+88cY5G0f+1VdfMWvWLJYuXcrw4cNZvHgxkydP5vjx4/WGiAQGBvL000/Tq1cvdDodP//8M3fccQehoaFMnjzZad3vvvuO7du3d+g26P9IgdqQMO3UqROXXnopEyZMaPRhbLFYlLI3jldNa45Wq8VsNqPRaPDz88Pb2xuNRkNFRQV5eXlUVlaSkZHh8sxtwIABfPvttwBkZWURGhpKTEwMJpOpWQ/ooqIiRZz6+/sTFBSEzWZTyvEYjUZsNht6vZ7i4mJFsNbs5OPr61tvOEFMTAzz589nz549fPLJJ2Rm2mfemzdvZvfu3cyePbvNkt30ej2FhYUYDAZ27NjB/PnzcXNz49JLL22T/f9bKCkp4bvvvlNq39Zk0KBBTJs2jX79+p11a2l9TJw4kV9++YU+ffqc1ex6R13XTp06MXHiREwmE9u3b2f9+vXs27dPmagmJiaSmJjIf//7Xy6++GIuu+yyFnWME5xdCgoK+Oyzz5T3Dz30kJPQLC0tdWpMoVKpyMvLUwSjLMsEBAQ41ZROTk7m008/ZdasWUqHtYZCZxyCy9PTk1WrVvF///d/PPLII4waNQqwe+8c3jUPDw97LVZbBNLJ35CtZiSarjNqk0Gl0UHEICVTvykBFxQUhK+vL/v376eqqooTJ04ond9coWYsqMFgIDo6mqeeeooXXniB4OBgBgwYUO921dXVJCYmolaruffee1m+fDkHDhzgvPPOU36H2nGxU6dO5Y8//iAzM1MpGXnxxRe7dJwdjTfffJN77rlHSR5eunQpv/zyC59++mm9LVnHjRvn9H7mzJn873//46+//nISqNnZ2Tz00EOsXbuWSy65pOUHKCyorpOVlcX777/v5MoHe5LR9ddfz9ixY+u9EQ0GA6WlpZSVlSn/r89CqtFolBqnfn5+DfYTz8vLo7i4WOlT3BRRUVFO5xAUFKRYDeur8VgfVquV7OxsJSC9X79+dc7VcW6Ol9FoRJZlRYQ78PPzQ6fTKSEBNc9z8ODBJCQksHbtWqXtalVVFS+88AK33XYbU6dObfVsdeLEiU7vY2JiWLFihdPvJGgYi8XCzz//zBdffEF19ekkCkmSGDNmDNOmTevwbq9p06Zx8uRJnnrqKZ566qkO40LX6XSMHTuWsWPHUlRUxB9//MGGDRuUCVt5eTlfffUV3333HRMmTGDq1Kkd2kIhcOb9999XxtyLLrqoTiZ4zfCo2NhYZFmmoKCAiooKNBoNbm5uxMbGKsKtoqKCV199lRtuuIHQ0FCys7PRarX1CrvKykqKi4spKChg3bp1yLLMwoULiYmJUdYpKytT7unu3bvbxZnaA/rfhLRvGTJSoyLVZvu7mn//m0Dr0WCZqfrQarX079+fPXv2YDabSU5OJiEhwaUJbk2vgsFgwNvbm/79+zNjxgw++OADZs+eXSf3o7i4mKNHj2KxWNDpdPTt25cPP/yQ559/noULFzJ27Fi8vLzqWKM1Gg3Tp09n7ty5APzvf/9jxIgR9YZUdGRMJhN79uxRzgPsf6eJEyeybdu2JreXZZkNGzZw/PhxXnvtNWW5zWbjlltuYfbs2U1WU2gSIVCbxmKx8H//93+sXLnSqSuNwz0zduzYOrMso9FIQUEBBQUFTuJMrVZjs9mQJAmtVqtYFQMCAvD29m7yZuzatStlZWVUVlaSlJRE//79XZqd6nQ6TCYTp06dcmrX5mobybS0NEpLS1Gr1XTv3r3e73R3d1dcmI4C6Q6xWlZWpmRGGo1G9Hq9Mpv38PAgJCSE0NBQvLy8lLp2559/Pm+//TZbt25FlmVl1vrggw+2qjbmu+++S1xcHHq9nk8//ZTNmze3e5LYP4XDhw/z/vvvk5GRoSzT6XRMnDiRK6+8ssMIvaZQq9XMnj2bZcuW8eijjzJr1qwG467OFkFBQVx99dVMmzaN5ORkfv75ZzZv3ozVasVkMrFmzRrWrl3LyJEjueqqq85IvLag5ezZs0fpFhUYGFhvQXcvLy/Fg2YymejWrRudO3fGZrPVaxB4+eWXiYmJ4aqrruLIkSOAvTpKfc+RjIwM/vrrL9atW8cNN9zAbbfdVmfcM5lMeHt7YzabnUOeguJg4O1IBz9HtpiQZWddIGMXLEaLjW+T3bnlwjgAxYLqana+m5sbXbt2JSkpibKyMvLy8hqtU+pAo9Hg5eWFLMtO1TPGjx9PQUEBL7zwAkuXLsXNzQ2r1UpqaqrSBlmlUtG1a1flexYsWMATTzzBiRMnuOGGG5zigx3Ex8czceJE1q1bR1VVFZ988gmzZ8926Rw7CoWFhVitVsLCwpyWh4WFKSEo9aHX64mMjMRoNKJWq3nvvfe48MILlc9fe+01NBoNDz/8cOsPUrQ6bZyUlBT+85//OLUiDQ8P58Ybb6wjTB2z3VOnTilJUg4cBcNruro9PDya7f50c3MjMjKSEydOoNfrSUlJoXv37o1uI0kSffr0obCwEA8PDyd3SE0LWEPk5+eTlZUF2B+aNfs0N/adjgLpDguP0WikrKxM6VhSUVGhBLZnZGSQkZGhFFTv1KkTXl5ezJkzhy+//JJ169YpySUFBQXMnTvXZfdPbYYNG6aEC1x55ZWMHj2aG2+8kePHj7d4n/90qqurWbp0KRs2bFCWSZLE5MmTuemmmxq9JhzhKh3N1a/RaLj77rvp2bMnCxcuZNy4cdx+++0dKlYWTjfimDVrFrfeeis//PADa9aswWAwIMsyW7duZevWrfTp04drrrmGwYMHd7jf+t+O1WpV+roD3HXXXfVeZ44OUbm5ueTn59O1a1dUKlW94nT+/PlIksTs2bORJKlRd7rRaOS9994jNTWVOXPm1IkXdOBIoqq32H9QHIyew6aVe4mSt9I98nQ8q83Nn0/WJrL+aCl9Bww+vdxFF39NwsPDyc3NpaysjJSUFEJCQpoUuI5jdXSKq8k111zD9u3b+emnn5g0aRLHjh1Tnnvu7u51wnz8/PyYMWMG8+fP56effmowT+OOO+5gx44dlJeXs3nzZiZOnMjAgQNdPs9zFR8fH/bv309FRQXr169n1qxZxMbGMm7cOPbs2cN//vMf9u7d2zZjUDtbUM/NyGHsVtPly5fz6KOPKuJUkiSuuuoq3n33XcaPH6/cNLIsU1xczN69ezl69KjS196RadmzZ09GjhzJkCFDiIuLU1zzLf0DdurUSUkays7OJjU1VRkIGuLkyZNkZWVRXl7eLIGal5fH8ePHAXvcUn2zSVdxc3MjJCSE2NhYBg4cyKhRo4iPjyc0NFT5LauqqkhJSWHnzp3k5OQgyzI33HADd9xxhxKrdfDgQR5//PE6meItQa1W88orr3Dq1CmWLFnS6v39E8nIyODRRx9lw4YN2Gw2ysrKCA4O5tlnn2X69OkNitPq6mr279/Ptm3bXLbUnw3GjBnDO++8Q15eHg888AB//fWXSz29zwbBwcHcddddLFu2jNtuu83JrXjixAleeeUVZsyYwfr16528PYKzy7p16xSvQ8+ePRkzZkyD64aHh+Ph4YFaraaoqKjO5xUVFbz44ov4+Pgwb948xb3tuGZrX7uyLPPGG2+Qnp7OAw88UCeOsCaOMVaj0dT/bNB6sDt/FD1uf5ygq54h5uYnuGbJM1T0u4+fDhRTZbI5PddaIlAlSVKMLmaz2aljW2M4wt0KCgqccjokSeLmm29m2bJlbNu2TTmviIgIBg8eXG8Muslk4vbbbyczM5OVK1fW+32+vr7ceeedyvuPPvronLrngoODUavVddqfN2W1VqlUdO/enYSEBB577DGuvvpqpZTln3/+SX5+Pp07d0aj0aDRaEhPT+exxx5zCiXpKJyTArWyspLnn3+er7/+WrnBYmJiWLRokZNQArugOnjwIIcOHVLKd3h7e9OjRw9GjhxJv379CA8Pb7L0UnOQJImePXvi7e2Nu7s7GRkZHDlypFGR6rgJmyNQ09LSOHbsGO7u7mi1Wvr27dsq13ptVCoVQUFB9O7dm5EjR9KnTx8luN9kMpGUlMSePXsoKSlh9OjRvPzyy0piSHZ2No899hhHjx5t9XGMGzeOYcOGsXjxYpdjcv8t/PHHH8yaNUtxh+l0Ory8vDCZTCxYsIAbb7yRJ598ko8++ojk5GSnh6NOp6O8vBxZlut90HYkwsPDmT9/PnfddRdLly7lhRdeUBICOyJeXl5cffXVfPzxx8ycOZPo6GjCw8MxmUxkZmayePFi7rnnHn744QdxTZ9lDAYDK1asUN7feeedjRonfH19UalUVFdX1xEPJSUlzJ07Fzc3Nx5//HEnF71jjC8uLlbCqWRZZvHixWzbto277rqLXr16NRrOFBQUpIjT+toQA9jzsCSKy71IzwvAYPVyikptrUB1nIsjNK2wsLBJAwyczrUwmUwcPnyYoqIiysvLyczMxGg0olKpSEtLQ6fTER8fT1xcXL3PM6PRSGVlJb6+vjz99NP8/PPPrFmzpt7vvOCCC5TQmszMTFavXt2s8zyb6HQ6Bg8ezPr165VlNpuN9evXO4UBNoXNZlOut1tuuYWDBw+yf/9+5dWpUydmz56ttIFuFg4LalOvFnLWXfyffvppvRfXzJkz65055eXlMX/+fCUpQaPRcN1113H11VfXuZj1ej1HjhxRMic9PDzo2rUrwcHB7e5iU6vVJCQkcPz4cQwGA8XFxaSmpjpld9bEca6VlZVOA1RDArWgoEBpNCBJEgMHDmzXrhlqtZqQkBBCQkIU145er6eqqopDhw7Ro0cPevbsyaJFi5S/T1lZGU8//TQzZ87k/PPPb9X3z549m2uuuYZly5Zx//33t9FZnbvYbDY++ugjfv75dHmZrl27MnfuXCXO1Gg0kpmZSXp6OkeOHOHpp58mJCSEiRMnMnHiRHx8fAgICKCoqIiioqJm1zY800iSxPnnn8+gQYNYtmwZM2bMYNq0aUydOrXDxihrtVomTpzIBRdcwO7du/n2229JTEwE7DFmH3/8MV9++SVXXnkll156aYcLX/g3sGrVKqXW7Xnnnddki11H5ZPKykoni1x+fj7PPPMMvXr14uGHH67zPAoNDVUE7fHjx+nevTsrV65k7dq13HvvvURGRjbZJMbROcmRkFUffz/uFLTaulZbcF7WksTWyMhIDhw4gMlkoqioqMlSg76+voSEhFBcXEx5eblSWxvs5xUZGUlFRQVDhgxp1GBUWlqKu7s7RqOR+Ph4nnvuOZ577jlCQ0MZNGiQ07qSJHHvvffy2GOPAfDFF18wbty4s1oZpDnMmjWL2267jSFDhihGmsrKSiWr/9ZbbyUyMlKxkL7yyisMGTKEbt26YTQa+fXXX1m+fDnvv/8+YJ/g1K4godVqCQ8Pb1mM/D89Scrxw9Xm9ttvr3MRHT9+nAULFii1HH19fXnmmWfo3bt3ne0LCws5evSoErzerVs3pZjvmcLRgg3sgjIrK0u5SWtTM9u/5my0djtGsFuFa7r1Xa252lb4+voyYMAASkpKSEpKwmg0Kv926dKFhQsX8vLLL3Pw4EHMZjNvvPEGqamp3HrrrS3+/a+66iq6devGG2+8wT333NPuveA7MhaLhbfeeovNmzcryy688ELuv/9+J++Bm5sb3bt3p3v37lxwwQXce++9bNu2jd9++43vv/+exx57jJCQEMWSYTQaO6zQq4mPjw8PPfQQF154IR9++CFr167ljjvuaNfuZq1FkiSGDh3K0KFDOXr0KN9++y07d+4E7C7hFStW8N1333HllVdy2WWXCaF6higqKuL//u//APt4XV9iVH04xmXHeJaZmckzzzzDqFGjuOeee+q9Dr29venUqRNpaWmYTCY++OADfvnlF+6++25CQkLo3bt3k+OjzWbDarVisVgaDMup7cXWaKiTbwE4udlbMi77+/vj6elJdXU1er3epVrYvXv3prCwkJSUFOX7JUkiNDSU4cOHU1RU1KQ301GC0NfXF51OR+/evbnvvvtYvHgxS5YswdfX12n9uLg4xo8fzx9//EFFRQUrV67k3nvvbfb5ng2uu+46CgoKeO6558jNzSUhIYE1a9YoiVMZGRlOf7vKykqmT59OVlYWHh4e9OrVixUrVnDddde1zwH+UwXq7bff7vJgALBjxw5ef/11ZWCIjIxk3rx59WYl6/V6EhMTkWUZjUZDfHz8WatJ6EigqKysVISlt7d3HWtnTYHqMMcDdVwnNpuNxMRErFYrarW6WV2r2hJH/O7AgQM5dOgQlZWVpKeno9FoiIqKYv78+bz//vtKy9ZVq1aRlpbG7NmzG3z4NnZNqFSqetty/tswmUy8/vrr7NixA7A/VGfMmOGUpdkQ7u7ujB8/nnHjxrF27VoWLFjAlClTlESP3Nxce13Fc4RevXqxaNEiNm7cyCeffMJPP/3Evffe26o47DNB7969efbZZ8nIyODbb79l06ZN2Gw2Kisr+fzzz/n++++54ooruPzyy4VQbWdWrlypPFMuueQSl6pcGAwGDAaDMgampKTwzDPPcOmll3LDDTc0Oknq3LkzVquVv/76i++//55bb72VXr16ERUV5dLfurS0VLHaNiQI67Og1sRxfDWfLS0RqI5KN9XV1S7HhEuSREhICEFBQRiNRqxWKxqNBnd3d/bs2dOk4cFms1FSUgLgFN99wQUXsHPnTt59913mzJlT529w2223sXXrVgwGA4cOHSIrK+ucKVv44IMP8uCDD9b72caNG53ev/jii7z44ovN2r+jpGWLEElS9vIfr776qjKQxMfHs3DhwnoHE1mWOXXqFLIso9PpSEhIOOsFsx3dONRqNVartd4LoqZgrWk1rS1Qc3JyqKysBOwzw7P9AHNzcyMhIUGZtZ46dUoZdB588EHuu+8+ZfDbs2cPs2bNUioOCJqHwWBgwYIFijjVarU8/fTTLonTmkiSxEUXXcSiRYvYu3cvn332GcXFxeTm5nbY5KOGkCSJ8ePH88EHH5CQkMDcuXN56623OnxMLdjFiqNLzAUXXKDcJ5WVlXzxxRfcddddfPHFF8r9Lmhb8vPzWbduHWA3ENTsGNUYRUVFVFVVoVKplDCmadOmceONNzZpwZckCXd3d3799VemT5/OFVdcQb9+/RrsLFWbgoICpXV1Q2N/Uy7+thKoNffV3HHDUa/bkacBdsNMTQ9QfZSWliqW15oCVZIkZsyYQWJiYh3RBnbX9vXXX09wcDBpaWksW7asWccrODt0eIF66NAhXn75ZWXWeP7557NgwYIGY0iqqqooKipCo9HQpUuXsy7gHHh5eSkztqqqqjoPnZoCtaYFteaNb7VaKSoqQqVSERgYWG+rs7OBRqOhZ8+eqNVqzGazkrwiSRKXXnqp09/r1KlTPPbYY0q9QYFrmM1mFixYwP79+wG7NXTevHkMHTq0xfvs3Lkzb775JvHx8bzzzjts375dsU6ca7i7u3PTTTfx/vvvY7FYeOCBB1izZs05IbgjIiJ45JFHWLp0KRMnTnQSqitXruSuu+7iq6++choXBK3nm2++UcTO5Zdf7nJcYnl5OQDp6ek8//zzXHvttUybNs3l7/30008ZO3Ys1113nZKp7QqyLFNSUoLRaGy0JndtgVrbxe+gLQSqYx9tcZ+VlJQ0aUxyTDzd3NzqlBz08/Pjrrvu4vPPP3cKX3Bw2WWXKce5Y8cOpS6toBW0c5JUhxaoycnJvPrqq0qZnFGjRvHoo4826tLW6/VYrVZsNludArdnm6ioKHQ6HRUVFXUykBsSqDUHkdLSUkpKSpBlucMltDhqqlosljr93vv3789bb72llLGoqqpiwYIFfPPNN+eEgDjbODJ9HR3SvLy8eOGFFxpsD9gcdDods2bN4qabbuKXX37hoYceYs2aNYoX4lwjJCSE2bNnM3fuXL766iuee+65Dp3tX5OIiAhmzpzJBx98wIUXXugkVFesWMH999/Pxo0bz8m/S0fD0a0J7GPX5Zdf7vK2ERERZGZm8sknnzBixIhmtdHMzMxk7969Lltra2IymZRnQ2N1jWvHoLri4m9JTL/ValUq47RF0lF2dnajbnebzaZULmgo0dkRh/7nn3/W+czNzY2bb75Zef/pp5+Ke6m1/NOz+BsiLS2N5557joqKCqqqqhg3bhwzZ85s8kZyWFod2Y4dCY1Gg4eHh9NA46BmDGrNsjM1BxHHNpIk1QkE7wi4ublRXl5eb625sLAwFi5cyFtvvaV0nvrss89ITU3l4YcfdmqFJ3Bm2bJlSkKUTqdj/vz5bdqVSJIkJk6cSJcuXdi/fz+///47//d//0dpaSmdO3dWGlbULEhuNBqVWDyDwYDZbMbd3R0vLy88PT2VFoQDBgygf//+7Vphoj4GDhzIkiVL+PTTT5VQkwsuuOCMHkNLCQ8P5+GHH+a6667j66+/Zt26ddhsNgoLC1m0aBE//fQT99xzD7169Trbh3rO8s033xAaGorBYGDSpEnNElg5OTl89dVXXHjhhQwePJi9e/fSt29fl8bkVatWMX78+Ba13aw5rjaWzNgSF39LkgtLS0txc3PDZDK51BymKU6dOtVoW+CSkhKlIk9D3kO1Ws1VV13Fjz/+WG892QsuuIAffviB9PR0kpKS2LJlC6NHj271sf9r+acmSTVGdnY2zzzzjDI76927Nw899JBLyUAdNYvXgSNDsbaIc8WCWlN8d+TzbOjY3N3dmTNnDl9//bVSd/DPP/8kOzubp59+usOELHQkfvrpJyXLWJIknnjiiXZpmRkeHk56ejpDhw6la9euREREkJWVpdQolGUZm82GzWZDlmXc3Nxwd3fHw8MDNzc3tFotBoOByspKJSEwJyeHTz/9FJ1OR2hoKOPGjWP48OFNxpm1FV5eXjz00EOMGjWK119/Hb1ez1VXXXVGvrstCAsL46GHHuLKK6/k008/Zffu3QAkJSUxe/Zsxo4dy2233Sbum2ZSXFzMunXrlEnVZZdd5vK22dnZzJs3j/vuu4+BAwdy8uRJTCYTR44cITY2tlGvXWVlJZs2bWpxwxFzDeXZWKb7mSozVVxcjMFgqNP9sCVUVFRQVlbWqEB1lOjy9PRsdEJx3nnnsWnTJiwWSx3NoFKpuOOOO3j++ecB+N///sfw4cPbtA76v4p/W6vTU6dO8cwzzyhu4p49e/Lss8+esYdaeyNJEh4eHnXOp+YNXtOCWnMQcVhgz2SprObgirtEkiSuu+46YmJieOONNzAYDKSkpPDoo48yZ84c+vXrdwaO9Nxg69atfPTRR8r7Bx54gOHDh7fLd7m5uREcHExBQQGZmZl06tSJrl27NlmX0RVOnTrF5s2b+fzzz1m6dCmXXHIJl1xyyRlLXhw0aBAvv/wyzzzzDMHBwYwdO/aMfG9bER0dzbx589i7dy8ff/yxUgN68+bNbN++XYmBPBvVPM5FvvvuO0XsXXLJJS57o8xmM6+//jqTJk3i0ksvBeyTIEczkmPHjlFVVUVMTEy9k/QDBw4QERFBZGRki47bVYFaX5mpmrRFmSmr1aq42wMCAlptMCkpKVE8MPXhKKul0+kICQlp9Pv8/Px49dVXG/x80KBBDBgwgAMHDpCbm8v69eu56KKLWnX8gvahQykdh2WgsLAQsBcef/7551s0O+uosSVGo5Hq6uo6N5grZabUajXV1dVUVlZ22PNzleHDh7No0SKlEoMjG/aLL76oN8D938bRo0dZtGiR8ne+9tprmTJlSrt+Z5cuXZAkCYvF0qaVFjp16sT111/P+++/z+zZszl27Bh33nknS5YsOWMVHWJjY7n++usVK+S5yKBBg3jnnXd44IEHFFFlMplYsWIFjz/+eOvKxfxLKCsrU7oJ6XQ6rrzySpe3/e9//4tarea2225Tlvn7+5OQkKAIxoyMDJKTk+vd/tixYyQkJLT42GtOQBrrPnYmsvhzc3MVwexKaa6mqKioqJP0VJP8/HwqKysxmUyNtvl0BUmSnP6GP/744zn/PD1r/FuSpHbu3MlTTz1FWVkZYG9dumDBgkYv2vroyK5vOD2w1J4BN2RBrTmI1Nymo2b0VlVVKW03m6Jz584sWrSIgQMHAvZBdOXKlTz99NPnTGJLe5Cdnc2CBQuUcmPjx493Cu5vL7y8vJTaitnZ2U4Wm7ZAkiQSEhJ44YUXWLRoERaLhZkzZ/LJJ5+ckXaf3bt358CBA+3+Pe2JWq3m4osv5sMPP2Tq1KnKeHfy5EkeffRRvvzyy3Oq3/iZ5ocfflDGzsmTJ7scO5mfn8/q1auZPXt2HUu1h4cHCQkJSlxpTk5OvePXwYMH620q4yo+Pj74+fmh0+nIzc1tcL32FqhVVVVkZGQA9lJPzX1G14crAhXsE4K2yFfo0aMHffv2BU4nrglawD9doMqyzA8//MDSpUuVB2K/fv149dVX8fPzU+J7EhMTOXToUKO96Ts6JpNJER21XRmuxKDW3MYRn9tRyMrKYvny5bz88sv88ccfja5rsVhISkoiMTGRkydP8vjjj3PzzTcrA2dRUREPP/xwvZmY/3TKy8uZN2+eUsomISGBhx9++IxNvGpaUVNTU9vte2JiYnjkkUdYvHgxx48fZ8aMGe3+kOjSpYvSZrG9KCwsJCcnp93278DLy4s777yTRYsWKRU9LBYLn3/+OY899piwptZDZWWl0hpYo9E0Kx750KFDjBgxokFroaPWtWOMTk5OdhrHzWYz6enprWoiodFo0Ol0mEwmsrKyGhSprnaSckWgmkwmqqqqqKiooKSkhNTUVPbv34/JZEKSpDarJlNRUdGge99qtSqGK1frxbrCFVdcofz/hx9+aLP9/qv4JwtUs9nMf/7zHz7++GMKCgqIjo5mzJgxzJ8/Hy8vLwwGA/v27aOwsJDy8nKKi4ub7Ca0b98+du3aSbW1ilJjMdXWqg5jvq9Zfqn2bLGmi7+mCK957G5ubkrsau1STmeL/Px8XnnlFR5++GFsNhszZ85U+gQ3RFZWFjk5OVRUVKDX6zl48CCTJk3itddeo3Pnzuj1eiorK3n99df58MMP6zQr+KditVp5/fXXlWSArl27Mnfu3DMaW+jp6akkKuTk5FBcXNzgurIsU22totysb/F9Fh0dzWuvvca0adN47bXXePPNNxts4dhaHBUGGjun1vLbb7/x5Zdfttv+a9OjRw8WL17Mtddeq4gMR0z3119//a+5d1xh9erVyrU1YcKEZomdY8eONZmMVrO1tcViobS0VPksOzsbrVbb6tKHPXr0UIwZx48f59ixY3WMNi2xoNaueKPX6zlx4gTbtm1j9+7d7Nmzh4MHD5KRkYHZbEalUtG7d+82iyNvrM1yWVmZcvxtUS3AwfDhw5VwgX379ilWYUEz+KcK1JKSEp566inWr1+vLBsxYgSPP/644spOT09XWso5hFlxcXGDVlSj1YAt2oA0tooT0fv4KucTPst8ly+zP+ZQ2R6M1vZ3IzaELMtKcoOXl1cdN4UrLn6wd8QAu3hoaxdsczly5AiPPvoonp6eLF26lMsvv5yQkJBGXTWyLCsWJpVKpXTXOnnyJHFxcbz22mtOxed/+uknXnvtNafuWv9Uli9frhTi9/Pz47nnnnOauJwpunbtqlyPSUlJdVzGRquBQ2V7+DL7Yz7LfJcvsj9s1X0mSRIXX3wx7777rjIutNcEzMPDo13DCTIzM4mOjm63/deHVqvllltu4Y033nCypi5fvpx58+ads80X2hJZlpW6pwBXX311s7ZPT093yVpYc2yvOdEqKyvD39+/1Z4QrVZLfHy8Ym3My8tj165dHDx4kPT0dAoLCzGZ5FrbNL9Qf2pqKnl5eUr1jprfHxISQv/+/RtstdoSAgICGpw4OsYCrVbbpuOhSqVyquAgrKgt4J8oUIuLi3nyySc5duwYYA9Wf+KJJ7j55puVG6Wqqor8/Hw8PDyIjo6mX79+ys1d38MrszqVFVlLyfVPwzvEOamqzFLK1uINrMhaSmZ1+7ktGyM3N1dxLXbu3LnRJKmGsvjBbnGSJEkRdWfLOrx27VrmzZvHzTffzMyZM9HpdGg0Gnx8fBotAVJdXa2IzdjYWHr37o2HhwdGo5HCwkK8vb15/PHHeeihh5RrYevWrTzzzDPt6po92/z111+sWrUKsFsz5syZ06burOagVquJi4sD7JaNEydOKNeZ4z7bWryBMkup03atvc+Cg4OZN28ekZGRPPHEE+0Sh+zu7t6uYULV1dVtEpPXEmpaUx3jy/79+3n44YfP+djb1nLixAklNj4+Pr5ZiT3FxcUkJSW53BhDpVLh6enpVKmlsrKyzboaenp6MnDgQKKiolCpVMiyTHFxMRkZGRw5coTiYudxsqEs/sYEqqO2cUBAAIMGDWLQoEEMHTqUkSNH0qdPnzavwBEaGtrg/e44XkmS2jzU6cILL1SevX/88UeH8UwK7JxxgVpWVsYzzzyjWNGCg4N5/fXXGTNmjNN6er0em81GdXU10dHRaDQaPD09cXd3r+MCzKxOZXXeKizy31a2Bi5ii2xmdd6qMy5SHe4SsLv265t5urm5KTdfzfjS+pKpHINrXl4ep06daq/DbpC1a9fyv//9j3nz5imZ5faZuwmDwdDoQFxZWYmHh4ciZoOCgpSYR4dLTJIkJk2axLx58xRrxNGjR3nmmWfOSDLNmSYtLY3Fixcr7++++27i4+PP3gFhd6U5yuHk5eWRnp5e4z5r3HLfmvtMo9Hw+OOPM2jQIGbPnk16enqLjr8hPD0921WgWq3Ws9ogxGFNffHFF5WkHZPJxMsvv8zKlSv/tS7/mnHx48ePb9a2mzdvpm/fvi5NGAsLC6mqqqKqqspp7G4sxrIlqNVqunXrxogRI+jWrRuhoaFKKJDZ3LgF1RWB6mjOodVq8fX1xcfHB09Pz3aLhQ8NDaWqqqpeI4TDm2Mymdo8AdDDw4NJkyYB9pDDtWvXtun+//H8kyyolZWVzJs3T3F1h4aGsnDhQrp161Zn3ZqzJseA7+npiaG6Gn1mJqasbCwlJRgs1fyW/wMyMtD0zSPLMr/l/3DG3P1VVVUcOXIEm82GVqulb9++9d7kkiTV6xqqr95dbGysUmbm5MmTSn/iM0F+fj6ffPIJs2fPVmqWVlRUKEI5ODi40YzQsrIyqqur0Wg0yrk5Btba2w0aNIhXX32VgIAAwB5bt3Dhwn/UQ7a8vJyXXnpJSai44IILuOSSS87yUdnp2rWrYilJyTjJ2rzv/77Pmkam5feZJEnce++9TJkyhTlz5rSpSPX391fqN7YHNputQ9Qp7t+/P2+//TaDBw/G09OTqqoqvvjiC+bNm/evsxJZLBalE5tWq2XUqFEub2swGFi7dq1Lora0tJTjx48D9meVIxwL7M++9rCsa7VaoqKi6NOnDyNHjiQhIQGbTV1rnea7+B1esJKSkjNS9s/Ly4vo6Oh6Lf01vYsO7dCWOGraAv/KxNxW8U8RqAaDgRdeeEGxJAYGBvLiiy82OCt13DCOGBhrWRnu69YR+OxzuN93PycnTiR55HmkXHQRod/tR13hYtklCcw2E4eK27+sRHV1NQcPHlSCyvv27dtoiQzHTLGyslJZVl+CjFqtpk+fPri5uSHLMomJiWckzkyWZd555x1Gjx7tVBoqOTkZWZbRaDTExMQ0ug+HlbRmGIBjAKxPuHfr1o2XXnpJsT7s3LmTTz/9tA3O5uxjs9lYtGiRko3bvXt3pk+f3u4Z+7IsYykpUSZ5DYWJqNVq4uPj8fb2Ru9diFVunvXCIptJqjzSomOUJInrr7+eSy+9lBdffLHNwjv69OnD4cOH22Rf9dFRBCrY45jnzZvHxRdfXMfl7wiv+jewf/9+RZQPGzbMZUumxWLh1Vdfxd/fv9HmDo78gsOHD2OxWJQEopqW9La2oDaEn58fsuz8zKht43ClUL8jIUyj0ZyxGOaxY8eSmJhYZ7m3t7dyPJmZmUpGf1sRFhamdOdLS0tzuUyigH+OQF26dKly8fn6+vLiiy82GgdUc9ZU+PvvJJ8/DuP7S1EX1rJ+ZOfT7YMdjLj5KwJ2u170e2vWxna1pBiNRg4ePIhKpUKSJJcyHh2DRM2Bo6GOIW5ubvTr1w+tVou7uzuHDx9ud8vIjh07yMjI4K677lKWZWVlKQNGt27dGu34VV5eroQvOCYmVqtVsRg3FAAfHR3NnDlzlN/nhx9+4Pfff2/9CZ1lPv/8cwoLC1GpVPj6+vLUU0+1a8c0a1kZxZ99xsnJk0keeZ4yyTs5eTLFn32GtZ6BX6PREB8fT6lvPrhoPa3J4bK9rYqTvvHGG+nSpQv/+c9/2sRy3q9fPw4fPtxusdtn28VfG0mSuOaaa3jppZcUT0RxcTFz5851SlD9J9MS977BYGDhwoWUlpY22snQarWSmJhISkoKOp0OnU5Hv3796lhLq6qqzljCY22DZ0NlpmpSe5mXlxc+Pj4YDIZGa662JfHx8WzevLnee7N79+7odDpkWebIkSOtDtMpKysjJSWFvXv3kpOTw3nnnad8tmXLllbt+1+Fo9VpY69WGFzOiEDdsmWLMhi6u7vzwgsvNJnp6uXlhUajwf3oUYpnPYZsMIAsI9W6diXZ/lIZLcQ/97tLIlWSJNwCtLz9/FOcaodONhaLhYMHD2IwGDAYDPTq1cul+KX6HsCNtbTz8vKif//+GI1GbDYbhw4datf6qL/88guXXHKJYgkoLCxUamUGBAQ0WULFEXes1WqV36O8vBytVossy40K+ISEBKZPn668//jjj89oaENbs3PnTr7++mvS09MJDg7mySefbNOs2NpU/PkXyeePI++VVzHXcpOZM7PIe+VVks8fR8Wff9XZ1qaxYtIYWjTQlFlKMdpaHk4jSRKPPfYYubm5bRIf1r17d7RaLVu3bm31vuqjI1lQa9KvXz/efvttJbbZYrGwePFiPv74439057bq6mq2b98O2L02gwcPbnKb0tJSZs6cSUVFBfPnz29QWMqyzNGjR5XOh25ubgwePLjBUkhnqpaxq1n8jSFJkjJGl5aWnpFk3F69emE2m+stJanVaunZsyeSJGEymeotr+UKjhrc+/btIzMzk/LycpKSkhQLKtgTVgUdg3YfSYuKiliyZIny/oEHHqg35rQ2kiThq1bj/f5SkG3QxA0iyYAs0+fFDS67+5/w0hG4YAHW116Db76BXbugoKDJ72oMWZY5fvy4YhXs0aNHk/XzHNTn6m6qBqa3tzf9+/dXyjUlJia2SyeZ7OxsDh8+rASU6/V6jh49iizLuLu706tXr0YHYIvFomRphoWFKQ/xsrIyTCYTbm5uTba0nTx5MhdccAFgt0h88MEHbXFqZ5ycnBzefPNN5f2ll15K//792+37Kv78i8z77kM2VNuv7dqXtyyDLCMbDGTed18dkWqxta6cmdnWuhJhHh4e3HHHHfzvf/9rtbtRrVZz44038ssvv7RLslRHFahgj79dsGABF198sbLshx9+YP78+R2u8UdbsXXrVqVqyJgxY5Tx1GQysW/fPlJSUti/fz95eXmKgcDPz4+bb76ZBQsWNDppTk9PV0ojRURE0K9fvwYtrZIknRGRZzQasVicx+HaAtVh4a85Xtd3bI4wLKvVekYa5Gg0Grp3795gzHlgYCC9e/fG29ubsrIyDhw40KyayYWFhRw6dMjJUKJSqfDw8KC8vFxpopCamnpOGz/OKOe6i//DDz9UBr/Ro0c3K4PSfds2JKPRZc+iw5Iatq7xYv4OtCYb7oA6JQXWrYOPP4ZnnoFZs2DxYvj+e9i/H5rxUMzKylJm1NHR0c0qZ+IYIGsOHI1ZUB34+vrSq1cvwG4xOH78eJsPhjt27GDgwIH4+/tTXV3NsWPH0Gq1aDSaRgdmB5mZmVitViRJcvpNHLGFnp6eLj3Y77rrLuWhsW3bNrZt29aKszrzGAwGXn75ZSXOeNSoUc3qB95crGVlZD38cP3CtDZ/C9Wshx92cvdrVE1fg42hVbU+bGHw4MEMGDCAlStXtnpfkyZNQq1W85///KfN7xObzdahXPy10Wg0PPDAA8yYMUM5zn379vHYY4/9I2PvNm7cqPy/5rMnIyMDo9FIdnY2er2eY8eOsXv3bnJzc5FlmTFjxjQ4HjliTtPT03FzcyMkJIQePXo0On6dKYFaXFxcp1C/RuPsnXPVkuvoXKXT6c5YYmpwcLDy/KyPkJAQpdSi0Whkz549pKamNmiUkWUZvV7PkSNHOHLkCGVlZbi5uREZGcnw4cPp378/1dXVGI1Gpy5f7Rmn/o/iXBaohw8fZvfu3YB99j5jxgyXbw5ZlrH9/EuLvjfyh8TGraAy+FaAm9RAwlJVFRw9CqtXw/vvw5w58MQT8O678MsvcPgw1GNx0Ov1isvbz8+vyYSh2kRFRdG5c2clQx9cE6hgv7GjoqIA+0yxrR82eXl5DBgwALPZzKFDhzAYDFgsFvr27dtkbJXjQQD24Pua6zsmL43VTq2Jj48P9957r/J+6dKlTi0FOzpLly5V2lBGRUUxc+bMdnX96b//XgmPcYm/Lan6708XrXZXeeCr8W/R9/tq/HFTtb53NsD111/P+vXrWx1rLUkSs2fP5vjx4/z4449tcmwOtFrtOXE9XnTRRbz44ovKWHPq1CmefPLJf1SL1KqqKg4ePAhAeHi4kxs3NzcXo9GIh4eHMvZUV1eTmZmpCNX6RJnZbFZiTsEu4hyu58Y4UwLVnnVf14LaVFvT+o7NaDQq7bnbMza+JsHBwU1aL0NDQ+nduzcqlQqbzUZGRgY7duzg8OHDpKamkpmZSXZ2NidOnGDHjh3s379fEb2enp707t2b7t27o1ar8fX1VTx3YWFhhIWF0aVLF06ePNnu5/qPoJ0Farv1UJRlmQ8//BCdTkdAQAA33HBDs8psWEtLsWVnu1A4yhlJBo+ccjTlRiy+DT8Ye0WMRXpzGOTnU7R3L1tXruSC7t3xLCiA+roW6fVw8KD95SAoCGJioEsX5C5dSPk7I1qn0yk3UHPIzs6mrKzMSZQ2p81l165dKS8vR6/Xk5aWRlhYmMsCtykyMzPp0aMHhw8fVtw9cXFxLrWey8rKQqPRIMuyk2i3Wq1KXdPmZLiOGTOGP/74g927d1NcXMyvv/7K1KlTm3U+Z4O//vrLKRb7qaeeajKsoTXIskzxihW0JLmpeMVyAm65WSmOHe87iK3FG5p5AOBdHMih4kPodDrc3NyUdr0ajUZJIKz5chQet1qtWCwWLBaL8n+1Wk1ERASffvopF110EVar1V7hw2p1ejkexhqNRqmf7Cjj5u7ujqenJ97e3syePZt58+Zx3nnntVn8b1hY2BlLKmkt8fHxvPXWWyxYsIC0tDT0ej1PPfUUL7zwAt27dz/bh9dqjh49qlwLgwcPrldERkRE0KlTJ0pKSkhPT6eqqgqLxcLx48dJTU3F39//78x4mfLycgoKCpR9+vr60qdPH5cs5mdKoNpstiZd/I7nUlOi2iEU3dzc2uw50hRBQUGK+G+MkJAQfH19lY5XFouFoqIiioqK0Ol0dToParVaIiMjiY6OdnouO2JtMzMz8ff3Jz8/H1mWkWWZO++8s83P7x+HKwK0IwrUjRs3KtbE8PBwJkyY0KztbZWt68etrjLXL1BlkGQVnNIiB4IUFkbQlClU6vUsTknhqcWLITcX0tIgPd3+b1ZW3dRIgKIi+2vPHiQgAajy9UXVtStu1dV28RoVBS7OPk8XWj7to2nOwKBSqejZsye7du3CarWSlZVF165dXd6+MQwGg5N4jo2NdSm2trq6muzsbGw2G507d3Yqs1Wz6H5zhJokSdx+++3s2bMHWZb5/fffmTJlSqMlvM42BQUFTrHY06dPb/eWmNbSUswZLagbKMuYMzKxlpai+TvzO86rLztL/myySP/pfdjvM69Sf0rktitT079/f7755hulgkVjWK1WJYGwdgydJEl4eXnRo0cP3nrrLZ5++uk2KUQeHh5+zghUsFujXn31VebNm8fx48cpLy/nmWee4fnnn1fChs5VDh06pPzfUbPZgY+PD2azGZPJhCRJBAYGEhAQQGlpKWlpaUpsfH5+vhI7r1arkWUZSZKIjo6mS5cuLhshHNa+9kalUtURqC1x8ZeXlyvnHRoaesYSvIKCglyO/3Rzc6NXr15ERkZSVFREWVkZBoNB+a1VKhXBwcEEBwfj5+fX4N8qJCSEzMxM1Go1UVFRZGZmkpGRQXl5ucuePUH70C4C1WazsWLFCuX9HXfc0ewLXOXVupIcVs8GHl6SRFR+D8oM5RQWFiqWk4kTJ3L33Xejr6jALzISIiPBUdDZbIbs7NOCNS0NcnLquE0lwKusDA4csL/APnuIjIQuXeyCNSYGOnWCembdNQWq4+Hb3Jmrh4cHoaGh5OXlkZ2dTVRUVJvMfisqKigpKSEoKMgpnKApMjIylBqptbepKVDd3NyadTxdunRh3LhxJCUlkZ2dzbp165wKLnckbDYbb775phJ3OnbsWMaNG9f+39vKSZ6tsgr+FqhuancmhV7B6rxVLhXrlySJ89wvwCvaD4PBoLgLHYKxuajVajQaDQkJCaxbt44TJ04wZswY1Go1arUalUql/N9h0bJYLJjNZmw2G25ubhiNRgwGg2IhqaioYNSoUSxatIgvvvhCKQUXFBREUFBQs69JsFvkjhxpWe3Xs4WXlxcLFixg/vz5HDlyhMrKSp599lnmzZt31juatYaacYS1z0Oj0VBaWur0N5YkiYCAAPz9/dHr9RQVFaHX66moqFCSacLCwggKCmq25+NMWVDtybKuufgbeiZXVVWRmJiIzWZDo9HQqVOn9jvgWri7uze7W2BT7bWbwtvbG41Gg8ViISYmRmkGcPToUYYNG9bi/f4rOBctqPv27VNmXwkJCS3KUFb7+6PtHI0pMwupGTe2LIEh3AeLT42Hi00GCTQmG5N+KkJnMpEfEUGKLBN8/vmKmb9Tp04cP3687kWp1Z4Wl+efb19mMNgtq2lpmJKTsZw4gWd9mbA2G2Rm2l+O8hVard2y6thnly5Qwx1fU6A2x8XvoHPnzuTn52O1WsnNzW0TS11BQQFarRa1Wk337t1dnnA44gXDw8PrxDE5YvVUKlWLYpymTp3Kww8/DMD333/PlClTOmSCyqpVq5SHZWBgIBdeeCHV1dXtXhextZO82ttHe3RlStg0fsv/oX5LquM+k7RMCruSaI+61ntZlhW3vc1mU8RizRecFqSOf2tebzfddBP79u2jb9++zT4nm82mtFQsLy+nrKyMSZMm8dNPPxEbG0txcTHFxcUkJycrrXiDgoLw8vJy6ZqPi4vjvffeO6Nxew2xf/9+1q5dy5NPPtnkuh4eHjz//PO8+OKLHDhwQGms8vrrrzc7lr4jUF1dTXJyMmBPVq2dje8QQQ3VBPX391fCl9qiMsOZEqhRUVFYrc7H2lCr05o4Pi8qKuLYsWNK0lGvXr3OqGfKUdHlTCJJEh4eHhgMBmJiYpRuUomJiUKgNsW5KFBrFlFvqVVLkiQCb76ZvFdebd6GMuRP7O1Us9G3yED85lPE7czHzWB31YcBNpUK2y+/oB44EAYMoGe3biQnJ7t2Ubq7Q/fu0L07OT16kJaWhpvVyrCwMFQZGadDBOqrAGA2Q2qq/VVjf7OAQ76+HLDZOKVWk2e1tsj66enpib+/PyUlJZSWlrZaoMqyTHV1NSqViqioKJcHEIvFojwI6pvhGo1GpbxUS1xIXbt2ZdCgQezdu5e8vDy2bdvG6NGjm72f9iQ5OZnPP/9ceT9p0iQlma4lAqs5OCZ55sys5pVOkyS00VGo64kvjvboys1R95NUeYTDZXsps5Qqn/nqzcTv1hPnNwC3a+sPLXH0926NVX/AgAGsWLECi8XS7AmcSqXC29sbb29vpZpE//79SUtLIyUlhaFDh1JWVqbEHJaXl9vv7b+ztcPDwxuNl46KisLf359Dhw65VHOzPdFqtc3qGOXu7s5zzz3Hyy+/zJ49e6iurmb+/PksWrSIwMDAdjzStsdhAYS67v3i4mIlOdOVMKW2KBt2pgSql5cXFovz91RXl+Hu3niSlKM+qKMEk1qtpmfPnk7tWs8ERqOxTSd2ycnJeHl5NWgFtlqtpKenK9Vkao7J55on5KxwrgnUsrIyduzYAdgz2VszSPtdeSV5b76FbDS6ZkVVqVC5udHpgrfJ22Cl/OARupYeI16fRRdbTt3VbTZISrK/vvqKGRoNqZ6e4O0N/fvbLZsu/LiO9p3eoaGo+vaFmsJDr4f0dOTUVEozk6jKSsWz3IC/RYNUMwXMYCAOiPP2ZtrfyWR6qxXzjh32+FdHiEAT3agcOASqXq9vtQXAYDCg0Wgwm81NdsOqidVqdbKI1bdfo9HYKkvi1KlT2bvX3rZ2w4YNHUqgGgwG3njjDaW+7bXXXsuYMWNITU2lsLAQvV7frN+zubR4kgcE3nxLg5MGN7U7/XwHE+8zCKPNgNlmQpt4HLeln9ivaN12uORKaKfWjl26dEGr1XLy5EmnzOyWotPpuPXWW/nkk0+46667sFgsFBcXU1RUpPQiNxqNZGVlkZWVha+vL+Hh4YSEhNQRyJIkMWTIEHbv3n3WBWpERARFRUXN6mKk0+mYO3cuc+fOJTk5mcLCQubPn89rr73WoWO8a1PTvV9ToFZVVXH06FHAfq5nSoA5kv/aG5sNbDbn+/bkyeN4e6djMpnQarVO97XNZsNkMpGWlqbUdPXw8KBPnz7NSmpuK9ra83DgwAG++uor7rzzTi666CLl3G02G7m5uaSnpysJVd7e3vTo0YPIyEilCkBH8IR0aM41gbpp0ybFPTBhwoQWuagdqH198Zo/n4q5c5GhcZH694UX9c47eI/wo/8IsFjGcPjwGNbsgORdpcRWHqSv5QB9zAcJkfPr7EJjsdCjrAwcvd79/KBfPxgwwP6qp1OS1WpVWn3Wl9Fe5iHxo+YgX1i/INMnE3rbl0frQrmRQVyeG4hvWq49ZKAWfmo15OXZS1s58Pc/HRbg+LceIeA4FqvVSkVFhVPpquYiy7Li4myO0HXU0DOZTOj1+jrdtByJK6158A0YMECpnbd3794OFdj+0UcfcerUKcDesOGGG25AkiROnTqF0Wjk5MmTDBw4sF0TEHyvuIL8txa7XmpKpUJyc8PvyiuaXFWSJNzVHrirPaDfEAj9CfLz7VUwNm2CGgXh2xJJkoiPj+fQoUNtIlABhg8fzkcffcTOnTsZMWIE4eHhhIeHY7Va0ev1FBYWKmEzZWVllJWVcfLkSYKDg4mIiMDX11f5O44YMYJFixZx6623tmuVhqYIDAykU6dOHDp0iOHDh7u8nZubG8899xyPPfYY+fn5pKSk8Prrr/PMM8902CYEtUlOTiYqKgpJkhSrmMVi4ciRI0pdz/j4eKeJs9ls5rfffiMoKIgRI0a0+TGdCYFaXzlQjcZeC7S8vBxJksjMzOTYsWOkpKQojS8cQjUmJoaoqKizFirV1i7+q6++mri4OBYtWsSePXt46KGHqK6uJi0tDVmWMRqNSohfz5490Wg09OnTh+zsbOV6GThwYJsdj6B5tOloI8syv/32m/L+wgsvbPU+AyaMR//gDGSdzi5Caz3MZUlCliQkd3eiP/wQ79GjlM80GkhIgPvug5ff82fYY2M5Mv4hngr+gNk+S/mvx3R2akdRLjUgaPR6e9zou+/Cvffad/Tuu/Zlf4vSqqoqpw4kNdmSvYWJ30zk9V2vk1Xu3FI1y1TA66a1TAz9ji2zr4b58/nKy4sfKyo4WFGBsaHBrLTU3jzghx/gP/+xNxV45hl7k4Hff7dbgw0GvL29lYeJw33RUhyTjPLy8jrlOxrDkXTg6NRRc4C2Wq1K0lBrZuqSJDFmzBhlnx2lj3JiYqJyL7i7u/P4448rMZWOygqOsjXtQZmpjBWJK7h8/Q28eLkRKzJNpSbJNSZ56uZOaFQq+LvLFwB//EGdiuFtSJ8+fZrlvm4KtVrNJZdcwk8//VRneWBgIHFxcYwcOZKePXsq97nVaiUvL4/9+/ezZ88epRtRQkICkZGRrFq1qs2Or6UMGDCAA46EzWbg7+/P888/r4Qz7Nq1i48//ritD69dqKys5ODBg2RlZaFSqQj4O9HPUUaqsrKSnj17OnVK+v3337n33ntZs2ZNu5RUqplX0J7Ud8t169ZZsQLKsozBYKCkpEQxrIA9NGDw4MF06dLlrMbxt7WLH+whPEuWLEGWZW655RZ+/vlnJWkzLCyMgQMH0rdvX+U5N2jQIGXbXbt2temx/OM4l+qgpqSkKIWee/bs2SbJOV5eXlj69aPo1VeIOnEC208/OZXOsQYH4zFtGl3vuhN1I5YznQ6GDLG/srIK+f33ElJTB7Hl1CQsJploa5rdumo5QE9LIm7UU2w7N9f+cojwrl1R9+hBgJcX+qgoJ2vJluwtTF8/3Z74UU/Ws2OZwWJg+oYHee+C9zjs5cX+sjJOnTpFp7AwYtzceGTqVLqpVPaY1uxsuw+nNgUF9pfjZpIkVBER9PLyotTPz14xIDTUHi3fAnQ6HV5eXooltDk1Ix0VBaqrqykvL1csuZWVlYqwb63F8/zzz+e7774D7Bb8iy66qFX7ay02m82pDettt93mFAMVGhpKVlYWFRUVpKamEhwc3KaWqS3ZW3h046MYLHarfGasilevhcf+z4bu7wdYzW+z/R1sYlG503XpO06TvGZx3nnw449QWWmfwO3aZV/WDgQGBjo9YNuCSZMmsXLlStLT0+nSpUudz9VqtWJZraqqIjc3l7y8PEwmE5WVlRw7dozU1FSioqK47bbbeO6557jooovqeA7OJAMHDuR///tfi7aNjo5m7ty5zJs3D6vVqiSSTZw4sY2Psm05dOiQMhkeMGCAstzT0xOdTkdFRQVmsxmr1crWrVv5/PPPkWWZO+64gzFjxrSLR+NMCdT6LKhRUeFotb3x9/fHZDIptV39/Pzw8vJCp9PRqVOnZtWibi/ay6VuNpuZMGEC7u7urFixgilTpnDvvfcqk5eaDBw4UGkdvnv3bu65554zVmbrnEOSmhagrfjt2lSgbthwupB3W1hPwR674+Pjg95mo2r8ePo++CDW0lLK8/M5dOIEspcXgwYPblSc1qaw8BSxsXr69auib98Q9u2T2LEjlt8OxbLaOhWNbKab9Th9zAfoazlArDUZdX32p9RUPFNT6Y894UrasAEGDKCsTzcePfhog+K0JjL2FpSPbnyUSTp7n3tZlrHIMmkWC6V9+4Ijls1sVioHKElYubl1XbeyDKdOEQKEAOzeDV98YS93VbNyQEREveWu6sPHx0epCxgTE+Ny6Ia/v79Sl66mQHVk96tUqlYPjLGxsUrc0JEjRygqKjrjwf01WbNmjVJsOjY21qn3OditvrGxsRw8eBCDwUB2dnab1URtaGJ0IFbF/Q9KnH9IZspuG+Glp7fRu0WxO/wWDgdfyf1ePgyqu1vX0OnsVS5+/dX+ft06GDmyVQNUQ3h4eLR5f3BfX1/Gjh3L2rVrnbqV1YenpyexsbHExMRQVFREZmYm5eXlSuiGo8PQK6+8wksvvXTW4jf79etHdnY2hYWFLRLKAwYMYMaMGbz99tsAvPfee8TExHToQv41LcYJCQnK/6urqxUBtHv3br7//nvKysq444472r0CiNlsPiMxnfVZUB26WK1W4+HhQVRUFH369MHT01O5Ls9E+IErtIdALSwsJDExEVmWGT58OCNHjuSTTz7hv//9Lw899FCdiYOXlxd9+vTh0KFD5OTkcOrUKSIjI9v0mP4xnEsxqPv27QPsoqMtk1UCAwPR6/WUlpZiNpvRBQTYsyL/LojdnJlpcXGxIo4iIyPx8LAbec47z274mTVrOaGhl5GcFc9xTTzfcRPuchW9LIfpY7bHsEbZMursV2WzwZEjcOQIP3bTY+hfjezic1lGxmAxkOlrtwzXLLfjJAS1Wuja1f5yYDCAo2qAQ7TW18vYarWvl5EBmzfbl+l0EB3tHNMaElLvBRUSEoLJZMJsNpOVleVy6RmVSoVGo8FkMinJQrIsK67tgICANinhcv755/PFF18gyzJ//vlnu/a3b4yysjKWL1+uvL/vvvvqPb+AgAClKHVGRgbh4eGttrCUmcp4dGPDE6Mqd4nVQyVWD5HwrgZPk4TN051LDd9wcLfdbb16NQxqsUIFxo2zexgsFrvF/+hR6NOnFTusHw8PD6qqWlfntT5GjhzJxx9/3KRAdaBSqQgJCSE4OBi9Xk9WVhZFRUVYLBbGjx/PF198wZNPPsmzzz57ViypXl5exMXFceDAAS6oGYLRDC688EKSk5NZvXo1ZrOZl19+mcWLF7cqrr092b9/P2D/29SsfxobG0tISAgrV67kyy+/JD4+nuuuuw4vLy+Sk5Pp1KlTu51Tay2ohYWFHD9+HDc3N8LCwhocLxoSqPV1kmoN1dXV5OTkUFhYiMViISEhoU3K5jkqu7QVJSUlZGRkKLWQ4+Pj8fHxoW/fvrz44os8/fTTzJs3r46RZOjQoUqjh127dgmB2hDtLFDbzK9YWlqqFLjt0aNHm7oLHP3bawoba43OTrVnvrIsYzTbqDRYMZptys1pNBo5fvw4YI8LDKuV9OTlBaGhSYwdu4u334bbb7c/W40qT/Zrh/GF59087fsOD/v+l6Wej/KnbgIlGueHjozMF91a1is82TsZGRmbzaa4v5sc1NzdIS4OJk2yx8m+9BIsWgQPP0zeiBEURkZibuhvYTLByZOwfr09Mey55+wxrW+9Bd99B3v3QnExyLJTz+KMjIxm9UN3/H0cf7OKigrKy8txd3cnPDzc5f00xtixY5X/b9u2rU322RKWL1+ulLAZP348fRoRZ127dkWSJCwWCxkZdSc9zeXHEz9isBiaLqQvSVR4SuT7Q5HOiHrAz8pHSUn2S6LF+PlBzYScGiXn2hJPT892Eaj9+/enoKBAKbfjKo7amfHx8QwZMoSwsDB0Oh033ngjJpOJ22+/na1btzqNW2eKhIQERbS1lHvuuYeePXui0+nQarW89dZbHcbqVpOioiKysuzx/j179qyTpLZ69Wo2btzI888/z/Tp0/Hy8sLNzY28vDz27dvHvn37KCoqavNza41A1ev1JCUlYbPZqKioICUlhe3btytNUGpSf5JU052kXD1fRzmqXbt2kZmZSWVlJSqViv379zt1QGwpbWlBraysJDExUfHcDRgwQAknCwgI4JVXXsHT05NXX321Tm7FkCFDlP+LONRGOFdiUA/W6FFfu+5ca3H00HbEfUVGRjrNAi0WC1qtFpPFRkaBgZTcKiqNpx8EXm5quoS4UZ53Qmlt16tXr3pnko7yTD4+MH68/aXX28PpduyA5GTQqwLZphvHNt04kGXCbKfoYz7IIPV+QuX9ZHrXM0o0gYxMuaYcf52/kwW1RYOatzfmuDhO6vWYY2OJjo4mNjDQ2cqanm43GdemuhqOHbO/HPj4cIVKRYGnJ155eZT4+XHkyBH69+/fpNvKUZgdTs/cHa0grVZrm9VXjIyMJCIigpycHJKSks5KeZDk5GTWrl0L2K/Z22+/vdH1vby8iIiI4NSpU/a4406dnB6osixjsshYrDIatYROIzUYCyXLMl8c+6JFx/1b4eeM7HEjJ5Lt+169Gh58sEW7sjNxIjiS1RIT7WEpLnYec5WKiop2aXTg7u5OfHw8u3fv5rLLLmvRPry8vOjVqxddu3YlLS2N66+/nvXr1/P0009zyy23cPHFFxMWFnbG4toSEhJ47bXXlDadLUGr1SqW4OzsbE6dOsWqVau4+uqr2/hoW0dN937N+FOAH374gXXr1vHqq6/SuXNnwG5Vzc3NJSsrC7PZTFlZGYcPH8bPz4+uXbu2WRm41ghUh+fKYrEolnqbzUZqaipFRUX06tVLGTcasqDWJ1Cbey3o9XqOHTum1LZ21BQuKytDpVJhbWHd7pqYTKY2qcJis9k4evQoFosFtVpNjx496owXOp2OOXPm8Oqrr/Lhhx/yYI1BLyoqirCwMPLy8khMTGxWqTZB29FmArVm3+OWdI5qirCwMKXAsslkcrLQ5ubm4hnQiR1Jeqw2GexFqZTPK41WErMqkeRwvCQrvWPDGxx4fH196yRf+PnZn7kTJ9o7nG7YYA/rPHXKXnPupC2SZFskPzAFq0cGcEmLz9OmsTVqQbVYLEoHpsZ6h6enp6PRaJBl2Z7U5ONjL2ngiMmSZXsogEOwpqXZ3f/GepLDysvpAnTR6+0/AGDw8qJq0yYMvXvj3rOnPTygnpI6xcXFikB1/M0cpU1CQkKa5W6SZRlDpRmzwYrWXY27l3NNv759+5KTk4PFYiE5ObndC+HXPrYPPvhAmVjceOONLonvLl26kJeXh9VqJSUlhb59+zY60YoN96RziDs6jfPvVmosJbM8s/bumz5uZDLLM3liop4Tyf6A/douKLBHe7SITp3stYAdha7XrbO7I9qQ3NxcpdB+WzNkyBD27NnTYoHqwM3NjZ49exIVFUVQUBAhISF89tlnpKenc/HFFxMXF1dvkkZb06tXL6xWK/v3729VyZyQkBDuv/9+nnvuOWRZ5rPPPqNXr14dqh1qTUtxzfjTLVu2sGLFCl566SVFnIJdpHTu3JmoqCgKCgrIyMigqqoKvV7P/v37CQ4OplevXq2OT22NQK3ZVbBHjx6oVCqSk5MpLi6mrKyMPXv20K1bN8LDwzGb6z4Parv4a56Lj48Psiw3en42m420tDSysrKU/URGRhITE0NxcbFSV7YtksDaysWfm5urVImJi4trUPS6u7vz4IMP8sgjj9C9e3clwVaSJIYOHcrPP/+MxWJh//79nNdOCZ/nNOdKDKrDgqrRaOjdu3db7VahZmxQRUUFgYGBREVFkZuby8msIsrzPP6WpRI1xelpJGSgQheF1rvhh4K944fds52dbX9lZZ3+f5NVgaytm/2pLPaCzg5XYM2b3mw2c+DAAbRaLaWlpWi1WkJDQ5WMTEdPckdgtyzLRERE1H9zSpJdgYSEwNCh9mU2mz3pyiFY09PtLVrr8Ru5V1biXllpX2/1avvCsDB7LOvf8azF3t4c+9tfHBISQkBAABaLRUlucdU6Yawyc2xbLgc3ZlFWcDoxxjfEg/7joug1Mhw3Ty19+/Zl3bp1gL0LyJkUqBs3blTCR6Kjo10WN44HpKN4/8msYo6csjQw0bJwKL2cxMwKhsf5EeZ/eiDPymudu/vAsUoCAvwpKbHPXdauhZtvbsUOL7zwtEDduRP5iiswaL0anFw0l5ycnHYTqIMGDeKzzz7DarW2SeKMl5cX8fHxREdH06VLFz766CNSUlK49tpr6dGjB7Gxse1q7ddoNFx++eV8++23ra7pmJCQwPXXX8/KlSuRZZmFCxfyn//8p94a0Gcaq9XKnj17ALvwcNTITUxMZPHixTzxxBPExcXVu61KpSIsLIyQkBDy8vJIT0/HaDRSWFiojCWtuRZaI1AdhghZlikpKSEyMpL4+HhycnJISUnBarWSlJSEwWDAZIqh9vOvIRe/SqVSShA25J632WwcOXJEKeLvmHQ5JlY1i/u31b3S2nvBbDYr1YT8/f2brDoTHBzMnDlzeP755+nSpYuiX4YMGcLPP9vDn/78808hUOvjXBCoRUVFSkHyuLi4dslYdXNzQ6PRYLFYFIEaHR1NfkEx5apIZNkFl8Xfn+9I0nPRoGAkWUVOzmkReuoU7Nt3OZWV/koicnNRmfzRVkRj9soCyfU4JgkJP/xQmVQNWlAdMT+O8zSbzZSUlJCdne20L1mW69TcdO3gVXbrV6dO9uxrsIvTU6fY/8MPkJZGgr+/w3Rcd/u8PPtr504AAiSJAX5+VAQF4de/P2q1Cb1GRmMqw6L1cSmrNeNIEas/PIzFWDd2r6ygmr++SWb7jylMuTfeKd4zMTHR9fNuJVarlS+//FJ5f++99zarQUVkZCSnTp2i3KThYJYjFqq+iZb9vdUms+1YKX07+XPsgBtbtkBiqie0oi7+Yw96obXaCzvExsLGjTB1aiuaQfXqBVFRGLPyOGaN4eALuymrPv0Aqz25aC45OTkNio3W4kiIcIQTtRV+fn5cdtllDBw4kDfeeIO3336bq6++muLiYmJjY9vV7X/JJZewatUqjh8/3urmBtdffz2JiYkcOHCA4uJi3njjDV544YWzXsT/0KFDivdryJAhaDQaKisrWbhwIbfeeitDHRPxRlCpVERERBAaGkpKSgqnTp2ipKSEo0ePtspS7Onp2WIXsU6nU0LP8vLyiIyMRJIkOnXqhL+/P8eOHaO8vJyMjAwqK92A0yXt1OrTRTQ6d+6MJEmKhbKmoKwvNtpms5GYmKiI0JCQEHr06KE8k6xWK4V/J+Q2p/RgY5jNZsXy2VLS09Mxm81IkkS3bt1cuqfi4+O59dZbeeONN1iyZAkeHh4MGDAAPz8/9Ho927dvb/fOf+ck54JArRl/2h7ufbCLT0fBd4cFTqfTERjVk5ysKue2oU1gscoses/A7k2e9eispnszg91t0qmTvXJTZCRERFjRaPIwGFJYVzKaX6u+bHontTjP7TwSSXSyoDqEjs1mUxI3goKC6NSpk1NFgppIkkRoaChRUVGtd7toNNC5M3lxcWwpKCDh2WftyVWZmVhOnKDiyBF0OTl41lOTUpJlvPX5eJt2QNl/YHsFfsAowCIFoMq5BkbcBV3i6r2IM44U8fO7B5psgGQxWfn53QNcMqM//v7+lJaWcvTo0Va3eHWVzZs3KxO0/v37O7kWXUGtVtO5S1d2pNlcm2gBNhn2pen59vNgzEYVKvzQVXbC5JnTrImRbJMwFURhrfTDCqSm2l8eHvYIkHnz7FEhzdZNkkRGnwmszq7EghpqVYSqPbno3Nf1smCyLJOYmFinfFdboVKpiIqKIj09vc2zdyVJIjo6mjfffJOVK1fy8ccfc/LkSSZPnkxubi5xcXHtEuvm4+PDtGnTWLRoEW+99VarklhVKhWPP/44M2fOpLi4mAMHDvD9999z1VVXteERN5/NjuokoDTv+OCDD+jSpQuXXnpps/alVquVUlqnTp1qdsvY2qSmpjJlypQWbQv2ROGSkhLKy8uprKxU/n6enp70799fEeeZmbnUFKiO4d9sNiuJmA7jR2MC1RHDWVRUBEB4eDhxcXFOY1NhYaGyXWioa8/NpggKClJyFFpCzedkREREs0p7XXbZZezYsYNPP/2UGTNmoNFomDhxIqtWrcJisbBu3TqmTZvW4mP7R3IuCNSa8actSZCSZRmLyYrVakOtVqHRqes8pM1mM9XV1fj4+CizGFmWSS9wvbPR6S+ETt2rMP7mUSNg/PRDuOa//v6nRajjFRUFwcG1S4iqkeUISks96FoRzoZN32G0GpvOqAaQVahlN8KKpnJUSsdms9Vx8RuNRiWWs1OnTgQEBChulurqaiorK5FlWRFlQUFBbSrO3N3dleB4dDro1g1Nt274T55McXExJ0+cgPR0vAoL8Skqwqe4GHfzCQjYApKllrMaNLYSOPYhHP0UKsdBxMjTpa5iYjB6+rH6w8N2cdrUT2gvJcuaD4/Qt1d/tmzfTFVVFWlpacTGxrbZb1Afta2nN9xwQ4v2U4U3SOUuT7QkCTRamb5984jK+J6Lgz9gvaGQ1z39kZsxWQMo+v0maltrq6vtzcp++MEeTnrLLXDjjfaqZK6QcaSIn9cZkVHX2XdNHJOLS2cMcFmkOpIf2jOEo0uXLmRkZLSbW0+tVnPzzTczbNgwnn/+eZYuXcoNN9xAeXk53bt3Jzw8vM2tqddddx3Hjx/njTfeYM6cOa2K9fP392f27Nk89dRTyLLM559/znnnnddmVTmai8ViUap3uLu7M3jwYLZt28auXbtYsmRJi35LSZLo2rUrubm52Gw2ioqKWiRQzWYzBQUFdarGNIfg4GAyMzOJiIio46HUaDT069ePQ4cO1YnGcgjUmi5+hzCtKVBrfu4Qpw7raFhYWB1xCvZM+OjoaMrLy9usak+vXr34888/W7x9WVmZci7NvRYlSeLhhx/mwQcfZNSoUSQkJDB58mSlI9zevXu56qqrRNH+M0ibCFRHvIckSc1yH1nMVvIzSslJKcZYdToGxs1TS0RsIKGd/dFo1U4ZeTV7rZssMpVGa7OspwCSCnwDrcjIVFc1vK1OZ8/gNxrtYQAeHvaqTrVfbm6OzyTc3QNwdw/gruDFvJ83HaBxkfp3sdSYg4s5UDwCf//l9Oz5F9XVG4GjikC12Wx4eHhgsVgUoerAw8Oj3Xt+OwnUWgQGBhI4bBi2IUOorKxEo9HglrUFvrjGnjlMPRJFWWAB7/WQbobk0zGFx3R9sZj71rdl/chgMVrp7BPPFuyWlKNHj7a7QK1tPW2JG1CWZVJym190PrTgT56SH0ITad/28gp4O8APA6fbljaGChVqlRvDvC7jd7W9VG59HDkCc+bA3Ln2Mqe33ALTpkFDJSONVWZWf3Dob8t3E8fx9+Ri9YeHuf2V81xy92/dupURI0Y0GPPmyoS3KTp37szJVtXbco24uDiWLVvG22+/zZIlS7j88sux2WyUlJQQFxfXrFCRppAkiccff5x58+Zx7733MmnSJHx8fEhJSVFi2j08POjbty+DBw9usm5rfHw8l112GT/++CMmk4l3332XF1544aw8wPfv36+Udxs2bBgGg4F3332XBx54oFVNOzQaDf7+/hQXF1NcXNyihhppaWl4eHi0SrxrNBqGDBnS4G/rEKl79qTUWm7/t76yjDUNGDU/P3HihJM47dmzZ73fq9PpiI2NbdOSXD179iQnJ6fF7nRHAq5Wq21RY4SwsDDuuOMO5X6MiIhg7Nix7N27l4MHD3L48OE2r1J0TtPRLaiyLCv1T8PCwlyelZfkV3B8ZyY2a92L21hlJu1wHhlH8+k5LJri8jzlwuvSpYsyW7PUs21z0LrJGBrRBSaT/dWMkp81GIVPp/fQn/8oaAx2163q9PHKNslutbW4E7B5MdX552GQQJK0SNJ43N3HA1YefFBF584QHe1OUVEwarWZw4fL6N7dFz8/N0Uke3jYhbLjfVs3RWlMoDpwdP2iuhS+vvVvcdpUTU7sWTkBWyD/cpB1yMBBUxeXtWlNDNmnLRyO67K9sFqtrFy5UnnfUuupY6LVnBMOLfiTkXvvQeL0b+xrg7fyC5keFgKy3KhIlZBAgiUXLOa823zJy4OvvoLly+1Z/PUhy/DHH/bX9OlwxRV2sTppknMX3WPbcrGY6olRboi/JxfHtucyYELjAkCWZbZu3cr06dPrfObqhNcVOnfuzMaNG10/h1ag0+l4/PHHGT58OC+99BInTpzg8ssvp7y8nN69e7dp8XgvLy8WLlzIli1b2Llzp1LerGfPnpjNZsrLy9mwYQPvvfceUVFRXHnllUycOLFBYXTzzTezdetWCgsL2b9/Pxs3bmT8+PFtdryu8tdffyn/HzNmDO+88w79+vVTXP2twcfHh+Li4ibHv4ZISkqiR48erRbuTW2v0WiIjo6ttczuu6opQB3CtD4Xf2FhoeIiDwkJaVCcNue4moOPjw9RUVEcPXqUESNGNHv70tJSwG7hb+lxTZkyhS1btvDf//6XGTNmMHz4cCV85PfffxcCtSYdvdVpzRs3ysVahyX5FRzdntGk69ZmlTm6LQOLVylo7W6Omj2yNerW3RhmY/vO9N1OjSL423UYuv1EaeznaIJPCya5NAqfEzfhfvJyVGYf6s+hVCsxgaAGXLcGarWnhavDylvb8tvQZ/Utr6z0prJSg9Fotyw3es0dWIlsrmpanDqQQJasSAN0UNEdQ3ouZZaWVUOo1lvRqtwx2wx1ksfamk2bNimDeUutp9D8iZbWXMbw/Q85iVMHo6oNvJdXwKOhwTgepzWFqsPb4K5xZ/G4xZwXaXdhh4XBww/bX5s32+ugpqTUXyoX7A3MvvrK/goJgRtusIvVQYNkDm7Matb5ODj4Rxb9x0c1+mDZtm0bVqu1To3L5kx4A0Kbtqw4YpnPJGPGjGH58uXMmzePJUuWcMMNN2A0GunWrVubxsJKksTo0aMb7PZ30003UVlZyc6dO1m+fDnr1q1j+vTpTmOvAw8PD6ZPn84LL7wAwMcff8zgwYPPaJcpk8nE9u3biYiIwMvLi9LSUpKSklrs2q+NTqfD09Ozxdbs5OTkdkvoq40sOx+jJJmx2TT1WlBrC1STyURSUhJgj211RZy2B3369CExMbFFArVmCcaWIkkSM2fOVFz9I0aMwNvbm4qKCrZt23ZWamx3WDq6BbWmlcoV94fFbOX4zsym4wr/RkZGXemHWycDvXr1crphdBoJLzc1lUYLzTW3uWvVfPiBhNFof9g6Xl9//SMhIdH07j3QabnjVV1NjW1kqqpkKiosVFfLWCwa7ELyNCqzL57HbiLt/26koFyPyqMSW7UXnQL9CO/Rfje/2Wx//V1FpA3oBrzHxRfbxalDvNYNe5CZpfmAAFf/wDWQTTuQHl+KuaAKntvR4iP18fKjuNyguN7bg7aKPYXmT7Q6Z3+H2lrd4ARgVLWBdZnZ/OTtxee+PmTWMG9G+URxU++buLzb5fjo6p8EjB1rL1u6fz/k59tLriUlNexJKCiAt9+2vxLizdw9qvnhCmBPnDJWWnD3rt/NL8syK1eu5Nprr3VK/mvuhNevs5rgTv64u7vj6+tb70PYx8eHioqKVhW3bwkhISEsWbKE//73v3z44YdMmjQJm82GwWAgNjb2jB2Ll5cX48ePZ+TIkaxcuZJZs2Zx5ZVXcvPNN9c5hqFDhzJ69Gj++usvysrK+OSTT3j00UfPyHEC7N69m8rKSiorKxk1ahTLli3jscceazORrFarla5lLUm8TEpKOmMlimrHoKrVMjk5OS4J1LS0NNRqNRaLpU1qv7aUPn36KOWdmotGo8FoNLa6Y1toaKji6n///fcZPnw469evx2AwcPDgQadOU/9qOrpAdbSVA9csqPkZpfVaORrCbvGRCfOLrnPDSJJEbLgnh9Kbr8LiOnkSGVF3sN+48TD9+klcdlnD9QJlWSY3N5dvv/2W33//naqqKuLj4+nffwCdO3dFq/XF0zMAlcoTtdqbxMQUPv44gtw/grFW+tu/fwTceqtd6DoEb3FxFbt3H6GiwoJW64O7exju7iEYDPaqTh2ls6AsnxbstY1MvppiAkemNnufEjKUpCJXFaP1bF0t2dDwYIrL8ygoKGi32W5bWU+h5kTLhUFVlolNX97kar42mZvKKrixrAK9SkWlSoWXbxR+t/yM5MKAMWUKHDhgt6yGhcGKFfb3K1bAr7/W31IRICPNai/T0EJMhoYF6pYtW6ioqGDSpEnKMkO1kWM7Mv++OZoWbzIypRkWqsyZVFVXotVqCQoKIigoiICAAGWM8fX1xWq1UlVV1aZtm11BpVJx1113MWTIEJ599llOnDjB9ddfj9lsJi4u7oyWc3J3d+eOO+5g/PjxvPLKKxQUFDBz5sw6Y/G9997Lvn37qKysZMOGDYwfP77Z1SxayqZNm5T/m0wmevbs6VJJKVdxiB2VStXsCUJ5eTlZWVn06NGjzY6nMWqXM1WprKSmpjq18qxPoFZVVZGTk4Msy8TExLRJN6eWMmTIEN5++23y8/ObXR3AYeVuaThGTS666CJ+//13fvnlF0aMGMH69esB2LFjhxCoZ4gzKlBlWSYnpbgF3yKRn64nqkdInQGic4g7iZkVfxc2dw21SiI6pP5arU0V55Zlma+//pqVK1ditVo5//zzGThwYC33TzlgpaLCPuuOjXWjUyfnGyY01C5Qa1JYWMUdd7zA8eMH8PLyYvDgwaxYsQKzGQ4dsrda3bPHLgxl+fTLIV41GguBgeX4+1fh4WHEbFZjNqswm9WYTGosFg02mw5wp7i4kpKSasAdjcYHi0WNxdJ664yHuqJV26ceP0RMwlh8QzycivK7im+IBxH+oRxLPoIsy5w6dYqYmJhWHVNt2tJ6Cs2baOnMJXhXZ7i+b8DfZsPfZoPiNDCUgmfTHa569bIXVUhPt7/fuBHuvReuucZefsoRr7qjlqHbaGmd1UXnXv+QZLVa+fzzz5k6dSpVVVWUlpZSUlJCVaEF2ebhevWDvye8Rr0MOnuGdW5uLrm5uajVagICAggKCiIwMBC1Wk1FRcUZF6gOBgwYwGeffcazzz7L4sWLue666zCbzfTp0+eMW7diYmJ49dVXefbZZ3n99dd54oknnI4hICCAO+64gyVLlgDw7rvvsmTJkjbpCtQYlZWVSq90Dw8PDh48yEsvvYTRaMRsNuPp6dlqQe9wG7u5uTVboO7du5eYmJgz0jEM6gpUjcZ+7xTU6DBTX5KUI5zFw8OjRYlgbYmvry/9+/dny5YtTJ06tVnb+vv7o9frldDD1tRklySJW265hYULF7JkyRJ0Oh0mk4kdO3Ywffp0kc0PHd+C2hwXv8VkdUpeaA7GKjMWsxWtzvmQdRoVw+P82Has1CWnsgQMj/Or0yrSgdVqbXBA27NnDx988AGZmZmMHz+eCRMm0K1bN+UmsFqtVFZWotfrlaQusD8EY2KcM0nrc707MvEdZaYcbkytFgYNsr+MRjh40C4M9u+Xa7W201BeHkB5eQA+PjYGDbIxdKiVqCgDeXk55OXlAfbM4YiICEwmT9auXcs333xDQEAA119/M/HxQzAapTqhDQUFZbz99oc88MCjmEzqesMfDAZQGZqfOVmTnOJyLCdO0G9cJFu+OdHs7fuPj+Jo/uk6gO0hULds2dJm1lMHrk60NJbWdYzCWO6SQJUkuOgiGx98YL8Xtm+Hq6+GwEB7ibUZM+yvpCT4/HO7WE1NhUqDlgK9B0G+1aiaOX57BerQVxZTXGbFarViNpsxGo0YjUZ+/vlncnNz8fLyOt3OUgZNddPnUs/Z4YE/3Qb0oKioiKKiIqqrq5XC44WFhUiShNlsJikpCT8/v3ZpPuIK/v7+LF68mA8//JBPPvmECRMmYLFY6NevX5tm+LtCQEAAr7zyCk899RQ//vhjHfEwadIkNm7cyOHDh8nNzeXLL7/ktttua9dj2rZtm9IFycPDg9jYWLp166bUBZUkiZCQELp27driv6Gj21JLtt+5cyfDhg1r0fe2hNoC1c3Nfv8WFhYq4Sq1k6QcngKwN6k4W679mowZM4Y1a9Y0W6CGhYWRkZGBm5sbiYmJxMfHN+lBk2WZsrIySktLlRrrPXr0QK1Wk5CQQExMDKtXr2bgwIHs2LGDkpISkpKSWt3w4h9BRxeoDguqr69vk24Bq7UZmb31bW+xoa3nWgvzd2NkL392JOkbfcCrVVKdFpF1j7GuBbWwsJCPPvqIAwcOMG7cOK677jo8PDzo37+/cvHbbDYsFgseHh6EhYVhMpnIzc1Fo9Hg6+vLvn3OZaAq6jE0OgZARz3T+orsu7nZO5MOHQoGg8SuXWa2brVy/LgbVutpRVBermLTJhWbNmkICHBj6FDf/2fvvMOjKvP2/zlTM+m9d0ghELp0kCJNRMVdG+rq2ru7uLv2XevaVuUVXddesK1rWRVRUUARUVroJCSk956ZJNNnzu+PwznMpE4KiL/3va9rLkgyc6ad8zz3t903YWEC/v51VFVVERsbi06nY/ny5SxevJgvv/yS55//H1JTU7nhhhtITPQeyigoqCE6+gBnn93P4iWGw7NpiK1lvg9JASIC9oB4nJogamtriYyKQaNT4XS4fetXFkCjU5M9LZb2vOOZ/OEelBJFUdHFA0lbcjjga6Dl1AxRxF3vW+nu8OHDvP76GgICnqaz04DLBd98A13fbmYmPPAA3H8/bNsGa9cK7NiTyJnjiwb80oJTHRQUFHT7fXV1Nd988w3XXXedQsrUajXBQaF0GAe3+NnMDgL8AwkNDSU9PR2z2UxTUxPNzc20t7cjiqIibu52uwkMDCQqKorIyMgTIqTfF9RqNddffz0ZGRmsXr2akpISrrzySmbOnHnSSWpQUBC33nord955J5MnT/ZKSgiCwE033cQtt9yC0+nk448/Zs6cOQNzsxsg5PK+nAm/9957KS4uxm63K/aiskRUQkICSUndW8X6gt1uV7KLA5Wrkq1XH3jggQE9bijo2npjMEh7iPx56HQ65f0LgoAgCErPpkql+sV0bLti2rRpPP/88wMu8xsMBjIzMxXb6V27dpGRkUFkZKRXxtPtdtPR0UFjYyPt7e2K4Y3L5SIsLIzOzk6lP/13v/sd9913H5deeinbj5WMfv755/8jqHBqE1Sz2azYoPnSf6pWD63Uou4l6wkSSV0yMZLKRivFdWavfr4AvZoRsf4kR/mh7eMY4J1BdblcrFu3jnfeeYdp06bx3HPPUVBQgMvlUggeSBf/7t27FVu09PR0oqOjSU5OVo7blbv3lEFVq9XodLpuGdTe4OcHs2drmT1bi9kMO3Y42bSpg4qKYETx+PtsbYUNGwQgi8DAFNLSGvHz62DMmCAEQZpSPeecczjjjDN4++23ufXWWzn//PP5zW9+o7yGxsZG3+zsBAGmXgdf3dX/fT0fBmhn3Ux4YAQtLS00tdaTtTCAw+vbJanYvljbMZOFpdeNQe+vJT7eO4M6nNi7dy8lJZLWYEZGxrBKjvQfaInYtWF0+ifjb64cUAAAAoSlgsG3UuN7771HXV0Vfn7v4O9/NQCbN4ucfbZAT5K7ggAzZ0o3U2ssa+8tRnS6fVIYcbvBJarYlh/L6XHNhIa6UavVaDQaVCoV69at4ze/+Q3z5s1Dr9ej1+sxGAzYrU7yygaeZZchB7yCIBAQEEBAQAApKSmKB7tsFwzQ0dFBR0cHpaWlBAQEEBkZSWRkJAEBASel1CcIAgsWLCAuLo5nn32Wv//971x77bW/iHB4RkYGZ555JmvWrOHxxx/3ev7ExEQuvPBC3nnnHdxuNy+88EK3+wwXrFYrBw8eBKRS/8KFC8nIyGDXrl1YLBaio6MJCgqiubmZzs5OysvLqaurIyUlhejoaOW7FUWRP/7xjzQ3NysJhbFjxzJx4kQEQVAyj/3pwnZFfn4+Go3mpE3wQ/cMqp+fCn9/fyXg8iSoIO05DocDt9tNZGTkSQ94ekNQUBDjxo1j69atA3Yoi4mJwWazKZan27Zto7y8nM5Oqed8/vz5dHZ2drMT12g0WK1WjEYjdXV1ypBddnY2Y8eOpaKiQjkftm/ffsKrA78KnMoEVRbzBclWrN8n06nR+2sHVebX+2v71TDUaVSMiPMnPdaA3SnidIlo1AI6jeDzAtnS0kJYWBglJSWsXr0au93Ovffey9ixY6mpqVEa5j3fb01NDTabjYqKCgwGA8XFxUppWdZj84WggpRFla1OB2JTajCIxMQUsWRJKx0dIrW18RQUhFBbG4YoHn/vHR1+HDiQxIED0vDLlCkwdarkjhUQEMB1113HvHnzeP755/nuu++46aabyM3N9Z2gAoy7GGHjQ75LTQkq0BhQjV9Jji6II0eO0NjYiBBsZuRCPaXfOfrU1dTo1Cy9bgzJOVKGw3Mj8Wy1GA58+OGHyv9/85vfDPvG21egpRIdZCeG4DfrBoQNdw/84FOv90mTTu65A7BaN+DndzEqVQAWi8DLLx/hxhtH9LqROZ1OWozVpJ2uonRz/9lv2cDmxa9yKaiK4NnnRZYtE7jsMli2DN588yViY2O58cYbuz3niQp49Xo9CQkJBAcHM2nSJIKCgmhqaqK1tRW3261MjJeXl2MwGIiMjCQqKorAwMATShYFQWD06NH8+c9/5uOPP2bNmjWUl5f3OLR0onHJJZdw0003sWHDBhYvXuz1t9/85jd8//33VFVVkZ+fz+7du0/IUMn+/ftxOp3Y7XY6Ojq45JJLAIlw+vn5ER4eTmJiInFxcZSUlNDY2IjNZqOwsJCSkhKio6MVO8zf//73+Pv743Q6aW5uZvfu3Tz88MNYrVbOO+885s+fP+B+2p07d3Laaaed1ACiK0HVagVCQkKUlhnwHo4SBAGn04nb7T7lfOZnz57Np59+yooVKwb0GQqCgE6n4/Dhw2zatImamhrS0tKIiooiLCxMadkAiZzKwWZISAh79+7F6XR2q5Jcdtll3H777SQlJVFRUUFlZSUtLS2Ehw+mxej/4CuGRFA9dQJDQ0P7vb8gCMSlh1N2sH7AzxWfHu7zSSoIAnqtgH6ANvSiKNLQ0MDevXtZv3495513Hueff75CFOX3Gxwc7OXcJJeS/P39CQgIoKmpCYfDQVFREVqtlrS0NIKCQr2eqzeCqtfrlRK/r9GsyWSivLyclpYWBEEgISGCsLAmUlMrsNn0uFwT2btXx5Ej3koA9fXw+efSLT7+OFnNzMzk6aefZt26dTz44IPMnTuXyspK33stDaFw4VsI71xwTKy/r9YOFSDAhWvBEIoaGDVqFIGBgZSVlaGPcDLuwgAcjf6U7TZ5DU4FRxkYOy+R7Olx6A3HP6ugoCBUKhVut3tYtSyLiorYv38/IAUo06dPH7Zje6JroNXe0cmhg/sR3U4cxghUEy6GzQ+DwwJ9frbHcCwAYNxFPj2/Xq/noYce4vDhw7z33nscOfI1BoOUxdixI5Q9e65n6dJFLFq0yOu6t1gsHDhwAIvFQkAMpJyuonKrG3cPE/9ut8SVHS41L28YQ0GVFFw4HAL//S/8978QFOQgJiadf/zjPNTq7tfC8YDXzkBl5nwJeF0uF35+fsTGxhIbGyuR75YWmpqaaGlpweVyYbFYqKyspLKyEj8/P2Wz602+ajgwYsQIzjzzTJKTk3nvvfcoLS3l/vvvH5Jj0kDh5+fH9ddfz9NPP820adO8yI1Wq+Wyyy7j0UcfBWDt2rVMmjRp2D+PvLw8AOrq6pg2bRojRowApPXY4XAojnt+fn7k5OTQ1tZGaWkpJpMJp9NJTU0NNTU1+Pn5KWuGn58fERERTJ48mXHjxpGXl8d7772H2Wzmyiuv9HlgTs6y/a7rJOwJRtcSv0Yj7VdyVU4UxR6DGafTecoR1Dlz5vDGG28oAY7FYqGpqYnOzk7UajWiKBIUFERERIRSzWxoaOD999/nu+++Y/r06dx8881KX21TUxMqlYrAwEACAgIIDAxUvndACXSAbs6MqampTJ8+XVn/QbJ4P/3000/Sp3GK4lTOoA6UoAJEJ4dSkd8wIKkplVogKvn48UVRxGaz0dHRoTR9q9XqbreBTm/KEX9wcDAPPfQQo0aN8vp75zHV8q69tjabTbnAc3JyqK+vp7y8HKfTicViYf/+/Vgs2cDxXpq+MqiAzxnUzs5OJZMgW56OGjUKm83Gzp07CQhwkZ7ezNKlcbS2wubN7fz0k5uGBu/FqKYGhRgkJcHUqWqmTTuHKVOmsHz5cmw2G9dcc02fr0XO/LpcLpxx0xHOexPDZ9ciOiRS6Z1NPbZZaQ0SOR254PhfBIHk5GQCAwMpLy/HZDJBmJmJF0WSkjAet1Oa9tYHaHrc9ARBUOwJh5Ogfvzxx8r/zzvvvBMu96MEWmFBpKUkUVpaSnNzMzVhYSRc+Ba8cwGIKvomqd4BwECQk5PDQw89xPbtRfzzny5AjVodg8mUwdq1a3nvvfeYMWMGS5cuJTk5mYMHDypZmujoaKZMSUV1toaCn+vYv7nKK7gwhBgo70zktU/jqKnveRlqb9fS3n4G554LaWlw6aWSGYCs2CMAcbZ6ysSwAbuO+RLwut1ur81co9EQHR1NdHQ0LpeL1tZWpW/V6XRitVqpqqqiqqoKnU5HdHQ0CQkJwz5gJQiCco3fdNNNfP7551x//fXccccdJ1X+5rTTTmPs2LG8+uqrrFq1yutv06dPJz09nZKSEkpKSvjpp5+GXQs0Ly8Pt9tNc3MzV199tfJ7Way/traWxMREJdAPDQ1lwoQJdHZ2UlsrDY3K35vValXKtzIEQeCcc87h4osv5p///Cc33XQTN910k08SVgcPHsRkMp10OaLuGVTp85DL2V2HgOXPRlY8OJWg0+k499xz+eCDD8jOzubo0aNKr6i/v78ijSXrGX/33Xd88803zJw5k+eee86r1QsY0LBsT/at559/Pl999RVarRaNRsP+/fv/j6D+/0ZQBRX4RbvprD32c387iwDZU5KwWM00V0sDDO3t7cpG6AmDwaBM4YFUyvD391cym+Hh4b1GwPv27eOpp57i8ssv5+abb+7m4ysLNMvH6vq8cJzAxsbGEhUVRVNTE6WlpbhcLkymajwJakeHlEXq+t3Jm5nb7VYWld5QX19PWVkZOp0OQRCUMoa88YqiiNPpVF5XWBgsWiSQmHiEzk4/2toy2bfP75hT1XFUVkq3Dz+EtLQ47r77B6qrP+buu+/mlltuYdasWdhsNqW3q7OzE7PZ7PWdSBnMYNRTXyG2fjMJVZ9jsNQpf3cEJmCfeCX+069C6IU4hYeHYzAYyM/Pp729naamJiwWC7m5uej7SY+HhITQ0tKCxWIZlLh2V9TV1VFeXk54eDgul4v58+cP6XgDRWJiIi0tLRiNRkpKSggeP5WgSz6Af/8OHPJkv28BwEAxdWoGe/dKQ1AAfn4rsNu34nQ62bJlCxs3bsTf35/TTjuNSZMmMWHCBK92kHHzkxg7LxFbpxO71ekVXNy3Gr76SlIB+PxzSaWiJ5SWwkMPSbepU+HSS9xcpPmI6D0bqVh8PW61RlpcfEDXgLc39CU5p1arlWypnKlvbGykubkZh8NBS0sLX3zxBYsWLSIqKoqkpKRBeYP3BrVazZgxY8jLy+O3v/0t+/bt4+9//zvLly/nsssuO2m9hNdccw033ngj+/bt83L3EgSBSy+9VHGYkvv4hyuoq6uro7a2lra2NiIjI72IYHp6Onv27MFut3P06NFujkgBAQGMHDmStLQ0WlpalD1FHnTVaDSEhoYSGRmpJCMefPBBvv32W5566immTJnCNddc0+dQ8Lp161i0aNFJdxzqiaBqtVqlNU0URa/Eh+ck/6kom3TmmWfy4Ycfsm7dOuLj49FoNAQEBKDT6VCpVDQ1NbFx40a+//57pkyZwurVq71mPwYCrVZLcHAwDoeDxsbGbj3HKSkpjBs3jh9//JGoqCgOHDgwHG/x141T2erUbDYTHByM2Wz2qTzgdDo5ePAgRosRIUCLxhzSc4+a6AYEVKKb2DHhlFYXSVm0ftCV0LlcLmXxASgpKSE0NJQRI0Z4bRZffvklr732Gtdccw0LFy7s8UJ1OBxK+r9rRkRuprZarZhMJkJCQlCr1cTExBAWFsaRI0fQ6bp7RnZ2dh+e8oxieyLhMmpqaigqKsLPzw+r1UpOTo5yQcmfs7+/PxaLxWsyUybxKpWFWbPaWbHCj/p62LFDulV0kdiUrFYNwCWkpJzN889/yIYNO5g/f2KfC5rb7ZYyqtpAqhOXU51wFhpnO2qnBZfGgFMTBIKA4UAhCQkJxMTE9LipGgwGxo8fT2lpKVVVVXR2drJ3715yc3P7jPijo6MpLy/HbDZjNpuHTA4+++wzRVLtiiuuOOkbj0qlYtSoUezevRuHw0F+fj4TJ85Fs+ow7Hsftv8LWj0ijbBUqed0/MXgN/TS3ZIlxwmqRpPJggU3sXPnWmXq3WQysW7dOn7++WcWLVrE0qVLSU8/bs0rCAJ+gdpuIvw6HZx9tnRra5OCorVrJbvV3rB9O2zfruKPwgqWJo7kans+kef6OKx2LODtr7wvVwN86e1UqVSEh4cTHh6O2+3GaDSya9cuduzYwcKFC2loaKChoYGwsDASExMJCwsbFjKg1+sZM2YMe/fuZdy4cWRnZ/PZZ59x+PBh7r333pNSso2MjOTSSy/ln//8J2vWrPG6LiZPnkxWVhZHjhyhoqKCrVu3MmfOnGF5Xrm839jYyLJly7w+z6CgIOLi4qipqaG+vh6dTud1LspQq9VERUX51FsvCAILFy5k4sSJPP/881x33XWcd955jBo1SkmKxMXFERMTQ1tbGzt27ODFF18clvc6EPRU4tdqtcpe0pWgyv8fqvPSiYK/vz8LFy5k/fr1XHXVVaSnpxMXF4fT6WTTpk289tprGAwGrrvuOpKTk4cUmAmCQGBgIDU1Nb1e98uWLeOrr76iubkZu90+sNmM/x9xKmdQm5qaFOLY32LocrnYu3fv8SxjciSpKWk0V5moKWnxGpzSdxqJL8kjsvIQu3XLsR0jF/KEZVBQkHJTqVRKWbnrzW63YzablSyfy+XCaDRy+PBh0tLSiIyM5O2332b9+vU8+OCD3Ur6viIiIkIRcT506BAZGRmEhISg1WrR6XSMHj0ao/FIt8e1t3cnqF17W3uDPAjQ0dHB6NGjCQoKwmq1Yjabqa6uxmKxIIoi2dnZ/ZKzmBhYvly61dbKBEAq+3uivj4Ine73lJW5efPNo5x2mkhurpXISB0BAQHo9XqlvUKjkTJknpPQnZ2dSsBgMpmw2WxYLBaOHj1KWVkZ8fHxxMTEdCOeKpWKESNGYDAYOHr0KFarVdmUe8uIGwwGJWAxGo1DIqjt7e1s2LABkEiBp5PRyYRerycrK4uDBw/idruPZ4emXS8pJ1haJZ1TfZA0rT+MGZGUFMjJgcOHpZ9FcQkvvjiLN998kx9//JGKigqCgoJwu9189dVXfPXVV2RlZXHmmWcya9Ysnwh9aChcfbV0KyuDd9+VyGoPylMAOEUNn1dO4PM3JzDvaDt/+2MVGo3Ya01GUEFwkoby2mJqm3WKx3poaGi3njP52hvIoCJI52pYWBiRkZGkpKSQkpJCTU0NDoeD1tZWWltbCQgIIC0tjfBw3/vqe0NQUBAjRoygqKgIvV7P3XffzTvvvMPtt9/OAw88QEJCQv8HGSKWLVvGpk2b+Oijj7xMK2Sh87///e9ERkbyn//8h9mzZw8LOc/Ly1PWkZ6MMkaMGIHFYqG1tZWqqir8/Py6lXwHg+DgYFauXMnXX3/NK6+8QkhICGeffTaJiYmUlpZSV1fHvn37mDRp0oBdkIYDPWVQ5T0SeieoDofjpNv6+orTTjuNtWvXcvToUaZPn863337L+++/T1hYGH/84x+ZPHkyhw4dorOzk6NHjyr78WAgP87TeUuGy+WitraWuro6oqOj0Wq17N+/nwULBl+d+tXjVCaontNw/fkeW61WZZIwPj6e5ORkXG4nwbF+GCKisFnsmEztdJiMZK39N/7Hjp2Qn0/DvHkkJCQQFRXVY2TjS9Tkcrmor6+npqaGzs5ODh06xI4dOygoKOCJJ57o12TAszRl61KHVKlUZGdns2/fPkDSkJTLKjJRs9m6k82+xPqh54tEhtw7pdFoKCgoUBYWQRBwu934+fkpEb0nPF97T+W2uDg491zpVlV1nKzWe8y1CYIKtzuT7dthxw6RnByBKVNg8mToiweGhoYqrSCiKNLa2kp1dTUtLS2IokhVVRUVFRUEBgYSEhJCcHCwIotit9sVGaDCwkLUajWdnZ29ElTP89FkMg1po/7yyy+Vz23hwoW/qA1gREQEqamplJeXU19fT2BgoCTxJgiSAL8PIvyDxZIlxwnq3r2wY4c0OJebm0tYWBhbt25l06ZNis3gkSNHOHLkCK+88grz589n/vz5pKWl+bQJpqbC3XfDXXdJ7mlr18J777hpbO55sdv8YxA792ayZG4bF5/bQmyUR8Drr0Ud6MRoa6TJKJVsPLNKQDfpqLa2NlQq1aC/66amJmJiYkhNTSUpKYn6+nqqqqqwWCx0dnZy8OBBwsLCGDFixJCdqmJjY6murlaC01WrVvH222/zpz/9iXvvvZfRo0cP6fj9Qa1Wc9NNN3HnnXcyf/58rzVn7NixpKWlcejQIQC2bdvGzJlD8MJFWvvy8vLYt28fkZGRPfaEqlQqcnJyOHDgADabjaKiIqWHeLCQ5wmsVitjxowhKyuLnTt3snbtWlasWEF2djbl5eV89NFH/M///M9Q3uKg0RNBdTqdCkEVBMGLoHpqb8syVKca7HY7y5cv56WXXmLLli3o9XouueQSTj/9dGUPy87OZvv27cq+Mlg9V5lfdK3GVlZW8swzz2C1Wlm5ciWbNm1CEAQOHDjwv5ugnmAMiaB6lt37W8g7OzuxWq2oVCoaGxsV6zW5RO2J6pwcMo4J4iYWFxN19dV8/f33xMfHD9pjWa1WEx8fT2hoKLt37+bdd9/FaDTy3HPP+SQVodVqCQoKUryVu2rGhYaGMnr0aMrLy+no6EClUuFwOBSSKZVa3DgcxzfYngiqryX+5ORkRFGkvb1d0aIFaaEJDg4mJCSkWy+OKIqUH/OuVKvV/Wa9ExOl23nnwfbttWzd6qC0NIqOjuMkWhQFDh2CQ4fgrbdg9GipR3DiROir514QBKUsajabqaurUzRLZc1JWWTf39+fV155haSkJGbPno1arT7W12vqdcPxfG9yY/1g4HA4WLdunfKazz777EEfa7iQlJREa2ur0o8aFBR0Usq5Y8dKag9yZv3nn0OYObOB9PR0EhMTyc3N5YorruC7775j/fr1lJWVAVIg++mnn/Lpp5+SmprK/PnzOf3003267gRBCnwmh5fwD9cavjmSzNri6fy3YiJWl/dm2tGp5sMvIvjwi3CCg1z4G9xkZKr4zW/VzJpVhcYt9STHxcUhCILS/iGKopd0lL+/vyLUPdieyYaGBqX0J689cXFxNDc3U1paitlsprW1ld27dxMXF0dqauqAs7Uy5ArDgQMHlGvp8ssvJyYmhr/97W/ceuutw1Za7w0ZGRlMmzaNTz75hOuvv175vSAIXHDBBfztb38D4IMPPmDGjBlDytQdOXIEu92ORqNBo9FgsVh6bPfRaDTk5OQoiYMjR44oAzUDhTyMarfbEQSB2NhYkpOTOeOMMzjrrLN4/PHHOXr0KDU1NeTm5jJy5MhBv7+hoCerU6fTqewlsgSTDE+CarPZTjmCajab+fbbb/nhhx+IiIjgkksuYcGCBd0SVbI2sqxWMFioVCoCAgK8tNA//fRT3n33XZYvX87FF19MVVUVH3/8MU6nk3379p2ymeeTgl9DBlWn0/WbUo+MjCQ+Pp66urpeh390Oh3BwcH4L1yIeOAAgtmMYLXyyapVbA8O5sorrxzKywUksnP48GHKysq47bbb+hzuqqurw2az0draSlJSEomJieTn59PZ2cmBAwcYNWqUVz9qZGQkERERWCwWrFar4gctl1WCgsCDS/aaQZWnSfsiqIIgkJqaisvloqOjA7fbrZTUe/KfdjqdHD16lIaGBkDKuthsNg4cOEBUVBQ2m02Raen+XGAwNHDaaW0sWmQkICD3WGZVpK3t+IXpckk2rPv3Swtjbq5EVidMkEwFeoO/vz/p6ekkJyfT2NiI0WjEZDJJvV2iiNblJMbfH43TAaKoDDGkpKT0ekzPTWgoBPXHH39UtFRnzJjhk97viYbcj5qXl4fdbj/WjzrxhG8uggBLl8Krr0o/Hz0ay8KF7V7ZaYPBwNKlS1myZAkFBQWsX7+erVu3KpI/ZWVlvPbaa7z++uuMHz+e+fPnM3bsWIWwWa1WhQRotVq0Wi3hlZUkfv45WoeDMxPbODNxP6YzL+Kj9kWsfVvgu++85dNAwNSuwdQOdQ3ww1ZQqxM57TR/Fi6s57e/1ZGbO0LRgOwqHWU2mzl06BB2u52ioiLi4+MHnOVsbGzsVr2Qxd7Dw8Opra2lrKxMkTtqamoiMzNz0FJRYWFhhIWF0draSnl5OTExMSxZsoSoqCgef/xxGhoaTohuryd+85vf8Je//IWVK1d6XX8TJkwgIyODoqIiSkpKKCgoGHQ7FRwv72u1WsaPH8/LL7/Mbbfd1uN99Xo9ubm57NmzB4fDwdGjR5kwYcKAPgdRFCksLFTOy+zsbK/AODc3l9WrV3PnnXdSWFjIBRdcgM1mG3CZuaSkhI0bN/Lzzz9jMpnQ6XTExMQQHx/PuHHjmDBhQr9mAV17UOUMqnz9qVSqHjOobrcbq9X6i1aHPGEymfjiiy/46KOP0Gg0nHXWWaxcubLXQFwm2EPtpZWDVZVKxfbt23nzzTdxu908/PDDZGdnA9IQXkpKimLmUVdXd0rsC78Ifg0E1ZeTWqVSkZGRwYgRIxTyplKpUKlUSiQsl8MBmDsX1q8H4Cy9noueegphGMSoi4uLWb9+PZdeeikGg4HOzs4eX78oipSVlWE2m1GpVJhMJrKzs0lOTqaiogKHw8Hu3bsZNWqUVyZIEARFOaArgoN9I6gy+iKoMnzJhJrNZg4fPqxIZ4SFhREVFcW+fftwOBxKJrw3SRzZqxggPDyMxEQYMQIuukjgxx/r+ec/dxMWtojOzuOnk9MJe/ZIN60Wxo2TyOq4cZJda0/QaDTExcVJF7vNhrsgHw4dRNXezvhsyY3FXV0JY3JRZWVJB+4Fw5VBlXtPAc4666xBH2e4odfrGTVqFPv378dms1FQUEBubu4Jj+SnT4f33nNgNmtxuVSUl43gtDFWcDpAo5UikWMWiqNGjWLUqFFcd911Svk/Pz8fkM6pXbt2seXYNNSYMWOYOHEi6enpyntwOBzEFhaS9NNPCMfOXbdKRePy5ehOn8IVofD7KyXFCblf9VgluRtcLoGff47g558jeOopJ4sXm7jppmDmzesuHVVXV4fJZFIGJmpqaggLCyMlJcXnTHVDQ0OvLmMqlYqEhARlkK+mpga73U5BQQHR0dGkp6cPWHhfEATS09PJy8vD4XBQW1tLUlISkyZN4rHHHuOBBx6gvr6e66+//oSJ+qenp5Odnc369eu56KLjmruCILB8+XKefvppAL7++ushEdQ9e/bQ3NxMZGQkDz74IPfddx/Tpk1j6tSpPd7fYDAwYsQICgoKaG9vp6GhoVvw0BfkuQm1Wk1aWlqPVZvIyEhWr17NzTffzLvvvktubm6Pg1k9obKykjfffJM9e/awbNkybrvtNsLCwrDZbDQ0NFBWVsY333yjSCfNmjWLuXPn9ti21FuJXyaoXUv8nvuN2Wzml0ZlZSVffvklGzZsYNSoUVx11VUYDAY0Gk2fPKO1tVUhp0NtmSktLWXDhg2o1WouvvhiFi1a1K2NcOHChbz55pvExsZy4MCB/yOo/d1nkBg0QfUkLQOJumSppv4012pzcoj64gs0gkCQ1SoxnWHQlPvkk09YvHixYs3q7BpyHkN7ezs2m00hdaIoUlBQQE5ODiNHjqS0tBSr1UpjY6PPbhK+uEn5+fkpGdTeXttAYTQaMRqNqFQqkpOTiYuLY8+ePcrx5Wi/qampR8taT8krz6yASgWzZ8eQn1+F3f4SCxbcyPbtsHOnJKMlw+GAXbukm14vZVSnTpUyrD1yzMoK2PA1Qg/vX9XRAT//BLt2wqLFkNSzpIhnZnywBLW2tlaREklISDjhvXwDRWhoKKmpqZSWltLa2kpZWdkJ9T0HsNs7GTWqgfy98cyMPsLptQfgLQ+FjeBgGJMLmVlKJBIYGMiSJUtYsmQJNTU1bN68mc8//5wKD8mIPXv2KNn8WbNmMWP6dDIOHSJMlg4AnFoth+bNoy0sDPbvx2AwkJCQQFxcDHfcoeEvf5F6Y99+WyKsdcdVzbxgNmv45JMQPvkEEhNFVq6UnKvGjDkuHaVSqZS+RafTqQw4hYeHk5aW1u/QnS/TvVqtlpEjRxIVFUVBQQGiKFJTU4PRaCQnJ2fAupSBgYGkpaWhVqu9zv/09HT+8Y9/8MADD/DII49w9913nzAZqvPOO4+nn36a8847zyujP3PmTF588UU6Ozv54YcfuOaaawZFJEwmE0VFRbS2tjJ37lwyMjK4/vrrWbNmDSNGjOg1wxgVFUV5aQUWs5WWplaio6N9Dubkig7QZ29jYGAg1157La+++ioPP/wwTz31FGFhvVsL22w2/v3vf/Ppp5+ycOFCXn755W57yciRI5kxYwYrV65UFEy+//57Hn/8cQICAli6dCnTp0/3GHbyfo6uPaiyZrgMz4TEQAmqnLU0mUwYjUb8/f17VWPp6xjl5eXk5eXx3XffUV1dzbRp03jssccYOXIkBw8epLm5uc92G3lgVK4+DqaFAyRy/Morr7BlyxZmz57NTTfd1Gsgs2LFCl566SWlL/mXGpz9xXGqElRZnB76H5AaDN747DN+ExFBppxy/PrrYSGoc+bMUazvoHsztAy5rOvn58eECRPYv38/DoeDpqYmsrKycLvd7Nu3j5aWFsxms0+bia8EVYYvGdT+4Ha7qa2txWazkZiYyIgRIxS5JJVKxZgxY6isrFQ24N4IqoyeFokZM2awb98+Ro2CUaMkQfX8fGm4avdu8Fz3bDb4+WfpZjBIvapTp0q9qxoNUFmB+OV6EHufxgakFO2X62HpmT2SVM8NerBi/d9++63y/97kx35pJCUlYTKZaG5upqKiguDg4BPqKFRTU8PM5GKu1XyLXtU9gBBNJoRtP8KO7T0GELIDl6xGsG/fPo4ePar0cdlsNr7buJHc7dsJ87gWxNBQTL//PX56PbqWFux2OxaLRdGnTUpKIj4+ngkT1EyYAI8/Dhs3SlnVTz7xPgc9UVUl8MQT8MQTMH68ZARw8cWSSUFOTg5Op5P6+noqKyux2Wy0tLTQ0tJCVFQUqampPV73oijS1NTks/xMSEgIEydOpKSkhLq6Ojo7O8nLyyMnJ2fAVoq9DXvKpf4777yTF198kRtvvPGEnM8TJkwgLCyMjRs3snTpUuX3Op2OuXPn8sUXX2C329myZYvX333F3r17MZlMCIKgaBGffvrpHDp0iL/97W888cQTXsTX6XDRUNFGbUkLTnMAWgJobXeTV3OUuPRwopND+5Uc8wzK+5Mei4mJYeXKlXz++eesWrWK++67r8dM6u7du3nhhRcICQnhySef9CnbGhAQwMyZM5k5cyZGo5FNmzbxzjvv8K9//YtZs2YxZ84cHI7ReLpWyD2oTqezW/8peO83cqa4K+x2OxUVFZSWllJWVkZpaSk1NTWYTCYcDscxK+8gLBYLTqeTnJwcgoKCiI2NJTg4mODgYAICArDb7YrSTF1dHWVlZcpMxOTJkzn33HOZNm2ack3J7XXQt0qQbFJTWVlJYGAg+fn5StuhVqtFr9cr0o89oa2tjXfeeYdNmzaxbNky7rjjDiIiIigtLSU0NLTHVo0xY8YQHh5Oa2srR450V+j5PwwPBk1QBzIgNVAUFRWxe/dubrzvPli9Wvrl0aNQXCzVloeAKVOm4HQ6FYLak2MEHJ92l7O98vR4fX09ycnJGI1GIiIiMBgMPjvF+EJQtVqtsnEMRwZVtnaLjIzEbDbjcrmorKzE4XAQFxdHWFgYLS0ttLa2dlMnkNHVXaUrxowZ42WDKvef5ubCFVfAwYMSWc3LA895OIsFfvxRugUEwPSJNlaKX6Pqj5wef2Gw4Wu49Hfd+gaGWuJ3uVwKQVWpVCddmN9XCIJAVlYWeXl5WK1WCgoKmDRp0rC7F4H0mdiKjzKxvgzUPZs3yb8TnU6EHgKIkpISqqqqAJg4cSIXX3wxgiCwY8cONm3axOHdu7kjMJAJHhtphdvNpuRkZhoMZB4bPpEVIGTbSvm4aWlpx7I4AosXw+LFUjb/k08ksrpxo2SQ0RP27pVuf/4znHGGRFZXrNAcy9JKuppye09jYyNNTU0kJCSQmprqtfm1tLTgdDr77Rf0hFarJSsri7CwMAoLC3G5XBw6dIgxY8b0mYUbCAICAvjrX//KqlWrSExM5JxzzhmW43pCEATOO+883nvvPRYvXuwV0C5evJgvvvgCkFpnBkNQ8/LyaGtrIzQ0VBHnFwSB66+/nkceeYSHH36YBx98EK1WS2tDB0d2VPboWmgzOyg7WE9FfgNZU5IIi+49I+4ZhLS3t/cZAAYHB6PRaDj33HOpra3lz3/+M/PmzSM7OxudTqdkC2tra7n88su7fUa+IiQkhBUrVnDuuedy6NAhtmzZwt///nd27LgRmKXcT61290lQ/f39cbvdNDQ08PHHH1NcXIzRaKSpqUm5tbW1KdJoqampzJs3j8TEREVpJSAgQKn6NTc3U1lZSVlZGY2NjYoTYGdnJ3q9Hj8/PwwGA9HR0SxfvpyUlBQvty9P1NbWotPpsNlsfZbQBUGgra1NeS9NTU3H3rtayRxrNBqioqKIjY0lKChI2cfy8/N56KGHGD16NM8++ywJCQm0tLRw8OBBRFFk586dxMfHk5SU5NUaodFoGDVqFHv27KGurg6r1XpC1txTHqdqBtVTYmq4Ceq6detYsmQJIePGQVYWyBHK11/DjTcO+fiejdS9RVUyWZOjp+joaIqKihBFkbq6OpqbmwHJ4cfXBcYXgto1Wh8OxMTEUFsrWXfJG6wgCEr5Qn7O3giq52c00Nek0UiZqfHjwW6XBqh27JA6NjxVtDo7QTh6BFWqc2DynU4nFB6B3LFevzYYDIqU0GAIal5enqKOMGXKlGEjCScCWq2WnJwc9u7di9Pp5PDhw4wfP37YrVht7e2MqpAyHv19RQJ0CyCam5sVchoWFsbo0aOVc2vWrFnMGj0a51NPoTmm3gCwz27n0fZ2Ojdt4qNNm0hLS2Px4sXMnTuX3NxcOjo6KC8vp6mpCbvdzpEjR6irqyMjI0PJpAUGSmTzssskBYJ335XaAI4Nd3eD2w0bNki3gABJxeLSS1UsWJCoSDpVVlbicrmoqqqiqamJ7OxsJSiS234GM5UfHR1NQECA0h9+8ODBYSWpUVFR3Hvvvdx9991MnTp10HI8fWH27Nm89dZb7Ny506svNC0tTRmWOnr0KJWVlf3K+3lCFEX27NmDKIrExMSQk5Oj/E2tVvOXv/yFe+65hyeeeIJrLr+Ro3m1PRvBeMDtEsn/uYJR05J7JamyhbTFYqGmpqZPgiqfA4IgsGDBAmbNmsVPP/3Epk2blKTA2WefzeTJk4dl3xQEQUkQXHvttZx1loni4uN///zzjygv/zd79+4lIiKi2zkp96DKcxbV1dWEhIQwevRopd0lKirKJ3MJeQgwMjKSCRMmDOl9OZ1OqqurcTqdJCQk9DkAqtVqmTRpEiaTSWnNs9vt2O12RFFUHMJqa2upra1VLMl37drFM888w1VXXcWSJUuU44WHhyvnqZzQqampUZwoDQYDoaGhTJkyhb179+J2u6moqCAzM3NI7/lXiV8DQR3uEv+RI0e46qqrpB8WLz5OUHftgqYmGEBmoifIOqHQc8kajpM1+cJQq9UEBATQ2dmpyB/JQz2+4pfIoAJKpGsymSgvL1fes7xAyu9R7lXqStoFQfCSIxksdLpjkkGTpVL/3r1SZnX/fnA4RBbGHhiwpzoABw9IfY8eC6ggCISEhCgZgIHCczjq19BfFBQUxMiRIyksLKS9vZ3i4mIyZNP64ULhEd+z2zKOBRDu0WOUUpjBYCAnJ8f7PKuuhmeeQXMs8AMw5eSwVafDtXWrknovLS3lX//6F6+99hozZ85k0aJFjB49mo6ODoqKimhvb8doNLJ7924SExNJSUnxep74ePjTn6TbgQPw8stW3ntPoKmp58m9zk4p87p2raQRvHKlhssuS2Hq1HiKi4upr69HEAT27dtHUlISKSkpXhJTg0FAQABjx45l3759OJ1ODh06RG5u7rBJiWVlZTFr1iz++9//eklCDRc0Gg3z5s1jy5Yt3QaX5syZQ1FRESCV6wdCUOvq6mhpaSElJYVJkyZ1I1t+fn787W9/4/HHnqBgRwUatY8BgghHdlQyeXFmj+V+QRBISkqiqqqKtra2PvWXZfMHs9lMS0sL2dnZJCUlccEFF/j8PgcLycjGuyVk+fIzWbAggOrq6m4DUiBdiyqViujoaBYsWMCKFStO+Ov0Be3t7cr+58seK1c6uwZcoigqLQX19fVKwuLZZ59l69at3H333UyZMqXb8eLi4ggNDaWiooLa2lqsVitVVVVKRlfWTZaH/crLy/93EtQTbHU6aGp7okr8nZ2d1NTUHP+yx40DeWpSFMGjL3CwkCU1ZF3W3u4D3iYA8mSlnD2VvYF9hS8EVafTeU0xDxdkTVRZ79GzJ8fzPfTUk6tSqZT+oeHK6ur1Uu/prbfCmjVw45VWYgymQfFTTKYeTdzlrJPRaBwQsW5ra2Pnzp2AFE1PnDhxMK/qpCM2NlbJiss2j8MGUURXOMheq4MHaD1W9gbIzMz0vm6OHIG//x08yClnnknw7bdz02238dZbb3HLLbd4bQB2u53Nmzdz1113ccMNN/DNN9+Qnp5ORkYGGo0GURSprKxk9+7dikVxV+TmwrPP+lFS4uLZZ/NZvLgOg6H387u2Fp56SqoGTJqk5bPPsomIGHvs4xGpqKhg//791NfXD9n+MDAwkLFjx6LRaHC5XIrG6XDhyiuv5JJLLhm243XFrFmz2LFjRzezkXHjxin/39dbCrsXlJYet/L1DL7kXkXZ0vi6y29BrRpY7sXtEmmsaFN+lp2/amtrlSHEuro67Ha7Uo3qDXKGtbm5udcZhxOFrltGaGgAycnJGAwGdDpdj6Re3gN7u05+Ccja6LIqzmAhCAIBAQGMGDGCadOmkZ6ezubNm/n222+54IILiIuLw2w2K/J2HR0dSptCeXk5ra2tuN1u7HY7NpvNaw/07A+XNZ//10HOoPZ3GyQGnUH1bKgeqs+5JyoqKggLCzueLVCppCzq2rXSz99/D+ecI03YDBL9Df3A8V5LT2Ijv8+AgAD8/f27CeH3B18JqlqtxuFwdDMwGArCw8OJiorC4XDgdru9MgC+kDf58zgRC67BAFMnOqAXS0uf4LB3E1uVzyFZccLXDNT27duVRagnUehTFYIgkJGRQUdHB52dnRQWFhIQENDr9el2u31vA7Ba0fQyRNEvTCaaa2uVrLbX97BjB7z88nEBR0GQpuw8en4NBgOLFi1i0aJFlJWVsWHDBjZt2qSsQdXV1bz++uu8/fbbLFy4kGXLlmE2m6mvr8disbBnzx4yMzN7ncgNCvLn6qtTmTRpDyZTET//HMO2bSPYuFHda7/qgQNwxx1w551hzJs3mQULapgwoQwwsnfvXp8lhvpCUFAQubm57N+/H5fLRWFhIePGjRuW4aYTbeyQlpZGaGgoe/bs8cqipqamKtWcgwcP9jt05Al5bkA+PkiT57LUmsFgwGqxojaFSb62A0RlUQOttno6OjokDeYuCAgIUPr2+0JkZCT19fVoNBra2toGPOg2FPQ0xS/rg6rV6m4EVa/Xo1KpcLvdp4TMlAx575MtxIcDcqJl9+7dXH311URFRVFYWKhoh3d9//LzytVTmSxbrVbFDfOVV16htraWo0ePDstr/D94Y9AE1fPLHEqE0xUul6t779bMmfDxx1K9zWqFLVsk0jpI+EJQZXiSt4iICEaPHk14ePiAFlYZvpb45eNaLJZhc6kQBIHMzEySkpKUEoWM/oag4Lif8wnLCGgG56KjQNu9R6nroJSvm/LBgweV//emrXiqQq1Wk5OTowiTHzp0iMmTJ3c7V/Pz81mzZg233XYbWVlZ/R/YObRsvrGxEbdaTXBwsHSOiaLU5Pn++8fvpNPBdddJ0g69IDU1lWuvvZYrrriCbdu2sWHDBkUKzOFwsH79er788ktmz57NggULlMliWQMzPT29x2veYDAwevRo9u/fz7x5tZx5ZhuvvDKejz/WsXatNODXE0QRNm1SsWlTIn5+8cyc2QjsIibGNqg1oiuCg4NJT0+nqKgIo9FIbW3tsHjKn2gIgsDMmTP58ccfva4hQRAYO3YsW7dupbOzk5KSEp9bUTwzqDJBLSgoUNqxXC4XohsE9+A+c6dNpLG+CVTe66Gfnx96vR69Xk9sbGyf5i4gJTJUKhVms5mmpqZflKBqNBLZczgcaLXabr2cMkGF3qf4fwl0nQEZDrhcLp599lkuuugizjzzTCoqKujs7KSjo6PbvqdWqxWHPjnIlyUgPSGKIlarddja8X51OFV7UE8UQYUeMnp6vSTcf2wClG++kcZsB7n4e24avZ1YPWVQZcvCwaJrIquvDCocb0UwDCFb7AlZ7LhrS0Z/BFUURSWjeMKyiX5+EBwsyRQN9LHBwT2q/0dHRxMfH49arfZqSekLoigqBFWv1/fqrnUqQ87u5+XlkZCQ0CMhy8zMZP78+dx9992ceeaZrFy5su/zbIgBhB3x+GCe2y0R02++OX6HwED4wx98VumQZYvmzp1LTU0NX375JV999RVWqxVRFNmyZQtbtmxh7Nix5ObmKsNNTqeTrKysHs/zkJAQsrOzOXz4MBaLhebmQ9x66zj+8AcVhw9LRZx33pGMAXqC1api48YY4HZ27rSwc2crt94azuTJqqG0YREXF0dDQwNGo5HS0lKio6NPmI7pcGLmzJnce++9CjmSMW7cOLZu3QpIZX5fCarsgufn5+fVayiblSQlJdFu7KRy7+CNOYKCggkJCyI4OLhXUtIfVCoVISEhWK3Wk076um5narVbyUZ2dZECb4LaU9b4l8JxXdfha3P773//i91u54ILLkCr1ZKdnY3ZbFZmL2THR1meqr/vvbq6msLCQhISEpSBql9LtW3YcIIJ6qAfeaIIaq8nxYIFxwlpc3PvKQ0f4BlF9nYByCfacEZGvmZQ5c3H7XaflAXO02WkJzLjmTk9YXaagiANOg0GXQakZPj7+1NTU6PovPqC+vp6RaZk1KhRvwoi0BXyxGpISAiNjY099g2r1Wp++9vfsnr1agoLC7nqqqv497//3fv5JgcQA3wtImDRanGqpODOX6OBF17wJqdRUXDPPYOWkIuPj+eqq67itdde49JLL/Ua2ty/fz9ff/01r7/+Ovv27VMm8HtDVFSUUp43mUyKmUBODjz6KJSVwebNcOWVUlzUG0wmA2+/HcmUKSpGj5Ye6+FLMCDIrRvyNLJ8fp7qGDlypGIt7QnZMhLwMmvoCw6Hg7KyMgwGA5mZmco+Ybfbcblc+Pv7ExoaSmys7w5RPSF37BhGjBhBVFSUIvw+GMjB3nC2afmCrtuZIHiL9PdEUOW97lQq8cttdIIgDEvVrr29nXfffZdbb73V6zPw9/cnODiYsLAwwsPDCQoK8poD6Q2iKLJmzRpGjx5NUFAQoij6vMf8f4UT3IP66yGoYWHSVI2Mr78e9HN4Rkddm/hlyKWF3v4+GHQlqD31pHsuGCeLoMrvsbcL0/MzOKF+75lZCBrNwEiQRiO5FvUAz5K+r5P8nuV9T23XXwtEUeTIkSNYLBZFI7Uvkp2UlMRjjz3GX/7yF/bu3ctVV13FO++846XSAQwpgKgOC0en15MaGQn/+IekxiEjLQ3uvReGQe4oKCiICy+8kNdee43rr7+e6OhoIiIiaGxspLm5mY8++oinnnqKt956q8+hhsTEREXDtKKiwiv7rlJJxZxXX5Wcqt5/H84665jJRC/Iz4e774aUlOOPHajymUajwW63ExgY2G+J+VSBbHdbUODdXO45ld3fwJEMmZRbLBavAETur66qqqK4uBir3YLef+DZflEU0ftr+xXt9xWyY9PJNvfonm9xKEmYvnpQgVOqVO3n54fZbKazs3NYMrvfffcdI0aMGJLFrie+/PJLGhsbOeOMM5TfNTY2DsuxTxaef/55UlNT8fPzY+rUqezYsWPgB/nfSFB7nRT3lPspLpbE+wf5HPKF2tTURGlpKfX19V5ETI7ehrPsMdAeVFEUTwpBld+jlwPLsUyN7BoitwGcUIKq18OixZLosy/3FwRYtKTH8j4Mzk3q105Qq6urlc08KSnJJ1cpQRAYP348jz76KPfeey/5+flceeWVvPnmm94asgMMIETALQjUh4aRFRGB5vHH4ZjEECApdNxxR9+pyEFAr9ezbNkyXnzxRa655hpGjBiBIAgEBgbS3t7O+vXrufrqq3nllVd63FTkjKVWq0UURUpLS3tckwwGuPBC+PxzSV/12WdhxIiWPl/b99/D1VdLfPzCC2Hdup5IhQSn06lcd8XFxcqmPRSpt5ONrKysbk47er1e6cv0laDK35PD4fDq6UxNTVUmtauqqsjLy8MmGOlXALUHRCcHDyuhlMvGJxPd+aXTq0LWF0F1OBzDmpAZCjwrecPxGX777bcsXLhwyMcB6Vx84403uOWWW7yCrWZPFZJTHP/+979ZtWoVf/vb38jLy2PcuHEsXrxYaaM5VXDKEdSIiAhaW1t7juRSUsCjPDSULGpgYCAul4vq6moqKiooKChg586dCiHU6/VKA/RwDQYNZIofTl4GVSaonnqoe/bs4dChQ1RUVFBWVobNZuuxyX7YkZQMS89E6K+0rtHA0mXQh47iYNykDh06BEifxa9N185oNCqTziEhIaSmpg74GGPGjOHhhx/moYceorS0lKuuuorVq1ezf/9+RJ3O5wBC/ntR+kgyg4IIf/55KeUo4/TT4ZZbeg0uhgMajYaZM2eyevVqHnnkEaZOnYq/vz9qtRqbzcaHH37I1VdfzRNPPKFoc8qQv39/f3/a2tr6lZGJipLeznXXvcrTT3/JvfdCYmLv/XNWK3zwASxfLmmz3nKLJGjguRd//PHHPPfcc3R2dioETZYM+rUgOzubgoKCbiRD7iE1Go0+JQHk93/06FGvienAwEAmTpxIRESEsm461GZEQBxAKOV0Ockv2+/j/ftHTzMMJwM9ZVBdLhcqlcongtqbWcvJhrzvDVVmCiT1h5qaGmbPnj3k1yWKIs8//zyzZs1i/PjxXm5xv6YM6tNPP80111zD73//e3JycvjXv/6Fv78/r7322sAOdKpnUFUqVa+Tdi6Xi9raWoqLiyksLFTszzo6OnolfZGRkahUqt6/bM/p/d27YZAnRWRkJFqtlsDAQAwGg9IgfeTIEVwul7IJyCR1ONCVoFos3SPek92DKoqiskHIn0NhYSFqtVr5TAwGA2FhYURERAy7O1GPSEqW3IdmzOyWXXMHBdExbjyVc+dTZLVy9OhRKioqeoz8B5pBFUVR0Q5NTk4elBPQLwW73c7hw4cRRRGdTkdOTs6Qvqvs7Gzuv/9+nnjiCfz9/Xn88ce5+uqrefv7LTRPmaZkUrtuv/Lv3IKK6nHjSQ8NJeqVVyStWhm/+Q1cfvmghxwHCnly/K9//SsvvfQSU6ZMQRAEbDYbbrebH374gVWrVnHPPfeQl5enkIrIyEhloFAWae8PxcXFzJ4dxUMPwebNlTz77F7OOaeBvgQkmprgueekDqbsbHjoISgudvP1118zadIkpU9To9GQmJg45M/jZCI9PR2LxdItU+qZearzDFx6gbwfJCUlsXPnTsUsBSSSmpaWxvTp08nNzSU1PYXAeAEBH0iqKAICnZoGfti6xef31R9OJYLqdDqVtaCnKX7PdrdThaDKLUaykcBQsGnTJmbOnDksVqSbN29WAnfAi6D+WjKostSWZ3uCSqXijDPO4KeffhrYwU5VHVSZoMql8K5oa2tTyJ7nIJJOp8Nut6NWq4mNjSUhIcErIyC7WtTV1fXsIDF2rFQfq6s7Ltx/8cUDfv3R0dH4+/tjsVgICwujra1N6ZXqKrTd3t4+LFninvwMOjrAs6VMpVIpi8jJIKiyBAmgOGXJm0FiYiLp6enU1NQQEhIyrJIf/UKvl+xLx+RibGjgxmuu4fpbb8Wt0YDNjrq2Vim7CoJAbW0tSUlJXioLnr1qvmRQOzo6lA3lROtEDidEUSQ/Px+73a70/Q1Xpjs9PZ1rr72WK6+8kt27d7Np0yau/ugjxmRmsnLSRLIcdgSPZmqnwYA9Kxu/seNI3LkTXn4FRUxUrYbf/16SjfuFkJKSws0338zhw4fZvn07BQUFSoC2f/9+9u/fT3p6Or/5zW+YOXMmI0eOpK2tDZvNxuHDh5kwYUKvGUyr1UpNTQ3p6em0tbVRW1vN2LFu5s5Vk5ERzRdfSEoA69f3XtYvLIS//hX++lcV0dF/Ydy4FEaMyCMwEBISEn51U8JarZaRI0dSUFDgdW16TuHX1dUpslG9QS49BgYGMmPGDNasWcOjjz7qtfeo1WrCw8MJDw8nJQVaGzo4sqMSt6sHkii6AQFBdJE+KQG1IZqXXn9+QHJ0fcGzGmW320985ekYuiY8BMGFRqNRzpueMqiCICjmFqdCid/tdit70HBIdO3cuZMrr7xyyMdpbW3l5Zdf5g9/+IPSDud5rviqFPNLo6mpCZfL1U0XOiYmplu/eL841af4eyNuNTU1WK1WJUUfHByMXq9XLgC5vL5z504OHTrk5WIRFxfXe2+SSuXdi7plCwxi+lCWJomNjUWv1xMTE6O8F4vFglarVU7CwVhl9oSeCGpPZX6ZCJ6MHlT5vcki6p7lttTUVFQqFYmJicp048mE3W7naHEx327dSpXRiEujUab19Xo9QUFBBAYGotfrsVqtVFRUeGUsZFkt8I2gnih3tBONsrIy5XuUBdKHGxqNhqlTp3LXXXfx1ltvMW3OHF7ZvoPffvQJ/2NsZ9/oXFyX/g7tZZcTMGUq6q+/htdfP05O/fzgj3/8RcmpjOTkZCIjI1mwYAG33norN9xwAwkJCcrfS0pKePLJJ7n++usVhyqVSoXD4eDAgQO9buJlZWUEBgbS2NjI/v37cbvdCkHz85MSx//9r+RI9fzzMH1636+zoSGL227zY8WKafztb6PZtSuRU4A/DBg99aF6buy+OBh5VtSuvvpqGhsb+eqrr/p8TFh0IJMXZ5I2Jqbb4JS+00jagU2c9t3rxMQEERkZyciRIweeQeoFnsHxySQuXQMft9vmpfPZlaB6rukWi+WUyKC2eLjORcsukoNETU0N4O1gNlj861//Yvz48V66vp77xKnkxHWy4HILPt0Gi2HJoPYET2mLCRMmKGVrp9OpZOnq6upwuVw0NTXR2tpKTk4O4eHhxMbG9l32mTEDPvrIW7h/yZLBvhUF8hCCfJGGhobS2dlJa2vrsAjm92To0xNBlTM0JyODKktjBAYGotFolHYGjUbzi0osWSwW9u/fj9Vqpa2tjeDgYKKiooiLiyMwMFBZWEVRZN++fdjtdtxud7fvKSQkhPb2dp8kQDwn14OHeXDnRKG+vl4pAUdERJyUEnBQUBDLli1j2bJlVFZWsmnTJp555RVcLhfz5szhtx0dBO/36OcLDZXI6QCd104U1Go1mZmZikNTWloazz//PNu3b+fDDz9U+lHr6ur45z//SUhICHPnzlV84w8cOEBOTo7XddrW1sYPP/yAXq9X1i6dTseoUaO6ZVwjIuDGG6Xb0aPw9tvSrbi459frcKj4/vtIvv8ewsOl4arLLoNp04Zkc33SkJqayubNm71+5zmQ6Yu8kTz4p9friYyM5Oabb+axxx5jypQpfQ4CarRq4kZEEJsejtPhwuV0o3Y60NyxBkFu3dq1C2bMYPbs2Xz//fcsGYa9RBb2t9lsmEwmr1LwiURXgiqKdq8Sf1eCqlar0Wg0SgB2KhDUhoYG/P390el0Q3ap3Lp1K3FxcUMu72/bto0DBw7wwgsveP3e8zz+tRDUyMhI1Gp1Nyvs+vp6r8qGL3C76dVtz/M+g8WgMqhy2QLotdyVkpKCVqvFarWya9cuao+VZDUaDSEhIYwcOZKpU6eSlpamlBeOHj1KTU0N0dHRXhlUWbC+ubmZ8vJyjFYrzJt3/Mm++QaGwSNevng9Car883D0oWo03R1aexuUghOfQRVFUcm8yfZ9npJTJwI2m43i4mIaGxsxm83dpqPdbjfNzc0cOnQIt9uNIAjo9XqysrIUFy+dTofb7aalpYU9e/ZgNBoRBEHJ+HpC/g6tVmu/i++vLYPa1tZGYWEhIAWK2dnZJ13WJikpicsvv5zXXnuNP99yC/P37/cip7aICMR77jllyKmMsLAwhcw3NDTQ2trKjBkzeOqpp3jkkUcYP368cl+j0cinn37Kc889x5dffklNTY3SDrB3715+/vlnDhw4wMGDB4mPj0cQBBITEznttNP6zWaPHAn33y+JG/z4I9xwA/j79z401NIiycjOmAEZGdJjT3WXxcjIyG4zBXJVLSoqqnfVFg/IFZDQ0FAEQWDChAlMnTqVl156yafXIAgCWp0GP38d2uAABE/Jwi1S7+n8+fMpKSnxUvIYCuQg92RmULuW+EXR0SdBheODUna7/Rcv8btcLpqbmzGbzcp3PVhYrVY+++wzzjrrrCG9pvb2dl544QWuvfbabu0fGo1GIb+/FoKq0+mYNGkSGzduVH7ndrvZuHEj0/sr65xkDCpF5lkG9owgPBEcHExERAR1dXXYbDYKCws5evQoQUFBREREEBoaSmBgIMnJyYSHhyvuLUVFRTQ0NLBv3z527tyJWq1WegNl0d6YmBhCFiyAL7+UiGlLixQFD9GWUu7FlEvs8gUiiiJNTU1KBmUoCAoCi0UkIthMoMGOtV0Hor9XKkReTARBoKWlb9maocBkMinvWd5IT4T+qyeampqoqqrCz89PIf2yooJKpcJisSgDdGq1mqysLCorK0lMTMRisdDS0kJLSwtGo9FrYzMYDD1Gf54EwWg09lky8txITvUMqtlsVki8VqtlzJgxv2jGW2UyMfaLL7zEfasCAri/uhrH7bczY8YMZsyYwejRo0/OoJ0PSEtLo6WlBbPZTG1tLZGRkcpA1dixYykuLubDDz/kxx9/VFpHdu/ezbZt25g8eTIzZsxQetXl4cJVq1YxderUAfdrC4JEOkeNaqWm5jrOPPM5PvhAz5YtQTgcPX9excXwwAPSbdo0Kat64YVShvZUQlRUFE1NTV7VDT8/P+V664/Aud1uZfP3JAhXXXUVN9xwAz///DPTpk0b2IuaM0fS/AI4cgRqawmKi2PFihWsXbuWxx57bMjBXlBQkNdQ8Mk477tmUNVqd59DUnCcoDocDkXG7GQHujKam5uV9d9zDmQw+M9//kNMTAyTJk0a0nFeffVVMjIyOP3003v8e2BgIFartbt29CmMVatWcfnllzN58mSmTJnC6tWr6ezs5Pe///2AjnOiM6iD2tF8lZjKysoiJiaGsrIyjEYjbrcbo9FIe3u7srHGxsaSmJjImDFjKCwsxGg0EhoaSlNTE2azGX9/f2VzsNlsqNVqibSNGiWtyj/+KD3Z11/DlClDqnm5XC7Fdxek6Cg8PJzm5mbq6+tJTEwc2oXrsHDzOXlcPHMbIxM8iOe2cEiaAXETQWtArVYrsiBd0/DDCfnYOp1OWfgNBgMBAQG43e4T0twvE26TyeQ1DNZVasZgMJCRkUFwcDAHDx4kLCxMERLW6XQKOTUYDKSkpBAdHd3jd+N5fvZXSvSMgIdaWjqRcDgcHDx4UNl4xowZ88tKD9XUwNNPSw5vMqZOJfGqq/iXIHDgwAG2bdvG448/DsC0adOYMWMGY8eO/WVJtUpFXFwcxcXFtLa2YrPZvIjliBEjuOOOO6itreXjjz9WMg46nY59+/aRl5fH7Nmzueiii3A6nQQGBjJv3rwhvacvv/ySceNGMXt2M1lZDbS3azh4MJsvvojgmDtoj/j5Z+n2hz/AmWdKZPWsswao4iWK4DCDyw5qHWj9h6WHICoqCofDgclkUtYZz0xef8Fwe3u7sgd4Bo4hISFcffXV/Otf/2Ls2LEDG2RNS5Mk6mRXsR9+gAsu4Oyzz+azzz7jp59+YsaMGb4frwfIr9XlcmE2m0/KmtKVoGo0olK5hN4zqBqNBofDobzW3hJPJxpypj0wMHBIg8k7d+7ks88+48knnxzSnp2Xl8dPP/3E888/3+txgoKCaGpq8kqkneq48MILaWxs5K9//St1dXWMHz+er776qtvgVH/4VRNUkDJY48aNw2Kx0NraitFoVEiKw+GgsrKS6upq4uPjyc7OxuVyUVdXx0svvURkZCShoaGo1Wr0ej0mk4nS0tLjElWLFh0nqKWlUq3LR1/nrnC5XJhMJslRxGNVj4mJobm5mc7OTjo6OgZf+m0uhP3vcM/59u7aPJYWKFwHxRtg7CW43W7lNdTV1Z2Qk97lcimTsTExMUqEbTAYlLaCzs7OYSeoMrFMSEggPj4eu13qkbLZbIq8V1BQEAaDgbq6OgoKCjh06JBSppGHuQICAggLCyMwMLDPzIQnWehPz9bzMz5VFxm3282hQ4cUQp+dnd1rttfpdPLBBx9wzjnnnLgNp7BQUqj3bEVZsgTOPx9UKjTAhAkTmDBhAjfccAOHDx9m27ZtPPvss1itVqZOncqMGTOYMGHCSR/CA2kIo7i4GFEUMZlMPWZt4uLiuOmmm1i5ciWfffYZX3zxBS6XC0EQ2LlzJxUVFYwePXrIhNtut7N+/XrOP/985docOTKCZcvCufNOaYl7+21JCaCLbKsChwM+/VS6hYZKX8Nll0mzab1eJg4L1OZB5TZpLZJh8A6cBws5AG5oaFAIqmf1oz9lgr4qG/PmzWPTpk289dZbXH/99b6/KEGQsqjvvCP9vHUrnHce/v7+3HjjjTzzzDNERUWRMcj9BFDWJnkq/ZciqG73cUerngiqPG8gV7Ta29t/EYLqdDoVbjCU7GllZSVPP/00t9xyy6C0oGVYLBaee+45fv/73/fZQyx/r3Lr40lVuxkCbr75Zm6++eYhHeOUJKievXy+fBnyJL+/vz8JCQm43W5MJhP19fXU19fjdrupqqqipqaG2NhYxQEnKCjIa7rWbrej0WiOD8MkJ0sm2bLX89dfD5qgyuQUvNsWIiIiCAgIUDQyB0VQmwthzxuIiKgEoDfu43LAnjfIjdez/5jigd1up62tTekRHS40NzcrwvueZW+DQcrgulwu2tvbh/153W63EnD01J8nqzscPHgQh0Oy6WtubiY7O5ucnBxCQ0MHRAI8N7/+et08j3uqWP55wu12k5+fr/TjpaWl9bmQWywWCgoK+Oabb7j11luZMGHC8L6gnTvhpZeON74JgiT51otji5ztHTNmDNdccw2FhYX8+OOPvPTSS5hMJqZMmcKMGTOYNGnSsGgW+gLZ9lgUxX7Pj6CgIKZMmUJ8fDzbtm1j8+bNmM1m2tvb+f7775k1axYmk2nQ7SGbN2/G7XYrJC4iIsLLdz4tDe67T3KG3blTIqrvvy/pqPaEtjZ4+WXplpoKl14q3bI8nYGPBc6iS8piei5NoqUFwSNwJmLwxhVRUVE0NjYqhM8zydEfGfIkqF17AAVB4KabbuKWW25h/vz5AzPXmD5dcktwOKRhgL17YfJkZs2aRVNTE3/729+45ZZbBt2Xp1ariYqKor6+nrq6OlJSUk54mb/rsqVWi6jVx0lpbwRVEATlPPuleilbWlqGXN7fuXMnTz31FMuXL2fOnDlDej1vvPEGcXFxLPbUXu8BnoFHR0fHr4agDgdOySEpz01/MC5LKpWK0NBQsrKylAVfjjRramrYtWsXcXFx3YRvVSqVYh+nbCaeklN5eTBIqy45cvOUl5KfMyQkBLPZTGNj48CFlx0WaQNA7JWXHod07D8vjicyJEBZMHwRsh4oGhoasFqtqNVqrwtMEASFOJ4I4WGXy6Vknzwh9/nu3LmT0tJSpTfW4XAQGxvL7NmziYyMHHCGyvNc7Y90nsoEVRRFjhw5okwzy4FcXwgKCuKBBx7goosu4tFHH+XJJ5/02VqyX2zYIE3ryJ+TViuNpftgJyiKIh0dHfj7+zNr1izuvPNO7rjjDmJjY1m7di2XXHIJf//739m6dauXhvKJgCAIqFQqRFHscy2zWCzs2bOHhoYGdDodc+fO5Y9//CMZGRmIokhcXBxHjx5l5cqVbNiwwefndzqdtLa2UlhYyMsvv8z48eMRBIHg4GBGjRrVI6ERBKmbac0aqbvi88/hggv6LueXlcHDD0tGAPJj24oLEfe8geiy01PcrPx8LHCmudDn99UVkZGRyrkL3gS1v/aU/nrD4+LiOPfcc3njjTcGtj4HBMBppx3/We5JBc455xyuueYa3n//fe677z42bNjg9fp9hazlbbfbT+g8ARzr0Oghg+oZ7PV0Psnrnrwm/1K9lHLg7e/vP+CWJVEU+fe//80TTzzBjTfeyCWXXDKk13Lw4EE2bdrEzTff3G81TVYeSkxM/NUMSv1aMKgM6kA2/f7g5+dHRkYGycnJShZVLvPn5eV56Tp6thMYjUZJXiQ3F+LiJHFBUZQm+gdxcsqLR0RERLcTMioqipqamsFlM2vzlA3AN4jotSpWTE/lhXX7AImgjho1yvfn7AcOh0ORXeppaCgiIoLm5mba29uHtQ/VbrcrpWnPRdNsNlNcXOy1gEdFRZGcnMzOnTsVL/XBYCAZ1ICAAFJSUhQSfapAHsCRy75y6dGXz0QQBBYvXsykSZN49913ufnmm1m4cCEXXXTR4PRS3W74978lgiojIABuu63f6oXT6aSqqoq6ujplIM7zdS5btoxLL72UyspKtm3bxltvvcULL7zAggULWLx4sVc1ZbghZ1F7gtFo5NChQwpZTkhIIDo6msDAQBYsWMDnn3/O66+/TkdHB21tbdx///2sX7+eVatWkZSU5OXU09HR4XWTP4Pi4mLa2tqYM2cOERERpKen+yTKr9VKvaZnnQVGI3z4oZRZ9eBa3bBzJxQetvD71HcQ/Y5VdfqE5LbE/ndg1p2DKvfLg1IyBpJB9dQw7i07vWLFCtavX8/evXsHVimYMwe2bZP+f+iQlI4+Niw3b948Jk+ezJdffsm3337L888/r0gfyTfZ6UgOdORMpPz/4OBg2tvbCQ0NxWw2M336dEJCQk5IC1FPS5Za7e63DU8mqGq1GrfbTXt7e7d+7JMBORAZaAVi7969vP7665jNZp544ol+TR/6g91uZ82aNVx66aU9mwV1gU6nU5JIJ8Oa/FTCKVniH8im7yv0ej0jRowgPj6eo0ePotfrMRqN7Nu3j7i4OJKSkpTIymKx0NTUJBFUWbj/zTelA/3wA6xYAQNosO7s7FQWzJ409WQXJZvNRmNjo+8EVRSlvq6BQoSLZibzry8kuZ7hHpTqb1JSdu8QRZHm5mafLlJfn1fup42MjMTpdFJRUUFVVZVXe8XIkSMV8lRSUjKkPqKBZPtVKhXl5eXAqbPQiKKokBdBEIiIiCA7O3vApcLIyEhuvfVWVqxYwVtvvcU111zDueeey4oVK3wfRnA4pHrxzp2eB4ZVq6QgsY/3UFtbS1lZmULy5FaSgIAAXC4XTqeTmpoawsLCSE5OJjk5mQsvvJADBw7w9ddfc8stt5CZmcnixYuZOXPmsParypWZntayjo4ODhw4oKhMZGZmeg0SBAYGcvHFF7No0SKefPJJth6bZNqxYwfXXnstl19+Oenp6d0c9brip59+YvHixQMf9vFASAhcdZV0q6iQ2ivXroX8/O73vXxRHv5+dh/IqQxRGp6qzYPkgZstGAwGr0yoZ3WmP0LSV4lfRkBAAL/97W956623lCy0T8jM9HYmlPePYwgKCuKCCy7gggsuoLOzUwnc5QDDarUiiqKSgZf/L1f5jEYjjY2NbN++nba2Np577jn0er2i6ZydnU12djZZWVlDHnTsKVcUGOiHXt93u4y8Rup0OuW119TUDJno+QJZStDlcilrbl/ngyiK2GyS+UB+fj4bNmygqKiICy64gLPOOmtY1oV33nmHoKAgli9f7tP9Pa/XU2XfOFn4X0NQZRgMBsaMGUNiYqLiBV9bW0t9fT0xMTEEBgZisVhobGwkJSVFysTJwv0dHWCzSemDpUt9fk7Z11mtVvdIPmVCVV1dPTBXKYcZLC0DyJ5KUKkEEsMNhAUeH5QaTsjZ06CgoB57/fR6PcHBwZhMJqqrq4mNjR1yxO9yuRRXD39/f2pqaqiursbpdOLv74/NZiM1NVVp95Bx4MABzjvvvEE/r+ex+sv2e24Qw6F7OxwoKytTzs+oqKhBkVNPJCUlcc8995Cfn8+bb77J+vXrWb58OYsWLerbVrCjQ6oLF3qUeVNTpbHxPqwh3W43paWlVFdXK8FJVFQUMTExhIaGolKpKC4upqqqCpBKa5GRkQQGBqLVapXhI5PJxObNm/nPf/7Diy++yPz581m0aNGQghcZgYGBtLa2dpM7stlsHDx4EJfLhVqtJjc3t1eCFBERwaOPPsr333/P//zP/9DY2IjJZOKll17irLPOYvLkycp9NRqNVxauvb2dpqYmHnvssWGxVAZJdvauu+DOO6XOp7Vr4b335A4okVvOGUTgDFLAnTRjwNP9ssW1chh5eh76NZfwVf7trLPO4tNPP2Xbtm3M9NWxTB6W+uAD6ecffoBzzulxoiwgIGBQw0MOh4Off/4Zt9tNfHw8AQEBNDY2UllZqfSINzY2kpqaSnZ2NmPHjmXixIkDPhd6in8SE2NoaqpSfu5pHZczqCqVivDwcIxGI7W1tSQnJw+Lta7b7aaoqEi5zuWkhMlkIi4ujoqKCsXAR+7B1ul0qFQqRdFGbgH0lCHMzs5m0qRJ/OUvfxk23eqioiLWrVvH6tWrfV5nPfeNrmo0/79DFPsnoAPtivTEL17i7wmCIBAUFER6ejrJycmUlZXhcrmora3F6XRisVgICgriwIED5ObmSiRr/nz47DPpAN98I/XC+dCvaLPZlAxlfHx8rxdkcHAw1dXVWCwWHA5Hj83m3eAampZokEGKBoeboMo9Rn0t9klJSRw6dEjJGgzFCcXlcnHo0CEl8rXZbEqkKfe8JicndyspdXR0UFJSwpgxYwb93AMJpk61haaiokJxiQoJCSErK2vYhixGjRrFo48+Sl5eHuvWrePf//43U6dO5cwzzyQ3N9d7I2tqgmeekRoeZeTmSj2nfQwzuVwu8vPzaW5uxs/PD61WS2ZmZrdp5tTUVJxOJ/X19dhsNq9WDzl40Wq1jBgxgrvuuov6+nq2bNnC7bffTlpaGosXL2b27NmDHqwKCQmhtbWVtrY2rFYrfn5+yjkrb46jRo3q16NdEATmzp3LuHHjeOyxx9i3bx+iKPLll19isVi4+uqrCQ0NVfzPZXz66afMnDmzT0ekwUIQYNIk6faPf0hL438/MHvL3A0ElhYp8NYNjKj1RlA1Gk2/0ja+ElSdTsfFF1/M22+/zYwZM3wPqmfOlBIcLhe0tsKBAzAM1pgytFotERERNDY2YjQaycjIID4+nnHjxinqJC0tLRQUFHD48GHef/99nnrqKXJzc5kzZw5Tp071iYD1RFDj4iJ7HaKT4dl7HxMTg9FoxOFw0NDQMOjqWX19PXv27GHPnj3s27cPlUpFRkYGSUlJzJo1i6SkJMLCwtBqtahUKhobGxU73EmTJintBm63G5fLpWRaAwICMBgMGAyGYZeoczqdPPvss1xwwQUD0jz3DFr+L4Pa830Gi0F9w54nxonq1bNYLAQGBpKYmEh0dDRVVVXKgIdOp6O1tVUR9s/KykI3fz6sXy/VOVpbJeH+LuLNPYkly7JVsud8b/BcINrb2/vONslQD63coNZJhGk4CapM8KFvtyRZvaCzs5OysjLCwsK6lcs9Jz97g9vtpqSkhPr6ejo7OxULQDmTlpyc3GtW4tChQ8THx/v2WfeCgchMeb6OAWXKTwBqamooLS0FpO9pzJgxw5LN8IQgCEyaNIlJkyZRV1fHV199xWOPPUZoaChLly5l/vz5BMjk1KMPkDlz4He/gz5ejyyH5Zmtz8rK6vE9qNVqRo4ciVarpbW1lc7OTqXlQy6VulwuxU0OYPbs2axYsYJDhw7x2Wef8fLLLzN37lyWLFlCenr6gD6H6OhoKioqcLlcFBQUMGrUKIqLi5VAbuTIkQMij2FhYTzyyCO8+uqrrFu3DoDt27djMpm48847vYh0Z2cn33zzDX//+98H9JoHA41GKiwtnWuHH4dwIJcdGBhB9fPzU75Tz2pKX0kBGQPpVz3jjDN4//332b59u+/i/cHBMGGCtGeA5Cw1jAQVpLYp2T3P6XR2I1fh4eGKmQVAbW0tO3bs4Mcff+Sf//wnZ599Nueff36f77+nXJFe7/3Z9rRee37+fn5+hISEYDQaB1w9a2ho4Pvvv+e7776jpqaG7OxsJkyYwG9/+1tGjBjRZ3Dt5+enJIoCAwMH1x8/RLz//vtERUVx3nnnYemw47C60Pqp8QvQ9vkZeF7Pp0rl7f8XnHIlfhlms1nJaOl0OtLT00lJSaGuro6ysjJAIrE1NTU4nU7GjRuHato0FDXrr7+WnKUEAaPRSHl5uSKrlJiYiF6vp6amxit72lf/ipwBcjgcvhNUrT8YwiW5lgG8d7dbpM5kRx8kPUdzc/OwDSt5Tmj2RVAFQSAlJYXDhw/T2dmpBAKiKFJSUoJOp6OhoYHk5GSioqJ6vYBLSkqoqKjAbDaj0+nw9/cnMTFR+Q76woEDBxg7duzg3ugxDCTbHxcXh0ajwel0UtybMfpJQH19veIHHxAQQG5u7gkXtI+NjeWKK65g5cqV/Pjjj3zxxRfsfftt7ggMROdJ7FesgOXL+yzxiqJIQUGBQk5jY2NRq9UcOnQIl8tFSkpKt+tHrVYrxFLWxZU1cmW5NZPJhMlkwu12YzabqaysJC4ujvvuu4/W1lY2bNjAHXfcwejRo7n00ksZOXKkT+/dYDAwYsQIKioqaG9v5+eff1b+Fh8fT3x8vK8fowKNRsN1113HyJEjef7553E4HOTn5/PnP/+ZBx98UBn42rBhA2lpaUPS2xwwhhg4D+bxS5cuZemxtquysjLlWkz2wQLXM7Dsj8xqNBrOPvtsPv7444G5S51++nGCunevpNE1jCRJXmtlBYv+CFhcXBznnHMO55xzDiUlJbz66qtce+21rFq1qldnpJ4yqFot/SobdFUvSUxMxGg00tnZ2e9QcHt7Oz/++CPfffcdR44cYdy4cVxwwQVMmTJlQD21/v7+irxhXV3dSSeoR44c4fP/fsH1F97J+w/uwtR4vIIWHGVg7NxEsqfHovfv2ehARn922v+/4ZSXmTpRcjwWi6VbD45arSYhIYHJkycTGRlJUFAQZrOZ1tZW8vPzcXtK3JSV0bZzJwcOHGDv3r20trZy9OhRysvLKSoqory8nKPHTKyDgoL67WUTBEEpTfoswyEIUr/WQCHAur3NXhtjwyDls7pCfu0ajabfBURu5AeJNMl2tdXV1ezbt4/29nby8/PZt28ftbW13YZA5F6j9vZ2/Pz8CA0NZeLEiYwYMcKnCdH9+/cPmaAOJIDSaDTKYEB1dXW/zlMnAk1NTUqpy2AwkJub61s7yTBBp9Mxb948/nHuudzrQU5dQN6ECbTMmtUvOS0qKlIcYWJiYujs7KS6uhqj0YjJZOLAgQN9ZrM1Go1ixBAVFUVCQgJpaWmMGzeOGTNmkJOTo5g5yMMSHR0drFy5kldeeYWUlBTuvPNOHnnkESWY7Q8yEfV8XVFRUUNSkABYsGABjz/+uNIi09DQwF/+8hcKCwtxuVysW7eOc845Z9DHHxTkwHkwjzWES48fAvbt26f835f2HU+C5ct3sXjxYsrLy5XryCfk5Bz3iHW76dO2axCQCRgMXMYpPT2dhx9+mKuvvprHHnuMDz74oEfSabN1v6Z8WTq6EtSIiAglKyj3hntCFEX27dvHo48+yu9+9zu+/fZbZs2axRtvvMH999/P6aefPuCBL0EQlKCtoaHhpMo12Ww2Xn7mXU6PuZrDG5u9yCmAqdHC1v8U8cZd26g41F168f8Iav+3wWLIBPVEZlB7axLX6/Xk5OSg0+nQ6XTYbDZMJhPbq6vpSElR7uf84gtaWlrw9/dHr9eTkpJCQEAAFRUVFB4b9tBqteTk5PhUPpUJ6oD6E+MmIqh1Pm8GbhFsDjeb8tu8sgvDpV8pk66AgACfFvuRI0cqfV8NDQ0UFBSg1WpJSEggODgYrVaL0WiksLCQn376iby8PA4ePMiuXbuU5neVSoVeryc7O9vnZvb29nbKysrIzc0d/JvFe1rYl6y3nMmSp+dPJlpaWsjPz1fczMaOHXvyRZ9FUerlfvVVhGMri6jXs+f00/movp4rr7ySe+65h6+//rrHjdazFScyMhKDwaAELnIwK8vwDAay+PmECRNIS0tTrsmOjg4OHjxIZWUlK1eu5OWXXyYqKorbb7+dJ598Uhk06wvJycmMHz+eqKgoxo0bR05OzrD0/GZkZPDUU08pQbDJZOKVV17hg2ODOQP2kR8qBhs4w6AGpLrCk6CO86GUPlCCGhAQwOLFi/lMnknwBSqV1Loi44cfhrazdoHcPwn9Wy739vh58+bx+OOP8/XXX/Poo492KyfX1DR2e5wvhZeuLXueZLGlpUW5zs1mM1988QU33HADTzzxBPHx8Tz//PP84x//4Kyzzuq3R7s/JCUlodVqlQrMyZL6e33Nf0hlDqKr73PLaXex7vl93UiqrMogV4r+N+GUJKieDcpypmS44Vni7wl+fn5ERkYSEBCgSEDZ7XZKPEplERUVhDkcJCYmMmXKFHJzcwkLCyMtLQ2dTkdsbCwTJ07Ez88Pt9tNS0sLxcXF7N69m507d3Lw4EEaGhpwOp2IoqhsVgO6cLQGGHsJAoIPUv3S3x/9opJOu9url04elhkq5AyRLE7ucrmUDPSuXbvYsWOHorkpk8uxY8eSmpqKKIpkZGTg7+/PuHHjmDhxIllZWcrCJIoi7e3tijWsy+XCz8+PoKAg/P39B6Qfu337dtLT04e86HlqL/riTuJZaj106NCQnnsgaGtr49ChQ7jdbrRaLWPHjj1pbkoKXC544w345JPjvwsJQbjrLiZfcQWPPPIIr732GlOmTGHDhg387ne/48EHH+S7777DarXicrmUzEdISAj+/v6UlZVhtVoJDg5WpKWGMnAnQ1bWmDhxIjk5Ocpa0dzczK5du7BarVxzzTW8+OKL+Pv7c8stt7B69ep+JdtCQkIUx7LhRHh4OI899hhjxowhODiY4uJiHnroIebMmfPLbGpK4Owr2RSk0n7cxCE9rcPh4ODBg4D0mfiibRsaGkpSUtKAdHAXL17Mtm3bBtZL7lkdaGiAggLfH+sD5P1jwGYvHkhPT2f16tW0t7dz3333KeRRcmPsnsTwpcTfU0U0Li5OaSkrLi7mgw8+4Pe//z179+7loosu4o033uDyyy8fVPtLb9BoNIwYMQKQerMLCwuH9Fn5gryde7EXRSH4ch2IUvz+5UsHsZmPVwu1Wi2NjY3U1dV5afb+b8CJJqiD7kFNSkpS5GN8nmofAHzpuZSzgH5+fmRmZkpTuOHh2PbsQd/cjADk1tUhnHGG8hhZ4DwlJQV/f3/FWrOysrJbet5zKEMQBBwOhzJdOCBEZMKEKxD2v9P3ZL9ay1t7nOypkDb5CRMm8N577wEo7QhDhfza6+rqaGtrUxYAPz8/JSK3WCzU1taiVquJj48nMTGRlJQUoqKiFCIgZzIiIiKIiIjAZrPR1NREZ2enYkkbGhpKY2MjLS0tPmdsZXz//ffMnTt3yO9XJqiCIPhEkD1bCjZt2sSFF154QkS1PWEymTh48CButxuNRjMkLcxBw2qVnKH27z/+u7g4SePUg1CGh4crvXG1tbX88MMPfPjhh6xZs4bx48crIvN+fn5KUOXn50dHRwdut5vAwECfe0P7Q0tLC1VVVcpQVWBgIB0dHTidTiXIGj16NDfddBPnnXce77//PjfccAPLly/nkksuGVYtVV8QEBDA/fffz1//+ld27NhBW1vbCXGJ8wly4LznDaTAuC8icOz8H3vJoET6PZGXl6dM8/uqV2o0GpWpf1/X3oSEBMaMGcOGDRu44IILfHtx4eEwdizIGd4tW6TS/zDBs4IwFMgOcU8++SR33HEHDz74IHa7HbPZu91OELrPMfYlM+X5GuU9fuPGjXzyySfExMRw3333DUlRxRfExMTQ3t5OdXU1DQ0NBAQE+NSnPBjY7XY+eGkDSeqee3p7hAhOm4uCn+sYN1+a9PfkPqeaA+GvHYOuX8nlKily696nMlRotdp+v2y3260M3kRGRjJy5EjG5Oai9xDYFX74ATykH+QLVKvVUl5ezt69ezl69KhCTnU6HTExMSQmJnqVhEVRRKPREBYWNjC/ZxkRmZILS+ZZUh+XJwzh0u9n38UPh6QNS6/Xk5GRoZR45aGZoSIpKYn4+Hj0er1XdKrX65U+PJkcuVwuKisr2blzJ0VFRcrUfk+LnF6vJyEhgczMTMaMGUN2djaxsbEYDAb0ev2ASH1LSwsHDhxg9uzZQ36/MkENDw/3KVMVHR2tlB1ra2uVbM+JgqcQvKy12VWG6YTDaITHH/cmpxkZcPfdXuS0K+Li4rjgggt47rnnePrpp0lOTmb9+vU8+uijvPnmm5SUlBASEkJsbKzy/WdkZAyZGLrdbqWfvLW1FbvdjsPhoKOjg8DAQKWNpK2tjaKiIsWK9I9//CPPPPMMhw4d4pZbbuHw4cNDeh2DgV6v59577yU6Oprs7Gx+/PFHL03Qk4pjgTPqfpILaq10v4hBrHtd8O233yr/99UrfbAzD2eeeSZfffXVwBIKnq9p925J/3cYIEvsyb3VQ4VOp+POO+9k1KhR/PnPf2bXrl04nd7rssybBjIkJVcHRVFk27ZtvPnmm0ycOJEbbrjhhJNTGenp6UpbWUlJyfDZM3fBp59+RqxmFN1NfvvH/s3HzWU8P78Tbc18quGUzKCC9/RleXn5sLtOyL2lfcHhcGC327v36U2fLunatbeD3Q7ffQfLlgFSVrS6upra2lpcLpeSEQwPDycpKcnLhk4URTo7O7FYLIrUTXBw8OBFgbUGyYUlaYakJeiyS2UzrT8IAnV1dcowVFZWFhqNhvT0dPLz86mvr8dkMg3YBq4rZFcsOaOp0WjQarUEBwd79duZzWaqqqqor69XFA9qa2uJiooiMTFxQJ+BzWYbECnZunUro0ePHrIupMPhUEp8AykrL1q0SOmT++yzz4bcB9sbzGYz+/fvV1op5PLvSUVtrSQj5dmqM3kyXHutbxMWx5CSksLll1/O2LFjqa2tZfPmzXz88cfs2LGDjIwMcnJylL7loUDWJ5UVAvz9/YmOjqajo4OmpiY6OjqU67i+vh6j0Uh9fT2xsbHK63ziiSf47LPP+Otf/8rSpUu55JJLTmo7hexOJHvHv/3229x1110n7fm9IAfOtXmSCL/FQx/VEC6tVfGTQDP0z8doNLLzmAtZeHg448eP9+lxnhmqgRCAKVOm8OKLL7Jr1y6mTJni24PGjZOm99vaJN2mbdskp8IhQBRFpQJmsViGrX1ErVZz8803s2bNGp599lkmT74JOJ4N7Kn/tLfkQlRUFGq1GlEUFavPgwcP8tBDD+F0OjEajbS3tw+bIH5fkNfCvXv3AijzIoN2NHS7JS5gMknBeHs71oYG9Os2oDVcNKhDmhot2Dqd+AVqvVr+TrTayqmGU1IHFaSFXoZsDzmc6Crs3BNkAtutvUCnk4T7P/0UAPHbb2kYP57G1lavoRl5Mn/UqFE9Xnjy34c9oyUIx4SuvTXtehoeyMzMJP+YV+HRo0eZOHFoPWAglVz76x3y9/cnMzOTlJQUqqurlR7DhoYGGhoaCA8PJywsjJiYmD7bO+QL1mazKU5C/eH7779n8eLFA3tTPcCzP9qX/lMZ06dPJzw8nJaWFvbu3UtpaemwB2BWq5X9+/fjcDhQqVSMHj365Gv/FRXB//yPV4WBRYvgwgt7dNLxBWPHjiU3N5fTTz8drVbL1q1beeWVV/j8888544wzfFLM6A1dyWlUVJSirSqKIocPH6apqYn6+nrGjx9PW1sbHR0dlJeXKwQVpA3w3HPPZcqUKbzxxhvcdtttrFq1iqysrEG9rsFAdj1qbW1l27ZtHD16dNhaHwaMfgLn4cLmzZuVzXzevHk+9956trsMZMBIrVazZMkSvvjiC98JqlotCfd/8YX08/ffS6YvQ/gcqqqqlEpOQkLCsLaWiKLIlClTcLvdvPvuD8Bxm1Zf40u73a6slXa7nQceeACbzcbTTz9NcHAwO3bswG63U15eftKyqHIfvrwnFhUV4XA4SEpKkvYQUZTWLZPp+M1o9P5Z/l1HRzc7Iz9grl8Aa4fwGu1WiaC2tbURExODv7+/1zrzvwGnLEH13GROBEHV6/V9it6Koqg0JPdIIOfNkxYZpxOhrY2Wr7+m+Zi8kcPhICYmhqSkpCH7Hw8n5IgRULILnptWUVHRsBDUgUCv15Oenk5SUhLV1dWK7mxraystLS1UVlaSmZnZa7ZTJv52u71H6bCuqKmpoaSkRBGsHgpKSkqU/w/EGUSr1XL++efz1VdfUVVVxfvvvz+sGS6bzcb+/fux2WwIgsCoUaOGZEYwKOzeDS++eFw8URAkYjrEwEAmHXJgIg8BVVVVUV5ezu23387IkSNZtmwZM2bM8Dnj4Ha7yc/PV8hpQkKClwSUIAikp6djtVrp6OigurqapKQk8vPzsVqtPYqjx8fHc+edd/Lf//6Xe+65h3POOYeLL774pGRB9Ho9F154If/6178AePvtt7n//vtP+PP2iV4C5+GA3W7nv//9r/LzggULfH7sUJx6Fi1axAcffEB1dbXvQ1Zz5hwnqDU1UFwMgwwe2traFMON0NDQYbHm9URtbS2CIDBhwgTCws7jiiuO/00mqDqdjujoaMWRqSvk37ndbl599VV0Oh0PPzVxG1EAAPsKSURBVPywUlVISkqipKQEi8UyLFW8XiGKUi/8MXKpN5mY0NZG49GjCB0d6DZvxuJwYLDbETo6pKHOIUDL0PpFdX7SOtHS0qIMX55++ulDOuavDaek1SlIJVN/f3/MZrPPWoMDQWJiIhUVFb0Ssrq6OqXc02PmKSSEznHjCNi9Wzre4cNYxo0jNi6OqKiok6ot6QvsdrtCUAMCAhRiKk+Vq1Qq3nvvPebNm0d0dPRJf31arZbU1FSSk5NpaWmhtrZW6f87ePAgcXFxjBw5spssj9wyIYoiVVVV/fbvbty4kUmTJg1L1tpzsGyg2amFCxfyn//8B5fLxbZt2zhy5MiwZNhkcmqxWBAEgaysrGGZah8Qvv0W3n33+Mqh0Ugl/dNOG/anklssEhMTFb3PjRs38vbbb/PSSy+xdOlSzj333D4dctxuNwUFBUr1Iy4urkd9UoPBQHBwMB0dHdTU1HiV3noiqCBdV+eddx4TJ07k6aefZteuXaxatcqrQnSisHjxYj7++GMaGhrYvXs3FRUVJ2wg5JfGN998o3x/U6dOHVDAGBERQVJSEna7fcAENTw8nJkzZ7Ju3Tquu+463x4UHQ2jRsGxyhXffz8ogmqz2RTZOJ1Ox6hRo4bNqhhQspoOh4OoqCjs9uQuf++kpUWqXMmtYz0p0IiiiCiKlJWVERERwQsvvODV8hIXF0dtbS1ms5ni4mLJFGcg78Nu7zvTeazsjtHYzW1ACwyHToCo1eIODMQZEEBRXR2dajWJo8fgf9iB2aZhoH2owVEG9AHSeuI56Ph/GdSe7zNYDJqgyhmLgwcP0tjYSH19fb+eygNBZmam0nviCbfbTXV1NeXl5ej1etRqdY9SRA0NDZQnJnLaMYIa1NzMhIAAhGGUxRhObNy4UZHoOe2005QFID4+nlWrVrFmzRocDgc333wzF198MYsXLz75k95IG3pkZCSRkZGYTCYKCgqUqX+VStWNCGo0GqKjo2lpaVHKXKmpqT2WuSwWC+vXrx+2bKVn4CTLl/gKvV7P+eefz4svvgjAE088werVq4fUg2U0Gjl8+LDSujJy5MhhvWb6hdsNH34IX355/HcBAXDrrTCYwT8fIOuP+vv7K33P55xzDmeffTb79u3jP//5D+vWreOCCy5g2bJl3c4LURQ5cuSIl/C/rMTRE1JSUmhqasLpdFJQUEBUVBR+fn799pimpqby1FNP8e6773L77bdz5ZVXsnTp0hOq4KDRaDj33HN56aWXAGmA6Morrzxhz/dLwW6385///Ef5eeXKlQN6vE6nUwbJTCbTgJ9/+fLl3HPPPVx66aX9WqUqOP304wR1xw5YuRI8qm2iKGJ1W3C6HWhUWvxUBq9zxeFwcODAAex2O4IgKLrdwwVRFCksLMThcCAIAklJSXTNEwmCk2uvvZbk5GQsFgsGg6HHITO3201zczMmk4k//OEP3T4jtVpNYmIihYWFmEwmKisrSUlM7Lmc3tPvTpD9p1sQcPr7KzeHvz8OgwGHwYDT3x+bXk+nRoNFq8Wl0eBnMFBeXs7z337Ln/70JxwBASRbzBQUDJwGjZ2XqHzf/5sJ6onGkGpZEyZMUKacd+7cyVlnnTXoYzkcDlwulxLNJSQk8Nlnn9HW1obL5aK9vV2xOpSjQLVazZgxY7pFcx0dHZJTS1gYxuRkQo7J3Qhffw3Z2YN+jScKNpuNjz/+WPn53HPPVf4vCAKZmZmEhYXR0NCAxWLhtdde491332XhwoUsXryY5OTkEy6F1BOCg4OZNGkSBQUFNDU1UV1dTVBQUDfSlZGRofQO1tbWUl9fT2BgIMHBwQQHB6PT6VCpVKxbt46oqChGjhyJ1WpFEAR0Ot2g31tJSQnBwcFERkYOqoS+ZMkSxcKvoaGBp556ir/97W+Dej21tbUcPXoUt9uNIAiMHDlyWDUE+4XDAa++Ctu3H/9dRIQkI3WCXkdHRwft7e0EBASQkJDg9bkJgsD48eMZN24ce/fu5Y033uCzzz7j0ksvZd68eYpOrywXBVLPaWZmZp+fv06nY8yYMeTn5xMVFYXL5fI5863Varn88suZMGECTz31FPv27eOWW245oaoKc+fO5bXXXsPpdLJp0yZ+97vf/X83aPHf//7XK3vqqe/sCzxLyoMhqHIv/bfffuu7a9fEiVLw1tkpZQB//hnmzcPmslLYeYiDpjxMzrbjr1ETypjgiWQGjEaDloMHDyrZ3pEjRw5Zz7kramtrlc80JSWFoKCgblanEREhPProozz11FOUlpaSk5PT45CZKIqEhYURFBBAuFYLVVXdSGes0UhQbS1Cezs6qxVOlGOSIEBgIISEQHCw9y0kBLNGQ3V7OyagQxR97g2WFWm++uorRo8ezZiQEFIKC7BrRY6qRuB0g09ZVAE0OjXZ044TUU8TkP9tBPWUzaCClOlbu1ZqM961a9eACWpDQwO1tbV0dnZ6XTiCIGC326mrq+Pjjz/uMfsl6y127SH1dKHQaDTozz4bnntO+uO+fVBXB6fQSeRwOFizZo2ymI0fP77b+01ISGDNmjW8/PLLikyL1Wrl888/5/PPPyckJITc3FzGjBnDmDFjTiphVavVZGdns2fPHkVcOSwszCtboFarGTVqFOXl5dTU1OB2u5VgQ4bT6eTNN9/kt7/9rTLpKz82ICCA8PDwAb0vk8mk9CumpqYO6vPQaDTceeed/OEPf8BoNLJ7927effddLrnkEp+P4XK5KCkpoaamBjjuXHZSB6LMZnj2WfC0fkxOhj/+cVj9xruiuroal8uFzWbrtS1F7p8bP348W7Zs4a233uKTTz7hyiuvJDw8XMlOREREkJ2d7VNpMSgoiNGjRysZo4FmrsaOHcuaNWtYvXo1t956K3/+858ZNWrUgI7hK4KCgpg2bRpbt25VzrGpU6eekOf6JVBZWaloOQuCMKBrR4Zn1WIwBBXg7LPPZu3atSxfvty38rRWKw1Lbdgg/bxlC5XTUtnQ8ClOsTvJMznb2NayiR2tP5BpHofbJD1HWlrasAeiLS0tSvtScHCw0i7RlXtqNJAxciSXn38+1NURplYTW1kptfh4ZDnPLy7movh4QlQq1PJe2QUCMKQwzd+/V9JJUNDxvwUGdhdv9TwMkIGU1Glra8NkMuF0Or3kD+V/6+vrKS4uprCwkCNHjqDRaKivr+fpP/6B1ILDIIr4aWBpWjXrihMREemTpAoSH1563Rj0/lKLoMvlUr6L6Oho3zP0/5/glCaoqampRERE0N7eTmNjo1JG8AUNDQ1Kf05P5EGr1TJp0iR27NjBiBEjFCmk4OBgQkNDe23U7ujo8Ipc/aKjISEBqqulnrtvvoHLLhv8mx4muN1u9uzZw5tvvklpaSkajYbc3Nxe+6T8/f257bbbOO+88/j000958803CQkJwWAwYDQa2bp1K1uP+UcHBwczYsQIEhMTFaH9+Ph4oqKiTghxVavV5OTksGvXLtxuN42Njd0GErRaLSNHjiQhIYHW1lZFtkS2jd27d6+S/fKUF3O5XIqHu8Ph8LmX1FNbciD9bl0RGRnJX/7yF+69915EUeT9998nPj6eefPm9fk4URRpamqiuLgYq9VKa2sr7e3tiouQbGBgt9txu904nU5cLhcqlYqAgABFPSIwMJDQ0FDi4uKIj4/3cnjxCc3NkoyUp9XnmDFw441eJcvhhtPpVDKf8fHx/U5sC4LA6aefzowZM/jyyy959NFHiYuL48wzzyQ+Pn7AtqPyRjHYsmpwcDD33Xcfn3/+Offddx/nn38+559//rD2EMo444wzlGv3m2+++f+GoIqiyJo1a5Sy8nnnnTcoNYyhZlABZsyYwauvvsrWrVt91l9lzhyFoFaqG/my/qNjJKZ3ON0ODvvtIi1oDCNDs4a09vSE9vZ2Dh8+jGC3E+RyMTo6GtXevWA04vw5CJis3FfbUgc3P8R0p5PpclVr377jRgTHEAV9ksLe4NJoUIWFIchEsyfyGRwsEdA+Zj7y8vJ49bHHyM3NJSUlhcTERBISEggLC+t1v9Lr9cTExBAREUFtbS2VlZVUVlZSVVWl/CuKIjk5OUycOJHf//73REREcN0VVzCuoR7E4x5qycFmzhpRxZelCccyqeBNVCXiqtGpWXrdGJJzjg8El5eXKy1b2adgdfZE45QmqIIgMHfuXD755BMqKirYu3cv06dP9+mxKpWKwMBAWlpaiIqK6ia/IbsY3X777WRlZRETE+MTuZKn6bRarSQtJAiSdM7rr0t32LoVVqyQIrWTDKfTSWVlJTt27GDDhg3KBi5j2bJlJCYm9nmMpKQkJkyYwBdffEFra6synekpv2IymdizZw979uzxeqxOp1OIalhYmCIVFRoa6vXzYDZ1f39/QkNDaW1tpaGhodeJWYPBgMFgULIKspbt2rVrueaaaxg9erTS5iHLWlVUVBASEjKg1+VJUIc6eDJ27FiuuOIKXj92Dj3zzDNotVpmzZrV7b4Oh4Py8nJ27NhBUVERFRUVVFRU4HQ6B+ym1RMEQSAiIkIxVYiPj1cm2rspKVRUSOTU0+5x1iy4/HLfTLqHgJaWFmU6eCBlL61Wy9lnn01CQgL//Oc/efbZZ3nkkUdOCDHsD4IgcPbZZzN69GieeOIJ9u/fz+233z7sigsTJkwgIiKC5uZmdu7cSVtb28mXHDsB+M9//qNI5MXFxQ2491TGcBBUjUbDNddcw3PPPUdmZqZv52RCAowcia2yhA0XJEnC7L64VYtQEZbPnOS5A7veHY7jw0Jdh4dMJlxtbWiamphusaDuoZfUUTgVL4Iq2iUt1wFAVKsRZGLZC+lsdjjIr67GpdEQGBjIuHHjhtSW8sknn5CYmIhGo+Gnn36iurqaxsZGDAYDCQkJXkkvz8+zqamJ2tpatFotiYmJJCYmkpSUxLRp00hKSiIuLg6VSkVbWxvNzc288847nJkxEpXb3e1rTA42c8XoYgpagtnfGIbJfnyvCdY5GDsljOzfTEJv8H6fBR52uCdTpu5UwSlNUAFyc3P56KOPAPj55599Jqh+fn6KgLvRaEStVpOQkOC1+GdkZDBt2jT+/e9/c9ttt/l0XHkQJzIy8vimJgv3m0zHhfuH0C/bH2QJrIaGBkpKSiguLqa4uJjS0tIem9STk5P505/+5FN2wWKx8NJLL6HRaIiKiuLmm29m2rRplJSUcPDgQQ4cOMDhw4eVgStP2O12ysrK+lVd8Pf3JywsTCGvcuY6KCiox1tAQAAqlYro6GhaW1sxmUzYbLbuBgo9QKvVsnPnTlwuF0uXLlUWus7OTqVfVa/XY7PZBiSmLttswtAJKsCKFSuor69n/fr1iKLIP/7xD7RaLVOnTsXlcrFv3z6++eYbdu7cqUi/yNal/v7+ymvXarXKkFlERIQy6KfRaBQb3Y6ODqUS0NHRQXNzs+K5LWdmm5qa2O/p/IQ0sZyZmUlWVhYT9XrS1q9H8BxQOOcc6XYS2j/k/riAgIBBSbmpVCouu+wyioqK+Pvf/87SpUu57LLLfhH1jREjRrB69WpeeOEFbrnlFv7whz9w2jAqHqhUKhYsWMAHH3yA2+1m8+bNrFixov8HnsL4+eeflfYvgFtuuWVI2WwZLS0tfdyzb8yaNYtDhw7x6KOP8uSTT/r2eubMofBQC06t4PugtwAuXBR1HiY3YLykw9nT5HrXgaJ+NF7VQF9XksPtnQXVqo65QgkCLU4nbS4XfjExxGVl4TAYcAUG4g4M5LPvvuOHfftodbl46p//JKGfJEkEkBYUxNGjR+no6ODw4cOMHj3aZ13brnC5XEydOpX58+crv7Pb7dTU1FBdXa1oaMuQExgREREkJib2WBk0mUwUFhbS2tqqzKyUlJRwz4je91i9xs246DbGRrVhc6mwu1To1G70ajeCuhn8umvpHvFom/rfSFBPNIZMUMeOHYvBYMBisbB9+3afiUlgYCATJ04kPz9fGYBqaWkhPDyc7OxsZSO6+uqruemmm1i4cCE5/fgiyy4Y4N23hFYrCffLOnwbN8KSJb1mkVwuF1arVbnZbDavnz1/39nZSUtLC21tbbS0tNDa2kpbW1uPenMNDQ2EhYWh1WoRBIFJkyaxZMkSJk+e7PPF/c477yiL9OTJk5k+fboydDNy5EjOPfdcRFGkra1N0S2tqqpSLva6urp+7QLNZjNms9mr+bsvyIYGer0es9mMwWBg27ZtREZGEhQUREREBBEREURFRREZGelFWBwOB2+88Qbnn38+Go0Gt9ut9GyKoohWq0WtVpOVlTWgrJInQR2OMpsgCFx//fU4HA6++eYbXC4Xzz33HO+99x5lZWXdsuE6nY6QkBDGjBnDqFGjyMrKUoYlBpNFbW9vp6ampsebnD1vaWnh559/xrBnD+cGBirP4wZqFy8mdvly1CeBnLrdbuUcHawbWEhICE6nk4kTJ7JgwQKee+45Vq1axZ/+9KeTIgHVFQaDgVWrVrF582aefPJJlixZwhVXXDFsmV2ZoAK/eoJaWlrKU089pfx86aWXDsmNTaPREBMTQ319PZWVlT4bfvSEK6+8kjvuuIPnn3+e2267rd/vTzztNA4G/jDwJxJFDpZsYMy/XkYYihBkXwgM9MpuOhkDW47/WZMcD//4B4fKyrjzrruw2+2cPnIkp2dk4HK5FPm/Hxsb2d/QgE6nw3ys5ao/JCQkYLPZqKyspLW1lQMHDjB69GifAsjGxkY6OzsVFzj5/57Q6XSkpqYOWDfWbDZTWlpKU1PTMS1/PUZjMGZzMG7zMiK1/VuGCwL4adz4aTz2cJNJGgzrkiSRM6iy6+P/NpzyGVStVsuMGTPYuHEjnZ2dbN261WcRZj8/P8aPH09zczMlJSU4nU5aWlrYs2cPubm5GAwGoqOjufDCC/nnP//J6tWru5USLBYLLS0tNDc309jYqAigHzlyBIPBgN1ux263ozabuVIQ0IgitLXx79tvZ7tajc1mU+5js9mw2WwD8nv2BU6nk9LSUqxWK8HBwVx77bXMmjVrwHqmbW1trF+/HpAu4Ouuu67HhVoQBCUD2tX5w+12YzQaaW1t7fdm8XGxEkWR9vZ2pWkdJOmN3hYrf39/IiMjycnJUaZdFy9ejNPpJD8/XyE3Go2GlJQUpVQzEMgENTg4eNgmaAVB4Oabb8bpdFJYWMju3bspKSkhKSkJf39/DAYDU6dOZebMmeTm5h53PRkGBAUFkZWV1S1KF0WRlpYWioqKKDxyhLi8PBZ6lEGtwGNGI7vfeYegzz5j2rRpzJ07t0f1i+GCPLgAgyeofn5+mM1mVCoVnZ2drFy5kp9++olVq1Zx+eWXs3z58l9EuWLevHlkZWXx4IMP0tjYyKpVq4YlqxsfH09GRgZFRUWUlpbS2to6LJ7tJxuVlZXcf//9isnKnDlzuOCCC4Z83NTUVOrr67FardTV1Q3a9lKr1XL33Xdz33338dhjj/GnP/2pz0yqVevGFDaI71cQMIVqsPkJ+FkGQFANBi/SaTMYqOvsxKrTYTcYiM3MJCo9Xfp7l6SGo4uakzZAD0F6rDYbRqMRl8ulqOLA8Uyk2+1GFEVsNhuFhYXYbDbFLrgvpKWl4XK5qKmpwWg0sm/fPnJzc/tNUNXV1dHS0kJ0dDRRUVHU1NQMafrdapVmnwsKjBQUtNHWFoXRmIzJ5I/TefwzitSHA/0T1F7hsHsRVDlpANK8y6mmrX4ycMoTVJDkeDZu3AjA119/PSCXEEEQFBmgyspKysrKsFgs7NmzR/EmP/fcc/nqq6+4++67yc7O5ujRowoplS045SGT9vZ2NBoNQUFB3Rae5MBAlhw7wSa3tPC2Z2/eMEClUnn1c4aHh5OSkkJ0dDTPPvusQt6sVuugxPa/+OILRe1g2bJlg7qoVSqVQl77g9Vqpa2tTclwd3R0YDKZaG9vV/7v+W9bW5uyAFosFkVJoWtQYTabqaiowOFwsG7dOjIzM7nxxhtZuHChYkkaFRVFRkbGoC56OZMNDLtFqUql4tZbb+Uf//gHpaWlVFZWYrVaueOOOzjvvPN8qh4MJ+Se1IjQUKYdOSJF+sdg8/PjP/HxFBUUgMNBe3s733zzDd988w0RERHMmTOHuXPnkpaWNqxkTy7va7XaQevGxsXF0d7eTnt7O52dnXR2djJ27FgiIyN57733yMvLY9WqVSfO1aYPxMfH88QTT/DAAw9w//33c8899wyLJvGECRMoKpI20P379//qXGkKCwtZs2aNEmBmZmZy2223Dcu5lZqayvZjEmnl5eWD92VHav964oknePLJJ3n44Yf505/+5HUeiaKI0+nEZrPRYmka0ut26FT4OdVe/Zy1ZjM2vZ6Q5GTCkpO9ezw99qyWlhYOHz6sDE9mZ2f3adncdYpfrXZTWHiUoqIipaKnVqtJSUkhIiJCqeRt2bKFwsJC7HY7DoeD5uZmmpubiYqKYsQx98WeIFfutFot5eXldHZ2snfvXnJzc/u8HuQ13W6309bWhtVq7ff7dLuhtVUy9qqrg9pa6VZXB8e7PkKO3XqG1TVEAqn15hP/V97/lRDUrKwskpOTqaioID8/f1COKCqVipSUFAwGA0eOHMHhcHDw4EFyc3NZu3YtFRUVrF+/npycHPz8/BAEAafTidlsVkibWq1GpVJhMBh6LJl/ZrEoBHWERsNYrZYjKhU6nQ69Xq/86+fnh16vx2AwKP+Xxb49b/J9ZEIaHBzca1bqjjvuUCbB33vvPVJSUpg5c6bPn4/NZuOLY/Z7arWas88+e0Cf72Dg5+dHbGysz0RYjqbz8vIQRRGTyYTZbMZms6HRaLBarbS0tNDY2EhzczMOh4Ps7GwCAgIoKSnhlVdeYcqUKVxxxRVDIk1DcZDyBRqNhj/96U9YrVZlkd+0aRNnnXXWSSeogFR6euEF7+nc2Fj0q1ZxWVQUl7jdFBYWsm3bNrZs2aJsQJ988gmffPIJSUlJzJ07l7lz5w6LS5lMUMLDwwf9HcouWzabjebmZhoaGjAajcTHx3P55Zfz5ZdfctNNN3HHHXecNH9wTwQHB/PII4/w6KOPctddd/HAAw8MebBp3LhxSpl/7969vyqCunXrVp555hkcDgdxcXH4+/tz//33D5s4vWept6ysjGnTpg3peEFBQdx99908/vjj3Hjjjdx4440EBgYqVTQ5y+hSO6Hvlsw+ob3/YTCEevV9F2/disvlIiMjg7BeJKgaGhooKChAFEU0Gg2jR4/u9/zqWvjr7DQq/fBqtVoZTu1aNtfr9UoFKC0tDbPZjN1uV5RGUlJSSEhI6HFvEwRBMV45evQoVqtVIam9BafymiCKIjU1NURGRirrppwN9SSg8r/HuvcGjNBQCArqoLJyO2ZNMAanaYC+UUjBQ5e13ZOg/m+c4IdT2OrUE4IgsGTJEsURZd26ddx4442DOlZ0dDRarZb9+/dTXFzMM888Q1xcHHq9npT/x955R0dRdnH4mS3pvSckkABJCL1JF5AOinREQewogiACgiJFULoKiiI2RMUPRZQiTaX33gktpJHee9ky3x/rDlnSNo3mPOfsSXZ3yju7OzP3veV369QhKyvLRN/Q09MTGxsbHBwc8PT0xN7enjp16uDg4CAZnUUNUM3336P+N2/kg86dEd58szo+gnIpqRLc29vb7LyVf/75RyqU6dy5891vj2kGxkK3rKwstFotGRkZkjC9UqnExsaGRo0aYWFhgSiKpKWlcfbsWTZs2MD169fJzMzk8OHD9O7du0r5PDVtoMJtjdRp06Zx8+ZN4uPjWbBgAXPnzr27QuuZmbB8Ody8efu1+vVh4kRJqcLofWnQoAHPP/88Fy9eZO/evRw+fJicnByio6P58ccf+emnn2jdujWPP/44LVu2rJRxWVBQIOXEVja8XxRLS0tJrSA9PV0q8Hvqqac4ffo0s2bNYujQoYwYMeKuV/pbWVkxc+ZMli9fzttvv837779fJc9egwYNsLCwkNoeVyXX8m6RlZXFl19+yf79t5MffXx8mDp1arVqQhaNhBh721cUjUZDUlKS1EAiNzeXLl26kJGRwcKFCxk7dmzxXEjBErXGEo2qoKLdMHFQOWF5h3EKtw20kuoURFEkOjpaOkYLCwuaNGliVrOIOz2oFhaGffn6+uLg4CAVbt6J8TVBECR5J6Nsk1HHOTExkcaNG5c6Affx8UGtVnPlyhU0Gg3nzp0jODi4RI+vTqcnO9uQGxoZWYi19assWmQwRP8NfFUYlUqPvX0u7u5aGjRwwtsbvL0NkufW1rBlyx7U6tPYtBkEhw9VfAeNmxT7Hv/rFfx3g2q7kz722GOsWbOGgoICdu7cSf/+/StdnOLs7ExBQQGrV6+WckLt7e0ZMGAAnTp1Ijc3VzLWbG1t8fX1xc3NzTzD4Ikn4N8flnDunOGsqMJNpSIMGjSIiIgI/vnnHwoKCvjggw9YuXJluV43vV7Pxo0bpc+iaKep+w2FQiEVs+n1etLS0oiJiZGq+y9cuCDJkri4uPDYY4/h6OjIpk2b2LNnD1ZWVnz++ec0bNiw0jl4d8NABYOB8t577/HWW2+Rnp7OhQsX+O233xgxYkSN7dOE+HiDjFTRAq1WrWDMGJNQYVEUCgVNmzaladOmvPbaa5w8eZJ9+/Zx/PhxtFotJ06c4MSJE3h6etK3b1969uxZoTB6UfWIqrSFLQknJyeaNWtGREQEsbGxkm7i1q1buXDhApMnT77rEzeVSsVbb73Ft99+KxmplZ1cWVhY0LBhQ86ePStJ6NzVbmMV5Pjx46xYsUJKpwHDfeCNN96o9nw8o/6vUYmkIhhbMcfExBQz0IxSYr/88gsbN27krbfekgo+jQ+HPCuOpO2p8JgbO5Q8yTNOpO4ci7F2wvh5WltbS7UY5pCTUwDcvpdYWSl55JFHyMjIkMZRWiepomNTKpX4+/vj6ekppdMZuzPWr1+/1PG4u7ujUqm4dOnSv8omV1Grc1Gp/EhIUEie0NjYYLRa08nk5ctmHSJOTobGd15emBihmZkRJCTEY2VlRcuWLYutd+rUKUOhXlAwHD9WMfktlcqwXhGMdQhgiBTdjw6ju8EDEeIHQ1X+0KFDWbt2LXq9nu+++47Zs2dXaltxcXGsXr1aSrT39fVl5syZeHh4EB4eLmmdenh4EBQUVDF5i4YNwdfX0M4NDML9o0dXapwVwdjhqrCwkBs3bhAQEEBSUhJ//vknQ4YMKXPdo0ePEh8fL+V5fvLJJ3Tv3p2uXbve13qJCoUCV1dXXFxcuHXrFjdv3pRkSYxFOgUFBWRnZ9OtWze0Wi0XLlwgKyuLb775hqlTp1Z4n0UvHHZ2djXe697d3Z0ZM2Ywbdo07OzsuHLlCvn5+RWSxKoUYWGwbJlBwsZIjx7w9NNgpifRwsKCDh060KFDB7Kysti9ezdbt26V5L2+//571q5dS6dOnXj88cfLbTMKSE0y1Gp1jaQ7CIJAQEAAarWasLAwHBwceO2119i3bx8TJkxg0qRJ1SoBZe6YXnrpJZydnXnnnXeYP39+id3vzMHY+hUMYf770UCNjIxk7dq1HDlyRHrN1taW1157jS5dutSI19eYAnb9+nXi4uLMUosxeiMjIyOxsrKSojnGRhj29vbY2dlha2tL27Ztefvtt9m7d6/ULCU/P58LFy5w+sJpdB30KFUCKMo/NlEvotPo+d/S38jqUyAprRgxGtpFJ3MpKSlSahsYnDRGj7o56HQ6YmKSKJqP4OzsgLX17XMSKLEAuKihXDQKYW1tTePGjYmPjycqKoqUlBQUCgWNGjUqsq6hF8jtsLwzt261IyZGT05OaWMv+/qkVhc3QIt6Q0siL08ltUvXaDQmE6TMzEzOnTtniOpaWkKv3rB9m3mxZ0GAXn2KhfdDQ0OlSFGjRo3u+0hHTfHAGKhg8BDu3LmT5ORkTp48yZkzZ2jRokWFtiGKIh9//LF08tauXZu33noLDw8PYmJipOpsZ2dngoODKx7WEwTo3dvQlxzg0CHEgQNJU1qRU6DF1lKFs4262n5wBQUF7Nu3j61bt5KQkED37t1Zu3Yt8+bNQ6FQcP78+XJzFzf+K4/l6urKxx9/TG5uLrt27WLNmjW0aNGCHj168Mgjj9y3VYSCIODn54dGo5FkSa5du0ZwcLCU6yUIAq+//jpvv/02WVlZHD58mKysrAp74X755RcyMjIAQ9jlblw4GjRoQOfOndmzZw+nTp3i5MmTJYr4VxunT8OqVaZJWSNGGBpSVPJ4jRGKJ598knPnzrF161aOHTuGRqNhz5497Nmzh7p16/L444/TuXPnUg3wvLw8bGxsqqUpQVn4+vqSn59PTEwMmZmZvPbaazRr1owlS5bQq1cvnn/++buaaiEIAkOGDEEQBObMmcPSpUsrNTlq3rw5a9asAeDcuXP069evuodaaWJjY/n555/Zv3+/idetdevWvPHGG9XewOBO/P39uX79OqIoEhUVRWBgYKnL6v/NuzY6MwoKCqQORSX9dq2trZkxYwYvv/wyUVFR5OTkEBkZiYuLCy1atKB+RiOi3EIR9WK5RqpCoaCzcx+utwpn1apV7N27l1deeUUKd7u5uUn6xuHh4RQUFEjjVCgU+Pv74+vrW6HzJz09HUEwvf4bbwdF7wslGahFv8s79ykIAt7e3qSm5nLrVjoREWquXr1drJSQUFJuqHnnnZ1dIenpV+jRoxG1aiklg9TFxew5toS7uzuRkZFYWloSHx9vEr09dOgQgYGBt/Pr/WpD337w186yPakqlcE4LSESXLQdd5s2xfVR/ys8UAaqpaUlzz33nKSBt3LlSpYtW1ahCtdt27ZJuR1ubm4899xzWFhYkJmZSVhYGGDwjFW09aEJbdvC+vVkZOWxQVmbNR/vJzL/9olZx8WG5zr4M6SVL47WlTP64uLi2Lp1K//88w/u7u48/vjjdO3aVbo4PvbYYxw4cIDTp09z6NAhE5HiomRkZEjdWPz8/Gjbti2CINCtWzcSExPZvXs3q1evZsWKFXTp0oXevXtXWDvubhEQEEBhYSEJCQkkJCRgb29vEj52dname/fubNy4Ea1Wy4EDByp0g7558ybr168HDPmwo++CZ9xIhw4d2Lt3L4DZ+rGlIYoiabmakidMu3fDTz/dnv2rVPDyy4bfdDUgCALNmzenefPmJCcns2PHDnbu3El6ejo3b97ks88+47vvvqN79+7069evWMewtLQ0CgoK7krIq06dOpJebkpKCl27diUoKIjFixczdepU3n333TKrnmuCQYMGkZyczOzZs1myZEmFJ1h169bF3t6erKwszp8/j16vvyddtIyIosjFixf5+++/2bdvn4m3zcXFhWeffZbu3bvflYlg0evazZs3yzRQIyIiiIqKktpvu7u7k5eXR1hYGAqFQurdrlKppFxf42//8uXLjBo1SupG5OrqipWVFbfyGvJXzG9oBdHQ/bIEQ1UlqOnlMQA/6wAaDmhK7969+fbbb3nzzTeZNm0aTZs2xcPDg8jISPR6PZGRkdJnZ21tTUhISKVSY1JTU8nJMTW8jXZp0Qij0SFQlNvfqUBampLISNNCpbg4SE+vXERArRZxcMjBwSEXR8dcHBxycXLKw81NS2Kioaj6hReaVmrbRTEWKyclJRETE2Ni4O/fv59HH33UdAW/2jBqNFy7ChcvmKif4OBgyDkNCi7mOTVy/PhxAEnP/L/KA2WgAnTp0oU///yTq1evEhcXx4oVK5g6dapZF7Dk5GS+//576fmwYcOwsbFBp9Nx7do1RFGU+rVXyTuiVrOvZXfGXhLJE5QGscgiRKXmMu/Pyyz96yorR7WiS5B5Nzm9Xs/JkyfZunUr58+fp0OHDsycOZOGDRsWO/4+ffqwe/duwCDNVZqBeuHCBen/Rx55xGQ7Hh4ejBgxgqeeeorLly/z999/M3nyZIKCgujfvz9t27atdHePmkAQBIKCgsjPzycjI4Pw8PBiyeXdunWTPMa7du0y20DVarUsX75cugAPGzbsrgonF/WWGb0hFSUjT8OGU7dYcziCyNTbXWXquNjwXPs6DLl1Cse/tt1ewcYGJkyAGkrQd3NzY9SoUYwYMYKjR4+ydetWSbd28+bNbNmyhU6dOvHUU09Rp04dqQIaqj//tCTUajVqtZrCwkLJM+Tj48OSJUtYtWoVU6dOZe7cudXSScxcBEHg5ZdfZtGiRcydO5cPP/ywQpXsxhzuY8eOkZ2dTWJiYpU0IitLUlISu3btYteuXcTHx5u85+DgwNChQ+nXr99dVa0oapCeOXOG3r17l7qsUUg+KipKcnCUhLHJjJHWrVuzb98+1Go1ubm53Lx5k+joaCwsLKhTpw4jwxtxPWw3F9u6kOlSpB2myonGDi0JsmuMpaJoHqgV48aNo379+sydO1fS8G3evDnXrl0jLy9P6sjn7+9fpW5MOp3pPcZooBa9V2o0GvLyjLmghr/x8UNwcBiNUunD7NmV+z5dXEoOy7u4CBQWqggPT0Gv15OcnIyLiwv16zdk2rS1PFFNHR2zs7OlotyiCjApKSmEhoby9ttvF1/J0hKaNDUYowUFBp1TtYXh9TLslejoaJKSkgBo2LDhXbnW/VepdgNVEASmTJnCm2++SU5ODgcOHKBx48ZmGRpffvmllHf62GOPSTeWnJwcKQxRv379Kl8U911L4oUrSkSFiFhCaaYx4JGn0fHC6uOsfqFNmUZqZmYmf//9N9u2bUOr1dK3b1/efPPNMot8GjRoIElzXb58mZiYmBL7158rIh3UvHnzErclCAKNGjWiUaNGvPTSS/z99998++23fP311/Tt25fevXtXm1h9VVEoFAQFBXHq1CnUajWJiYlSR5OsrCwCAgIICAggPDyca9eucevWLXzLab0niiKffvopN/+tZPf39+epp566G4cjUdRTZ7x4VYR915IY+9Mp8gp13JkZFZWay7ytl1mqt2ClhSddChPA1RUmTTL0C69hVCoVnTp1olOnTpLc2+7du8nLy+PAgQMcOHCADh06mOgf362LdlHJGiNqtZpx48bxyy+/MG3aNGmSeLdQKBRMnjyZWbNm8dFHHzF9+vQKeRj9/Pwkzc+qipiXhyiK5ObmcuvWLaKioggPD+fcuXMmndiM2NraMmjQIJ588slKta+tKsHBwTg4OJCZmcmpU6eK5RoWxdLSEm9vb6ysrCgsLJTE6I1/jf8bdZqNr9nY2ODj40NsbCzu7u7k5+dTWFgoFf842znT5FQGjY+nUmCtRPPaS6gbNcdSYVXmd2yMbL3//vtkZGQwcuRIWrVqhV6vrxYnQkkGqkZjUJ6LjVVjYzMWpdKX2Fh/XnvtzrUbl9ZU0QSVSoeXl0CtWopixmhZKfdWVlaEhIRIn7lCoeDkyZOkpaXRtWvXih5qMRITE7lx44bkES9aCLZt2zaaNm1adsGtIBgOwMy6gaNHj1JYWIiXl9cDJQVXEzxwHlQALy8vJk6cyPz58wH4+uuvCQoKKrOiOiIiQrooOzs7M2DAAFJSUtDpdCQlJSGKIh4eHlUOHWbkaRj70ylEkRKN06KIIiDA2J9OceSd7sXC/devX2fr1q0cOHCA4OBgXnzxRdq2bWuWd9cYpjd6jM+fP1+igWosmFCpVGbdZO3t7Rk8eDADBw7kxIkT/Pnnn6xbt45OnTrxxBNPEBQUVO42ahobGxv8/f0JCwsjPz9f6kefmZmJl5cX3bt355tvvgHgwIEDPP3006VuSxRFvvjiC/bsMVTZqlQqJk6ceHelnjCknVhZWZGfn1+s7Wl57LuWxAurj6MvJWff8LJAnqDkBaeOrFZfo8vkF+EedBqqXbs2r732Gs8++yxbtmxh8+bNUs7wjh07qFev3l3TgzWGZm1tbYvlFQqCwIgRI3BycmL27NlMnjy5ytqZFcHCwoIZM2YwYcIEdu7cSZ8+fcxet6hUVWxsLM2aNSMnJ4fc3Fzy8vLIz89Ho9Gg1+ulByAViej1eumvUfEkOztbklcq+jc7O9sk7Ovr68stYwEpt1M+evToQbt27apN17QyKBQKHnnkEXbt2kV+fj7nz58vM7zq5ORUqSLS7t27I4oi7dq1k9JHoqOjAUjTaEitUwfXmzexytNhtec4NG1v1naDg4NZtGgRM2fOJCsri9dee63KxmleniEEf/GiI/Hxpk6IY8fg448BlFhZGRxE5hgLLi6mXtDs7OtYWKTg7+9Ao0aVn+gZ5QZFUeTXX39l4MCBVf49xcXFSUWxNjY2BAUFSTZCSkoKmzZtkuyQ6uLAAUPr2/j4+BIVA/5LPJAGKkD79u0ZMGAAmzZtQqvV8uGHH/LRRx+Vmki/fft26f9hw4ZJ1d2FhYWS8H51dLzZcOpWiV6q0hBFyCvU8fvpW7zQMQBRFDl+/DgbNmwgPDycbt268cknn1QqjFi0P/Xly5fp27evyfsJCQlSeK1BgwYVuukrFAratm1L27ZtuXXrFlu3bmXGjBn4+fnxxBNP0KlTp3t6s6lVqxYJCQnk5OSQmZmJIAjSjbJNmzaSgVqepExsbKyU+6lQKJg+fXqNSkuVhiAIODo6kp+fb1KdWx7GCVNpxmlRxH9/+2OFRhyxsiujZ0rNY2try4gRIxgwYABbt25lw4YNpKenc+3aNVauXMnZs2cZMWJEjXouCwoKpIhLab/lPn364OTkxEcffcRLL71UIUOxqtjb2zNp0iTmzZtHkyZNSpyAloSxcj82Npa5c+eyatUqatWqVWZus5eXV7FQfGVQqVQoFArq169PmzZt6Nat213P4y2Ltm3bSl0Ljx07ViP5f/Xq1uXAtm0U3opBYWtj6NTm6kpcXBw3btzgVv36uBp1h8+dM4h3mjlZ9PPzY/HixcycOZOlS5cyadKkcifTej0kJxcXr4+Lg3/rQQFf7gzclJW6bGFx2wA9c2YbqakXUSgS+emnpcXSLs+cySYzswCFGQoG5nDu3Dmio6N5//33q7Sd5ORkqfOaUXGgqGd/7dq1tGnTplqdMjExMZJGbVBQUI2rxNzvPLAGKsDzzz/PlStXuHr1KsnJybz//vssWrSomLcjLy9Pyse0srKiW7duxMTEYGVlhU6nw8HBAV9f3ypL94iiyJrDEWYbp0VZfSgcr8wrbNq0ifz8fJ588klmz55dJTHqunXrYmlpSUFBAZdLEIIzJ7xvDr6+vrz66qs8++yz7Nmzh/Xr1/Pdd9/Ru3dv+vbte0803BQKBSEhIVy7do3U1FQsLCykBgyenp6oVCq0Wq2JN6ckVq1ahaurK2fOnGHJkiW0raZiocpg/C3k5uaaLbJunDCZi4hAnub2hOleY21tzdChQwkJCWHjxo0cOHAAlUrFmTNnOHPmDE2aNGHEiBE0adKk2gtpiuYOlnVtaNeuHe+//z7z5s0jLS2NESNG3DVZmKZNm9K3b18++ugjFi9ebJZnv06dOtSvXx8HBwepMLS6x2tlZSXJLNnb2+Pl5UWdOnWoW7cudevWrZbWrTVBixYtDA1XNBqpLqG6PhtdZiYZGzfi891qnoqPJ2ybwWmiru2Hy6hReA4ciDokhFBRJM/ODuvsbIMH4+BB6N/f7P14eHiwePFiZs2axfz583n33XdRqVTk5hY3QI2V8iXIlxbjTtUkQbjtDb106R9ycm5ga5vFxx9Pxdn5tgH76qubKCyM/Vf/tfh2jWkV6enpJCcnm6REFH0YxiCiVquxsbHBwsKi2HeTk5PDp59+ysiRI6v0G9PpdISFhSGKItbW1jRr1szEgRMREcG+ffv4/PPPK72PkjDaKUDxwqv/IA+0gapSqZgxYwZTpkwhMTGRqKgoPv/8c958802T0MaePXskT0jXrl2xtbWV9MwsLS3x8PColll8Wq7GpPjEXEQgKjWPjdt28dTw4XTu3LlaQsgqlYrg4GDOnz9PYmIiycnJJsaiMXQBhhtdVbGxseHxxx+nX79+nD9/ni1btvDKK6/Qpk0bhg4dWmZVbE1ga2srtdbTarXk5+ejVColaZPo6GhiY2NLrWROTk7m/Pnz6HQ6mjZtSufOne/q+O/EeMHVarVoNJpyPdRVmTB9fyiC5zv43xf6e8a2tp06dWLgwIFERETw22+/kZyczIULF7hw4QIhISGMGDGCFi1aVNuYjc06lEpluZPXhg0bsmjRImbPnk1eXh4vvvhitYzBHJ599lneeust1q1bx6hRo8pd3sbGRtJ7zs7OplOnTnh7exMQEICNjQ1WVlao1WoUCoUkrG6czBufF237XFTz06j7ebdTYKoLowNjz549hIWFcenSpWppdZt94CC3JkxAzM+HO85ITfQtEhYsJPGTZfh++imBQUHEBwYScOaMYYEDB+Dxx83SRtLrISkJ4uMd6d59MVu2nOKNN2JRq/3IyKjceWFhAQ4OOVhbK4Hb58ETT8DChYb/X3vtN1JTY1CpbLmzwVvhvzpRpV2vvL29SUxMJDMzk7Nnz5rk/arV6hLF/8Fwf3N2dqZOnTrS5H3lypXUrl27ysVRycnJks0QFBRkYpzq9Xqp/qI687e1Wi1///03YLjm/NfzT+EBaXVaFs7OzsyZM4c5c+ag1+vZu3cvFhYWjB8/XiqO2bbtdmWyMcwdHByMq6srTk5O1RaKzimoQPeIEnjv/Xn4uVRf+z4w3DjPnz8PGML8RY2sopWn1RlmEwSBZs2a0axZMxITE9myZQvvvPMOzZs355lnnrmr1e9OTk60a9eOlJQUnJ2dJePFz8+P6OhotFotCQkJJbaQXLt2rZQW0LFjx7s25tLw9vaWvrPs7OxydSGrMmGKTM0lPVeDs+29S9Mwkp2dLfX69vb2plGjRvTq1Ytdu3axfv16EhMTCQ0NZfbs2QQGBjJixIhiihSVITU1FTD8hszZVu3atZk/fz5Tp07F1dWVAQMGVGn/5qJWq5kyZQqTJ0+mQ4cO5Z5fqamp6HQ63NzceOKJJ5gxY8ZdGeeDQpMmTdixYwcA+/btq7KBmn3gINGvvmq4k5Z0NzV6B/PziX71VXxXfUlqq1aIZ88iiKLB4gwNhSIC9jk5pn3kjR7RxMSi3lBLoIPZPeZdXQ1h+Ts7KTk5iRw+fIaTJ4MpaqAWrWMzhr7z8vKKeZ2NBmZpBWc2NjY0aNCAxMTEYmkkYhnWh1arJSkpieTkZLy9vblx4wZnz57ls88+q/K5bzROLS0ti+UZr1mzhtTUVN59990q7eNOTpw4IXX5atu2baU7HcqYz12ZRvv5+fHmm28ya9YsAP766y/c3d0ZMWIEly9fJjIyEoCQkBDp4q1QKG4L61YTtpZVO1w7y+oXwi/alSM0NNTEQDV6iIAKtZusCB4eHrz00ksMHjyYDRs2MHXqVFq3bs3TTz991/RUlUplse+6aL5eTExMMQM1PDxcykWztbVl6NChNT/QctBqtVL1c9Hwc2lUdcKUXaC9LwzU1NRU8vLyUCqV0s1CrVbTp08fevTowb59+/j111+JjY3l+vXrzJs3j7p16/L0009Lur4VRaPRSA0ZKnKj8Pb2Zvbs2cyYMQNnZ+e75nWvU6cO/fr144cffmDOnDllLltUpuy/nuNWEm3atJFSow4ePMiYMWMq3aREl5nJrQkTSjdOi/Lv+zETJuL06y8k1fJDjM4jDm/i16UTV/e2QXo7N7RiWFqaGp/GYiUvL8N7er1eMs6M2q15eToKCwuLVfEXdZIbIwx6vb5YdKc8DyoYzjFbW1tq164t7bekBxhyw3Nzc8nMzCQ2NlbyPG7YsIEPP/ywWgw7nU4nGdpFDe49e/awc+dOPv744yql35XEzp07pf/vZi77/cwDHeIvSpMmTZg0aRJLliwBDN4vNzc3zhjDJFCsSKi6cbZRU8fFhqjU3AqFVQWgtosNTjbVb6AWbWWYnp5u8p7RQLWwsKjxgiZnZ2defvllBg8ezG+//cbkyZNp06YNTz/99F3VkTRyp4HaunVr6XlGRgYffPCBNHsfNmwYdnZ2d32Md1J0DEXbC5ZG1SdM9z5MK4qiZFA5OzsXS8VQqVR0795dakzxyy+/EB0dzc2bN/nwww9p3Lgxr7zySoW99qmpqajVaiwsLCrcwSgwMJDp06ezYMECnJycqiV9xhyGDRvGyy+/zMWLF8v0+hU1UKt7kv4wYGVlRbt27di3bx/Z2dns37/fROKsImRs3GgI65sbhxRF9Hn5/P3uEfbbzkIn/puqFvXvw0zc3EwNUaUyka++msugQT0ZOPC2Z9+oInDrVgaZmZlkZ2dLqg1G1RCtVktOTg56UYnSLg2FVS76fBtUaifgdhMAI/n5+Sb3E6MHtbx7jLn3IGtra6ytrXF1dcXPz4///e9/rF+/npEjR6LRaIqlslUGFxcXEhISJE1tJycnjh8/zueff86MGTOqvUVwYmIip0+fBgyTxqrUhDxMPDQGKkDnzp1JSUnhu+++A+CTTz4hNzcXOzs7HBwcajxMKwgCz3XwZ96fxQuSyuP5jjWT71c0d84ocm7EaKDeTePLxcWFMWPGMHjwYNavX8+kSZNo164dTz/9dLl6pNVJ0X0VLZQqLCxk3rx5kpRT3bp16V+BAoWapGjSvzkG6v04YaooGRkZ0g2upDQMIwqFgi5dutC5c2cOHz7M//73PyIjI7l48SJvvvkmvXr14tlnnzVbrzclJUXyBFVGk7Nly5aMHTuWDz/8kKVLl5q0Rqwp7O3tGTRoEGvWrGHx4sWlXk+SkpLw9PTE0tKy2m+0DwuPP/44+/btAwytoLt161bh67MoiqT+9BN35pyaQ/C1H9nTdFSZbeUtLYsL13t7g6dnSQ2KPKhVayIzZszA2tqKXr16kZycTEREhNTzvaTxAxQKhVywuEDOiJWEjLl9rdyk86PW5Wd4sv6TJjma+fn5UkROr9dLTS6q2wmi1Wr5+eef2bJlC7NmzcLS0hKNRkNoaChNmzatkjZ30Yji+fPnOX/+PGfOnGHixIkVbq9uDjt37pQ+7969e98Xuf/3Aw+VgQowcOBAkpKS2LRpE2lpaeh0Ouzs7HjsscfuiuzRkFa+LNl5hXyNrlwdVDB0s7NSKxncsmaMs6IXjuzsbHbt2oWdnR1NmjSR5IruRacKNzc3xo4dy9ChQ/n111+ZMGECnTp1YsSIEXflplnUg2o0UEVRZNmyZVy9ehUAV1dXZs2adU/lsopSNKRkjoF6P06YKkpcXBxarRYHBwezQneCINCxY0fat2/PX3/9xY8//khmZiY7d+7kwIEDjBgxgv79+5dZxKPX66X806p4Yrp160Z0dDRLlizho48+qnSYuCIMHDiQP//8kxMnTpTaw/vWrVuSF1UO8ZdMSEgIwcHBXL16lYiICM6dO1dhr5YuPR1NVHSF9y0g4lRwi5VpQ8lSu5Mt2KNRWCFaWKJq3hhrXxcc/F2wr+2C4OpimgxaBoGBgcyePZvZs2dz8eJFHn30UXJzcxEEASsrKxwcHHBwcMDW1haFQoEoihxLOMas47Mo0BUg3nGbyFLcYvGJxXx65lO62N8u6DGmCAAmBU7V+fuPi4tj6dKlFBYW8tFHH1G7dm1yc3M5e/YsGo2Gixcv0rx580qH4Y1SaOvWrePPP//E39+fefPm1ci9SaPRmBRH9ejRo9r38aDy0BmoxlaAW7duRafTIQgCjRs3visi2unp6fz222/4Rp7nhk8vBMqeOxvv/1+OalVMpL+6MBpXqampbN68WapoN+br1a5d+662E7wTd3d3xo0bx9ChQ/nll18YP348nTt3ZsSIETXa4cbOzg5HR0cyMjIk/ceffvpJEkm2srJi1qxZuN5ZknoPKerpNlcLdUgrX5b+dZU8jc6sKGNNT5gqgjFcB5gUuJmDQqGgT58+PProo6xbt44tW7aQm5vLd999x/bt23nppZdo06ZNidvMzs5GoVCg0+mqnM82cuRIzp49y48//nhXKvutrKx46qmn+OGHH0otFIuNjQUM10rZQC2dQYMGsfDfMvU//vijwgaqPqfiBYpFUenz8dTH40k86AANcOhk8QWtrQ16T2U9nJ3B0hI/Pz+GDx/O119/TXJyMk899RS1a9cu8fw6FHOIqUenGmSeECnmbxFERCBfm89Om514eHpgnWDa2rWwSIVWdU309+zZw8qVK+nevTsvvPCCtF0bGxsaN27MuXPn0Gq1XLhwgUceeaRSzQpSUlJYuXIlJ0+epF+/fjRr1oykpCTc3d2rfaK5e/duqTiqXbt2cnHUXeSeJLEpFAr69evHn3/+CcCAAQOqRSqkNDIzM/n999/5888/ad68OStnTSBG7yi1lgRTQ9V4nlurlXw5qhWdy2hzWlUEQUCtVhMXF0eLFi2kCseEhAQGDhyIUqmUvEX3Ek9PTyZMmMCwYcNYt24d48aNY9CgQQwbNqzGDGhfX18yMjJIS0tj48aN/Prrr4DhM3v77bfvqtqAORRVWihPv9WIo7WalaNa8cLq4yCUnQp3NyZMFSE1NVXKh6vsZMXW1lYS0P/uu+84fvw4cXFxfPDBBzRv3pyXX36ZOnXqmKyTnJyMRqORJJSqgkqlklozt2zZ8q7klvXp04d169Zx4cKFEvNf4+LiAMPv6X6JDtyPtG/fHk9PTxISEjh9+jSRkZHFfitlobCtmtZrSdJ3JZKXBzExhkcZ6G1tUVpb08PWlrZNmnDm2jUyfv4ZpwEDEFxdbxuyajWZhZlM2jvptnFaBkbjNbF9Ir5bfUv1oFb1t3bz5k1++uknrly5wpQpU0qMEDg4OBASEsKlS5coKCggKSmpQtcOURTZvXs3X3/9NW3btuWnn34iPj6euLg40tPTOXnyJEFBQdXmuNDpdGzYsEF6PmTIkGrZ7sPCQ+dBNdKqVSvJQD1x4kSNeFBzcnL4448/2Lx5Mw0bNmTBggWS1md94Mg73fn99C2+PxRhIvdT28WG5zv6M6SVLw5WNWsIiKKIUqmkYcOGuLu7S7NkT09P2rdvz/Xr10lJSUGr1d4X2oXe3t5MmjSJ/v378+WXX7Jnzx7GjBlTqrerKhgvMunp6XzxxReSIfzKK6/wyCOPVOu+qoOAgNvC+cZuI+bQJcid1S+0uS8mTBXBOHEqqdVoRalVqxYzZ87kzJkzfP3110RHR3P27FneeOMN+vbty7PPPoudnR1arVYy4BwcHKqlj3mtWrV46aWX+OSTT1ixYkWNp9So1Wq6devGzp07ixmocXFxkvfd3M5T/1UUCgUDBgzgq6++Agy5qBMnTjR7faWTE+rafmiib1VMrFEQUHt4kPHcc2SEh+OSkIBTZKThTiyKhpmkzvzmG0YUOTnY5uRgm5yMC1AH4OpVWLzYdEEHBzYH55Dvm4dYgUuuqBTJqZNjYqAW9aBW1vMYExPDTz/9xPHjx+nbty8TJ04sM7/Uzc1NEv+PjY0120BNSUlhxYoV3Lx5k7feeksygO3t7bG0tCQyMpLCwkIuXryIl5cXdevWrbI39dChQ9L1pnnz5nddK/x+56E1UJs2bYqFhQWFhYWcPHmyWjuC5ObmsnnzZjZu3Ei9evV4//33CQkJKbaco7WaFzoG8HwHf9JzNWQXaLGzVOFko75r+X3p6enk5+eXGM7z9PTk+vXriKJIUlJSmUUod5v69euzZMkS/vnnH5YvX05wcDBjxoyp1jGq1Wqio6MJDw+XDNJBgwbdN0VRd+Lo6IizszNpaWmEh4dX6DfdJcj9vpgwmYsoiqSnp2NlZVWtnciMUYTt27fz888/k5WVxbZt2zh69Cjjxo3D09NTKuqozsKm3r17c/LkSb755hsmTZpUbdstjV69ejFz5sxiE09jpTBUT3OOh52ePXuydu1acnJy2Lt3L6NHjzY7BCsIAi6jRpGwYGGF9+vy0kuI3boRf/UqiXo9rX/+GZUxdD5qFLRuDampZT/S0yt19xYzM/jZueK5swCZ9TNNiq6qI8QfHx+Pvb09q1atMvtaUKtWLTIzM8nKyiIzM7NMGUVRFNm1axfffPMNbdu25fPPPzeJnAiCQJ06dXB2ciLs4gkKslJJjsokOSmJuvXq4eXlVan7uSiKUtQOYPjw4RXexsPOQ2ugWlhY0Lx5c44fP05qaiqXL1820QStDPn5+fz555/8/vvv+Pr68u6775p1kRcEAWdbi3uiKVm0v/adHpOiEjOJiYn3lYEKhs+tZ8+etGvXjh9//JHx48czePBghg4dWi1h/xdeeAErKyv++usvqXDshRdeqIaR1xwBAQGkpaWRlZVFSkpKhYy3+2HCZC7Z2dnSza0q1bgloVQqeeKJJ+jSpQs///wzW7duJTU1lblz51K3bl0GDx6Mh4dHteocCoLAmDFjGDt2LIMGDapxDWA/Pz+++eabYlGRU6dOSf+3bNmyRsfwMGBlZUXfvn357bff0Gq1bNmyhdGjR5u9vuPAgSR+ssx8qSmFAsHSEseBA1A6OFCrVi0iIiKIq1sXv0uXDMvs3w/du4OjIxSJqhRDp4PMTJKvXyf1+nXElBT8bG2xyc83NWQzMkzGlm6hJ9quEhrKAmjttKTm3U4Zqw4PaqtWrWjVqlWF1nFzc5PaWaenp5dqoGq1WlasWMGZM2eYPHlyyZGzvHQ49z8cjq2iRdrtyFWetRfxtwZyzr8fASHNK3ydOnHihKTR3qBBgxpNQ3xQeWgNVIAOHTpw/PhxwFAAM3/+/ErdiAsLC9m+fTvr16/Hw8ODKVOmVGtLxZqkaK7inTJORT2qcXFxNGvW7K6NqyLY29vz+uuv07NnT1auXMnu3burJexvb2+Pr68vdnZ2LF68GFdX1/v+Ow0ICJC8YOHh4ZXyLt7LCZO5GDvKqFSqGmsiYW9vz6uvvkqXLl1YtmwZ169f5+TJk1y5coVp06bRsGHDat2fh4cHffr04ccff2TmzJnVuu2SuNM41Wg0Ulc5Z2dnk5QRmdJ54okn2Lhxo2SgDhgwwGxjROnggO+nnxo6SUGZRqooCAiA72efofz3N1+7dm2ysrKIDwy8baBGRUFEBJQ3yVEqwdmZm0Cery+uzZph3ajR7WRzI1qtwdv6r8Gam3QDUheZdXwlkZF3u4tAdeagVgSFQoFarUar1Up57HeSm5vLggULyMzM5JNPPimmd1xQUEDayd/w2D0ZQWfwXhf95KzyEvC/sgrdte+5FDMN9/bmK9Dc6T0dNmzYfX/veRgxM8u7ZujSpYvkNbx48aKJ98AcNBoNW7du5ZVXXmH37t1MmDCBjz76iJYtWz4wP6ayDNSiAvlFGxrcrwQGBvLRRx8xfPhwli9fzrx586T8ncqwZMkSVq1aJcmR3Q0ZoKpStHCrInmoDxJ6vZ709HRsbGzw9PSsljzQsmjQoAEffPCB1HVKo9GwbNkyli5dalbHroowfPhwzp8/T2hoaLVu1xzOnTsnaSE/SNewe42rqyu9evUCDFG0ooaFOdg92gm/VasQrKwMxuGdn7sgIAoCGkHA6aOl2HXqWOQtgcDAQPJdXMgo2lThX43W8tDpdFJOqJubW8nfuUoFbm6IgUFctGvHyvOPV+j4ilGktWpNVPGbi7HIrCQDNTk5mSVLliAIAgsXLixmnMbExHDzr6/x/Hs8gi4PgRJEDBAREFHqC2h6YR6qiH1SelB5HDlyRJIz9Pf3vy9rHu4HjB7U8h6V5Z4aqCqVyiQcs2bNmlJnU0URRZEDBw4wduxYtm3bxquvvsqyZctqpFCnprlx44b0/50GakhIiOQJOHnypEly+/2KIAj07t2bVatW4erqyvjx41m7dq3JhdAcRFGULhBKpbLGvHTVTb169aT/jx49eg9HUnOkpqaSm5tLbm5ujUqNGSksLOTGjRv07t2bN954g6CgIMDQh33SpElSe9nqwNHRkUGDBvH999+X2We8JihaLdy2bdu7uu8HnaeeekoysLZt2yY18jAXu0c7EbhvL57vvIPaz/Q6rPbzxeudd9gzaiTfnT5d7HdhaWmJu7s7cf/+LgE4ehTuaLxSEvn5+dL2ijb6KIpOB4cOwdtvw8yZcPGkE6psPypUIQUggipbBUVuI9UR4q8spRmoly5dYvLkybi4uDBr1qxijTji4uIIDz1L0Jl5gL5cNXMBERBx3fUmYl56uePSarV8//330vNRo0Y9cHbF3UIUyzdOq3IZvacGKhikQow3nIiICH7//fcyl7948SKTJ0/mm2++YcSIEXz22Wd06NDhgfwBJScnc/myQaS9Vq1axZL7lUolHTp0AAwXkhMnTtz1MVYWe3t7xo0bx4IFCzh16hSvv/56hTzkV69eJSkpCTBUT96LZgWVoVatWpKRev36dZMJyMOCsSWvtbV1tfe7vhO9Xi9J0hgnPytWrGDgwIGIokhoaCjbtm2rcPSlLAYNGsStW7dMCpZqmkuXLnHx4kXA8BuSDdSK4eLiwpNPPgkYDIz//e9/Fd6G0sEBl9HPUm/nTgKPHKbeP/8Y/u7cicvoZ3lx/HhCQ0PZvn17sXU9PT1J8vdHazTy8vPh3/S1sihq7N4pW1VQADt2wPjxsHQpGC8lAgJON5+p8PEBONxwoCD/tuF8r0L8oihKDhdjqkt+fj5fffUVc+bMYejQoYwfP75YGoxerycyMhKv+N0o9AVmtNoxICCi0BWgvvRbuctu27ZNivw1adKk1IYaMg+5BxUMHrfnn39eer5mzRo2btxYbLlbt27xwQcfMHfuXNq1a8dXX31Fjx49zNeiuw/Zt2+fdIHq2rVriUZ2p06dpP8PHjx418ZWXQQFBbF06VKGDBnCokWL+PTTT8vtsqTVaiXpGIBHH320podZrfTt21f6f+fOnfdwJDVD0Q5nNTkx1Gq1hIaGkpmZCRjSJ5ydnVGr1Tz33HPUrl2b2NhYTpw4wZw5c/jtt9+qxetpbW1N//79JRm8miYvL4/ly5dLz4cNG/ZAX9fuFUOGDJEmTLt27SI6unKV7oIgoHJ2xsK3FqoiAvkODg68++677Ny5k5MnTQX5bWxs0KtUJBSJoJgb5re1tcXGxkb67WZmwi+/wJgxsGoV/JvuLeHmBq89+iTWKisEM000AQFBJ2AbaVuqUP/d9KAWVRJwcHDg4sWLTJgwgRs3brB8+XL69+9f7NqSkwPnzqVz+ZI1bjd3UNEWtQLAsS/LdOllZ2ezbt066fmLL774QDq/7hY1baDee2FNDLOUZ555hp9//hmAb7/9luvXr9OmTRsyMjI4d+4cZ8+epUePHnz99dfVXjV8r9i7d6/0f5cuXUpcplGjRtja2hIXF8fJkyfJzs6usjj53UahUNC3b19at27Np59+yvjx4xk/fnyplZ+rV6/m+vXrgEF31ehFflDo0qULO3fuJCMjg927d/Pss88+MCkK5SGKojTBqEnvaWZmJqGhoZKXxdPTU8pXLywsZPHixURHR+Ph4cG2bdto1qwZGzduJDk5mVdeeaXKebE9evTgl19+kbrT1BR6vZ4VK1ZIHpvAwMBSrwUyZWNnZ8fQoUNZs2YNoijy008/8c4771TrPho2bMiwYcNYtGgRc+bMkZRnjN7HuMBAal25Ylg4LMwgzl+Gnq1CoZDOp6QkgXXrYNeukrMD6tSBgQOhUydQqRzwjfmE13e9DiJlivULCAiCgPsRd5QaZY0J9VeE9PR0NBoN+fn5fP/9Gg4dOke/fqNp1KgrZ84o+OsvSEq6/UhOBoNN64KDSuTF9uY1QjFFhLRwyEsDG5cSl/j111/JysoC4LHHHqN+/fqVPkaZqnNfGKgATz/9NIIgsHbtWgD2799PaGgoFy9exNPTky+//PKhEq6OiIjg5s2bXLlyhVatWpUoIZWdnc0PP/zAtWvXiI2Nxc7Ojl9//fWutGSsCdzd3Zk7dy5//fUXixYtolOnTrz00kuSoZOens53333Hnj17AEPoZ/r06cVykO53rKysaNiwIZs2bQIMIaMRI0bc41FVDwUFBahUKiwsLGpkopSfn09cXBzR0dGSR8nPzw9/f38EQSAnJ4d58+aRlJSEUqnE09OT/v37c/rf3MCtW7cSHx/P22+/XWpOnzm4ubnRpk0brl69WmMGqlar5eOPP5ba91pbWzN16tT7oiHHg0r//v3ZvHkzaWlpHD58mOvXr1e7uHqnTp2k3+H8+fOpW7cuoiiiUCgo9PJCU6sWaqN84P798PTTpW7L0DXQjlOn/Lh+3bZE516TJjBoEDRvblq/1bFWR77o/gWT9k4iX2swOosaqkbvqpXKioXtF/LJ+k8AarzVaVFE0eARTk6GxETD36QkuHLFirAwP9LT1SiVj6HTWfCvf6pcrJXmtZEulYKsEg3UuLg4tmzZAhg+i4rIlf1Xeahlpu5kxIgRWFtb88svv5CcnExkZCSenp60bdv2oTJOAdatW0d6ejrZ2dlERkZy9OhRk25acXFxvP/++8TExBgS8OPiKCgoYMuWLfTt2/e+00Q1F2MeYcuWLVm0aBEtW7akZ8+e6PV6YmNj0RXpwPLKK6/cd+1MzeXJJ59k8+bNiKLI5s2b6d+/f43na94NcnJud6KpjuMRRZHCwkJSUlJITEwkI+O2BI6FhQXBwcFSBW9qaiqzZ88mIiICMDSLePHFF2nSpAn79+/nk08MN+BTp04xbdo0Zs+eXaUmAtOnT6+x8F5sbCyfffaZlHeqUCh48803H9jz+n7B0tKSESNGsHLlSgB++OEH5s2bV+376d27Nzk5OcyaNYuFCxfi5eWFXq9Hr9dT0LYtamMtxaFDMHQo3BE+F0U4exb++MOSCxeKR5IUCujQweAxLZo1cCcda3Xkn2H/sCVsC2tD1xKddTutwdfel5EhI3my3pPYqmz5BMP5UV2dpPR6g0Sr0cNZ1ONZ9LWS62Nd/31UvOlWnq6KE2PL4vUMoijyxRdfSFX+AwcOrNYGJA8r/ykDFWDAgAH07duXL774gp9//hkbG5sK9Vd+ELh48SKHDh0iOzsbtVqNq6srS5cuZfHixdStW5dbt27x9ttvS6EGBwcHevXqRVxcHFqtljVr1jB9+vR7fBRVw93dnVdeeYUDBw5w4sQJXFxcJM+RnZ0do0ePpk+fPvd4lJXHw8ODrl27smfPHrKysli/fr1JrvWDijEcqVarK+Vxyc3NJT4+ntzcXHQ6HZmZmcWqeBUKBW5ubtSrV0/aR0REBPPmzZOqsx0dHXn99dcl71jnzp1xcXFh/vz5ZGVlERERweTJk5k1a5aJskJFqAnjVKvVsmHDBn755RcpvGphYcH06dNlKZtqolevXvz+++8kJCRw9uxZTp8+XSNNDwYPHkxubi7vvPMO06ZNk14X27aFP/80WGY5OXD6NPxb9KbVGmzWjRsNUql3loFYWBg0/p98EswVyHCwcGBkyEieafAMGQUZ5GhzsFXZ4mjpaPIbNnZuNCfEr9cbpFeLej3vNESTk6HI6tWKtTW4u99+uLkZ/jo45BMfd5Ocm97YFMT/W6FvLgI4+4N18U5je/bs4ezZs4AhejJ06NBqOY6Hnf+cgQqGE8XLy0sSqn+Y+t/q9XqpAMjPz4+2bdtK3tH169fz9ttv89VXX0nGqZ+fH7NmzcLR0ZFXXnmFjIwMDh06xOXLl6tdqPxuo1Ao8PDwIDU1laioKB577DGaNGnCiBEjHoo841GjRnHw4EE0Gg2bN2/m8ccfr9F8xruBsUDK1ta2wgZcZmYmKSkpUvGKSqUyMU4dHR3x9PTEzc3NxJtz7Ngxli5dKt1YPTw8mDt3brGoSuPGjVmyZAnvv/8+cXFxpKamMm3aNKZOnXrPq+JFUeTkyZOsXr3apHjH3d2dqVOnltiKWaZyqFQqRo0axUcffQTAV199xWeffVatRUCiKFKoFRk4dASC0oL33nuPkSNHUqtWLezc3aFNGzAWte7bR17TtvzzD2zZYjDu7sTaupC2bVN54QUvKpuuLggCTlZOOOFU4vvW1tYUFhaSl1cgGZjXrnmi0fRHFN355ZdA1q69bXxW1LNpLpaWGhwcCnFzEwkIsDMxQI3/l549ZMWJExCneZx6N76t+M7bvlZM5zYjI4NvvvlGev76668/cGll94r/pIEKSAYaGHL6Hhb++usvScC9fv36LFy4kJdffpmMjAyOHj3K3r17JVF+Dw8PlixZIoVSR40axeeffw7AJ598wscff/zAyC+VRL169bC2tsbFxYXg4GBWrFhxr4dUrXh4eNC/f39+//13NBoNP/74I2+99da9HlalEUVRkpiqTNFXWFgYmZmZaDQavLy8sLKywtraWpKrurM9riiK/PHHHyaapIGBgbz33nvFhLuN1KpVi6VLl/LBBx8QGhpKQUEBH3zwAf379+f555+/62LkeXl5/PPPP/z555/ExsZKrysUCgYMGMAzzzzzUF3f7he6dOnC9u3buXz5MjExMfzxxx/V0ku9UKsnKimfm/G55BQYLDibgC48PaE5R/dspo/zv93uunSBgwdJ0zuw9XQIO17Wk5NbXJnB0xMefTQFT8/L2Ngosbf3pLjkPGzduhUXFxccHByws7PD1tYWOzs7LC0tTSaKOp3BuLwz5J6YqCcxcRY6nTPh4S7cTonv8u/DkHJQVezti3s9jQ8HhwIsLbMIDzd03GrevDmV8UO4uroS69WNgPCfUOgKETDDAhIUoLKGZsVrAVatWiXZG507d5YjGRXgP2ughoSEcPXqVeLj4zl37hzNmze/10OqMjExMSYCwGPGjMHKyopu3brxxx9/oNFoWLhwoXQTfeGFF0zy/Hr27MmOHTsICwsjPj6ehQsX8v777z+wRRUKhQJ3d3eioqJIS0tDFMWHTtJj+PDh/P3332RlZbF371769etHgwYN7vWwKkV2drYUEnRycqrQujqdTroJhISElJtTXlhYKOVoKpVKtFotnTt3ZuLEieUamQ4ODnzwwQcsX76c/fv3A7BlyxbOnTvHlClT7koL0bCwMHbs2MHly5eLNRIICgpi3LhxD2x+9YOAIAiMHTuWiRMnotfr+eWXX+jatSseRbs9VZCE9AKOXUtHpzeUIhWVeLKwdqBjv1GkaQoJu5WClVU9NgmvszezORrUiIjolIXoBC1KUUVwgJpBAwXatYPMTAXnz+vRaPRkZmYWix5ptVrOnDlDQkIqGRkqsrOtyMuzRxRdAXcUCk/AHZ3OBa3WnpLVIxVAUAmvm49SmY2NTQ5BQc7UqmWBo2MhanUGVlaZODvrcHHR0bhxYKn3I51OxalTNwFDBKayyiZubm5ER9txqdF0mlyYC6ICyjRSFYAAT/0I1k4m7xw/flwqUrS3t2fMmDGVGpNMzXDfWjbBwcFSJ6G//vqLwYMHP9DewuzsbObOnSvl8HXt2lUK0RsN1IyMDJKSkggMDKRRo0Z07NjRZBtKpZIZM2YwadIkMjIyOH/+PN99990De1KJoohGo8HS0vKBNbLLw9bWlhEjRvD1118jiiIff/wxn3766QPpNTO2N9Xr9RVOwcjMzJS8oOUZt6mpqXz44Ydcu3YNMHRYe+yxxyrUD9vCwoIpU6YQEhLC6tWrKSwsJCoqirfeeovRo0czcODAap8MxcXFcfz4cfbs2UNYWJj0uq2tLTk5OTRt2pQnn3ySRx55RNY5vQv4+/vzxBNPsHnzZgoLC/nmm2949913K7WthPQCDl9JR0Q0yDbduYBgeE2ltuBslIbdvxUQm/YIWoWGVIdwkpwjKLS4rf2Z4WJDQ9GfxoW+ODo6IgiWpKQIHDyYhaWloxRmN+SAqkhKeo+0tEp/FGaQRu3a1nh6KnBy0uDgUICdXT4+Pirq13fEx8cSCws7tForEhMTSUhIkPSJwRDlzMjI5+zZHFq0aFGizFt0dLSkIFC3bt1Kn3/29vbY29uTRktutltEvZNzQGP8bIvmpP67fbW1wTit391kOzk5OVIxHRiKch+G1LK7yX/Wg+ru7k6nTp04ePAgmZmZ/PDDD4wbN+5eD6tS6HQ6Fi1aJIX4/P39TY6ldu3aqFQqsrKypDy7J598ssQT2N3dnRkzZvDuu++i1WrZsmULtWvXfiALis6fP09cXByCINCzZ8+Hzntq5PHHH2f//v1cvXqVuLg4Vq9ezdixY+/1sCpMcnIyubm5uLq6VtjAysnJwcrKCpVKVab8U2xsLO+++y4pKSmAoSp79OjRtG/fvsLjFQSBJ554gqZNm7J06VLCw8PRarV89913HD16lKeffppmzZpV+ncniiLXr1/n2LFjHD16tMSWq1ZWVvTt25cuXbrg7+9fqf3IVJ5nnnmGAwcOkJaWxpEjRzh16lSp+sulUajVc+zabeO0LARBABG6DMxk9epMrrqfRi8UT+aMSs1l7p+X+XDLVQJiWyHGtitha1VHEMDFxRBiT0y8RGZmGIKQzJtvjsLHx4LNm7/h6NGtCIKWDz4wSjlaAMUVOvR6PWfOnDER2VcqlVIHxPz8fHJycrh582axupGcnBwp99rd3b3UFB3zjknAx8eHq1evEmPdAI8xx7EP+9Mgwp8WfntBZ39Dzmnzp8HK1PAURZEVK1aQnJwMQIsWLejatWulx/RfxdjqtLxlKst9a6ACvPzyy1IP+h07dtCkSRM6d+58r4dVIURR5Ntvv5UqBB0cHJg5c6aJB02hUODp6cn58+cpKChAFEVJALokQkJCeP311/n0008B+OKLLygsLJRa/T0IFO0WJYqi1O72YUSpVPLWW28xYcIECgoK2LZtG23btq2RyuKaQqPRSCH6ytxcMjMzyc/Px8nJqVSDMDU1lVmzZknGqZubGzNnzqxyKLx27dp89NFH/PTTT/zxxx+Iosjly5eZOXMm9evXp1+/fjzyyCPlenazs7OJiIggMjKSsLAwTp06RWpqaonLBgYG0qtXL7p06SIXXNxDbG1tefHFF6WCqVWrVrFixYoK5SJHJeWj05dvnBoRFKBSi7i1iyL0pq6klFIJHTpu+BzHO7sNNpkVK6BUKMDVtXiuZ9EcUFdXMAanPvxwI0ePHgWgTZuBuLi48PffGQiC9t/tlT3pzMrKQq1Wk5ubi4+PD56enri7u0ve0uvXr5Oenk5sbCz29vZ4/StDkJOTw/nz59Hr9ahUKrNUNXJychAEodTJrFF6MTs7m7i0XOzbvQZtXzWI8BdkGaSkrJ2LFUQZ2blzp9SZ0dbWlvHjxz+0DpKa5D/rQQVDMvRzzz3HqlWrAENhkKura5nG2/2ETqfjyy+/ZMeOHYChuvSdd94pMQ/Kzc2NnJwcRFHE09Oz3FBDz549iYqKYuPGjYiiyNdff01iYiIvvfTSA3Gi/fbbb5LH6b/QPcfHx4cXX3xRCiktX76cjz/+GFdX13s8MvPIyMiQQvSVMVCNxm1p4v45OTnMmTOHhIQEwBBlmDdvXoVzXUtDrVbzwgsv0KpVK5POTTdu3ODTTz/F09MTCwsLAgICUKlU0jkkCAJpaWlERERIhnNJCIJAcHAwbdu2pW3btvj5+VXLuGWqjrGz28WLF4mLi+P33383u3GGKIrcjM/9N+fUfEREOtfz4EB4YtkLCoAI8fVPUedcd5Q6g9KAUini5iaUWGxkfM3FBSrSMK3oRKmo1JS5ZGdnk5GRgZWVFSEhIcWM/Lp160qOmOvXr6PX61EoFNy8eRONRiOdI3cWQxoRRZHExERiYmLIysrC0tISS0tL/P39JS+tEaVSiYODA5mZmSQmJlK3bl1DmpiNS6ldooxERkby9ddfS88nTJhQpdzk/zL/aQMVDOHR8PBw/vrrL7RaLR988AFLly6974X78/PzWbJkCcePH5dee/3112ncuHGJyxfN0QsODjZrHy+++CJWVlZS7+BNmzaRlJTE5MmT73q1ckU4ePCg1DFMEARef/31/0ROXt++fTly5Ahnz54lNTWVefPmsXDhwgciHzUzMxMbGxuUSmWFx5ubmyvdEEuaeBUWFvLhhx9K6hYeHh68//771WacFqVp06Z8+eWXHD58mN9++03KFdXr9URHR1eof7uFhQXNmjWjXbt2PPLII8VuojL3B4Ig8NprrzFhwgT0ej3r16+na9eukoevLAq1IjkFOrO9p0YUgoCbnRU2aiW5mnL0mgQQlTpaD71BS7s8HBwKaNHCn1q1qrdpQ9HztjIGqru7O2FhYahUKhITE/H19TV5X6lU0rBhQ06fPo1Wq+X69etYWVmh0WhQKBSEhISUKn4viiI3b97k1q1bJq8ZWx63bNmy2HXHx8eHW7duodPpSEhIMMsmKCgoYNGiRVKDgn79+j1wrbT/S9z3VoGxGtMYDs3OzmbWrFnEx8ff45GVTkZGBu+9955knKpUKqZMmULPnj1LXcdYPCUIgtkdegRBYOTIkUyYMEEy8A4fPszUqVO5efNmFY+iZggNDeXjjz+Wnj/zzDP/mX7HgiAwZcoUabYeFhbG0qVLiwnV32/k5+cTGxtLbm5updqHJiQkoFarcXBwKGZ06vV6Pv74Yy5cuAAYCiDmzp1bpRy18lAoFHTq1IlPPvmEpUuX8swzz+Dq6lpiYYcRW1tbGjVqRL9+/Rg7diyLFi1i7dq1zJo1i169esnG6X1OnTp1pBSowsJCli9fLjkEykKrq0ICHWCpNs/FKQDH0+Np0ADs7QuJioow6apXFllZWcTGxkoh79KOq6oGqoWFBZ6enoiiSGxsbIn7sba2pkWLFtJ1QqFQYGdnR+PGjUs1TvV6PVevXpWMUzs7O4KDg6lTpw4KhQKNRkNoaGix/VlbW0vnXWnjuZOvvvpKmoT6+/vz0ksvmf8ByBTD6EEt71FZ7nsPKhgMvGnTpjFt2jQiIiJITExkypQpzJkz574zbk6cOMHnn38uhQNtbGx49913adasWZnrGRPPjZI6FaFnz564uLiwcOFC8vPzuXnzJpMmTWLQoEE8/fTTpYZU7jYxMTHMmzdPkirq2bMnTz311D0e1d3F0dGR2bNnM3XqVHJzczl27Bjff/89L7744r0eWono9XquXLmCTqdDoVBUuKubXq8nPj4ejUaDs7OziVqDKIqsWrWKQ4cOAYaCqDlz5ty16Igx5BgcHMzTTz9NQUGBVDQhiqL0sLGxwdXV9YFInZEpnWeeeYbDhw+TmJjIxYsX2bx5MwMGDChzHZWyat95QXne038RMRROufk0JevqRQoLC4mIiCgzX7OwsJCwsDCpu5qxU5SjoyPBwcHFcp+LGqjGavqK4ubmRnx8PHl5eSVKYoHhnteyZUtyc3NRKpVlTmpFUeTatWtSao+LiwsNGzY0mSxev36dzMxM0tLSik1cfXx8SEtLIzc3l4yMjDKjLrt37+avv/4CDNeaadOm3deRxgeBmg7x3/ceVCM2NjbMmTNHyu3KyMhgwYIFUtL3vSYrK4uPP/6YuXPnSsapi4sLixYtKtc4zcvLkwTQVSqVSfs5c2nVqhWLFi2idu3agMEw2LBhA2+88YaUF3QvuXnzJu+8846Ui9i8eXNef/31/+RNv3bt2kyfPl3yev/xxx+sXbvWLA/A3cQYdsvIyAAgICCgwgU/iYmJUjjtTsNz7969bNu2DTBMzN555517WixnaWlJrVq1qFWrFr6+vvj5+VG7dm3c3Nz+k7/Thw1ra2smTZokfZdr1qwpN6XDQiVga1mBRM9/0Ysiydn55Yf370CwsJY6KN66dUvKlb6TwsJCzp07JxmngiBIRl1GRgbXr18vtk5Vc1Dhdv65vb19mdcrpVKJvb19uRGXmJgYyTh1d3enUaNGJsapt7c31tbWqNVqkkpoweXi4iI5YIyfRUmEhoby2WefSc/Hjh1bLEVBpuLUtAf1gTFQwVA0tWjRIho2bIiDgwNZWVl8+OGHrFu3zuxwSHUjiiIHDx7k9ddfZ8+ePdLrLVq04KOPPjJLWub48eNSmNfBwUEyCCpK3bp1Wb58OSNHjpQ8VXFxccycOZN33nmH48eP3xMj6J9//mHatGmk/Svk5+/vz/Tp0x9a7VNzaNGihYnU1Lp16/j222/vKyM1MjKSmJgYrKys8PLyqrBnU6/XE2FoOI6Dg4OJjnF8fLyJBuEbb7xRYfkfGZmK0rhxYynUr9Fo+Prrr8t0CAiCQF2viqe1CMD+m+UUSJWAnaWK+vXrS2le169fL6YUodFouHbtmhR18/Pzo2PHjrRs2VIyII0tiYtS1RA/3I70ZWVlSRPPypKWlialojk4ONCgQYNitQhGSanCwkIiIyO5cuUKYWFh3Lx5k/DwcKKjo1GpVOh0OhNd1qIkJiby4YcfSpHJvn370q1btyqN/W4giiKzZs2SjPQePXqUOPEoysqVK2natCkODg44ODjQvn17tm/fXur2+/btiyAIbNy4sVJjlA3UO7C3t2fevHk8+uijUphi7dq1vPHGG5w4ceKu3eC1Wi179uxh3LhxLFq0SPKA2traMnHiRN5///1Sc27uZP/+/VhYWGBhYYGLiwsXL1400ZqrCCqVihEjRvDZZ5+ZqB1cvHiRefPmMXbsWHbs2FHli0t5iKLIxYsXeffdd1myZIn0ekhICPPnzzc7z/Zhpk+fPiZNFjZt2sQXX3xxXxipSUlJREZGAgbPS2BgYIW9iHFxcRQUFAAG76txfZ1Ox9KlS6Xzt3v37nTv3r3U7cjIVCejR4+mSZMmuLm5cebMGb79tuye7rXdrVAqzP/t60WRQp2eE9Glqz7ciQDUcbHByUaNSqWicePGWFhYSNfRa9euUVBQQH5+PhcuXCAlJQUbGxvq1q1L3bp1USqVqFQqyftYUlpXdYT44+PjsbGxwcLCokoKJPn5+VJeqYWFBQ0bNiy1UNbDwwNra2ssLS2Ji4vj1q1bxMbGEhUVRUREBOnp6VLF/52Oqry8PObNmyc5fZo2bcqYMWMeiIjI4sWL+fTTT/nyyy85duwYtra29O7du8zJha+vLwsXLuTUqVOcPHmSbt26MWDAAC5dulRs2WXLlt33n8MD6cKysLDg1Vdfxc3NjR9++AFRFImOjmbu3Lk0a9aMl156qcbaGebm5rJ37142bNhQLKTwyCOPMG7cuAqduHFxcZw+fRow/Ljs7e3RarWcPHmySpqvvr6+LFiwgN27d/Pbb79JCegxMTF88sknTJ8+nZ49e9KvXz9atmxZLR00RFHkxo0bHDhwgIMHD0ohGQsLC+rXr4+Hhwfjxo2T836K0L9/f6ysrPjss88QRZEdO3aQnp7Om2++ec+MeL1eL3k2bGxsyrx5lIZOp5MMXBcXF5PcsHXr1kld4ry9vXn11VerZ+AyMmZgYWHBK6+8wuTJkwFDn/tGjRrx6KOPlry8SkHbIEeOXEmn/KmjiACsPhZGfgXD+0Ob3k4lsbKyonHjxly8aMhHjYuLIy4uTpJuAoPhVlTOTKfTSVGqkooMqyPEn5CQgEajwcfHp8yiwrLQ6/VcvnxZqu5v1KhRmXUSFhYWtGnThuvXr0spYsbt6HQ61Go1Go2GnJwck+uUXq9nyZIlUhTHx8fngYnciaLIsmXLeO+996Q86R9++AFPT082btxYqkxa//79TZ5/+OGHrFy5kqNHj5o4rM6ePctHH33EyZMn8fauvFrEf15mqjQEQWDo0KE0adKEb775hitXrgBw7tw5Jk6cKLUK7dChQ5UrgjMyMvj55585d+4cCQkJxYqYQkJCGD58OK1atarQjESr1bJkyRJpe/369ZMq///44w8effTRKs1wBEGge/fudOvWjZMnT/L7779z4sQJaTZ+7Ngxrly5giAIBAUF0aJFC3x9ffHx8cHHx6dcAykrK0uS5omKiuL48eMlqit4e3vTt2/fB67Jwt2iZ8+eWFpa8tFHH6HX6zl69CiTJk3inXfeuSt94+8kNTUVtVpNfn4+gYGl99Yui1u3bkmh06LHEBoayq5du3B0dCQrK4vJkyfLQvYyd52AgABee+01KS/x008/xcPDo1SJP08nS9o3cOLYtQx0+pLMVBFEEASRZvUcid6eY5Q4LRcBsFBCPVUK0dHR+Pr6IggC9vb2PPLII1KqjSiKqNVqRFEkICCgWMpNYmIiKpUKrVZboq5nVUP8xtbUQJUmz5GRkZKhWa9ePRwcHMpdx3iPKgmdTkdhYSFWVlYm98vvv/+eEydOSOOdNWvWA9MuPTw8nPj4eHr06CG95ujoSNu2bTly5IhZOr46nY7169eTk5Nj0okvNzeXZ555hs8//9wsqbWykA3UcggODmbx4sUcOnSI77//noSEBCkscvHiRb766itCQkJo1aoVtWrVwtvbGx8fn1K1HLOysoiMjJSMrrCwMK5cuUJ4eDiJiYm4urpSu3Zt1Go1rVq1YtiwYZVqHKDT6fjiiy+knBJvb2/eeustpk+fTkREBDdu3GDbtm08/vjjVfp8wHByP/LII+Tn53P+/Hns7e3R6XTSySyKIlevXpW8WkYcHBzw9PREpVJJFc1gmJne2Yv5TpRKJc2bN6dLly507ty50rPt/wqdO3fG1taWpUuXGrqjxMUxZcoUXn/99bse/k5ISCArKwsbG5tKaZFqNBrJY+/u7i6J8+fm5rJ06VKSkpJQqVQ8//zzZmv+yshUNz179uTixYvs2bOH/Px8Zs+ezfz580vtXObpZEmflm5EJ+UTFp9LTsFtD6mFQo+qMBk3Gz11PbxZ8EQ9Jv1+DSjbSBUEg4E6pZ0jtmodN2/epKCggHr16iEIgtR5ycfHh5ycHPR6PXZ2dsWKj0RRJCYmhvz8fFxdXUs0IItOBCsT4hcEAQcHB3Q6XaVT0NLT06XCNDc3typ574wolcpik9wNGzbwxx9/AAapq+nTp9/32ulFMTp6jAVzRjw9PcuV2Lxw4QLt27cnPz8fOzs7/vjjDxo2bCi9P2nSJDp06FCugoU5/KdbnZqLIAh06tSJtm3bsnXrVnbs2EFMTAyA1Nbw8uXLJusYq/90Oh06nQ6tVotWq5X0SO/EeAJkZWWRmJjIkCFDGDNmDO7uFWtPB4aw/sqVKzlz5gxgyBudOnUqtra2vPLKK8yYMQMwaLa5u7vTpk2bCu+jKFlZWXz11Vfs3bsXhUJB3bp1qVOnDsOHDyc8PJwTJ05I4diiZGZmlmmE3okgCDRr1oxOnTrRoUOHB2a2er/QqlUrli1bxoIFCwgLC6OwsJBly5Zx5MgRxowZc1e6nej1eilMWNn9GXveC4JgUiT45ZdfSmkxQUFB1XKBlJGpLIIgMH78eFJTUzl37hw5OTnMnDmThQsXltoJzEKloJ63DXW9rCnUimh1IiqlQHRkOImJ2aiUBsMw0E7DW62t+OxMAYX/aqkWvU8b/XzWaiVfjmpFO39HLl68SFZWFjExMRQUFNCgQQNpYm9tbV1mpCE/P1+6d91p1BgpGkavbIjf0dGR6OhotFpthSUetVot165dw8bGBo1GQ1BQUI3kQG7fvp3vv/9eev7aa6/RvHnzat9PdbJ27VqTVKetW7dWelvBwcGcPXuWjIwMfvvtN5577jn27dtHw4YN2bx5M7t375Zsj6oie1ArgFqtZuDAgQwYMIDIyEgOHTrEoUOHSpQSKa2HdknUqlWL1q1bc/z4cSnH5ejRo5w4cYKOHTvSsGFD/P398ff3L3HmqtfrSU1N5cqVKxw5coTDhw9LYX2VSsXEiRMJDAwEDEncAwYMYNOmTej1ej744AOGDx/OiBEjKhxqTUlJYcuWLWzdutXkgvToo4/yxhtvYG1tTefOnXnuuedISkoiLCyM2NhYYmJiiI2NJTY2ttTPycXFBV9fX0mOx8/Pj4CAALPCNTKl4+npyeLFi/n666+lFrnHjh3j7NmzjBgxgoEDB9ZoDlVOTo5UaFAZ8fnExERJNsbb21vy9Ozfv19SubCxsWHy5Mn/ie5hMvc3FhYWvPfee8yaNYvQ0FAyMzN57733WLhwYZnePUEQsFQLWKqNzw2RA41Gg06nIzU1lSbuKn4b7c/JZAXfH4ogMvW217G2iw3Pd/RnSCtfHKwMG2nWrBmhoaGkpKSQnJzM2bNnadSokVmd24yTSkEQSj1vixqoxuJFtVpd7LWyMF57KlrIqdPpuHLliuS5bdq0qcm+q4s9e/aYqIM8++yz9O3bt9r3U908+eSTtG3bVnpu/C4SEhJMfocJCQnlGtvGmg8wOD1OnDjB8uXLWbVqFbt37yYsLKxYZGzIkCE8+uij7N27t1qOp7p4qAxUI0bPjb+/PyNHjuTWrVtERERIRldsbCzx8fFotVoUCoVU/ahUKnFzc6N27domD6PRlZ6ezi+//MJff/1FYWEhOp2O/fv3s3//fmnfLi4uqNVqFAoFSqWS/Px8UlNT0ev1ZGVlodVqpQuIk5MTU6dOpWnTpibjf+mll0hJSeHgwYOIosgvv/zCzp076dOnD61bt8bf379YUrlOpyMpKYn4+HiuXLnC8ePHi0lS2NraMnbsWDp37lxs5uru7l6iN9gof1V0+fu98u9Bx8LCgnHjxtG0aVO++uor0tPTKSgoYM2aNezevZtRo0bRrl27GjHwjB5zYweYipCXl8e1a9ekPtnGUKmx372R119/Xe59LXPfYGVlxezZs5kxYwZhYWGkpqby3nvvsWjRIrOVWIqmS6Wnp0uTvIBanjQJtuP5Dv4kZeby/MuvsXTBB4TUq13sOmpsFXrz5k1iYmLIzs7m9OnTNGzYsNxUG61Wi1KpxMLCotQJbEk5qEVTBcwJ+xsNp4o0f9FoNFy6dEmqpPf19a2RzmvHjh1j2bJlkvE8dOhQhg0bVu37qQns7e1NIo6iKOLl5cWuXbskgzQzM5Njx46ZyBOag16vl7636dOn8/LLL5u836RJEz755JNiBVbmbVv2oFYZo6evqjg5OfHqq68yYsQI/vzzT/78889ienOleRzz8vKkgqR27doxZMgQhgwZUmLYRhAEpk6dSkBAAGvXrkWv15Oens66detYt24dgiDg5uaGp6cnaWlpaDQaUlJSStWCValU9OzZk+HDh5t9wTUie7nuHY8++igtW7Zk7dq1/Pnnn5JaxYIFC/Dx8WHw4MF069atWj0RxuIFW1vbCn/3xkmfSmXQclQqlSQmJjJ37lzpAvnYY4/RpUuXahuvjEx1YGtry9y5c3nnnXeIiooiMTGRGTNmsHDhQrOMKeO5otfrJQkolUolRdQEQcDD0RZfZ2s0OekIQskd2RQKhaSDeuPGDTQaDRcvXiQgIAAfH59SnQNardakrqAkSvKgVjQv1bieOUoser2epKQkbt68Kcka+vj4lJrjWxXOnj3LwoULJYdKv379GD169APrTBEEgTfffJMPPviAwMBAAgICmDlzJj4+PgwcOFBarnv37gwaNIjx48cD8M4779C3b19q165NVlYWP//8M3v37mXnzp0AeHl5lVgYVbt27UoV5MoG6n2Io6MjI0eOZOjQoYSHhxMRESH9jY+PR6fTodfr0ev1qNVqnJ2dCQ8Px9PTE0dHR8aOHUuvXr3K3IdCoWD48OG0bNmSDRs2cPjwYfR6vZQrGhsbS9u2baVc25KoW7cubdq0oW/fvjXa21ym5rC1tWXMmDF0796dlStXSoVssbGxrFixgrVr19KnTx+6du2Kj49Plfdn9KBWNFVDo9EQExODhYUFXl5e2NrakpOTw/vvvy+FH0NCQqQLqYzM/YaDgwPz5s1j+vTpxMXFERsby8yZM/nggw/K9WAaDbaCggKSkpLQarVSNX5RLC0tzdKg9vb2xtbWlkuXLqFUKrlx4wZZWVkEBgaWWHBq9I7m5eWh0WhKnLSWZKBWxIOq0+lM9L7LIisrixs3blBYWCgdr7+/P7VrF/cc5+bmkpOTQ0FBARYWFtja2lZIJeD06dMmQvyPPfYYr7322gNrnBp5++23ycnJYcyYMaSnp9OpUyd27Nhh4gkPCwuT2jODIcVq9OjRxMXF4ejoSNOmTdm5cyc9e/askTHKBup9jKWlJQ0aNKBBgwblLnvx4kXeeecdAC5fvlyugWqkfv36TJs2jZSUFI4dO8a0adPIzs7GysoKBwcHbG1tUSqVuLi44OPjI3X8adGiRaUKuGTuT+rVq8eSJUs4c+YMGzZs4Pz584Ah9+x///sf//vf/2jevDktW7akQYMGODg44OjoiK2trdkXao1GI92kKmqgRkZGShMzLy8vtFot8+fPJyoqCjB4TmbOnClr4Mrc17i4uPDhhx8ybdo0qVnF5MmTef/998uMwhl/14WFhSiVShQKRYnRqmHDhpkdzXNwcKBly5aSyHpCQgK5ubk0bdq0WBjf6OVVKBTExsZSp05xD61RzF+r1Uoh/qIe1PIq89PS0qSuTWWl6MTFxXH9+nVJhN/e3p769esXu6aIosilS5dISUmRJrRFj90cCaqjR4+yaNEiyTht3749EydOfOCNUzB4UefOncvcuXNLXcao8WqkvKYTJVGVxjCygfqQEBQUJF0c7pRzMgdXV1f69esnJYAHBQWxYMGC6h6mzH2MIAi0bNmSli1bcu3aNTZs2MCRI0cQRRE7OzvOnj3L2bNnTdZRKpXY2dmZeF0EQTCEHD08SExMlC7mGo2G1NRU6QZkFNh3dXUlODiYLl26lJh7lpubS3JyMpaWlri4uCAIAkuXLpWMaAcHB+bMmSOrOsg8ELi7u/Phhx/y7rvvkpycTGJiIlOnTmXmzJkmcj1FMRp6RlUYe3v7Eo2rimpBW1pa0rx5c27cuEFcXBxZWVlcuHCBpk2bmpzT1tbW1KpVS+qw5OXlVWo3qezs7EqF+BMTEykoKJAcIyURGxsr1T6o1WoCAgLw8PAoMV0oOzublBRDt62CggLp/giGSM758+dp1qxZqdeNffv2sXz5cmmdDh06MHXqVFnS8C4iG6gPCRYWFjg5OZGcnFyqlFV5FJ3pyLmh/22CgoJ45513SE5OZv/+/YSGhnL06NFiy+l0Oqk44U4sLS1NwkOiKKLVaiV5MUEQTH5zHh4eNGvWjB49etC+fXvJixMeHi7dYHJycpg0aZKUeqJWq5k5c2a16B3KyNwtvL29Wbp0KXPmzCEiIoLs7Gzee+893nrrLTp16lRseVtbW9zd3QkLC8Pa2hp3d/dq8+IpFAqCgoKwsLAgMjKSzMxMLl26ROPGjU3uA35+fkRFRWFpaUlOTk6JBqqlpSXZ2dmSB7Wo8WdMxSkJY24tlNylykhOTo5UJNyiRYsyi6mKXpfatGmDWq1Gq9USHx/P5cuXcXV1LdYUx8iWLVv46quv8Pb2Jj4+nq5duzJx4kTZOH3IkA3Uu4gxd6SyGnRFjYWHIYQhU3Xc3NwYPHgwYGhje/z4cVJSUsjIyJAe2dnZUvEA3P4d2dvbSzcbYyMGY+vA7Oxs6XlRJYddu3bx999/Y2trS7NmzWjevLl0w4uMjOTGjRtSLqy1tTVTpkwxKwVGRuZ+w9XVlUWLFrFgwQLOnj2LRqNh8eLFJCcnM2DAgGLXYG9vb5KTk2nWrFmFqtzNpU6dOuh0Om7dukVaWhq3bt2idu3a0vtKpRJBEEzO2Tsx3oOMHtSiBTNGebiSKCwslLZZVtg9JSUFjUZDrVq1yv0MjO/f+TkmJSVJhvSdBqcoivz888+sW7cOMKQTDB069IEuiHqQkT2oDxHGsEh+fj6FhYUVzscrqhhQExpyMg82tWrVYtCgQdWyLaMnNSMjg7i4OPbu3cupU6ekm0BOTg7Hjh3j0KFDiKKISqXC0dFRyoHr0qULI0eOlD2nMg80NjY2zJ49mxUrVrBr1y5EUeTbb78lMTGRl19+2cSD6eTkRNu2bStknGZmZhIbGyvlarq6upYaHRMEgbp165Kbm0taWhqZmZmIoiidk3FxcdK6pYXgPT09USgU0r3Hw8ODevXqUVhYWKYHVavVYmdnJ6l0lIaDgwNJSUmkp6ebjK0krKysUCqVaLVayWC+cOGCpCTi5+dn4uHV6/WsWrWKbdu2Sa+NGDGCZ555RjZO7xGygfoQ4e3tzdWrV0lPT+fzzz8nJCREqqI05i4VfRiVAPLz80lKSuLs2bPExMRQq1Ytkw49MjLVjUqlwsXFBRcXFwICAujQoQP5+fkcPXqUPXv2cOrUKbKzs9HpdNjY2KDX61EoFHh4eDB48GD69u0rp6HIPBQYm6l4eHjwv//9DzCEmJOTk5kyZYpk7AmCUCHjNDU1lQsXLpi8ZmdnR2BgYKleSkEQ8PLyIjU1lZSUFHJzc7G1tUUUReLj47G1tcXGxqbUrlOZmZlER0dL56ZKpUKj0RAdHU1sbGypjhOFQiE5SAoKCkrNC3VzcyMpKYmcnBySkpLKLKaysrKSpBGjo6PJyMiQDNU6depQp04dyfDMz89n2bJlHDp0SFp/zJgxldLulKk+5FanDxHGXsA2Njb8/fff7N69u0Lri6JISEgIoijSrFmzmhiijEypWFlZ0bVrV7p27Sq1Lbx8+bKUJxYSEkLTpk1lb4bMQ4cgCDzzzDO4u7uzYsUK9Ho9R44cYfr06UybNq3U9qKlodVquXz5MtbW1hQUFKBWqykoKCAnJ4eLFy/i5uaGv79/icZi0deMhmZ6erpUhV+vXr1S91tUr9VIYGAgUVFR6HQ6IiMjpa6GRbG2tpaKmEJDQ3F1dcXe3h5bW1vs7OykMbm7uxMdHU12djbXr18vUzLK6Ik16qVaWlpKTXaKpi4kJibywQcfEB4eDhhSGd588026du1a6nHK3B1kD+pDRO/evUlLSyMjI8NkJmgugiDg6enJvHnzTPTrZGTuNiqVioYNG5Za1Swj8zDSs2dPXF1dWbBgAfn5+Vy/fp2JEycyceJE2rdvb/Z2MjIy0Ol05OXl4eXlJQmrx8bGSmk18fHxuLi44OnpiYuLC0qlUvKUguF+YDQM8/LysLGxobCwsEzN1qKTR2MIvl69euzatQuAa9eulWigGtMLbty4IRmURqPSWNnv6+uLq6srQUFBnDt3Dq1Wy9mzZ6lbty4uLi6SQZqTk0NWVpZUdGUsrNLpdLRt29bk3nb+/HkWLlwohf2tra15++23ad26tdmftcyDi2yg3kWcnZ0ZO3YsN2/epHPnzuTk5JCXl4cgCJJ2nrHlqvGhUChQq9W4urri7u6OnZ2d7KGSkZGRuUe0bNmSxYsXs2DBAuLi4sjJyWH+/Pn079+fF154waz6AKN+tU6nIz4+nqysLDQaDV5eXtjZ2REbG4soiqSkpJCSkoJKpcLOzo7CwkLJU1qrVi2piCg/P18K95d1fzCK5hctPgoJCZH+P3r0KI8//niJ63p7e2Nvby/lmObk5Ejby8zM5PLly1hZWeHv709ISAiXLl3C0tKSa9euFduWjY2NdByCIGBtbY2fn59knIqiyObNm/nuu+8kb6+Pjw/vvfcefn5+5X6+MncH2YP6EFK3bt0aafcmIyMjI1PzBAQE8Mknn7BixQoOHjwIGPJSQ0NDmTZtWontJItiZWVFo0aNiIiIIDMzE71eT2FhIVFRUbi7u9O6dWtSUlJISEggJycHrVZLenq6lOPq4OBgEgY3GqXlia4bW3E7OztL69SrVw9PT08SEhI4f/48GRkZODo6lri+nZ0ddnZ2ANKY09PTiYmJkdQ8rl69SkhICC1btuTGjRslbkcQBBwcHHBzcyMuLs4kf7ewsJDPP//cJAWuVatWTJ06tUIdpmRqHtlAlZGRkZGRuc+wtbXl7bffpmnTpnz99ddoNBpu3LjBxIkTmTBhAh07dixzfWdnZ5ydnSkoKCArK4uYmBjS09NJSkpCrVYTGBiIn58f2dnZJCUlSVX7lpaW+Pv7m3hqzTFQNRqNpD3q6upqsu6jjz7Kb7/9hl6v5/Dhw/Tt27fc41coFFhZWeHl5YWnpycZGRlcv34dvV7P5cuXadKkCc2aNSM7OxutVotWq0Wv10uFXAqFAq1Wy82bNwFD2lBycjLz58+XxP7B0H1r1KhRctHlfUhNG6jyNy4jIyMjI1MJBEGgb9++LF26VNL/zc3NZeHChXz55ZdSCLwsLC0tcXNzo0mTJlKxVWJiopR3aWdnh6OjI1lZWWRkZJCens6FCxeIjo6WDFKFQoGlpWWZ6QVFZaSKGqgAjz76qPT/gQMHzDz62wiCgJOTE02bNpXGdOPGDURRxN7eHmdnZ9zd3fH09MTOzg6FQoEoiiatOm/cuMGkSZMk49TS0pJp06YxevRo2Ti9TzEaqOU9Kov8rcvIyMjIyFSBunXr8sknn5i0Mt26dSuTJ0828QaWhUKhkHrW63Q6ycBLSEjg2rVr6HQ6RFGUjLubN2+aqGgUFBRIMk0lYSxKguIGakBAgGRgX7x4sUxN1LKwtLQkODgYMBRuxcbGlricUQ0gMTGRnJwcNm3axMKFC0lPTwcM+qxLliwpsWuXzH8H2UCVkZGRkZGpIjY2NkyZMoVx48ZJnsyIiAgmT57MV199VW6vezCEub29vRFFkczMTE6fPs2VK1ckveHWrVvTvn17KUc0OTmZ8+fPS3qiZYX4ixqod7YrNYb5jduojMqMEWdnZzw8PLC0tCQyMpK0tDRJQ1UURZKSkjh58iSJiYkcPHiQFStWmBRSNW/enE8++YSAgIBKj0Hm7lDTHlQ5B1VGRkZGRqYaEASBPn36EBwczMcff0xERASiKLJlyxaOHDnCSy+9RMeOHcustPf09CQxMZG0tDTS09NRKpVYWFjQuHFjSYC/adOmhIeHc+vWLbKzs0lLS0OlUpVpoF66dEn638fHB1EUSU9Pl6QP3d3dpYYbe/bs4fHHH6+0YkydOnU4efIkoihy9OhRrKyscHBwoKCgAI1GQ2ZmJj///DOJiYlYW1sjCAL29va8+OKLdO/eXVaqeUCQi6RkZGRkZGQeIIxV/ps2beLnn3+msLCQwsJCFi5cSMOGDXnxxRdp0KBBiesKgkCDBg04ffo0vr6+5OTk0KBBg2IC/fXq1UOlUhEXFycZpqW1zxZFkSNHjkjPY2JimDBhAhEREdSqVYuYmBhEUeTKlSsolUri4+PZv38/Xbp0qdTx29jY4Ovri1KpJDw8HL1eT3Z2NtnZ2Rw8eJAjR45gZWUlyUp169aNF198sVT1AJn7k5o2UAWxPF0KGRkZGRkZmUoRHx/PypUrSUpKIjo6Wnq9Q4cODB48mKCgoBI9hkb9T0EQyvQoRkZGSsVGAQEBJvJTRkJDQxk/frxkzNavX196z8LCQirmSklJISwsDDC0LR07dix9+vQxWb6iZGVlceHCBTZv3syZM2cQBAGVSoUgCPj4+DBu3DiaNm1a6e3L3H0yMzNxdHRk2LAM1OqS2/Ia0WgyWb/ekYyMjFJb+JaGbKDKyMjIyMjUMMeOHeP777/n1q1bJq/XqVOH3r1707Vr11J73JdHSkoK165do2XLlpKeqJGIiAhefPFFKcQfEBCAu7s7AEFBQdSpUwdnZ2fS09M5ffo0hw8fxsnJSWq3GhUVRUhICN26daNjx45mjzErK4vdu3ezY8eOYsesUqkYOnQow4YNK9XrK3P/IhuoMjIyMjIyDxE6nY6///6btWvXShXrRtRqNZ06daJXr140atSownmYWq1WaicKBsP0l19+4dChQzg7O3PgwAF0Oh0dOnSgZ8+e9OzZs1hXJlEUiYmJYc+ePfzzzz9ShysjSqWS5s2b07hxY+rVq0edOnWkgrDMzEwiIiK4ceMGV65c4dq1a8VkthwcHOjZsyd9+vQpt5mBzP2L0UAdMsQ8A3XDBtlAlZGRkZGRue8pKCjg4MGD7Ny5k9DQ0GLv16pVi969e9OlS5diFfdlodFoOHz4MNu3bzcpirK2tsbKyoqePXvy1FNPmeW1LCgoYO/evWzatMkkNaEsjB2p7qRx48b07duX9u3bm9UKVub+xmigDhpknoH6xx+ygSojIyMjI/NAER0dzc6dO9m9e7ckzl8UHx8fQkJCCA4Oxt/fHy8vLywsLFAqlSgUCm7dusX169e5du0aR48eJTMz02R9g6drCP369SsW/jcHURQJCwtj//79HDhwgOTk5FKXDQgIIDw8HDDksLZv356+ffsW89TKPNgYDdQBA8wzUDdtkg1UGRkZGRmZB5LCwkKOHj3Kjh07uHDhQrH3S/NOloafnx99+/alZ8+eWFlZVcsYRVEkMjKS8PBwwsLCpKIrURSxsrIiKCgIb29vgoKCKuT5lXmwMBqo/fubZ6Bu2SIbqDIyMjIyMg88sbGx7Nq1iwsXLnD9+nW0Wi0eHh4kJiaWuZ5KpaJDhw707du3UnmsMjLmYDRQH3/cPAN169bKGaiyDqqMjIyMjMx9hI+PD88++yxg8KzeuHFDkpNKTk5Gp9Oh1WrRarW4uroSFBREYGAgdevWrTZvqYzMvUY2UGVkZGRkZO5TLCwsaNiwIQ0bNrzXQ5GRMUHuJCUjIyMjIyMjI3NfIRuoMjIyMjIyMjIy9xWygSojIyMjIyMjI3NfIYrlG6BVKcNXVH5VGRkZGRkZGRkZmepH9qDKyMjIyMjIyMhUCDnELyMjIyMjIyMjc18hG6gyMjIyMjIyMjL3FbKBKiMjIyMjIyMjc19R0waqXCQlIyMjIyMjIyNzXyF7UGVkZGRkZGRkZCqEHOKXkZGRkZGRkZG5r5ANVBkZGRkZGRkZmfsK2UCVkZGRkZGRkZG5r5AN1AcMnU6HRqO518OQkZGRkfkPoVarUSqV93oYMjLVhmygVhOiKBIfH096evq9HoqMjIyMzH8QJycnvLy8EAThXg9F5j+AKJbvIRXFym9fNlCrCaNx6uHhgY2NjXyBkJGRkZG5K4iiSG5uLomJiQB4e3vf4xHJ/BfQ66E8U0cO8d9jdDqdZJy6urre6+HIyMjIyPzHsLa2BiAxMREPDw853C9T48gG6gOAMefUxsbmHo9ERkZGRua/ivEepNFoZANVpsaRDdQHCDmsLyMjIyNzr5DvQTJ3E9lA/Q8hiiJpuRpyCrTYWqpwtlHLFxwZmRIQRZF8fR5avQaVQo2Vwlo+V2RkZGQeImQD9T4gI0/DhlO3WHM4gsjUXOn1Oi42PNfBnyGtfHG0Vt/DEdYMc+bMYePGjZw9e7bS24iIiCAgIIAzZ87QvHlz9u7dy2OPPUZaWhpOTk7VNtYHieeff5709HQ2btx4r4dS7RTo8rmWc4mLmafJ1KZLrzuonGjs0JIg20ZYKq3u3QBlZGRk/iPUtAdVUflVZaqDfdeSaL9gF/P+vExUEeMUICo1l3l/Xqb9gl3su5ZUY2OIj4/njTfeoG7dulhaWuLn50f//v3ZtWtXje3zQaNr164IgoAgCFhZWdGwYUO++OKLatn2999/X63G9PLly/n++++rbXv3C9F54fx060sOp+42MU4BMrXpHE7dzU+3viQ6L/zeDPAeIwjCAzkpiYiIQBCEKk1U7ze+/fZbevXqZfby7dq1Y8OGDTU4IhmZ6sco1F/eo7LIBuo9ZN+1JF5YfZw8jQ4RuFMuzPhankbHC6uP14iRGhERQatWrdi9ezdLlizhwoUL7Nixg8cee4xx48ZVapuFhYXVPMq7S2njf+WVV4iLi+Py5csMHz6ccePG8b///e8uj650dDoder0eR0fHKhm8oiii1Wqrb2DVQHReONsTNqAVy26CoRU1bE/YUO1G6vPPPy9NUNRqNZ6envTs2ZPvvvsOfVWuwHeBV199FaVSyfr164u95+/vz7Jly0xeq+4JU1Gef/55Bg4caPKan58fcXFxNG7cuEb2aWTOnDk0b97c5LnxO1WpVPj7+zNp0iSys7OlZf744w/atWuHo6Mj9vb2NGrUiDfffLPM/eTn5zNz5kxmz55d6r7v5L333mP69On3/W9JRqYosoH6kJKRp2HsT6cMRmg5QraiaDBUx/50ioy86u1S9frrryMIAsePH2fIkCEEBQXRqFEj3nrrLY4ePQpAeno6L7/8Mu7u7jg4ONCtWzfOnTsnbcN48f3mm28ICAjAysrKrPWMrFq1Cj8/P2xsbBg+fDgZGRkm73/zzTeEhIRgZWVFgwYNKuS5TElJ4emnn6ZWrVrY2NjQpEmTYkZl165dGT9+PG+++SZubm707t27xG3Z2Njg5eVF3bp1mTNnDoGBgWzevBmAqKgoBgwYgJ2dHQ4ODgwfPpyEhARp3XPnzvHYY49hb2+Pg4MDrVq14uTJk+zdu5cXXniBjIwM6WY5Z84cAAoKCpgyZQq1atXC1taWtm3bsnfvXmmbRkNi8+bNNGzYEEtLS6KioooZAQUFBUyYMAEPDw+srKzo1KkTJ06ckN7fu3cvgiCwfft2WrVqhaWlJQcPHjT7M65pCnT5/JW4CbHYFK5kRET+StxEgS6/WsfRp08f4uLiiIiIYPv27Tz22GNMnDiRJ554okoGfU1O6HJzc1m3bh1vv/023333XY3tpyoolUq8vLxQqe5+xlmjRo2k73TRokV89dVXTJ48GYBdu3bx1FNPMWTIEI4fP86pU6f48MMPy+0U+Ntvv+Hg4EDHjh3NHkffvn3Jyspi+/btVToeGZm7iWygPqRsOHWLvEKd2V0WRBHyCnX8fvpWtY0hNTWVHTt2MG7cOGxtbYu9b/SiDBs2jMTERLZv386pU6do2bIl3bt3JzU1VVr2xo0bbNiwgd9//10K1Zm73q+//sqWLVvYsWMHZ86c4fXXX5feX7t2LbNmzeLDDz8kNDSU+fPnM3PmTNasWWPWMebn59OqVSu2bt3KxYsXGTNmDM8++yzHjx83WW7NmjVYWFhw6NAhvvzyS7O2bW1tTWFhIXq9ngEDBpCamsq+ffv4+++/uXnzJk899ZS07MiRI/H19eXEiROcOnWK6dOno1ar6dChA8uWLcPBwYG4uDji4uKYMmUKAOPHj+fIkSOsW7eO8+fPM2zYMPr06cP169el7ebm5rJo0SK++eYbLl26hIeHR7Fxvv3222zYsIE1a9Zw+vRp6tevT+/evU2+B4Dp06ezcOFCQkNDadq0qVmfwd3gWs6lcj2nd6IVNVzLuVSt47C0tMTLy4tatWrRsmVL3n33XTZt2sT27dtNUirKm6yUNqH77bffaNKkCdbW1ri6utKjRw9ycnIAOHHiBD179sTNzQ1HR0e6dOnC6dOnyx3z+vXradiwIdOnT2f//v1ER0dL73Xt2pXIyEgmTZokTY6qY8K0c+dOQkJCsLOzk4x643GvWbOGTZs2meyvpBD/vn37aNOmDZaWlnh7ezN9+nSTSUDXrl2ZMGECb7/9Ni4uLnh5eUnjrAgqlQovLy98fX156qmnGDlypDTp3LJlCx07dmTq1KkEBwcTFBTEwIED+fzzz8vc5rp16+jfv3+FxqFUKunXrx/r1q2r8DHIyDysyAbqPUAURdYcjqjUut8fikCsSu+wIty4cQNRFGnQoEGpyxw8eJDjx4+zfv16WrduTWBgIEuXLsXJyYnffvtNWq6wsJAffviBFi1a0LRpU7PXy8/P54cffqB58+Z07tyZzz77jHXr1hEfHw/A7Nmz+eijjxg8eDABAQEMHjyYSZMmsWrVKrOOsVatWkyZMoXmzZtTt25d3njjDfr06cOvv/5qslxgYCCLFy8mODiY4ODgMrep0+n46aefOH/+PN26dWPXrl1cuHCBn3/+mVatWtG2bVt++OEH9u3bJ3kqo6Ki6NGjBw0aNCAwMJBhw4bRrFkzLCwscHR0RBAEvLy88PLyws7OjqioKFavXs369et59NFHqVevHlOmTKFTp06sXr1aGotGo+GLL76gQ4cOBAcHF9PizcnJYeXKlSxZsoS+ffvSsGFDvv76a6ytrfn2229Nlp07dy49e/akXr16uLi4mPX51jSiKHIxs3xDrCQuZp6utnOlNLp160azZs34/fffAcyarEDxCV1cXBxPP/00L774IqGhoezdu5fBgwdL48/KyuK5557j4MGDHD16lMDAQPr160dWVlaZ4/v2228ZNWoUjo6O9O3b18SQ/v333/H19WXu3LnS5Kg6JkxLly7lxx9/ZP/+/URFRUnrT5kyheHDh0tGq3F/dxITE0O/fv145JFHOHfuHCtXruTbb7/lgw8+MFluzZo12NracuzYMRYvXszcuXP5+++/zfzmSsY46QTw8vLi0qVLXLx4sULbOHjwIK1bt67wvtu0acOBAwcqvJ6MzL3C2Oq0rIfc6vQBIy1XY1Ktby4iEJmaS3quBmdbiyqPw5yb97lz58jOzi7WISsvL4+wsDDpeZ06dXB3d6/werVr16ZWrVrS8/bt26PX67l69Sr29vaEhYXx0ksv8corr0jLaLVaHB0dzTpGnU7H/Pnz+fXXX4mJiaGwsJCCgoJihlyrVq3K3dYXX3zBN998Q2FhIUqlkkmTJjF27FhWrFiBn58ffn5+0rINGzbEycmJ0NBQHnnkEd566y1efvllfvzxR3r06MGwYcOoV69eqfu6cOECOp2OoKAgk9cLCgpMPlMLC4syvZ1hYWFoNBqTcKNaraZNmzaEhoaaLFuZm2pNk6/PK1YQZS6Z2nQK9PlYKa2rd1B30KBBA86fPw8gTVbCw8Ol38MPP/xAo0aNOHHiBI888ghwe0JnPGdOnz6NVqtl8ODB1KlTB4AmTZpI++jWrZvJPr/66iucnJzYt28fTzzxRInjun79OkePHpWM51GjRvHWW2/x3nvvIQgCLi4uKJVK7O3t8fLyktYrOmEyYpwwRUVF4ePjAxgMzh07drB69Wrmz58PGCZMX375pfTbHj9+PHPnzgXAzs4Oa2trCgoKTLZ9J1988QV+fn6sWLECQRBo0KABsbGxTJs2jVmzZqFQGPwqTZs2lfI8AwMDWbFiBbt27aJnz56lbrssTp06xc8//yx91m+88QYHDhygSZMm1KlTh3bt2tGrVy9GjhyJpaVlidtIT08nIyND+owqgo+PD9HR0ej1eukYZWTuZ8wJ38s6qA8YOQVVK0DJLtBWi4EaGBiIIAhcuXKl9H1lZ+Pt7W0SyjNStJDizhQBc9crC2Oxwtdff03btm1N3jO3S8qSJUtYvnw5y5Yto0mTJtja2vLmm28Wy/srKcXhTkaOHMmMGTOwtrbG29u7QjeROXPm8Mwzz7B161a2b9/O7NmzWbduHYMGDSpx+ezsbJRKJadOnSp2rHZ2dtL/1tbVp/9pzmdwt9Hqq5ZzrdEX1riBKoqi9B2EhoaWO1mB4hO6Zs2a0b17d5o0aULv3r3p1asXQ4cOxdnZGYCEhATee+899u7dS2JiIjqdjtzcXKKiokod13fffUfv3r1xc3MDoF+/frz00kvs3r2b7t27V+gYzZ0w2djYmEy8vL29pf7w5hIaGkr79u1NftcdO3YkOzubW7duUbt2bYBiE7PK7OvChQvY2dmh0+koLCzk8ccfZ8WKFYDhfNi6dSthYWHs2bOHo0ePMnnyZJYvX86RI0dK7ByYl5cHIKVtVARra2v0ej0FBQVS21IZmfsZ2UB9CLG1rNrHblfF9Y24uLjQu3dvPv/8cyZMmFDMQElPT6dly5bEx8dLVa7mYu56UVFRxMbGSh6Ho0ePolAoCA4OxtPTEx8fH27evMnIkSMrc4gcOnSIAQMGMGrUKMAQgr127RoNGzas8LYcHR2pX79+sddDQkKIjo4mOjpaMkwuX75Menq6yX6CgoIICgpi0qRJPP3006xevZpBgwZhYWGBTqcz2WaLFi3Q6XQkJiby6KOPVnisRurVqyfl1ho9cxqNhhMnTpRbjXw/oFJUTf9Xraj6RK48QkNDCQgIqNA6d55rSqWSv//+m8OHD/PXX3/x2WefMWPGDI4dO0ZAQADPPfccKSkpLF++nDp16mBpaUn79u1LLbDS6XSsWbNGOgeLvv7dd99V2EA1d8KkVpt+X4Ig1FiaRUn7qmgVfHBwMJs3b0alUuHj44OFRfHfS7169ahXrx4vv/wyM2bMICgoiF9++YUXXnih2LKurq4IgkBaWlrFDgZDTYCtra1snMo8MNS0gSrHEe4BzjZq6rjYUFG/l4BBvN/JpvpE+z///HN0Oh1t2rRhw4YNXL9+ndDQUD799FPat29Pjx49aN++PQMHDuSvv/4iIiKCw4cPM2PGDE6ePFnqds1dz8rKiueee45z585x4MABJkyYwPDhw6UQ4Pvvv8+CBQv49NNPuXbtGhcuXGD16tV8/PHHZh1fYGCgdOMPDQ3l1VdfNSlYKY0GDRrwxx9/mLWPHj160KRJE0aOHMnp06c5fvw4o0ePpkuXLrRu3Zq8vDzGjx/P3r17iYyM5NChQ5w4cYKQkBDAIPWTnZ3Nrl27SE5OJjc3l6CgIEaOHMno0aP5/fffCQ8P5/jx4yxYsICtW7eaNS4wGEJjx45l6tSp7Nixg8uXL/PKK6+Qm5vLSy+9ZPZ27hVWCmscVE6VWtdB5YSlomZF+3fv3s2FCxcYMmQIYDpZMVLSZKUkBEGgY8eOvP/++5w5cwYLCwvpN3jo0CEmTJhAv379aNSoEZaWliQnJ5e6rW3btpGVlcWZM2c4e/as9Pjf//7H77//Tnp6OkCJk6PyJkz169c3eZQVrr+TkrZ9JyEhIRw5csTEsD106BD29vb4+vqavS9zx1O/fn38/f1LNE7vxN/fHxsbG6l4raTtNWzYkMuXL1d4LBcvXqRFixYVXk9G5mFFNlDvAYIg8FwH/0qt+3xH/2pt6Vi3bl1Onz7NY489xuTJk2ncuDE9e/Zk165drFy5EkEQ2LZtG507d+aFF14gKCiIESNGEBkZiaenZ6nbNXe9+vXrM3jwYPr160evXr1o2rSpiYzUyy+/zDfffMPq1atp0qQJXbp04fvvvzfbY/Xee+/RsmVLevfuTdeuXfHy8iqmw1gSV69eLSZ3Vdaxbtq0CWdnZzp37kyPHj2oW7cuv/zyC2DwjqWkpDB69GiCgoIYPnw4ffv25f333wegQ4cOvPbaazz11FO4u7uzePFiAFavXs3o0aOZPHkywcHBDBw4kBMnTkghTnNZuHAhQ4YM4dlnn6Vly5bcuHGDnTt3SuHj+xlBEGjs0LJS6zZ2aFmt50pBQQHx8fHExMRw+vRp5s+fz4ABA3jiiScYPXo0UP5kpTSOHTvG/PnzOXnyJFFRUfz+++8kJSVJk5jAwEB+/PFHQkNDOXbsGCNHjizT0/btt9/y+OOP06xZMxo3biw9hg8fjpOTE2vXrgUMBtf+/fuJiYmRDN6anDD5+/tz/vx5rl69SnJycomSTa+//jrR0dG88cYbXLlyhU2bNjF79mzeeuutCqXVjB49mnfeecfs5e9kzpw5vP322+zdu5fw8HDOnDnDiy++iEajKTPPtXfv3iXKtOXl5ZlMFs6ePWuSj3/gwIEKifvLyNxralpmClGmyuTl5YmXL18W8/LyzF4nPbdQDJm5XfSf/qdYZ1r5j4Dpf4ohM7eL6bmFNXgkMjL3H/naPPGbiE/EL8MXm/lYIn4T8YmYrzX/fCyP5557ztg3Q1SpVKK7u7vYo0cP8bvvvhN1Op3JspGRkeKTTz4p2traivb29uKwYcPE+Ph46f3Zs2eLzZo1M1nn8uXLYu/evUV3d3fR0tJSDAoKEj/77DPp/dOnT4utW7cWraysxMDAQHH9+vVinTp1xE8++URaBhD/+OMPMT4+XlSpVOKvv/5a4rGMHTtWbNGihSiKonjkyBGxadOmoqWlpVj0dvDaa6+Jrq6uIiDOnj1bFEVRLCwsFGfNmiX6+/uLarVa9Pb2FgcNGiSeP39eFEVRXL16tejo6Giyrz/++MNku4mJiWLPnj1FOzs7ERD37NkjhoeHi4B45swZabm9e/eKjzzyiGhhYSF6eXmJ06ZNEzUajfR+ly5dxIkTJ5rsa8CAAeJzzz1nskzR53d+7iV9D0XZvXu3OGTIENHPz0+0sLAQPT09xT59+ogHDhwodR1RFMVLly6J1tbWYnp6usm+uN17RXp0795dFEVRvHXrlqhWq8Xo6Ogyt10elbkXychUlIyMDBEQvbwyRB8fscyHl5dh2YyMjArvRxDFGtZh+Q+Qn59PeHi4iaahORg7SZUn1i8IhvD+9y+0oXOQe+kLysg8pBg7SZkj1i8g0NdzCH7WFcsLlZGpLoYNG0bLli3N9uBOmzaNtLQ0vvrqqyrtt7L3IhmZipCZmYmjoyMeHhkoFA5lLqvXZ5KY6EhGRgYODmUveydyiP8e0iXIndUvtMFarUSAYjmpxtes1UrZOJX5T+NnHUBfzyGohLLzr1WCWjZOZe45S5YsMSkeKw8PDw/mzZtXgyOSkal+ajrEL3tQq4Gqzloz8jT8fvoW3x+KMNFHreNiw/Md/RnSyhcHq+orjJKReVAp0OVzLecSFzNPm+ijOqicaOzQkiC7xlgqStaolJF52JE9qDJ3A6MH1c3NPA9qcnLlPKiyzNR9gKO1mhc6BvB8B3/SczVkF2ixs1ThZKOu1iIPGZkHHUulFU0cWtHYviUF+nw0+kLUCgssFVbyuSIjIyNzF5F1UP9DCIKAs61FtYjwy8g8zAiCgJXSusZF+GVkZGRkSsbY6rS8ZSqLbKDKyMjIyMjIyMhUCL3eUMRdFrKBKiMjIyMjIyMjc9eQDVQZGRkZGRkZGZn7CtlA/Q8hiiKFWhGtTkSlFLBQCXLhh4xMCYiiiC49HX1OLgpbG5ROTvK5IiMjI/MQIeug3gcUavXciMvl77MpbDuVxF9nk9l2Kom/z6ZwIy6XQm1VeoXdPb766iv8/PxQKBQsW7asWrYZERGBIAicPXu2WrZXFfbu3YsgCFIf8/uJXbt2ERISUm6fcyMjRozgo48+quFRVT+6zExSf/iBsN69ud6+A2E9ehj+9u5N6g8/oMvMvNdDfKjx9/evtnO7LL7//nucnJxqfD9VYebMmYwZM8asZQsLC/H39+fkyZM1PCoZmbtHTeugygbqPSYhvYAdp5O5EJlFToGpcZFToONCZBY7TieTkF5Q7ft+/vnnEQSDl1atVuPp6UnPnj357rvv0FfwV5WZmcn48eOZNm0aMTExZl+4K0ppRqLxWF577bVi64wbNw5BEHj++edrZEwVobwbb9HvxMLCgvr16zN37ly0Wm2Z23377bd57733UCqVZu3nvffe48MPPyQjI6Myh3FPyD5wkOtdupKwYCGa6Fsm72mib5GwYCHXu3Ql+0DxPuhVpej3UvRx48aNat9XUQRBYOPGjRVez9/fXxqjra0tLVu2ZP369VUez4kTJyp0bs+ZM4fmzZtXeb8lUfR7cHR0pGPHjuzevVt635xzSRRFvvrqK9q2bYudnR1OTk60bt2aZcuWkZubW9JuAYiPj2f58uXMmDHDZH8DBw4scXkLCwumTJnCtGnTqn7gMjL3CbKB+hCTkF7AkSvp6PRlJ2no9CJHrqTXiJHap08f4uLiiIiIYPv27Tz22GNMnDiRJ554olyjqChRUVFoNBoef/xxvL29sbGxqfaxloefnx/r1q0j7//tnXlcVcXbwL+X/QIiLsiiF1EBhUSSXDFNUAMXxCUzd9xyyVAL19z4mZommFq5VIoaprniq+K+BFi5ggsERCxKmCYKIatw3j+Im9fLLgTafP2cD545z8w859wz5zznmXlmsrKUadnZ2ezcuRNLS8t/XZ/KUvSbxMbG8uGHH7JkyRI+/fTTEuVDQ0OJi4tj8ODB5a6jdevWtGjRgm+//bYqVK52MkJCuT1pElJ2duGgpmcHNv2dJmVnc3vSpGoxUot+l6e3Zs3UV6zKzc2t8rorw//+9z9SUlK4du0a7du3Z+jQoVy4cKFSZRWdk4mJSY207ZLYunUrKSkphIWF0bBhQ/r168dvv/2mPF5WWxo1ahQzZszA09OTs2fPEh4ezsKFCwkKCuLEiRMl1vv111/j7OxM06ZNy63riBEjCA0N5datW5U7WYGgliEM1JeU3CcF/ByTVo6VxQuRgJ9j0qq8u19XVxczMzMaN26Mk5MT8+fPJygoiODgYAICApRyjx49YsKECZiYmGBkZISrqysRERFAobfOwcEBgObNmyOTyUhISCAuLg5PT09MTU0xNDSkffv2nDp1SqX+4jxExsbGKnUXkZCQgIuLCwD16tVT84o6OTmhUCjYv3+/Mm3//v1YWlrStm1blbJycnLw9vamUaNG6Onp8frrr3Pp0iUVmaNHj2Jra4tcLsfFxYWEhAQ1nUJDQ+natStyuRyFQoG3tzePHz8u9lqXl6LfpGnTpkyZMoWePXty6NChEuV37dpFr169KrxyjIeHB7t27XouXf8N8tPTuePtXbxh+ix/y9zx9q7y7v6i3+XpTVNTk+7duzNt2jRmzJhBw4YNcXNzA+D8+fN06NABXV1dzM3NmTt3rspHX/fu3fH29mb27NnUr18fMzMzlixZojxuZWUFwMCBA5HJZMp9gA0bNtCiRQt0dHRo2bIlO3bsUNO3Tp06mJmZYWtryxdffIFcLuf//u//yM/PZ/z48TRr1gy5XE7Lli1Zu3atSt4ib+CyZcuwsLCgZcuWSp2e7uIv67ng6+tLRESE0pNZ1K79/f1xcHDAwMAAhULB1KlTycjIqPBvYmxsjJmZGa1bt2bDhg1kZWVx8uRJtd+suLb0/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeWzpjh27dqFh4dHhXStV68eXbp0eSHanKDmkSSJRYsWYW5ujlwup2fPnsTGxpaZLzk5mZEjR9KgQQPkcjkODg4qQ0v++OMPvLy8sLCwQF9fH3d393KVWxzCQH1JSbqfXabn9FnyCyRu38+uJo3+wdXVFUdHRxVDb8iQIdy7d4/g4GCuXLmCk5MTPXr0IDU1laFDhyoNz4sXL5KSkoJCoSAjI4M+ffpw+vRprl27hru7Ox4eHiQlJVVKL4VCwb59+wCIjo4mJSVF7cU6btw4tm7dqtzfsmULY8eOVStr9uzZ7Nu3j23btnH16lWsra1xc3MjNTUVgNu3bzNo0CA8PDwIDw9nwoQJzJ07V6WMuLg43N3dGTx4MNevX2f37t2EhoYybdq0Sp1fScjl8lK9ciEhIbRr167C5Xbo0IGLFy+Sk1P1nvmqJO3gwX88p+Xhb09q2sGg6lXsKbZt24aOjg5hYWFs3LiR5ORk+vTpQ/v27YmIiGDDhg188803fPzxx2r5DAwM+Pnnn1m1ahX/+9//lAZW0QdTkZewaP/AgQNMnz6dDz/8kJs3bzJp0iTGjh3L2bNnS9RPS0sLbW1tcnNzKSgooEmTJuzZs4fIyEgWLVrE/Pnz+f7771XynD59mujoaE6ePMnhw4eLLbes58KHH37IK6+8ovQ4Dx06FAANDQ3WrVvHrVu32LZtG2fOnGH27NmVu/h/I5cXLtpQWlt5ui0FBgbSsmVLPD091eSKhg0UR2pqKpGRkZVucyEhIRXOJ/jvsWrVKtatW8fGjRv5+eefMTAwwM3Njezskm2Ahw8f0qVLF7S1tQkODiYyMhI/Pz/q1asHFBq9AwYM4LfffiMoKIhr167RtGlTevbs+dyOlepAGKg1gCRJ/Ha35PFNpRF3NxPpeeZtKCetWrVSegxDQ0O5ePEie/bsoV27dtjY2LB69WqMjY3Zu3cvcrmcBg0aAIVdgEWeJUdHRyZNmkTr1q2xsbFh6dKltGjRolRvYGloampSv359ABo1aoSZmZnaS2TkyJGEhoaSmJhIYmIiYWFhjBw5UkXm8ePHbNiwgU8//ZTevXtjb2/PV199hVwu55tvvgH+8VD5+fnRsmVLRowYoTaGdcWKFYwYMYIZM2ZgY2ODs7Mz69atY/v27aU+RMqLJEmcOnWK48eP4+rqWqJcYmIiFhYWFS7fwsKC3Nxc7t69+zxqViuSJJFayWEIqd/uqNK2cvjwYQwNDZXbkCFDlMdsbGxYtWoVLVu2pGXLlnz55ZcoFAo+//xzWrVqxYABA/D19cXPz09lfHebNm1YvHgxNjY2jB49mnbt2nH69GmgsC3BP17Cov3Vq1fj5eXF1KlTsbW15YMPPmDQoEGsXr26WL1zc3NZsWIFaWlpuLq6oq2tja+vL+3ataNZs2aMGDGCsWPHqhmoBgYGfP3117zyyiu88sorauWW57lgaGiIlpaW0uNcZETOmDEDFxcXrKyscHV15eOPP1arvyJkZmYqx2C/8cYbaseLa0uxsbFKz3BFSEpKQpKkSre5xMTECucT/LeQJInPPvuMBQsW4OnpSZs2bdi+fTu///57qWPSV65ciUKhYOvWrXTo0IFmzZrx5ptv0qJFC6Dwnv/pp5/YsGED7du3p2XLlsqeh++++67Cela3B1VMM1UD5D6R1AKiysvjnHxyn0joalfvlDqSJCmn7YmIiCAjI0NphBaRlZVFXFxciWVkZGSwZMkSjhw5QkpKCk+ePCErK6vSHtTyYGJiQt++fQkICECSJPr27UvDhg1VZOLi4sjLy6NLly7KNG1tbTp06EBUVBQAUVFRdOzYUSVf586dVfYjIiK4fv06gYGByjRJkigoKCA+Ph47O7tKnUORIZSXl0dBQQHDhw9X6fp9lqysrAp378M/HqfSgkFqmvxHj8hLul3xjJJEXtJt8h89Qutv78Hz4uLiwoYNG5T7BgYGyv+/9tprKrJRUVF07txZZeqrLl26kJGRwZ07d5Rjotu0aaOSz9zcnHv37pWqR1RUlFqgUpcuXdR6E+bMmcOCBQvIzs7G0NCQTz75hL59+wLwxRdfsGXLFpKSksjKyiI3N1ctmMnBwQEdnZKXXa7scwHg1KlTrFixgl9++YX09HSePHlCdnY2mZmZFRrjOmzYMDQ1NcnKysLExIRvvvlG5ZqW1pYq+/FSNMa9sm2uNrc3Qe0gPj6eu3fv0rNnT2Va3bp16dixIz/++CPvvPNOsfkOHTqEm5sbQ4YM4fz58zRu3JipU6cyceJEAGVv2dP3roaGBrq6uoSGhjJhwoQK6SlJ6eXo2Kr8UCthoNYAT/Kfz6vzJF9CV7uKlCmBqKgoZQBIRkYG5ubmnDt3Tk2utEhxHx8fTp48yerVq7G2tkYul/PWW2+pdMHJZDK1F0VeXt5z6T5u3DhlN/sXX3zxXGWVRkZGBpMmTcLb21vt2PMEZRUZQjo6OlhYWKClVXozbdiwIQ8fPqxwPUXDGYo8c7WRgsfP9zIveJwJVWSgGhgYYG1tXeKxyqCtrdqQZTJZhWfQKIlZs2bh5eWFoaEhpqamSmN5165d+Pj44OfnR+fOnalTpw6ffvopP//8s0r+ss6pss+FhIQE+vXrx5QpU1i2bBn169cnNDSU8ePHk5ubWyEDdc2aNfTs2ZO6desWex+X1pZsbW355Zdfyl1XEUUfvA8fPqxw20lNTa3V7U1QOyjq1TI1NVVJNzU1LbXH67fffmPDhg188MEHzJ8/n0uXLuHt7Y2Ojg5jxoyhVatWWFpaMm/ePDZt2oSBgQFr1qzhzp07pKSklFs/HR0dzMzMuHtXUS55MzOzUj92S0IYqDWAlubzeT+fN39ZnDlzhhs3bjBz5kygMPjo7t27aGlpqQRqlEVYWBheXl4MHDgQKHyhPRtoZGJiotIwYmNjS/UwFN3kpc336e7uTm5uLjKZTBmw8jRFwSVhYWHKKNy8vDwuXbrEjBkzALCzs1MbivDTTz+p7Ds5OREZGVmi0VJZSjOEiqNt27ZERkZWuJ6bN2/SpEkTNQ9zbULD4Pkixp83f2Wxs7Nj3759Kj0RYWFh1KlThyZNmpS7HG1tbbV73c7OjrCwMMaMGaNMCwsLw97eXkWuYcOGxd5HYWFhODs7M3XqVGVaWR7P4ijPc0FHR0dN/ytXrlBQUICfnx8aGoWjzCrbvW9mZlZqWymtLQ0fPpx33nmHoKAgtXGokiSRnp5e7DjUFi1aYGRkRGRkJLa2thXS9+bNm2oBmwJBYGAgkyZNUu4fOXKkUuUUFBTQrl07li9fDhS+G27evMnGjRsZM2YM2tra7N+/n/Hjx1O/fn00NTXp2bMnvXv3rlCPgp6eHvHx8eWesURHR6dSPQ5iDGoNoKMlw0BXs1J5DXQ10dGqOgM1JyeHu3fvkpyczNWrV1m+fDmenp7069eP0aNHA9CzZ086d+7MgAEDOHHiBAkJCVy4cIGPPvqo1ImnbWxs2L9/P+Hh4URERDB8+HA175Crqyuff/45165d4/Lly0yePFnNq/Q0TZs2RSaTcfjwYe7fv19s5K+mpiZRUVFERkYq5wV9GgMDA6ZMmcKsWbM4duwYkZGRTJw4kczMTMaPHw/A5MmTiY2NZdasWURHR7Nz5061mQXmzJnDhQsXmDZtGuHh4cTGxhIUFKQSJDVv3jzldSwiPz+f8PBwla1oaEFlcHNzIzRUfVqlsuoJCQnhzTffrHS9/waaxsZoWyrKXk/vWWQytC0VaNbQZO9Tp07l9u3bvP/++/zyyy8EBQWxePFiPvjgA6VRVh6srKw4ffo0d+/eVXrJZ82aRUBAABs2bCA2NhZ/f3/279+Pj49Pucq0sbHh8uXLHD9+nJiYGBYuXKg2g0V5KM9zwcrKivj4eMLDw/nzzz/JycnB2tqavLw81q9fz2+//caOHTvYuHFjqXVdvHiRVq1akZycXGE9S+Ltt99m6NChDBs2jOXLl3P58mUSExM5fPgwPXv2LDHoTENDg549exbb5tLS0tTa3O3b/wxReRHanODfp3///ir3TJHT4I8//lCR++OPPzAzMyuxHHNzc7UPVTs7O5Vhda+99hrh4eE8evSIlJQUjh07xoMHD2jevHmFdNbT08PIyKhcW2WMUxAGao0gk8loblY5z04LM/0qXdLx2LFjmJubY2Vlhbu7O2fPnmXdunUEBQUpjTuZTMbRo0fp1q0bY8eOxdbWlnfeeYfExES1Loin8ff3p169ejg7O+Ph4YGbmxtOTk4qMn5+figUCrp27crw4cPx8fEptYuvcePG+Pr6MnfuXExNTUuMmC9qGCXxySefMHjwYEaNGoWTkxO//vorx48fV0Y7Wlpasm/fPg4ePIijoyMbN25UfpUW0aZNG86fP09MTAxdu3albdu2LFq0SCV4IiUlRW3MbUZGBm3btlXZKjplzdOMGDGCW7duER0dXe56srOzOXjwoHJsUm1FJpNR/5kgt/JSf+SoGlv+tHHjxhw9epSLFy/i6OjI5MmTGT9+PAsWLKhQOX5+fpw8eRKFQqH0vA0YMIC1a9eyevVqXnnlFTZt2sTWrVvp3r17ucqcNGkSgwYNYujQoXTs2JEHDx6oeFPLS3meC4MHD8bd3R0XFxdMTEz47rvvcHR0xN/fn5UrV9K6dWsCAwNZsWJFqXVlZmYSHR393MN/ntV/586d+Pv7c/DgQd544w3atGnDkiVL8PT0LLb3pYgJEyawa9cutQ/uc+fOqbU5X19fAH788UfS0tJ46623quwcBC8HderUwdraWrnZ29tjZmamDJiEwsVwfv75Z7VYiKfp0qWL2nsgJiam2Pl6i4bFxMbGcvny5WJns6hpZNK/ERL+kpOdnU18fDzNmjUr95dC7pMCjl39s0JTTWlqyHB3aoiOlviuEKgya9Ys0tPT2bRpU7nkN2zYwIEDB0qdjLy2kJ+eTuwb3cs/1ZSGBjJdXWzOn0OzlI8UgaCySJJEx44dmTlzJsOGDStXnqFDh+Lo6Mj8+fOrTa/KvIsEtZOVK1fyySefsG3bNpo1a8bChQu5fv06kZGRyt+2R48eDBw4UOmouXTpEs7Ozvj6+vL2229z8eJFJk6cyObNmxkxYgQAe/bswcTEBEtLS27cuMH06dN57bXXlFM41iaEpVND6Ghp0NG2LuX178iAjrZ1hXEqKJaPPvqIpk2bljvARltbm/Xr11ezVlWDppERTdatK+zmL8sj+vfxJuvXC+NUUG3IZDI2b95c7tX2cnNzcXBwUI7rFwjKYvbs2bz//vu8++67tG/fnoyMDI4dO6by4REXF8eff/6p3G/fvj0HDhzgu+++o3Xr1ixdupTPPvtMaZxCYa/eqFGjaNWqFd7e3owaNapSU0z9GwgPahXwPF+tfzzK4eeYtFI9qZoaMjra1sXUWPd5VRUIXlgyQkK54+1d6EkFVW/q34apTE+PJuvXY/h6l2JKEAheboQHVfAyIaL4axhTY13cnRpy+342cXczVeZHNdDVpIWZPpYmemgLz6ngP45h19exOX+OtINBpH67Q2V+VG1FE+qPHEXdgQPQrFOnBrUUCAQCQVUgPKhVQFV9tUqSRO4TiSf5ElqaMnS0ZDUW5CEQ1GYkSSL/0SMKHmeiYaCPprGxaCuC/zzCgyp4mRAe1FqETCZDV1tW7ZPwCwQvOjKZrHCFqCqahF8gEAgEtQvRbywQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiQJMlMhNwN0DEG/fsWXeBQI/gtIEmRnw5M80NIGPT3RVgQCgeAlQnhQawNZj+CnDbCuLXzaHNa2Kfy7rm1hetajmtawXGzevBmFQoGGhgafffZZlZSZkJCATCYjPDy8Ssp7Hs6dO4dMJuPRo0c1rYoap0+fxs7Ojvz8/LKFn6JTp061cgWREsnJgRvXYddO2B4AOwML/+7aWZiek1PTGgpeAEaNGqW2dHFZREZG0qRJEx4/flxNWgkEgqcRBmpN8+sp8LeHY/PgYYLqsYcJhen+9oVyVYyXlxcyWeFUVtra2piamtKrVy+2bNlS7hWJikhPT2fatGnMmTOH5ORk3n333SrXF0o2EovOZfLkyWp53nvvPWQyGV5eXtWiU0UICAjA2Ni4xONP/yY6OjpYW1vzv//9r8wVa2bPns2CBQvQ1NRU1lNUjoaGBubm5gwdOpSkpCSVfAsWLGDu3LkV/r1rhNtJ8O12uBAG6emqx9LTC9O/3V4oV8V4eXkxYMCAKi/3v8b9+/eZMmUKlpaW6OrqYmZmhpubG2FhYcq2Xdp27tw5oHBlpk8//RQnJycMDAyoW7cujo6OLFiwgN9//71UHSIiIjh69Cje3t7KtO7duyvr0NPTw9bWlhUrVvD0LIz29vZ06tQJf3//ark2AoFAFWGg1iS/noLAtyEvC5D+3p7m77S8rEK5ajBS3d3dSUlJISEhgeDgYFxcXJg+fTr9+vUr9zJ+AElJSeTl5dG3b1/Mzc3R19evcl3LQqFQsGvXLrKyspRp2dnZ7Ny5E0tLy39dn8pS9JvExsby4YcfsmTJEj799NMS5UNDQ4mLi2Pw4MEq6UZGRqSkpJCcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uFrOpcq4nQTBR6Gse/LJk0K5ajBSBc/P4MGDuXbtGtu2bSMmJoZDhw7RvXt3Hjx4gLOzMykpKcrt7bffVraFos3Z2ZmcnBx69erF8uXL8fLy4ocffuDGjRusW7eOP//8s8wlfNevX8+QIUMwNDRUSZ84cSIpKSlER0czb948Fi1axMaNG1Vkxo4dy4YNGyr0bBQIBJVDGKg1RdYj2D367+Uay/JeFRTK7R5d5d39RV6Mxo0b4+TkxPz58wkKCiI4OJiAgACl3KNHj5gwYQImJiYYGRnh6upKREQEUOitc3BwAKB58+bIZDISEhKIi4vD09MTU1NTDA0Nad++PadOqRrZMpmMgwcPqqQZGxur1F1EQkICLi4uANSrV0/NK+rk5IRCoWD//v3KtP3792NpaUnbtm1VysrJycHb25tGjRqhp6fH66+/zqVLl1Rkjh49iq2tLXK5HBcXFxISEtR0Cg0NpWvXrsjlchQKBd7e3s/dBVj0mzRt2pQpU6bQs2dPDh06VKL8rl276NWrl9rE3DKZDDMzM8zNzXF2dmb8+PFcvHiR9Ke8j5qamvTp04ddu3Y9l87VSk4OnDiuurRpaUhSofy/2N3v7++Pg4MDBgYGKBQKpk6dSkZGhvJ4kef8+PHj2NnZYWhoqDS+injy5Ane3t4YGxvToEED5syZw5gxY1Q8t1ZWVmrDZ1599VWWLFlSbl0AvvrqKxQKBfr6+gwcOBB/f381z35QUBBOTk7o6enRvHlzfH19SzXMirzMvr6+yufE5MmTyc3NBQqfISEhIaxcuRIXFxeaNm1Khw4dmDdvHv3790dHRwczMzPlJpfLlW2haNPR0WHNmjWEhoZy5swZvL29ee2117C0tOSNN95g48aNpXbd5+fns3fvXjw8PNSO6evrK9vd2LFjadOmDSdPnlSR6dWrF6mpqZw/f77EOgQCQdUgDNSaIuI7yMukbOO0iIJC+YjqNyRcXV1xdHRUMfSGDBnCvXv3CA4O5sqVKzg5OdGjRw9SU1MZOnSo0vC8ePEiKSkpKBQKMjIy6NOnD6dPn+batWu4u7vj4eGh1s1cXhQKhXK8ZHR0NCkpKaxdu1ZFZty4cWzdulW5v2XLFsaOHatW1uzZs9m3bx/btm3j6tWrWFtb4+bmRmpqKgC3b99m0KBBeHh4EB4ezoQJE5g7d65KGXFxcbi7uzN48GCuX7/O7t27CQ0NZdq0aZU6v5KQy+XKl3xxhISE0K5du1LLuHfvHgcOHEBTU1M5DKCIDh06EBISUiW6Vgsx0WV7Tp/lyZPCfP8SGhoarFu3jlu3brFt2zbOnDnD7NmzVWQyMzNZvXo1O3bs4IcffiApKQkfHx/l8ZUrVxIYGMjWrVsJCwsjPT1d7eOtKnQJCwtj8uTJTJ8+nfDwcHr16sWyZctUyggJCWH06NFMnz6dyMhINm3aREBAgJrcs5w+fZqoqCjOnTvHd999x/79+/H19QXA0NAQQ0NDDh48SM5zfDx899139OrVS+2js4jSVhS7fv06aWlppbYXSZIICQnhl19+QUdHR+WYjo4Or776au1uLwLBS4IwUGsCSYKfN1Uu788by+9Jeg5atWql9BiGhoZy8eJF9uzZQ7t27bCxsWH16tUYGxuzd+9e5HI5DRo0AMDExAQzMzM0NTVxdHRk0qRJtG7dGhsbG5YuXUqLFi1K9QaWhqamJvXr1wegUaNGmJmZUbduXRWZkSNHEhoaSmJiIomJiYSFhTFy5EgVmcePH7NhwwY+/fRTevfujb29PV999RVyuZxvvvkGgA0bNtCiRQv8/Pxo2bIlI0aMUBvDumLFCkaMGMGMGTOwsbHB2dmZdevWsX37drKzsyt1jk8jSRKnTp3i+PHjuLq6liiXmJiIhYWFWnpaWhqGhoYYGBhgamrK2bNnee+99zAwMFCRs7Cw4Pbt27VzHKokwc0blct788a/0lYAZsyYgYuLC1ZWVri6uvLxxx/z/fffq8jk5eWxceNG2rVrh5OTE9OmTeP06dPK4+vXr2fevHkMHDiQVq1a8fnnn5c6Xrmyuqxfv57evXvj4+ODra0tU6dOpXfv3ipl+Pr6MnfuXMaMGUPz5s3p1asXS5cuZdOm0p9bOjo6bNmyhVdeeYW+ffvyv//9j3Xr1lFQUICWlhYBAQFs27YNY2NjunTpwvz587l+/XqFzi8mJoaWLVuqpA0cOFBpADs7O5eYNzExEU1NTRo1aqR27Msvv8TQ0BBdXV26detGQUGByjjVIiwsLEhMTKyQzgKBoOKIaaZqgsxUeBhfiYxSYb6sh4VTUFUjkiQpPRERERFkZGQojdAisrKyiIuLK7GMjIwMlixZwpEjR0hJSeHJkydkZWVV2oNaHkxMTOjbty8BAQFIkkTfvn1p2LChikxcXBx5eXl06dJFmaatrU2HDh2IiooCICoqio4dO6rk69y5s8p+REQE169fJzAwUJkmSRIFBQXEx8djZ2dXqXM4fPgwhoaG5OXlUVBQwPDhw1W6cJ8lKyur2HW369Spw9WrV8nLyyM4OJjAwMBiPWByuZyCggJycnKQy+WV0rnayM5WD4gqL+nphd38/8Ka5KdOnWLFihX88ssvpKen8+TJE7Kzs8nMzFSOx9bX16dFixbKPObm5ty7dw8o/Jj4448/6NChg/K4pqYmr732WoU/HMrSJTo6moEDB6rk6dChA4cPH1buR0REEBYWpnK/5Ofnq53Tszg6Oqoc69y5MxkZGdy+fZumTZsyePBg+vbtS0hICD/99BPBwcGsWrWKr7/++rmCGL/88kseP37MunXr+OGHH0qUy8rKQldXt1gv64gRI/joo494+PAhixcvxtnZuVhjVy6Xk5mZWWldBQJB+RAGak2Qm1G2TGnk/FXtBmpUVBTNmjUDCg1Nc3NzZQTt05Tm4fHx8eHkyZOsXr0aa2tr5HI5b731lkp3tUwmU4mUhUJP0/Mwbtw4ZTf7F1988VxllUZGRgaTJk0q1svyPEFZLi4ubNiwAR0dHSwsLNDSKr2ZNmzYkIcPH6qla2hoYG1tDYCdnR1xcXFMmTKFHTt2qMilpqZiYGBQ+4xTKJzn9HnIy612AzUhIYF+/foxZcoUli1bRv369QkNDWX8+PHk5uYqDTZtbW2VfMXd+2WhoaFRanspry5lkZGRga+vL4MGDVI7VtzHUEXQ09OjV69e9OrVi4ULFzJhwgQWL15cbgPVxsaG6GjV4Rvm5uYAyh6WkmjYsCGZmZnk5uaqdd/XrVtX2V6+//57rK2t6dSpEz179lSRS01NVfnQEAgE1YPo4q8JdAzLlikN3TpVo0cJnDlzhhs3biijwp2cnLh79y5aWlpYW1urbM96J58mLCwMLy8vBg4ciIODA2ZmZmqBRiYmJiqBIrGxsaV6J4peKqXN9+nu7k5ubi55eXm4ubmpHW/RogU6OjqEhYUp0/Ly8rh06RL29vZAoUF38eJFlXw//fSTyr6TkxORkZFq18Ta2lrt5VcRDAwMsLa2xtLSskzjFKBt27ZERkaWKTd37lx2797N1atXVdJv3rxZ4ni+GkdLu2yZ0tCu/O9QXq5cuUJBQQF+fn506tQJW1vbMqc6epa6detiamqqEqiXn5+v9ls9217S09OJj/+nN6Y8urRs2VItIPDZfScnJ6Kjo4u9tzU0Sn5tREREqMyi8dNPP2FoaIhCoSgxj729fYUCC4cNG8bJkye5du1aufMU8eqrrwKU2V4MDQ2ZPn06Pj4+ah8Etbq9CAQvEcJArQn060O9ZkBFV76RFeaT16syVXJycrh79y7JyclcvXqV5cuX4+npSb9+/Rg9ejQAPXv2pHPnzgwYMIATJ06QkJDAhQsX+Oijj7h8+XKJZdvY2LB//37Cw8OJiIhg+PDhat2Vrq6ufP7551y7do3Lly8zefJkNU/T0zRt2hSZTMbhw4e5f/++WnQyFHaNRkVFERkZqRYQBIUG4JQpU5g1axbHjh0jMjKSiRMnkpmZyfjx4wGYPHkysbGxzJo1i+joaHbu3Kk2s8CcOXO4cOEC06ZNIzw8nNjYWIKCglSCpObNm6e8jkXk5+cTHh6ushUNLagMbm5uhIaGlimnUCgYOHAgixYtUkkPCQnhzTffrHT91YqeHhgZVS6vkRHo6laZKmlpaWq/2+3bt7G2tiYvL4/169fz22+/sWPHDrXpicrD+++/z4oVKwgKCiI6Oprp06fz8OFDle5oV1dXduzYQUhICDdu3GDMmDEq93h5dHn//fc5evQo/v7+xMbGsmnTJoKDg1XqWbRoEdu3b8fX15dbt24RFRXFrl27WLBggVJm9OjRzJs3T6Xs3Nxcxo8fT2RkJEePHmXx4sVMmzYNDQ0NHjx4gKurK99++y3Xr18nPj6ePXv2sGrVKjw9Pct9nWbOnEnnzp3p0aMHa9eu5erVq8THx3P8+HGCg4OLbfNFmJiY4OTkVK72MmnSJGJiYlQWskhISCA5OVnNqyoQCKoeYaDWBDIZdJxUubwdJ1fpko7Hjh3D3NwcKysr3N3dOXv2LOvWrSMoKEj5oJfJZBw9epRu3boxduxYbG1teeedd0hMTMTU1LTEsv39/alXrx7Ozs54eHjg5uaGk5OTioyfnx8KhYKuXbsyfPhwfHx8Su2GbNy4sTKAw9TUtMSIeSMjI4xKMWw++eQTBg8ezKhRo3BycuLXX3/l+PHj1KtXaPxbWlqyb98+Dh48iKOjY7HT17Rp04bz588TExND165dadu2LYsWLVIJWEpJSVEbc5uRkUHbtm1VtuKmvSkvI0aM4NatW2rdnsUxc+ZMjhw5ovQOJycnc+HChWJnOqgVyGTQ2qFyeVs7VGlbOXfunNrv5uvri6OjI/7+/qxcuZLWrVsTGBjIihUrKlz+nDlzGDZsGKNHj6Zz584YGhri5uam0qU+b9483njjDfr160ffvn0ZMGCASndzeXTp0qULGzduxN/fH0dHR44dO8bMmTNV6nFzc+Pw4cOcOHGC9u3b06lTJ9asWUPTpk2VMklJSSreXIAePXpgY2NDt27dGDp0KP3791eOnzY0NKRjx46sWbOGbt260bp1axYuXMjEiRP5/PPPy32d9PT0OH36NHPmzGHr1q28/vrr2NnZMWPGDLp06VLmzAcTJkxQGTdeEvXr12f06NEsWbJE+WH93Xff8eabb6pcB4FAUD3IpIoOghKokZ2dTXx8PM2aNSv/+KysR4UrROVlUa6ppmQaoCWHDyJBbvwc2gpeRmbNmkV6enqZUdbPMmfOHB4+fMjmzZurSbMqICencIWoikw1paUFI0dXqQf136agoAA7Ozvefvttli5dWq11TZw4kV9++eW5pk/y8vLi0aNHlZoa698kKyuLli1bsnv3brXAx9LIzc3FxsaGnTt3qgRY1iYq9S4SCGopwoNaU8iNYej2vz08Zf0MGoAMhu4QxqmgWD766COaNm1a4YjvRo0aVbvx89zo6sKbbuX3hspk8Kb7C2ecJiYm8tVXXxETE8ONGzeYMmUK8fHxDB8+vMrrWr16NREREfz666+sX7+ebdu2MWbMmCqvpzYil8vZvn07f/75Z4XyJSUlMX/+/FprnAoELxvCg1oFPNdX66+nCleIyisKDHr65/j7haytX2icWveoCnUFgheT20mFK0SV5knV0io0TksJyqmt3L59m3feeYebN28iSRKtW7fmk08+oVu3blVe19tvv825c+f466+/aN68Oe+//z6TJ09+rjJfFA/qy4zwoApeJoSBWgU890Mh61HhClE/b1SdH7Ves8Ixp68OA726JWYXCP4z5OQUrhB184bq/KhGRoVjTm1bvnCeU4GgqhAGquBlQhioVUCVPRQkqXAS/py/CqeSkter0iAPgeClQZIKjdW83MKppHR1RVsR/OcRBqrgZUJM1F+bkMkKp6Cq5kn4BYIXHpmscAoq8RIWCASClxIRJCUQCAQCgUAgqFUIA1UgEAgEAoFAUKsQBqpAIBAIBAKBoFYhxqDWJiSpcLqp/FzQ1CmcXkoEfggEakiSRPbjPPKy89HW00TPQFtlqU6BQCAQvNgID2ptIC8LksLgwmr44WMIW1X498LqwvS8rJrWsFxs3rwZhUKBhoYGn332WZWUmZCQgEwmIzw8vErKex7OnTuHTCbj0aNHNa3Kf5aczDwiTt/m20U/scUnlB0LfmSLTyjfLvqJiNO3ycnMq2kVSyQgIABjY2Pl/pIlS3j11VdrTJ8XmdOnT2NnZ0d+fn6F8nXq1Il9+/ZVk1YCgaAqEQZqTfMgBkI/gZjDkJWqeiwrtTA99JNCuWrAy8sLmUyGTCZDW1sbU1NTevXqxZYtWyq0KlF6ejrTpk1jzpw5JCcn8+6771aLviUZiUXnUdxk4++99x4ymQwvL69q0akiBAQEIJPJsLOzUzu2Z88eZDIZVlZWavIymQwNDQ2aNGnC2LFjuXfvnlKm6PjT2+uvv65S9tmzZ+nTpw8NGjRAX18fe3t7PvzwQ5KTk6vtXKuapFsPCJh3gdA9saTfV/1oS7+fReieWALmXSDp1oMqr/v+/ftMmTIFS0tLdHV1MTMzw83NjbCwsEqX6ePjw+nTp6tQy+qhaDUrCwsL9PT0aNKkCZ6envzyyy9KmaL77qefflLJm5OTQ4MGDZDJZJw7d07l2NmzZ+nXrx8mJibo6enRokULhg4dyg8//FCmTrNnz2bBggVoamoC6u3E3NycoUOHkpSUpJJvwYIFzJ07t8IrrgkEgn8fYaDWJA9i4FoA5Jfh9cnPK5SrJiPV3d2dlJQUEhISCA4OxsXFhenTp9OvXz+elHP986SkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/xgv2dnZ7Ny5E0tLy39dn5IwMDDg3r17/Pjjjyrp33zzTbF6GhkZkZKSwp07d/jqq68IDg5m1KhRKjJbt24lJSVFuR06dEh5bNOmTfTs2RMzMzP27dtHZGQkGzduJC0tDT8/v+o5ySom6dYDDn8RwZPc0j1mT3LzOfxFRJUbqYMHD+batWts27aNmJgYDh06RPfu3XnwoPL1GBoa0qBBgyrUsurJy8ujV69epKWlsX//fqKjo9m9ezcODg5qH4kKhYKtW7eqpB04cABDQ0O1cr/88kt69OhBgwYN2L17N9HR0Rw4cABnZ2dmzpxZqk6hoaHExcUxePBglfSidpKcnMy+ffuIjo5myJAhKjK9e/fmr7/+Ijg4uAJXQSAQ1ATCQK0p8rLgeuDfO2WtlfD38euB1dLdX+QRaty4MU5OTsyfP5+goCCCg4MJCAgA4NGjR0yYMAETExOMjIxwdXUlIiICKPReODg4ANC8eXNkMhkJCQnExcXh6emJqakphoaGtG/fnlOnTqnULZPJ1JZGNDY2Vtb7NAkJCbi4uABQr149Na+ok5MTCoWC/fv3K9P279+PpaUlbdu2VSkrJycHb29vGjVqhJ6eHq+//jqXLl1SkTl69Ci2trbI5XJcXFxISEhQ0yk0NJSuXbsil8tRKBR4e3vz+PHjEq81gJaWFsOHD2fLli3KtDt37nDu3Lli112XyWSYmZlhYWFB79698fb25tSpUyqGuLGxMWZmZsqtfv36ynK9vb3x9vZmy5YtdO/eHSsrK7p168bXX3/NokWLStW1NpCTmUfw5ptIEuVqKpIEwZtvVll3/6NHjwgJCWHlypW4uLjQtGlTOnTowLx58+jfv79Szt/fHwcHBwwMDFAoFEydOpWMjIwSyy2ui//rr7/Gzs4OPT09WrVqxZdffqk8VjTcZf/+/bi4uKCvr4+jo6Pah05YWBjdu3dHX1+fevXq4ebmxsOHDwEoKChgxYoVNGvWDLlcjqOjI3v37i1Rx1u3bhEXF8eXX35Jp06daNq0KV26dOHjjz+mU6dOKrJjxoxR+0DcsmULY8aMUZFLSkpixowZzJgxg23btuHq6krTpk1p06YN06dP5/LlyyXqA7Br1y569eqlNhF9UTsxNzfH2dmZ8ePHc/HiRdKfWnFMU1OTPn36sGvXrlLrEAgENY8wUGuKlKuFwVBlvnGLkArlU65Wp1ZKXF1dcXR0VBp7Q4YM4d69ewQHB3PlyhWcnJzo0aMHqampDB06VGl4Xrx4kZSUFBQKBRkZGfTp04fTp09z7do13N3d8fDwUOt2Ky8KhUI5fiw6OpqUlBTWrl2rIjNu3DgVL86WLVsYO3asWlmzZ89m3759bNu2jatXr2JtbY2bmxupqYXDLG7fvs2gQYPw8PAgPDycCRMmMHfuXJUy4uLicHd3Z/DgwVy/fp3du3cTGhrKtGnTyjyXcePG8f3335OZmQkUGvnu7u6YmpqWmVcul1NQUFAu7/aePXvIzc1l9uzZxR5/ekxkbeWXH+/yJCe/Qk3lSU4+v/x0t0rqNzQ0xNDQkIMHD5KTk1OinIaGBuvWrePWrVts27aNM2fOlHjdiyMwMJBFixaxbNkyoqKiWL58OQsXLmTbtm0qch999BE+Pj6Eh4dja2vLsGHDlPdCeHg4PXr0wN7enh9//JHQ0FA8PDyUYzVXrFjB9u3b2bhxI7du3WLmzJmMHDmS8+fPF6uTiYkJGhoa7N27t8zxnq+99hpWVlbKNpqUlMQPP/yg5u3ft28feXl5JV6bsoLdQkJCaNeuXaky9+7d48CBA2hqaiqHARTRoUMHQkJCSs0vEAhqHmGg1gSSBLcvVC7v7QuF+f8FWrVqRUJCAqGhoVy8eJE9e/bQrl07bGxsWL16NcbGxuzduxe5XK7sqjQxMcHMzAxNTU0cHR2ZNGkSrVu3xsbGhqVLl9KiRQuV7ueKoKmpqfQMNmrUCDMzM+rWrasiM3LkSEJDQ0lMTCQxMZGwsDBGjhypIvP48WM2bNjAp59+Su/evbG3t+err75CLpfzzTffALBhwwZatGiBn58fLVu2ZMSIEWpjWFesWMGIESOYMWMGNjY2ODs7s27dOrZv3052dnap59K2bVuaN2/O3r17kSSJgIAAxo0bV+Y1iI2NZePGjbRr1446deoo04cNG6Y0pIqMqSJ5IyMjzM3Nyyy7NiJJEtfP3alU3utn71AVKzlraWkREBDAtm3bMDY2pkuXLsyfP5/r16+ryM2YMQMXFxesrKxwdXXl448/5vvvvy93PYsXL8bPz49BgwbRrFkzBg0axMyZM9m0aZOKnI+PD3379sXW1hZfX18SExP59ddfAVi1ahXt2rXjyy+/xNHRkVdeeYVp06bRsGFDcnJyWL58OVu2bMHNzY3mzZvj5eXFyJEj1eooonHjxqxbt45FixZRr149XF1dWbp0Kb/99lux8uPGjVP2DAQEBNCnTx9MTExUZGJiYjAyMsLMzEyZtm/fPpX798aNGyVep8TERCwsLNTS09LSMDQ0xMDAAFNTU86ePct7772HgYGBipyFhQW3b98W41AFglqOMFBrgrxM9YCo8pKVWpj/X0CSJGQyGREREWRkZNCgQQOVl0h8fDxxcXEl5s/IyMDHxwc7OzuMjY0xNDQkKiqq0h7U8mBiYkLfvn0JCAhg69at9O3bl4YNG6rIxMXFkZeXR5cuXZRp2tradOjQgaioKACioqLo2LGjSr7OnTur7EdERBAQEKByTdzc3CgoKCA+Pr5MXYu8vefPn+fx48f06dOnWLmiF6++vj4tW7bE1NSUwMBAFZk1a9YQHh6u3Hr16gX88xu+qGQ/zlMLiCov6fezyHlcvjHUZTF48GB+//13Dh06hLu7O+fOncPJyUllKMqpU6fo0aMHjRs3pk6dOowaNYoHDx4oveSl8fjxY+Li4hg/frzK/fTxxx+rtbE2bdoo/1/04VEUNFfkQS2OX3/9lczMTHr16qVSx/bt20ttx++99x53794lMDCQzp07s2fPHl555RVOnjypJjty5Eh+/PFHfvvtt1I/up69J93c3AgPD+fIkSM8fvy4VG9tVlZWsevM16lTh/DwcC5fvoyfnx9OTk4sW7ZMTa6oB6I0b7hAIKh5xDyoNUF+bhXkNyhT7HmJioqiWbNmZGRkYG5urhaFC6V3Efv4+HDy5ElWr16NtbU1crmct956i9zcf85fJpOpebny8p5v7OC4ceOU3exffPHFc5VVGhkZGUyaNAlvb2+1Y+UJyhoxYgSzZ89myZIljBo1Ci2t4ptjnTp1uHr1qjI6WS6Xq8mYmZlhbW2tlm5ra0taWhopKSkvpBc1L7ti0wg9S272E/QMtatEFz09PXr16kWvXr1YuHAhEyZMYPHixXh5eZGQkEC/fv2YMmUKy5Yto379+oSGhjJ+/Hhyc3PLDBosGqv61VdfqX0YPdtFra39z/kUGXpF3sDi7o1n6zhy5AiNGzdWOaarq1uqfnXq1MHDwwMPDw8+/vhj3Nzc+Pjjj5UfQkU0aNCAfv36MX78eLKzs5VBSU9jY2NDWload+/eVXpRDQ0Nsba2LrENPE3Dhg2VY2qfRkNDQ9kG7OzsiIuLY8qUKezYsUNFLjU1FQMDg1KvlUAgqHmEB7Um0NSp2fzl4MyZM9y4cYPBgwfj5OTE3bt30dLSwtraWmV71jv5NGFhYXh5eTFw4EAcHBwwMzNTCzQyMTEhJSVFuR8bG1uqx0lHp/DcS/OwuLu7k5ubS15eHm5ubmrHW7RogY6OjsoUQXl5eVy6dAl7e3ug8AV38eJFlXzPTqHj5OREZGSk2jWxtrZW6lka9evXp3///pw/f77U7v2iF2/z5s0r/FJ966230NHRYdWqVcUer+1zumrraZYtVAo6etX3DW5vb68MiLty5QoFBQX4+fnRqVMnbG1t+f3338tdlqmpKRYWFvz2229q91KzZs3KXU6bNm1KnLrK3t4eXV1dkpKS1OpQKBTlrkMmk9GqVasSgwHHjRvHuXPnGD16tJpxDYX3pLa2NitXrix3nU/Ttm1bIiMjy5SbO3cuu3fv5upV1XH7N2/eVAuaFAgEtQ/hQa0JtPVBXr9y3fzy+oX5q5CcnBzu3r1Lfn4+f/zxB8eOHWPFihX069eP0aNHo6GhQefOnRkwYACrVq1SvnyPHDnCwIEDSwxYsLGxYf/+/Xh4eCCTyVi4cKHauC9XV1c+//xzOnfuTH5+PnPmzFHxED1L06ZNkclkHD58mD59+iCXy9WmsdHU1FR21Rf3gjQwMGDKlCnMmjWL+vXrY2lpyapVq8jMzGT8+PEATJ48GT8/P2bNmsWECRO4cuWK2swCc+bMoVOnTkybNo0JEyZgYGBAZGQkJ0+e5PPPPwdg3rx5JCcns3379mLPJyAggC+//LLaphtSKBSsWbOGadOmkZ6ezujRo7GysuLOnTts374dQ0PDWj3VlJ6BNkYm8kp18xuZyNE1eP5H3IMHDxgyZAjjxo2jTZs21KlTh8uXL7Nq1So8PT0BsLa2Ji8vj/Xr1+Ph4UFYWBgbN26sUD2+vr54e3tTt25d3N3dycnJ4fLlyzx8+JAPPvigXGXMmzcPBwcHpk6dyuTJk9HR0eHs2bMMGTKEhg0b4uPjw8yZMykoKOD1118nLS2NsLAwjIyMlNH2rVq1YsWKFQwcOJDw8HAWL17MqFGjsLe3R0dHh/Pnz7NlyxbmzJlTrA7u7u7cv38fIyOjYo9bWlri5+fH9OnTSU1NxcvLi2bNmpGamsq3334LFN9ui3Bzc1MLHCsOhULBwIEDWbRoEYcPH1amh4SE8Oabb5aZXyAQ1CzCg1oTyGSgcK5cXoVzlS9/euzYMczNzbGyssLd3Z2zZ8+ybt06goKC0NTURCaTcfToUbp168bYsWOxtbXlnXfeITExsdSoc39/f+rVq4ezszMeHh64ubnh5OSkIuPn54dCoaBr164MHz4cHx+fUrtDGzdujK+vL3PnzsXU1LTEiHkjI6MSX5AAn3zyCYMHD2bUqFE4OTnx66+/cvz4cerVqwcUvkT37dvHwYMHcXR0ZOPGjSxfvlyljDZt2nD+/HliYmLo2rUrbdu2ZdGiRSoBHCkpKaWOuX06wKy6mDp1KidOnCA5OZmBAwfSqlUrJkyYgJGRET4+PtVa9/Mik8lo071JpfK2cWlSJeNvDQ0N6dixI2vWrKFbt260bt2ahQsXMnHiROWHiKOjI/7+/qxcuZLWrVsTGBjIihUrKlTPhAkT+Prrr9m6dSsODg688cYbBAQEVMiDamtry4kTJ4iIiKBDhw507tyZoKAgZdf50qVLWbhwIStWrMDOzg53d3eOHDmiUkd0dDRpaWkANGnSBCsrK3x9fenYsSNOTk6sXbsWX19fPvroo2J1kMlkNGzYsNRehPfff58TJ05w//593nrrLWxsbOjTpw/x8fEcO3ZMOW1dcYwYMYJbt24RHR1d5vWYOXMmR44cUfaGJCcnc+HChWJn9hAIBLULmVQVYa7/cbKzs4mPj6dZs2bFDt4vlryswhWi8vMo3/w5MtDUhtfngrYYOyX475CTmUfAvAuFk/SXs6lo6WjitcIZXf2qGX8qqF3MmjWL9PT0EmcfKIk5c+bw8OFDNm/eXE2a1SyVehcJBLUU4UGtKbTl0GbE3ztleXn+Pt5mhDBOBf85dPW16f1u68KOg3I0FZkMek9qLYzTl5iPPvqIpk2bVniqqEaNGrF06dJq0kogEFQlwoNaBTzXV+uDmMIVokqL7NfUKTROG9g+n6ICwQtM0q0HBG++WThpfwlo6WrSe1JrLO1r9xKiAkF1IDyogpcJYaBWAc/9UMjLKlwh6vYF1cApef3CMacWr4GWeNgIBDmZefzy012un72jEjhlZCKnjUsTWnU2R1cuYj8F/02EgSp4mRBP8tqAthwsuxQao3mZhd5UTZ3CaP0XeJJ1gaCq0dXXxtFVQRuXJuQ8fkJu9hN09LTQNdB6oRckEAgEAoEqwkCtTchkoGPAvzEJv0DwIiOTydAz1K6ySfgFAoFAULsQQVICgUAgEAgEglqFMFAFAoFAIBAIBLUKYaAKBAKBQCAQCGoVYgxqLUKSJB7lPCLzSSb6WvoY6xqLwA+BoBgkSeJJbj75+QVoamqgpaMp2opAIBC8RAgPai0gPTedbyO/pe+BvnTb3Q33fe50292Nvgf68m3kt6Tnpte0iuVi8+bNKBQKNDQ0+Oyzz6qkzISEBGQyGeHh4VVS3vNw7tw5ZDIZjx49qmlV/rM8ycvn97gHXD31K5eOxXD15N9/T/3K73EPeJJX8hyp/1UCAgIwNjauaTX+M5T3en/zzTe8+eab5S63U6dO7Nu37zk0EwheLISBWsOEJYfRc09PVl1axZ2/7qgcu/PXHVZdWkXPPT0JSw6rlvq9vLyQyWTIZDK0tbUxNTWlV69ebNmypUKrtKSnpzNt2jTmzJlDcnIy7777brXoW5KRWHQekydPVsvz3nvvIZPJ8PLyqhadKkJAQIDyemtoaNCkSRPGjh3LvXv3VOTOnj1Lnz59aNCgAfr6+tjb2/Phhx+SnJyslJEkic2bN9OxY0cMDQ0xNjamXbt2fPbZZ2RmZv7bp1btPLyXweXjMSTc/IOczDyVYzmZeSTc/IPLx2N4eC+jyuu+f/8+U6ZMwdLSEl1dXczMzHBzcyMsrHraZVUydOhQYmJilPtF96CdnZ2a7J49e5DJZFhZWVWoDplMxsGDB59T0+opu3v37syYMaPK9KkKsrOzWbhwIYsXL1amLVmyhFdffbXEPAsWLGDu3LkVXj1LIHhREQZqDRKWHMbU01PJfpKN9Pe/pylKy36SzdTTU6vNSHV3dyclJYWEhASCg4NxcXFh+vTp9OvXjydPnpSrjKSkJPLy8ujbty/m5ubo6+tXi66loVAo2LVrF1lZ/0zgnp2dzc6dO7G0tPzX9SkJIyMjUlJSuHPnDl999RXBwcGMGjVKeXzTpk307NkTMzMz9u3bR2RkJBs3biQtLQ0/Pz+l3KhRo5gxYwaenp6cPXuW8PBwFi5cSFBQECdOnKiJU6s2Ht7LIOqnJAryS19XpCBfIuqnpCo3UgcPHsy1a9fYtm0bMTExHDp0iO7du/PgwYMqraeqycvLQy6X06hRI5V0AwMD7t27x48//qiS/s0339RoW8nLyytbqIbIzS1ltb8KsnfvXoyMjOjSpUu58/Tu3Zu//vqL4ODgKtNDIKjNCAO1hkjPTWfmuZlIkrph+iwSEpIkMfPczGrp7i/yCDVu3BgnJyfmz59PUFAQwcHBBAQEAPDo0SMmTJiAiYkJRkZGuLq6EhERARR6ZBwcHABo3rw5MpmMhIQE4uLi8PT0xNTUFENDQ9q3b8+pU6dU6i7OO2JsbKys92kSEhJwcXEBoF69empeUScnJxQKBfv371em7d+/H0tLS9q2batSVk5ODt7e3jRq1Ag9PT1ef/11Ll26pCJz9OhRbG1tkcvluLi4kJCQoKZTaGgoXbt2RS6Xo1Ao8Pb25vHjxyVe66JzNjMzw8LCgt69e+Pt7c2pU6fIysrizp07eHt74+3tzZYtW+jevTtWVlZ069aNr7/+mkWLFgHw/fffExgYyHfffcf8+fNp3749VlZWeHp6cubMGeV1ehl4kpdP9MXblNFM/kGC6Iu3q6y7/9GjR4SEhLBy5UpcXFxo2rQpHTp0YN68efTv319FrqQ2Av94yHbs2IGVlRV169blnXfe4a+//lLK7N27FwcHB+RyOQ0aNKBnz57K+6mgoID//e9/NGnSBF1dXV599VWOHTumzFs0HGb37t288cYb6OnpERgYWGyXs5aWFsOHD2fLli3KtDt37nDu3DmGDx+udg02bNhAixYt0NHRoWXLluzYsUN5rMjbOnDgQDXva2n5oLAtbNiwgf79+2NgYMCyZcvK8Yv8w4MHDxg2bBiNGzdGX18fBwcHvvvuO+VxLy8vzp8/z9q1a5U9F0Xt+ObNm/Tu3RtDQ0NMTU0ZNWoUf/75pzJv9+7dmTZtGjNmzKBhw4a4ubkB4O/vj4ODAwYGBigUCqZOnUpGRsU+iHbt2oWHh0eF8mhqatKnTx927dpVoXwCwYuKMFBriEO/HlJ6TstDkSf1/+L+r5o1K8TV1RVHR0elsTdkyBDu3btHcHAwV65cwcnJiR49epCamsrQoUOVhufFixdJSUlBoVCQkZFBnz59OH36NNeuXcPd3R0PDw+SkpIqpZNCoVCOwYqOjiYlJYW1a9eqyIwbN46tW7cq97ds2cLYsWPVypo9ezb79u1j27ZtXL16FWtra9zc3EhNLVxq9vbt2wwaNAgPDw/Cw8OZMGECc+fOVSkjLi4Od3d3Bg8ezPXr19m9ezehoaFMmzatQucll8spKCjgyZMn7Nmzh9zcXGbPnl2sbJGhERgYSMuWLfH09FSTkclk1K1bt0I61GbuJT0q03P6LAX5EveTHlVJ/YaGhhgaGnLw4EFycnJKlCutjRQRFxfHwYMHOXz4MIcPH+b8+fN88sknAKSkpDBs2DDGjRtHVFQU586dY9CgQRStRr127Vr8/PxYvXo1169fx83Njf79+xMbG6uix9y5c5k+fTpRUVFKo6o4xo0bx/fff68cDhIQEIC7uzumpqYqcgcOHGD69Ol8+OGH3Lx5k0mTJjF27FjOnj0LoPyw27p1KykpKcr9svIVsWTJEgYOHMiNGzcYN25cyT9EMWRnZ/Paa69x5MgRbt68ybvvvsuoUaO4ePGi8pp17tyZiRMnkpKSonw2PXr0CFdXV9q2bcvly5c5duwYf/zxB2+//bZK+du2bUNHR4ewsDA2btwIgIaGBuvWrePWrVts27aNM2fOlNheSyI0NJR27dpVKA9Ahw4dCAkJqXA+geCFRBI8N1lZWVJkZKSUlZVVLvmCggKp977ekkOAg9Q6oHW5N4cAB6n3vt5SQUFBlek+ZswYydPTs9hjQ4cOlezs7KSQkBDJyMhIys7OVjneokULadOmTZIkSdK1a9ckQIqPjy+1vldeeUVav369ch+QDhw4oCJTt25daevWrZIkSVJ8fLwESNeuXZMkSZLOnj0rAdLDhw+LPY979+5Jurq6UkJCgpSQkCDp6elJ9+/flzw9PaUxY8ZIkiRJGRkZkra2thQYGKjMn5ubK1lYWEirVq2SJEmS5s2bJ9nb26vUMWfOHJW6x48fL7377rsqMiEhIZKGhkaJ98LWrVulunXrKvdjYmIkW1tbqV27dpIkSdKUKVMkIyOjYvM+jZ2dndS/f/8y5V50CgoKpMsnYqSwg7cqvF0+EVNlbWXv3r1SvXr1JD09PcnZ2VmaN2+eFBERoTxenjayePFiSV9fX0pPT1cenzVrltSxY0dJkiTpypUrEiAlJCQUq4OFhYW0bNkylbT27dtLU6dOlSTpn7by2Wefqcg8e889vf/qq69K27ZtkwoKCqQWLVpIQUFB0po1a6SmTZsq5Z2dnaWJEyeqlDlkyBCpT58+yv3i2nF5882YMaPY8y2t7NLo27ev9OGHHyr333jjDWn69OkqMkuXLpXefPNNlbTbt29LgBQdHa3M17Zt2zLr27Nnj9SgQQPl/rPX+1kePnwoAdIPP/ygkr548WLJ0dGx1LqCgoIkDQ0NKT8/v9jjFX0XCQS1GeFBrQEe5Tzi9l+3y+09LUJC4vZft0nLSasmzZ6pT5KQyWRERESQkZFBgwYNlN4kQ0ND4uPjiYuLKzF/RkYGPj4+2NnZYWxsjKGhIVFRUZX2oJYHExMT+vbtS0BAAFu3bqVv3740bNhQRSYuLo68vDyV8V/a2tp06NCBqKgoAKKioujYsaNKvs6dO6vsR0REEBAQoHJN3NzcKCgoID4+vkQd09LSMDQ0RF9fn5YtW2JqakpgYCDwzzUvC0mq2L3zovIkN18tIKq85GTmVVk3/+DBg/n99985dOgQ7u7unDt3DicnJ+VQlPK2ESsrK+rUqaPcNzc3VwbIOTo60qNHDxwcHBgyZAhfffUVDx8+BAqDEH///Xe1MYtdunRR3rNFVMQzV9TjcP78eR4/fkyfPn3UZKKiospVb2XzVcaTWER+fj5Lly7FwcGB+vXrY2hoyPHjx8t8xkRERHD27FmV36pVq1YAKr/Xa6+9ppb31KlT9OjRg8aNG1OnTh1GjRrFgwcPyh2YWDRGXk9Pr7ynqaSot6U0T75A8LIg5kGtATKfPF+E9eMnjzHGuGqUKYWoqCiaNWtGRkYG5ubmnDt3Tk2mtOlUfHx8OHnyJKtXr8ba2hq5XM5bb72lEmwgk8nUjK3nDZQYN26cspv9iy++eK6ySiMjI4NJkybh7e2tdqy0QJM6depw9epVNDQ0MDc3Ry6XK4/Z2tqSlpZGSkoK5ubmJZZha2vLL7/88nwn8AKQn/98Ecv5TwrQ1qkaXfT09OjVqxe9evVi4cKFTJgwgcWLF+Pl5VXuNqKtra1yTCaTKaOyNTU1OXnyJBcuXODEiROsX7+ejz76iJ9//pkGDRqUW08DA4Nyy44YMYLZs2ezZMkSRo0ahZbWv/9KqIi+z/Lpp5+ydu1aPvvsM+W40BkzZpQZ0JSRkYGHhwcrV65UO/Z0u3tWt4SEBPr168eUKVNYtmwZ9evXJzQ0lPHjx5Obm1uu4NAGDRogk8mUHx8VITU1FQMDA5VnhkDwsiI8qDWAvtbzRbgbaFX+gV5ezpw5w40bNxg8eDBOTk7cvXsXLS0trK2tVbZnvZNPExYWhpeXFwMHDsTBwQEzMzO1QCMTExNSUlKU+7GxsaV6InR0Cq2N/PySPWPu7u7k5uaSl5dX7Bi8oqCNp6cIysvL49KlS9jb2wNgZ2enHMdWxE8//aSy7+TkRGRkpNo1sba2VupZHBoaGlhbW9O8eXO1F81bb72Fjo4Oq1atKjZv0fRaw4cPJyYmhqCgIDUZSZJIS/t3vOzVjabm8z2iNLWq7xFnb2+vDGCqbBt5FplMRpcuXfD19eXatWvo6Ohw4MABjIyMsLCwUJvWKiwsTHnPVob69evTv39/zp8/X+L4Tzs7uzLr1dbWVmuT5cn3vISFheHp6cnIkSNxdHSkefPmKlNqQeEz41ndnJycuHXrFlZWVmq/V2kG85UrVygoKMDPz49OnTpha2vL77//XiGddXR0sLe3JzIyskL5oDCw69mAT4HgZUUYqDWAsa4xijoKZFRs5RsZMhR1FNTVrdoAmJycHO7evUtycjJXr15l+fLleHp60q9fP0aPHk3Pnj3p3LkzAwYM4MSJEyQkJHDhwgU++ugjLl++XGK5NjY27N+/n/DwcCIiIhg+fLjaHH6urq58/vnnXLt2jcuXLzN58mQ1L9PTNG3aFJlMxuHDh7l//36x0bOamppERUURGRmJpqam2nEDAwOmTJnCrFmzOHbsGJGRkUycOJHMzEzGjx8PwOTJk4mNjWXWrFlER0ezc+dOtZkF5syZw4ULF5g2bRrh4eHExsYSFBSkEiQ1b948Ro8eXeL5PItCoWDNmjWsXbuW8ePHc/78eRITEwkLC2PSpEksXboUgLfffpuhQ4cybNgwli9fzuXLl0lMTOTw4cP07NlTLRDlRUVLRxNd/ZLvh9LQ1ddGS1v9968oDx48wNXVlW+//Zbr168THx/Pnj17WLVqlTJIrbJt5Gl+/vln5W+ZlJTE/v37uX//vnK+0lmzZrFy5Up2795NdHQ0c+fOJTw8nOnTpz/X+QUEBPDnn38qu7ifZdasWQQEBLBhwwZiY2Px9/dn//79+Pj4KGWsrKw4ffo0d+/eVXoGy5PvWS5evEirVq1U5vsFiI+PJzw8XGV7/PgxNjY2Sq9zVFQUkyZN4o8//lDJa2Vlxc8//0xCQgJ//vknBQUFvPfee6SmpjJs2DAuXbpEXFwcx48fZ+zYsaV+/FpbW5OXl8f69ev57bff2LFjhzJ4qiK4ubkRGhqqlp6VlaV2nk8POQgJCanQ5P4CwYuMMFBrAJlMxvBW6lO5lIcRdiOqfEnHY8eOYW5ujpWVFe7u7pw9e5Z169YRFBSEpmbhEpJHjx6lW7dujB07FltbW9555x0SExPVIn6fxt/fn3r16uHs7IyHhwdubm44OTmpyPj5+aFQKOjatSvDhw/Hx8en1G6yxo0b4+vry9y5czE1NS0xYt7IyAgjI6MSy/nkk08YPHgwo0aNwsnJiV9//ZXjx49Tr149oLCLft++fRw8eBBHR0c2btzI8uXLVcpo06YN58+fJyYmhq5du9K2bVsWLVqEhYWFUiYlJaXCY26nTp3KiRMnSE5OZuDAgbRq1YoJEyZgZGSkfLnLZDJ27tyJv78/Bw8e5I033qBNmzYsWbIET0/PUqO3XyRkMhnmzetXKq9F8/pV0lYMDQ3p2LEja9asoVu3brRu3ZqFCxcyceJEPv/8c6WelWkjT2NkZMQPP/xAnz59sLW1ZcGCBfj5+dG7d28AvL29+eCDD/jwww9xcHDg2LFjHDp0CBsbm+c6v6IprUpiwIABrF27ltWrV/PKK6+wadMmtm7dSvfu3ZUyfn5+nDx5EoVCofTwlSffs2RmZhIdHa02zOeDDz6gbdu2Ktu1a9dYsGABTk5OuLm50b17d8zMzBgwYIBKXh8fHzQ1NbG3t8fExISkpCSlNzo/P58333wTBwcHZsyYgbGxMRoaJb8WHR0d8ff3Z+XKlbRu3ZrAwEBWrFhR8sUtgfHjx3P06FG1no6YmBi185w0aRIAycnJXLhwodhZSQSClxGZ9F+JtqhGsrOziY+Pp1mzZuUe+J6em07PPT3LPdWUBhroaulyasgpjHRKNrwEgpeNJ3n5XD4eU6GppjQ0ZbRzs60SD6pAUB0MGTIEJycn5s2bVy75OXPm8PDhQzZv3lyiTGXeRQJBbUV4UGsIIx0j1nRfUzh5dBld/TJkIIPPun8mjFPBfw4tbU1adlBQ7hExMmjVQSGMU0Gt5tNPP8XQ0LDc8o0aNVIO8REI/gsID2oV8DxfrWHJYcw8N5PsJ9kAKt7UIsNVT0uPz7p/hnNj56pTWiB4wXh4L4Poi7dL9aRqaMpo1UGBcaPyv/gFgpcF4UEVvEwIA7UKeN6HQnpuOv8X938ERgVy+6/bynRFHQUj7EbQv0V/6ujUKaUEgeC/wZO8fO4nPeL331JV5kfV1dfGonl9TCyNhedU8J9FGKiClwlhoFYBVfVQkCSJtJw0Hj95jIGWAXV161Z5QJRA8DIgSRJP8vLJf1KAppYGWtqaoq0I/vMIA1XwMiEm6q9CntfWl8lkGOsZ/yuT8AsELzIymQxtHa0qm4RfIHgZEP4mwcuECJKqAorm7SzvUncCgUAgEFQ1Re+g0uaSFgheFIQHtQrQ1NTE2NhYuaa2vr6+6G4UCAQCwb+CJElkZmZy7949jI2Ni12gRCB40RBjUKsISZK4e/eucilKgUAgEAj+TYyNjTEzMxMOEsFLgTBQq5j8/Hy1VVAEAoFAIKhOtLW1hedU8FIhDFSBQCAQCAQCQa1CBEkJBAKBQCAQCGoVwkAVCAQCgUAgENQqhIEqEAgEAoFAIKhVCANVIBAIBAKBQFCrEAaqQCAQCAQCgaBWIQxUgUAgEAgEAkGtQhioAoFAIBAIBIJaxf8DMBeNq8zlZ1oAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {}
- }
- ],
- "execution_count": null
+ ]
},
{
+ "cell_type": "markdown",
"metadata": {
"tags": []
},
@@ -651,7 +643,7 @@
"This plot shows the **most discriminative ROI connections** for classifying ASD vs Control subjects.\n",
"- **Red edges** indicate connections **stronger in ASD**.\n",
"- **Blue edges** indicate connections **stronger in Control**.\n",
- "- Color intensity reflects the **magnitude of contribution** to the model\u2019s decision.\n",
+ "- Color intensity reflects the **magnitude of contribution** to the model’s decision.\n",
"\n",
"---\n",
"\n",
@@ -682,8 +674,16 @@
" - Linked to **motor coordination** and **sensorimotor integration**, commonly atypical in ASD.\n",
"\n",
"The interpretability analysis of the trained model highlights that **functional connectivity alterations across DMN, attention, salience, language, and sensorimotor systems** are key discriminative factors for distinguishing **ASD** from **Control** subjects."
- ],
- "cell_type": "markdown"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "embc25",
+ "language": "python",
+ "name": "python3"
}
- ]
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
}
From 763c1b996896a245647a81dc5886e18bc62f7890 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 12:24:01 +0100
Subject: [PATCH 37/44] include cc400 in the validation for load_data
---
tutorials/brain-disorder-diagnosis/data.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index a8a0290..9fcdc98 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -15,6 +15,7 @@
{
"aal",
"cc200",
+ "cc400",
"difumo64",
"dos160",
"hcp-ica",
From ac29f3e259d71986749521f71fe75ac2345f5189 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 12:54:05 +0100
Subject: [PATCH 38/44] update comments
---
tutorials/brain-disorder-diagnosis/notebook.ipynb | 12 ++++++------
1 file changed, 6 insertions(+), 6 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index e88bcc8..88bcb75 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -397,7 +397,7 @@
"from sklearn.base import clone\n",
"from kale.pipeline.multi_domain_adapter import AutoMIDAClassificationTrainer as Trainer\n",
"\n",
- "# Configuration with cv included\n",
+ "# Configuration with cv and random_state/seed included\n",
"trainer_cfg = {k.lower(): v for k, v in cfg.TRAINER.items()}\n",
"trainer_cfg = {**trainer_cfg, \"cv\": cv, \"random_state\": cfg.RANDOM_STATE}\n",
"\n",
@@ -439,7 +439,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:21<00:00, 7.11s/it]\n"
+ "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:22<00:00, 7.41s/it]\n"
]
}
],
@@ -586,7 +586,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -610,13 +610,13 @@
"from kale.interpret.visualize import visualize_connectome\n",
"from nilearn.datasets import fetch_atlas_aal\n",
"\n",
- "\n",
+ "# Fetch coefficients to visualize feature importance\n",
"coef = trainers[\"site_only\"].coef_.ravel()\n",
- "# check if coef != features\n",
+ "# check if coef != features, assumes augmented features with phenotypes/sites\n",
"if coef.shape[0] != fc.shape[1]:\n",
" coef, _ = np.split(coef, [fc.shape[1]])\n",
"\n",
- "\n",
+ "# Visualize the coefficients as a connectome plot\n",
"proj = visualize_connectome(\n",
" trainers[\"baseline\"].coef_.ravel(),\n",
" rois,\n",
From 98a8d16c9c48fd4f445075eaccf84dc84d78a533 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 12:55:14 +0100
Subject: [PATCH 39/44] remove nilearn imports
---
tutorials/brain-disorder-diagnosis/notebook.ipynb | 1 -
1 file changed, 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 88bcb75..0574f91 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -606,7 +606,6 @@
"source": [
"import seaborn as sns\n",
"import numpy as np\n",
- "from nilearn.plotting import find_parcellation_cut_coords\n",
"from kale.interpret.visualize import visualize_connectome\n",
"from nilearn.datasets import fetch_atlas_aal\n",
"\n",
From 7ba387c005e48e3a75472d2dda68088d4668440c Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 12:56:37 +0100
Subject: [PATCH 40/44] remove aal imports
---
tutorials/brain-disorder-diagnosis/notebook.ipynb | 1 -
1 file changed, 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 0574f91..0df6f82 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -607,7 +607,6 @@
"import seaborn as sns\n",
"import numpy as np\n",
"from kale.interpret.visualize import visualize_connectome\n",
- "from nilearn.datasets import fetch_atlas_aal\n",
"\n",
"# Fetch coefficients to visualize feature importance\n",
"coef = trainers[\"site_only\"].coef_.ravel()\n",
From 2175be31ee3e1945e49ef70ff450a010ec9b08ec Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 13:17:03 +0100
Subject: [PATCH 41/44] remove unused seaborn import
---
tutorials/brain-disorder-diagnosis/notebook.ipynb | 1 -
1 file changed, 1 deletion(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index 0df6f82..c56f997 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -604,7 +604,6 @@
}
],
"source": [
- "import seaborn as sns\n",
"import numpy as np\n",
"from kale.interpret.visualize import visualize_connectome\n",
"\n",
From fabed46993e0c45313e4146370a3a57286e382de Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 13:39:09 +0100
Subject: [PATCH 42/44] reformat load_data validation
---
tutorials/brain-disorder-diagnosis/data.py | 11 +----------
1 file changed, 1 insertion(+), 10 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/data.py b/tutorials/brain-disorder-diagnosis/data.py
index 9fcdc98..e563eac 100644
--- a/tutorials/brain-disorder-diagnosis/data.py
+++ b/tutorials/brain-disorder-diagnosis/data.py
@@ -12,16 +12,7 @@
"data_dir": [str],
"atlas": [
StrOptions(
- {
- "aal",
- "cc200",
- "cc400",
- "difumo64",
- "dos160",
- "hcp-ica",
- "ho",
- "tt",
- }
+ {"aal", "cc200", "cc400", "difumo64", "dos160", "hcp-ica", "ho", "tt"}
)
],
"fc": [
From f11b4ba102a5dc2d59db50b861591933804debf8 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 13:42:57 +0100
Subject: [PATCH 43/44] resolve missing return in pydoc
---
tutorials/brain-disorder-diagnosis/preprocess.py | 9 ++++++---
1 file changed, 6 insertions(+), 3 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/preprocess.py b/tutorials/brain-disorder-diagnosis/preprocess.py
index 9950978..57779f5 100644
--- a/tutorials/brain-disorder-diagnosis/preprocess.py
+++ b/tutorials/brain-disorder-diagnosis/preprocess.py
@@ -62,17 +62,20 @@ def preprocess_phenotypic_data(data, standardize=False):
data : pd.DataFrame of shape (n_subjects, n_phenotypes)
The phenotypes data to be processed.
- standardize: boolean or str of ("site", "all"), (default=False)
+ standardize : boolean or str of ("site", "all"), (default=False)
Standardize FIQ and age. Setting to True or "all"
standardizes the values over all subjects while "site"
standardizes according to the site.
Returns
-------
- labels : pd.Series of shape (n_subjects)
+ labels : array-like of shape (n_subjects)
The encoded classification group. 0 is "CONTROL" and
1 is "ASD"
+ sites : array-like of shape (n_subjects)
+ The site IDs for each subject.
+
phenotypes : pd.DataFrame of shape (n_subjects, n_selected_phenotypes)
The processed selected phenotype data with imputed values.
"""
@@ -110,7 +113,7 @@ def preprocess_phenotypic_data(data, standardize=False):
data = data[SELECTED_PHENOTYPES].set_index("SUB_ID")
# Separate the class labels, sites, and phenotypes
- labels = data["DX_GROUP"].map({"CONTROL": 0, "ASD": 1})
+ labels = data["DX_GROUP"].map({"CONTROL": 0, "ASD": 1}).to_numpy()
sites = data["SITE_ID"].to_numpy()
phenotypes = data.drop(columns=["DX_GROUP"])
# One-hot encode categorical valued phenotypes
From 42f83299cae32d049890f8ee5b1a992f9274d135 Mon Sep 17 00:00:00 2001
From: Riza <42672299+zaRizk7@users.noreply.github.com>
Date: Mon, 16 Jun 2025 16:42:10 +0100
Subject: [PATCH 44/44] update markdown per-section
---
.../brain-disorder-diagnosis/notebook.ipynb | 122 +++++++++++++-----
1 file changed, 89 insertions(+), 33 deletions(-)
diff --git a/tutorials/brain-disorder-diagnosis/notebook.ipynb b/tutorials/brain-disorder-diagnosis/notebook.ipynb
index c56f997..8947f59 100644
--- a/tutorials/brain-disorder-diagnosis/notebook.ipynb
+++ b/tutorials/brain-disorder-diagnosis/notebook.ipynb
@@ -116,7 +116,10 @@
"source": [
"## Configuration\n",
"\n",
- "To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example."
+ "To minimize the footprint of the notebook when specifying configurations, we provide a `config.py` file that defines default parameters. These can be customized by supplying a `.yml` configuration file, such as `experiments/base.yml` as an example.\n",
+ "\n",
+ "Please refer to these files for detailed instructions on how to customize the experiment settings. \n",
+ "We provide detailed descriptions of each configurable option in the following sections."
]
},
{
@@ -176,7 +179,7 @@
"\n",
"Typically, raw fMRI scans require extensive preprocessing before they can be used in a machine learning pipeline. However, the **ABIDE** dataset provides several preprocessed derivatives, which can be downloaded directly from the [Preprocessed Connectomes Project (PCP)](https://preprocessed-connectomes-project.org/abide/), eliminating the need for manual preprocessing.\n",
"\n",
- "Given the long runtime required to extract the functional connectivity (FC) embedding, we will omit this step from this notebook and provide pre-computed embeddings through the provided `load_data` function with the associated atlas.\n",
+ "Given the long runtime required to extract the functional connectivity embedding, we will omit this step from this notebook and provide pre-computed embeddings through the provided `load_data` function with the associated atlas.\n",
"\n",
"For users interested in computing the time series and functional connectivity embeddings from scratch, assuming preprocessed images are available, please refer to:\n",
"\n",
@@ -186,12 +189,29 @@
"\n",
"In this tutorial, we focus on the following preprocessing options:\n",
"\n",
- "- **`atlas`**: The brain atlas used to extract ROI time series. Available options include:\n",
- " - `\"aal\"`, `\"cc200\"`, `\"cc400\"`, `\"dosenbach160\"`, `\"ez\"`, `\"ho\"`, and `\"tt\"`.\n",
+ "- **`path`** (or `data_dir`): Directory where the preprocessed dataset is located.\n",
+ " - *Default:* Current working directory + `/data`\n",
+ "\n",
+ "- **`atlas`**: The brain atlas used to extract ROI time series.\n",
+ " - Available options:\n",
+ " - `\"aal\"`: AAL Atlas\n",
+ " - `\"cc200\"`: Cameron Craddock 200\n",
+ " - `\"cc400\"`: Cameron Craddock 400\n",
+ " - `\"difumo64\"`: DiFuMo 64\n",
+ " - `\"dos160\"`: Dosenbach 160\n",
+ " - `\"hcp-ica\"`: HCP-ICA\n",
+ " - `\"ho\"`: Harvard-Oxford\n",
+ " - `\"tt\"`: Talairach-Tournoux \n",
" - *Default:* `\"cc200\"`\n",
"\n",
- "- **`fc`**: The functional connectivity method used to measure pairwise associations between ROIs. Available options include:\n",
- " - `\"pearson\"`, `\"partial\"`, `\"tangent\"`, `\"covariance\"`, `\"precision\"`, and `\"tangent-pearson\"`.\n",
+ "- **`fc`**: The functional connectivity measure used to compute pairwise associations between ROIs.\n",
+ " - Available options:\n",
+ " - `\"pearson\"`: Pearson correlation\n",
+ " - `\"partial\"`: Partial correlation\n",
+ " - `\"tangent\"`: Tangent embedding\n",
+ " - `\"precision\"`: Precision (inverse covariance)\n",
+ " - `\"covariance\"`: Covariance\n",
+ " - `\"tangent-pearson\"`: Tangent-Pearson hybrid connectivity \n",
" - *Default:* `\"tangent-pearson\"`"
]
},
@@ -310,17 +330,19 @@
"In this tutorial, we specify the following arguments:\n",
"\n",
"- **`split`**: Defines the cross-validation strategy.\n",
- " - `\"skf\"`: Stratified K-Fold to maintain label balance in each fold.\n",
- " - `\"lpgo\"`: Leave-P-Groups-Out to evaluate generalization across sites by holding out entire groups (e.g., imaging sites).\n",
- " - *Default:* `\"lpgo\"`\n",
+ " - Available options: \n",
+ " - `\"skf\"`: Stratified K-Fold to maintain label balance in each fold.\n",
+ " - `\"lpgo\"`: Leave-P-Groups-Out to evaluate generalization across sites by holding out entire groups (e.g., imaging sites).\n",
+ " - *Default:* `\"skf\"`\n",
"\n",
- "- **`num_folds`**: Sets the number of folds for stratified k-fold or the number of groups to leave out in LPGO.\n",
- " - *Default:* `1`\n",
+ "- **`num_folds`**: The number of folds for Stratified K-Fold or the number of groups to leave out in LPGO.\n",
+ " - *Default:* `10`\n",
"\n",
- "- **`num_repeats`**: Determines how many times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
- " - *Default:* `1`\n",
+ "- **`num_repeats`**: The number of times the k-fold procedure is repeated to obtain more stable estimates (ignored when using LPGO).\n",
+ " - *Default:* `5`\n",
"\n",
- "- **`random_state`**: Controls the randomness of algorithms relying on randomization."
+ "- **`random_state`**: Seed for random number generators for reproducibility.\n",
+ " - *Default:* `None`"
]
},
{
@@ -359,7 +381,7 @@
"source": [
"### Model Definition\n",
"\n",
- "We define several model configurations used for classification. Each model shares the same base classifier (e.g., logistic regression), but differs in how domain adaptation is applied:\n",
+ "We define several model configurations used for classification. Each model shares the same base classifier but differs in how domain adaptation is applied:\n",
"\n",
"- **Baseline**: A standard model trained directly on functional connectivity features without domain adaptation.\n",
"- **Site Only**: A domain-adapted model that uses site labels as the adaptation factor to reduce site-specific bias.\n",
@@ -368,22 +390,56 @@
"We also specify the hyperparameter search strategy and other training parameters for each configuration, including:\n",
"\n",
"- **`classifier`**: The base model used for classification.\n",
- " - Available options: `\"logistic\"` (logistic regression), `\"ridge\"` (ridge classifier), `\"svm\"` (support vector machines).\n",
- " - *Default:* `\"logistic\"`\n",
- "\n",
- "- **`scoring`**: A list of performance metrics (e.g., accuracy, F1, AUROC) used during cross-validation.\n",
- "\n",
- "- **`num_solver_iterations`**: Maximum number of iterations allowed for the solver to converge during model fitting.\n",
- "\n",
- "- **`num_search_iterations`**: Number of hyperparameter combinations to evaluate in a randomized search.\n",
- "\n",
- "- **`num_jobs`**: Number of CPU cores used in parallel for hyperparameter tuning and model training.\n",
- " - Set to `-1` to use all available CPU cores.\n",
- " - Set to `-k` to use all but `k` CPU cores.\n",
- "\n",
- "- **`random_state`**: Controls the randomness of algorithms relying on randomization.\n",
- "\n",
- "- **`verbose`**: Controls the verbosity of the training output. Higher values provide more detailed logs."
+ " - Available options:\n",
+ " - `\"lda\"`: Linear Discriminant Analysis\n",
+ " - `\"lr\"`: Logistic Regression\n",
+ " - `\"linear_svm\"`: Linear Support Vector Machine\n",
+ " - `\"svm\"`: Kernel Support Vector Machine\n",
+ " - `\"ridge\"`: Ridge Classifier (L2-regularized linear model)\n",
+ " - `\"auto\"`: Automatically selects an appropriate model based on data characteristics.\n",
+ " - *Default:* `\"lr\"`\n",
+ "\n",
+ "- **`nonlinear`**: Whether to apply non-linear transformations (non-interpretable).\n",
+ " - *Type:* `boolean`\n",
+ " - *Default:* `False`\n",
+ "\n",
+ "- **`search_strategy`**: The hyperparameter search method.\n",
+ " - Available options:\n",
+ " - `\"random\"`: Randomly search over finite iterations.\n",
+ " - `\"grid\"`: Search over all possible combinations.\n",
+ " - *Default:* `\"random\"`\n",
+ "\n",
+ "- **`num_search_iterations`**: The number of hyperparameter combinations to evaluate in randomized search.\n",
+ " - *Default:* `1,000`\n",
+ "\n",
+ "- **`num_solver_iterations`**: The maximum number of iterations allowed for solver convergence.\n",
+ " - *Default:* `1,000,000`\n",
+ "\n",
+ "- **`scoring`**: A list of performance metrics used during cross-validation.\n",
+ " - Available options:\n",
+ " - `\"accuracy\"`: Accuracy\n",
+ " - `\"precision\"`: Precision\n",
+ " - `\"recall\"`: Recall\n",
+ " - `\"f1\"`: F1-Score\n",
+ " - `\"roc_auc\"`: Area Under ROC Curve (AUROC)\n",
+ " - `\"matthews_corrcoef\"`: Matthews Correlation Coefficient (MCC)\n",
+ " - *Default:* `[\"accuracy\", \"roc_auc\"]`\n",
+ "\n",
+ "- **`refit`**: The metric used to refit the best model after hyperparameter tuning.\n",
+ " - *Default:* `\"accuracy\"`\n",
+ "\n",
+ "- **`num_jobs`**: The number of CPU cores used for training and hyperparameter search.\n",
+ " - Set to `-1` for all CPUs, `-k` for all but `k` CPUs.\n",
+ " - *Default:* `-1`\n",
+ "\n",
+ "- **`pre_dispatch`**: Controls job pre-dispatching for parallel execution.\n",
+ " - *Default:* `\"2*n_jobs\"`\n",
+ "\n",
+ "- **`verbose`**: Controls verbosity of training output.\n",
+ " - *Default:* `0`\n",
+ "\n",
+ "- **`random_state`**: Seed for random number generators for reproducibility.\n",
+ " - *Default:* `None`"
]
},
{
@@ -439,7 +495,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:22<00:00, 7.41s/it]\n"
+ "Fitting all_phenotypes model: 100%|██████████| 3/3 [00:21<00:00, 7.23s/it]\n"
]
}
],
@@ -586,7 +642,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"metadata": {},