From fbf4763a4076163c0561ea38ebc5c922a44a6aa8 Mon Sep 17 00:00:00 2001 From: jessegrabowski Date: Thu, 18 Sep 2025 18:56:16 -0500 Subject: [PATCH 1/5] Add more options to DADVI minimization --- pymc_extras/inference/dadvi/dadvi.py | 148 +++++++++++------- .../inference/laplace_approx/find_map.py | 32 +--- pymc_extras/inference/laplace_approx/idata.py | 24 ++- .../laplace_approx/scipy_interface.py | 54 ++++++- tests/inference/dadvi/__init__.py | 0 tests/inference/dadvi/test_dadvi.py | 137 ++++++++++++++++ .../inference/laplace_approx/test_find_map.py | 2 +- 7 files changed, 301 insertions(+), 96 deletions(-) create mode 100644 tests/inference/dadvi/__init__.py create mode 100644 tests/inference/dadvi/test_dadvi.py diff --git a/pymc_extras/inference/dadvi/dadvi.py b/pymc_extras/inference/dadvi/dadvi.py index eb4ef98c5..899cb4472 100644 --- a/pymc_extras/inference/dadvi/dadvi.py +++ b/pymc_extras/inference/dadvi/dadvi.py @@ -13,12 +13,18 @@ apply_function_over_dataset, coords_and_dims_for_inferencedata, ) +from pymc.blocking import RaveledVars from pymc.util import RandomSeed, get_default_varnames from pytensor.tensor.variable import TensorVariable +from pymc_extras.inference.laplace_approx.idata import ( + add_data_to_inference_data, + add_optimizer_result_to_inference_data, +) from pymc_extras.inference.laplace_approx.laplace import unstack_laplace_draws from pymc_extras.inference.laplace_approx.scipy_interface import ( - _compile_functions_for_scipy_optimize, + scipy_optimize_funcs_from_loss, + set_optimizer_function_defaults, ) @@ -29,17 +35,17 @@ def fit_dadvi( n_draws: int = 1000, keep_untransformed: bool = False, optimizer_method: minimize_method = "trust-ncg", - use_grad: bool = True, - use_hessp: bool = True, - use_hess: bool = False, + use_grad: bool | None = None, + use_hessp: bool | None = None, + use_hess: bool | None = None, + gradient_backend: str = "pytensor", + compile_kwargs: dict | None = None, **minimize_kwargs, ) -> az.InferenceData: """ - Does inference using deterministic ADVI (automatic differentiation - variational inference), DADVI for short. + Does inference using Deterministic ADVI (Automatic Differentiation Variational Inference), DADVI for short. - For full details see the paper cited in the references: - https://www.jmlr.org/papers/v25/23-1015.html + For full details see the paper cited in the references: https://www.jmlr.org/papers/v25/23-1015.html Parameters ---------- @@ -47,46 +53,45 @@ def fit_dadvi( The PyMC model to be fit. If None, the current model context is used. n_fixed_draws : int - The number of fixed draws to use for the optimisation. More - draws will result in more accurate estimates, but also - increase inference time. Usually, the default of 30 is a good - tradeoff.between speed and accuracy. + The number of fixed draws to use for the optimisation. More draws will result in more accurate estimates, but + also increase inference time. Usually, the default of 30 is a good tradeoff between speed and accuracy. random_seed: int - The random seed to use for the fixed draws. Running the optimisation - twice with the same seed should arrive at the same result. + The random seed to use for the fixed draws. Running the optimisation twice with the same seed should arrive at + the same result. n_draws: int The number of draws to return from the variational approximation. keep_untransformed: bool - Whether or not to keep the unconstrained variables (such as - logs of positive-constrained parameters) in the output. + Whether or not to keep the unconstrained variables (such as logs of positive-constrained parameters) in the + output. optimizer_method: str - Which optimization method to use. The function calls - ``scipy.optimize.minimize``, so any of the methods there can - be used. The default is trust-ncg, which uses second-order - information and is generally very reliable. Other methods such - as L-BFGS-B might be faster but potentially more brittle and - may not converge exactly to the optimum. + Which optimization method to use. The function calls ``scipy.optimize.minimize``, so any of the methods there + can be used. The default is trust-ncg, which uses second-order information and is generally very reliable. + Other methods such as L-BFGS-B might be faster but potentially more brittle and may not converge exactly to + the optimum. + + gradient_backend: str + Which backend to use to compute gradients. Must be one of "jax" or "pytensor". Default is "pytensor". + + compile_kwargs: dict, optional + Additional keyword arguments to pass to `pytensor.function` minimize_kwargs: - Additional keyword arguments to pass to the - ``scipy.optimize.minimize`` function. See the documentation of + Additional keyword arguments to pass to the ``scipy.optimize.minimize`` function. See the documentation of that function for details. - use_grad: - If True, pass the gradient function to - `scipy.optimize.minimize` (where it is referred to as `jac`). + use_grad: bool, optional + If True, pass the gradient function to `scipy.optimize.minimize` (where it is referred to as `jac`). - use_hessp: + use_hessp: bool, optional If True, pass the hessian vector product to `scipy.optimize.minimize`. - use_hess: - If True, pass the hessian to `scipy.optimize.minimize`. Note that - this is generally not recommended since its computation can be slow - and memory-intensive if there are many parameters. + use_hess: bool, optional + If True, pass the hessian to `scipy.optimize.minimize`. Note that this is generally not recommended since its + computation can be slow and memory-intensive if there are many parameters. Returns ------- @@ -95,16 +100,15 @@ def fit_dadvi( References ---------- - Giordano, R., Ingram, M., & Broderick, T. (2024). Black Box - Variational Inference with a Deterministic Objective: Faster, More - Accurate, and Even More Black Box. Journal of Machine Learning - Research, 25(18), 1–39. + Giordano, R., Ingram, M., & Broderick, T. (2024). Black Box Variational Inference with a Deterministic Objective: + Faster, More Accurate, and Even More Black Box. Journal of Machine Learning Research, 25(18), 1–39. """ model = pymc.modelcontext(model) if model is None else model initial_point_dict = model.initial_point() - n_params = DictToArrayBijection.map(initial_point_dict).data.shape[0] + initial_point = DictToArrayBijection.map(initial_point_dict) + n_params = initial_point.data.shape[0] var_params, objective = create_dadvi_graph( model, @@ -113,31 +117,45 @@ def fit_dadvi( n_params=n_params, ) - f_fused, f_hessp = _compile_functions_for_scipy_optimize( - objective, - [var_params], - compute_grad=use_grad, - compute_hessp=use_hessp, - compute_hess=use_hess, + use_grad, use_hess, use_hessp = set_optimizer_function_defaults( + optimizer_method, use_grad, use_hess, use_hessp + ) + + f_fused, f_hessp = scipy_optimize_funcs_from_loss( + loss=objective, + inputs=[var_params], + initial_point_dict=None, + use_grad=use_grad, + use_hessp=use_hessp, + use_hess=use_hess, + gradient_backend=gradient_backend, + compile_kwargs=compile_kwargs, + inputs_are_flat=True, ) - derivative_kwargs = {} + dadvi_initial_point = { + f"{var_name}_mu": np.zeros_like(value).ravel() + for var_name, value in initial_point_dict.items() + } + dadvi_initial_point.update( + { + f"{var_name}_sigma__log": np.zeros_like(value).ravel() + for var_name, value in initial_point_dict.items() + } + ) - if use_grad: - derivative_kwargs["jac"] = True - if use_hessp: - derivative_kwargs["hessp"] = f_hessp - if use_hess: - derivative_kwargs["hess"] = True + dadvi_initial_point = DictToArrayBijection.map(dadvi_initial_point) result = minimize( - f_fused, - np.zeros(2 * n_params), + f=f_fused, + x0=dadvi_initial_point.data, method=optimizer_method, - **derivative_kwargs, + hessp=f_hessp, **minimize_kwargs, ) + raveled_optimized = RaveledVars(result.x, dadvi_initial_point.point_map_info) + opt_var_params = result.x opt_means, opt_log_sds = np.split(opt_var_params, 2) @@ -148,9 +166,29 @@ def fit_dadvi( draws = opt_means + draws_raw * np.exp(opt_log_sds) draws_arviz = unstack_laplace_draws(draws, model, chains=1, draws=n_draws) - transformed_draws = transform_draws(draws_arviz, model, keep_untransformed=keep_untransformed) + idata = az.InferenceData( + posterior=transform_draws(draws_arviz, model, keep_untransformed=keep_untransformed) + ) + + var_name_to_model_var = {f"{var_name}_mu": var_name for var_name in initial_point_dict.keys()} + var_name_to_model_var.update( + {f"{var_name}_sigma__log": var_name for var_name in initial_point_dict.keys()} + ) + + idata = add_optimizer_result_to_inference_data( + idata=idata, + result=result, + method=optimizer_method, + mu=raveled_optimized, + model=model, + var_name_to_model_var=var_name_to_model_var, + ) + + idata = add_data_to_inference_data( + idata=idata, progressbar=False, model=model, compile_kwargs=compile_kwargs + ) - return transformed_draws + return idata def create_dadvi_graph( diff --git a/pymc_extras/inference/laplace_approx/find_map.py b/pymc_extras/inference/laplace_approx/find_map.py index 73ad741df..5e96dfe22 100644 --- a/pymc_extras/inference/laplace_approx/find_map.py +++ b/pymc_extras/inference/laplace_approx/find_map.py @@ -7,7 +7,7 @@ import pymc as pm from better_optimize import basinhopping, minimize -from better_optimize.constants import MINIMIZE_MODE_KWARGS, minimize_method +from better_optimize.constants import minimize_method from pymc.blocking import DictToArrayBijection, RaveledVars from pymc.initial_point import make_initial_point_fn from pymc.model.transform.optimization import freeze_dims_and_data @@ -24,40 +24,12 @@ from pymc_extras.inference.laplace_approx.scipy_interface import ( GradientBackend, scipy_optimize_funcs_from_loss, + set_optimizer_function_defaults, ) _log = logging.getLogger(__name__) -def set_optimizer_function_defaults(method, use_grad, use_hess, use_hessp): - method_info = MINIMIZE_MODE_KWARGS[method].copy() - - if use_hess and use_hessp: - _log.warning( - 'Both "use_hess" and "use_hessp" are set to True, but scipy.optimize.minimize never uses both at the ' - 'same time. When possible "use_hessp" is preferred because its is computationally more efficient. ' - 'Setting "use_hess" to False.' - ) - use_hess = False - - use_grad = use_grad if use_grad is not None else method_info["uses_grad"] - - if use_hessp is not None and use_hess is None: - use_hess = not use_hessp - - elif use_hess is not None and use_hessp is None: - use_hessp = not use_hess - - elif use_hessp is None and use_hess is None: - use_hessp = method_info["uses_hessp"] - use_hess = method_info["uses_hess"] - if use_hessp and use_hess: - # If a method could use either hess or hessp, we default to using hessp - use_hess = False - - return use_grad, use_hess, use_hessp - - def get_nearest_psd(A: np.ndarray) -> np.ndarray: """ Compute the nearest positive semi-definite matrix to a given matrix. diff --git a/pymc_extras/inference/laplace_approx/idata.py b/pymc_extras/inference/laplace_approx/idata.py index 610b28b00..66f3a2bed 100644 --- a/pymc_extras/inference/laplace_approx/idata.py +++ b/pymc_extras/inference/laplace_approx/idata.py @@ -22,10 +22,15 @@ def make_default_labels(name: str, shape: tuple[int, ...]) -> list: return [list(range(dim)) for dim in shape] -def make_unpacked_variable_names(names: list[str], model: pm.Model) -> list[str]: +def make_unpacked_variable_names( + names: list[str], model: pm.Model, var_name_to_model_var: dict[str, str] | None = None +) -> list[str]: coords = model.coords initial_point = model.initial_point() + if var_name_to_model_var is None: + var_name_to_model_var = {} + value_to_dim = { value.name: model.named_vars_to_dims.get(model.values_to_rvs[value].name, None) for value in model.value_vars @@ -37,6 +42,7 @@ def make_unpacked_variable_names(names: list[str], model: pm.Model) -> list[str] unpacked_variable_names = [] for name in names: + name = var_name_to_model_var.get(name, name) shape = initial_point[name].shape if shape: dims = dims_dict.get(name) @@ -258,6 +264,7 @@ def optimizer_result_to_dataset( method: minimize_method | Literal["basinhopping"], mu: RaveledVars | None = None, model: pm.Model | None = None, + var_name_to_model_var: dict[str, str] | None = None, ) -> xr.Dataset: """ Convert an OptimizeResult object to an xarray Dataset object. @@ -268,6 +275,9 @@ def optimizer_result_to_dataset( The result of the optimization process. method: minimize_method or "basinhopping" The optimization method used. + var_name_to_model_var: dict, optional + Mapping between variables in the optimization result and the model variable names. Used when auxiliary + variables were introduced, e.g. in DADVI. Returns ------- @@ -279,7 +289,9 @@ def optimizer_result_to_dataset( model = pm.modelcontext(model) if model is None else model variable_names, *_ = zip(*mu.point_map_info) - unpacked_variable_names = make_unpacked_variable_names(variable_names, model) + unpacked_variable_names = make_unpacked_variable_names( + variable_names, model, var_name_to_model_var + ) data_vars = {} @@ -368,6 +380,7 @@ def add_optimizer_result_to_inference_data( method: minimize_method | Literal["basinhopping"], mu: RaveledVars | None = None, model: pm.Model | None = None, + var_name_to_model_var: dict[str, str] | None = None, ) -> az.InferenceData: """ Add the optimization result to an InferenceData object. @@ -384,13 +397,18 @@ def add_optimizer_result_to_inference_data( The MAP estimate of the model parameters. model: Model, optional A PyMC model. If None, the model is taken from the current model context. + var_name_to_model_var: dict, optional + Mapping between variables in the optimization result and the model variable names. Used when auxiliary + variables were introduced, e.g. in DADVI. Returns ------- idata: az.InferenceData The provided InferenceData, with the optimization results added to the "optimizer" group. """ - dataset = optimizer_result_to_dataset(result, method=method, mu=mu, model=model) + dataset = optimizer_result_to_dataset( + result, method=method, mu=mu, model=model, var_name_to_model_var=var_name_to_model_var + ) idata.add_groups({"optimizer_result": dataset}) return idata diff --git a/pymc_extras/inference/laplace_approx/scipy_interface.py b/pymc_extras/inference/laplace_approx/scipy_interface.py index a7489be3e..99e2e491d 100644 --- a/pymc_extras/inference/laplace_approx/scipy_interface.py +++ b/pymc_extras/inference/laplace_approx/scipy_interface.py @@ -1,3 +1,5 @@ +import logging + from collections.abc import Callable from importlib.util import find_spec from typing import Literal, get_args @@ -6,6 +8,7 @@ import pymc as pm import pytensor +from better_optimize.constants import MINIMIZE_MODE_KWARGS from pymc import join_nonshared_inputs from pytensor import tensor as pt from pytensor.compile import Function @@ -14,6 +17,39 @@ GradientBackend = Literal["pytensor", "jax"] VALID_BACKENDS = get_args(GradientBackend) +_log = logging.getLogger(__name__) + + +def set_optimizer_function_defaults( + method: str, use_grad: bool | None, use_hess: bool | None, use_hessp: bool | None +): + method_info = MINIMIZE_MODE_KWARGS[method].copy() + + if use_hess and use_hessp: + _log.warning( + 'Both "use_hess" and "use_hessp" are set to True, but scipy.optimize.minimize never uses both at the ' + 'same time. When possible "use_hessp" is preferred because its is computationally more efficient. ' + 'Setting "use_hess" to False.' + ) + use_hess = False + + use_grad = use_grad if use_grad is not None else method_info["uses_grad"] + + if use_hessp is not None and use_hess is None: + use_hess = not use_hessp + + elif use_hess is not None and use_hessp is None: + use_hessp = not use_hess + + elif use_hessp is None and use_hess is None: + use_hessp = method_info["uses_hessp"] + use_hess = method_info["uses_hess"] + if use_hessp and use_hess: + # If a method could use either hess or hessp, we default to using hessp + use_hess = False + + return use_grad, use_hess, use_hessp + def _compile_grad_and_hess_to_jax( f_fused: Function, use_hess: bool, use_hessp: bool @@ -144,12 +180,13 @@ def _compile_functions_for_scipy_optimize( def scipy_optimize_funcs_from_loss( loss: TensorVariable, inputs: list[TensorVariable], - initial_point_dict: dict[str, np.ndarray | float | int], - use_grad: bool, - use_hess: bool, - use_hessp: bool, + initial_point_dict: dict[str, np.ndarray | float | int] | None = None, + use_grad: bool | None = None, + use_hess: bool | None = None, + use_hessp: bool | None = None, gradient_backend: GradientBackend = "pytensor", compile_kwargs: dict | None = None, + inputs_are_flat: bool = False, ) -> tuple[Callable, ...]: """ Compile loss functions for use with scipy.optimize.minimize. @@ -206,9 +243,12 @@ def scipy_optimize_funcs_from_loss( if not isinstance(inputs, list): inputs = [inputs] - [loss], flat_input = join_nonshared_inputs( - point=initial_point_dict, outputs=[loss], inputs=inputs - ) + if inputs_are_flat: + [flat_input] = inputs + else: + [loss], flat_input = join_nonshared_inputs( + point=initial_point_dict, outputs=[loss], inputs=inputs + ) # If we use pytensor gradients, we will use the pytensor function wrapper that handles shared variables. When # computing jax gradients, we discard the function wrapper, so we can't handle shared variables --> rewrite them diff --git a/tests/inference/dadvi/__init__.py b/tests/inference/dadvi/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/tests/inference/dadvi/test_dadvi.py b/tests/inference/dadvi/test_dadvi.py new file mode 100644 index 000000000..52ffe4f37 --- /dev/null +++ b/tests/inference/dadvi/test_dadvi.py @@ -0,0 +1,137 @@ +import numpy as np +import pymc as pm +import pytest + +import pymc_extras as pmx + +from pymc_extras.inference.dadvi.dadvi import fit_dadvi + + +@pytest.fixture(scope="session") +def rng(): + seed = sum(map(ord, "test_dadvi")) + return np.random.default_rng(seed) + + +@pytest.mark.parametrize( + "mode, gradient_backend", + [(None, "pytensor"), ("NUMBA", "pytensor"), ("JAX", "jax"), ("JAX", "pytensor")], +) +def test_fit_dadvi_basic(mode, gradient_backend): + # Example from BDA3, section 4.1 (same as Laplace test) + y = np.array([2642, 3503, 4358], dtype=np.float64) + n = y.size + draws = 10000 + + with pm.Model() as m: + mu = pm.Flat("mu") + logsigma = pm.Flat("logsigma") + + pm.Normal("y", mu=mu, sigma=pm.math.exp(logsigma), observed=y) + + idata = pmx.fit( + method="dadvi", + optimizer_method="trust-ncg", + n_fixed_draws=draws, + n_draws=draws, + compile_kwargs={"mode": mode}, + gradient_backend=gradient_backend, + ) + + assert idata.posterior["mu"].shape == (1, draws) + assert idata.posterior["logsigma"].shape == (1, draws) + assert idata.observed_data["y"].shape == (n,) + + bda_map = [y.mean(), np.log(y.std())] + + np.testing.assert_allclose(idata.posterior["mu"].mean(), bda_map[0], atol=1, rtol=1e-1) + np.testing.assert_allclose(idata.posterior["logsigma"].mean(), bda_map[1], atol=1, rtol=1e-1) + + +def test_fit_dadvi_outside_model_context(): + with pm.Model() as m: + mu = pm.Normal("mu", 0, 1) + sigma = pm.Exponential("sigma", 1) + y_hat = pm.Normal("y_hat", mu=mu, sigma=sigma, observed=np.random.normal(size=10)) + + idata = fit_dadvi( + model=m, + optimizer_method="L-BFGS-B", + use_grad=True, + progressbar=False, + n_draws=100, + ) + + assert hasattr(idata, "posterior") + assert hasattr(idata, "optimizer_result") + assert idata.posterior["mu"].shape == (1, 100) + + +@pytest.mark.parametrize( + "include_transformed", [True, False], ids=["include_transformed", "no_transformed"] +) +def test_fit_dadvi_coords(include_transformed, rng): + coords = {"city": ["A", "B", "C"], "obs_idx": np.arange(100)} + with pm.Model(coords=coords) as model: + mu = pm.Normal("mu", mu=3, sigma=0.5, dims=["city"]) + sigma = pm.Exponential("sigma", 1, dims=["city"]) + obs = pm.Normal( + "obs", + mu=mu, + sigma=sigma, + observed=rng.normal(loc=3, scale=1.5, size=(100, 3)), + dims=["obs_idx", "city"], + ) + + idata = pmx.fit( + method="dadvi", + optimizer_method="trust-ncg", + n_draws=1000, + keep_untransformed=include_transformed, + ) + + np.testing.assert_allclose( + idata.posterior.mu.mean(dim=["chain", "draw"]).values, np.full((3,), 3), atol=0.5 + ) + np.testing.assert_allclose( + idata.posterior.sigma.mean(dim=["chain", "draw"]).values, np.full((3,), 1.5), atol=0.3 + ) + + if include_transformed: + assert "sigma_log__" in idata.posterior + assert "city" in idata.posterior.coords + + +def test_fit_dadvi_ragged_coords(rng): + coords = {"city": ["A", "B", "C"], "feature": [0, 1], "obs_idx": np.arange(100)} + with pm.Model(coords=coords) as ragged_dim_model: + X = pm.Data("X", np.ones((100, 2)), dims=["obs_idx", "feature"]) + beta = pm.Normal( + "beta", mu=[[-100.0, 100.0], [-100.0, 100.0], [-100.0, 100.0]], dims=["city", "feature"] + ) + mu = pm.Deterministic( + "mu", (X[:, None, :] * beta[None]).sum(axis=-1), dims=["obs_idx", "city"] + ) + sigma = pm.HalfNormal("sigma", sigma=3.0, dims=["city"]) + + obs = pm.Normal( + "obs", + mu=mu, + sigma=sigma, + observed=rng.normal(loc=3, scale=1.5, size=(100, 3)), + dims=["obs_idx", "city"], + ) + + idata = fit_dadvi( + optimizer_method="trust-ncg", + use_grad=True, + use_hessp=True, + ) + + assert idata["posterior"].beta.shape[-2:] == (3, 2) + assert idata["posterior"].sigma.shape[-1:] == (3,) + + # Check that everything got unraveled correctly -- feature 0 should be strictly negative, feature 1 + # strictly positive + assert (idata["posterior"].beta.sel(feature=0).to_numpy() < 0).all() + assert (idata["posterior"].beta.sel(feature=1).to_numpy() > 0).all() diff --git a/tests/inference/laplace_approx/test_find_map.py b/tests/inference/laplace_approx/test_find_map.py index 3529f972d..22697e523 100644 --- a/tests/inference/laplace_approx/test_find_map.py +++ b/tests/inference/laplace_approx/test_find_map.py @@ -6,11 +6,11 @@ from pymc_extras.inference.laplace_approx.find_map import ( find_MAP, get_nearest_psd, - set_optimizer_function_defaults, ) from pymc_extras.inference.laplace_approx.scipy_interface import ( GradientBackend, scipy_optimize_funcs_from_loss, + set_optimizer_function_defaults, ) From e8c2a6058ca01bb803f51399c3d4f7d879a3e619 Mon Sep 17 00:00:00 2001 From: jessegrabowski Date: Thu, 18 Sep 2025 19:11:18 -0500 Subject: [PATCH 2/5] Rename `include_transformed` for consistency, and return uncontrained_posterior in a separate group --- pymc_extras/inference/dadvi/dadvi.py | 31 +++++++++++++++++++--------- tests/inference/dadvi/test_dadvi.py | 11 +++++++--- 2 files changed, 29 insertions(+), 13 deletions(-) diff --git a/pymc_extras/inference/dadvi/dadvi.py b/pymc_extras/inference/dadvi/dadvi.py index 899cb4472..4df01148b 100644 --- a/pymc_extras/inference/dadvi/dadvi.py +++ b/pymc_extras/inference/dadvi/dadvi.py @@ -33,7 +33,7 @@ def fit_dadvi( n_fixed_draws: int = 30, random_seed: RandomSeed = None, n_draws: int = 1000, - keep_untransformed: bool = False, + include_transformed: bool = False, optimizer_method: minimize_method = "trust-ncg", use_grad: bool | None = None, use_hessp: bool | None = None, @@ -63,7 +63,7 @@ def fit_dadvi( n_draws: int The number of draws to return from the variational approximation. - keep_untransformed: bool + include_transformed: bool Whether or not to keep the unconstrained variables (such as logs of positive-constrained parameters) in the output. @@ -166,9 +166,7 @@ def fit_dadvi( draws = opt_means + draws_raw * np.exp(opt_log_sds) draws_arviz = unstack_laplace_draws(draws, model, chains=1, draws=n_draws) - idata = az.InferenceData( - posterior=transform_draws(draws_arviz, model, keep_untransformed=keep_untransformed) - ) + idata = dadvi_result_to_idata(draws_arviz, model, include_transformed=include_transformed) var_name_to_model_var = {f"{var_name}_mu": var_name for var_name in initial_point_dict.keys()} var_name_to_model_var.update( @@ -251,10 +249,10 @@ def create_dadvi_graph( return var_params, objective -def transform_draws( +def dadvi_result_to_idata( unstacked_draws: xarray.Dataset, model: Model, - keep_untransformed: bool = False, + include_transformed: bool = False, ): """ Transforms the unconstrained draws back into the constrained space. @@ -270,7 +268,7 @@ def transform_draws( n_draws: int The number of draws to return from the variational approximation. - keep_untransformed: bool + include_transformed: bool Whether or not to keep the unconstrained variables in the output. Returns @@ -281,7 +279,7 @@ def transform_draws( filtered_var_names = model.unobserved_value_vars vars_to_sample = list( - get_default_varnames(filtered_var_names, include_transformed=keep_untransformed) + get_default_varnames(filtered_var_names, include_transformed=include_transformed) ) fn = pytensor.function(model.value_vars, vars_to_sample) point_func = PointFunc(fn) @@ -296,4 +294,17 @@ def transform_draws( dims=dims, ) - return transformed_result + constrained_names = [ + x.name for x in get_default_varnames(model.unobserved_value_vars, include_transformed=False) + ] + all_varnames = [ + x.name for x in get_default_varnames(model.unobserved_value_vars, include_transformed=True) + ] + unconstrained_names = set(all_varnames) - set(constrained_names) + + idata = az.InferenceData(posterior=transformed_result[constrained_names]) + + if unconstrained_names and include_transformed: + idata["unconstrained_posterior"] = transformed_result[unconstrained_names] + + return idata diff --git a/tests/inference/dadvi/test_dadvi.py b/tests/inference/dadvi/test_dadvi.py index 52ffe4f37..5b202c9f9 100644 --- a/tests/inference/dadvi/test_dadvi.py +++ b/tests/inference/dadvi/test_dadvi.py @@ -87,7 +87,7 @@ def test_fit_dadvi_coords(include_transformed, rng): method="dadvi", optimizer_method="trust-ncg", n_draws=1000, - keep_untransformed=include_transformed, + include_transformed=include_transformed, ) np.testing.assert_allclose( @@ -98,8 +98,13 @@ def test_fit_dadvi_coords(include_transformed, rng): ) if include_transformed: - assert "sigma_log__" in idata.posterior - assert "city" in idata.posterior.coords + assert "unconstrained_posterior" in idata + assert "sigma_log__" in idata.unconstrained_posterior + + # FIXME: The automatic coordinate inference used in MAP/Laplace doesn't work in DADVI yet, so city is not + # propagated to the unconstrained_posterior group. + with pytest.raises(AssertionError): + assert "city" in idata.unconstrained_posterior.coords def test_fit_dadvi_ragged_coords(rng): From b8164ff3fc547b67b7a078912d4ceef331d33b09 Mon Sep 17 00:00:00 2001 From: jessegrabowski Date: Thu, 18 Sep 2025 19:18:51 -0500 Subject: [PATCH 3/5] re-run dadvi notebook --- notebooks/deterministic_advi_example.ipynb | 2034 ++++++++++++++++---- 1 file changed, 1609 insertions(+), 425 deletions(-) diff --git a/notebooks/deterministic_advi_example.ipynb b/notebooks/deterministic_advi_example.ipynb index 0cf1d177c..87ca26645 100644 --- a/notebooks/deterministic_advi_example.ipynb +++ b/notebooks/deterministic_advi_example.ipynb @@ -18,62 +18,71 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "ea4459ce-54a4-4fd5-bafa-e5cd77f299c4", - "metadata": {}, - "outputs": [], - "source": [ - "import pymc as pm" - ] - }, - { - "cell_type": "code", - "execution_count": 2, "id": "b0f44abd-6fea-4f34-ab98-677b0858327a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Running on PyMC v5.25.1\n" - ] + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:20:59.326494Z", + "start_time": "2025-09-19T00:20:56.214089Z" } - ], + }, "source": [ "import arviz as az\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", - "import xarray as xr\n", "\n", "import pymc as pm\n", "\n", "from pymc import HalfCauchy, Model, Normal, sample\n", "\n", "print(f\"Running on PyMC v{pm.__version__}\")" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running on PyMC v5.25.1\n" + ] + } + ], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 3, "id": "df7fd6b1-4961-444e-91a2-20f74654c8a1", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:20:59.332270Z", + "start_time": "2025-09-19T00:20:59.329301Z" + } + }, "source": [ "RANDOM_SEED = 8927\n", "rng = np.random.default_rng(RANDOM_SEED)\n", "\n", "%config InlineBackend.figure_format = 'retina'\n", "az.style.use(\"arviz-darkgrid\")" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 4, "id": "d9da527a-baec-4a67-b6f5-d769282addbb", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:20:59.336315Z", + "start_time": "2025-09-19T00:20:59.334327Z" + } + }, "source": [ "size = 200\n", "true_intercept = 1\n", @@ -86,43 +95,71 @@ "y = true_regression_line + rng.normal(scale=0.5, size=size)\n", "\n", "data = pd.DataFrame({\"x\": x, \"y\": y})" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": 5, "id": "886e6283-e6b9-41c0-b8fb-21c696e1de5a", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:20:59.479471Z", + "start_time": "2025-09-19T00:20:59.339148Z" + } + }, + "source": [ + "fig = plt.figure(figsize=(7, 7))\n", + "ax = fig.add_subplot(111, xlabel=\"x\", ylabel=\"y\", title=\"Generated data and underlying model\")\n", + "ax.plot(x, y, \"x\", label=\"sampled data\")\n", + "ax.plot(x, true_regression_line, label=\"true regression line\", lw=2.0)\n", + "plt.legend(loc=0);" + ], "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABY8AAAWPCAYAAADgDAt2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd4U+X/xvE7XZRCS8ueAgXZG2WpoIJ7McSBICDIEAURRURARJxfEVC2ICKCKCggiDLFgTJkb8oG2dBSaEtLm/z+6K+xJydNk460pe/XdXnJOTnjSXLOaXLnOZ/HYrPZbAIAAAAAAAAAIBWfnG4AAAAAAAAAACD3ITwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAmhMcAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8BgAAAAAAAAAYEJ4DAAAAAAAAAAwITwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAmhMcAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8BgAAAAAAAAAYEJ4DAAAAAAAAAAwITwGAAAAAAAAAJgQHgMAAAAAAAAATPxyugEAcCO6ePGiDhw4oH///VeXL19WfHy8AgMDFRwcrODgYFWqVElVqlSRv79/TjcVyBNOnjyp1q1b26fLlSunNWvW5GCL0talSxdt3LjRPv3VV1+padOmOdgiwOiHH37QG2+8YZ9u166dPvjggxxsUf6VX64X1atXN0zv378/h1pi9Nlnn2nChAn26RdffFEvvfRSDrYIMMrtn3+GDBmihQsX2qfff/99tW/fPgdbBCA7EB4DQBbZs2ePFi1apDVr1ujEiRPpLu/v76+bb75ZrVq10v33368aNWp4oZUAAAAAAADuITwGgEzau3evPvzwQ/39998erXf9+nXt2bNHe/bs0eTJk3XzzTerd+/eeuihh+TjQ1UhuPbZZ58ZpukpBXfs3btXq1atsk/XrFlTbdq0ycEWAQAAAMjNCI8BIIOsVqsmTZqkSZMmKSkpyeWyQUFBCggIUExMjK5fv+50mYiICL366quaNGmSfvrpJwJkuJT6NluJ8Bju2bt3r+HYadeuHeExAAAAgDQRHgNABly/fl2vvfaafv75Z9NjxYsXV5s2bdS8eXM1aNBARYsWVUBAgCTJZrPp7Nmz2rdvn/7++28tX75cp0+fNqx/+PBhWa1WwmMAAAAAAJCjCI8BIAPeeOMNU3AcHBysXr16qUuXLipYsKDT9SwWi0qXLq3SpUvrzjvv1JAhQ7R69WpNnjxZu3bt8kbTAQAAoOS7drhzBwAA1+jWBgAe+vLLL7VkyRLDvLJly+rbb79Vr1690gyOnbFYLGrTpo0WLFig9957T8HBwVndXAAAAAAAgAwhPAYAD5w4cUJjx441zCtWrJjmzZunKlWqZHi7FotFHTp00OLFi1W7du3MNhMAAAAAACDTCI8BwAOffvqprl27Zpg3atQolSpVKku2X65cOc2ZM0e+vr5Zsj0AAAAAAICMouYxALjp3LlzWrZsmWFeq1at1KZNmyzdjydlL5y5fPmytm3bpgsXLujSpUvy8/NTWFiYKlWqpLp162ZLMH39+nVt27ZNERERunz5sgoWLKjixYurYcOGKleuXJbtx2azae/evTp69KguXbqkq1evqkiRIipRooQaNmyoYsWKZdm+Ujtx4oR27dqlM2fOKC4uTkFBQbr11lvT7SV+4cIFRURE6MSJE7py5YquX7+u4OBghYWFqWbNmqpcuXK2tDcrnDx5Unv37tXFixcVFRWlQoUKqVixYqpRo4bCw8OzbD///vuvduzYobNnzyo+Pl5FihTRzTffrPr168vPL/d8TLl27Zo2btyo06dPKzIyUoGBgapQoYIaNmyookWLZum+kpKSdPToUR0+fFjnzp3TlStX5OfnpyJFiqhUqVKqX7++ihQpkqX7zKyrV6/q0KFDOnLkiKKiohQXF6dChQqpSJEiqly5smrVqpXj72dCQoKOHDmiQ4cO6eLFi4qJiVFAQICKFCmismXLql69eipUqFC27f/w4cPauXOnzp07J5vNprCwMFWtWlX16tXLsuvynj17FBERoXPnzkmSSpQooVq1aqlatWpZsv0bgTf+XnnzepGat67bqUVGRmr79u06ceKErl69Kn9/f1WtWlV33nlntuwvL4iOjtbmzZt17NgxxcXFKSQkRKVKlVKTJk0UEhKSJfs4e/astm7dqvPnzysmJkbBwcGqUqWKGjVqZB+kObdJSkrSzp07deDAAUVGRsrHx0dlypTRLbfcotKlS6e7fnx8vLZs2aLDhw8rOjpahQsXVtmyZdWsWbMsu3YnJCRo69atOn36tC5duiSr1aqiRYuqVKlSatSoUaY/o6eWE59/Ut6DkydP6uLFi7p27ZrCwsJUsmRJNWrUKMuOTwA3ntzzrQwAcrkff/xRiYmJhnlPPfVUDrXGKCkpST/++KPmzZunnTt3KikpyelyoaGhuv/++9WvXz+VLFnSrW2fPHlSrVu3tk+XK1dOa9askZQcGE2dOlXz5s1TdHS00/Vr166tQYMG6bbbbvPwWf3nxIkTmjp1qtasWaOLFy86XcZisah27dp6/vnndf/997u97SFDhmjhwoX26ffff1/t27eXJC1evFgzZszQ/v37Tes9++yzpvA4ISFB69at06pVq7RhwwadOHHC5b6LFy+u9u3bq2vXripevHi6ba1evXqGHpOk1atXq3z58i6XuXr1qr2m99GjR9Ncrnz58nryySf17LPPKjAw0OU207Ju3Tp9+umn2rZtm9PHQ0ND9fTTT6t3795Z+mXNU+fPn9cnn3yiX375RbGxsabHfX191apVKw0cODBTAd358+e1fPly/f7779q8ebOuXr2a5rIpx3q3bt304IMPphs8/vDDD3rjjTecPrZw4ULD8e+oSZMmmj17ttPHduzYoV9++UXr16/X3r17ZbVa09xOUFCQ7r77bvXq1SvdYzUrnThxQj///LPWrVunbdu2me4cSc3Pz0+NGjVSjx49PA6+unTpoo0bN9qnv/rqKzVt2lSS9Msvv2jSpElOryNS8rHevXt3devWLUPnk9Vq1TfffKMvv/xSx48fd7pMpUqV1Lt3b/u1zVs+++wzTZgwwT794osvejQ4mau/P54u742/V966XqSWnddtx2tHu3bt9MEHH0iStm7dqgkTJuivv/4ynfs1atTIUHj8448/6rXXXrNPV6hQQStXrpTFYvF4W0uXLtWgQYPs0+XKldOqVavk42O88dbTY9TVa3L8+HGNGzdOK1as0PXr103r+vr66u6779Yrr7yS4TB//fr1Gj9+vLZu3SqbzWZ6PCgoSB06dNCLL76o0NBQSebPB2ldizLr7rvv1r///mufTvnckZCQoC+++EJfffWV089wPj4+uvPOO/XGG2/opptuMj1+6dIlTZw4UQsXLlRMTIzp8YCAAHXs2FEvv/xyhsPPXbt2afLkyVq3bp3i4uKcLhMQEKCmTZuqT58+uuWWWzK0HylnPv/s27dPU6dO1R9//KErV644XcbX11eNGzfWCy+8oObNm2fJfgHcOChbAQBu+vXXXw3TxYsXV6tWrXKoNf/ZuXOnHn30UQ0ZMkTbtm1LMziWpKioKM2bN0/33nuvvv/++0ztd9++fXr00Uc1bdq0NL+IS9Lu3bv13HPPaeLEiR7vIykpSR9++KEeeOABzZ8/P83gWErulbxr1y4NGDBAzzzzjC5duuTx/lJcvXpVvXv31uDBgz36knXXXXepT58+WrBgQbrBsZTcM3natGm65557tHLlygy3NyssWrRIrVu31meffeYygJCSA5oxY8bo/vvv165duzzaT1JSkkaMGKHnnnsuzS9OUvKxOnnyZLVt29at1zI7rF69Wg8++KB++OEHp0GQlPx81qxZo/bt22f4nFq7dq1atmypd955R7/99pvL4Fj671h/9dVX9fTTT+vs2bMZ2m9mDBw4UB07dtSMGTO0e/dul8GxJMXGxmrp0qV67LHHNG7cOKehR1abO3eu2rRpozFjxmj9+vUug2NJSkxM1MaNG9W7d2/17t07zS/Y7rp27ZpeeeUVDRgwwOV1JCoqSmPHjlXnzp0VGRnp0T4uXryoTp06adSoUWkGx5J09OhRvfHGG+rbt2+awciNzBt/r7x1vUjNW9dtR+PHj9fTTz+tP//8M91z3xP333+/4Q6iEydO6I8//sjQtubNm2eYfuKJJ0zBcVZaunSpHnnkEf30009Og2Mp+f1fuXKl2rdv7/Hzslqteuutt9S1a1dt2bIlzWtobGysZs+erYcfflg7d+70+HlktbNnz6pjx44aO3Zsmp/hrFar1qxZow4dOmjz5s2Gx/755x898sgj+vrrr50Gx1LyD/dz5szRk08+qfPnz3vUvoSEBA0dOlSPP/64Vq1a5fL6mJCQoD/++EPPPPOM+vfvn+Z5npac+PwTFxenIUOGqG3btlq2bJnLv2tJSUnauHGjunXrpv79++fLvxUA0kZ4DABuSEhI0Pbt2w3zGjRokOO1iVetWqUuXbro4MGDpscsFouCg4MVFBRkeiwuLk5Dhw7VtGnTMrTfAwcO6NlnnzX0MJGk4ODgNHs0ffrppx59WU4JcL/44gunX8T8/f0VGhrq9D34559/9NRTT+nMmTNu7y9FUlKSXnzxRa1du9a0v/R6tKQVSvj5+Sk0NFSFCxd22oMqNjZWL730kn788UeP25tZNptNY8eO1euvv66oqCjT476+vgoNDXV6G+zp06fVpUsX/f33327tKykpSYMHD9a3337r9PHAwEDT8Xr06FF169bN41Ats1avXq0BAwY4fU99fX1VpEgRw3t5/fp1vfnmm/rll1883ldMTEyaAUyBAgUUGhqqAgUKOH18+/bteuKJJ1z+sJId0jrWLRaLChcurCJFijg9N202myZPnqwRI0ZkdxNdhvAFCxZUaGio/P39nT6+du1ade7cOd3AOS0p15GffvrJMD8gICDN68jOnTvVv39/t4P1S5cuqVu3btq6davTx4ODg03Pb82aNRo4cKBXwvvcwht/r7x5vZC8e9129Omnn2rSpEmGY8jHxyfNc94TKT1IU3MMgd1x6NAhbdq0yT7t7++vxx9/PFNtc2XRokV69dVXDdeLlNfE2TUmLi5OL7zwgg4dOuTW9q1WqwYPHpzmaxEQEKDChQsb5p0/f149evRI90eF7HT58mV17dpV+/btM8wPDg52+jctOjpaL7zwgv0H0a1bt6pnz566cOGCfZmU19VZWYfDhw+rX79+bv+gcfXqVfXs2VPff/+902uis88kKZYvX64uXbq43VEhJz7/nD9/Xs8884wWLlzo9PkVKFBARYoUcfqjyvLly/Xss8+m+2M2gPyDshUA4IZDhw6ZAsy6devmUGuSbd26VQMGDDCU0ggODlbHjh113333qVatWvYvjlFRUVq3bp0+//xz7d271778J598ourVq3vUg/ratWt68cUXdfnyZVksFj344IPq2LGjGjVqZP8ycOLECS1cuFDTp09XfHy8fd0PPvhAbdq0Sbdeq81m06uvvmrqmdO4cWM9/fTTatKkiX2QQqvVqr1792rx4sWaN2+efX/Hjh3TwIEDNXv2bI9qx3355Zf2ML5EiRJ6/vnn1bp1a3vJh/j4eG3bts3lbX/169fXXXfdpXr16qlatWqGGpcJCQnat2+fVq1apblz59q3Y7PZ9NZbb6levXqqVKmS022PHDnS6b+dTTtKuX3V0YwZMzRlyhTDvAoVKqhz58664447FB4ebg89Tp48qVWrVmn69On23j2xsbF6+eWXtXjx4nRrFs6YMUNLly41zCtevLj69u2re++9115K5dKlS1qzZo0mT56skydP6uTJk3rnnXdcbjsrnThxQoMGDTKc8z4+PurYsaM6duyoWrVqydfXV9evX9fmzZv19ddfa+XKlbLZbBo2bJhbJUicCQkJ0R133KHbb79dNWvWVHh4uOEL9qVLl7R161Z9//33Wr16tX3+mTNnNHjwYM2YMcPpdhs0aGA/PrZt26ZFixYZHmvbtm2abUqvvE2VKlXUqlUrNWnSRDfffLPKlStnP16sVquOHDmidevWac6cOYYQ47vvvlOTJk30yCOPuNx+VihevLhatmyp2267TdWrV1elSpUMgc6ZM2e0efNmzZs3z1B6Yt++fXr33XczdOx9+umn9lA3PDxcPXv21B133GF/PWNiYvT7779r3Lhxhtdl48aN+uGHH9ShQ4d09/H666/rwIEDhnm1a9dWr169dMcdd6hQoUKy2Ww6ceKElixZounTpys2Nla//vprpu7MyEu88fcqJ64X3rxup7Zjxw779aNAgQJ65pln9PDDD6tmzZry8fFRUlKSDh8+rH/++cfj55Ti6aef1ueff26/i2rt2rU6c+aMR+385ptvDNNt2rTJ8HU5PQcOHNBPP/0km82mggULqnPnznrwwQdVo0YN+fj4yGazaffu3Zo5c6bh719CQoLeeustff311+nu46uvvtKSJUsM88LCwtSnTx/de++9Klu2rKTk9/Wvv/7SF198oc2bN+vy5csaPHhw1j5hD4wcOVJHjhyRJN12223q2rWrmjZtav/R5tChQ5o1a5YhUI2KitLHH3+soUOH6qWXXlJcXJz8/Pz0+OOPq3379qpTp458fX1ltVq1ZcsWjR8/3nDd3r59uxYsWKAnnngi3fa99dZb2rBhg2Fe6dKl1adPH7Vp00YlSpSQlFzX+9dff9XkyZMNd3js2rVLr732mqZPn55uaRVvf/5JSEhQ7969tXv3bsP8O++8U48//rgaN25s/2yamJioHTt2aP78+Vq8eLH93NuxY4eGDx+usWPHerx/ADceiy0/dT0AgAxasWKFqQbepEmTDLUVveny5ct67LHHdPr0afu8W2+9VWPGjLGHqs4kJSXp3Xff1Zw5c+zzihUrptWrV6dZV82xhmSKoKAgjRs3zmXw/Ndff6lnz56GUhpvvvmmnn32WZfPb8aMGfroo4/s0/7+/ho5cmS6PYd2796t3r17G25bHDx4sHr06JHmOo41j1M0bdpUkyZNMvXmceWTTz7RE088kW5t4RQXLlxQ3759tWPHDvu89u3b6/3330933ayoYbht2zY988wzhh8gnnnmGQ0ZMsTlgDuXLl1Sv379tGXLFvu8O++8U1OnTk1znaNHj+rRRx81hDP16tXT559/nmawHRsbqwEDBuj33383PZZe7dPM6Nq1q9avX2+fDgwM1OTJk9WiRYs015k/f76GDx/utHdP6vq3zmzevFlHjhzRI488kmYPY0dr167Vyy+/bLitdPbs2WrSpInL9VzV6/TE7NmzVadOHTVs2NCt5RMSEvTOO+/ou+++s8+76aabtHz58my7lXzNmjVKSEjQPffc43aPyPnz5+utt96yX7N8fHy0YsUKVahQweV6jjWPUzz55JMaMWJEmj9gRUdHq0uXLoaeebVq1XJZh1pK7un4+uuvG+Y99dRTGjFiRJrP9cSJE+rataupB66U8eMgPTld8zhFdv698vb1wpvX7bTqpZcuXVpffPGFqlSpkua6jjz5m/XSSy9pxYoV9ul+/fqpf//+bu0nLi5OLVu2NPQCd/WaZrbmcYpKlSrp888/d1qzN619ScljK9SoUSPNdU6ePKmHH37YcK2vVauWZsyYkebgizabTePGjTP9wJDCWzWPpeS7UYYOHeryPJo0aZLGjx9vn/bz89Mdd9yhX3/9VUWKFNGUKVPUqFEjp+smJiaqT58+hs4GNWrU0OLFi1229aefftIrr7ximHfbbbfp008/TfNz37Vr1/Tqq6+ayowNGzZMXbp0SXNfOfH5Z9SoUYbP+sHBwfrf//6nu+66y+V669at00svvWQoETJ+/HiXY4m4GjsEwI2DshUA4AZnNdTS642UnWbOnGkIjmvXrq1p06a5DI6l5F6xw4cP1913322fd/HixQzVXvzwww/T7bHcokUL06CC6d2mGx0dbao3+eGHH7p1y2nt2rU1ceJEQ1Dz5ZdfKiEhId11U6tQoYKmTJniUXAsSa+88orbwbGU3Otk6tSphi8PS5cu1eXLlz3ab0Z99NFHhgAiJehKb6T2okWLavLkySpXrpx93tq1a11+IZ0xY4bhi1OJEiVcfnGSkgOfzz77TFWrVnXj2WSNLVu2GIIgSRo9erTLIEiSOnbsqBdffDFD+2zcuLEef/xxt4NjKTn0cSz9kPqLYnbr0qWL28GxlHxb9ahRowzh9vHjxzNcz9Qdd999t+6//36PbqXv2LGj+vbta59OGYwuo/sfNWqUyzsfQkJCNHr0aMO8PXv2uKxfLMkUCt1+++0aOXKky+daoUIFTZ8+3aPj7EaRXX+vcuJ64c3rtjP+/v6aOnWqR8Gxp5555hnD9Pz5800DFqflp59+MgTH4eHhLsP4rBAcHKzp06e7DI6l5BDcMURP7xibPXu2ITgOCwtzGRxLyYHtwIEDvXJnR3p69uyZ7g8wvXv3NtxxlZiYqF9//VUWi0WffPJJmsGxlBw0v/XWW4YfIfft26djx4653OekSZMM01WrVtXEiRNdfu4LDAzUJ598onr16hnmT5s2Lc0615L3P/8cPXrU8HfLz89PU6ZMSTc4lpIDdMcfEjNa4g7AjYXwGADc4GyQDk+DxawSGxtr+FBosVg0evToNOuyObJYLBoyZIghZEirBltaWrZsqXvvvdetZZ988knD9N69e13Wo/vmm28Mr3fr1q310EMPud22+vXrG74wnTt3zlS/OD2vv/66269nZhUtWtQQjCckJBh6hmWXrVu3GgamKVWqlIYMGeL2+qGhoabwY/78+U6XvXr1qul2zVdeecXlF6cUgYGBGjZsmNvtyizHc8GT0gq9evVKt4dqVmrbtq39tlpJpttvcxuLxaKePXsa5jkGb7lBt27dDGUtMtJGf39/vfXWW24tW7duXdWuXdswz9WAZuvXr7ffCi4lBwMjRoxI97ZpKTlIe+6559xq140iO/9eeft64c3rdlqeeuoplz1ls0KzZs0Modm5c+fcvtPE8ceep59+Okvb5kzv3r3dei9Typmk5upcT0hIMJQZkqT+/fu7DI5Te+ONN9Ks6+0NRYsWdavHuK+vrx588EHT/NatW+v2229Pd/0KFSqYAmbHcg2p/f3336axQkaMGJHmHXipBQQE6O233zZcb8+dO6fly5c7XT4nPv988cUXhutWp06ddMstt7i9/r333mv4oXf37t0uX08A+QPhMQC4wVnPVU/Dxf79+6t69epu/Ze6Z7CjP/74wzBATuPGjVWrVi2P2lKxYkXVqVPHPh0REeHRgByOX7BdqVatmiFoj42NNfSaduT4IdvVrYBpcfwS4ux28rQUL17crd4ZWalBgwaGacfBGbOD4+vcoUMHj4/pe++919CrMq3Xef369YZRyYsUKaKHH37Y7f00b95clStX9qhtGeX4Q0OnTp3cXjcgIMCtOotZxcfHx1B7PTIyMt0eqzktJ451TwUHBys8PNw+vX//fkOvMXe0atXKoxqtjsHH4cOH01zWMUS77bbbVLFiRbf39fTTT2dbqZDcKDv/Xnn7euHN63ZavHWNc3wt3Rk4b9euXYYwNjAw0GVN96zgLBB2xZNzfefOnYbPewULFtSjjz7q9r6KFSumNm3auL18VnvsscfS7RGfwtk4Ip68ro7ruxqM8LfffjNMV6tWzaPe6bVq1dKtt97qcpspvP35x2q1atmyZYZ5WfE5OvUAlADyJwbMAwA3OPvwm/rDoDc5foBzp1eGM7Vq1bIHNzabTTt27HBr4DyLxWL60Jze8uXLlzfU9ExrsLnIyEhFRETYpwsUKJBuDVdnHHvxbdu2ze11Gzdu7NEAe+m5dOmSDh06pKioKMXExOjatWumOpeOo6G7CiuyimNgkJHjqHDhwqpYsaL9S1pERIRiYmJUqFAhw3KpazpL0h133OH2F8oUbdq00eeff+5xGz1x5MgRwxd1X19f3XnnnR5to3Xr1hozZkym22K1WnXixAkdO3ZMV69eVUxMjNPbth0HPjt16lS6t05nl7i4OEVEROj8+fOKiYlRXFxcuqPee+NYTy0xMVFHjx7Vv//+a39dU9e4TZE6LE5MTNS5c+c86iXqyTVSkqncTerb7h05nk+e1t4vVaqU6tatmyuD+6yWnX+vcuJ64c3rtjNhYWGqVq2ax/vMiMcee0xjxoyx34n0119/6dixYy5/KHHsdfzQQw8pJCQkW9tZrVo1t3qRpnC8jqR1fEnmH9caNWrk8V1vLVu2NP3o4C2e9HZNGfQvhcVicVmuwlGZMmUM066uoSmDmaa455573N5Pivvuu89wPjpuM4W3P//s3bvXcExVrFgxQ58JHD9Hb926Vd26dfN4OwBuHITHAOAGZz17rl69mgMtMX+ZOHnyZIZqcp48edIwfe7cObfWK1y4sMf1nh2/lKb12u3YscMQrAYHBxsG2HKXY2DlrGZ1WrLii/Hu3bu1cOFCrVy5UmfOnPF4fVdferJCbGysIaSXkmt3HjhwwONtpe6Vb7VadfHiRdP7nTqIkeRxT/mMruMpx3aGh4e7dRtrapUrV1ZQUFCGflxKTEzUzz//rJ9++knr16831Ll0l6sgIjucPXtW33//vX7++WcdPHgw3bDYUXYf61JyqL1kyRItXbpUW7ZscVmbMi2evq6e1D6X3L9GSll3PuWH8Dg7/155+3rh7eu2M94KjqXk965t27b2Wu42m03z5s0zDRSZ4urVq6Yel94oWZG6hrQ7PDnXHXslZ6RciDf+dqbFk9fG8XN2cHCwR8G/4/rOys2lcKzznfpOPHc5rnPixAnFxsaa2uHtzz+O13V/f/8MfUe4ePGiYdqTz9EAbkyExwDghtR1RVN4OqjZk08+qebNmzt9bO3atW7X5b1w4YJhesGCBVqwYIFHbXHG3ecTHBzs8bYdB3Fy1tNPMj+3CxcuaOTIkR7vz5En75UnPYgcXblyRaNHj9bixYtNvYs94epLT1a4ePGiqX0ff/xxlmw7KirK1Mslde88ydzDyB2ehnEZkRXt9PHxUZkyZVzeMuvMli1bNHz4cFMdRk9l97GTwmazadq0aZo8eXKGQu4U2d3eNWvWaNSoUZnu4expOz3tHeh4jUwrhE9ISDC93p6GVxldJy/Kzr9X3r5eePu67Uxm/j5mxDPPPGMYCHThwoUaOHCg056bixYtMoTwderUcVoKIat5eoy5e65L5h/XSpYs6dG+pORSXDnFk+ugYymd3H4NdfaZ5PLly6bw2Nuffxw/Rx88eNDrn6MB3JgIjwHADc5uV46IiPDoduHbbrtNt912m9PHLly44HZ47PhBNKtcu3bNreXcGZQpo7Lrw6kn4VZGB8qLjo5Wt27dsmRQkcwEz+7Izi8Bzo4jxy/AGRls0hsDVDr2Ls3oPj0NE9atW6cXXnjB7XPQFU97/mbUsGHDsuRHq+w81hcuXKihQ4dmyWvi6Tay6zrp7NzNyHGakVA1L8rOv1fevl54+7rtjLcGkk1RpUoVNWvWzD5oZWRkpH7++Wc99thjpmUdayI/9dRTXmmjN48xd3qHO8qpwZ2lzL02efEaevny5XTLZ2T355/c8DkawI2J8BgA3FC1alX5+/sbbnd2NUJ2dsrILdfuyO7A0h3Z9dy84f333zcFx2XKlNGDDz6ohg0bqkKFCipZsqQKFiyoAgUKGHrZbNiwQc8++6zX2pqdr7M7x1FGvhTmxPGZ0S+vnrQ1KipKgwYNMoU3TZs2VatWrVS7dm2VKVNGRYsWVYECBUw97oYMGaKFCxdmqJ0ZtWjRIlNwHBQUpAceeEBNmjRReHi4SpUqpcKFC6tAgQKmGuLVq1fP9jYeO3ZMI0aMMIS+vr6+atmypW677TbVrFlTpUqVUlhYmAICAkyva5cuXTweSCwvyQ3X+xtNdl8vcvq6nVM6d+5sD4+l5JDYMTz+559/DCU9goODPRqULLdyvC45G7w5PXn5c5W3ZOTczej5nt2ff3i/AWQXwmMAcENAQIDq1aunzZs32+dt27ZNSUlJplvlsltoaKih9ticOXM8GpQkN3OsTdm8eXN9+eWXOdMYDxw7dswU4D333HMaNGiQW4PveXvwRcfX2d/fXzt27DDdNppVHOsWZqQurzfKMTj2JMpo/WBP6qHPmjVLkZGR9umQkBB99tlnatasmVvre/vYsdlsGj9+vGFes2bNNG7cOIWFhaW7vrfKakycONEQtJQtW1aTJ092u2aot9rpKWf1e69evaqiRYt6tJ2cqtnvqdwcanr7euHt63Zucffdd6tMmTL20jNbtmzR/v37DT9COdZ0bdu2rcf1p3Mjx2MsI+ett+vg53bOrqEZeY2c1et3tm1vf/5xbMPjjz+ud9991+N9AoCjG/vTBgBkobvuusswff78ef32229eb4djQOM48F1e5hiAnDhxIoda4plVq1YZQo4mTZro9ddfdys4lmQID73B8XW+fv16hgb2c5djncxTp055vA1vHOdZ0U6r1epRfd2VK1capt944w23g2PJ+8fOrl27DK9LSEiIPv30U7eCY8k77U1MTNSvv/5qmPfBBx94NNhUdpUHyqyAgABTKPbvv/96vJ2MrJMRjr3s0qofnBZvDKiYUd6+Xnj7up1b+Pr66sknnzTMS12i4tKlS1qxYoXhcW8MlOcNjuNtHDlyxONtOA66l98FBASYyq9k5Hro7DOJs/DY259/8urnaAC5H+ExALjp0UcfNYWBjjX2vKFmzZqG6U2bNnm9DdnF8bmdPHky0wNdeYPjyN2PPvqoR+vv3LkzK5uTrtDQUNOgLdl5HDmWKdizZ4/H28jIOp5ybOfhw4c9rvN35MgRt3sDJyYmGgbI8/Pz04MPPuj2vpKSkrzyuqTmeKy3atXK6RfmtHjjWD99+rQhdCxdurSaNm3q9voXL170WriaEXnlfJLMtTo97SmfkaDFW7x9vfD2dTs3eeKJJ+Tv72+f/vHHH+2v2/fff2+4y6BJkyaqUqWK19uYHerUqWOY3rZtm8fb2LFjRxa15sZRrVo1w3RGytA5rlOhQgWnNcG9fb12/JF0586dio+P93ifAOCI8BgA3FSqVCk98MADhnm//fabVq1a5dV2tGjRwjC9Zs2aG+aDYYUKFUyDE/7yyy851Br3Xbx40TDtOGCKK1arNUM92B3LpXjao6958+aG6Z9//tnjNrirfv36huk//vjD49qNq1evzsomOVW5cmVDEJqUlOT2QJYpPGlnZGSkocd6WFiYAgMD3V5/48aNHt/GnNnj5tKlS4ZpT0eOd+wRnB0ycz5K3mljZjieT56eG2fPnvXaD1aOt917egdBbq477e3rheTd63ZuUqxYMd1///326atXr2rJkiWy2Wz67rvvDMveKL2OJalhw4aG6SNHjmjv3r0ebWPp0qVZ2aQbguPr6ngHkDuWL1/ucpspvP35p3Hjxoa7U2JjY3PkLkkANx7CYwDwwIABA1SgQAHDvLfeektnz571Whtatmxp+GB46dIlff31117bf3a77777DNPTp0/PtfVHU6TuESV5dqv1L7/8kqFejo6jrnsaIjq+zr/++mu29VBq1qyZoUfO5cuX9dNPP7m9/t9//+2VW28tFotatWplmDd37ly3109ISND8+fPdXt7xuImJiTEM8JaeGTNmuL1sisweN5k51k+fPq1ly5Z5tL+MyEwbk5KSNGvWrKxuUpZyLKG0bt06HTt2zO31v/nmG4+Os8wIDw83TG/fvt3tfcfFxenHH3/MjmZlCW9fLyTvXrdzm86dOxum582bpz///FPHjx+3zytWrJjatGnj7aZlm7Jly6pRo0aGeZMmTXJ7/ZUrV+rAgQNZ3aw8z/G8PXDggEc/VO3bt8/U6//OO+90uqy3P/8EBASY2jJhwgSvXfMB3LgIjwHAAxUqVNArr7ximHfhwgU9/fTTOnTokFfaULRoUVPPmvHjx2fodsYUuWlQoueee87wQfvChQsaMmRIrmqjo9KlSxum3e3lcf78eY0ePTpD+yxWrJhh2tPjr1WrVqpbt65h3quvvpqpmrRpvUeFCxc2lWMYM2aMW3Vlr127luHXKCMca2tu3LhRS5YscWvdadOmGYKM9BQpUsTUQ8jdL7ALFizQH3/84fa+UhQvXtww7WkoX6pUKcP0n3/+6Vbv5aSkJA0ePNgrI8E7no+HDx92u+7jhAkTcn3Y0qxZM1WqVMk+nZiYqFGjRrl1jTxy5Ii++OKLbGydUc2aNQ1h/oULF9zu2f3xxx/n2trTKbx5vZC8e93ObRo0aKDatWvbp/fs2aP33nvPsMzjjz+ugIAAbzctW3Xq1MkwvWLFCi1YsCDd9U6ePKlRo0ZlV7PytObNm+vmm282zBs1apSuXbuW7rrXr1/XW2+9ZThvSpYsqXvvvdfp8jnx+eeFF14w1Jvfv3+/PvjgA4+3kyKvXCMAZC/CYwDwULdu3fTII48Y5v3777966qmnNH36dLc+fKZ24sQJj+sWPv/88ypZsqR9Oj4+Xj179vS4V9/hw4f19ttv6+OPP/ZovexUrFgx9e7d2zBvxYoV6tu3r0dfkBMSErR48WK1a9fOdKt9VmvSpIlhesmSJekGyCdOnFCXLl1Mt9i7q1atWobpefPmefwB33FQv2PHjqlTp07at2+f29uw2Wxav369+vbt67KES48ePQxf6s+fP69evXrp8uXLaa4TFxenl156yVAXOLvdcsstpvdz2LBh+vvvv12ut2DBAk2YMMGjfVksFt16662GeaNHj3b5mkjSwoUL9dZbb3m0rxTVq1eXj89/H/+OHj2a7nNLrUmTJoYvpSdOnND48eNdrhMbG6uXXnrJayUIihUrZqh5arPZ9Oabb7q8Vdhms2nKlCke9erLKRaLRX369DHM+/PPP/X222+7DPJPnDihHj16eLXMUWBgoKmX37vvvqtz5865XG/ixIl54o4ab14vUnjzup3bOAapqX/88vHx0RNPPOHtJmW7hx56yFQSYfjw4Zo0aVKa17S///5bXbp00blz50x3yyFZ3759DdMRERF68cUXXdYgj4+P16BBg0ydNXr37m264yU1b3/+qVatmjp27GiYN2vWLL355pse1WWPiYnRnDlz1L59e4/bAODGQ3gMABnw/vvvG+rvScm3Rv/vf/9TmzZtNHLkSK1YsUJnz541fbiPiYnRrl279O2336p37966//77tWHDBo/2X7RoUU2cONHwpeDKlSsaOHCgnnzySS1YsEDHjh0zhIlWq1VnzpzRb7/9pk8//VSPPfaYHnjgAc2dO9fjQX6yW+/evZ3entu6dWu99957+vvvv02lLOLi4rRr1y4tWLBAAwcOVLNmzTR48GCvDAzVunVrQ5iflJSkF154QR988IEOHjxofx+sVqv27Nmj//3vf3r44YftI6c7hg/ucLx1ffHixWrfvr3GjBmjr776St98843hP2flCW699VYNGTLEMO/w4cNq3769+vfvr5UrV5rC7evXr+vw4cNatmyZRo0apVatWqlr165as2aNy+AqPDxc/fr1M8zbvn27HnroIc2ZM0fnz5+3z4+MjNT333+vhx9+WL///ruk5F5n3jJ69GhD7eFr167pueee04gRI7R792777Z/Xr1/Xhg0b9NJLL+nNN9+UzWZTSEiIKleu7Pa+nnrqKcN0RESE2rVrpx9++MHwY0lMTIzWrFmjHj16aMiQIUpMTFSBAgVUr149j55bwYIFTXVTn3/+efXv319TpkzRnDlzDMeNY63F4sWLm24Lnzp1qvr27at//vnH0LP433//1VdffaX777/fvh3HsDy7OL6uGzZsUIcOHfTLL78YzoXLly9r2bJl6tixo8aOHSspufZ01apVvdLOjGrXrp1uv/12w7xvvvlGHTt21PLlyw0ByIkTJzRp0iQ9+uij9hI53jyfHMsN/Pvvv3riiSe0cOFCQ0mRqKgoLVu2TE888YQ+/fRTSWnXEc1NvHm9kLx73c5tHnnkEYWGhjp9rGXLlipfvrx3G+QFPj4+eu+99wwlh6xWq8aPH68777xTb775pqZNm6Yvv/xSH330kdq1a6du3brZB5vs379/TjU9V3vooYf08MMPG+b98ccfeuihh/Ttt98azqGoqCgtXLhQjz76qKnW8e23365nnnnG5b5y4vPP8OHDTdfPBQsW6O6779b48eO1ZcsW0w+JV69e1datWzV37lz16dNHzZs316hRo3T06FGP9w/gxuOX/iIAAEf+/v4aO3asqlatqkmTJhlqiZ0/f94evKQoVKiQ/P39FRsbm+5AGTVq1DB9MXSmXr16mjRpkl555RVD74Vt27bZe0X4+PgoJCREiYmJiomJyTO3nlksFn344YeyWCyGAfNiYmI0a9Yse03SwMBABQYGKiYmxiu3w6elQIECGjp0qF5++WX7vMTERM2cOVMzZ85UQECAgoKCFB0dbao716JFC/Xs2dPjXpn33XefJk6caA+gpeTbeNMKy++44w4VLlzYNL9Lly6Ki4vTuHHj7CFCUlKSli9fbv+S5O/vr0KFCik+Pj5TPzQ8//zz2rdvn2GQp/Pnz2vUqFEaNWqUChYsKIvFYur5U758eQ0bNkyPP/54hvftiYoVK+rjjz/Wyy+/rMTEREnJX9a//fZbffvtt/L19VXhwoUVHR1tOKcsFoveeecdzZkzx/C+uNK6dWvdddddhlv5//33X73xxhuSZH/PnIX/b731ljZt2uRxzdNevXrp77//NoRaqd/v1Jo0aaLWrVsb5r322mvasGGDIfhbs2aN1qxZIz8/PxUuXNjpOVmqVCl9/PHHpp6o2eGpp57SokWLtHv3bvu8AwcOaMCAAbJYLAoODlZiYqLpWPP399fHH3+sqVOnZnsbM+ujjz5Sly5dDCVrdu/ebQ+LgoODFR8fb/qbc/fdd6tNmzaZKnXkiebNm6tt27ZatGiRfd7p06ftf+eCg4OVlJRkei9q1qypkSNH6rHHHvNKOzPKm9eLFN68bucmBQoUUPv27Z2WXrmRBspzFB4erhkzZqhnz56GvwUXL150WcLiscce03PPPaf//e9/9nn0RP7P22+/rXPnzhk+f506dUojRozQiBEj0vxMkqJOnTr63//+Z7gbJy3e/vwTEBCgSZMmacCAAYbnd+nSJU2aNMl+l01QUJACAgJy/HM0gNyPnscAkEE+Pj566aWX9P3336tZs2Yul42JiVFUVJTL4LhGjRp67733tHDhQlPPwLTcfvvt+v7779PszWe1WhUVFaWrV6+mGRwXKFDANKhRblCwYEGNHz9eb7zxhtPQU0ru4RUVFeXyA294eLhXviw98MADGjp0qHx9fU2PJSQkKCoqyhQct27dWhMnTjTcguyulC8GjnX7MqJXr16aPn16mr22rl+/rqioKJcBRNGiRU31cB35+vrq448/VocOHZw+HhcXZ/riVLlyZX355ZcKCwtL51lkrXvuuUfjx49XcHCw6bGkpCRdvnzZcE75+/vrvffeM92R4I6PP/5YTZs2dfrY1atXTcGxv7+/Ro8enebrmJ5mzZrp7bffNvSW9ETFihU1adIkpz0AExMTnZ6T4eHhmj17tqkecXYJCAjQ5MmTVb16ddNjNptN0dHRpmOtcOHCmjBhgqlHb25VrFgxffXVV2n2Pr9y5Yrpb07r1q31ySefuBV2ZKW3337bdLdEiitXrpjei8aNG+uLL75I89qf23jzepHCW9ft3KZTp06G0juSVK5cObVs2TKHWuQdDRs21HfffefW3Rv+/v7q37+/PvzwQ9NdWiEhIdnVxDyncOHCmjFjhjp06OD0mujsM0mK++67T7Nnz1bRokXd2ldOfP4pWrSoZs6cqV69eqVZCzw2Njbdz9E1a9bM0P4B3FgIjwEgk2rVqqVZs2Zp4cKFevbZZ92+bdLf31+1a9fWc889p8WLF2vx4sXq0KGD6UtReipUqKCvv/5as2fPVps2bdz6sl2kSBHdc889Gj16tNatW2e6rTg36datm3799VcNGDDAraDUYrGoRo0aeu655/Tdd9/p559/NtzumZ26du2qOXPmpPtjQs2aNfXJJ59o0qRJhsEBPRUeHq4ffvhB48eP12OPPabq1asrNDTUZe29tLRo0ULLly/Xhx9+qMaNG7u1jXLlyqlDhw6aNGmS/vjjD7duMffz89N7772nGTNmqH79+mkuFxoaqr59+2rhwoWqUKGCR88lq7Rp00bLli1Tu3bt0nyffHx8dNddd+mHH37IcF3AwoULa+bMmRo6dKjLcNXf318PPfSQfvzxR1M9Q0898cQTWrFihV599VW1atVK5cqVU6FChdy+/tx6661atGiR2rdv7/JYKVmypAYOHKhFixapYsWKmWqzp0qVKqXvvvtOL774Ypq3ukvJPa+efPJJLVu2zDRKfW5XvHhxffvttxo2bJjLvz2VKlXS+++/r0mTJhkGafSWwMBATZw4USNHjnR5jJcuXVpvvvmmR6FMbuGt60Vq3rpu5yYVKlQwDBgpJV/PPP3slBdVqVJFs2fP1owZM9SxY0dVrVpVISEh8vPzU1hYmBo3bqyXXnpJq1atUr9+/WSxWEwlTAiPjQICAvTee+9pwYIFat26tcvrY0BAgG6//XbNmTNHn376qcef33Li84+fn58GDRqk1atXq0ePHrrpppvSXcfX11cNGjTQCy+8oKVLl2ru3LmZagOAG4PFllfuYQaAPOTChQvav3+/Tp06pcuXLys+Pl6BgYEKCQlRSEiIypUrp2rVqmXLqOBJSUnas2ePjh8/rqioKEVHRysgIECFChVS6dKlFR4ervLly+fZL1oXL17Uzp07dfHiRUVGRioxMVFBQUEqUqSIKlWqpCpVquSK3mrnzp3T5s2bdfbsWcXGxqpgwYIqU6aM6tatq3LlyuV089IVFxen7du368yZM4qKilJsbKyCgoJUuHBhlS9fXlWqVFGJEiUyvZ+TJ09qx44dOnfunK5du6bQ0FBVrVpVDRo0yFCP7OwSFxenjRs36vTp04qMjFTBggVVvnx5NWrUKEtDLqvVqn379mn37t2KjIyU1WpVcHCwKleurAYNGmTqx4bscvXqVW3ZskUnTpxQdHS0/Pz8VKJECVWvXl01atTwei9XZ65fv65du3bpwIED9l6goaGhqlKliurVq5ct1+KcsGvXLh08eNA+IF3JkiVVq1YtVatWLYdb9h+bzaZ9+/Zpz549unTpkpKSklSsWDHVqFFDderUyRXHS2Z563rhbL/euG7npAMHDhgGLfb399fatWtVvHjxHGxV7rVkyRK9+uqr9ul7771Xn332WQ62KHdLSEjQli1bdPr0aV26dElWq1VFixZV6dKl1ahRoyz98S2nPv+cPn3a/hkjMjJSNptNhQoVUlhYmCpVqqTw8PAc+ZERQO5GeAwAAAAAyPVGjRqlOXPm2KcfeOABjRs3LucalMu9/PLLhjq7gwYNUq9evXKwRQCAvChvdjsDAAAAAOQbV65cMQy8KEnPPPNMzjQmDzh06JBWrFhhmNeiRYscag0AIC8jPAYAAAAA5GozZ840DABXo0YNtwaQuxG4GnDZmUuXLmnAgAFKSkqyz6tbt67q1KmT1U0DAOQDhMcAAAAAgFxry5Yt+vzzzw3zevfunUOt8b5u3brp3Xff1d69e10uZ7VatWrVKnXo0EERERGGx/r06ZOdTQQA3MCoeQwAAAAAyBUOHz6sDRs2SJKio6O1Z88erVixQlar1b5M7dq19f33398QAyy647HHHtO+ffskSWXLllXdunUVHh6u0NBQ+fj4KDo6WkeOHNE///yjM2fOmNZ//PHH9e6773q72QCAG0TuGcYcAAAAAJCvbdu2TSNHjkzzcX9/f7333nv5Jjh2dOrUKZ06dcrt5R999FG99dZb2dgiAMCNjvAYAAAAAJDrBQYG6uOPP1aNGjVyuileFR4erv3798uTm4bLlSunPn366IknnsjGlgEA8gPKVgAAAAAAcoUffvhBb7zxhn06MDBQ5cuXV4sWLfTss8+qQoUKOdi6nHP69Gn9+eef2rp1qw4fPqzTp08rOjpa8fHxKlCggIoUKaISJUqoQYMGatq0qe688075+dFXDACQeYTHAAAAAAAAAAATn5xuAAAAAAAAAAAg9yE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgIlfTjcA7omMjMzpJmQ7i8Wi0NBQSVJUVJRsNlvONghAmjhfgbyBcxXIOzhfgbyD8xXIO/Lj+RoWFpal26PnMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BoBcqG3btmrWrJmaNWumUaNG5XRzPHbq1Cl7+5s1a6alS5fmdJNyZZsAAAAAAMjNCI8BAAAAAAAAACZ+Od0AAADym99++00HDhyQJAUHB+upp57K4RYBAAAAAGBGeAwAgJf99ttvWrZsmSSpdOnShMcAAAAAgFyJshUAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8Bh5yvYdNq+uBwAAAAAAAORXDJiHPGPGTKtmzpL69JI6d7K4vd7Xc22aMs2m7l1t6tGd30tSJCYm6uDBgzp8+LCioqJ07do1BQQEqHDhwipTpowqV66skiVLerTNuLg4HTp0SMePH1dUVJTi4+NVqFAhhYWFqWbNmipfvnyWPofjx49r//79OnfunKxWq8qVK6fGjRurSJEiaa5jtVq1Z88eHThwQNHR0SpUqJBuuukmNWrUSP7+/pluk81m065du3TixAlduHBBQUFBKlu2rBo3bqwCBQpkevvuunbtmnbs2KGzZ88qMjJS/v7+Cg0NVY0aNVS5cuVMbfvy5cvavHmzrly5IqvVqsKFC6tq1aqZ3m5WtOncuXNKSkpSyZIls7RN586d05EjR/Tvv//q6tWrkqSQkBCVKlVKdevWVeHChbNkPzda2wAAAAAAeRvhMfKE7Ttsmjkr+d9TpiX3InYnQE4JjiVp5izplsY21a/nfvB8I4qJidHMmTP1008/KTIy0uWyJUuW1B133KGePXsqLCzM6TKnT5/WqlWr9Mcff2jPnj1KTExMc3tlypTRU089pXbt2ikgICDdti5dulSjR4+2T//www8qW7asNm7cqM8//1w7d+40rRMQEKDHH39cffv2NYXBP/74o2bMmKGzZ8+a1itSpIheeOEFPfbYY+m2a9SoUVq2bJkkqXTp0lq0aJEk6fvvv9ecOXN06tQp0zpBQUFq27atnn/+eRUsWDDdfWRURESEpk+frvXr1ys+Pt7pMmXKlFGXLl306KOPys/P/T8D586d0/jx47V27VolJSWZHq9Vq5b69u2rW2+9NcPt91R2tclqtWrbtm1atWqVNm7cqJMnT6a5rI+Pj5o0aaKuXbuqYcOGaS63efNm9evXzzT/zJkzatasWZrrrV+/PtvbBgAAAACAM4THyBPq17OoT6//gmN3AuTUwbEk9ellyffB8fHjx9W/f3+dOXPGreXPnTun77//Xg888ECa4fHgwYMVERHh1vZOnz6tsWPHasWKFfrggw9UokQJt9ueYs6cOZowYYJsNuelSBISEjR37lwdPHhQn3zyifz8/JSYmKiRI0dq1apVaW738uXLev/993X27Fn16tXLozYlJibqrbfe0urVq9NcJjY2VnPnztXvv/+uiRMnqlSpUh7tIz02m00TJ07U3LlzZbVaXS57+vRpffTRR/r555/10UcfpfneprZt2zYNGjRIMTExaS6zZ88eDRgwQP369dNdd93l8XPwVHa26eDBg3rhhRfcWtZqtWr9+vXasGGDunXrpt69e7u9n4zIzW0DAAAAANxYCI+RZ6QExe4EyM6CY09KXdyIEhIS9OqrrxqC46CgIDVo0EA33XSTChUqpMTEREVHR+vo0aM6cOCAy1DOmdKlS6tKlSoqW7asChUqJB8fH0VHR+vQoUPasWOHvWfo7t27NXjwYE2bNs2jUhGrVq3SpEmTJEmFCxdW06ZNVb58eSUlJSkiIkKbNm2yB6cbN27UzJkz9fzzz+vDDz+0B8elS5fWrbfequLFiysuLk5btmzRgQMH7Pv44osv1LhxYzVu3Njtdk2ePNkeHAcHB6t58+YqU6aM4uPjtX//fm3fvt3erpMnT6pfv36aMWOGy/IanrDZbBo2bJgpvK5WrZpq1aqlsLAwJSYm6uTJk9q0aZO9tMHOnTv1wgsv6IsvvnDZG/rAgQN65ZVXFBsba59XoEAB3X777QoPD1dsbKwOHz6sTZs2KTExURMmTHCrZ3lmpNWmpk2bqmLFirJarVnWJj8/P1WpUkWVKlVSsWLFVLBgQV2/fl0XLlzQrl27dPz4cUnJ78PMmTMVEhKip59+2rQdi8UiX19fScmhbuofQFLm51TbAAAAACAnbd+RsTvFM7oe3Ed4jDzFnQCZ4Ni5VatW2YMkSXrkkUf08ssvq1ChQk6XT0xM1LZt27Ro0SKXpQ0qV66shx56SC1btlTZsmXTXO7SpUuaPHmylixZIknau3evvvnmGz377LNuP4dp06ZJkjp06KAXXnjB1Pbt27dr0KBB9nB07ty5KlOmjJYsWSJ/f38NHDhQbdu2lY+Psfb1/PnzNWbMGPv01KlT7ftKz8WLFzV37lxJUrt27dS/f39TEBsREaHhw4fr6NGjkpID5PHjx2vEiBFuP3dXvvzyS0Nw3KhRIw0aNEhVqlQxLRsTE6OpU6fqu+++kyQdOXJEY8aM0bBhw5xuOzExUe+8844hpG3RooWGDRtm335UVJRsNptOnTqlkSNHaseOHfrss8+y5Ll50qY333xTxYoVMyyb0Tb5+vqqVatWeuihh3TLLbcoKCgozWW3bdumDz74wP7+Tpw4Ua1btzbVDG/UqJHWrVsnKe3SJznVNgAAAADIKYxxlbvxyiLP6dzJoj69/ruYTJlm09dzk8NiguO0bdq0yf7vm266SW+88UaawbGU3KPxlltu0ejRo1WjRo00lxs1apSeeuopl8GxJBUtWlRvvvmmOnToYJ+3YMECp3Vq05KYmKgnn3xSr732mtO2169fXy+++KJ9Oi4uTu+9954kafTo0Wrfvr0pOJakjh076t5777VP79ixw2ndYmeuX78um82mdu3a6fXXX3fag/fmm282lapYtmyZ9u3b59Y+XDlx4oSmT59un27durU+++wzp8GxJBUqVEivvPKKunbtamhL6h8WUlu6dKmhLMktt9yijz76yBTSSlLZsmU1btw4VatWTQkJCRl9SunyRpuqVKmiDz/8UC1btnQZzkpSgwYNNHXqVHsgm5iYqAULFri9L0/l5rYBAAAAgCccx7hKyXfS4zjG1fYd7q0HzxEeI09yFiA/+KiV4NiFS5cu2f9drVo1pyGqNzz33HP2fZ87d87teslS8gB+qcNhZ+6//34FBgbap61Wq1q3bq1WrVq5XM9xoLxdu3a53a4SJUqof//+LpcpVqyYBgwYYJj3ww8/uL2PtMydO9cewBctWlRDhw51qwRCz549Vbp0aUnJr9HixYudLrdw4UL7v/39/TVkyBCXPdGDgoL0xhtvePIUPJYb21SkSBE9+eST9umUHsa5QW5uGwAAAID8LXmMK+cdBNPCGFfeRXiMPMsxQI6O/u8xgmOz1D1iIyIi0h1ULbsUK1bMMECbJyHtww8/nG6N5MDAQFOv2/bt26e77dq1a8ti+e+YOXLkiNvtevTRR13WDE5x11132QNbSfrtt9/c3oczSUlJWr58uX36oYcectmbPDV/f3+1bNnSPr1582bTMmfOnNH+/fvt0y1atFD58uXT3XbNmjVVr149t9rhqdzYphSpj7sjR44YymrktNzcNgAAAAD5m6s7zB1xx7n3UfMYeVrnThbNnWczBMchIZ7VyMkvatWqpbVr10qSjh07pnfffVf9+/fPskHbrl+/rnXr1mnDhg06ePCgzpw5o9jYWF27ds20bOpSFefPn3d7H/Xr13druZIlS2r37t2SkuvD1qlTJ911AgMDFRISosuXL0uSrly54na7br/9dreWs1gsatGihb3H8eXLl3XixAlVqFDB7X2ltn//fkMI2KBBA4/WT73fiIgI2Ww2Q4DuGOzfdtttbm/7jjvu0I4dOzxqjztyok3nz5/XqlWrtGvXLh0+fFhRUVGKjY1VYmKiYbnUA+BZrVZduHBBN910k8f7u1HaBgAAAADuYoyr3IvwGHna13ONwbGU3AP567k2LiAOHnnkEX311Vf2weR++uknrVq1SrfeequaNGmi+vXrq2rVqm6VPHC0dOlSTZw4UZGRkR6vG+34Brrg7iBfqXsBh4SEqECBAm6vlxIex8XFubWOj4+PwsPD3VpWSi4ZktqRI0cyHB4fOHDAMD148GCP1k8dKCYlJSkmJkaFCxe2z0sZZC3FzTff7Pa2HZ9nVvFmmy5fvqyJEydq6dKlGeqp78mx7anc3DYAAAAAyAhXATLBcc4hPEae5XjhCAn5r3SFs1+o8ruwsDC9//77euONN+wBcnx8vP7880/9+eefkpJrw9arV0/NmzdX69atVbx48XS3O27cOM2bNy/D7fJkEDN3Q+DMriMZg1VXChcu7NE+ihYtapj2pIezo6ioKMO0J4MPOnP16lVDeOzYttTlRtLj+DyzirfadPHiRfXr188UVnsiuwYNzM1tAwAAAIDMcBYgO95xTnDsXYTHyJPS+sUp9XwCZLNbb71Vc+fO1cyZM7V8+XJT3dPY2FitX79e69ev16effqoHH3xQL774YpqlLVatWmUIjn19fXX77bfr9ttv180336ySJUsqKChIBQoUMJRDaNu2rc6cOSPJ/ZA2t0o9OF9Glne3h7MzmQmenXHswep4fLhT1zmFp6+Lu7zVpnfffdcQzoaFhemBBx5Qo0aNVL58eRUvXlwBAQEKCAiwL7N582b169fPPp1dx3ZubhsAAAAAZJZjgExwnLMIj5HnuLpVwZ0aOfldyZIl9frrr2vAgAHaunWrtm3bpp07d2r37t2Kj4+3L5eUlKQlS5Zo48aNmjZtmkqVKmXa1vTp0+3/DgwM1Lhx49yqu5uZwDS3cVbT2ZPlPQk/HTmGofPnz89wCQxngoKCDNNxcXFu18j29HVxlzfatHv3bv3111/26QYNGujjjz829Mp2xhvHdW5uGwAAAABkFca4yj18croBgCfcqXHjySid+VlgYKCaN2+uvn37atKkSVq9erUmTpyoDh06GAK6s2fP6p133jGtf/LkSUPvx86dO7sVHF+/ft1eNuNGEBMT41EJgEuXLhmmg4ODM7zv0NBQw/S///6b4W0549g2T2paOz7PrOKNNqWUcZGSBzkcMWJEuuGsJ9vPjNzcNgAAAADIKq7GuIJ3ER4jz/CkODoBsuf8/PzUuHFjvfbaa5o7d65KlChhf+yff/7RqVOnDMsfP37cMN28eXO39rN///5M1+bNTZKSknTo0CG3l4+IiDBMV65cOcP7dlx369atGd6WM5UqVTJMO7bdFU+W9YQ32pT62K5YsaLKli3r1np79+51uy0ZlZvbBgAAAABZwdkYVynId7yP8Bh5wvYdno+q6SxA3r6DC4w7SpcurWeffdYwzzF4c6y3624P2tWrV2eucblQ6t6grthsNq1bt84+XaRIkUyVmahXr55hsL7Vq1dnaTBfp04dw3Tqtqfnjz/+yLJ2pOaNNqU+tt09rhMTE/X777+73RY/v/+qRjnWms7ptgEAAABATnHWcXDZjz50EMxBhMfIE+rXs6h71+R/e1IcPXWA3L1r8nbgnnLlyhmmr1+/bph2rD17+vTpdLd54cIFLVmyJPONy2WWLFniVj3dtWvX2gcKlKRWrVplar8BAQGGbZw8eVKLFy/O1DZTK126tKpVq2af/uuvv9wqjbFv3z7t2LEjy9rh7TalPrZTv1+uLF68WBcvXnRrWcd9eDLwoTfaBgAAAAA5Ib0xrgiQcwbhMfKMHt19NPFTz0fV7NzJoomfWtSje/4+3Hfv3u3R8tu2bTNMlylTxjBdpUoVw/SPP/7ocnsJCQkaOXLkDVXvOMW5c+c0YcIEl8tcunRJ48ePN8xr3759pvf93HPPycfnv2N7/PjxHpevOHXqVJoBbOo2Xr9+XR988IESExPT3FZcXJzef/992WzZ90c8u9sUHh5u//f58+cNA9Q5c+DAAU2cONGtbadIfT7FxcXpyJEjuaZtAAAAAOBtjHGVe+XvNA15TkZ7DtPjWHrzzTf1zDPP6Ntvv9XZs2fTXM5qtWrRokWaM2eOfV6pUqVUs2ZNw3Jly5Y1BMirV6/WlClTnIZ4x48f14ABA/TPP//Ix8fHUGohr/P395fFYtGCBQv0v//9z2kP5IiICL344ouGnqIPPvigatSoken9V6pUST179rRPx8fH66WXXtKMGTNcBvXXr1/Xn3/+qWHDhqljx446ePCg0+Uefvhh3XzzzfbpTZs26fXXX3c6ANvp06c1cOBA7d+/XwEBAZl4Vq5ld5tatmxpmB41apTpx5QUK1eu1IsvvqjY2FgVLFjQ7edQt25dw/SHH36offv2pVt2xBttAwAAAABvYoyr3M0v/UUA3CgOHTqksWPHaty4cSpXrpyqV6+uEiVKqHDhwrp+/brOnDmjLVu26Pz584b1Bg4caOjdmqJ3794aPHiwffrLL7/Uzz//rKZNm6pEiRKKiYnR/v37tWPHDnso1rVrV/38889u33Kf2xUrVkytW7fWnDlz9P3332vFihVq3ry5ypYtq/j4eO3fv1/btm0z1LUtX768BgwYkGVt6N69u06ePKlly5ZJSq5x+/nnn+urr75S3bp1FR4eruDgYMXHxys6OlpHjhxRRESEW6U2/Pz8NHz4cPXp00exsbGSkusMt23bVi1btlTlypUVGxurw4cPa+PGjfYfD1566SWNGTMmy56jO21q166dmjVrpooVKyopKUlHjhzJUJtq1KihVq1a6bfffpMkRUVFqU+fPqpfv75q166twMBAXbx4UZs2bbIPJBkYGKg+ffpo7Nixbj2HWrVqqVq1ajpw4ICk5J7+3bp1k4+PjwICAmSx/Pdh6Ndff/Vq2wAAAADAWzI6xpUk+3pTptlUtw4dB7ML4TGQD9lsNp08eVInT550uZy/v79ee+013XnnnU4fb9mypZ577jl98cUX9nlnz55Ns4RF+/bt1atXL/38888Zbntu1LdvX506dUq//vqrrly5ohUrVqS5bPny5TVx4kQVKVIky/ZvsVg0YsQIhYeHG3p/x8fH659//tE///yT7jb8/f3TfKxatWr65JNPNGjQIMXExNi3vXLlStOyPj4+6tu3r2677bZsC49dtSklVM1sm4YNG6Z///3X0CN7+/bt2r59u2nZoKAgvf/++4ZB8NwxcuRIDRgwwPBjjdVqTTfU90bbAAAAAMAbkse4smnmLM/HuJKSg2PGuMpelK0A8omRI0fqqaeeUnh4uKFXozNBQUF64IEHNHfuXD366KMul+3Vq5dGjx6t8uXLp7lMrVq19N5772nw4MHp7jsv8vPz0/vvv69XXnlFpUuXdrpMUFCQnn76ac2ePVulSpXKlnZ07txZCxYs0OOPP67Q0FCXy1osFlWtWlVdunTRN998oxYtWrhcvkGDBvrmm2909913y9fX1+ky1apV09ixY9WlS5eMPgWPZGebgoOD9fnnn+vJJ59Ms8xKYGCg7r33Xs2ePVtNmzb1uP3h4eGaO3euBg4cqGbNmqlUqVIKDAxM9xzxRtsAAAAAwFsY4yp3s9iyc1QjZJnIyMicbkK2s1gs9sArKioqWwfcyu+uXLmiQ4cO6dSpU4qMjFR8fLwKFCigIkWKqFKlSrr55ps9rktstVq1f/9+7d+/X1FRUSpYsKBKlCihatWquQyW86JRo0bZS0SULl1aixYtsj9mtVq1c+dOnThxQpcuXVJQUJDKli2rRo0aKTAw0GtttNlsOnjwoA4dOqTLly8rJiZGBQoUUEhIiMqXL6/w8PAM936OiorSli1bFB0dLavVqsKFC+vmm29W5cqVs/hZeNamzZs36+zZs7LZbCpRokSWtSkmJkbbtm3TyZMnFRcXp7CwMJUoUUINGjRQUFBQFrT+xmwbcgf+tgJ5B+crkHdwvgJ5R348X8PCwrJ0e4THeQThMZB7uAqP8wvOVyBv4FwF8g7OVyDv4HwF8o78eL5mdXhMv24AAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwsNpvNltONQPoiIyNzugnZzmKxKDQ0VJIUFRUlDk0g9+J8BfIGzlUg7+B8BfIOzlcg78iP52tYWFiWbo+exwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAAAADAhPAYAAAAAAAAAmBAeAwAAAAAAAABMCI8BAAAAAAAAACaExwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAAAADAhPAYAAAAAAAAAmBAeAwAAAAAAAABMCI8BAAAAAAAAACaExwAAAAAAAAAAE8JjAAAAAAAAAICJX043AAAAmDVr1sz+7x49euj555/PwdbkLp9//rlmzJhhn16/fn2ay/bt21dbt26VJDVs2FCTJ0/O9vYBAAAAwI2CnscAAAAAAAAAABN6HgP5yIEDB/Tbb7/Zp5966ikFBwfnYIsAAAAAAACQWxEeA/nIgQMHDLd6P/TQQ4THAAAAAAAAcIrwGACAXMhVHV+4jxrHAAAAAJBx1DwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAm1DwGkCXOnj2rPXv26OLFi7p69arCwsL00EMPyc8v5y8zBw8e1KFDhxQZGamEhAQVKVJE5cuXV926dRUQEJBj7Tp+/LgiIiJ04cIFxcXFqUyZMrrvvvtcrhMTE6Pt27fr3Llzunz5sgIDA1W0aFHVrl1bZcuWzVR7Tp06pR07dujixYvy9fVVyZIlVaNGjUxv1xmbzabdu3fr5MmTunjxoqxWq2rXrq1GjRq5XO/cuXPatWuXLl26pKtXryo4OFglSpRQgwYNFBISkqG2xMfHKyIiQkeOHFF0dLTi4+NVoEABFSlSRGXKlFF4eLjCwsI8em6HDx/WwYMHdenSJcXFxcnf31+FChVS6dKlVbFiRZUrVy5DbXWX1WrVnj17dOzYMUVFRclmsyksLEyVKlVSzZo15eOTdb8dR0RE6NChQzp//rz8/f1VvHhxNWrUSEWLFs2yfeQGsbGx2rp1q86cOaOrV6+qSJEiqlq1qmrWrClfX99MbTsyMlI7d+7UhQsXFB0drUKFCqlYsWKqX7++ihUrlkXPAAAAAAA8l/OpDoBs16xZM6fz27dvn+Y6EydOVOPGje3TS5cu1ejRo+3TP/zwg8qWLavt27drypQp2rZtm2w2m2Ebd999t4KDgyVJo0aN0rJlyyRJpUuX1qJFi9xqe1r7TU9MTIzmzp2rH3/8UefPn3e6TGBgoO677z716NFDJUuWdKs9nvj88881Y8YM+3TKAGi///67vvjiC+3bt8+wfOHChdMMj7dt26bp06dr69atSkpKcrpMeHi4unfvrjZt2shisbjdzj179mjcuHHasWOH6TGLxaJGjRrppZdeUo0aNbR582b169fP/vhXX32l6tWrO91u3759tXXrVklSw4YNNXnyZCUlJWnu3Ln6/vvvdebMGcPyLVu2dBoeW61W/fzzz5o7d64OHTrkdF++vr665ZZb1KtXL9WuXdut533x4kVNnz5dK1asUExMjMtlK1SooJYtW6pXr14qUKCA02USEhL0zTffaOHChabn5igsLEwtWrRQ9+7dVb58eafLpD5ve/Tooeeffz6dZyRduXJFs2bN0pIlS3T58mWny4SGhuqxxx7Ts88+q0KFCqW7zbTO3d9//12ff/65IiIiTOtYLBa1atVK/fv3z5YfHzzh7Dh05tSpU4Zr4rBhw/Twww/rypUrmjhxopYvX664uDjTesWLF1fPnj3Vtm1bj9v2+++/a9asWdqzZ4/p+pmiTp06ev7559W0aVOPtw8AAAAAmUV4DCDDZs+erSlTpqQZZuaULVu26M0331RkZKTL5a5du6bFixdr5cqVGj16tFq0aJHtbRszZozmz5/v9vIJCQl6//339fPPP6e77OHDhzV8+HCtXLlSo0aNUmBgYLrrzJ8/X2PHjpXVanX6uM1m0+bNm9WrVy8NHTpUJUqUcLvtjq5cuaJXX31V27dvd3udc+fO6bXXXtP+/ftdLpeUlKQNGzZo48aN6tWrl7p37+5y+Z07d2rQoEGKjo52qx0nTpzQnDlz1KlTJ6fh8cWLF/Xyyy87DVKdiYyM1E8//aRmzZqlGR57aufOnXrttdcUFRXlcrmoqCjNmjVLS5cu1ZgxY1SjRg2P9zVu3DjNmzcvzcdtNpvWrl2r7du367PPPlPVqlU93kduEBERoddee83ljwEXLlzQBx98oAMHDmjw4MFubffKlSsaNmyYNmzYkO6yu3bt0oABA9SuXTsNGjQoV9zNAQAAACD/4BsIkA+k3FJts9kMIaGrW63T67m6evVqTZw4UZJUoEABNWrUSJUqVVJAQIDOnz+vv//+Owta7rm1a9dq+PDhun79un1esWLF1KBBA5UuXVoFChTQpUuXtGXLFh0/flxS8u3or732msaOHasmTZpkW9tmz55tD46DgoJ06623qnz58vL19dXp06e1c+dOw/Lx8fEaMGCAtm3bZp/n4+Oj2rVrq1q1aipSpIji4+N19OhR/fPPP4qPj5eU3Jtx0KBB+vTTT12+x8uWLdOYMWMM80JCQtSsWTOVKVNGCQkJOnTokDZv3qyEhAS9++676tu3b4af/8iRI+3BcYkSJXTrrbeqRIkSio+P17Fjx0yh2PHjx9WvXz9Dz/GCBQuqfv36qlSpkgoVKqSrV69qz5492rVrl2w2m2w2m6ZOnarExMQ0e+pGRUXp1VdfNQTHISEhatiwocqVK6egoCDFx8fr8uXLOnLkiA4cOGB/bdMyfPhwQ3AcEBCgevXqqXLlygoJCVFSUpKuXr2q48ePa//+/Wn2Cs6o7du3a8CAAbp27Zp9XoECBdSkSRPddNNNslgsOnbsmDZs2KCEhARJyYH3Cy+8oAkTJqhWrVpu72v69On24Dg0NFS33nqrypQpI4vFoiNHjmj9+vX2fURGRmr48OGaNWtWjpaIyYgLFy5o6tSpOn/+vCwWi2rWrKnatWsrJCREUVFR2rRpk/0aIiXfFVG3bl098MADLrcbGRmpvn376ujRo/Z5/v7+qlevnqpUqaLg4GDFxsYqIiLCcKfBwoULFR8frxEjRmTL8wUAAAAAZwiPgXxg3bp1kswlIObPn5/hW8qnTJkiKbk0xaBBg0x1ORMTE7O0rqo7jh8/rlGjRtmD47CwMPXv31/33HOP0956a9eu1fvvv6/Lly8rKSlJb731lr755huFhoZmS/tSXrPHH39cffv2NZUMSB14S8m9lFMHx3fffbdefPFFp+/ZpUuX9Mknn2jVqlWSpM2bN+vLL79Ujx49nLbl7NmzpuD4qaeeUp8+fUw9lk+cOKGRI0dq9+7d9ufgqR07digpKUkBAQF6+eWX1bZtW9Pxkfr5x8fHa+jQofbg2M/PT88++6w6deqkwoULm7YfERGhUaNG2QPcmTNnqlGjRobSKym+//57Q3jbrVs3de/ePc1yFNeuXdOmTZv0ww8/OP1RZevWrdqyZYt9ukWLFho2bFiaNX9T6hEvWbIkzX16IiYmRm+99ZYhOG7ZsqWGDBliasPFixf17rvv6q+//pKU/MPJiBEj9NVXXykoKCjdfV24cEEzZsyQj4+PevXqpU6dOplC4VOnTunVV1/V4cOHJUlHjhzR8uXL9cgjj2T2qXrVjBkzdP36dVWrVk3Dhg1TtWrVDI9brVZ98803mjBhgr3kxNSpU3Xfffelee2z2Wx6++237cGxxWJRu3bt1LNnT6fHy6lTp/Tuu+9q8+bNkpJ/8Lnlllv04IMPZuEzBQAAAIC0ER7Dbb7H/pLf7oXyuXwi2/aR+P8BX2BiYrbtIydYi1RQYu12SqqY/WURvCUpKUmtW7fWO++84zQoyYlbq99//33FxsZKkooWLaqpU6eqQoUKaS5/5513qmzZsnr++ecVHx+vyMhIfffdd+rVq1e2tC8pKUmdOnVS//79nT7u7+9v//fmzZv1448/2qeffvppDRgwIM1tFy1aVKNHj5aPj49WrFghSZozZ46eeOIJe93p1L788ktDnV9X269QoYI+/fRT9erVK82aw+lJ6T357rvv6o477nC6TOrn/9VXX+ngwYOSkntbv/fee2rZsmWa27/55ps1efJk9ejRQ8eOHZPVatXnn3/uNDzetGmT/d+33HKL+vTp47LtgYGBuuOOO9Jsd+rtFS5cWKNHj3YZxPr4+KhOnTqqU6eOy/26a+7cuYayCnfccYfef/99p73OixUrpo8++kiDBg2yl0w4efKk5s2bp+eeey7dfSX+/7V5+PDhaQaYZcuW1YcffqhnnnnG3gN52bJleS48vn79uqpUqaIpU6Y4fT99fHz0zDPP6OjRo1qyZIkk6cyZM9q6davT406SfvrpJ3vtc0kaOHCgnnjiiTTbULZsWY0fP14vvfSSvW7z9OnTdd9992V6kD4AAAAAcAfhMdzie+wvBS7sLYs1e0PdlOGCbrSvxL6nt8vvwC+61n6akm5qntPNyRJBQUEaPHiw13sXp2XXrl32cEWSXnnlFZfBcYpq1arpiSee0OzZsyUl3xr+/PPPezTgnLvKlCmTblCZIqU9klSlShXDIHWuvPLKK/rjjz8UFxen2NhYLV++XI8//rhhmZiYGC1fvtw+Xbp06XTbVahQIb322mtut9+Ze++9N80ANrVr165pwYIF9um2bdu6DI5TFC5cWC+//LIGDhwoKXmQwcOHDys8PNyw3KVLl+z/rlmzprvNT1Pq7VWsWNGtHrxZ5fr161q4cKF9ulChQhoyZIjLYNHPz09vvvmmnnzySfsAcD/88IOeffZZt370ueOOO9Lt+VqhQgXdfvvtWrNmjSRp7969SkpKynOB5/Dhw9N9P59++ml7eCwlX4uchcc2m01ff/21fbp58+Yug+MUfn5+Gjx4sDp16iSbzaZTp05p/fr1uu222zx4JgAAAACQMbkj9UGu57d7YbYHxzc6izVRfrt+yOlmZJnWrVurSJEiOd0Mu2XLltn/XaJECd19991ur9umTRv7vyMjI+2322e1Rx55xK26rxcvXjT0TuzQoYPbPblDQ0N1yy232KdTbndPbfv27fYe2pL08MMPu1U+oUGDBpka+Kx9+/ZuLffnn38aykq4E7ClaNq0qUJCQuzTzp5/wYIF7f8+cOCA29tOS+rtHT9+3FA+Irvt2rXLEF7fd999phIyzpQsWdJw3F+4cEG7d+92a5+OP0akpWHDhvZ/X7t2zeWgc7lR3bp13RpMMDw83HAtTF3LOLU9e/YYHvPkuK5cubKqVKlin3Z2XAMAAABAdiA8BpAhjRo1yukmGKTudVy3bl2PekQ79lDOikDRGXdfs9R1jqXk0NYTqZ9P6kHcUjiGhE2bNnV7254sm1pAQIDbZRpSv5ehoaGqVKmS2/vx8fEx1IR29l6mHhxuw4YNmjx5sr0Hbkak3t6VK1c0dOhQnTt3LsPb84TjIIvu9NBOcdddd7ncljO+vr6qX7++W9svU6aMYfrKlStuty038OQal/q5ph6IMbXUx7XFYnH7dUyR+rzOrmsUAAAAADiibAXckli7nfwO/ELv40yw+fgpsY57PS/zgooVK+Z0E+wSEhIMPfp+/fXXTN3SnVb4k1nuvmaOwVCXLl082o/VarX/O3UP3hT//vuvYTp1j8b0eLJsauXKlXO793Tq5x8VFeXxe5lSX1ly/l527NhRS5YssdfvnTVrlubPn68WLVrolltuUf369VWpUiW3S5e0atVKZcqU0enTpyVJf/31l9q1a6dGjRqpWbNmql+/vqpXr26o6ZxVjh8/bph2HNTNlerVqxumjx07lu46wcHBpgEV05K6R7YkQ2/3vKBEiRJuL5v6uab1Q0Tq49pms+mee+7xqD2pz+vsukYBAAAAgCPCY7glqWILXWs/TX67fsjWAfNSwqXEG3HAvDrtb5h6x1Jyfdnc4vLly7LZbPZpm81mCBA9dfXq1axolomzgeuciYqKMkxn9XNJ3QPUz8/Poxq9GS1V4snxkt3PPzw8XMOGDdN7771nH9AtNjZWq1at0qpVqyRJISEhatiwoZo3b667777bUArDUUBAgD766CO98sorOn/+vL3NmzZtsg+mV6BAAdWuXVtNmjTRPffco3LlymX4OaWW+r308fFRWFiY2+sWLVpUPj4+9lDSnUDS3eDYmdTnaF6Q0eea1vPM7uMaAAAAALID4THclnRT82wNPy0Wi0JDQyVJV6Oi8lzQkN+424vUG7I6SEndwy8rufuaZeXzcXYepQSmkjzuDZvR3rOeHC9Z+fzTei/vv/9+Va9eXTNnztTatWsNr4mUHKT+9ttv+u233zR27Fg9/vjjev7559MMFG+++WZ9/fXXmj17tpYuXWoKCuPj47VlyxZt2bJFU6dOVatWrTRgwABTaQdPxcTE2P8dGBjo0UCPFotFBQoUsPeUzWs9g/MabxzXAAAAAJDVck/6AwAZ5DjYW7du3dSnT58cak3mpX4+Pj4++u2337K05EHqXsDXrl2T1Wp1u0Z06rAyu6R+/vXq1dO0adOyZT+VK1fWqFGjdPXqVW3evFnbtm3Trl27tHfvXsPdD/Hx8ZozZ442btyoyZMnp9mLukiRInrxxRfVp08fbd++XVu3btWuXbu0c+dOw+tms9m0du1abd68WRMnTvSo1ISjQoUK2f997do12Ww2twNkm82m+Ph4+7QnPdDhudTHdYkSJbRkyZIcbA0AAAAAuIfwGIBXeNIjMjV3BjJL6bGewrGmb16T+vlYrVadOnUqS2tMp96+zWbT2bNn3e4Bm1LXNzuFhobqzJkzkrzzXhYuXFitWrVSq1atJCWHsFu2bNGqVau0cuVKXb9+XVLy4IPjx4/Xm2++6XJ7fn5+aty4sRo3biwpuTzB3r17tXbtWkOv5CtXrmj48OGaO3eufH19M9T21KVQrFarIiMjVbRoUbfWvXTpkqEHq6vSHMi81OfdhQsXFB8fb/rhCwAAAAByG/e6mgFAJqUeUOratWtur3fhwoV0lwkKClKpUqXs09u2bfOobblN5cqVDdNbt27N0u079nTds2eP2+vu3bs3S9viTOrnf/HiRdOgcNktMDBQLVq00IgRIzRjxgxDj9wVK1Z4dPxKkq+vr+rUqaMXX3xR8+fPNww6eOzYsUwdrzfddJNh2nGwRVf2799vmM5Ng2DeiFIf1zabLc9fpwAAAADkD4THQD7iWHfWm3UzU/eQvHz5stv1Vd0NTm+55Rb7v8+fP6/Nmzd71sBc5NZbbzVML1++PEu3X69ePcP0ypUr3VovLi5O69aty9K2OJP6vZSy/vl7olq1amrbtq19Oj4+PlNhdnBwsPr27WuYFxERkeHtOb6Xv//+u9vrrl271jBdt27dDLcD6ctNxzUAAAAAuIvwGMhHHGuaXrlyxWv7zkivu4iICO3YscOt7d97772G6SlTpigpKcmjNuYWpUuXNgR5W7du1d9//51l269SpYqqV69un/7999+1b9++dNebNWuWVwZVu/322w3H6nfffaeLFy9m+37TUq5cOcN0ShmL3LC92rVrG8pULF++3K3X6vz581q1apV9ukSJEqpdu3aG24H01atXT6VLl7ZPL1++XIcOHcrBFgEAAABA+giPgXzEsa6tJ+UKMqtOnTqG6W+//dbl8teuXdPo0aPd3n7Tpk0NgevOnTs1duxY2Ww2t7cRHx+v7du3u718durZs6dh+u2339aRI0c82sbBgwcVGRnp9LGnnnrK/m+r1aqhQ4fq7NmzaW5rzZo1mj17tkf7z6giRYqoY8eO9ukrV65oyJAhunr1qkfb2bRpk9P5u3bt8mg7jj90pA4AJWnfvn0e/VDhuD1360074+/vr3bt2tmnY2Ji9OGHH7psT2Jiot577z3DDwHt27c33ZmArOXn56du3brZp5OSkvT666/r/PnzHm1n27ZtSkhIyOLWAQAAAIBzhMdAPlK5cmUVLlzYPv3ll1/qr7/+8riGa0aULVtWDRs2tE9v2LBBEyZMUGJiomnZw4cP64UXXtD+/fvl7+/v9j6GDh1q6LG6YMECDRw4MN2yAIcOHdLUqVPVrl07zZkzx+39ZaemTZvqkUcesU9HRUWpR48emj9/vuLj49NcLy4uTitXrtTAgQPVuXPnNIOpBx54QE2aNLFPnzp1Sl26dNHs2bN14sQJJSYmKjY2Vjt37tS7776rN998U0lJSV4rbdCtWzdVrVrVPr1z5051795df/75p8sfBC5cuKDvvvtOnTt31htvvOF0mZ49e+r555/XokWL0gzXJSkhIUFffPGFoaxHvXr1VKxYMcNy48ePV8eOHfXll1+mW9Ji7dq1+uyzz+zTBQoUUPPmzV2uk55OnToZAu3ff/9dQ4cO1aVLl0zLXrx4Ua+//rqhJ3v58uX15JNPZqoNcM8jjzxiOO9Onjyprl276pdffnEZ+EdHR2vJkiXq3bu3+vTp4/IaAAAAAABZiW5GQD7i5+enhx9+WPPmzZOUfOv6K6+8Iik5xPLx+e/3pLFjx6pBgwZZuv/evXurb9++9vDv66+/1urVq9WsWTMVLVpUV69e1d69e7Vr1y5ZrVYVL15cHTp00NSpU93afuXKlfXOO+9o6NCh9nBl/fr1Wr9+vcLDw+23+Pv4+OjKlSs6ffq0Dhw44HHPP28ZPHiwzpw5Y+9BGxsbqzFjxmjKlClq0KCBKlSooEKFCunatWuKiorSoUOHdOjQIbfLIIwcOVL9+vWz92iOjo7WxIkTNXHiRKfL16lTRz179tSAAQPs83x9fTP5LJ0rWLCgPvroI/Xt29feI/rEiRN69dVXVaJECTVs2FAlSpRQYGCgYmJidOHCBR04cEAnTpywH1+pfyhxtHPnTu3cuVMfffSRKlasqJtvvlnFixdXUFCQ4uPjderUKW3evFlRUVGG5/ryyy873d6pU6c0ZcoUTZkyRaVKlVL16tVVpkwZFS5cWElJSTp//ry2b9+ukydPGtbr27evChUqlKnXqlChQnr77bfVv39/+3H/22+/af369WratKl9ILxjx45pw4YNhuAxKChIo0aNMpW0Qfbw9fXV6NGj9cILL+jgwYOSpEuXLmnkyJEaN26cGjZsqDJlyqhgwYKKjY1VZGSkIiIidPTo0TxbhgcAAABA3kZ4DOQzvXv31t69e03lGRx7smVHUNGgQQP169dPEyZMsM87ffq0Fi5caFq2RIkS+t///mcPWNx12223aerUqRo6dKhOnTpln3/48GEdPnw43fU96emc3fz9/TV27FhNmDBB3377rT0UjYmJcWvgOovF4rIUQdGiRTVx4kS9++676W6vdevWGjp0qOm4cRXQZlbZsmX15ZdfasSIEYYSFOfPn9eKFSvSXd+d99JqterIkSPplgQJCgrS6NGjVatWrXS3efbsWZclQCTJx8dHzz33nKF8SGbUr19fEyZM0GuvvWYPvOPj410OoFe0aFGNGTNGNWvWzJI2wD0hISH6/PPP9f777xuO46ioKP3666/pru/r62v4oQ8AAAAAshPhMZDPFCxYUJMmTdKaNWu0du1aRURE6MKFC7p27ZqsVmu2779z584qX768JkyYYOqFKSX3gL777rs1YMAAhYaGehweS1KNGjX07bff6qefftL8+fPTHZQqLCxMt956q9q0aaMWLVp4vL/s5Ofnp5dfflmPPfaYvvrqK/3++++KiYlJc3lfX19Vr15dt99+u+6//36VLVvW5fZTAsQNGzZo+fLl2rFjhy5cuCBfX1+VLFlStWrV0kMPPaRGjRpJkqEnriQFBwdn+jm6EhYWps8++0x///235syZo23btjktdZIiMDBQDRo00J133qk2bdo4XWbMmDH6888/tWnTJqfHYGpFihTRPffco+7du5vKVaQYOHCgVq9erQ0bNigiIsLlDy8BAQFq3ry5unfvrho1arjct6fq1q2r7777TrNmzdKSJUsUHR3tdLnQ0FA9+uij6tq1a6Z7PSNjChYsqFGjRumJJ57Q7NmztX79epelKPz9/VWnTh3dcccduu+++3jfAAAAAHiNxebJaFLIMa7qct4oLBaLQkNDJSUHVByaNzabzab9+/dr//79ioqKUlBQkEqVKqWGDRtmeSB56dIl7dq1SxcvXlR0dLQsFouCgoJUunRpVaxYUeXLl5fFYsnSfWaXpKQk7du3T8ePH9fly5cVGxurggULqkiRIqpQoYLCw8OzNVgaN26cvexJwYIFtXnzZl25csVr52tcXJx27typs2fP6vLly0pMTFTBggVVrFgxVaxYUZUqVfKo93hkZKQOHz6sU6dO6fLly0pISFBgYKBCQ0MVHh6uqlWrejSQXFxcnA4dOqSTJ0/q0qVLunbtmvz9/RUcHKxKlSrp5ptv9krwZ7VatWfPHh09elSRkZH262ulSpVUq1Yteq7mMgkJCdq9e7f+/fdf+3EYFBSk0NBQ3XTTTapcubICAwMztG3+tgJ5B+crkHdwvgJ5R348X8PCwrJ0e4THeQThMYCcZrVa9fjjj9vLgTRq1EjffPMN5yuQi/G3Fcg7OF+BvIPzFcg78uP5mtXhMV2PAABuWbx4saGO9F133ZWDrQEAAAAAANmN8BgA8qno6Ght2LDBrWV/++03jRs3zj7t7++vDh06ZFPLAAAAAABAbsCAeQCQT129elUDBgxQeHi42rRpo4YNG6py5coKDg6WzWaz14petmyZ1q1bZ7i9p2fPnmkOIAcAAAAAAG4MhMcAkM8dPnxY06ZNc3v51q1b69lnn83GFgEAAAAAgNyA8BgA8ik/Pz/5+fkpMTHRreWDgoLUpUsXdevWTT4+VD0CAAAAAOBGR3gMAPlUyZIl7SUptm/froMHD+rMmTO6cuWKEhMTVahQIYWEhKhatWpq1KiR7r33XoWEhOR0swEAAAAAgJcQHgNAPhYSEqIHHnhADzzwQE43BQAAAAAA5DLcdwwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTH2WD06NGqXr264b8hQ4bkdLMAAAAAAAAAwG2Ex1ls27ZtmjNnTk43AwAAAAAAAAAyhfA4C12/fl3Dhw+X1WrN6aYAAAAAAAAAQKYQHmehadOm6cCBA5KkEiVK5HBrAAAAAAAAACDjCI+zyOHDhzVlyhRJUsGCBfXKK6/kcIsAAAAAAAAAIOMIj7OAzWbT8OHDlZCQIEl64YUXVK5cuRxuFQAAAAAAAABkHOFxFpg3b57++ecfSVK1atXUvXv3HG4RAAAAAAAAAGQO4XEmnT17VmPGjJEkWSwWvf322/L398/hVgEAAAAAAABA5hAeZ9I777yjK1euSJKeeOIJNWrUKIdbBAAAAAAAAACZR3icCStWrNDKlSslScWKFdOgQYNyuEUAAAAAAAAAkDUIjzPoypUreuedd+zTQ4YMUZEiRXKwRQAAAAAAAACQdfxyugF51UcffaRz585Jklq0aKFHH300W/dnsViydfu5QernmB+eL5CXcb4CeQPnKpB3cL4CeQfnK5B3cL5mHuFxBmzatEnz58+XJAUEBOitt97K9n2GhoZm+z5yE3pxA3kH5yuQN3CuAnkH5yuQd3C+AnkH52vGULbCQwkJCRo+fLhsNpskqU+fPqpUqVLONgoAAAAAAAAAshg9jz00ceJEHTlyRJJUuXJlPf/8817Zb1RUlFf2k5MsFov9V6DLly/bA3oAuQ/nK5A3cK4CeQfnK5B3cL4CeUd+PF+zunoB4bEH9u/frxkzZtin3377bQUEBHhl3/nh4E7NZrPlu+cM5FWcr0DewLkK5B2cr0DewfkK5B2crxlD2Qo3Wa1WDR8+XNevX5cktWvXTk2bNs3hVgEAAAAAAABA9iA8dtPs2bO1fft2ScndvwcPHpzDLQIAAAAAAACA7EN47IZr165p3Lhx9unBgweraNGiOdcgAAAAAAAAAMhmFhvFPtIVHR2tW2+91T7t6+ub7jo2m01Wq9U+bbFY5OPzX1bftm1bvffee263ITIy0u1l8yqLxWIv6h0VFUUdGiAX43wF8gbOVSDv4HwF8g7OVyDvyI/na1hYWJZujwHzMiApKcnjdWw2m2G91MEyAAAAAAAAAOQ2lK0AAAAAAAAAAJjQ89gNISEh2r9/v0frbNiwQc8++6x9ul27dvrggw+yumkAAAAAAAAAkC3oeQwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgIlfTjfgRtW0aVPt378/p5sBAAAAAAAAABlCz2MAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAyAHbd9i8uh7gKcJjAAAAAAAAwMtmzLSqX3+bvp7rWRD89Vyb+vW3acZMaza1DPgP4TEAAAAAAADgRdt32DRzVvK/p0xzP0D+eq5NU6YlLztzFj2Qkf0IjwEAAAAAAAAvql/Poj69LPZpdwLk1MGxJPXpZVH9ehYXawCZR3gMAAAAAAAAeFnnTu4HyM6C486dCI6R/QiPAQAAAAAAgBzgToBMcIycRHgMAAAAAAAA5BBXATLBMXKaX043AAAAAAAAAMjPUgLhlKB4yjSb5s6zKTr6v2UIjpET6HkMAAAAAAAA5DDHHsgEx8gNCI8BAAAAAACAXKBzJ4tCQozzQkJEcIwcQ3gMAAAAAAAA5AJfzzWWqpCSeyA7DqIHeAvhMQAAAAAAAJDDHAfHS90DOfUgeoA3ER4DAAAAAJANtu/IWNCT0fUA5F2OwXGfXhYt+9HHUAOZABk5gfAYAAAAAIAsNmOmVf36ex70fD3Xpn79bZox05pNLQOQ2zgLjlNqHDsOokeADG8jPAYAAAAAIAtt32HTzFnJ//Yk6EkdIM2cRQ9kwF15uZe/q+A4BQEychLhMQAAAAAAWah+Pc+DHmcBUv16FhdrAJDydi9/d4LjFATIyCmExwAAAAAAZDFPgh5PAiQA/8nLvfy37/D8vHd2XckNvadxYyM8BgAAAAAgG7gTIBMcAxmXl3v5169nUfeu/7XB3fM+9XWle1dxhwKynV9ONwAAAAAAgBtVSiCUElal/L9zJwvBMZAFXJ1jjnLbOdeju49uaWzzOADu3MmiunUIjuEdhMcAAAAAAGQjZ+HW3Hk2RUf/t0xOh1hAXuZOgJzbguMUGQ2ACY7hLZStAAAAAAAgmzmWsCA4BrKWqzIxuTU4BvICwmMAAAAAALygcyeLQkKM80JCnN9eD8BzzgLkBx+1EhwDmUB4DAAAAACAF3w911iqQkrugZzeAF8A3EcvfyBrER4DAAAAAJDNHG+bT90DOfXt9QAyj17+QNYhPAYAAAAAIBs5q7e67EefNOuzAsgcevkDWYfwGAAAAACAbOJqoC5XA3wByBh6+QNZi/AYAAAAAIBs4Co4TkGADGQdevkDWY/wGAAAAACALOZOcJyCABnIPHr5A9mD8BgAAAAAgCy0fYf7wXEKZ+HW9h2EW4A76OUPZB/CYwAAAAAAslD9ehZ175r8b3eC4xSpw63uXZO3A8A1evkD2csvpxsAAAAAAMCNpkd3H93S2OZxANy5k0V16xAcA+7IaC9/Sfb1pkyzcc4BLtDzGAAAAACAbJDRMIoQC3APvfyB7EfPYwAAAAAAAORJ9PIHshc9jwEAAAAAAJBn0csfyD6ExwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAByte07bF5dDwCQjPAYAAAAAADkWjNmWtWvv01fz/UsCP56rk39+ts0Y6Y1m1oGADc+wmMAAAAAAJArbd9h08xZyf+eMs39APnruTZNmZa87MxZ9EAG8iLuOMgdCI8BAAAAAECuVL+eRX16WezT7gTIqYNjSerTy6L69Swu1gCQ23DHQe5BeAwAAAAAAHKtzp3cD5CdBcedOxEcA3kJdxzkLoTHAAAAAAAgV3MnQCY4Bm4M3HGQuxAeAwAAAACAXM9VgExwDNxYuOMg9/DL6QYAAAAAAAC4IyUQSgmKpkyzae48m6Kj/1uG4Ai4MTg731PPlwiOvYGexwAAAAAAIM9w7JFIcAzcuLjjIOcRHgMAAAAAgDylcyeLQkKM80JCRHAE3ICcBcgPPmolOPYSwmMAAAAAAJCnfD3XWKpCSu6BnN6gWgDyJu44yDmExwAAAAAAIM9wvFU9dQ9kV4NqAcjbuOMgZxAeAwAAAACAPMFZjdNlP/qkWRMVwI2DOw5yBuExAAAAAADI9VwNjuVqUC0AeR93HOQcwmMAAAAAAJCruQqOUxAgAzcm7jjIWYTHAAAAAAAg13InOE5BgAxkj+07MnYeZXS9FNxxkPMIjwEAAAAAQK60fYf7wXEKZ4FSZgMsID+bMdOqfv09D2a/nmtTv/42zZhpzdB+ueMgdyA8BgAAAAAAuVL9ehZ175r8b3eC4xSpA6XuXZO3A8Bz23fYNHNW8r89CWZTB78zZ3neA5k7DnIPv5xuAAAAAAAAQFp6dPfRLY1tHgfAnTtZVLcOwTGQGfXrWdSnl+xBbsr/Xf2Q4yz49eQ8zOgdB6nbN2WaTXXrSA3qc/5nFj2PAQAAAABArpbRAJjgGM7kVP3evMqTnr2e9BhOC3cc5C70PAYAAAAAAEC+MGOmVTNnSX16ue496yglFO3e1aYe3fNfX0xnPXtTz5eyJjhOwR0HuUf+O9oBAAAAAACQ7+RU/d4bhaseyFkZHKfgjoPcgfAYAAAAAAAAN7zk+r2eDayW2fq9NxpnAfKDj1qzPDhG7kF4DAAAAAAAgHzB2/V7b0SOr2F09H+P8RrdeAiPAQAAAAAAkG+4EyATHLvWuZNFISHGeSEh7teRzq+lP/IiwmMAAAAAAADkK96u33uj+XquzdDjWErugexOHemv59rUr79NM2Zas6l1yEp+Od0AAAAAAAAAwNtSAuGUoHjKNJvmzrNRhiEdjuF6ainz03rNHAcfvKWxLV/XkM4L6HkMAAAAAACAfIn6vZ5xFRynSKuONIMP5k2ExwAAAAAAAMi3Mlu/N79wFv6mDt5TcwyQKQWSd1G2AgAAAAAAAPmWq/q9BJzJ0gt/nfVGTj2P4DjvIjwGAAAAAABAvuQYioaE/Fe6Ir36vflFesGxY+3o1BznERznPZStAAAAAAAAQL7jLBRd9qOPoRRDWvV784vtO9wrN+FYO9oZguO8ifAYAAAAAAAA+Yqr3rSOQWh+DpDr17Ooe9fkf6cX/roKkAmO8y7KVgAAAAAAACDfcGfwNsdSDPm5hEWP7j66pbFN9eul/9w7d7Jo7jxjDWkGH8zb6HkMAAAAAACAfMGd4DgFPZD/405wLLkefBB5E+ExAAAAAAAAbnju1u9NzVmAvH0HQagzzgYfTJGfg/e8jvAYAAAAAHBDyGigQxAE5A+e1O9NLXWA3L2r6164+fU6xOCDNy7CYwAAAABAnjdjplX9+nseTHw916Z+/W2aMdOaTS0DkJv06O6jiZ96Pnhb504WTfzUoh7d047S8ut1iMEHb2yExwAAAACAPG37Dptmzkr+tyfBROrAY+asvN/zD4B73K3f68l6+fU65O7ggwTIeRfhMQAAAIAbUn69dTg/ql/P82DCWeCR0UAJAPLjdYjBB/MHwmMAAAAAN5z8eutwfuZJMOFJ4AHkFvwglvvlp+sQgw/mH4THAAAAAG4o+fXWYbgX3OT1wAb5Ez+I5R355TrkjcEHkTv45XQDAAAAACArJd86LPsX85T/u/pim9dvHcZ/Ut5nZ+//jRDYIP9x/EFMcn09S+H4g9gtjW1c17wkv1yHenT3ydBx1bmTRXXrEBznFRabzcbP6XlAZGRkTjch21ksFoWGhkqSoqKixKEJ5F6cr0DewLmK/M7dL+i54Ys852vWc3xfQ0Kk6Oj/Hs/LgQ1yVk6cr55ep3LDdQ1ch3KD/Pj3NSwsLEu3R9kKAAAAADek/HLrMJxzfP8JbJCX5adaujcSrkO4ERAeA/g/9u48Po7qzPf/t3qxLBlkmZ2whn2xW0zMkoQkEBKymGB2ywglRpgYE2ecSXLnzuT+Zu6dmTvLneUOA3cISzCKE0VIZjfBYQkEskwCBJJu26xhh7Aj2WBJVi/1+6ORJbVarTqtqu5aPu/XK6/ITZ/u0111qqqfes5zAAAAQqtSwIUAS/h1tFtqbp74WHOzsyn/gN9wQyyYOA4h6AgeAwAAAAi1cgGXRYsLBFgioLvHnpDpJxUz/0wXHQP8ghtiwcNxCEFH8BgAAABA6DF1OHrK1RodVWnKP+B3Ub4hls5UN26rbTdTHIcQBgSPAQAAAEQCU4ejo1wG5ob1Mcc1YwG/i+INsTVdBa1abT5uu3tsrVpta01XwaOeTf2+HIcQBgSPAQAAAEQCU4ejodLUfZNFxwC/i9INsXTGVtfa4t8m43b88aBrbe0ykDkOIUwIHgMAAAAIPaYOR4OTmq8EbhAWUboh1poyH7fljgetKe8D6xyHEDYEjwEAAACEGlOHo8FksTACNwi6KN4QMxm39Vo8kOMQwojgMQAAAIDQYupwNKQz5oGictu/XotqASaifEPMyXG7XoFjjkMIK4LHAAAAAEKJqcPR0Zqy1Lms+LdJoGj89u9cpppMaQdmghtilT9nvQLHEschhJdl23b4jiQh1N/fX+8ueM6yLLW0tEiSBgYGxK4J+BfjFQgGxiqizDSAUM+Ag8R4dUs6Y1cVeKm2HaKpXuPV6XGq3sezWilXumN8Deh6fW6OQ/4SxfPrvHnzXH09Mo8BAAAAhApTh6Or2sALARv4HbV0Jyv9nH4IHEschxA+BI8BAAAAhApThwGECTfEptbRbk1YLFAqZiCHMdMaqJdEvTsAAAAAAG5b3hnTsQvNpwB3tFtaMJ/AMQD/KN4Qs9W11vyGmFQMHIf1hlh3jz0h41gqZiB399gEkAGXEDwGAAAAEEpMHQYQFtwQm6xSzePRxwkgAzNH2QoAAAAAAACf44bYmHI1oDesj0Wi1jNQawSPAQAAAAAAEAiVFg+MymKBQC0RPAYAAAAAAIDvVQocjyKADLiL4DEAAAAAAAB8zUngeBQBZMA9BI8BAAAAAADgW+mM88DxqHIB5HSGADJgiuAxAAAAAAAAfKs1ZalzWfFvJ4HjUeMDyJ3Lwrl4IOC1RL07AAAAAAAAAFSyvDOmYxfaxgHgjnZLC+YTOAaqReYxAAAAAAAAfK/aADCBY6B6BI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAADCUztg1bQfUA8FjAAAAAAAAwMCaroJWrbbV3WMWCO7usbVqta01XQWPega4i+AxAAAAAAAA4FA6Y6trbfHvq691HkDu7rF19bXF53atJQMZwUDwGAAAAAAAAHCoNWVp5Qprx7+dBJDHB44laeUKS60pq0ILwB8IHgMAAAAAAAAGOtqdB5DLBY472gkcIxgIHgMAAAAAAACGnASQCRwj6AgeAwAAAAAAAFWoFEAmcIwwSNS7AwAAAAAAAEBQjQaERwPFV19rq6fX1tatY88hcIygIvMYAAAAAAAAmIHSDGQCxwgLgscAAAAAAADADHW0W2punvhYc7MIHCPQCB4DAAAAAAAAM9TdM7FUhVTMQC5dRA8IEoLHAAAAAAAAwAyULo43PgN5/CJ6QNAQPAYAAAAAAACqVBo4XrnC0ob1sQk1kAkgI6gIHgMAAAAAAABVKBc4Hq1xXLqIHgFkBBHBYwAAAAAAAMBQpcDxKALICDqCxwAAAAAAAIABJ4HjUR3tls5YPPZvkwByOkOgGfVF8BgAAAAAAABwKJ1xHjiWpDVdBd2+Xjrh+LHHrr7WnjYw3N1ja9VqW2u6CjPuM1AtgscAAAAAACA0qs3UJMMTTrWmLHUuK/49XeA4nbHVtbb490MPjwWQO5cVX2cq4zObu9ayf6J+CB4DAAAAAIBQWNNV0KrV5jVlyfCEqeWdMV15ReXAsVQMEI+vefzQw9IZpxfbT6VcSYxKgWbASwSPAQAAAABA4I3P8DSpKUuGJ6rlNKBbumje7Xdoyv3TpJaynzEDIDwIHgMAAAAAgMArzfB0EkAmwxO1UhpALrd/hiVwzAyAcCF4DAAAAAAAQsFJgG5UWAJ1CI5K+2dY9kdmAIQPwWMAAAAAABAaUcrwRPCU2z8XLS6EZn9kBkD4EDwGAAAAAAChEoUMTwRX6f65devYfwvD/sgMgHAheAwAAAAAAEIn7BmeCLaOdkvNzRMfa25WaPZHZgCEB8FjAAAAAAAQSmHP8ERwdffYE/ZHqbh/mi4y52fMAAgHgscAAAAAACC0wp7hieApDZyO3z9NFpkLAmYABB/BYwAAAAAAEFpRyPBEcJTLuN2wPma8yFyQMAMg2AgeAwAAAACAUIpShif8r1KpBpNF5oKIGQDBRfAYAAAAAACEThQzPOFfTmr8hjmAzAyA4CJ4DAAAAAAAQiXKGZ7wH5PF4cK4fzIDINgIHgMAAAAAgNCIeoYn/CWdcR44HlVu/0xngrl/MgMg+AgeAwAAAACAUIh6hif8pzVlqXNZ8W+TxeHG75+dy4qvEzTMAAiHRL07AAAAAAAAMFPVZnhK2tHu6mttLZgfzEAd/Gt5Z0zHLrSN96uOdiuw+6PTGQDSxPE3/nH4A5nHAAAAAAAg8KKc4Qn/q3a/CuL+yAyAcCHzGAAAAAAAhEIUMzwBP2EGQPiQeQwAAAAAAEIjShmegN8wAyB8yDwGAAAAAABAzaUz5lniM2mH2mAGQLiQeQwAAAAAAICaWtNV0KrV5vVtu3tsrVpta01XwaOewQ3MAAgPgscAAAAAAAComXTGVtfa4t8mC6SNX4ita23xdQB4i+AxAAAAAAAAaqY1NVbfVnIWQB4fOJaK9XTJUgW8R/AYAAAAAAAANTV+gTSpcgC5XODY6UJsAGaG4DEAAAAAAABqzkkAmcAxUF8EjwEAAAAAAFAXlQLIBI6B+kvUuwMAAAAAAACIrtGA8Gig+OprbfX02tq6dew5BI6B+iDzGAAAAAAAAHVVmoFM4BjwB4LHAAAAAADUSDpTfkEwr9oBQdLRbqm5eeJjzc0icAzUEcFjAAAAAABqYE1XQatWT14QbDrdPbZWrba1pqvgUc8Af+jumViqQipmIJuOGQDuIXgMAACAyCMTEIDX0hlbXWuLf49fEGw64xcM61rLcQfhVbo43vgMZJMxA8BdBI8BAAAQaWQCAqiF1tTEeq5OgmGlwbSVKyy1ppi+j/Apt69vWB8zHjMA3EfwGAAAAJFFJiCAWipdEKzScadcMI26rwijSvu6yZgB4A2CxwAAAIgsMgEB1JqTYBiBY0SFk32dADJQXwSPAQAAEGlkAgKotUrHHY4ziAqTfZ0AMlA/iXp3AAAAAKi30R+roz9iR/9//I9YAjoA3FTuuNPTa2vr1rHncJxBWKUz5ufUcmNmwXwx+wfwGJnHAAAAgMgEBFB7pccdAseIitaUpc5lxb9N9vXxY6ZzGYFjoBYs27bJ8w+A/v7+enfBc5ZlqaWlRZI0MDAgdk3AvxivQDAwVqtTGihubiagA+8xXqNt0eLChONMc7O0YT25Xn7FeHVPOmNXFQCuth2iJ4rjdd68ea6+HmcjAAAAYBwyAYHwSWeqCxZU285Ed8/EUhVS8bhDPVdEQbUBYALHQO0QPAYAAABKdLRbam6e+FhzswgcAwG0pqugVavNF9fq7rG1arWtNV0Fj3pWfqbDKBYEAwD4AcFjAAAAGPFzBp9byAQEwiGdsdW1tvi3STB2fFC3a603x69ytdQ3rI9NWXsdAIB6SNS7A0FVKBT00ksv6cUXX9Qbb7yhrVu3amRkRE1NTWppadERRxyhQw89VPF4vN5dBQAAcM2aroK61korV5hl4Y4GSTqX2Vre6e/8hUo1j0cfJwMZCIbWlKWVK8bGrpMxXC6o6/YU+UqLcI7+v0mfAQDwCsFjA++++67WrFmjxx57TE888YSGhoYqPn/u3LlavHixli9frr333rtGvQQAAPBGaQaf5CyYUZrBd+xC/y5yM1VAZ/zjBHKAYDEJxlYK6rrFyXsQQAYA+IW/0z585tVXX9V1112nxx57bNrAsSRt2bJFP/zhD7Vo0SLdcsstNeghAACAd4oZfGbTqWuRweeW6TIBmUoOBJeTMeyXwLFJnwEA8BqZxzOw22676bDDDtMBBxyguXPnKh6Pa2BgQE888YR+//vfq1AoLqwwODio73znOxoZGdHSpUvr3GsAAIDq+S2Dzy1kAgLhV2kM1+J4lc6Yv0e5Pi+Yr4o34dKZ6mZ3VNsOABBuBI8NxONxHXfccfr85z+vE088UQcddNCUz3311Vf1d3/3d3rggQd2PPaP//iP+vjHP67999+/Br0FAADwhpMgatgCx6MIIAPBVm4M9/ROXCDTq+NVa8pS5zL7g7rxzt9jfJ87l1UOHEehLj0AoLYs27aZ9+KRfD6vr371q/rVr36147ELL7xQ3/nOd4xfq7+/382u+ZJlWWppaZEkDQwMiF0T8C/GKxAMXo9VJ/WBxz/uR+mMrVWrzfta+hmvvMK/5TgQDJxba6t0DI+qxfHKq8xgjme1w3gFgiOK43XevHmuvh63FD0Uj8f17W9/e8Jjv/jFL+rUGwAAAHeVq8e5aHEhMIFjaTQTsPi3aSbg6GefLhMQgP90tFtqbp74WHNzbWYRVHu8mK5d2OvSAwDqg7IVHjv66KPV1NSkwcFBSdJrr71W5x4BAAC4p3QKeC2mfrtteWdMxy40zwTsaLemrT0KwJ+6eyaWqpCKx6/uHjsQx62phLUuPQCgfsg8roE5c+bs+DsK6fEAACBa6pnB5xavMgEB+E9p0HT88ctJtq7flZsVUvqZCBwDAJwieOyxoaEhDQwM7Pj3fvvtV7/OAAAAeKBSBh8A+Em5oOmG9THjcg9+VymATODYO+lMdftNte0AJ9gvMVMEjz121113KZvN7vj3ySefXL/OAAAAuCzsGXwAwqNS0NRJtm7QhKEufZCs6Spo1Wrz/aa7p7jQ4Zqugkc9Q5SxX8INBI899OSTT+qf//mfd/y7paVFy5Ytq2OPAAAA3BOVDD4Aweck2zYKAeQg1qUPgnTGVtfa4t8m+834/bJrLZmecBf7JdxC8NhFtm3rvffe06OPPqp/+Id/0Hnnnaf+/n5JUlNTk6644grttttude4lAADAzEUtgw9AcJmUaQjj8SsMden9rjVlvt+U2y+pow83sV+OsQdeUeHFh6TscL27EkiJencgyJ577jl96Utf2vHvQqFQdkG8k046Sd/5znf04Q9/uOr3sqzgD9bpjP+MUfi8QJAxXoFg8GqsdvdMnPZ86SWWOton5iR8+QJLllXQVdcUn3f1tbYsS5OeB6CIc6s30hl72uNVqXLHr9SC4AZQunsKZevS/+gGm2NylcqNV5PznpPzKOCGSO+X2SElnvqJEpk+5V5LS5KaZrdo+IwrVdh3YZ07FyyWXS7aCUeeffZZLVq0aMr/HovFdMEFF+jiiy/WXnvtVcOeAQAAeOO664d02eWDO/79zW806eKLGl17PgC47cqrBvXdq4eMjz+jx6+vrWzUqkubPOyhd0qPwXPnWtqyZSwEwDHZfdOd9zgvoh6itF/abz2jwiM/VOF3fdLwlslPaNlPyW8/UvuOBRjB4xmYLng8KplMqqOjQ9/61rc0a9asGvQMAADAfY8+ltVXOsfS15z+sCj9QfKDrmYt/EjSkz4CQDmPPpat6rhTbTs/mCoYFKYgkV/x3cOPwrxf2rkR2U9sUOGRH8h+/r+mfX7ir56V1TCnBj0LB4LHLhoZGdHAwICeeOIJ3XXXXbrjjjuUzWZ3/PcTTzxRV199dVUB5IGBARd76k+WZWnu3LmSpC1btpQtAQLAHxivQDB4MVbXdBV0/fdt46mM3T3FKZMXXWhpeWeAp0ACHuHcCjeNHnNHlR6zp/vvqMzJeC39jpubJy5YyHeOegjbfmlteUWJTJ+Sm26RNfiOozb53Q/X8Jdvk0JcIqqlpcXV1yN47KEnn3xSK1eu1GuvvbbjsUsuuUTf+ta3jF9rdOG9MLMsa8cOPjAwwAUz4GOMVyAYvBqr6YxdVe3PatsBUcC5FW5xukCgyUKCmMjpeC39jkfxXaOeAr9fFnKKP/9zJdO9ir/wS1lyfr4s7LSXhk+/XIW9Ux52sP7mzZvn6usRPPbYM888o7POOmtHBvLs2bP1wAMPGG9IgscA/ITxCgQDYxUIDsYr3GAaECaAXB2T8bpo8cQFC5ubpQ3rg5PZiXAK4n5pvfeGEptuUnLjTYq9/7pZ472OVuz4ZXrvgFNkJ8NfrsLt4LG/94wQOPTQQyfURR4eHtaDDz5Yxx4BAAAAAMImnTEPBHe0W1q5Yuw5V19rK53hxoVbunvsCQE6qVgioLuH7xj1E6j90i4o/uKvNHv9n6rpus+o4df/6ThwbMcblD3qTA219ynxtZ8qftxXpFk7edzhcErUuwNR8PGPf1y33377jn8/9dRTdewNAAAAACBsWlOWOpfZ6lprlkE8+ryrr7XVuUyUF3JJaVb3+Nqyo4+T5Y1aC8x+OfiukptvVTKzTrEtLxk1Lcz7sLKtbcoeeYbU2CLLsmSFuL5xLRA8roHddtttwr/ff//9OvUEAAAAABBWyztjOnaheX35jnZLC+YTOHbLVOVAxj/uq0AdIsH3+6VtK/bqo0pm+pR45m5Z+azzprGkcod+VrnUUuX3PS7Ui+HVA8HjGigNFjc3N9epJwAAAACAMKs2AEzg2B2V6kiPz/Ie//8EkOE1X++X299T8vH1SmR6FX/nD0ZNC837KJtqU+7os2TP2W36BqgKweMaePzxxyf8e++9965TTwAAAAAAgBecLEBY90AdIsev+2Xs9U1KZnqVeHKDrNyQ43a2FVP+oJOVTbUpf8CJUizuWR9RRPDYY8PDw7rjjjsmPPbxj3+8Tr0BAAAAAABucxKgGxXFAHI6Y15OZSbtUOS7/TI7qMSTdyqZ6VP8jc1GTQtzdlduwXnKLjhX9s4kZdYSwWOHRkZG9Nxzz+mII45w3KZQKOh//a//pT/+8Y87HmttbdVBBx3kRRcBAAAAAECNpTPOA3SjygXqwlp3ek1X4YOFHM0CkaOBz85ltpZ3xjzsYTj5ab+Mvf20Euk+JZ9YL2vEbB2w3AEfL2YZH/RpKZ6cUT9QHYLHDg0PD+vMM8/U5z73OZ111lk68cQTNWvWrCmfn06n9a//+q965JFHdjwWi8X0//1//18tugsAAAAAAGqgNWWpc5n9QYB0+gDdqPGBus5l4QwcpzPF70Uyy2QdnzHbtVZVLQQZdXXfL3PblXjmnmKW8auPGjW1Z7coO/9sZRcskT3vgOreH66xbNu2p38atm7dquOOO27HvxsbG3XEEUfokEMO0dy5c9XY2Kht27bp9ddf18aNG/Xyyy9PaG9Zlv7hH/5B55xzTlXv39/fP6P+B4FlWWppaZEkDQwMiF0T8C/GKxAMjFUgOBivQHBMNV4pzVCeSemEap6Pymq9X1r9LyiZuVHJzbfIGh4wapvfZ6GyqaXKHXqqlGgwfu+y/Yng+XXevHmuvh6Zx1UaGhrS7373O/3ud7+b9rl77rmn/vZv/1af/vSna9AzAAAAAABQa9UGgMMcOJbMaukSOHZfTfbLfFbx536mZLpXiZd+bfQ+9qydlD3qDOVSS1TY7TDDXqIWCB47NGfOHP3zP/+zfvGLX+iRRx7RG2+8MW2bo446SmeddZbOPvts7bTTTjXoJQAAAAAAgL84CSATOA4e673XlMzcqMSmmxTb9pZR2/ye85VNtSl3xCIp2eRRD+EGgscOxeNxnXnmmTrzzDMlSW+++aaeffZZvfLKK9qyZYu2b9+upqYm7bTTTtp333119NFHq7m5ub6dBgAAAAAA8IFKAWQCxwFSyCv+wi+LtYyff1CWXXDc1E40KnfEacqm2lTYa76HnYSbCB5XaY899tAee+xR724AAAAAAAAEQrkAck+vra1bx55D4NifrG1vK7H5FiUz6xTb+qpR2/yuhyiXWqrskadLs0m0DBqCxwAAADXGgjoAACCqSgPIBI59zLYVf/lhJTK9Svzhp7IKOedN40nlDv2Csq1tKnzoI5LFdg2qWL07AAAAECVrugpatdpWd4/ZSs/dPbZWrba1psv51EAAAFC9dMbsXD3TdlHS0W6ptNJnc3P5RfRQB0MDSj76fTV9/zQ13nShkk/f5ThwXJi7v7Z/6s+1bcWD2r7oX1TYZ2HNAseMWW8QPAYAAKiRdMZW19ri31df6zyAPL4OYNdaLnD9jB8tABAO3Oz1VnfPxFIVUjED2fT7hotsW7E//l4Nd31Hc649WQ0P/rNi/c87a2rFlTvkVA2dc50GL/qJssdeJDXO87jDEzFmvUPwGAAAoEZaU5ZWrhjLvHASQC63gAylK/yJHy0AEA7c7PVW6bXN+Axkk+8bLhnZpkS6V43dZ6up93wlH79NVn67o6aFnfbS9o//qQa/er+GF1+h/AEnSlbtQ42MWW8RPAYAAKHi98zPjnbnAWRWHg8OfrQAQHhws9c75b6nDetjxt83Zi721pNq+OnfaM41n9Ls+/5W8beedNTOlqXcgZ/U0BlXavDie5X96Ndk77SHx72tjDHrLYLHAAAgNIKS+ekkgEzgOFj40QIA4cLN3upUugla6XtaMF8EkGshO6zE5tvUeMNSNf3wLCUzfbKyg46aFpp21cjxKzS4/B4Nn32t8gefIsUSHnfYOcasd/yzlQEAAGagNPNTcrboSmnm57EL7ZoE8EpXGh/fZy5og6nSNi3FNgYA/5vquP7lC8aO1909BY7nH1jTVVDXWmnlisnnvkrnvdH/1rms+LiT8yjMWO8+p2SmT8nNt8navnX6BuPk9jtBuVSbcod8RorP8qiH7ig3Zi2roK9/bew5XIOZs2zb5lZOAPT399e7C56zLEstLS2SpIGBAbFrAv7FeIVfmV4M+uHisVzdv/ELyMykT4zV+phuv/LDfgf/YbwC/lV63L70Ektf/9ouuu76IV12+VjWZpSP5+lMcRbXqHLBYSf/7corLG3cJM6TbsiPKPGH+5RI9yrxysNGTe2GZmWPPlPZVJvsXQ7yqIPeKd2vvvmNJl18UaP+87vv6qprwr9vzZvn7mKFBI8DguAxAD9hvMLPnAbm/BTAK+3LqJn2ibFaP1PtX37a7+AvjFfA30qP33PnWtqyheP5eOXOcQvmy7WgMqWdnLG2vKLkxhuV2HSzYoPvGLXN792qbGqpcod9QUrO9qiHtRHlMUvwOKIIHgPwE8Yr/C6ImZ+LFhcmZBw3N0sb1s9seQrGan15mVWO8GG8Av7n1c3eMCl3jbV9u/1BOQtngePS1+pcJi3vZMmuigo5xZ//uZLpXsVf+KUsOT+H2Mkm5Y48XdlUmwp7HOlhJ2svqmOW4HFEETwG4CeMVwRBkDI/yTwOr6j+aIE5xisQDF7c7A2bqTKQRzOHTa7F0pnarEURVNb7byqx8UYlN96k2PuvG7XN73a4sq1LlTvydGnWHI96WH9RHLNuB4/D/W0BAIDIKrfi8qLF/lvUplx26ihWGg++jnZrwjaVitu43vsdAMBcd489IQglFWeUhOFcnc5U9xnKtSt3DbZxU/Fv05v4BI7LsAuKv/grzV6/Wk3fO0UNv/5Px4FjO96g7FFnanDpDRr68q3KtS4NdeA4zGO2lhL17gAAAIBXSldc9lvJACfZ0aw0HmyVfrSwTQEgOCrVTw36uXpNV+GDshJmn2GsrIQ9qaxE6TXY1dfa6um1fXctFiiD7yq5+VYlM+sU2/KSUdPCvA8r29qm7JFnSI0t3vTPZ8I8ZmuNzGMAABBqfs38rJR5Uy5jhwyJ4CGrHADCofR4fukllv7r57vom99o2vFYPY/rM8kaTmeK9Ygls88w/jvpWussA5nAcRVsW7FXH1XDhj/XnO+drIZf/JvjwLEdSyh72Bc0dO73NXjhncp+ZFlkA8ff/EaT/uvnu+jSS7i+rgbBYwAAEGp+nK7mZMomAeRgK7eNN6yPsU0BIGDKn7OLoZSLL2qsezBqTVdBq1abv293j61Vq2399lHb+NxU7juZqryEX2/i+97295T83Y/U+IPFaurrUPLJH8vKZx01LTR/SNs/8U0NfvV+bf/SZcrvf4JkRef7Lnez5+KLGiVJHe1ci1WD4DEAAAgtP2Z+mtT6I4AcTGSVA3CTm7VoYcbZzd76BaPcyhpeMF+OP4NpzWI/3sT3s9gbm9Vwz19pzjUnqeFnf6/4O39w1M62YsodfIqGzrpGgxfdo+zxK2TP2d3j3vpPpZs9o7gWM0fwGAAAhJIfMz/TGbMfXFL5C1wCAv5FVjkAN800q3RNV8GjnoVfEG72tqbM33eqrGEnn6GawLHfbuL7UnZQiY03qfFH56npR+cquelmWbkhR00Lc3bXyAmXanD5vRo+40rlP/wpKRb3uMP+FIQxG1QsmAcAAEJnusxPaeICLuMf91JrylLnMvuDRWmc1/ob3+fOZaw87lemP1qk+uyHAIKhNKtUcnaMKM0qPXahzXnDULU3e6WJx/UF870/Z5ucT6Y7T1V6rZkGjlkUeLLY208rkVmn5OO3yxp536ht7oCPK5tqU/6gT0vxpEc9DI4gjdkgsmzbJrQeAP39/fXugucsy1JLS4skaWBgQOyagH8xXuFnTn/cmP4IclM6U90PedN2jNXaSWeKWX6jnO5PpfvhlVdMXTcS4cZ4rY9aHY+r5VbADubWdBWmvNlbabyOboPOZdLyztpN9p5u25vsG+Uyhk0Wu3OzL6GTG1HimbuVzPQp/uqjRk3t2S3Kzj9b2QVLZM87wKMOBtdUY3a682u9xqyX5s2b5+rrETwOCILHAPyE8Qq/4kf2RIzV2qoUaKgkjD9aYI7xWntBGbNBuCkaVlPdJJhuvNbq5kIpJ9m+4x83eS2nbdlfy7P6X1Ry4zolN98qa8gsvpPfZ6GyqTblDv2clGjwqIfhUG7sOTm/1mvMeoXgcUQRPAbgJ4xX+BGZn5MxVmvP71mM8C/Ga20F7ZxBJqe/+Hm8zjRreLxFiwsT2jY3SxvWT33DhJv4JfJZxZ/7mZKZPiVe/C+jpvasnZQ96gzlUktU2O0wjzoYDX4er15xO3hMzWMAABAK1BOGH1S7/7DfAbVVXGjMrO74VAuN1YKbtWgRbqX7SrWB4+4ee0Lb0dfq7rHLvgY1Z8dY772mZOZGJTbdpNi2t4za5vc8WtnUUuWOWCQlmzzqIWCGzOOAIPMYgJ8wXuFnZH6OYawCwcF4rY+gTbF3M6sU1QvCeDXNGh6v2v0sKKVgPFHIK/7ir4q1jJ97QJZdcNzUTsxW7ojTlE0tVWGv+R52MpqCMF7dRuYxAABABWR+AgCcqpTRO8ovgWPJvaxShJtp1nBp2+nqJk+Vqb+8M6ZjF5rfjO9otwKbcWxte1uJzbcomVmn2NZXjdrmdz1YudT5yh55ujS72aMeAjNH8BgAAAAAEFlBKwnR0W6pp9eelFVa737BHyplDU9XnqXS/u7kRosUkZv4tq34K48okb5BiT/cJ6uQdd40nlTu0M8rm2pTYZ+FkhWgz43IIngMAAAAAIi0coGx0gCtHwLH0syyShFuM8kadnKjxGkAObSGBpR84nYl032K9T9v1LQwd39lU0uUPfosqWkXjzoIeIPgMQAAAAAg8oJQEmImWaUIt5lkDZtk2EcugGzbir2WVjLTp8RTP5GV3+68qRVX/uBTlG1tU37/j0lWQOs5I/IIHgMAAAAAIH+XhJhJVinCbSZZwwvmy7g0S7nXcrtmcd0XQB7ZpsSTP1Yy3af4W08YNS3stJeyC85Vbv65snfec+Z9AeqM2x4AAAAAAKhySQivpTNTv0el4OCC+cV/j7r6Wrsm/YU/mGYNl+4rGzdJncumb1vptTqXuRs4XtNV0KrV5vtxd4+tVattrekqVP3esbeeVMNP/0ZzrvmUZv/0bxwHjm1Zyh34SQ2dcaUGL75X2Y+tInCM0LBs2+asEgD9/f317oLnLMtSS0uLJGlgYEDsmoB/MV6BYGCsAsHBeK2/SiUhJG9LV6zpKqhrbfn3qBQcHP1vncukhgbLd4v7hZVfxms6UwyWjnK6zUv3qSuvKLapa6bvuNdz6zM57ld2WImn71Iy06v4a2mj/haadlVu/jnKLjhP9tx9jdpGVa2zyv0yXmtp3rx5rr4emccAAAAAEAKVMle9aBcm5QK0G9bHapLRm87Y6lpb/j2cBI4lqWstGchOhG2MtKYs17KGqw0Auxk4Hn090/243Dhx0i/r3ec164H/oznXnqzZd3/HKHCc2/d4DZ/2fzX41fs18olvEjh2qJ5Z5ageNY8BAAAAIODGMlfN6t2OZa7aWt4ZzdyimSw05oZisMysFu1UwbLWlCb11+1atEEV1jGyvDOmYxeaZ2R2tFu+3TdMxp1J2Q5JUn5EiT/cp0SmT4mXHzLql93QrOzRZyqbapO9y0FGbTH5RpnkbCyW3iirZn/HzPjvyAcAAAAAcKxS5molpT/I/Zpd6SWnC415ndFrUot2uj57WYs2qMI+RvySNewmJ+POJHBsbXlVs355mZq+d4pm3/kto8Bxfu9WDX/+n7RtxQMaOfk7BI6rVMuscriLzGMAAAAACLCpMlcrZXTxg9x8oTHJ2wzkcu+xcoWlK68YC/I57bOfs0rrgTESTJXGnaOxUMgr/vzPi7WMn/+FLDkP/tvJJuWOPF3Z1BIV9jhqhp8EozzNKodnCB4DAAAAQMDxg9xMOmP+HZT7jt0O0E4VQG5NmW83Ap0TMUaCqdx26+m1Ky5mab3/phKbblJy402Kvfea0fvldztc2dalyh3xJalhp5l/AEziZCwyBv2F4DEAAAAAhAA/yJ0rLjRmf1AD12yhMUkf1MD1JkBbTbAMzkw1RsbfBDAZI48+ltXBVDDwXOl2KzsW7ILiL/1ayXSf4s/eL8vOO359Oz5LucO/qGyqTYW9j5EsxpbXZpxVjpqybNv2Z9EeTNDf31/vLnjOsiy1tLRIkgYGBsSuCfgX4xUIBsYqUB/pjPliPpZl6dnn5mjhR5IzHq9T/fDmB/lk1WyrmbQzUbq9Rrm93fz8HXil3Hc7WovVyRixLEs33dKgyy4f1EUXWrrowmB+D0GzaHFhQuC4uVna0LdFyc23KpnpU2zgJaPXK8w7UNlUm7JHnSk1trjaVzhTOhabm6e4OTADUbwenjdvnquvR/A4IAgeA/ATxisQDIxVoPbWdBWMs1kl6Uc32LrqGltfW9moC84fmfF4rcUPcnivbLBsvXvr3le7v47uX53LpOWd7vWnlqYKzo+q9J2MjtdRV15BPWSvTdxeto7Z5TGdd+A6fWHfuxVX1vHr2LGEcod8VrnUUuX3O54sYx/w+kZZFK+H3Q4eU7YCAAAAAFyQzhTLIEhmC6qN/+H83auHNP/omFILZtYXR9O8YayWWbrdPRNLVUjF7djdY7uy/dzYX7vWSscuDGYGcukYGa/SGCkNdF16CYFjr41+5zsl3tNp+65X28HrdNCcPxi9RqH5Q8ouWKLc/LNlz9ndo56iGh3t1qTSPM3N7i5IipkJ5i1CAAAAAPCZ1pS1Y+q7VAxKdfdUznAqDUR98xtNrgWiOtotNTdPfIwf5NVb01XQqtXTb9NS3T22Vq22taarYNSmNHN8lJP9ygk39tfiYn7B3Z/KjZFKyo3XjnbCKl7q7rH1YN8m/c/W/6l7P/dpfSf1j44Dx7YVU+6gT2vozKs1eNE9yp5wCYFjH6p0owz+wFEOAAAAAFzS0e48IFcuEHXxRY2u9YUf5O4pzdJ1+h2WZummM9O3Kxeg3bA+ZhzodWIm+2sYMtjLjRGp/Pfg9XhFieygfnvdTfrkE+fphpOW6OwDblZjYshR08Kc3TVywqUaXH6vhs/8rvIHnSTF4h53GNWoxY0yzBxlKwAAAADARZVWkR9Vbuq724HjqWoem5QoQFExS7fyNi1VTZZupQCtk/2qGtXsr2EJHFeqCz7+e/B6vGJM7O1nlMisk52+XSfb70kGpVt/89bHtOXQNp247BQpnvSuk3CFk8VdOV/5A8FjAAAAAHBZpYBc+R/M7k0K5Qe5N0yCt9UEW520qUcAOQqB43JjRCp+D6W1WN0er5CUG1HimXuUzPQq/uqjRk3t2S1Kx87S/7zjPL207QDp19LK2ZY62j3qK1xRjxtlqJ5lR2GZwRDo7++vdxc8F8UVMIGgYrwCwVA6Vn+fLtRsoScARdNlN47+YHbr3DpdoC+MgcBa8+I7Nm3j1XZ0ur8Gmen2G8/t8Rp1Vv+LSm5cp+TmW2UNmcU88vssVDbVptyhn5MSDZO225VXBLsed5g5PX65dZyL4nidN88gZd8BMo8BAAAiYE1XQdd/39bKFWaZG6MX7p3LbC3vJNMKMFWaQeVlIK6ematR4naWbjpj3qZcHxbM14yDZbXcX+uhmjEyisUmXZLPKv7cA0pm+pR48VdGTe1Zc5Q98gzlUm0q7H7YhP82frt1Lpv5WIA3TI6RnK/8g8zjgCDzGICfMF6BYBgdq48+ltVXOsciAE4DAGTxAO5ZtLgwIRDX3CxtWD92Q2am51a/ZK5GiZtZumu6Cupaa74dxm7wydUbfNPtr0Fkss9PlX1M5nH1rPdeU3LjTUpsvEmxbW8atc3vcZSyrUuVO3yRNGtOxecyW8q/0hlbq1abn3dmej0axfFK5jEAAACMLPxIUpdeYumqa7xd6AlAed09E2umSsUgY3eP7UrA1k+Zq1HiZpbu8s6Yjl1oHvTqaLdc325e76/1YDJGKpWtGH38yxcE83uoObug+Au/VDLTp/hzD8iyC86bJmYrd/giZVuXqrDXAsftOIb5V2vKUucy2/hGGVnl9UfmcUCQeQzATxivQDCUjtUf/qhQ0xpzAGpX89hvmatREqYs3TDXPHYyRsqd/6TJJSwuvcTS17+2iySuhcuxtr2txOZblcz0Kbb1VaO2+V0PVi61VNkjF0uzmz3qIeqp2uzwattF8bcrmccAAACoipPacQSOAfdMNZ7GP+5WJqOfMlejJExZuib7a9A+mzT9GKl0/lswX9q4aezzX3WNrdmzh3TxRY3edzwobFvxVx5RItOrxDM/lVXIOm8aTyp36OeVTbWpsM9CyQre/gXnqj3fcJ6qH4LHAAAAEeL2Qk8Ayqs0nsqNQ8sq6Otfm9l78oO8tipl6QYtyGq6v45/PEiqCRyPtmtNFf8efd5llw9Kks4926POBsXwFiUfv03JdJ9i/c8bNS3M3U/Z1BJljz5batrFow4CmCmCxwAAABFTLhDQ02uHZmoyUG9ObsSUjkMyGYMlTFm61eyvQflsTpjcOC39Hi67fFDDw5YuOD/434MR21bs9YySmT4lntwgK7/deVMrrvzBn1Y2tVT5Az4mWcEs8QJECcFjAACACHJzoScAY2YaiJLIZPS7MGXpzmR/9ftnc6LaxSYtSzsWob3qGlvzj45IBv/INiWe/LGS6T7F33rCqGlhpz2VXXCecvPPlb3znh51EIAXCB4DAABEVEe7NSnjuLk52IEAoJ6qDURJEwPIhx4SU2qBd/1E9cKUpevG/nr1tXaga2a3pix1LrONF5vsaI9p9uwGXXb5oC660Ars53cq9taTSqZ7lXjiDlnZQcftbFnKH/gJZVNtyh90khQjBAUEESMXAAAgosK00BPgB9UHosYyGb+2slGtqZFIrAYfNGHL0p3J/ioVP1PnsuAGjkdVu9jkxRc16k+OSejgg7b5drymM+afa0e7I7cr8cxdxSzj135v1L7QuIty889RdsF5slv2M35/AP5i2X49ymGC/v7+enfBc5ZlqaWlRZI0MDDg2xMwAMYrEBSVxmqlhZ4kSlcAM1FNwMayLD373Bwt/EiSc6sPpTO2Vq02X1C09Fh75RX+y1KdUYDRZ5+lVoJwLbymq2B8Y0CS7vjBc8o91KfzDrlNs+2t0zcYJ7fv8cq1til38GelxCzTLgOeCMJ4ddu8efNcfT0yjwEAACImTAs9AX5UbUBt4UeSLvcEbglzlm61ffLjZ0FROlPcVyWH5/P8iOLP3q937unV+SMPSQdLchhfsxualT3qDGVTbbJ3PXhmHQfgSwSPAQAAIiRMCz0FCZl9QPBVW96go90KdF1gBE9rytLKFdOfz60tryq58UYlNt2s2ODb2tfgPfJ7pZRtXarcYV+Qko1udR2ADxE8BgAAiIgwLfQUJGNTh82+x9Ht1bnM1vLOmIc9xHQI/mMUWboIiinP50sLij//cyUzvYo//wtZTlOMJdnJJuWOPF3Z1BIV9jjK/U4D8CWCxwAAABHQ3VMI1UJPQWE8dfgD4wP9XWtVVbYj3EHwH0BQjT+f79bwlnI/u1n2mzeqsfC60evkdzusmGV8xOlSw05edBWAjxE8BgAACLlHH8vqqmvMFnoqF0Bm2rU5p1OHxyuXIc73Xh8E/wEEml3QshN/o1P7+3TA0H1KxPJSwWHT+CzlDv+isqk2FfY+RrI4hgFRRfAYAAAg5BZ+JKmLLrR0/fft0C30FAQmmdxOSougdgj+AwikoX4lN9+qZKZPsYGXdLAkOZwAUWg5QNnWpcoedYbUOM/LXgIICILHAAAAEbC8M6aFHymw0FOdOAkgEzj2J4L/AALBthX74++UzPQq8fTdsvIjjpvmlVDhsM8ql2pTfr8TyDIGMAHBYwAAgIhgoaf6qhSEJOjobwT/WTQQ8K3t7yn5xHol0n2Kv/OMUdM/Dn5IP379PF3wz+fInrO7Rx0EEHQEjwEAAIAaKReE7Om1tXXr2HPCFnQMiygH/1k0EONxI8EfYm9sVjLdq8STd8rKDTluV7At/eKNT+nGF5bqv948UQXFVbjdUke7h50FEGgEjwEAAIAaKg1CEjgOjigG/1k0EONxI6HOsoNKPPUTJdN9ir+x0ajptthu+tET5+jWl87Va0MfUnPz2Np5JmMbQPRw1AYAAABqrKPdUnPzxMeam/nhHgQd7ZZWrhjbTmEOHEujiwaOfaarr7XV3WNXaMGigWFVeiNhuv1gVOmNhHTG3vF61fYjamJvP6NZ9/+D5lx7smbf81dGgePc/h/T3S3/oZNu/6m++9RqvTb0Ia1cYWnD+pjx2AYQTQSPAQAAgBrr7pmYrSoVg5D8cA+GqAX/SwPmlYJMYS/hEWVu3khY01XQqtXmwcruHlurVtta01WY/slBlxtR4okfq7GvQ00/WKxZv++Wtf09R03t2XM1srBT2zp/outG1ugvfnCqcnZS0sQxaTK2AUQXZSsAAACAGioNpjQ3j2WvMnU4GCoF/8O67Vg0EJKz/WDUVPsDpVAqswZeUjKzTsnNt8ga6jdqm//QR5RNtSl32OelRIOjMWmyTQFEE8FjAAAAoEam+iE//nF+uPtblIP/UV40EGNmeiOhmMFsFqwMfSmUQk7xZ3+mZKZPiRd/ZdTUnjVH2SPPUC7VpsLuh+143GRMEkAGUAnBYwAAAKAGKv2Q54d7MBD8j+aigZhspjcS3MhgDgPrvdeV3HijEhtvUmzbm0Zt83scqWxqqXJHnCbNmjPhv6Uz5t9ZuW2yYL7CFaQHUBWCxwAAAIDHmDocfAT/x5R+XgLH0TTTGwmRLYViFxR/4VdKZvoUf+5nsmzn9ZvtxGzlDl+kbOtSFfacL1nlv4vWlKXOZcXyICbf2fht0rksmoHjdKa6cijVtgOCgOAxAAAA4CGmDgcfwf/JOtqtSYHCMC8aiPJmeiMhSqVQrMF3lNh0i5Ib1ym25RWjtoVdDla2damyRy6WZjdP30DS8s5YVXWhO9qtyGYcr+kqfBBwNzuWje6rnctsLe+MedhDoD4s27ZZSjMA+vvNCuUHkWVZamlpkSQNDAyIXRPwL8YrEAyM1fpLZ2ytWm0e/CgNmlx5RcjqewaIaQCr2oBX0MZr6eccFfQAH6qzaHFh0o2EDeudB9Eq1RKX/LdfOR6vtq3YK48omelV4pmfyipkHb+HHUsqd+jnlG1tU2GfY6fMMoY7OF+HV9DOr26YN2+eq6/HLREAAADAI8Wpw8W/TacOr1xRfG5Upw77QbV1Q0e3nVTMpExnwvVDtVygb9TV19rq7gnX53Wi2m0chn2ju2diBrpUDPya7Ael48bPgWNHhrco+dgP1LT2S2q6cZmST/3EceC4MHc/bf/ktzW44mfaftq/qbDvcQSOa6C4kOPEY/d0+3DoF3IEPkDZCgAAAMBDTB0OLuqGTsaigZNFeap7pYxh0/0g8KVQbFux1zNKZvqUeHKDrPx2502tuPIHnaxs6/nKH/AxyQrm/hB0LOQIlEfwGAAAAPBYtcHDMAUdg4rg/xgWDZwsnSneXJDMPvP477Jrrarax+rN7RsJlTKYfb0fjWxT4okfK5npVfzNJ4yaFnbaU9kF5yk3/xzZO+/lUQdhIrILOQIVEDwGAAAAgAoI/rNo4FSKU93NPnMYprq7fSPBzQzmWrFff1yFR9aq6fc3yRrZ5rydLOUP/ISyqTblDzpJihGW8ZsoLeQIOMFRCgAAAAAwJZNgSRQDyFGb6u72jYRAlULJDivxzF1KpvuUe+33kiSnPSo07qLc/LOVXbBEdst+nnUR7ii3D5eWVQni+AWqQfAYAAAAAFBWtYsGShODLmEr4VEqKlPd3b6REJRSKFb/80pm1im5+VZZw1uM2ub3PU7ZVJtyh5wqJWZ51EN4oXQfJHCMqCJ4DAAAAAAoi0UDnQv7VHe3byT4vhRKfkTxZ+9XMt2nxMu/MWpqNzQre9QZyqbaZO96sEcdRC0EfiFHwAUEjwEAAAAAU2LRQOfCPNXdzRsJfi6FYm15VcmNNyqx6WbFBt82apvfK6Vs61LlDvuClGz0pH+orcAu5Ai4yLJt257+aai3/v7+enfBc5ZlqaWlRZI0MDAgdk3AvxivQDAwVoHgYLyGS2lwdFRQA8fjpTPmNxLGt0tnbK1abZ6FXfqdXnmFiwsNFvKKv/BzJdN9ij//c1lyPv7sZJNyR3xJ2dQSFfY82p3+wBcqLeQohWM8R0EUz6/z5s1z9fXIPAYAAAAAwEVhnupebcB2tJ2fSqFY77+pxKabldx4o2LvvWbWeM8jFTt+md474LOyZ82ZcV/gL4FayBHwGMFjAAAAAABcxFT3yupaCsUuKP7Sb5TM9Cn+7P2yCjnnTeOzlDvsC8odc752PvJkWZYlDQxIEchkjJKgLOQI1ArBYwAAAAAAXFJpqjuBpjEzzWA2NtSv5ObblMz0KTbwolHTQssByrYuVfaoM6TGebIsqxg4Ruj4fiFHoA4IHgMAAAAA4AKmuvuMbSv2x98pmelV4um7ZeVHnDeNJZQ/+DPKti5Vfr8TJILFoefnhRyBeiJ4DAAAAADADDHV3Ue2v6fkE+uVSPcp/s4zRk0LO++tbGqJckefLXunPTzqIPwmnXEeOB5VblzPuKwK4EMEjwEAAAAAgZLOmNfLnUm76TDV3R9ib2xWMtOnxJN3ysoOOm5ny1L+oJOUTbUpf+AnpVjcw17Cj/y0kCPgNwSPAQAAAACBsaar8EGAxyzwOhrg7Vxma3lnzLX+MNW9zrJDSjy1Qcl0n+JvbDRqWpizm3Lzz1V2wbmym/fxqIMIirou5Aj4GMFjAAAAAEAgpDPFzEDJLPA6PsDbtVZVBYim6g9T3evDeucPSmbWKfn4bbK2v2fUNrf/R5VNLVX+4FOkeNL4vdMZWyd9yriZZ5nvcE/NF3IEAsC9260AAAAAAHioNWVp5YqxIM3V19rq7rErtCifGexWoKc41X3sdU2muo9+Dqa6G8iNKPHknWrs+7LmrD1ds373Q8eBY3v2XI0s7NS2zg0aPrdL+cM+X1XgeE1XQV/704Kuu37IqF13j61Vq22t6SoYvycA1BOZxwAAAACAwDAp/WBSUqJaTHX3njXwUjHLePMtsob6jdrmP/QnyqaWKnfY56VEw4z6MT7z/bLLizWVzz17+nZeZb4DQC0QPAYAAACACPLbonMmnASQaxE4HsVUdw8Ucoo/94CS6V4lXvyVUVN71hxlj1ysXKpNhd0Pd61Lxcz3sf3tsssHNTxs6YLzp96OXma+A0AtEDwGAAAAgIjx26Jz1agUQK5l4Bjust57XcmNNymx8UbFtr1p1Da/x5HFLOMjTpNmzfGkfx3tlixLuuqa4v511TW2bLt+me8A4DWCxwAAAAAQIX5bdG4mygWQe3ptbd069hwCdgFgFxR/4VdKZvoUf+5nsmzndYHtxGzlDl+kbOtSFfacL1neb+uO9phmz27YUbqi3pnvQDWCPPsEtUXwGAAAAAAipHTqvZMAsp+n3pcGkAkcB4c1+I4Sm25RcuM6xba8YtS2sMvByqbalD1qsTR7rkc9nNrFFzVKUtkAMoFj+F0YZp+gdggeAwAAAEDE+G3RuZnqaLcmZRw3N5sFRVAjtq3YK48omelT4pl7ZRWyzpvGksod+jllW9tU2OfYmmQZV3LxRY0aHh7aUcKCzHcEQZhmn6A2CB4DAAAAQAT5bdG5mejumRiwk4oZyN09ti/7G0nDW5R8/HYlM32KvfucUdPC3H2VXbBEuflny27a1aMOVqejPSbbLpD5jsAI2+wTeI/gMQAAAABEVBgWnSvtZ3PzWADPJKsOHrBtxV7fqGSmV4knN8jKb3fe1Iopf9CnlW1dqvwBH5cs/06RJ/MdQRO22SfwFsFjAAAAAIiwIC86N1VQY/zjBJDrYGSbEk/eqWSmV/E3nzBqWthpT2UXnKfc/HNk77yXRx10F5nvCKIwzT6BtwgeAwAAAEDEBXHRuUpBDZOsOrgn9tZTxSzjJ+6QNbLNqG3ugE8o29qm/EEnS7HghCq6ewpkviOwwjD7BN4LzhEZAAAAAOCZIE29dxLUIIBcI9lhJZ65W8l0r+Kv/d6oaaFxF+Xmn63sgiWyW/bzpn8euu76scXyJDLfEUxBnn2C2iB4DAAAAAAIzNR7k2w4AsjesfqfVzKzTsnNt8oa3mLUNr/Pscq2LlXukFOlxCyPeuit664f0mWXD+74N5nvCLIgzj5B7RA8BgAAAKB0xq5q5fRq28FfgrLoXDpjPo26XCBvwXyx31Yjn1X82fuVTPcq8fJvjJraDTsre9SZyqaWyN71EI86WBvdPQVddU35wPEoAsgImiDNPpnJNUtqgQcdCjn/LlcKAAAAoCbWdBW0arWt7h57+ieP091ja9VqW2u6Ch71DLVQLpN3w/qYVq4Y+2F+9bXm+4cXWlOWOpcV/zbJhutot3Z8ns5lBI5NWVtf1axf/YearjtFjT/+M6PAcX6vlIY/9w/atuJBjXz6f4QgcGxPKFVx6SWVM9/9OI6AcirNPvGTaq9Zrrt+SF/70wLXLFWwbNv2116Asvr7++vdBc9ZlqWWlhZJ0sDAgNg1Af9ivALBwFiFE+lMMQA8ymlArjTgeOUVFgG5GajXeJ2uBIRfF0wiU74GCnnFX/i5kuk+xZ//uSw53yftZJNyR3xJ2dQSFfY82sNO1lbp8fKb32jSuWdvn3a8+u14yfhBqUqzTyR/HftNr1ksy9JNtzRMKDNT7zHotXnz5rn6emQeAwAAABHWmjLPjCsXUAzzj7CwcrronB8zJ6vd39hPp2e9/6aSv7lKTWtOVeNtX1Pi+QcdB47zux6q4VP+WttWPKDtp/5tqALH0sTM929+o0kXX9ToqJ2fMt+ZaYJSQZt9Yn7NUphUn5xzgRlqHgMAAAARZ1Kb06+ZqDDDonOYwC4o/vJDxSzjZ++TVcg5bxqfpdxhX1C2dakKex8jWeHeL5Z3xnTcsdJJn3IWOB7V0W7VvdZ2OmOra23xb5NxPP540bVWOnYhGchhUelc4Ndj/0yuWS69xNIF57PvmiJ4DAAAAMDRjzECx+HAonPYYahfyc23KZnpU2zgRaOmhZYDlG1dquxRZ0iN7k6R9rugZr4XszbNgoHMNAkvp7NPpGAGkEs/n9MyM5iM4DEAAAAASZV/jBE4Do/i1PtiBqLponNScb+o99R7zIBtK/ba75VM36DE03fLyo84bxpLKH/wZ5RtbVN+vxMki0qYQcNME0jhmH1ics0yWmZmYGB77TsaAiyYFxAsmAfATxivQDAwVlGtoCycEyb1GK8smhUx299X4on1Smb6FH/7aaOmhZ33Vja1RLmjz5a90x4edTA4wnB+9XqxTI4T/hW2hXKnu2a59BJLX//aLpKCO15Nub1gHpnHAAAAACYozeYhcBxOQZ16DzOxNzYrmelT4sk7ZWUHp2/wAVuW8h/+VDHL+MBPSbG4h71ErZlkbZ5wvFmW6Wj7zmW2lneSne43YZt9Mv01C/vgTJF5HBBkHgPwE8YrEAyMVczUosWFCT/CmpulDev5EeYFxitclR1S4qmfKJnuVfyNjUZNC027KbfgHGUXnCe7eR+POhhsYRqv02Vtjgp6diomC9vsk6muWcI0Xp0i8xgAAACA57p77EkBhK1bi4+TeQz4k/XOH5TMrFPy8dtkbX/PqG1u/48qm1qq/MGnSPGkRz2E31TK2jzheOmhhzXhv7O4XniEafZJpWuWL1/gv/4GDcFjAAAAABNUykTzy0I5AD6QG1HiD/cWs4xf/a1RU7thrrLzz1J2wRLZu3zYow7C7zraLfX02pOyNv/vv8QmnA9YXA9+NN01i2UV9PWv1alzIUHwGAAAAMAOUwUAnAYQADeFbVq1m6yBl5XcuE6JTbcoNvSuUdv8h/5E2VSbcod+XkrO9qiHCAonM00qHf8JHKNenFyzXHWNrdmzh3TxRY316mbgETwGAAAAIKlyAMBJAAFw05quwgcLOrFY1w6FnOLPPaBkuk+JF39p1NSeNUfZIxcrl2pTYffDPeogTPjh5ojJTBMni+sROEatmFyzXHZ5cbHQc8+ucSdDguAxAAAAAEcBAALIqJV0xlbX2uLfJvvZ+P24a6107MJwZCBb772h5MYbldh0k2Lvv2HUNr/7kcq2LlXuiNOkWXM86iFM+eHmSDUzTcY/XlrqgsAxaqWaa5bLLh/U8LClC85nHzVF8BgAAACIOJPMMQLIqIXWlKWVK8z2s9At1mUXFH/xv4q1jJ97QJadd940MVu5wxcpm2pTYa8FkhXg7yGE/HBzZCYzTcotrkfgGLVies1iWcXSFVLx/22baxZTBI8BAACACEtnzKcclwssLJjvzxXYEVwmNyrCNHXeGnxHiU23KLlxnWJbXjFqW9jlYGVTbcoetViaPdejHmKm6n1zZKYzTcotrhfU8YZgqe6aJabZsxt2lK7gmsUcwWMAAAAgwlpTljqX2R9Mn3YecBsfWOhcxo8weCMyi3XZtmKv/lbJdK8Sz9wrq5B13jSWVO7QU4tZxvseR5ZxQNTr5shMZ5r87vfTL66HYPNDLe6pVHvNMrpY3mWXD3LNUgXLtm17+qeh3vr7++vdBc9ZlqWWlhZJ0sDAgNg1Af9ivALBwFiFCT//WIwCxmtlTmqzjn88MIa3Kvn47Upm+hR791mjpoW5+yq7YIly88+W3bSrRx1EOW6O1+n2YTf38XTG1qrV5q9V2odR4xfXm2nf4A9jtbjNtuVYLW7VZKFSk2uP8eP1wZ/3K7XAw475xLx581x9vboEj5999lkdfPDBtX7bQCN4DMBPGK9AMDBWgeBgvE6vNIAV2MCVbSv2+kYlM31KPLVBVm7YeVMrpvxBn1a2danyB3xcsrwP0sxUGG9MuT1ea3lzpNrg4Lf/e0EPPTz279DcwMEObt1cuPIKf9Wbj+L51e3gcV3KVpx22mk67rjjdP755+vUU09VMpmsRzcAAAAAAAER+MW6RrYp8eSdSmZ6FX/zCaOmhTl7KLfgPGUXnCt757086qD7xgKVZjVxx7IY7ZpkMdZbufIQpXWF3drHl3fGjBfa6+6xywaOp+r7+McRHPWuxQ3/qlvN49/+9rf67W9/q1122UXnnHOOlixZon333bde3QEAAAAA+FwQF+uKvfW0EpleJZ9YL2tkm1Hb3AGfULa1TfmDTpZiwVqyKJ0p1iWVzAKK44NRXWtlHOgMqlreHDENHM9kcT0ES1QXKkVldb2FZ9u23nnnHX3ve9/T5z73Oa1YsUI/+9nPIpFCDgAAAAAw090z9WJdvpLbrsTjt6uxt11NPzxDs9I3OA4c243zNHLcxdp20d0aPud7yh/y2cAFjqXRLMaxQNLV19rTbqeoZzF2tFtqbp74WD1vjpgurme6veFPTrYlgeNoqcsZ6KijjtLjjz8uqVh7RJIKhYJ+8Ytf6Be/+IX22msvLVmyROeee6523333enQRAAAAAOAjlWoe+yXT0ep/XsnMOiU33ypreItR2/w+xyrbulS5Q06VErM86mFtkcVoptLNkVp/F+mM+fYot70XzDfLdIY/VBq7jNXoqcuCeZK0efNm9fT0aMOGDRoaGtoRRB7tjmVZisfj+sxnPqOlS5fqYx/7WD266RssmAfATxivQDAwVoHgYLxWVssFxYzls4o/e7+SmV4lXvqNUVO7YWdljzpT2dQS2bse4lEH62+67eSL7WjAi/HqxwUhq11cb6xmtSJRszrM/Lhfmori+dXtBfPqFjwe9f777+u2225TX1+fnnnmmWKnLGtCEFmS9t9/f51//vk666yzNHfu3Lr1t14IHgPwE8YrEAyMVSA4GK9T82vg0dr6RyU3rlNi082KbXvbqG1+zwXKtrYpd/giKdnoUQ/9xdc3AAy5PV79/N2kM9XVnK62HfyndD8cFYSxKkXz/Bq64PF4jz76qG644Qbdc889GhkZKZuNPGvWLH3xi1/U0qVLdcwxx9Sxt7VF8BiAnzBegWBgrALBwXgtz2nwrGZBtkJe8Rd+oWSmT/Hnfy7LLjhuaicalTvyS8qm2lTY82j3+xYAYchilNwdr369OQKMt2hxYdJCpRvWByOrPIrnV7eDx76qur9w4UItXLhQAwMDuvnmm7Vu3Tq9+OKLksaykbdv367bb79dt99+uw477DC1t7fr9NNPV1NTU517DwAAAABwi+liXZKz2rrVsLa9pcSmm5XMrFPsvdeM2uZ3PbRYy/jI06WGnV3pT1CVbqcgBo7d5GQf93rfBqbjp1rcqA9fZR6X8+tf/1o33HCD7r//fuVyubLZyE1NTVq8eLHa2tp0xBFH1LO7niHzGICfMF6BYGCsAsHBeJ0onbG1arV5tmVpMO7KK6zqp87btuIv/0bJdJ/iz94nq5Bz3jQ+S7nDPq9saqkKH/oTySLAMl6Qsxgld8araUYxGciohzDMFoji+TXUZSsqefvtt7Vu3TrddNNN+uMf/zjpv48GlVtbW9Xe3q4vfvGLSiaTte6mZwgeA/ATxisQDIxVIDgYr5PVbbGuoX4lH79dyUyfYv0vGDUttOyvbGqpskefKTW6++M9LIJeP1Wa+Xj1xc0RYBp+rsVtIorn18gGj0fZtq0HHnhA//t//2+99tprEx6XxoLIu+yyiy644AItW7ZMc+bMqUtf3UTwGICfMF6BYGCsAsHBeC2vZot12bZir/1eyXSvEk/fJSs/4rxpLKH8wZ9RtrVN+f1OkKzgZNDWWhiyGCV3xmvdbo4ADoSpFncUz6+RDh5v2bJFt956q/r6+vTCCy9M+u+2be+ojSyN7SB/9Vd/pdNOO63GvXUXwWMAfsJ4BYKBsQoEB+O1Tra/r8QT64sL4L39tFHTws57K7vgPOXmnyN7pz086mB4hCWLUXJvvNbs5ghgwHcLlc5QFM+voV4wbyqPPfaYent7dffdd2tkZGRHkFgayzg+9NBDtdNOO+l3v/udpLEF9vr7+/Xf/tt/0zPPPKM/+7M/q9dHAAAAAAD4ROzNx5VM9ynx5I9lZQcdt7NlKf/hTxWzjA/8lBSLe9jL8KgUZIrygnDVBoAJHMMrflqoFP7h2+Dx+++/r9tvv119fX165plnJI1lFo8GhhOJhD772c/qggsu0HHHHSdJevbZZ9XT06NbbrlFQ0NDO557zTXX6OMf/7iOP/74en4sAAAAAEA9ZIeUeOonxSzj1zNGTQtNuym34Bxl558ne+4+HnUwnJwEowhCAfWXzphnEpcbuwvmc4MjbHwXPN60aZN6e3t15513anh4eFItY9u2tccee2jJkiVqa2vT7rvvPqH9wQcfrL/+67/W17/+df3Lv/yLbr311h1tu7u7CR4DAAAAgEuCMO3eeudZJTN9Sj5+m6zt7xm1ze330WKW8cGnSPFZHvUwvMhiBIKjNWWpc5ltXIt7/NjtXEbgOIx8ETweGhrSj3/8Y/X29urxxx+XNHEBPNu2Zdu2jjvuOF1wwQU69dRTFY9Xnh40b948/dM//ZMGBwd19913S5J+//vfe/o5AAAAACAqxhb8MgvwjS34ZXu34FduRIk/3FvMMn7lEaOmdsNcZeefpeyCJbJ3+bA3/YsAshiB4FneGdOxC81v7nW0W4zVEKtr8Pipp55SX1+f1q9fr23btk0IGI8GjZuamnTGGWeovb1dhxxyiPF7LF26dEfw+N1333W1/wAAAAAQRelMMTtNMssQHZ+J2rVWVQUpKrEGXlZy4zolNt2i2JDZ77/83sco29qm3KFfkJKzXetTVJHFCAQTtbhRqi7B49tuu029vb1Kp9OSymcZH3LIITr//PN15plnas6cOVW/1z77jNWjyufzM+s4AAAAAECtKUsrV5iVGChXwsCVYEMhp/hzDxQXwHvxl0ZN7WSTckctVjbVpsLuR8y8L5iALEYACL66BI//8i//ckegeHyWcTwe12c+8xldcMEFrtUmnq68BQAAAADAnEmNWpPat05Z772hxKablNx4o2Lvv2HUNr/7kcq2LlXuiNOkWdUnK4WZW/WsyWIEgGCre81j27a1++6771gAb4899nD19RsaGnTccce5+poAAAAAAGcBZFcDx3ZB8Rf/S8l0r+LPPSDLdj671I43KHfEomKW8V4pySI4ORVf17MGANRU3YLHowvgtbe369RTT1Ui4U1XdtttN/3whz/05LUBAAAAIOoqBZBdCxwPvqvk5luUzKxTbMvLRk0LuxykbKpN2aPOkGbPNX/viPFrPesocSvrGwDcUJfg8dKlS3XBBRfo0EMPrcfbAwAAAABcVC6A3NNra+vWsecYB45tW7FXf1usZfzMPbIKWedNY0nlDj21mGW873FkGRvwVT3rkDAJ6o7P+jap+0zWNwCv1CV4/Dd/8zf1eFsAAAAAgEdKA8hVB46Htyr5+O1KZvoUe/dZoz4UmvdRNtWm3PyzZTftatQWY+pdzzpMTEqAlMv6dhIMJusbgJfqXvMYAAAAABAOHe3WpIzj5mYHZQ9sW7E3NimZ7lXiqQ2ycsOO39O2Ysof9GllU23KH3iiZJF16Yaa17MOIdMSIKVZ39L0wWCyvjGKcifwCmdVAAAAAIArunsmBo6lYgZyd49dvsHINiUy66TrzlVTzxIlN9/iOHBcmLOHXvrw1zR48U81fMZ/Kv/hTxI4dllHu6WVK8aCSldfa+/YlgSOp1cMBpf//kxs3FT+cbYBRq3pKmjVavP9q7vH1qrVttZ0FTzqGcKAzGMAAAAAqKN0xtYxrcHPFisNZDU3j5WuKM26jL31tBKZXiWfWC9rZJvR++QOOFHZVJt+8PDJuuryuDoHpOWdrnwElOFJPesImUkJkFFkfaMSFrmE17gtCwBARKUz5pkvM2kHAJhsLFvMLOvLb9li5QJZG9bHJmRdXn/dsB5ac7saey9Q0w/P0Kz0DY4Dx3bjPI0cu1zbLrpbw+dcp7WPfFZXfS8uqRj04NzkrdIMZALHZiplcI8qN4bI+oYT1WS4U+4EJsg8BgAggkwWbxmPlbwBwD3js8WuusbW7NlDuviixmnb+S1brFIgq6Pd0tzcCxr5zTqdsf+tatmyRdri/LXz+xyrbOtS5Q45VUrMmvL9CHp4r+p61pBUOQN5umAwWd+YDotcwksEjwEAiBimtgGAP5QujnXZ5YOSpHPPnrqN3wKnUwYh8lnFn71fyUyvzn/7N9Ihzl/zvezOemHuYh18bpsKux3q7P3guUr1rNkGzlRTAqS0DYFjTIVFLuEVUoYAAIgYprZVz+tSH5QSAaKndDr7ZZcPTlnCwm8/+sv158tfek2zfnW5mq47RY0//jMlXvqN49d7M7lA/+t3/1un3nO/vtz7P/SDeyZGnP32+aOkXD3rUdUuAhdV1ZQA6Wi3JnznElnfKI9FLuEFgscAAESQk9p7o7jQLPJ6FWtWyQaiq6Pd0qWXjB1Xr7rGWT3Ueh6L05mx/sSU1z9+5ee6uOlralpzqmY9dLVi29529Dr5WKOy88/V4AU3qelP12nvL56j4XyTJIIefuGknjUBZDOmweBKWd9AqXLX+YsWFziGomqUrQAAIKKY2uac16U+KCUCL6Qz1e0P1bbDzHS0xzR7dsOO0hUm9VDroTVladWX39T239yiZUffqJ0HXpMGnLd/ZuuhemXPJTruojOkhp13PF7NtH54Z7p61pKzGquYyKQESLms79G2fOeYCuVO4CYyjwEAiDCmtjnjdakPSonAbWSyB9PFFzXqm99o2vFvX2aL2bbiL/1GDT/+pi5+77P6+pFXaOfCa86axpPKHnm6Btt+pDfPuk3HXdoxIXA8qppp/XCfk+sAk5lMKDIpAULWN2aCcidwC5nHAABEHFlezni9ijWrZMMtZLIH28UXNWp4eEhXXeOzbLGhfiUfv13JTJ9i/S8YNS207K9sqk3Zo8+SGudJklr3qdymo92adC4i6FE7JucZMpCdm+p7Hf/4+P9O1jdmgkUu4RaCxwAAgKltDnld6oNSInBDMZPdLKhAJru/dLTH9KMb8vUPnNq2Yq/9XslMnxJP/URWfsR5Uyuu/CGfUTbVpvz+H5Uss0mvBD3qZ3w9a6n6G6AL5ovjyDjVlAAp99xRBJBRCeVO4CbKVgAAAElMbXPK61IflBKBG+q5KGY6U9306WrbhVF3T6G+i2Ntf1+J9A1q/OFZauptV/Lx2x0Hjgs7763tH1+twa/er+HTL1f+gI9XFTh2Oq0f7mtNWepcVvzb9Abo6HGncxmB4/GqKQFS6blTtWF8QKLcCdxH5jEAAJBElpcJr0t9UErEP+qx6Jxb71mPTPY1XQV1rZVWrjC78TTaj85ltpZ3Rju/5brrx0pWSLXNFou9+biS6T4lnvyxrOyg43a2LOU//EllU0uV//CnpFi86j6YTOvnGOid5Z2xqkrXdLRbZByXMDnOLphv/vpkfWM8FrmEF6J9ZQYAACSR5VUNrxd0YsGo+qvHonNuv2ctM9lLay07/QyltZajnIF83fVDuuzysaBtTbLFskNKbL5VjT1tauo+R8mN6xwHjgtNu2rk+Es0uPxeDZ91jfIHf9qTwLFEhmU9VBt8JGg5xrQEyPis71FXX2tPe1wk6xsSi1zCO5Zt2+wlAdDf31/vLnjOsiy1tLRIkgYGBsSuCfgX4zVcnGR5jX8cEy1aXJhUl3TDevfuz8/k9Rmr1UtnisHYUU73/9Jxc+UVzmsHe/melWofmryXaV+me12OM2N+dIM9IeO49Ltw+7uy3nlWyUxfsSTF9q3TNxgnt99HlW1tU/7gU6T4rKr7MJ7Tz8c+Az8wOb+Ozchwvq+mM7Y2btIHMzLkeEbGTGa9INg4/04titfD8+bNc/X1KFsBAECEMbVtZrwu9UEpkfqpx6JzXr5nrRbFNDluROmH63RKv4tLL7F0wfkeLI6VG1HiD/cqmelT/JVHjPpoN8xV9ugzlU21yd7lw0Ztp2OyL3BuQtBUUwKkNWWpNSXj8hMEjqOJRS7hNYLHAABElNOpbRI/0svxehVrVsmuv3oEQr18z452a1LtbC8WxaxHreUgK/0uvvmNJp179vaymVHVHpOtLa8omVmnxKabFRt616h/+b2PUba1TblDvyAlZxu1dYKgB6KAEiDwUrHciW2c4T7+WEq5E1RCzWMAACLINMuL2mgTeb2KdZRXya623q1XdXKd7P9uB0K9es9KmezVqPSdV/oM//p/CwSOP1AaOP3mN5p08UWNFduU+27LbotCTvE/3KfZt6xQ05rPadYj33McOLaTTcqm2jT45Vs1dP4Nyh11pieBY2lijVfToAc1XgGgaHlnTFdeYX4+7Wi3dOUVVuQXq0Vl1DwOCGoeA/ATxmuw1aOWa5hMF7SbaSDRzdcP2litpi6kNPadmNSFNFWP2uBuvqfbNY+dbqvS921okLZvr/59w2j0u7z0Ektf/9oukpyN16n2e+u9N5TYdJOSG29U7P03jPqS3/0IZVuXKnfEl6RZc8w/zAxUW6uVGq+oh6CdX4Eoi+J4dbvmMcHjgCB4DMBPGK/B5+cgnZ95vaCT268fpLEahJsatVp0zu33dDvwbbqtSt9n1BmnS3/+7egdR8pJZ2wd0xozHq87Aqd2QfEXf61kplfxZ38my847fm873qDcEYuUTbWpsFdKsgjEAtMJ0vkViLoojleCxxFF8BiAnzBew4EsLzNer2LtxfODNlaDsFL4VIFQL997Ju/pVaa8abvPfL4wIeO4oUG6724Cx+NVNV4H31Vy8y1KZtYptuVlo/crzPuwsq1tyh51pjR7rnmHgQgL2vkViLIojle3g8dcsQEAEFEs3uJctQs6OapLWoPXDwqT+tr1WnCto91Sc/PEx7xYdM6N93S6KGY1tbRN2n37v08MHEvF0hVhrNldE7at2CuPqOHO/6Y53ztZDb/4v44Dx3YsqezhX9TQeWs1eOGdyn5kGYFjAABQEcFjAEBd+W1xLKAcrxd0YsGoMfVYoM6E24vOefWetVgU00m7b//3gh56eOzfDQ2q+HxUMLxVyd91q/EHp6tp3VeUfOpOWfmso6aF5n20/RPf0uBX79f20/5d+f2OpzwFAABwhLIVAUHZCgB+4tZ4pe4ugsbrUh9uv36Qz631WKDOtE9+rXlc6/rRU22T0sDxCcdL//dfYnXdhn421XiNvb5RyXSvEk9tkJUbdvx6thVT/qCTlU0tVf7AEyWL8yXgliCfX4GoieJ4peZxRBE8BuAnbozXICyOBQRd0M+t9QjWOu1LLYLZM3nPWt+cK+1TQ4MmlKoYDRxP99mibMJ4ffNVxZ+8U8lMn+JvbDZ6ncKc3ZVbcJ6yC86VvfPeHvQUQNDPr0CURHG8uh08Trj6agAAONSasrRyhXYED0b/33RxLALHgD94kZU9ejwYHfd+CxyX66OTY1kt3nN5Z0zHLjTfJh3tlhbMNy+BUtqnSoFjp58hiuzXn1Dhtz9Q0+9ulDXyvlHb3AEnKptqU/6gk6V40psOAgCAyCHzOCDIPAbgJ26OV6fZZ2SpAeZqdW71Ost10eLChMBxc7O0YX1tpuDX4xgV5OPiZz4/cXG8hgbpvrun3lZ+/Aw1l9uuxNN3F7OM//iYUVN7douy889WdsES2fMO8KiDAErx2xUIjiiOV7czjyl8BQCoq3otjsVCfYA70hlbXWuLf5ssgDZ+XHetnXps1WOBuvHv7fWic354T7f8679PDBxLxQzkSn0q9xmicpy1+l/QrAf/VXOuPVmz7/oLo8Bxfp+FGv7iv2rbigc18qk/J3AMAAA8Q/AYAFB3lQIgXgSO13QVtGq1eZClu6dYp3lNV2FG7w+ESbEEjVkA02kJmnI1j03eZybSGfNjz0wDofV4T7d099i6ff3Yvxsaxv6ebluN/wydy8xLZgRKPqv40/do9k0XaU7XFzXr0etlDQ84amrP2kkjx1ygwa+s11Bbt3JHfklKzPK2vwAAIPKoeQwA8IVy9S97em3Xa5yWZkmOf+9KSrMkq6klCoSVSf3amZZkGP+4l3VyW1OWOpfZxuU4xn8XpoHQerynG0q31RmLpT//VsxoW1VbazkorK1/VHLjjUpsukmxbW8btc3vOV/ZVJtyRyySkk0e9RAAAKA8ah4HBDWPAfiJl+O1NAgxys06mKbZzNTkRFDV+tw63Vhxq5ZvLcekFwsB+vE9q+WnbeU7hbziL/yyWMv4+Qdl2c5nrdiJRuWOOE3ZVJsKe833sJMAqsFvVyA4ojhe3a55TOYxAMBXOtqtSRnHzc3uZhZ6kSUJoPLYcnMROJMxPFPVBmNnEsStx3tWw2/byi+sbW8psekWJTeuU2zrH80a73G4Yscv03sHnip71k7edBAAAMAAwWMAgK9UWhyr1gFkAseAuZmUoDFdLK70fcY/Dm+xrUrYtuIvP6REpk+JP/xUViHnvGk8qdyhX1Cudal2PvoUWZYlDQxIEciMAgAA/kfwGADgG+UWxxoNOHkRbHAjSxLAZKVjy0nguNrF4sa/z9XX2qGum+sXbKtxhgaUfPw2JTN9ivW/YNS0MHd/ZVvblD36LKlxnizLKgaOAQAAfITgMQDAF+q1OFatFuoDosa0BE1QF4uLoshvK9tW7LXfK5npU+Kpn8jKjzhvasWVP/gUZVuXKr//RyUr5mFHAQAAZo7gMQCg7ipl+dZiunM1WZKoXpAWA0P1qilBs7wzpmMXmm/njnYrHFmsARLJbbX9fSWevEPJdJ/ibz9l1LSw017Kps5Tbv65snfaw6MOApVx/gUAVINb3QCAunK64NLKFWOPXX2tre4ed2tBdrRbam6e+JjbC/VBWtNV0KrV5tuvu8fWqtW21nQVPOoZ3FSuBM2o6cZvUBaLQ3S2VezNJ9Tw07/RnGtP0uz7/s5x4NiWpdyHP6WhM76rwYvvVfajXyNwjLrh/AsAqBbBYwBA3ZguuORlALlSlmQl6Ux1fai2XZClM8Vp7pLZ9hu/n3StjeZ3FyTlxvWG9THPbwABrsoOKbH5VjX2tKmp+2wlM32ysoOOmhaadtXI8ZdocPm9Gj7rGuUP/rQUY8In6ofzLwBgJggeAwDqotoFl0oDUG78kKk2S5IsHjOtKfMbAOUCkUHLWoyS6UrQEECejBtQ/mK986xm/ewfNefakzX77v+h+OsZx21z+52g4dP+XYNfvV8jn/gz2XP38bCngHOcfwEAM0HwGABQF8UFl4p/my64NPoDyI0Fl6rNkiSLpzomAUSTzHTUn19K0AQJN6B8Ij+ixFMbNHvdMs1Z+yXN+t0PZW3fOn07SXbDXI18ZJm2XXinhs/7vnKHf1GKz/K4w4A5zr8AgGoxfwoAUDf1XnBpJgv1FbN4zBbyI4unyMkiiPxwDRbTEjSSt4tgBkHpDSjJ2XdQegOqmmMoiqwtryiZWafE5lsUG3zHqG1+71ZlW5cqd+gXpORsj3oIuIvzLwCgGgSPAQB1Va8Fl5xmSUpT/8gyCYLxY2yiSt8d31WwVFuCRpq4/d24IRQk3ICqk0JO8eceVDLTp/gLv5Ql51nfdrJJuSNPVzbVpsIeR3rYScA7nH8BAKYIHgMAIsfNLEmyeKpX7rvr6Z24cCHflf8VS9AUs2hNS9BIxe3uRgmaIOIGVO1Y772hxKablNx4k2Lvv27UNr/7EcUs4yO+JM2a41EPgdrh/AsAMEHwGAAQKV5kSZLFU73S744frsFU7xI0QcYNKA/ZBcVf/LWSmV7Fn/2ZLDvvvGm8QbnDv1jMMt67VbL4vhEunH8BAE5Ztm1Hd5WSAOnv7693FzxnWZZaWlokSQMDA2LXBPwr6ON1TVfBOEtSGgvgdC4rBsum+u+jmpv5MebUosWFCd9Vc7O0YT3r+s5U0MdqlEwVICZwXIXBd5XcfKuSmXWKbXnJqGlh3oeVbW1T9sgzpMYWb/o3BcYr6sHN8286U10N9mrb1RPjFQiOKI7XefPmufp6ZB4DACLHqyxJsniq090zcaqsVPzuuntsvjNEBtPIZ8i29fzPf6sjtq1T4pm7ZeWzjpsWrITyh52qXGqp8vseR5YxIsPN8+/YjXmzBVDHbszbZW/MAwDqj+AxACCSvFqor6PdmhTwaW42+yEVJZWytZ0sIAaECTegqjC8Vckn1uv9B3u1oPCsUdNC8z56pHCevnPzWTqjZTct34/AFaLDzfNvOlOse2/adnwfutaqqhv7AADvcYUEAICLKmXxYKJy0/E3rI9p5YqxH45XX2vz3SFSOtotNTdPfIwbUJPFXt+khnv+SnOuPVkNP/sH7eowcGxbMeUOPkVDZ12j7zXepUt6vqp3t++mrrXFABgQBW6ff1tTlnHbcn0gcAwA/kTmMQAALiGL1rlKdVydLCAGhBVlXCrIDirx5J1KZvoUf2OzUdPCnN2VW3CesgvOlb3z3sVj0PcIXCF6vDr/mrSlljsABAvBYwAAXOBksSuCoEVOfjQSQEYUhf0GVLWLYj3zX0/r6KE+JZ9YL2vkfaO2uQM+rmyqTfmDPq305oRad2YRQkSX1+dfJ23dHn9RWqQPAOqFshUAAMzQdFk8lGEYY/Kjke8OURL2Mi5rugpatdqg/7ntSjxxh977fxfoT35zhmalexwHjvu3t+j7f+jU6fdt0HXbr1P+0M+puy+hVattfeNbBQLHiKRanX8rtXU7cGx8XPlAd4+tVattrekqVP3eABAllm3bwbwCjZj+/v56d8FzlmWppaVFkjQwMCB2TcC/GK9jnP4QItOtmOWzarX5d/Cv/17Q7evH/n3lFc6ml5NVxFgNiumOD0E/fpiMfav/BSUzNyq5+RZZwwNG75PfZ6GyqaX64WOf1ZXfm7Xj8ROOlx56ePLz/fY9Ml7hlWrPv6XHHqfn33Jtx8+kMOnDVOrxmcZjvALBEcXxOm/ePFdfj8xjAACqRBatmdaUpc5lxb+d/shb01UMHJ9wfPHfncvk6EceWUUICqfTyIN8/Jh2Ma18VvGn79Hsmy7SnK4vataj1zsOHG+3dtLIMRdo8Cu3a6itW7kjv6TzL5g94f2CEDgGvFTN+VeaeOxxev4t11ZyN3AssUgfANQSmccBQeYxAD9hvNY/4yXInGYEl37HZ5wu/fm3p7/vzXc8hrHqb6YZxUHPQC7t/39b/pqWHHSzEptuUmzbW0avtXngaN34QpvuevWLunD5nLLfw7f/eyFQgWPGK7xWj/rAixYXJgSOm5ulDevdy2Gr1wwwxisQHFEcr2QeAwDgA/XI4gkLp5+5NKvo9jtEVhFCI50xD2SUy0BOZ4LzA6ij3dKlXy3oE3v8XP9x/Cqd/+bnNOuhqxwHju1Eo7Lzz9Fg+436xRE36raXztFwvqlsxmF3j102cNzcHOxFB4HxTMf/6Pmw2namunvsCYFjqZiB7ObMCSczM4J+4w0A6i1R7w4AABBUyztjOnaheTZOR7ulBfOjGTg2ZbLqOz8OESTFG1C2utaa34CSimMhSDegrG1vKbHpFn11aJ1iH/2jUdv8rocol1qq7JGnS7ObJUkd7cX/Vu7YUHosGG80cMWxAUG3pqvwwfHD7IbI6PjoXGZread3uWSVah5XOpdXo9K1AtcGADBzlK0ICMpWAPATxitqLewLinmFsep/9ZhGXjO2rfjLDyuR6VXiDz+VVcg5bppXUoUjvqBsa5sKH/qIZJX/rNMtyjXV4348RjBe4ZTfS2dNdU72+lzt9SJ94zFegeCI4nilbAUAAIicStNSCRwjyKoN3Pg6cDw0oOSj31fT9xep8aYLlXz6LseB45e27adf7/xtDa18QNsX/YsK+yycMnAsVV6Ua9TKFZY2rI8FetFBYDw/LxZX6Zzs9eKfXi/Sh4mqLZsUpHJLAIrIPA4IMo8B+AnjFfVSy6yiMGCsomZsW7HX0kpmepV46i5Z+e2Om+YKcT3w+qd104ttemL7R3XnevPKeqWLco0K0iwFxitM1WuxOL/3x+tF+iTG61jZFLNtN1Y2RZ6WTQHGi+J4dTvzmJrHAAAgMErrGhI4BupsZJsST9yhZKZP8beeNGr6fmwvrX38XN324jl6a/seOx43rUlcblEuSTrh+Mk1VU3qqAN+52R/9lvg2Gm/Z9KPqRbpY5y7I50p1uuXzLbd+H2ka62qWjcEQH1wqwcAAB9jSuBkHe2WmpsnPtbc7G7wh+8dGFNuv469+YQafvo3mnPNpzT7vr91HDi2ZSl34Cf1k5b/1Em3363vPX2p3tq+x4QxbTKVvdLieA89rLKv4/XUeaCW/FDWKZ0xf59y/Z7pObTc7KTxr884d4efy6YA8AbBYwAAfGpNV0GrVpv/2OnuKS6ks6ar4FHP6qtSVpEb+N6BMRPGQ3ZYic23qbGnTU3dZyuZ6ZOVHXT0OoWmXTVy/AoNLr9H1w1fo+/84NPK28VJkNXWJJ4qcHzC8WN/T/U6XgSugHoptz8vWlyoWYmW1pSlzmXm7zO+353LZlbLvVxwklrn3jG5CefnckEAnKFsxQwMDAzo6aef1osvvrijbsrcuXP1oQ99SMccc4x23nnnencRABBQTAksr1LNYzemvfK9A2NGx8OBOz2nnX61Tsk3bleDXaY+RAUPv3W8mk9p076nfFaKz5p2MS3J2VT20tdZ+BHp0cfGXm/8f5/qdca/30wDV0C91bus0/LOWFXnvo52Swvmux84rua4AjN+KpsCwFssmGegUCjot7/9re6991795je/0dNPPz3lcy3L0sc+9jFdeOGFOumkk2b83iyYB6Aa6Ux1Aazp2jFea8P0gjvsF+hTfT63P3eYvnfGKqqWH1HiDz/VO/f2aZ+Rh42abh1p1vqXz9BNLy7RF9oP3jEe3FpMa6r/Xnrucvp+1Z4rZ9K2XDvGK9xQi8Xi/KRei/QxXsfU6voMqFYUx6vbC+YRPDbwuc99Ti+++KJxu9NOO01/93d/p5122qnq9yZ4DMCUl6sgM15rxy8rl9dbtcEkr97Pq/d1G2MVpqwtryi58UYlNt2s2OA7Rm1fT7bqyoeX6J5Xv6DthdkTxoNbN2X8dHPH7fMs4xUzNVUpF7+dm9xSz+MB43WiSjPDpPDugwiGKI5Xt4PHlK0w8O6770567MADD1QqldJuu+2mhoYGvf766/r1r3+t119/fcdz7rzzTr355ptas2aNGhoaatllABHF1PvwYEqgs8/n9rRUvndESiGn+PM/VzLdq/gLv5Ql5z+q7GSTckeertteXaJ/6Dpix+Pjx0O1i2lJE8dgY6Otq68de061rzPTKfIS51n4j9dlnfzGreOKG8cD1L9sCgBvETyuwj777KPzzjtPZ511lvbaa69J/z2fz2vdunX6p3/6J23fvl2S9Mgjj+g//uM/9Bd/8Re17i6ACCqugmwWSGMVZP+qFMgMewDT5PPVMoAc9u8d0WC994YSm25ScuNNir3/+vQNxnlqy2F6Y7+l+shXFqv7piZd3TX1eCgupmUbZ+mW1iQ+56yYBgbMs329qG3MeRZ+4iRTP2wBZLeOK4xB93S0W+rptSeVTQnLPgdEGWUrDCxevFjLli3TmWeeqXg8Pu3zH3zwQa1cuVKFQnHV9WQyqfvuu0977rmn8XtTtgJANbyaes94rY+oTQlMZ2ytWm0eoC39nq68YmYBmiB/74xVTGIXFH/p18Us42d/JsvOO28ab9DTyS/q7+9doo39KUmW0Xhwqz6wV/X8q+HmeZbximrUuqyT39TreMB4nSxqZVMQHFEcr5StqKNbbrlFiYTzr+ykk07SaaedpjvuuEOSlM1mdd9996m9vd2rLgLABEy9D5eoTQn0S1ZR1L53hNTgu0puvlXJzDrFtrxk1LQw78PKtrYpe+QZ2qexRSe22NpYxXiodiyWtnPrddzAeRb1VI+yTn7jp+NBlEWtbAoQNQSPDZgEjkeNDx5L0saNG93sEgBMi6n34RK1KYHLO2NV1QTtaLdcrWMYte8dIWHbiv3xMSXTvUo8c7esfNZ501hCuUM+q1xqqfL7HS9ZY/s642EizrOoh3qWdQLGi2LZFCBqCB57bP/995/w77fffrtOPQEQZeV+NJT+8OcHbTB090zcblIxs6O7xw7t9vNDVlHQvnc/TetHHWx/T8nH1yuR6VX8nT8YNS00f0jZVJtyR58le87uZZ8TtPFQC5xnUUssFge/qHQTg5sWQHjE6t2BsNu2bduEf1eTvQwAbuhot7RyxdjFGj9o/SWdmb72VrkpgaOuvtZWd0/463fVQ9C+9zVdBa1abd6v7p5ijek1XQWPeuYNJ2PHzXZ+Fnt9kxru+SvNueYkNfzs7x0Hjm0rptxBn9bQmVdr8KJ7lD1+RcXAcZDGQy1xnkWtFMs6Ff82Les0uo+yWBxmymnZlPHHxXqcJ7hOAGaO4LHHnnrqqQn/3muvverUEwAoXsCN/6EvRXuqsV84CfaVu0BvXzpxu0U9cOOFct/7hvWxuv8Qmko6U6wRLY32y1kgePzn7FobnB9MUQuUl5UdVGLjTWr80blq6jlPyU03y8oNOWpamLO7Rk64VIPL79Xwmd9V/qCTpNjUi0IHbTzUA+dZ1MryzpiuvML8pkRHu6Urr7C0vJNQAKpnWjalXucJrhMAd3DG8Nj69esn/PujH/1onXoCAJWnGqM+Jgf7Jm+Lchfoo88vFfXAjZumm4rpx4BZa2piv666xtZ111cOJJb7nEHIRnMydsoJaqC8VOztpzXr/r/XnGtO0ux7/1rxNzY7bps74OMaOv1yDV58n0ZOXC27+UPTtgnieKgHzrOoJT+UdUL0VFs2pfQ84fX5N+rXCYCbqKHgoYcfflgPP/zwjn/vvPPO+sQnPlHVa1lW+E/w4z9jFD4vUGvdPYWKqyBbltTR7uyeIuPVPce0Wrr0koKuumasHtz4bVG63S69pPh9jz6/3GOm2xOTlfveS7/PL19gybKm3nb1Utqvyy4flCSdd87kserkc/rVdGOnnHKf95jWYHxeSVJuu+LP3KNkulfxVx81amrPblF2/tnKpZbInnegJCnjsMZ1kMdDLc30PMu5FSgKQt3+KI/XY1otXXRhQdd/3za6bhh/nrjoQu/Pv5G8TkBZUR6vbrFs2+Y2igeGhoZ05pln6oUXXtjx2OrVq7Vq1ar6dQpAZF13/dCOAJIkffMbTbr4osYpH0ftldsWkhw9NrrN2J7uMP0e/fq9T9cvv/bblNPPEeTPa7/zvAqP/ECF3/VJg+8atbUOOEGx474i66jTZCVn73h89Pv42spGrbq0acr2YRkPXuM8C7jjyqsG9d2rh4zHitNjGtzz6GNZLfxIsmbtqhWF6wTAawSPPfKXf/mXuvXWW3f8+6CDDtJtt92mhoaGOvYKQBRFJYAUBqXbYrzpAsdTvcYPuppreoEedI8+ltVXOsfmnDsdD3793qMS0Arjcc7OZ2U/eY8Kj/xA9rMPmjVu2FmxY85T7Lgvy9rzyEn/2en+Grbx4JUw7n9APXDMgVc4TgMzQ/DYA2vXrtU//uM/7vj3rFmzdMMNN2j+/PlVv+bAwIALPfM3y7I0d+5cSdKWLVvErgnMXHdPYVJ5g3JTtZw+bxTj1Tul20KaulTFVNto9DUuupAFcaqxpst8Kqbkz+/dsizdePOsCT+Ixk+ll4JVqqKSqY5jpse3erO2vqbExhuV2HijYtveMmr7+MBReuuApTr2K6dJs+aUfY7p9xGm8eAFN8+znFsB82NUvY7xjNfgCct1AsxFcby2tLS4+noEj11211136Zvf/KYKhbFVOf/P//k/Ouuss2b0uv39/TPtmu9ZlrVjBx8YGIjEgAa8ZLIKsunzGa/eKt0WpcE+JwuT1LLuXxgFod6iE6Njdaqsdif7UpC4MXbqopBX/MVfFWsZP/+gLNv56u52YraeTJ6m/33XEj2+pZioMNXnND0vjArLeHCb2+dZzq1AkdOxVe0xzQ2M12AK7HUCZiSK43XevHmuvh7BYxf9+te/1ooVKzQyMrLjsW9/+9tasWLFjF+b4DEAE+mMrVWrzS+mSy+orrzCKvvDn/HqvdJtMYqLWpgYP1Y/9sl3JvxAam6WNqwPX2ZNkMaOte1tJTbfomRmnWJbXzVqm9/1YOVS5yt75OnS7OZpgyj1DLKEkRfnWc6twBi/H9MYr8EVpOsEuCOK49Xt4HH4fjHUSSaT0de+9rUJgePly5e7EjgGAFOtKUudy4p/m1wIdbRbWrmi+NzOZQp1xpjfdbRbam6e+Fhzs7ioRVWuu35oQuBYKmbadPeE7+LZ92PHthV/6SE1/PibavreKWr45WWOA8d2PKnsEV/S4JIfaugrdyj7JxdIs4sfdvzxWyquKj+6fesdZAkjzrOAtzimwSu+v04AfIjMYxc8/fTT+vKXvzyhLvF5552nv//7v3ftPcg8BlANr6YaM169R1YE3GBZlm66paFizeOw7VO+HTtDA0o+flsxy7j/eaOmhbn7K5taouzRZ0lNu1R8LlNya8vN8yznVmAyvx7TGK/B5dvrBHgmiuPV7czjhKuvFkEvvfSSLrroogmB4y984Qv6u7/7u/p1CgA+UG1GE5lQ9VXph9Lo41zcwoniIjBjgePRH0bj97Ew7VO+Gzu2rdhraSUzfUo89RNZ+e3Om1px5Q8+RdnWNuX3/5hkOZswOPr5Rj+vH4IsYcZ5FvAWxzS4yXfXCUBAULZiBt544w1deOGFeuutsZWwTzrpJP3bv/2bYjG+WgCAuXJTMTesj005dROYSnePXWb18OJ+VGk6cFD5auyMbFMi3avG7rPV1Hu+ko/f5jhwXNhpL23/2Nc1ePF9Gl58hfIHnOg4cDyKKbkAwoRjGtzgq+sEIGCIcFbp3Xff1YUXXqhXXx2rUXf88cfriiuuUDKZrGPPAABBVamGXxiDfeDFqQEAAJiySURBVPBO6b70zW80qaN94mVfmPYpv4yd2FtPquGnf6M513xKs+/7W8XfetJRO1uWcgd+UkNnXKnBi+9V9mOrZO+8Z9X96O6xI1PjOuzSmeq2WbXtAD/imIaZcuM6geMxoozgcRXef/99XXzxxXruued2PJZKpXTVVVdp9uzZdewZACConCz+EqZgH7xTLnB88UWNZZ8bhn2q7mMnO6zE5tvUeMNSNf3wLCUzfbKyg9O3k1Ro3EUjx31VgxfdreGzr1X+4FOk2MyqypWbkjsqiNs3ytZ0FbRqtfk26+6xtWq1rTVdBY96BtQOxzTMlBvXCRyPEXXUPDY0PDyslStXavPmzTseO+yww3Tddddpp512qmPPAABBZbJqeGntP+qzYbx0ZuK+dOkl1pSB41Hl9qkF84NRk7WeY8d693klM71Kbr5d1vYtRm1z+x6vXGubcod8VorPqur9y5nq+whrjeswS2dsda0t/m2yzcZv66610rELq1vQD/ADjmmYKTeuExbMF8djRB6ZxwZyuZy+8Y1v6JFHHtnx2IEHHqiuri7NnTu3jj0DJmJKDRAcpcE+J4u/lMuO8OP45VhUe60pS53Lin8X9yXni6yN7lOdy4IROK7L2MmPKPHUTzT7xgs15/uLNOuxHzgOHNsNzRr5yFe07cI7NbxkrXKHL6pJ4FgKR4Z51LSmzLdZuX0gCGMZKIdjGmbKreuE0bbjH+N4jKgheOyQbdv6y7/8Sz3wwAM7Httnn330/e9/X7vttlv9OgaUYEoNECyTg33OLiz9HuzjWFQ/yztjuvIK8xXoO9otXXmFpeWdwbg8rOXYsba8olm/vExN3ztFs+/8lhIvP+S4n/m9Uhr+/D9q24oHNHLyd2TvcpDjtk7VvXQHPGGyzUyy6wC/45gGN7h5ncDxGFFn2bbNEdaBV199VaeccsqExyzLUixm9gNrn3320b333mv8/v39/cZtgsayLLW0tEiSBgYGxK5pLp0pBl1GOT1RlZ7grryCO6OojPHqvnSmuqls1bbzEsci/4jCWPVs7BTyij//oJLpXsVf+KUsOf/u7GSTckeermxqiQp7HGXcNxOmP1KD9KM2TMdFJ6Yar9NtsyBtU2A6QTmmReH8GhZunks4HgdTFMfrvHnzXH29YKSW+EC5ncu2beXzeeP/AV5hiiMQXNWOOz+OV45FqCW3x471/ptK/ua7alpzqhpvX6XEC79wHDjO73a4hj/zv7RtxYPa/tm/8TxwHOayN/WaveDHcjuVMt4IVCBMwnxMQ/24eZ3A8RhRxYJ5QMiYLAjECQ6AVzgWIVDsguIv/VrJdJ/iz94vy3Z+s9+Oz1Lu8C8qm2pTYe9jJKt2+25xSm5xYTXTKblScVz6sexNvRaLW9NV+OC7NFt8a/R9O5fZnpV9KXdM7em1tXXr2HM4diLownpMQ7hwPEYUUbYiIChbAVNMqYGXGK9wimNRfTFWpzHUr+SmW5TMrFNsy0tGTQvzDlQ21absUWdKjS2edM+pMJZ3qPXUdT+U23EyXkvfz7S/QBAE4ZjG+RUcj4MjiuPV7bIVBI8DguAxqjHVDymCNZgpxitMcCyqH8ZqGbat2B8fUzLdp8Qzd8nKZ503jSWUO+SzyqWWKr/f8TXNMo4ip8cIt44l9a616nS8LlpcmJDh1twsbVhPNUKglji/QuJ4HBRRHK9uB48pWwGEGFNqAPgBxyL4wvb3lHx8vRKZXsXf+YNR00Lzh5RdsES5+WfLnrO7Rx1EKSflb9wM4Aah3E53z8RjpyRt3Vp8nGMoANQOx2NECcFjIORKfwgRrAFQD06ORUGYporgib2xWcn0DUo8uUFWbshxO9uKKf/hk5RNtSl/4CekWNzDXmIqlQK6XgRwax2wNlH6vs3NY8dSk9rQAICZqffxmGtm1Br59EAEdLRbam6e+FhzMz8wANRWpWPRmq6CVq0eW7Haqe6eYp3SNV0FF3uKwMsOKrHxJjX+6Dw1/ehcJTfd7DhwXJizm0ZOWKnB5fdq+MzvKn/QSQSO66zc6vaLFhc8C+CWe7/RY5NfAscrV1jasD42ZT8BAN6o9/GYa2bUA5nHQAQwpQaAH0x1LPrXfy/o9vXFf5tka4y/eO9aKx27kGyKqIu9/YwSmT4lH79d1sj7Rm1z+39M2dRS5Q/+tBRPetRDVKvWM6n8VG6nUsDapNQGAGBm6n08Tmdsda2V8etzzYyZIngMhFy9p9QAgFT5WHT7eumE46WHHi7+28mxqdzFOxfBEZUbUeKZe5TM9Cr+6qNGTe3ZLcoefbayqfNkzzvQm/7BNR3t1qQArpczqfxQ+stJpjMBZADwnh+Ox60pSytXmL0+18xwA2UrgBCr95QaAJCcHYseergYQB5V6dhUr2nj8Ber/0XN+vm/as73Ttbsn/y5UeA4/6GPaPgL/6xtKx7QyEl/TuA4ICrNpPJKPUt/mRzrKpXaAADMjJ+OxyavzzUz3ELmMRBS9Z5SAwCS2bFoNIBcKQOZi+CIy2cVf+5nSmb6lHjxv4ya2rPmKHvkGcql2lTY/TCPOgiv1GsmVb1Kf6Uz5se6ctd3C+aLDDMAmAE/Ho/9vLgrwonMYyCEnE6pIUMFgJeqORZVykDmIji6rPde06z/+n9quu6zarzjG0aB4/weR2n41L/TthUPauQzf03gOIDqNZOqXMDay/cbrzVlqXNZ8W+TY934Y2rnMgLHADBTfj0e+3FxV4SXZds20aIA6O/vr3cXPGdZllpaWiRJAwMDYtesjumJghMLqsF4xXRmeiwan4EsTcwydPJ6KAr0WC3kFX/xV0pm+hR/7gFZtvPVwe3EbOUOX6Rs61IV9lrgYSeDKZ2pbqGcatvNxHTHEq+uY6Z6XS+vm8qN1yBtKyBKAn1+RVX8ejyuNDNH4ppZiuZ4nTdvnquvR9kKIET8OKUGQPS4cSx66GHpjNOl2+8o/ncugqPD2va2EptvUTKzTrGtrxq1ze96sHKppcoeuVia3Tx9gwha01VQ11pp5QqzMg+jP047l9la3lmbyYv1WpzIT6W/qr0e4zoOANzl1+OxHxZ3RfhRtgIIEb9OqQEQLW4di/7827G6LVTlN+lMdRkS1barOdtW/OWH1XDnt9T0vVPU8MvLHAeO7XhS2SO+pMElP9TQV+5Q9k86CBxPIZ2x1bW2+LdJ2YXxwdSutbXZr+q1OBGlvwAAQVPPxV0RDWQeAyGzvDOmYxeaT43paLfIOAbgGjeORfVaqMpvZpop+rWVg1p1aZOHPZyBoQEln7hdyXSfYv3PGzUtzN1P2dQSZY8+W2raxaMOhktrytLKFWZZs+WCqV5fK9RrJpVpwLr0/cY/DgBArXDNDK8RPAZCyOspNX6t9wTAX2ZyLKpUvy1KQZrSTFHJ2ece//199+ohffSEpA4+yLNumrFtxV5LK5npU+Kpn8jKb3fe1Iorf/CnlU0tVf6Aj0kWk+hMmQQ967UuQnH2gv3BTROz2QuSPiivYXYMovQXACCIuGZGLXDFDcDImq6CVq02n57Z3WNr1Wpba7qcL3gEIJrKBaw2rI9Fcpp4MVPU7HOXfn/f/EaTFn4k6VkfHRvZpkSmT43d56ip93wlH7/NceC4sNOe2v6xr2vw4vs0vPj/KX/giQSOZ8BJ2YV6L6i7vDOmK68wf8+OdktXXmEZ12Wm9BcAIGi4ZkatkHkM+Iyfs3rdyIDrWquqprIDiAY/LVTlFzPJFL30EksXX9RYg15OLfbWk0qme5V44g5Z2UHH7WxZyh/4CWVTbcofdJIU47LVTZX2q3oHjkfVenEiSn8BAIKCa2bUElfhgI/4fQX0oNRKBBBMTheqkqJ3Mezkc5f//uqUnZsdVuLpu5TM9Cr+WtqoaaFxF+Xmn6PsgvNkt+znUQchld+venrtSK/UXuuANQAAprhmRq0RPAZ8IihZvUGolQggeFioanpByBS13n1eyUyfkptvk7V9i1Hb/L7HKZtqU+6QU6XELI96iFKl+1WUA8cAAPgd18yoB8u2bYqfBEB/f3+9u+A5y7LU0tIiSRoYGFAUd03TH//1DBZM995+CWTAG4xXuCmdKdZEH+X0eFF6nLnyimjMbKi0MIo08furyVjNjyjxh/uUyPQp8fJDRk3thmZljzpD2VSb7F0Pdr9vcGzR4sKE/ai5WdqwnrrStcS5FQgOxivqgWvm6kRxvM6bN8/V1yPzGPCRIGX1BiEDDkAwFBeqsj8o22O2UJWkD8r2RGfauF8yRa0tryq58UYlNt2s2ODbRm3ze6WUbV2q3GFfkJL1rcmM4jXF+P1IKu5X3T02528AAHyCa2bUC5nHAUHmcbQEKavXJAMO4cF4Dbd6Ldzp5wVD/chJpqjrY7WQV/z5nxdrGT//C1ly/np2skm5I76kbGubCnscNbN+wDWcx/2DcysQHIxX1BPXzGaiOF7dzjxmLhrgQx3tllauGDuoX32tre6e4gHOT4FjaXJf+cEJBNuaroJWrR475jjV3VOcRremq1D1e7NQlXOVMkW9YL3/ppK/+a6a1pyqxtu/psTzP3ccOM7vdpiGP/M/tW3Fg9p+6t8SOPaRctcUG9bHprwGAQAA9cc1M2qNshWATwVpBfSOdmtS35qbKcQPBE1QFu6MukqZoq4uhGIXFH/pN0pm+hT/w32y7LzzpvFZyh3+RWVTbSrsfYxksT/4TaWb0SywAwAAgFEEjwEf80tdy+lQKxEIh9aUpZUrzAJG5QJQBI69M1XAb/zjMw70DfUruflWJTN9ig28ZNS00HKAsq1LlT3qDKnR3elycI+TWUwEkAEAACARPAZ8z+9ZvTXLgANQE0FauDNqqskU/fIFDreHbSv2x8eUTPcp8cxdsvJZx/2yYwnlDvmscqk25fc7gSxjnzMZtwSQAQAAQM1jwOdqXdfSBLUSgXCqVHd9FIHj2nKaKTp5u01Tg3r7e0r+/kdq/MEZaurrUPLJOxwHjgvNH9L2E/9Mg1+9X9u/dJny+3+UwLHPpTPm47bcfpXOBP+8Xu1nCMNnBwAAMEHmMeBjfs7qpVYiEG6VxjGB49qaSaboVdfYmj17SBdf1DjhebE3NiuZ7lXiyTtl5YYc98WWpfxBJymbWqr8gZ+QYnHTj4M6ak1Z6lxWrG1uMm7H71edy4K/4M6arsIH34HZtcnoWOxcZmt5Jzk4AAAgGizbtrl9HgD9/f317oLnLMtSS0uLJGlgYEBR3zWd1LUc/7gf+lbt8xA8jNfoqHQTS2Jcey2dsbVqtflxtHS7/aCrWQfv95biT9xZXADvjU1G/SjM2U25+ecqu+Bc2c37GLWF/6Qz1S1qWW07P3FrTF15hfv13b08t0Z5mwNe4FoYCI4ojtd589xde4Rb5oAPTZfVW8+yEKYZcJSwAIKtdBwTOK6tYqZo8W/TTNHR7fb/LX9Zx7z2N2q65iTNvvevjQLHuf0/qqEvXa7Bi+/XyInfIHAcEtUGA8MQRCwuDGp2bRL0hUHXdBW0arX5NVh3TzHQvqZrmvI3AAAg1Mg8Dggyj6PDz1m9fs7WQW0xXqNn0eLCpIU7N6znHnStGGf/5UaUeOYebf91r+YOPGr0XvbsucoefbayqfNkz/uwYU+BYPDj9ZYX51au3QBvcC0MBEcUx6vbmcfUPAZ8xO8roFMrEYimSgt3knlcG06Pm1b/i0puXKfk5ltlDfVrtsF75D/0EWVTbcod9nkp0VBdR4GAcHIdFYbyW8VMa7PrxaBnWgMAAHcRPAZ8otoV0KWJPwgWzPc2OLu8M6ZjF5rXv+totzzvGwD3+XnhTlOhrflZyCn+7M+UzPQp8eKvjJras+Yoe+Ri5VJLVdj9MI86CPhTkBcGNTkumSQc+P1zAwCA2mO+KeATbtS1rFVWb5RrJQJRUi6IsGF9LJC1zMNY89N67zXN+q//p6bvfUaNd6w2Chzn9zhSw5/9W21b8aBGPvM/CRwjssqtz7BoccHXAdRqjmcd7ZZOOH7s3+WO3QSOAQBAOWQeAz5CVi8AvygXRFgwv/i3admcemfupjPFcjuSWbb0+O+ga62qOj67zi4o/sKvlMz0Kf7cz2TZzoPadmK2cocvUrZ1qQp7zpcszhmANPmY5ueFQWdyPHvo4YmPBSnTGgAA1A8L5gUEC+YB8BPGa7iVCyJs3z653rmTYMPoczqXFW+Q1YtpYMRvgRRr29tKbL5VyUyfYltfNWu8+6GKHb9M7x34OdkNO3vTQSAE6r0wqNNz60yPZyccrwmB5PHliJy8HgCuhYEgieJ4dXvBPMpWAEAF6Ux1J5Zq2wH1NlXG8fhMt9GpzuWme4+fBl2auVvPcTFdX8fzTeDYthV/+WE13PktNX3vFDX88t8dB47tWFLZw0/TUNsPlfjTnyv+0Yul2c0edxgIrkoLg/rNTI9n//dfJpYfInAMAAAqIXgMAFMIY41UoJKpFu5sTU0dqCgXxEhn7LIBi3qXfHAScPFF4Hh4i5KP/UBNa7+kxhuXKfnUT2QVso6aFubup+2f/LYGV/xM20/7NxX2PU4W5SlCgxua3ii3MOgov9Z1n+nxrKPdmvA5peLnJnAMAABKETwGgDJKawo6/eHop0xLwFSlhTsrBSpKF+7cuEn1D8BOodLnqGvg2LYVey2thrv/h+Zcc5IaHvgnxd59zllTK67cwZ/R0NnXafCiu5Q97mLZTbt63GHUGjc0vRHkhUFncjwLUqY1AACoL2oeBwQ1j4HaC3qNVC8xXsOt0gJ3lfbzdMb2deB4vHKZhnWZuj2yTYknf6xkuk/xt54walrYaU9lF5yn3PxzZO+8V9nnMFbDIZ0pBoBHOd0/S/fzK6+o/wwAP3ESYK3l8aza8Wp6PPPN8Q8IMM6vQHBEcby6XfM44eqrAUCIlK6+XmlV8ygFjhF+lYJLlcZFUALH0uTPUevASeytp5TM9CrxxB2yRrY5bmfLUv7ATyibalP+oJOkWHAv5SrdpPCiXZAVS8c4Ox+N8mPpGD9xct42uQ6oJ5Pj2VSfe/zjfv2cAACgPsg8Dggyj4H68Vtmkh8wXhGWzLVFiwsT+t3cLG1Y71FVr+ywEs/cVcwyfu33Rk0LjbsoN/9sZRcskd2yn+N2fh2ra7oK6lprvp+M7nedy6TlndGrvub0fBPF85IJv84smul4ne54xvUM4B6/nl8RLtxod0cUx6vbmcfRu+oGAEO+rZEK1FHpuAhi4LhWNT+td5/XrAf+j+Zce7Jm3/Udo8Bxft/jNLzo3zT41Z9p5JPfNgoc+xU15asXmEUffWyqhUErmWphUD+Z7njmNNM6CLWeASAKWOsAfkLmcUCQeQzUX1gyLd3AeMWommbuusjz8ZwfUfzZ+5VM9ynx8m+MmtoNOyt71JnKptpk73pw9X2Qf8eqXzM/g8JJ6YHxj2Miv2a+e1Xz+ITjpYceHvs34w2YOb+eXxEOrHXgriiOV7czjwkeBwTBY8AfSk/Io6L2w4rxCim448HLwJu15VUlN96oxKabFRt826htfq+Usqk25Q7/opRsNGo7ZX98PFYpwTAz3NCcGT9OBa5mvDo9npX+d9PXJQABTOTn8yvCgRvt7onieGXBPACoo452Sz299qRMS07MiJpKgSs/L7ZU6cK66sWxCnnFn/+5kplexZ//hSw5vyC1k03KHfElZVNLVNjzaJOPEnhOvm9+CE2t3os+Bl21gVA/BVBNjmdSMQPZ6X4xvn3nMn99bgCIAhZvh58QPAYAA5VqCnKCRlQ4yXTzYwDZac1PydmFuvX+m0psulnJjTcq9t5rRn3J73aYsq1LlTvidKlhJ6O2YVLp++aH0PS4oRld1RzPHnrY7Hqlo93SgvkEjgGgXrjRDr8geAwADgU10xJwkyeZuzVgcmFd8XPYBcVf+o2SmT7Fn71fViHnuA92fJZyh31B2dalKux9jGTV/3vxg3Lfd2lAdOWKYhCrGmFecZwbmtHk2vHMgbCOHQAICm60ww/8v6INAPhAuRPzhvUxViVHpDjNdPPbuEhnzC+sSz9H7/ff1Vt3rFFT1xfVePNyJZ65x3HguNBygLaf9BfatuIBbf/iP6vwoT8hcFyi9PsuDRxv326z4niJcjc0R/lh3MEbbhzPrr7WVjrD/jGdar8jvlsAbit3HF+0uEDgGDVD8BgApjFdpqXfAmWAF0wz3fw0LlpTljqXFf82ubDuOF/6mwt/p7//k7/UT79wij78zL8pNvCSo7Z2LKHcoZ/X0LldGuz8ibILL5Qa3V24Imw62q0JAVCpGBBdMF/qWlv8t8m+NH6f7VobroAONzSjq+rj2bjjMjWMp7emq8ANKwC+Mt2NdgLH8JJlR2GZwRDo7++vdxc8F8UVMOF/TgNmUZsyxHiNlnSm+GN4lNP9u3RcXHmF5WrAwrQcwejzp223/T0ln1ivRLpP8XeeMepTYee9lU0tUe7os2XvtIdRWy8EaayW7i+jRn8oseJ40XSfLcyfPexMxmu15VjCXMbFLX4958FfgnR+RbgsWlyYtNbBhvXkhVYSxfE6b567SSvsYQAwhSBnWgJu8mOmWzVZYa0pq2JWWOyNzWq4568155qT1HD/3zsOHNuylDvoZA2deZUGl9+r7AkrfRE4DpLpSjBIcnyMDXPwNKilY+C+ao+nBDOn15oyH0PlxibfNQC3VVrrAPASmccBQeYxUFtknVTGeJ1eGLPC/PKZXB2fRw4p8dRPlEz3Kf7GRqN+FObsptz8c5VdcK7s5n2M2tZKEMbqVAHRco9LlTOQox44nsnzUX9BGK9RwuwzVMJ4Ra1VWrxd4thTSRTHK5nHAFADfsy0RHCEtVaiXzLd3MgK+07nH3Tc2/+oOdeerNn3/JVR4Di3/0c19KX/0ODF92vkxG/4NnAcBKY15UefM/6x0W0f5gAOi6QBteckiz/Mxx0A/sFaB6g3Mo8DIiqZx88+N0cLP5I0vhvk50w9BJtfMi39Jop3b50ia712TLPCkrERfWbve7X6o336UPZRo/eyZ89V9uizlU2dJ3veh2fc91rx81idSVafpMhl36zpKqhrrflnG/3+OpdJyzvJG/EzP4/XKDOZHRG24w6mxnhFrbDWwcxFcby6nXlM8DggohA8vv77tq7/vq1vfqNJ55693fGA5kcRUHtRPAGbYHp57Ti5oP5x94s654Abdcb+t2qXBrPzaf5Df6Jsqk25Qz8vJWe71u9a8etYdWOMSBMDyE5fK8i4oRlufh2vYLo4JmO8ohYon+OOKI5Xt4PHCVdfDahSOlMMHEvSZZcPanjY0gXnm2Xqda2Vjl3IjyMA9Td6sTZ6fBr9fy723Dfld700r19+/2dKPd2rlZ/9L6PXtGfNUfbIxcql2lTY/XB3O4yqSzBIE7fzlVdYkwI4zc3lx1lY+KV0DBA1pccgAscAvGa6eLvk7LcHUA3SNOELrSlLl14ydmC76hpWNQYQbNRKrJ3x3/Ues1+XHvxPDf3zZ/SFgdX6+B7OA8f5PY7U8Gf/VttWPKiRz/xPAscecaum/MZNYsVxADXT0V68YTVe2G9YAagP1jqA35B5DN/oaI9p9uwGXXb5oCQy9QCY8eN07kpZABzHXGQXtOxjv9Ln+3u1//ADilvOFxy0E7OVO3yRsqk2FfZaIFlsg1pY3hmrarZQR7ulBfOLgeOpppCTbQPAC9099pQ3rDjeAHBT8Ua7bbzWwfjfHizeDjdR8zggolDzeLQOzXXXD+0IIEsUhAf8yG91o/y+kBS1Er1hDb6jxKZblNy4TrEtrxi1LexysLKpNv3OPl3zF7YYv3dQasj6bay6gcWrEFZhHK9hwXkcpRivqAU/JscEURTHq9s1jylbAd+5+KLGCSUsxk/15ochgFLpTPGuvFS+NMRUSmumezmtq3QaGT84Z8C2FXv5YTXc+W01XftpNfzy3x0Hju1YUtnDT9Pgkh9ocNkdujp9gVZ+u9m4zEF3j61Vq22t6XKe4Qx3VLoOcFIqBgBMlTvubFgf43gDwHOsdQC/oGwFfKmjPSbbLkyY6t3TaxNwATBJa8rSyhVmC0TUo2Z6R7s16ThGrUQDw1uUfPx2JTN9ir37nFHTV7btq1f2XKIFHWfLbtpV0uSbDpKzbcFCrfXj5AYyC8YA7iDbrWi6G1YSxxsAQPiReQzfIlMPgFMmGYf1msFQqVYipmDbir2WVsPd/0NzrjlJDQ/8k+PAsW3F9HzDZ3Tpr6/R6ff9RCt7luuHt+2y478XbzqYZY2xUGv9mK44TkYgUL01XQWtWm0+bsI2K8PpDSuONwCAsCN4DF9jVWPAmWpLLoRpBV4nP+DqGTgurZVYqZ+RN7JNicw6Nf7oHDXdsFTJzbfKym931PT92J7a/rGva/Di+7T7qv9U61mflP3B5U7pd+3mTQfGoHdYcRyonSCUgqoFblgBADCG4DF8jUw9YHrVZAilM3ZVGUJ+/zFY6QecXwLH1EqcWuytp9Rw399qzrUnafZP/5fibz7huO2v3jxRd7VcIa3+qbIfWyV7570kTf+j3o2bDmTpeau44njxb9MVx0e3LSuOA84wK4MbVgAAlLLsKCwzGAL9/f317oLnSlfA/OGPCpMy9ShdAUyUzhSDT6OcjIs1XYUdWUWjrrxi+h96oz8OO5dJF18U9/WKtX5ZFX26oCOLgErKDivxzN1KpnsVf+33Rk3f3T5Pt710tm558Vx9qeMA4zrXTraFk4xj0zFY7v2cjMFqhGl1aWqwIuz8NF6dnp8qPS/IY3b0Wsn0vDz+Wml5J3laYean8QqgsiiO13nz5rn6egSPAyJqweP//O67uuoa8x/xQBSZjIvSQNd0z5/qPb77/2I66VPFE5JfT8ClfR7ll8Cx6fPCxup/XsnMumJJiuEtRm23tByrf7pvie577VRlC7NcC9hWe9PBdBvWcptH8WIZCCq/jdeZ3AANQ/A1yMFveM9v4xXA1KI4Xt0OHidcfTXABdddP1Q2cCyxqjFQjsm42LjJ/PWDOh21o91ST+/E0je1qpluWitRishxLT+i+LP3K5nuU+Ll3xg1tRt2VvaoM5VNLVF810O0t1VQ1jAwMf67LlfGoHRbOM1WN9mGUb1ZACB4Kh3bpss4Hl83efxrVVJaN/nYhfUNwlb73kG4RgIAwASZxwERlczjm25p0GWXD+54LGpT5ICZMM0QGs90rAXh7m29Mo/9XsagHqytryq58UYlNt6s2ODbRm3ze6WUTbUpd/gXpWTjhP/m1fF+0eLCpJsOG9ZPnwHnxzIlQRirAIr8Ol6rmZXh5xkZgBv8Ol4BTBbF8UrmMUKru6egq66ZPnAsTZ0JsX27/cEUObOsvbEpcnbdp8gB1TLNEJrquaOC/EOu0g9drzN7i4t72cbTdafLig2cQl7xF36uZLpP8ed/LkvOL9LsZJNyR5ymbKpNhT2PnvJ5XmSFVVqo1cmCSZJ5lh4A+Fk1szIqHQ9Lb+A5PT6S6AEAQH2QeRwQYc88Ls3Uu/QSSxecb56pNx7ZfogqkwyhahcJ8/Pd22o/k9uiOgvCev9NJTbdrOTGGxV77zWjtvldD1W2dalyR54uNezsUQ+n5tZCi35ZsFHy91gFMJHfx2s1szJKj4cLPyI9+pj5udlPtZAByf/jFcCYKI5XFsyLqLAHjyXp+u/buv77tr75jSade/Z2xwN6/MVkQ4PFFDlAZiUbqgl0+fUE7MeyAZFgFxR/+SEl072KP3u/rELOedP4LOUO+4KyrUtV2PsYyarP9nD7pkO9F2wc5dexCmAyP4/XmRzTpmp7wvHSQw9P/1okesCP/DxeAUwUxfFK8DiiohA8tixLzz43Rws/kjQe0OMz9UwzGKZ7HhBUJhlCpj8K/XgCjtLY901W81C/kptvUzLTp9jAi0ZNCy37K5taquzRZ0qN7l7cmPLqpkO1tZPd5MexCqA8v45XN2ZTVJotWOk1wnDORjj5dbwCmCyK49Xt4DFzfuArCz+SrKrd+GBIR7u1o56rVKyx1t0z8eDAhSjCrlLd1nI62i01N098rLnZu7rAbjMZ006OEX62pqugVavN+9zdUywPtKarMLMO2LZirz6mhp/8d8259mQ1/PxfHAeO7VhCuUM/r6Fzr9dg50+UPbbT94Fjqbp9xnQMAoAflTtGblgfMz4mlh5Hxzvh/2/vzuOcqu89/r9PJmEZcBgQcAFRAbVsGRXFWq3Wpa3VuivgMHY6QlmkF7fea/tr9eKvve1te9WiFZSCU36dzmVRq3il2rreVr1SxU4URAuKKMqiMKwDJJPz+yNNyDaZczJZzklez8eDBzmZfDPfJOebTN7nez7fcen/3uDvdQAAnIHwGCUp0xd9/hBFqUs3Qyiqoy94bg66WgL2x3S694iWgDsea+OiyGU7oXf8PtG4SNk91gN75P17s3r+7gpVLpkk3ztPymg/aKlp+LCjdOCsm7RvynPaf+mv1D7kTMko/p8g+TrokM0YBACnyfQemc1BtXQHqqVI6QomegAA4FzF/+YG5Em6P2ovvizMH6IoadnMEHJ70FXjN9RQH7lsZ0zHv0c01MsV9RNr/NnNgE3eJ+w8Vs+W1er+5zvVa/656vH8j1Xx2XuW2pkyFDr+XLVdMVf7Jv9ZwTOmy+w90PLvzbd8HXTI1Sw9ACimfJyVke5Adbq2BMcAADgLNY9dolxqHuejDo1TFi0C8i2buq2SslokzIl1oxxTB7gA8l7fOdgm77sr5GtZoootb9nqW7iyv0JjrlZwzLUyqwbZaltoCxvDalxk//MgfqHWyQ2elOujnLBgoxPHKoD0nDJe7b5XWbl9Z3WTO7qev9fhVE4ZrwA6V47jlQXzyhThcdc4YdEiIJ+yDRPj2Qm6yvED2GnyEVQan6+TL7BUvjWPyziw21Z/QkO+qKB/otqHnS9VZFe/vhhyddDBqQs2MlYB93DCeG0JROrjR1l9j0p+b3vgPqPTxayzXUQPcAInjFcA1pTjeGXBPMAmN9dyhftkWze3K/V2u1K3NVMbty8sF1WM16QQclbbPXRQ3rVPqeeS69Vr0aXq9ubvLAfHZvc+Ojj229r77RXaf02j2k/8uquCYyn7ciXZBMdS6YwrAKUp16Wg7NRNjuemRXsBACh13mJ3AMinTKfIRa/nD1PkyqFT4O3tV4dOgTcTToG3Ipu6remMGZ3++uh9RX9H9P/rJ7lj3BTjNSmkdK9P82LT0im/RutH8gWWyLf6MRlt9s5uaT/6FAX9ExQ64euSr0f2D6AEZFs7WUp83caMdkfdbQClb3KDR6eNtX9WRl2tkfBeZrVu8pt/N/XaysT7ik704O90AACKz7nfiIEuYtEiFFJLwFTjoshlO/tV/H7auMj+bFe7M4SSgy6p88XirCwS5kTFek0KLfn1yRgch0OqWPesejz6HfV6+Gvq9vpCy8Gx2a2XDtZcp33XP662ic0Kjby87INjqbwWbARQPrp6VoadUj7JwXEUf6cDAOAM1Dx2CWoe2+PERYtQ+vKxwIxVduq2xi8SZme2Y/wiYVNuqHBF3ahiviaFlqm2u7F7s3xvPSLvW8vk2bvV1v22DxihYM1Ehb5widStVy67XFKcumBjOdZ4A9yqVMar1brJyZ+5Z4xT2iDZTZ/FKB+lMl6BclCO4zXXNY8pW4GSY/UUOSn1VHz+MEVX2Nmvch1S2gmfcnU6qhsU8zUppHS13XfvCuvFxpd1Ub8lqnj/BRlm2PL9mRXdFfrCJQr6Jyh85BjJcMfzUEy5qJ0MAKUgckaGGTtQbeczN3r92FOlN1ZFfsbf6QAAFBfhMUqK3UWLJAJk5JaV/coJIWU5BV1ueU2yldz3IYd/rvP7/kHXHLtMg3d8LNk4cSXcb5iC/gkKjrxM6tEnD70FgFROnbmP7GU6UN3ZInrRA9Xxt+PvdAAAiofwGCWDRYvgFJnCSjeHlG5Wqq/Job6bGnv46/r+BUs1/OCfZYSDlu/D9PgUOuGrkVnGg09nljFyjmAQmZT6wqblzG5wnNyOiR4AADgDNY9dgprH1sTXcs3uC4j4AoKcSf6CVFXVyWJmLuLWulGl9Jo0NZv6fWOrvjn4SV1z3BINO+x9W+3DfQYrOGa8QqOvkll5eJ56iWIr9ljlcxmZWK2Nmyz5vfyB+4ySONBQ7PGab7zeKCWlPl6BUlKO45Wax0AG5VTLFc6XPGPGrSFlKSmJ18Q09adFAR359yX601f/qJ7e/ZabhuVReNh5CvonqP24sySDUA750xKI1DyV7M0YjA+KGhcpq891uEON39D0qfZmlqabucr+4Q5WaiGnE//Z3VDP3+sAABQaM49dgpnHgHtdfFk4IaSsqpJWLHd3aOf28ZrpNXHsKfYH98q79intfnGxBoTesdV0a9tAPbbxGj324dW66ltHuSMkR04Ue6zaLQvj5jIyyJ7V173U949ij9dCceznLGBDuYxXoBSU43jN9cxjd6cXQBlpCWT3BpdtO+RGU7OZEFJKkdmuTc28LsWS6TVZ2BjWzFmm7denqTlyKu7CxnAOexrh2fauuj93l3rNP1c9nv13W8Fx6Niz1XbZ/frDcc/qwXdnauv+I/XgfJP3hRLi9M+GulpD06ceCnsenN/x+Cr1YBAds7KfsH+UjnJatBcAgFJA2QrABVhMxp0y1ddl0ZfisPKaxF8u2in2oQPyvve0fIElqvjkTVtNzZ59FRx1lYL+8TKrh0iSJg2XTMPklN8S45bPBiuLXhEMolQXNgUAAHA7wmPA4agZ6U4dfdGNv54AubCsvCbxilF709jxgXyBpfKt/oOM/TtttW0fdJqCNRMVGv5Vydst5efUdi8tbvtsIBiEFen2k+bFpjvr0wMAAJQIwmPA4VhMxn0yBSFWZuAh9+y8JvEyvT45C7zag6pY/7x8LYvl/ej/bDU1ux+m4MgrIrOMDx/e6e15Hygd2X02hIv62UAwCCtKYmFTAACAEkJ4DLiAncCRGVzF1dHzH7/Ii53Xk8Vhus7KmLAbIOdinBm7Nsn31jJ5335Unr2f2WrbfsQYBWsmKHTSxZKvp622KB123ksWPNymeQ8V/7OBYBBW1NUaKQcWqqo40AoAAFAMFEEFXILFZJyvo+c/3SJsVl/PfC3CVi7sjInk1yRe/OvTpXEWblfF+y+qxx+mq3LBV9XttYcsB8emt6eCY67VvkmPqG3SUoVGX01wDEvvJQsebtO9c/bFtov92VBXa6iqKvE6gkHEY7FZAAAA52DmMeAi1Ix0rpZAxzOOO6pLmu71jNakpWZ113X0mmTS2QzkbE+xN/ZslXf1Y/IFlsqz+1OLjyCi/fATIrWMR1wqdT/MVluUh8yfDWHNe8g5wbGUORgsdt9QfCw2CwAA4CzMPAZcJt0ss4svS61jyRerSHhYqHY1fkMN9ZHL8c9/pC5px7MC41/PhvrU4Dh6fwTH9nX0mnQm+TWJf/1sBcdmWBUbX1WPJ29W5YIL1P3lOZaDY7Oim4IjLtW+Cb9X27eeUOjkWkcHx4Uca0ivo8+G+FIVM6YV/7MhXTAYlW7WNMpLus+/Fcs9nc6uBwAAQP4Ypmny15cL7Nixo9hdyDvDMFRdXS1Jam1tFbtmZslfsKIIjiMWNobVuMj+8xF9XhvqpckN9o+vdVSjuLOZ4dF2bplB7qbxmm3d6Ph2F18WTqm9uWJ5B/tH2w75Vj8uX2CJPK0f2vqd4eohCvonKjjqCqlnX9t9LoZijTWk19Fnwy03Veqaqw4Udax29P7mlvc95Fdn+0E57Cdu+mwFyh3jFXCPchyvffvm9rsk4bFLEB4jHVuBVhlpCURqBUdZ/YKZ/MX0gftyO+O3lL4Yl9N4tXSgxjTl+fTv8rUslve9p2W0H7R8/6ZRofbhFyjon6D2IV+UDPeMYaeOtXKX/NnQp4+hV/63X1HHaim9/yH3rL7+pb6flNNnK+B2jFfAPcpxvOY6PHbPN1QACVhMpmOdlYpIpxClIjItbFXqX4jdqrNT7Jc07Zb3783q+bsrVLm4Vr53llsOjsOHHaUDX5qlfd95XvsvnaP2Y7/kquBYcu5YK2fpPht27jS14OG24nRI1t7frCz8h9LUlYVN2U8AAADyjwXzABdiMZnOZVpAKlkhg9t0/cp2ETbkV6ZT7F9YvEbjj1usb3zylHpstR7KmTLUfvw5CtZMUPtx50ieinx0vaCcOtbKUabPhnvn7NP+/YYmXVfY59tuMChZ25dQGnKxsGn8YrMAAADIPXdNcQLAYjI2WJmhVIwwK7lfBMfOk3a/uHa/vG8/pu9oopZ85RpdfdwjqvRaC47Dlf11cNw07Zv8Z+2/8kG1Dz2vJILjKKeOtXLS0WfDjGmHnuN5D3X82ZCPRQ+zDQaT9yUWVixduVrYlOAYAAAgf6h57BLUPIZEzchsOXWRJjfXrC7l8Zq8X/zghvW68phl8q15XMaB3bbuK3TMFyOzjIedL1V0y3VXHcepY63UZXp+DcPQI491171z9qX9uZTfRQ9ZUBFW5GJh01JQyp+tQKlhvALuUY7jlQXzyhThMVhMpmsync4tFf55srQIm4OV6niNvi4+z0FdcNSfNeuLS3V08HVb92F276Pg6CsVHDNeZr/j89RT53LaWCt1nb3nR8fqgofb0gbIhVj0kGAQsKZUP1uBUsR4BdyjHMdrrsNjah4DLkDNyK5Lfl6cFBxTs9oZWgKmnmzaqFkjlumKIX9Qv+7bpaCN9ttP1rIN43XJbRdpzCk989dRh3PSWCt1dj4bptzQU/v3t2neQ6mfDdOn2vvMsLvoYbYBMMExAAAAUHycBwg4HDUjc6eu1lBVVeJ1VVWFDWqpWe1A4ZAq1j2rM/4xVU9deJFuOGFhJDi2wPRVKlgzUcsOf0z1f/29BlxweVkHx1FOGGulLrvPhtT3mpaAaalmdRRntwAAAADlhZnHgMNFFpMxbdeMjJ/9x2IyEU3NZsIsSCkyK7Kp2SxI+JEpdGHGeOEZu7fI99Yyed9+RJ49W2y1bR8wQsGaiQp94RKpWy99Q9LRp3CKfVSxx1o5yPVng5X3IIJjAAAAoPxQ89glqHkMN9SMdHIfi12HtdRqVrt2vJphVXz4inwti1Xx/osyzHbrTSu6K/SFixX0T1D4SL9kOO91cYJij7Vy09n7Z0djtaN2LHoIFI9rP1uBMsR4BdyjHMcrC+aVKcJjON3CxrDtGXDSoaCioV6a3JCfSjrFDkPs/h43hDSuG6/7tsv39qPyvbVMnp0f2Woa7jdUQf8EBUdeLvXok6cOloZijzWkymascgAAKA7XfbYCZYzxCrhHOY5XFswD4Dgtgcip05K9cgvxAUXjIum0sbmfgVzsUhHZ1qxO7teY0e4vPVLwmemmKc+m1+VrWSLvP/4kI2x99TvT41PohAsV9E9UePDpzDK2oNhjzamcfEZGR1j0EAAAAEAUC+YB6LIav/XFlqLSBU2FDI6j7CwUlY1IXdKOf39H4vtVCjWrFzaGNXOW/ee2qdnUzFmmFjaGrTfav0u+Vb9T5aJLVbn0W/K9+5Tl4DhcNUgHzr5V+77zvA5cco/Cx4wjOLbACWPNiQq63+cYix4CAAAAkJh5DCBH7MwsLMQp7HZ+R75nRU5u8GQ1q7qu1iiZGcd5n5lumvJsfku+wBJ5310hI7Tfcv9Mw6P2oecp6J+g9uPOkgyOq9rhpLHmJE4+I8MKFj0EAAAAIBEeA8ghK8FQIYJjJ5aKyPZ+3B4cS9GZ6fYCQ8sz0w/ulXftU/IFlqhi6xpb/Qr3GqDQmGsVHHONzMOOstUWEU4ca06R1/0+zzLVPC7lwB8AAABAKsJjADmVKUAu1KJZkVIRpu0F/OL7XgqlIpwk1zPTPdvekzewWL53lss4uNdWX0LHnhWZZTz0K1KFz1ZbJGKsZea0MzKssLLoIQEyAAAAUD4MsxyWGSwBO3bsKHYX8q4cV8AsZZlmrkmZg5FcLTDlxoWq3CLb8dpZQJbx56ED8r73dGSW8Sdv2uqv2bOvgqOuUtA/Xmb1EFtt0TnGWmZd2u+7yM5YLWY/AfC3MOAmjFfAPcpxvPbt2zen98fMYwB5kTzjzmpwvLAx/M9ZjPZmtUVDjYZ6U5MbIjVr3VAqotxCt2xmphs7NsgXWCrf6sdk7N9p6/e1DxqroH+iQid8TfJ2y9GjQDI3jLVicsIZGZ2xuuihVB41qwEAAABEMPPYJZh57F7lFg4mu/iycEJwXFUlrViefkGyloCpmbPshyi/vCesJ5Yf2n7gPmt1Qov9HB8Kyu2FRYeCcsWC8kLr6njtbGb6jd8J6frTX5AvsFjejf9n677Nbr0VHHmFQv7xCvc/wVbbQij394Ry1pUzMrJlZazaDbCdEngDpaZU/xYGShHjFXCPchyvuZ55zJLyQB4tbAxr5ixTTc32g7WZs0wtbAznqWeF0dRsJgQjUiQo6ej5iCwwdSiAeHB+58/dTbcmBsdWF5gq9nPcEojUiZWsPc6o+NCmcVHkftyorjbxtY7uJ0f2/EQLr7tPU/ZcoJ7/c7Ot4Lj9iDHa/7WfaO+0l3Tw/B86Mjgu9/eEctfRfi8VL4DNdtHD5Pdqt74XAQAAAMiM8BjIk3IPB9PNsIvK9HykCyU6uu0v7wnrjVWHts8YZ+30aSc8x9kE5elm+7l5JmpdraGqKsmjdn154EuaM+5GPXXh1zV270Py7P3M0n2Y3p4Kjr5G+yY9orZJSxUafbXkq8xzz7NT7u8JiIju9/GqqopX+iGy6GHkst1FD6PvYaW86CEAAABQ7qh5DORJJBy0VxuyVMLBjk5pjr8+0/Nhpa5mU7OZMONYkl5bGbneLc+xnfqhpXia+KO/26rxRzyqq8Yt09GVn9pq2374cIVqJio44jKp+2F56mFulfN7Ag7JdEZGscb05AaPThtrvyxKXa2hMaMJjgEAAIBSRngM5FE5hoOZHoed58POAlNnjIsEx53dpxOfY6tBudP6nTXTVMVH/6dPnlys2rbn5RsRst60wqfQiRcp6J+o8NGnSIb7noNyfE/AIZlqHhd78TkWPQQKg7r3AADAbShbAeSZlTIMpRISWXkcdspSpLvtxZeFU37H3b/wuPo5zvScOLnftrTtkO+N36rytxer5yM3aNiBP8nnsRYch6uH6MA5/6q9U1/SgW/8QuFBp7oyOI4qp/cEHJLuNV2xvPP3LuRetqVfKBmDrqLuPQAAcCNmHgMFYGcWrVtDIjuPoyszkDtaYMrtz3G6/jcvNh2xoFbWTFOeT/8uX8tied97Wkb7QctNQ+EKvbD5fO0fNUHnfftMySitY51u319hT67OyEDXLWwMq3GRNH2qvec4+ho21Jua3FBa70cojOS691J26zRkU2IGAACgKwzTNJlG4QI7duwodhfyzjAMVVdXS5JaW1tVirtmplOWJfeGRC2ByIyYKKuPI/n5eOC+juu5XnxZOOG5qqqSVixP/QLv9uc4uf9RTut3xvF6YI+8a5+Ur2WJKj5719b9hnsfqdd1rX746FXadmCgJOc99lxy+/6Kzlk9GJCvgwbl8NlqVSE+q4BMOhvnyeP1d79PPduKzwTAGfh8BdyjHMdr3759c3p/TJ0ACij5dPVSCYlq/IYa6iOX7TyO+Oejob7j2pmZFpjKdJ/R20W54TmuqzVUVZV4XVWVO2YherauUfc//7t6zT9XPZ77fy0Hx6YMhY4/R22Xz9W+KX/WyKk36ur6I2I/L+VT+d2+vyIzu2dkUMIivyKLVtp7jlm0ErlkZ5w3NRMcAwAAZ2DmsUsw87i0WJ1F6zb5WAQm25mZbn2O3Tbz2Dy4T3tX/re8LUtUsTlg6z7ClYcrNPoaBcdcK7PPoJSfl9NsP7fur+iYU2a5ltNnq1XFng0OdLRvRcfrgofbdO+cfSk/B+AcfL4C7lGO45WZx4DL2ZlF6zbZBhxWg2OrC0y59TlOF5RHOW0WovH5erWvuEOhX56i7s/80FZwHDrmDLV9817t+87zOnj2zWmDY8n6zHS3c+v+iszyfUYGsseilSi2TPsgwTEAAHAaZh67BDOPSwP1Ta3r7It7Rz9363Ns9fEUtf+hg/Ku+7N8gSWq+Phvtpqa3fvokyOuUPX542X2G2qrbbYz2t3ArfsrrMvHGRl2lMNna7Zc8b6LksZnAOBefL4C7lGO4zXXM48Jj12C8Nj9+JJqXbanFJ8xTnptpVLaOf05zjYoLxSj9SP53loq79uPydO23Vbb9qNOVrBmgkInXCT5euSph+7EewIKodQ/W7uK8A7F1lG5qhnTDE26jn0PcCo+XwH3KMfxmuvw2JvTewMKqNizuezIFAZF/4/+PPp/uX5ZtbvAlHToOUsXHKe7nZOeYyuPtyj9D4dU8f5LkVnGG/4qQ9Y/YE1fpUIjLlWwZqLCA76Qvz66GO8JgDMkjzeCYxRaXa2h5sWJ5Yv69DFUV+spiy+3AADA+ah5DFda2BjWzFn2a8A2NUcWMFrYGM5Tz9L/TivhoN0V4EtRS8D+jMu6WkNnjEu87vJLU4M2Jz7HdoPyQvTf2L1FvlcfUOWCC9Vz+Xfl3fAXy8Fx+4AvaP+Fs7V32v/qwIWzCY47wHsC4Cx1tUZCjXkpMgOZ4BiFkK7u/c6dppqaC/e3KgAAQCbMPIbrtARMNS6KXLYzIy8+sGlcJJ02Nv8zkLsyi7YcZxtGFpiKvL5WZ3w1NZsJM47Hnir9623pj4s56TnONiiXEvs/ZnQOFtQyw6r48BX5Whar4v0XZZjt1tt6eyh40jcU9E9Q+Ei/ZJTP/poN3hMA58m0aCXjDfmUqWzKvIdMmSbv+QAAoPiYeQzXqfHbn5GXLrDJd3CcbTiY/NhaAuU123Byg0cP3GctOE5+ji+/VJpzT+a3Nac8x5GgPHLZzqnR8f1vqO9icLxvu3x/W6DKhy9Sz8e+I+/65ywHx+G+x8vzjf9X3n/7uw5e9DOFj6ohOO4E7wmA86QL76KY8Y98Sve36R+frNAtN1XGrmMfBAAATsDMY7iSnRl5xVp8KptZtFLiY+tyOOhSVh+z25/jyQ2erGbA19Ua2c84Nk15Nr0uX8sSedf9SUZ70HpTj0+hEy5UyD9R4WPGqTpahP9Aq/1+lCG3769AqbGyaCUz/pEPmf42nXJDT0nSvXP2SWIfBAAAxWeYrMTgCjt27Ch2F/IumxUwOwuGcxEcd3WBPTct7OdWPMcW7N8l35on5AsskWf7eltNw1WDFPRPUGjUlTJ79ZdUnivW5gr7KwqJsZpeIf5+ANLJtG/Fj9dfz92ueQ+xDwJOxecr4B7lOF77Rid65Qgzj+FqmWYgJ/9xno3ofTTUm5rckF2Vl2zDHkIi63iOO2Ca8mx5W76WxfK+u0JGaL/1poZH7UO/oqB/gtqPPUvyVNj61QSkHWN/BYrL6qKVEjXHkVv26t57ZJph9kEAAFB0hMdwvXRf8JoXpy5+E38bpy6wB+TEwb3yrn1KvsASVWxdY6tpuNcAhcZcq+CYa2QedlRWv35hY/ifpRnsfcnNxcEaAMiERStRLI5aKBcAAMAGwmOUhOQ/ruOD4+hiU3a+/BVjgT2gqzzb3pM3sES+d5bLOLjHVtvQsV9S0D9R7UO/IlX4su5DSyBS01fiYA0AZyG8QzFR9x4AALgV4TFKRl2tkTLjuKoqMbhy8gJ7QFZCB+R975nILONPVtlqavaoVnD0VQqOGS+z77E56U6N39D0qRysAeA8hHcotqIslAsAANBFhMcoGU3NqaUqdu2KXF9Xa1g6/ZTgGG5h7NggX2CpfKsfk7F/p6227YPGKuifqNAJX5O83XLeNzunejPmABQS4R2Kjbr3AADAbQiPURKSA6iqqkOlK+KDKzsL7BFiwXHag6pY/4J8gcXybnzVVlOzW28FR16ukH+Cwv1PyFMHD+FgDQCnIrwDAAAArCM8hut1FEDFX99ZgJxc7oIQC05i7PpEvreWyfv2I/Ls/cxW2/YjRivon6DQFy6WfJV56mF6HKwBAAAAAMDdCI/hapkCqEzBVWcL7JVbiNUSyG5xsmzbwYJwuyo2/CVSy/iD/5Vhhi03Nb09FfrCJQr6Jyh85Og8drJzHKwBAAAAAMC9CI/hWlZmLnYWIHe2wF45WNgY/ufiQfYee/T5b6g3NbnBk8celhdj7zZ5335MvreWyrPrE1tt2w8frlDNRAVHXCZ1PyxPPbSPgzUAAAAAALgT4TFcyc4p7x0FyJIyLrBXDloCkVXnpcyLmiWLf/4bFymrxYcQxzRV8dFr8gaWyLvuWRnhkPWmFT6FTrhIwZoJCh99qmQ483XgYA0AAAAAAO5DeAzXaQnYr5WaKUCWOl5gr9TV+A1Nn5p5UbNk6YJ7guMste2Qb80T8gWWyLNjg62m4T5DFKyZoOCoK6WeffPTvxxqajbL/mANAAAAAABuQ3gM16nxG2qoN/9ZasH6Ke/JAXJUZwvslbpMpT2SschZDpimPJ/+Xb7AEnnf/aOM9oPWmxoVah92voI1E9U+5IuS4Y5yIcn7TbkerAEAAAAAwG0Ij+FKkxs8OSmVYHWBvVJn5bETHHfRgT3yrn1SvpYlqvjsXVtNw72PVNB/rUKjr5HZe2CeOpgfHe035XqwBgAAAAAANyE8hmvZDY67usBeqcv02AmOs+fZuka+liXyrv0fGcF9ltuZMtR+3NkK1lyn9uO/LHnc93adab8p57EGAAAAAIBbuC+NALKQiwX2yiHUSvfYkxc5Izi2INgm73tPy9eyWBWbA7aahisPV2j01QqOuVZmn8F56mD+cbAGAAAAAAD3IzxGycvVAntjRtuf7exGyY+d4Ng64/P18gWWyLfmCRkHdnXeIE7omDMU8k9QaPgFUkW3PPWwMDhYAwAAAABAaSA8RsnLxQJ7DfXlERxH1dUaKTOOq6oI9NJqPyjvumflbVki78crbTU1u/dRcNQVCvrHy+w3NE8dLCwO1gAAAAAAUDoIj1EWsl1gr67WKMsQq6k5MTiWIjOQm5pNAuR/MnZ+LF9gqbxvPypP23ZbbduPqlHQP1GhEy+SfD3y1MPi4GANAAAAAAClg/AYZSPbMKrcQqzkkgNVVYdKV5R9SYFwSBXvvyRfYIkqNvxVhszO2/yT6atUaMSlCvonKDxwRB47WXwcrAEAAAAAoDQQHgOI6ahWbfz15RggG7u3yPv2I/K99Yg8ezbbats+4AsK1kxU6AvflLr1ylMPnSefB2taAvaD6a60AwAAAACgXBEeA5CUeZGzslzUzAyr4sNX5QssVsX6F2SY7dabVnRX6KRvRGYZH1UjGSX8PBXYwsbwP0ti2Nv/ovt3Q72pyQ2ePPYQAAAAAIDSQXgMIGNwHFU2AfK+7fKtfky+wFJ5dn5kq2m47/EK1kxQcMTlUs/q/PSvjLUEIrWUJXv7X/z+3bhIWZXUAAAAAACgHBEeA2XOSnAcVbIBsmnKs+kN+QJL5P3HMzLag9abenwKnXChQv6Jah98OrOM86jGb2j6VHv7X7r9m+AYAAAAAABrCI+BMtYSsB4cR6ULkF27yNn+XfK9s1zewGJVfL7eVtNw1dEK+icoNOoqmb3656mDSGbnAIadAyMAAAAAACAV4TFQxmr8hhrqzX/WkLUerMUHeA317guOPZvfkq9lsbzvrpAR2m+5nWl41D70Kwr6J6j92LMkT0Uee4mOWAmQCY4BAAAAAOg6wmOgzE1u8GRVA7au1nDXjOPgPnnXPiVfYIkqtqy21TTca4BCo69RcMw1MquOzlMHYUemAJngGAAAAACA3CA8BpB1AOyG4Njz2XvytiyR753lMg7usdU2dOyXIrOMh54nVfjy1ENkK12A3LzY1K5dh25DcAwAAAAAQPYIjwGUntABed97JjLL+JNVtpqaPaoVHH2VgmPGy+x7bJ46iFxJDpAJjgEAAAAAyB3CYwAlw9ixQb7AMvlWPyZjf6uttu2DxkYWwDvha5K3e346iLyoqzVSZhxXVaVfRA8AAAAAAFhHeAzA3dqDqlj/gnyBxfJufNVWU7NbbwVHXq6Qf7zC/U/MUwdL2xurgho21H67loD9OtsdaWpODI6lyAzkpmaTABkAAAAAgC4gPAbgSsauT+R7a5m8bz8iz97PbLVtP2KUgv6JCn3hYslXmacelr4H5u3T3AfbNGOaoUnXWQ9powvaNdSbmtzg6VIfkhfHq6o6VLoifhE9AMi1bA+C5fLgGQAAAJBvXfvWDgCFFG5XxfsvqcfjN6py4VfV7bUHLQfHpreHgqOv1r7aZWqb9IhCY64hOO6CloCpuQ+2SZLmPWSqqdnspEVEfNjbuChyP9lKDo6nTzW0YrlH06ceCmUenG+9bwBg1cLGsGbOsv/+0tRsauYsUwsbw3nqGQAAAJBbzDwG4HjG3m3yvv2YfG8tlWfXJ7bath8+XCH/RAVHXCr1qMpTD8tPjd/QLTdV6t45+yRZm+WbLuzNdvZduvuK/u7kRfSYgQwgl1oCphoXRS7beX9JPnh22lhmIAMAAMD5CI8BOJNpquKjlfIGFsu77lkZ4ZD1phU+hU64SMGaCQoffapk8OU8H6bc0FOSLAXImcJeu6zcFwEygHyp8RuaPtXe+0suD54BAAAAhUR4DMBZ2lrlW/O4fIEl8uzYYKtpuM8QBf3jFRx1pVTZLz/9Q4IpN/TU/v1tmvdQxyFKoYPjKAJkAPli5/0ll++BAAAAQKERHgMoPtOU59O/yxdYIu+7f5TRftB6U6NC7cPOV7BmgtqHnCkZlHIvtLpaj0wznDZEyWVo0hKwf1/pAp4xo8WMPwBdZiVAJjgGAACA2xEeAyieg3vlfedJ+QJLVLFtra2m4d5HKui/VqHR18jsPTBPHYRV6UKU5sWmdu06dJuuhiY1fkMN9ZFao3buK75vDfUExwByJ1OATHAMAACAUmCYpsky9C6wY8eOYnch7wzDUHV1tSSptbVV7Jqly7P1ncgs43eelBHcZ7mdKUPtx52tYM1EtR9/juTh+FexdDRek8OSqFyGJi2B7BaZyrYd4GZ8thZG8ntfVZVyevAM5YHxCrgH4xVwj3Icr3379s3p/ZG8ACiMYJu87z0tX8tiVWwO2GoarjxcodFXKzjmWpl9Buepg8iFulojZcZxVVVu6wxnGwATHAPIl+QZyATHAAAAKBWExwDyytj+vnyBJfKtflzGgV2dN4gTOuYMhfwTFBp+gVTRLU89RC41NScGx1IkRGlqNglPAJS0Qhw8AwAAAAqN8BhA7rUflHfds/K2LJH345W2mprdqxQcdYWC/gky+w1NexvKDzhTptO20y0kBQClhINnAAAAKEWEx0CRlGLdVmPnx/IFlsq7+jF59n1uq237UTUK+icqdOJFkq9Hh7eLBpQN9aYmN3i62mXkSEcLQ8VfT4AMoFRx8AwAAACliuQFKIKFjWHNnGWqqdleofamZlMzZ5la2BjOU8+yEA6pYv3z6vHYVFUu/Jq6/e03loPjfaGeWrZhvJYd/ojarlus0KgrLAXHktS4KBKko/iamsNpg2MpEpZMn3ooMHlwvv39HgCcLN3BsxXLPbz3AQAAoCQw8xgosJaAqcZFkct2ZiMlB6enjS3uDGRj9xZ5335EvrcekWfPZltt2/ufpJcPTtAPFl+ivaHeUkD63Jf5tN50X86dOgO7nCx4uE3zHkofHEclLyTFLDwApaKjsy4k3vsAAABQGgiPgQKr8RuaPtXel0nHBKdmWBUfvipfYLEq1r8gw2y33rSiu0InfUNB/wSFj6rRqYah6yutlTTI9OUcxbPg4TbdO2dfbDvT60KIAqDUWPls4r0PAAAAbkd4DBSBnS+TjghO922Xb/Uf5AsslWfnRltNw32PU9A/QcGRV0g9qxN+ZuV5cMTjR4qWgGk5OI5K93qPGS1mkANwHTufTQTIAAAAcDPCY6BIHB+cmqY8m96QL7BE3n88I6M9aL2px6vQ8AsV8k9U+zHjJKPjPmd6HgiOnavGb+jG6T0198E2zZhmaNJ11l6X+Ne7oZ7gGID7tATsfzZx8AwAAABuZZimyeodLrBjx45idyHvDMNQdXW1JKm1tVXlsmt2FJAWLTg9sFu+NcvlDSxWxefrbDUNVx2toH+CQqOulNlrgK22mVaqlwiOnSY6Xt9YFdSwoXttj9eWQHFrdgPlolw/W/NtYWNYjYvsfzZFP+sa6qXJDaxbjUSMV8A9GK+Ae5TjeO3bt29O74/w2CUIj0ubE4JTz+a35QsslnftChmhNsvtTMOj9uPPVdA/Qe3HnS15KrLuQ/LzEEVw7DzlPF4BN2Gs5k+2B8E4eIaOMF4B92C8Au5RjuM11+ExZSsAB0g+nbVgwXFwn7xrn5IvsEQVW1bbahruNUCh0dcoOOYamVVH56Q7dbWGmhebCY+/qoq6kAAA58k2ACY4BgAAgJsQHgMOUcjg1PPZe/K2LJHvneUyDu6x1TZ07Jcis4yHnidV+HLar6bmxMcvRYL0pmaTABkAAAAAAKDACI8Bh8h7cBo6IO8//hSZZbzpDVtNzR7VCo66SkH/tTL7Htf1vqSRqXQHK9MDAAAAAAAUHuEx4AD5DE6NHRvkCyyTb/VjMva32mrbPmhsZAG8E74mebtn9futsLJoIAEyAAAAAABAYREeA0WWl+C0PaiK91+Qr2WxvBtftdUfs1tvBUderpB/vML9T7TVNhsdPX4ptRY0ATIAAAAAAEDhEB4DRZTr4NTY/al8gWXyvv2IPHu32epL+8CRCtZMVOiki6VuvWy1zVamxx9FgAwAAAAAAFAchMdAkeQsOA23q2LDXyO1jD94SYYZttwH09tDoS9coqB/osJHjs72oWTFyuOPIkAGAAAAAAAoPMJjoAhyEZxef/nn8q5+TL7AUnl2bbL1+9sPH6aQf6KCIy6TelRl8xC6pCVg/fFHpXsexoyWavwEyAAAAAAAAPlAeAwUWNeC07BOO3yljn9jqXpueVYeM2T595oVPoVO+LqC/gkKDxorGcULXWv8hhrqTTUusvb4o+ID5IZ6gmMAAAAAAIB8IjwGCiyr4LStVQ0nPa4JVy5V3/YPIteZmZtEhfsMUdA/XsFRV0qV/bLveI5NbvDotLGm7QC4rtZgxjEAAAAAAEABEB4DRWApODVNeT5tkS+wWN53n5bRfkDdLd6/aVSofdh5Cvonqv3YMyXDk5N+51q2ATDBMQAAAAAAQP4RHgNF0mEAenCvvO88GVkAb9taW/cZ7n2EgmOuVWj0NTIPOyIHvQQAAAAAAEC5IjwGcqQlYL8EQ3w7z7a18rUslvedJ2UE91lub8pQ+3FnK1gzUe3HnyN5GNYAAAAAAADoOlImIAcWNob/WcNYlhd/k6T//n2bNj79Rw09bamOam+x9TvDPfspNPpqBcdcK7P6GLtdBgAAAAAAADIiPAa6qCUQWfxOkh6cH1nFrrMA2dj+vtYvXaIJrY+r6pRdUrv13xcaPE6hmgkKDb9QquiWbbcBAAAAAACAjAiPgS6q8RuaPvVQcNxhgNx+UN51z8nbsljej1fKL0kWs1+ze5WCo65QcMx4mYcPy13nAQAAAAAAgA4QHgM5EA2K0wXIxs6P5XtrmbxvPyrPvs9t3W/7kX4FayYqdOJFkq9nbjsNAAAAAAAAZEB4DORIfIBcYYT0zhP/q+3bl+qYg3+VIdPy/Zi+SoVGXKqgf7zCA0fmq7sAAAAAAABARoTHQA5df9k2jd2zTMdse0RH9twsHbTetr3/iZFZxl+4VOreO3+dBAAAAAAAACwgPAa6ygyrYuOr8rUsUcX653W62S5ZrDBhVnRT6KRvKOifoPBRJ0tG5oX2AAAAAAAAgEIhPAaytW+7fKv/IF9gqTw7N9pqGu57nIL+CQqOvELqWZ2X7gEAAAAAAABdQXgM2GGa8nyySr6WxfL+4xkZ7UHLTYNhr/7y2QU688aJaj/mDGYZAwAAAAAAwNEIjwErDuyWb81yeQOLVfH5OltNP9l3tB798Fo9vvFKfX5ggKb7jdjiegAAAAAAAIBTER4DGXg2vy1fYLG8a1fICLVZbheWR/+7+Rw9smGCXtl6lnpXVWjXgcjPHpxvShIBMgAAAAAAAByN8BhlryVgqsYfF+QG98m7doV8gcWq2LLa1n2Fe/XXm7pGP3z8am1uO1qSNH1qZKZxU7MZC44JkAEAAAAAAOB0hMcoawsbw2pcJE2fKn3ra/+QN7BUvjVPyDi4x9b9hIacqaB/on73t69o7m8ODatocCwdCooJkJ0r5UBCntsBAAAAAAA4GeExylZLwFTT7w7q4kF/0rjVS1S5eZWt9jsOVGv5R1dq9Leu1UlfPD4ys/g3Zuzn8cFxFAGyc8UfSLDzekRnlDfUm5rc4MljDwEAAAAAAAqL8BhlydjxoU5vXar/vfQP6mnusNX2zc9P0bIPJ+jZT76mG6b00ElfTCxJIaUPjqMIkJ2nJWCqcVHksp3XI/51b1wknTaWGcgAAAAAAKB0EB5nYe/evVqzZo0CgYACgYDeeustbdq0KfbzQYMG6fnnny9iD5FWe1AV778gX2CJvB++Yqup2a2XVnsv1+ynrtW63SdKOhQQtwSsB8dR6QLkMaNF8FgkNX5D06faC/TTHTDg9QMAAAAAAKWE8NiGxsZGPfbYY1q3bp3C4XCxuwOLjN2fyhdYJu/bj8izd5uttu0DRypYM1FNLd/QrxdUxq6PD4hr/IYa6s1/ljzoPDiOig+QG+oJjovNzoxwOzPNAQAAAAAA3Irw2Ia//e1veu+994rdDVgRblfFhy/LF1iiivdflGFaD/vbQj309KaLFT51gr5e548EhQsyB4WTGzxZlSyoqzWYcewgVgJkgmMAAAAAAFAuCI+7qLKyUqNGjdLq1au1b9++Ynen7Bl7P5N39WPyBZbKs2tT5w3itB8+TK8enKAfLLlUu0NVUos059Gwdu06dJtMQWG2ATDBsbNkCpAJjgurJZBdDels2wEAAAAAgESExzZ0795dfr9fY8aM0ejRozVmzBgNGzZMHo9H559/PuFxsZimKj7+m7wt/y3vuudkhIPWm3p8Cp3wNQVrJio8aKxONgxN6nUoILQaHKO0pAuQmxeb7A8FtLAx/M9SMPYWk4wG/A31piY3ePLYQwAAAAAASh/hsQ333ntvsbuAeG2t8r3zhHwtS+TZ8YGtpuE+xyjoH6/QqCtlVh6e8LO6WiMlKKyqshdgwf2SA2SC48JpCURqiEvWFi+Mip8Z3rhIWZWSAQAAAAAAhxAew11MU55PW+QLLJH33T/KaD9gvalRofZh5ynon6j2Y8+UjPSzEpuaE4NjKRIcNjWbBIZlhgMJxVHjNzR9qrXFC6PSlRQhOAYAAAAAoGsIj+EOB/fK+86TkQXwtq211TTc+wgFx1yr0OhrZB52RMbbJgdQVVWHZpzamQGJ0sCBhOKxsnhhFLWoD6FONAAAAAAglygICUfzbFur7s/OVq+HzlGP5+6yHBybMhQ67stqu+zX2jflWQXPnGk7OJ4+1dCK5R5Nn3ooUHlwvqmmZjNdc5SYdAcSoh6cb+qX94Szut+WAPuPVXW1Rqfjj+D4kIWNYc2cZf89qqnZ1MxZphY2ZrdPAwAAAABKFzOP4ThmsE3e1X+Qt2WxKj5tsdU23LOfQqOvVnDMtTKrj7HcLlMAZWcGJEpDR/tD/PVPLJc2bw7r7l9YPwbHYm72ZRp/BMeHUCcaAAAAAJAPhMdwDGPHh2p/5R6F/75U3dtabbVtH3y6gv4JCg3/quTtZqutlQCKALl8dHYg4dPNpp5YHvnZayul2/7NWoBMSJe9dOMvuRZ1OQfHEnWiAQAAAAD5QXjsEoZR2l/oK9Y+pe7P/D8Kh2wsgNe9SqFRVyjonyDz8GGSJLvPUlNzOCE8mTHNUF1t+iDw+kmGDCOseQ8dCmcMQx3eHu5jZX/4t9sqtGVLu/7vtcj2ayul790e1t2/qLB1vyfXuHu/iX9PKsT7U/L4iw+OM43bcmLnPcrOex/crdBjFUD2GK+AezBeAfdgvHadYZomBThz4Pzzz9emTZskSYMGDdLzzz9f5B65hxlsU+i/xkr7tlu6vTH4VHlO/5aM0ZfJ6FaZ9e99Y1VQ32o4lEDdclOlptzQs9N2Cx5u071z9sW2/7/GKo091Zd1P+AMya9rZ/vDtBt36a8vB2PbZ5/l00Nzq1JuZ/d+kdmXztmunTsPfWz16WPolf/tV8QeOU9n+xz7JAAAAADAKqYZofj2bOs8OO5WKc9p18s748/yTlshz6kTuxQcS9LYU326cXokMLETnky5oaduuSnyu2+c3pPguAS8sSpoO0x7aG6Vzj7r0Gv/15eDuuvHexJu05WQ7o1Vwc5vlMN2brDg4baE4FiSdu40teDhtiL1yJni36Mk6d45+2LPEcExAAAAAMAOZh7nSL5nHre2tub0/hwlHFLP35wvz56tqT/qf6KCNdcpNOJSqXvvvPz6lkB2tWezbQdnWtgY1sO/NW2fvn/bvx0qYSEdOv2/qflQ+YD46/PZl+jvvOHbRt4X5DMMQ3369JEk7dy5U/n+KEl+PquqKF3RGZ4zSIUfqwCyx3gF3IPxCrhHOY7X6urqnN4f4XGO5Ds83rFjR07vz2k8m1apxx//TZ5dmyRvdwVPvEhB/wSFjzpZoiYNCiTbAwK/vDusJ548tJ0c0tlZzK0lYGrmrMwLOKaTvPjZA/fld/EzwzBiH0itra15/QDuaBFDK4tdlrvk5yiK56p8FHKsAugaxivgHoxXwD3Kcbz27ds3p/fHlCM4QnjQqWqb/Cd5b10p74/W6eA3fq7w0acQHKOgsg1b//U2j6ZPPdQ22+A42of4+3pwvqmm5swfbulC1FKZFZ8pIK6rtf9clZu6WkNVSaW4q6pEcAzLWgLZjals2wEAAABwFsJjOIenQkbfITIqqCEM98llSGcnFC3l2bdWHhsBcmZNzWbCwQwpcnCD5whWLGwMa+Ys+2OqqTlyBsXCxnCeegYAAACgUAiPASAHch3SWQlFyz04jiJATi/5OYw/uMFzhM60BEw1LopctrO/xO93jYuYgQwAAAC4HeExAHRRvkK6TKFoKQfHLQH7jy3dc5Xr0MpNp++n2z9WLPcQssMySugAAAAAkAiPAaBL8h3SpQtFL74sbDtcddPsvxq/oYb6yGU7oXj8c9VQn30N63TcdPo+daKRK5TQAQAAAOAtdgcAwK06C+kkxX4e/T/bGsjx92F3Qb5oPxvqTU1ucMcxw8kNHp021rQdANfVGhozOrfBcfLp+9Hf05nk0/ezeTx2Wa0TLeVm30Tps7K/EBwDAAAApcsdKQLgIE47dd1p/SkXhV7Mbczo1OusLMjn5vqj2QatuQ5o3XL6PnWikS/lWkIHAAAAAOExYIvTTl13Wn/KRTFCurfeTr2uswX5qD+aO04/fd+pdaJROnJVQgcAAACAuxAeAxY5beV5p/WnXBQjpEsOI+N19NozGzD3rATIxXrenVgnGqUneQzYLaFTaJyZAwAAAHQd4TFgkdNOXXdaf8pFoUO6dK9Z/Osupb72BMf54+TT9yc3ePTAffZ/Z12toQfuM1xTDxvFVVdrqKoq8TorJXQKjTNzAAAAgNwwTNNkeoVFmzZt0le/+tW0P2tvb0/YrqioSHu73/72txo3bpzt371jxw7bbdzGMAxVV1dLklpbW+XUXdNqQFSoIMlp/SkXLYHsFj+z0y7Ta5ZuNnI01CzE6+yW8Zovyc9/VZXzZ2GiPOV6rHZ0JoST9vmWQCQAjrLat+TH9sB9HGBFYZX7ZyvgJoxXwD3Kcbz27ds3p/fnzem9lTjTNFNC4o50dLty2ElLndNWnndaf8pFvhdz6+w1S37dky+na4PcSX7+CY5RDjIdNEn32VMskTNzMn8uJuPMHAAAACA9zlEFsuC0U9ed1h90jdXXLPl1j8frnH9uOX0fyIV070srlntysiBoPjh9kUsAAADALZh5bMPgwYP17rvvFrsbcIh0M36bF5tFm4HotP4gO3YX5KurNVJeZ0kaMzpfPURUU3Pq875rV+R6xhlKSaZw1crZL8XCmTkAAABA1zHzGOgCp60877T+wD67C/KlCzAl6a2389A5xKQ7fT/KSbMvga6yEq7ameVbaJyZAwAAAHQN4TGKoiWQ3ZfKbNvlk9NOXXdaf2Df5AaPHrjPWnBcqACzlMZsV7nt9H0gW3bCVbcFyBdfFiY4BgAAACwgPEbBLWwMa+Ys+18qm5ojq6cvbAznqWfZyXTqOv1BtjpbqKmQAWapjdmu6Oz0faeGZ4BddkvoSOnHgFMOIHFmDgAAAJAdwmMUVEvAVOOiyGU7wUp8YNO4yDmzGZ126rrT+oP8KGSAWWpjtivcfvo+YIfdEjpR8WOgob7zA2GFxJk5AAAAgH2ExyioGr/9YCVdYOOEL6NOO3Xdaf1BfhQ6wCylMdsVpXL6PmCH1RI6yepqDT1wn6HJDc76M5MzcwAAAAD7nPVXPcqCnWDFqYvZOO3Udaf1B/lRrAAz/X2lL0Xh1DHbFaV2+j5gR7YHfpx2wIgzcwAAAIDsEB6jKKyEUU4NoZx26rrT+oP8KHaAmXxf8x4yteDhtoTbOHXMdlUpnr4PlBPOzAEAAACy5y12B1C+ogFM9AvdvIdM9ejRpik39FRTszNXQbc781M69Pii/+fycTitP8ifSIAZqT9sN8CUIq93VwPM5H3o3jn7JEnXXFW6wXHU5AaPThtr2n7+6moNjRlNcAwUS2dn5kh8LgIAAACZGKZpMs3CBXbs2FHsLuRN8he7Pn0M7dzpvBCqJWBq5iz7/Up+fA/cl5v6r07rDwqjJWA/wOxKu3TSnf4dX0fUKWMWgGQYhqqrqyVJra2tKqc/+6we1Cr1g19wj3Ier4DbMF4B9yjH8dq3b9+c3h9lK1B0yafDOzE4lpx36rrT+oPCcEL90bpaQzOmHbo/gmMATsMilwAAAEBuMPPYJUp55nHUxZeFE0KoqippxXLnHd9wwsxPJ/cH5cEwDF18WTjhYI9TxyxQzspxpgVn5sCtynG8Am7FeAXcoxzHKzOPUZKams2E4FiKzGZ04swfJ8z8zMX98oUYXdHUnBgcS84dswDKC2fmAAAAALnDgnkoukw1j1m8BnCeTDWPGbMAnIBFLgEAAIDcYOYxiio5hLrlpkq98r/9EuqpUnsQcI50Y/aPT1ZQLxSA43BmDgAAANB1hMcomuQQasY0Q1Nu6ClJqqv1EEYBDpMuOD40ZllwCgAAAACAUkN4jKJIvwp64u5IGAU4R6aDPVGMWedqCWT3OmTbDgAAAABQGgiPUXDpg+P0p4gSRgHFZ+VgTxRj1nkWNoY1c5b916Gp2dTMWaYWNobz1DMAAAAAgNMRHqOgWgLWg+OodGEUs+GAwmDMultLwFTjoshlO0F+/AGDxkXMQAYAAACAckV4jIKq8RtqqI9cthJCRcWHUQ31LGYDFApj1t1q/PZngqebac7rBwAAAADlyTBNk+lELrBjx45idyGnWgJmShhhGIaqq6slSa2trUq3a6ZrByD/kseelfGarh2Kw2q5IDtlheAOVscqgOJjvALuwXgF3KMcx2vfvn1zen/MPEZRZBsmEUIBxcGYdTcrtagJjgEAAAAAyQiPAQAoA5kCZIJjAAAAAEA63mJ3AAAAFEY0EI4GxQ/ON9W82NSuXYduQ3AMAAAAAIhi5jEAAGUkeQYywTEAAAAAoCOExwAAlJm6WkNVVYnXVVWJ4BgAAAAAkIDwGACAMtPUnFiqQorMQE5eRA8AAAAAUN4IjwEAKCPJi+PFz0COX0QPAAAAAADCYwAAykRycDx9qqEVyz0JNZAJkAEAAAAAUYTHAACUgXTBcbTGcfIiegTIAAAAAACJ8BgAEKclkF1gmG07FEam4DiKABkAAAAAkIzwGAAgSVrYGNbMWfYDw6bmSLuFjeE89QxdYSU4jiJABgAAAADEIzwGAKglYKpxUeSyncBwwcNtmvdQ5LaNi5iB7DQtAevBcVS6AJnXFQAAAADKE+ExAEA1fvszThc83KZ75+yLbU+faqjGnzmYRGHV+A011EcuWwmOo+ID5IZ68boCAAAAQJnyFrsDAABniAaL0Zmq0f/TBY5NzWHNeygxOLYaTKKwJjd4dNpY03YAXFdraMxogmMAAAAAKGeExwCAGCsBcnIN3RnTDE26joDRybINgAmOAQAAAKC8ER4DABJkCpCTg+NbbqrUNVcdkGlSExcAAAAAgFJDeAwASJEuQG5ebGrXrkO3ueWmSk25oadaWw8Uo4sAAAAAACDPWDAPAJBW/KJpkhKC4xnTDE25oWcRegUAAAAAAAqF8BiO1xLI7nT4bNsBOKSu1lBVVeJ1VVVSXS0fHwAAAAAAlDq+/cPRFjaGNXOWqaZme0FwU7OpmbNMLWwM56lnQHloak4sVSFFZiA3NTO2AAAAAAAodYTHcKyWgKnGRZHLD863HiDHL+jVuIgZyEC2khfHi5+BPO8hUwsebitCrwAAAAAAQKEQHsOxavyJ9VatBMjJYdf0qYZq/EaGFgDSSTeWViz3JIzJe+fsI0AGAAAAAKCEER7D0ZIX7MoUIKcLu+pqCY6RijramWUaS8lj8t45+yhhAQAAAABAiSI8huNZCZAJjmEVdbQzszKW6moNzZh26Lp5D9l/PgEAAAAAgPMRHsMVMgXIBMewijramdkZS3W1Ht1yU2Vs287zCQAAAAAA3IHwGK6RLkC++LIwwTEso452x1oC9g/CTLmhZ0qAXKrBOgAAAAAA5YjwGK6SHCDv2nXoZwTHsII62unV+A011Ecu23mcU27oGSth0VCvkgzWAQAAAAAoV95idwCwq67WUPNiMyE4rqpSyYZ6yL3ovhINhqP/x+9D5RQcR01u8Oi0sabtALiu1qPRo8IExwAAAAAAlBhmHsN1mpoTg2MpMgOZequwgzra6WUbABMcAwAAAABQeph5DFdJDvWqqg6Vrkg3exTIJN0M5ORZ7eUUHAMAAAAAAMRj5jFcI91s0BXLPbYXQAPiUUcbAAAAAAAgPcJjuEKmMgJ2FkBDcbQEsns9sm1nV12toaqqxOuoow0AAAAAAMod4TEcz0r9WQJk51rYGNbMWfZfj6ZmUzNnmVrYGM5TzxJ/F3W0AQAAAAAAEhEew9HsLFxGgOw8LQFTjYsil+28HvGve+Oi/M5ATldHO4p9CAAAAAAAlDPCYzhWS8B6cByVLkAuVOkDpKrx2w/00x0wqPHnp3wEdbQBAAAAAAA6RngMx6rxG2qoj1y2s3BZfIDcUK+8BY+wxs6McDszzbuKOtoAAAAAAACZeYvdASCTyQ0enTbWtB0A19UaGjOa4NgpoqFsNKyN/h8fDDslOLbTZwAAAAAAgFLGzGM4XrYBMMGxs2Sazeu04NhKnwEAAAAAAEodM48BFEy62bzNi03t2nXoNvkMjrOtox3ta/R/ZrUDAAAAAIBywMxjAAWVPJu3UMGxRB1tAAAAAAAAO5h5DKDg6mqNlBnHVVWFqSdMHW0AAAAAAABrmHkMoOCamhODYykyA7lQ9YSpow0AAAAAANA5wmMABZW8YF1V1aGfsSAdAAAAAACAcxAeAyiY5OB4+lRDK5Z7EmogEyADAAAAAAA4A+ExgIJIFxxHaxwnL6JHgAwAAAAAAFB8hMcA8i5TcBxFgAwAAAAAAOAshMcAOtQSyC68jW9nJTiOIkAGAAAAAABwDsJjAGktbAxr5iz74W1Ts6mZs0wtbAyrJWA9OI5KFyBnG2IDAAAAAAAge4THAFK0BEw1LopctjP7N36WcbR9Q33kfyvBcVR8gNxQL9X4rbUDAAAAAABA7niL3QEAzlPjNzR9qmJBcPT/TOFvuvIUNf7Iv9PGmrYD4LpaQ2NGExwDAAAAAAAUCzOPAaRlp/5wZ3WNsw2ACY4BAAAAAACKh/AYQIesBMh2FsQDAAAAAACAexAeA8goU4BMcAwAAAAAAFC6qHkMoFPRQDi+BnLzYlO7dh26DcExAAAAAABAaWHmMQBLkmcgExwDAAAAAACUNsJjAJbV1Rqqqkq8rqpKBMcAAAAAAAAliPAYgGVNzYmlKqTIDOTkRfQAAAAAAADgfoTHACxJXhwvfgZy/CJ6AAAAAAAAKA2ExwA6lRwcT59qaMVyT0INZAJkAAAAAACA0kJ4DCCjdMFxtMZx8iJ6BMgAAAAAAAClg/AYQIcyBcdRBMgAAAAAAAClifAYQFpWguMoAmQAAAAAAIDSQ3gMIEVLwHpwHJUuQG4JECADAAAAAAC4FeExgBQ1fkMN9ZHLVoLjqPgAuaE+cj8AAAAAAABwJ2+xOwDAmSY3eHTaWNN2AFxXa2jMaIJjAAAAAAAAt2PmMYAOZRsAExwDAAAAAAC4H+ExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQDXaAmYBW0HAAAAAABQzgiPAbjCwsawZs4y1dRsLwhuajY1c5aphY3hPPUMAAAAAACgNBEeA3C8loCpxkWRyw/Otx4gNzWbenB+5LaNi5iBDAAAAAAAYAfhMQDHq/Ebmj7ViG1bCZDjg2NJmj7VUI3fyNACAAAAAAAA8QiPAbhCXa31ADldcFxXS3AMAAAAAABgB+ExANewEiATHAMAAAAAAOQG4TEAV8kUIBMcAwAAAAAA5I632B0AALuigXA0KH5wvqnmxaZ27Tp0G4JjAAAAAACArmHmMQBXSp6BTHAMAAAAAACQW4THAFyrrtZQVVXidVVVIjgGAAAAAADIAcJjAK7V1JxYqkKKzEBOXkQPAAAAAAAA9hEeA3Cl5MXx4mcgxy+iBwAAAAAAgOwQHgNwneTgePpUQyuWexJqIBMgAwAAAAAAdA3hMQBXSRccR2scJy+iR4AMAAAAAACQPcJjAK6RKTiOIkAGAAAAAADIDcJjAK5gJTiOIkAGAAAAAADoOsJjAI7XErAeHEelC5BbAgTIAAAAAAAAVhEeA3C8Gr+hhvrIZSvBcVR8gNxQH7kfAAAAAAAAWOMtdgcAwIrJDR6dNta0HQDX1RoaM5rgGAAAAAAAwC5mHgNwjWwDYIJjAAAAAAAA+wiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIj4EOtATMgrYDAAAAAAAAnITwGEhjYWNYM2eZamq2FwQ3NZuaOcvUwsZwnnoGAAAAAAAAFAbhMZCkJWCqcVHk8oPzrQfITc2mHpwfuW3jImYgAwAAAAAAwN0Ij4EkNX5D06casW0rAXJ8cCxJ06caqvEbGVoAAAAAAAAAzkZ4DKRRV2s9QE4XHNfVEhwDAAAAAADA3QiPgQ5YCZAJjgEAAAAAAFCqCI+BDDIFyATHAAAAAAAAKGXeYncAcLpoIBwNih+cb6p5salduw7dhuAYAAAAAAAApYaZx4AFyTOQCY4BAAAAAABQ6giPAYvqag1VVSVeV1UlgmMAAAAAAACUJMJjwKKm5sRSFVJkBnLyInoAAAAAAABAKSA8BixIXhwvfgZy/CJ6AAAAAAAAQKkgPAY6kRwcT59qaMVyT0INZAJkAAAAAAAAlBrCYyCDdMFxtMZx8iJ6BMgAAAAAAAAoJYTHQAcyBcdRBMgAAAAAAAAoVYTHQBpWguMoAmQAAAAAAACUIsJjIElLwHpwHJUuQG4JECADAAAAAADAvQiPgSQ1fkMN9ZHLVoLjqPgAuaE+cj8AAAAAAACAW3mL3QHAiSY3eHTaWNN2AFxXa2jMaIJjAAAAAAAAuB8zj4EOZBsAExwDAAAAAACgFBAeAwAAAAAAAABSEB4DAAAAAAAAAFIQHgMAAAAAAAAAUhAeAwAAAAAAAABSEB4DZaQlYBa0HQAAAAAAANyL8BgoEwsbw5o5y1RTs70guKnZ1MxZphY2hvPUMwAAAAAAADgR4TFQBloCphoXRS4/ON96gNzUbOrB+ZHbNi5iBjIAAAAAAEA5ITwGykCN39D0qUZs20qAHB8cS9L0qYZq/EaGFgAAAAAAACglhMdAmairtR4gpwuO62oJjgEAAAAAAMqJt9gdKAWtra1atWqVNm/erD179mjgwIEaPHiwTjnlFFVUVBS7e0BMNACOBsPR/+ODYYJjAAAAAAAASITHXfLBBx/o7rvv1osvvqhgMJjy8wEDBmjChAmaNm2aunXrVoQeAqkyBcgExwAAAAAAAIgyTNNkBawsPPHEE5o9e7b27dvX6W1Hjhyp+++/X4MHD8769+3YsSPrtm5hGIaqq6slRWZzs2vmV3JQXFUl7dp16OcEx8iE8Qq4A2MVcA/GK+AejFfAPcpxvPbt2zen98fM4yy89NJL+v73v69wOBy77rjjjtMZZ5yh6upqbdy4US+88IL2798vSVqzZo2mTZumJUuWqHfv3sXqNpAgeQYywTEAAAAAAADiER7btHXrVt1yyy2x4NgwDN1+++2qr6+Xx3No/cHt27frpptu0sqVKyVJ69at05133ql77rmnKP0G0qmrNdS82EwIjquqRHAMAAAAAAAAeTq/CeLNmzdPe/fujW3/y7/8ixoaGhKCY0nq16+fFixYoGHDhsWuW7FihdasWVOwvgKdaWpODI6lyAzkpubSP40DAAAAAAAAmREe2/DZZ59p2bJlse0hQ4Zo6tSpHd6+e/fuuuOOO2Lbpmlq3rx5ee0jYFW6msdRD843CZABAAAAAADKHOGxDc8995yCwWBse/z48fL5fBnbnHnmmRo6dGhs+6WXXrK0yB6QT8nB8fSphlYs92j61EPlKgiQAQAAAAAAyhvhsQ3PP/98wvZFF11kqd3Xv/712OUDBw7o5Zdfzmm/ADvSBcfRGsd1tQYBMgAAAAAAACQRHtvyxhtvxC73799fxxxzjKV2p5xySsL23/72t5z2C7AqU3AcRYAMAAAAAAAAifDYsi1btmj37t2x7REjRlhuO3LkyITt9evX56xfgFVWguMoAmQAAAAAAAAQHlv0/vvvJ2wfffTRltv2798/oTbyBx98kLN+AVa0BKwHx1HpAuSWAAEyAAAAAABAuSA8tmjLli0J20ceeaTltoZh6IgjjujwvoB8q/EbaqiPXLYSHEfFB8gN9ZH7AQAAAAAAQHnwFrsDbrFv376E7crKSlvte/XqFbscCoV04MABde/e3XJ7wyj90C7+MZbD4y20KTdU6PTTTNsB8PWTDPnH2G+H0sZ4BdyBsQq4B+MVcA/GK+AejNeuIzy2KDk8thP8prv93r17bd1HdXW1rd/ndn369Cl2F0rSuecUth3KA+MVcAfGKuAejFfAPRivgHswXrND2QqLDhw4kLAdX8PYim7dumW8PwAAAAAAAABwEmYeW5Q8SzgYDNpqf/DgwYz315nW1lZbt3cjwzBiR4F27twp02RxNsCpGK+AOzBWAfdgvALuwXgF3KMcx2uuqxcQHluUXOPY7szh5NvH10C2ohx27nimaZbdYwbcivEKuANjFXAPxivgHoxXwD0Yr9mhbIVFyeHx3r17bbWPv73X67U98xgAAAAAAAAAConw2KIjjjgiYXvLli2W25qmmXD75PsCAAAAAAAAAKchPLZo2LBhCdubNm2y3Pazzz5LqJE8dOjQnPULAAAAAAAAAPKB8NiigQMH6rDDDottv/POO5bbrlmzJmGb8BgAAAAAAACA0xEe2zB27NjY5c8//1wbN2601G7VqlUJ26effnpO+wUAAAAAAAAAuUZ4bMMFF1yQsP30009bavfMM8/ELnfv3l1nnXVWTvsFAAAAAAAAALlGeGzD+eefL5/PF9tetmxZQi3jdF599VV98MEHse1zzz1XlZWVeesjAAAAAAAAAOQC4bEN/fv31/jx42PbGzdu1Pz58zu8/YEDB/STn/wktm0YhmbMmJHXPgIAAAAAAABALhAe2zRt2jT16tUrtn3//fersbFR4XA44Xbbt2/XlClTtG7duth1F198sUaOHFmwvgIAAAAAAABAtgzTNM1id8JtXnzxRc2YMSMhMD7uuOP0xS9+UdXV1frwww/1wgsvaP/+/bGfDx8+XEuWLFHv3r2z+p07duzocr+dzjAMVVdXS5JaW1vFrgk4F+MVcAfGKuAejFfAPRivgHuU43jt27dvTu/Pm9N7KxNf+cpX9LOf/UyzZ89WW1ubJGnDhg3asGFD2tuPGDFCv/71r7MOjgEAAAAAAACg0ChbkaUrrrhCjz32mC688MKERfTiDRgwQDNnztTSpUs1ePDgAvcQAAAAAAAAALLHzOMuGDp0qB544AHt2LFDq1at0ubNm7V37171799fxxxzjE499VRVVFQUu5sAAAAAAAAAYBvhcQ707dtXF1xwQbG7AQAAAAAAAAA5Q9kKAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwzRNs9idAAAAAAAAAAA4CzOPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKbzF7gDcq7W1VatWrdLmzZu1Z88eDRw4UIMHD9Ypp5yiioqKgvdn7969ev3117Vlyxa1traqX79+GjRokMaOHatu3boVvD+AkzhlvO7Zs0f/+Mc/9P7776u1tVXBYFBVVVU68sgjdfLJJ6tfv34F6wvgVE4ZrwA659Tx+vnnn6ulpUUfffSR9u7dq27duqlfv34aMmSIRowYoV69ehWtb0CxOGm8hsNhrVu3Tu+884527NihtrY29erVS4cffrhGjhyp4447ToZhFLRPADpW7nkT4TFs++CDD3T33XfrxRdfVDAYTPn5gAEDNGHCBE2bNq0gg2jr1q2655579Mwzz2jfvn0pP+/Tp48uu+wy3Xzzzerdu3fe+wM4iRPG61tvvaU//elPeuWVV7RmzRqFw+EOb+v3+1VfX69LLrmEP5hRdpwwXq1obGzUf/7nfyZcN27cOP3ud78rUo+AwnPqeH3uuefU2Nio119/XaZppr2Nx+PRqFGjdP311+vyyy8vWN+AYnHSeN29e7cWLFigRx99VNu2bevwdoMGDdLEiRNVX1+v7t2757VPgFPs3btXa9asUSAQUCAQ0FtvvaVNmzbFfj5o0CA9//zzBe0TeVOEYXb0VwWQxhNPPKHZs2enHTTJRo4cqfvvv1+DBw/OW3/++te/6nvf+5527NjR6W2POeYY3X///RoxYkTe+gM4iRPGa0NDg1555RXb7c4880z94he/0MCBA3PaH8CpnDBerfj444916aWXpvST8BjlxInjdceOHfr+97+vF1980XKbiy++WPfee2/+OgU4gJPG65tvvqmbbrpJW7Zssdzm+OOP1wMPPKBhw4blpU+AEzQ2Nuqxxx7TunXrMk40KnR4TN50COExLHvppZc0ffr0hMF83HHH6YwzzlB1dbU2btyoF154Qfv374/9fPjw4VqyZElejsCsXr1akyZNUltbW+y6gQMH6pxzzlH//v316aef6oUXXtCuXbtiPx8wYIAeeeQRHXnkkTnvD+AkThmvl19+udauXZtw3dFHH62TTz5ZAwcOVGVlpT777DOtXLlSGzZsSLjdsGHD9Pvf/159+/bNWX8AJ3LKeLVi8uTJ+utf/5pyPeExyoUTx+uWLVtUX1+vDz74IOH6E088UX6/X/3791d7e7u2bt2qt99+W+vXr5dEeIzS56TxunbtWk2aNEl79uyJXWcYhsaOHatRo0bpsMMO086dO/X222/rzTffTGg7YMAALV26VEcffXRO+wQ4xY033qjnnnuu09sVMjwmb0pEeAxLtm7dqosuukh79+6VFPmgu/3221VfXy+P59C6i9u3b9dNN92klStXxq675JJLdM899+S0P/v379dFF12kTz/9NHbdDTfcoFtuuSXhVKM9e/bojjvu0IoVK2LXnXLKKVq8eHFO+wM4iZPGazQ87t+/v6688kpdffXVOv7441NuZ5qmnnnmGd15553auXNn7Pqvf/3ruu+++3LWH8BpnDReO/P444/r9ttvlxT54zj+dFvCY5QDJ47XAwcOaPz48QkHak877TTdeeedOumkk9K2+eijj/TEE0+otbVVP/rRj3LeJ8AJnDReTdPU+PHjFQgEYtedeOKJuvvuu3XiiSem3H7NmjW69dZbEw4IXXjhhXrggQdy1ifASdKFx5WVlRo1apRWr14dO3OgUOExeVMqT+c3AaR58+bFPngl6V/+5V/U0NCQ8MErSf369dOCBQsSTqtZsWKF1qxZk9P+NDU1JQzkq6++WrfffntKjarevXvr7rvv1plnnhm77s0339Szzz6b0/4ATuKk8dqvXz99//vf1wsvvKDvfe97aYNjKfIH/UUXXaTGxkb17Nkzdv0zzzyT8Ic2UGqcNF4z2b59e6zOsWEY+sEPflCQ3ws4iRPH69y5cxOC48suu0xNTU0dBsdS5NTa7373uwTHKGlOGq/R+q1Rffr00cMPP5w2OJYi5TMWLVqkww47LHbdc889Z6vcBeAm3bt3l9/v16RJk/Szn/1M//M//6M33nhDTU1NRTkLlbwpFeExOvXZZ59p2bJlse0hQ4Zo6tSpHd6+e/fuuuOOO2Lbpmlq3rx5OetPMBjUggULYtuHHXZYbCZUOh6PR3fddVfCHwpz587NWX8AJ3HaeP3Nb36jhoYGy4uPjBo1SvX19QnXPfPMMznrD+AkThuvmfz0pz+N1XubMGGCampqCvJ7Aadw4nhdt26dFi5cGNseNWqUfvazn7HgLMqe08brq6++mrA9fvx4DRgwIGObI444Qtdee21Cn1577bWc9QlwknvvvVfLli3TnXfeqauuukonnHBCyoGeQiFvSo/wGJ167rnnElalHT9+vHw+X8Y2Z555poYOHRrbfumllywtUmDFa6+9llCw/Jvf/Kb69OmTsc2xxx6rL33pS7Ht1atX66OPPspJfwAncdp49Xq9tttccsklCdvMPEapctp47chf/vIXPfnkk5Ii5Spuu+22vP4+wImcOF4bGxsT+vTDH/4wq89doNQ4bbwmzxg++eSTLbU79dRTE7a3bt2ak/4A6Bh5U3qEx+hUck2Ziy66yFK7r3/967HLBw4c0Msvv5yX/sT/nkyS+22lIDvgNk4br9k49thjE7Y///zzIvUEyC83jNd9+/bp3//932PbP/jBD1RVVZW33wc4ldPG6969exNqLI4YMUJjx47NyX0Dbue08Rq/YJ8k9ejRw1K7+FJukjirACgA8qb0CI/RqTfeeCN2uX///jrmmGMstTvllFMStv/2t7/lpD+vv/567HJFRYX8fr+ldslHbnPVH8BJnDZesxFfn07KbvYy4AZuGK+/+tWvtGnTJknS2WefnXJmAFAunDZeX3jhhYRZkYxN4BCnjdfBgwcnbMfXUs0k+vkblTzBAkDukTelR3iMjLZs2aLdu3fHtkeMGGG57ciRIxO2169f3+X+hMNhbdiwIbZ97LHHqlevXpbaDh06NOEoby76AziJ08Zrtt59992E7SOPPLJIPQHyxw3jNRAIqKmpSVKkHmT8DGSgnDhxvP79739P2D7ttNNycr+A2zlxvH75y19O2P7jH/9oqV382QWVlZU644wzctIfAOmRN3WM8BgZvf/++wnbRx99tOW2/fv3T6gt9cEHH3S5P5s2bdKBAwey6o9hGAkh1EcffZRQCwtwO6eN12wtX748YfuLX/xikXoC5I/Tx2soFNIdd9yh9vZ2SdKMGTM0ZMiQnP8ewA2cOF7ffvvt2GWv1xsLyLZs2aL58+dr4sSJOvvss3XyySfrvPPO0/XXX6+5c+eWXA1GIJkTx+sXvvAFfeUrX4ltv/zyy/rv//7vjG0WLVqk//u//4ttNzQ06LDDDstJfwCkR97UMcJjZJRc3N/ODEDDMHTEEUd0eF+F7o+khP6EQiFqqaKkOG28ZmPDhg2xhbmkyKlCX/3qV4vSFyCfnD5eFyxYoLVr10qShg0bpsmTJ+f8dwBu4cTxGj+jacCAAerRo4eam5t10UUX6e6779abb76pbdu2qa2tTZ988olWrlypOXPm6Bvf+IZ+8pOf6ODBgznpB+A0ThyvkvTjH/84oXzG7Nmzdeutt+q1117Tnj17ZJqmdu/erVdffVX/8i//op/+9Kex25533nmaMWNGzvoCID3ypo5RSBIZJa8wW1lZaat9/BT/UCikAwcOqHv37ln3J7kWalf6k+7+ADdz2ni1KxwO60c/+lHCEdorrrjCcp06wE2cPF43bNiguXPnSop8kb7rrrvUrVu3nNw34EZOG6/hcDjhtPwBAwboV7/6lebNm9dp22AwqN/97ndavXq1fvOb36h3795Z9wNwIqeN16iBAwdqyZIlmj17tv70pz9Jkp566ik99dRTHbbp3bu3pkyZoqlTp6qioqLLfQCQGXlTx5h5jIySP3ztfnAm376rgyfX/Um+P8DNnDZe7XrggQcSFhbo16+fvve97xW0D0ChOHW8mqapO+64I3bK3lVXXaXTTz89J/cNuJXTxuvu3btlmmZs+4MPPogFx16vV5MmTdKyZcu0atUqvfnmm3r00Ud1/fXXJyxAu2rVKv3whz/sUj8AJ3LaeI13+OGH6/7779f8+fM7ndE4ZMgQ/epXv9KMGTMIjoECIW/qGDOPkVF8vRdJCTWgrEieqZR8f27vD+Akbh4fzz77rB544IHYtmEY+o//+A/169evYH0ACsmp4/WRRx7RypUrJUl9+/bVv/7rv+bkfgE3c9p4Tf4yGp2F3L17d82bN09nnXVWws9Hjx6t0aNH64ILLtD06dO1f/9+SdLTTz+t559/Xueff36X+gM4idPGa7wtW7boZz/7mZ5++umEA0DpbNy4UVOmTNEpp5yin/zkJxo+fHjO+gEgPSe/fxQbM4+RUfKRE7sFv5PrqXX1lB+n9QdwEreOjzfeeEO33XZbwh/R3/3ud/kyi5LmxPG6bds2/eIXv4ht33777erbt2+X7xdwO6eN147a33zzzSnBcbwzzzxTt956a8J1Cxcu7FJfAKdx2niNWrt2rS6//HL98Y9/lGmaMgxDl156qRobG/Xqq6/q7bff1quvvqqFCxfqm9/8pgzDkCS9+eabuuaaaxLOzgOQH059/3ACwmNklFzjxe6Rk+TbJ9eAKXZ/7NawAZzMaePVinfffTdhFpQkXXfddfrud7+b998NFJMTx+uPf/xj7dq1S5I0btw4XXnllV2+T6AUOG28pvv7tU+fPpo0aVKnba+77rqEs3reeOMNtba2dqk/gJM4bbxK0s6dO/Wd73xHO3bskBSZzThv3jz913/9l770pS+pX79+8vl86tevn84++2zdfffdmjt3bmzWY1tbm7773e9q27ZtXe4LgI6RN3WM8BgZJe/sdms+xd/e6/V2+chLVwuQJ9++EOEYUChOG6+d2bhxoyZPnhwLqyTp4osv1p133pnX3ws4gdPG63PPPadnnnlGUuRL7V133dWl+wNKidPGa48ePRLqF0vSl770JUv3261bN5199tmxbdM09eabb3apP4CTOG28StKDDz6orVu3xrZvvvlmnXfeeRnbnH/++brpppti262trZYWxQSQPfKmjhEeI6MjjjgiYXvLli2W25qmmXD75PsqdH8kafPmzbHLXq9Xhx9+eJf7BDiF08ZrJlu2bNG3v/3thBkUX/7yl/WLX/xCHg8fTSh9Thuv//mf/xm7PHXqVA0dOrTL9wmUCqeN13T3c8IJJ1hue+KJJyZs2/17GnAyp41X0zT1+OOPx7YrKytVV1dnqe3111+fEIY/+eSTCofDXe4TgPTImzrGgnnIaNiwYQnbmzZtstz2s88+S6gRk4svooMGDVKPHj1ip7jb6Y9pmgmDeciQIbYLoANO5rTx2pHt27eroaEhoX+nnXaafv3rXzMmUTacNl6jp9JKkRlSDz74oK32K1eu1MiRI2Pbp59+uhYtWtTlfgFO4LTxGu1TfD/69OljuW3ybXfu3JmTPgFO4LTxunHjRm3fvj227ff71aNHD0tte/TooTFjxui1116TJO3atUsffvihjj/++C73C0Aq8qaOMb0LGQ0cOFCHHXZYbPudd96x3HbNmjUJ27n48PV4PDruuONi2xs3brR8KsH69esTatAwqwqlxmnjNZ09e/ZoypQpWr9+fey6UaNG6aGHHrL8hzRQCpw8Xtvb2y39y9SOmVEoJU4cr8OHD0/YTl6kJ5NSXtAHcNp4/fzzzxO2+/fvb6v9gAEDErbjD/YCyC3ypo4RHqNTY8eOjV3+/PPPtXHjRkvtVq1albB9+umn57w/7e3tCgQCltol13PLVX8AJ3HaeI23f/9+TZs2TatXr45dN3z4cC1YsEC9e/fO+e8DnM7J4xVAIqeN13HjxiVs2zm1Nn5mlCT17ds3J30CnMJJ4zX54IzdBbja2toStktpAS7Aicib0iM8RqcuuOCChO2nn37aUrvowjtS5EPzrLPOKmp/km+XfD9AKXDaeI0KBoOaNWuWXn/99dh1Q4YM0cMPP5yw6jtQTpw0Xl9//XW9++67lv8999xzCe3HjRuX8PPf/e53Xe4T4CROGq+SdNZZZyWESMmhVybJX3DjS84ApcBJ4zW55mn82XdWJN+ev5uB/CJvSo/wGJ06//zzE2q1LFu2LKEWVDqvvvqqPvjgg9j2ueeem7OjpOPGjUv40Hzqqae0a9eujG0+/PBDvfLKK7HtUaNG6ZhjjslJfwAncdp4laRwOKzbb79dL730Uuy6I488Uo2NjXlfmA9wMieOVwDpOW28duvWTRdeeGFsOxAI6L333uu03fr16/XGG2/EtgcOHGhrsT3ADZw0Xo888kgNHDgwtv3+++9r7dq1ltq+9dZb2rBhQ2x70KBBCfcFIPfIm9IjPEan+vfvr/Hjx8e2N27cqPnz53d4+wMHDugnP/lJbNswDM2YMaPD23/88cc66aSTYv/OP//8jP3x+XyaMmVKbHv37t0Jq8QnC4fD+vd///eE+os33nhjxt8BuJXTxqskzZ49W0899VRs+/DDD1djY6MGDx7caVuglDlxvAJIz4nj9cYbb5TXe2j989mzZ2cMyEKhkGbPni3TNGPXXX/99Z3+HsBtnDZezzvvvITt2bNnd1qn/MCBA7rrrrsSruNzHLCPvCk3CI9hybRp09SrV6/Y9v3336/GxsaUBXG2b9+uKVOmaN26dbHrLr744pyfDjdp0iQdddRRse1HH31UP//5z1M+hPfs2aPbbrtNr776auy6U045JWGmBlBqnDRe77nnHi1ZsiS23adPHz388MMlt4AAkC0njVcAmTltvB5//PGaMGFCbPuNN97QjBkztHXr1pTbbtu2TTNnztTKlStj1w0aNEi1tbU57RPgFE4ar1OnTk2YCf3mm29q8uTJHdZifv/991VfX6+33nordl337t0TAi0A+UPelMow4w89Axm8+OKLmjFjRsIH7nHHHacvfvGLqq6u1ocffqgXXnhB+/fvj/18+PDhWrJkScbFsD7++OOEejCDBg3S888/32l/Vq9erUmTJiUsIjBw4ECde+65Ovzww7V582Y9//zzCacYDBgwQI888oiOPPJIy48bcCOnjNeTTjopYdswDHk89o9bJq9+DZQSp4xXO5Lve9y4cdQ5Rllw2ng9ePCgvv3tbyeUoujRo4fOOussDRs2TFIkiHr55ZcT/mbu2bOnfv/732vUqFHWHjjgQk4ar0uWLNGdd96ZcF1FRYXGjh2rkSNHqnfv3tq9e7dWr16tVatWpYTcP//5z3XFFVdYediA62zatElf/epX0/6svb09YbuioiLt7X7729+mLCYrkTflirfzmwARX/nKV/Szn/1Ms2fPjg2gDRs2JNRhijdixAj9+te/zvjB2xWjRo3S/fffr+9973tqbW2VJG3dulXLli1Le/vBgwfr/vvvL8mBDCRz2niNMk0z5Q8AoNw5dbwCSOW08dqtWzfNnTtXt956q15++WVJ0v79+/Xcc8+lLGwZNWDAAM2bN4/gGCXPSeM1epbAT3/601hY3d7erpUrVyacEZCssrJSd9xxB8ExSpqd74gd3S7X82LJmxJRtgK2XHHFFXrsscd04YUXJpx6E2/AgAGaOXOmli5dmveapl/+8pf15JNP6oorrlDPnj3T3qZPnz66/vrr9cQTT3B6L8qK08YrgI4xXgH3cNp4ra6u1sKFC3XXXXdp+PDhGW83bdo0PfXUUxozZkxe+wQ4hZPG64QJE7R8+XJdd911CSU10undu7cmTZqk5cuX66qrrspbnwB0jLzpEMpWIGs7duzQqlWrtHnzZu3du1f9+/fXMccco1NPPbXDUwnyae/evXr99df16aefaufOnerXr58GDRqk0047Td26dSt4fwAncdp4BdAxxivgHk4cr2vXrtX69eu1ZcsWtbe3q2/fvjrhhBM0ZsyYrEpHAaXCSeO1vb1d7777rt577z21trZq3759qqysVHV1tU466SSdeOKJfOYDDlLueRPhMQAAAAAAAAAgBYeeAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAHufnmm3XSSSfF/n3rW99Se3u7pba7du3SBRdckNB+7ty5ee4xAAAAShXhMQAAAOAg//Ef/6GhQ4fGtl977TXNmTOn03amaerf/u3f9PHHH8euO+ecczRjxoy89BMAAAClj/AYAAAAcJBevXrp/vvvV2VlZey6+fPn64UXXsjY7qGHHkq4zaBBg/TLX/5ShmHkra8AAAAobYTHAAAAgMMMHz5cP/7xj2Pb0VnFH330Udrbv/rqq7rvvvti2926ddOcOXNUXV2d764CAACghBEeAwAAAA70zW9+U3V1dbHtXbt26aabbtLBgwcTbrdlyxbddtttCXWRf/jDH2rMmDEF6ysAAABKE+ExAAAA4FDf//73dfLJJ8e2V69enTAjORgM6uabb9bnn38eu+7yyy/XxIkTC9lNAAAAlCjCYwAAAMChfD6f5syZo759+8auW7p0qR5//HFJ0i9/+UutWrUq9rMTTzxRd911V6G7CQAAgBJlmKZpFrsTAAAAADr2yiuvaPLkyQqHw5KkHj16aOrUqQl1jnv37q1HHnlExx9/fLG6CQAAgBJDeAwAAAC4wNy5czVnzpwOf37ffffp61//egF7BAAAgFJH2QoAAADABWbMmKFzzz037c8aGhoIjgEAAJBzzDwGAAAAXOKDDz7QRRddlHDdCSecoMcff1xer7dIvQIAAECpYuYxAAAA4ALhcFg/+clPUq5///33ExbNAwAAAHKF8BgAAABwgQceeEB//etfU65vb2/Xrbfeqm3bthWhVwAAAChlhMcAAACAw/3lL3/R3LlzY9s9evTQ2WefHdvetm2bbrnlFrW3txejewAAAChRhMcAAACAg3366af63ve+p3A4HLtu9uzZuv/++zV8+PDYdX/72990zz33FKOLAAAAKFGExwAAAIBDHTx4UDfddJNaW1tj140fP15XXnmlKisrdd9996mysjL2s4ULF+rZZ58tQk8BAABQigiPAQAAAIf6+c9/rpaWltj2qFGj9KMf/Si2PWzYsIRF9EzT1A9+8AN99NFHBe0nAAAAShPhMQAAAOBAK1asUFNTU2y7qqpKc+bMUffu3RNud8kll2jSpEmx7V27dmnWrFk6cOBAwfoKAACA0kR4DAAAADjM+vXr9cMf/jC2bRiGfv7zn+uYY45Je/vvf//78vv9se01a9boxz/+cd77CQAAgNJGeAwAAAA4yL59+zRr1izt27cvdt13vvMdnX/++R226datm+bMmaPq6urYdcuWLdMf/vCHfHYVAAAAJY7wGAAAAHCQO++8U+vWrYttjxs3TjfffHOn7Y4++mj98pe/lGEYsetmz56ttWvX5qObAAAAKAOExwAAAIBD/P73v9eTTz4Z2x4wYIDuvfdeVVRUWGp/zjnnaMaMGbHt/fv366abbtKePXty3lcAAACUPsM0TbPYnQAAAAAAAAAAOAszjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKf5/zUFCP1Glb+kAAAAASUVORK5CYII=", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABY8AAAWPCAYAAADgDAt2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd4U+X/xvE7XZRCS8ueAgXZG2WpoIJ7McSBICDIEAURRURARJxfEVC2ICKCKCggiDLFgTJkb8oG2dBSaEtLm/z+6K+xJydNk460pe/XdXnJOTnjSXLOaXLnOZ/HYrPZbAIAAAAAAAAAIBWfnG4AAAAAAAAAACD3ITwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAmhMcAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8BgAAAAAAAAAYEJ4DAAAAAAAAAAwITwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAmhMcAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8BgAAAAAAAAAYEJ4DAAAAAAAAAAwITwGAAAAAAAAAJgQHgMAAAAAAAAATPxyugEAcCO6ePGiDhw4oH///VeXL19WfHy8AgMDFRwcrODgYFWqVElVqlSRv79/TjcVyBNOnjyp1q1b26fLlSunNWvW5GCL0talSxdt3LjRPv3VV1+padOmOdgiwOiHH37QG2+8YZ9u166dPvjggxxsUf6VX64X1atXN0zv378/h1pi9Nlnn2nChAn26RdffFEvvfRSDrYIMMrtn3+GDBmihQsX2qfff/99tW/fPgdbBCA7EB4DQBbZs2ePFi1apDVr1ujEiRPpLu/v76+bb75ZrVq10v33368aNWp4oZUAAAAAAADuITwGgEzau3evPvzwQ/39998erXf9+nXt2bNHe/bs0eTJk3XzzTerd+/eeuihh+TjQ1UhuPbZZ58ZpukpBXfs3btXq1atsk/XrFlTbdq0ycEWAQAAAMjNCI8BIIOsVqsmTZqkSZMmKSkpyeWyQUFBCggIUExMjK5fv+50mYiICL366quaNGmSfvrpJwJkuJT6NluJ8Bju2bt3r+HYadeuHeExAAAAgDQRHgNABly/fl2vvfaafv75Z9NjxYsXV5s2bdS8eXM1aNBARYsWVUBAgCTJZrPp7Nmz2rdvn/7++28tX75cp0+fNqx/+PBhWa1WwmMAAAAAAJCjCI8BIAPeeOMNU3AcHBysXr16qUuXLipYsKDT9SwWi0qXLq3SpUvrzjvv1JAhQ7R69WpNnjxZu3bt8kbTAQAAoOS7drhzBwAA1+jWBgAe+vLLL7VkyRLDvLJly+rbb79Vr1690gyOnbFYLGrTpo0WLFig9957T8HBwVndXAAAAAAAgAwhPAYAD5w4cUJjx441zCtWrJjmzZunKlWqZHi7FotFHTp00OLFi1W7du3MNhMAAAAAACDTCI8BwAOffvqprl27Zpg3atQolSpVKku2X65cOc2ZM0e+vr5Zsj0AAAAAAICMouYxALjp3LlzWrZsmWFeq1at1KZNmyzdjydlL5y5fPmytm3bpgsXLujSpUvy8/NTWFiYKlWqpLp162ZLMH39+nVt27ZNERERunz5sgoWLKjixYurYcOGKleuXJbtx2azae/evTp69KguXbqkq1evqkiRIipRooQaNmyoYsWKZdm+Ujtx4oR27dqlM2fOKC4uTkFBQbr11lvT7SV+4cIFRURE6MSJE7py5YquX7+u4OBghYWFqWbNmqpcuXK2tDcrnDx5Unv37tXFixcVFRWlQoUKqVixYqpRo4bCw8OzbD///vuvduzYobNnzyo+Pl5FihTRzTffrPr168vPL/d8TLl27Zo2btyo06dPKzIyUoGBgapQoYIaNmyookWLZum+kpKSdPToUR0+fFjnzp3TlStX5OfnpyJFiqhUqVKqX7++ihQpkqX7zKyrV6/q0KFDOnLkiKKiohQXF6dChQqpSJEiqly5smrVqpXj72dCQoKOHDmiQ4cO6eLFi4qJiVFAQICKFCmismXLql69eipUqFC27f/w4cPauXOnzp07J5vNprCwMFWtWlX16tXLsuvynj17FBERoXPnzkmSSpQooVq1aqlatWpZsv0bgTf+XnnzepGat67bqUVGRmr79u06ceKErl69Kn9/f1WtWlV33nlntuwvL4iOjtbmzZt17NgxxcXFKSQkRKVKlVKTJk0UEhKSJfs4e/astm7dqvPnzysmJkbBwcGqUqWKGjVqZB+kObdJSkrSzp07deDAAUVGRsrHx0dlypTRLbfcotKlS6e7fnx8vLZs2aLDhw8rOjpahQsXVtmyZdWsWbMsu3YnJCRo69atOn36tC5duiSr1aqiRYuqVKlSatSoUaY/o6eWE59/Ut6DkydP6uLFi7p27ZrCwsJUsmRJNWrUKMuOTwA3ntzzrQwAcrkff/xRiYmJhnlPPfVUDrXGKCkpST/++KPmzZunnTt3KikpyelyoaGhuv/++9WvXz+VLFnSrW2fPHlSrVu3tk+XK1dOa9askZQcGE2dOlXz5s1TdHS00/Vr166tQYMG6bbbbvPwWf3nxIkTmjp1qtasWaOLFy86XcZisah27dp6/vnndf/997u97SFDhmjhwoX26ffff1/t27eXJC1evFgzZszQ/v37Tes9++yzpvA4ISFB69at06pVq7RhwwadOHHC5b6LFy+u9u3bq2vXripevHi6ba1evXqGHpOk1atXq3z58i6XuXr1qr2m99GjR9Ncrnz58nryySf17LPPKjAw0OU207Ju3Tp9+umn2rZtm9PHQ0ND9fTTT6t3795Z+mXNU+fPn9cnn3yiX375RbGxsabHfX191apVKw0cODBTAd358+e1fPly/f7779q8ebOuXr2a5rIpx3q3bt304IMPphs8/vDDD3rjjTecPrZw4ULD8e+oSZMmmj17ttPHduzYoV9++UXr16/X3r17ZbVa09xOUFCQ7r77bvXq1SvdYzUrnThxQj///LPWrVunbdu2me4cSc3Pz0+NGjVSjx49PA6+unTpoo0bN9qnv/rqKzVt2lSS9Msvv2jSpElOryNS8rHevXt3devWLUPnk9Vq1TfffKMvv/xSx48fd7pMpUqV1Lt3b/u1zVs+++wzTZgwwT794osvejQ4mau/P54u742/V966XqSWnddtx2tHu3bt9MEHH0iStm7dqgkTJuivv/4ynfs1atTIUHj8448/6rXXXrNPV6hQQStXrpTFYvF4W0uXLtWgQYPs0+XKldOqVavk42O88dbTY9TVa3L8+HGNGzdOK1as0PXr103r+vr66u6779Yrr7yS4TB//fr1Gj9+vLZu3SqbzWZ6PCgoSB06dNCLL76o0NBQSebPB2ldizLr7rvv1r///mufTvnckZCQoC+++EJfffWV089wPj4+uvPOO/XGG2/opptuMj1+6dIlTZw4UQsXLlRMTIzp8YCAAHXs2FEvv/xyhsPPXbt2afLkyVq3bp3i4uKcLhMQEKCmTZuqT58+uuWWWzK0HylnPv/s27dPU6dO1R9//KErV644XcbX11eNGzfWCy+8oObNm2fJfgHcOChbAQBu+vXXXw3TxYsXV6tWrXKoNf/ZuXOnHn30UQ0ZMkTbtm1LMziWpKioKM2bN0/33nuvvv/++0ztd9++fXr00Uc1bdq0NL+IS9Lu3bv13HPPaeLEiR7vIykpSR9++KEeeOABzZ8/P83gWErulbxr1y4NGDBAzzzzjC5duuTx/lJcvXpVvXv31uDBgz36knXXXXepT58+WrBgQbrBsZTcM3natGm65557tHLlygy3NyssWrRIrVu31meffeYygJCSA5oxY8bo/vvv165duzzaT1JSkkaMGKHnnnsuzS9OUvKxOnnyZLVt29at1zI7rF69Wg8++KB++OEHp0GQlPx81qxZo/bt22f4nFq7dq1atmypd955R7/99pvL4Fj671h/9dVX9fTTT+vs2bMZ2m9mDBw4UB07dtSMGTO0e/dul8GxJMXGxmrp0qV67LHHNG7cOKehR1abO3eu2rRpozFjxmj9+vUug2NJSkxM1MaNG9W7d2/17t07zS/Y7rp27ZpeeeUVDRgwwOV1JCoqSmPHjlXnzp0VGRnp0T4uXryoTp06adSoUWkGx5J09OhRvfHGG+rbt2+awciNzBt/r7x1vUjNW9dtR+PHj9fTTz+tP//8M91z3xP333+/4Q6iEydO6I8//sjQtubNm2eYfuKJJ0zBcVZaunSpHnnkEf30009Og2Mp+f1fuXKl2rdv7/Hzslqteuutt9S1a1dt2bIlzWtobGysZs+erYcfflg7d+70+HlktbNnz6pjx44aO3Zsmp/hrFar1qxZow4dOmjz5s2Gx/755x898sgj+vrrr50Gx1LyD/dz5szRk08+qfPnz3vUvoSEBA0dOlSPP/64Vq1a5fL6mJCQoD/++EPPPPOM+vfvn+Z5npac+PwTFxenIUOGqG3btlq2bJnLv2tJSUnauHGjunXrpv79++fLvxUA0kZ4DABuSEhI0Pbt2w3zGjRokOO1iVetWqUuXbro4MGDpscsFouCg4MVFBRkeiwuLk5Dhw7VtGnTMrTfAwcO6NlnnzX0MJGk4ODgNHs0ffrppx59WU4JcL/44gunX8T8/f0VGhrq9D34559/9NRTT+nMmTNu7y9FUlKSXnzxRa1du9a0v/R6tKQVSvj5+Sk0NFSFCxd22oMqNjZWL730kn788UeP25tZNptNY8eO1euvv66oqCjT476+vgoNDXV6G+zp06fVpUsX/f33327tKykpSYMHD9a3337r9PHAwEDT8Xr06FF169bN41Ats1avXq0BAwY4fU99fX1VpEgRw3t5/fp1vfnmm/rll1883ldMTEyaAUyBAgUUGhqqAgUKOH18+/bteuKJJ1z+sJId0jrWLRaLChcurCJFijg9N202myZPnqwRI0ZkdxNdhvAFCxZUaGio/P39nT6+du1ade7cOd3AOS0p15GffvrJMD8gICDN68jOnTvVv39/t4P1S5cuqVu3btq6davTx4ODg03Pb82aNRo4cKBXwvvcwht/r7x5vZC8e9129Omnn2rSpEmGY8jHxyfNc94TKT1IU3MMgd1x6NAhbdq0yT7t7++vxx9/PFNtc2XRokV69dVXDdeLlNfE2TUmLi5OL7zwgg4dOuTW9q1WqwYPHpzmaxEQEKDChQsb5p0/f149evRI90eF7HT58mV17dpV+/btM8wPDg52+jctOjpaL7zwgv0H0a1bt6pnz566cOGCfZmU19VZWYfDhw+rX79+bv+gcfXqVfXs2VPff/+902uis88kKZYvX64uXbq43VEhJz7/nD9/Xs8884wWLlzo9PkVKFBARYoUcfqjyvLly/Xss8+m+2M2gPyDshUA4IZDhw6ZAsy6devmUGuSbd26VQMGDDCU0ggODlbHjh113333qVatWvYvjlFRUVq3bp0+//xz7d271778J598ourVq3vUg/ratWt68cUXdfnyZVksFj344IPq2LGjGjVqZP8ycOLECS1cuFDTp09XfHy8fd0PPvhAbdq0Sbdeq81m06uvvmrqmdO4cWM9/fTTatKkiX2QQqvVqr1792rx4sWaN2+efX/Hjh3TwIEDNXv2bI9qx3355Zf2ML5EiRJ6/vnn1bp1a3vJh/j4eG3bts3lbX/169fXXXfdpXr16qlatWqGGpcJCQnat2+fVq1apblz59q3Y7PZ9NZbb6levXqqVKmS022PHDnS6b+dTTtKuX3V0YwZMzRlyhTDvAoVKqhz58664447FB4ebg89Tp48qVWrVmn69On23j2xsbF6+eWXtXjx4nRrFs6YMUNLly41zCtevLj69u2re++9115K5dKlS1qzZo0mT56skydP6uTJk3rnnXdcbjsrnThxQoMGDTKc8z4+PurYsaM6duyoWrVqydfXV9evX9fmzZv19ddfa+XKlbLZbBo2bJhbJUicCQkJ0R133KHbb79dNWvWVHh4uOEL9qVLl7R161Z9//33Wr16tX3+mTNnNHjwYM2YMcPpdhs0aGA/PrZt26ZFixYZHmvbtm2abUqvvE2VKlXUqlUrNWnSRDfffLPKlStnP16sVquOHDmidevWac6cOYYQ47vvvlOTJk30yCOPuNx+VihevLhatmyp2267TdWrV1elSpUMgc6ZM2e0efNmzZs3z1B6Yt++fXr33XczdOx9+umn9lA3PDxcPXv21B133GF/PWNiYvT7779r3Lhxhtdl48aN+uGHH9ShQ4d09/H666/rwIEDhnm1a9dWr169dMcdd6hQoUKy2Ww6ceKElixZounTpys2Nla//vprpu7MyEu88fcqJ64X3rxup7Zjxw779aNAgQJ65pln9PDDD6tmzZry8fFRUlKSDh8+rH/++cfj55Ti6aef1ueff26/i2rt2rU6c+aMR+385ptvDNNt2rTJ8HU5PQcOHNBPP/0km82mggULqnPnznrwwQdVo0YN+fj4yGazaffu3Zo5c6bh719CQoLeeustff311+nu46uvvtKSJUsM88LCwtSnTx/de++9Klu2rKTk9/Wvv/7SF198oc2bN+vy5csaPHhw1j5hD4wcOVJHjhyRJN12223q2rWrmjZtav/R5tChQ5o1a5YhUI2KitLHH3+soUOH6qWXXlJcXJz8/Pz0+OOPq3379qpTp458fX1ltVq1ZcsWjR8/3nDd3r59uxYsWKAnnngi3fa99dZb2rBhg2Fe6dKl1adPH7Vp00YlSpSQlFzX+9dff9XkyZMNd3js2rVLr732mqZPn55uaRVvf/5JSEhQ7969tXv3bsP8O++8U48//rgaN25s/2yamJioHTt2aP78+Vq8eLH93NuxY4eGDx+usWPHerx/ADceiy0/dT0AgAxasWKFqQbepEmTDLUVveny5ct67LHHdPr0afu8W2+9VWPGjLGHqs4kJSXp3Xff1Zw5c+zzihUrptWrV6dZV82xhmSKoKAgjRs3zmXw/Ndff6lnz56GUhpvvvmmnn32WZfPb8aMGfroo4/s0/7+/ho5cmS6PYd2796t3r17G25bHDx4sHr06JHmOo41j1M0bdpUkyZNMvXmceWTTz7RE088kW5t4RQXLlxQ3759tWPHDvu89u3b6/3330933ayoYbht2zY988wzhh8gnnnmGQ0ZMsTlgDuXLl1Sv379tGXLFvu8O++8U1OnTk1znaNHj+rRRx81hDP16tXT559/nmawHRsbqwEDBuj33383PZZe7dPM6Nq1q9avX2+fDgwM1OTJk9WiRYs015k/f76GDx/utHdP6vq3zmzevFlHjhzRI488kmYPY0dr167Vyy+/bLitdPbs2WrSpInL9VzV6/TE7NmzVadOHTVs2NCt5RMSEvTOO+/ou+++s8+76aabtHz58my7lXzNmjVKSEjQPffc43aPyPnz5+utt96yX7N8fHy0YsUKVahQweV6jjWPUzz55JMaMWJEmj9gRUdHq0uXLoaeebVq1XJZh1pK7un4+uuvG+Y99dRTGjFiRJrP9cSJE+rataupB66U8eMgPTld8zhFdv698vb1wpvX7bTqpZcuXVpffPGFqlSpkua6jjz5m/XSSy9pxYoV9ul+/fqpf//+bu0nLi5OLVu2NPQCd/WaZrbmcYpKlSrp888/d1qzN619ScljK9SoUSPNdU6ePKmHH37YcK2vVauWZsyYkebgizabTePGjTP9wJDCWzWPpeS7UYYOHeryPJo0aZLGjx9vn/bz89Mdd9yhX3/9VUWKFNGUKVPUqFEjp+smJiaqT58+hs4GNWrU0OLFi1229aefftIrr7ximHfbbbfp008/TfNz37Vr1/Tqq6+ayowNGzZMXbp0SXNfOfH5Z9SoUYbP+sHBwfrf//6nu+66y+V669at00svvWQoETJ+/HiXY4m4GjsEwI2DshUA4AZnNdTS642UnWbOnGkIjmvXrq1p06a5DI6l5F6xw4cP1913322fd/HixQzVXvzwww/T7bHcokUL06CC6d2mGx0dbao3+eGHH7p1y2nt2rU1ceJEQ1Dz5ZdfKiEhId11U6tQoYKmTJniUXAsSa+88orbwbGU3Otk6tSphi8PS5cu1eXLlz3ab0Z99NFHhgAiJehKb6T2okWLavLkySpXrpx93tq1a11+IZ0xY4bhi1OJEiVcfnGSkgOfzz77TFWrVnXj2WSNLVu2GIIgSRo9erTLIEiSOnbsqBdffDFD+2zcuLEef/xxt4NjKTn0cSz9kPqLYnbr0qWL28GxlHxb9ahRowzh9vHjxzNcz9Qdd999t+6//36PbqXv2LGj+vbta59OGYwuo/sfNWqUyzsfQkJCNHr0aMO8PXv2uKxfLMkUCt1+++0aOXKky+daoUIFTZ8+3aPj7EaRXX+vcuJ64c3rtjP+/v6aOnWqR8Gxp5555hnD9Pz5800DFqflp59+MgTH4eHhLsP4rBAcHKzp06e7DI6l5BDcMURP7xibPXu2ITgOCwtzGRxLyYHtwIEDvXJnR3p69uyZ7g8wvXv3NtxxlZiYqF9//VUWi0WffPJJmsGxlBw0v/XWW4YfIfft26djx4653OekSZMM01WrVtXEiRNdfu4LDAzUJ598onr16hnmT5s2Lc0615L3P/8cPXrU8HfLz89PU6ZMSTc4lpIDdMcfEjNa4g7AjYXwGADc4GyQDk+DxawSGxtr+FBosVg0evToNOuyObJYLBoyZIghZEirBltaWrZsqXvvvdetZZ988knD9N69e13Wo/vmm28Mr3fr1q310EMPud22+vXrG74wnTt3zlS/OD2vv/66269nZhUtWtQQjCckJBh6hmWXrVu3GgamKVWqlIYMGeL2+qGhoabwY/78+U6XvXr1qul2zVdeecXlF6cUgYGBGjZsmNvtyizHc8GT0gq9evVKt4dqVmrbtq39tlpJpttvcxuLxaKePXsa5jkGb7lBt27dDGUtMtJGf39/vfXWW24tW7duXdWuXdswz9WAZuvXr7ffCi4lBwMjRoxI97ZpKTlIe+6559xq140iO/9eeft64c3rdlqeeuoplz1ls0KzZs0Modm5c+fcvtPE8ceep59+Okvb5kzv3r3dei9Typmk5upcT0hIMJQZkqT+/fu7DI5Te+ONN9Ks6+0NRYsWdavHuK+vrx588EHT/NatW+v2229Pd/0KFSqYAmbHcg2p/f3336axQkaMGJHmHXipBQQE6O233zZcb8+dO6fly5c7XT4nPv988cUXhutWp06ddMstt7i9/r333mv4oXf37t0uX08A+QPhMQC4wVnPVU/Dxf79+6t69epu/Ze6Z7CjP/74wzBATuPGjVWrVi2P2lKxYkXVqVPHPh0REeHRgByOX7BdqVatmiFoj42NNfSaduT4IdvVrYBpcfwS4ux28rQUL17crd4ZWalBgwaGacfBGbOD4+vcoUMHj4/pe++919CrMq3Xef369YZRyYsUKaKHH37Y7f00b95clStX9qhtGeX4Q0OnTp3cXjcgIMCtOotZxcfHx1B7PTIyMt0eqzktJ451TwUHBys8PNw+vX//fkOvMXe0atXKoxqtjsHH4cOH01zWMUS77bbbVLFiRbf39fTTT2dbqZDcKDv/Xnn7euHN63ZavHWNc3wt3Rk4b9euXYYwNjAw0GVN96zgLBB2xZNzfefOnYbPewULFtSjjz7q9r6KFSumNm3auL18VnvsscfS7RGfwtk4Ip68ro7ruxqM8LfffjNMV6tWzaPe6bVq1dKtt97qcpspvP35x2q1atmyZYZ5WfE5OvUAlADyJwbMAwA3OPvwm/rDoDc5foBzp1eGM7Vq1bIHNzabTTt27HBr4DyLxWL60Jze8uXLlzfU9ExrsLnIyEhFRETYpwsUKJBuDVdnHHvxbdu2ze11Gzdu7NEAe+m5dOmSDh06pKioKMXExOjatWumOpeOo6G7CiuyimNgkJHjqHDhwqpYsaL9S1pERIRiYmJUqFAhw3KpazpL0h133OH2F8oUbdq00eeff+5xGz1x5MgRwxd1X19f3XnnnR5to3Xr1hozZkym22K1WnXixAkdO3ZMV69eVUxMjNPbth0HPjt16lS6t05nl7i4OEVEROj8+fOKiYlRXFxcuqPee+NYTy0xMVFHjx7Vv//+a39dU9e4TZE6LE5MTNS5c+c86iXqyTVSkqncTerb7h05nk+e1t4vVaqU6tatmyuD+6yWnX+vcuJ64c3rtjNhYWGqVq2ax/vMiMcee0xjxoyx34n0119/6dixYy5/KHHsdfzQQw8pJCQkW9tZrVo1t3qRpnC8jqR1fEnmH9caNWrk8V1vLVu2NP3o4C2e9HZNGfQvhcVicVmuwlGZMmUM066uoSmDmaa455573N5Pivvuu89wPjpuM4W3P//s3bvXcExVrFgxQ58JHD9Hb926Vd26dfN4OwBuHITHAOAGZz17rl69mgMtMX+ZOHnyZIZqcp48edIwfe7cObfWK1y4sMf1nh2/lKb12u3YscMQrAYHBxsG2HKXY2DlrGZ1WrLii/Hu3bu1cOFCrVy5UmfOnPF4fVdferJCbGysIaSXkmt3HjhwwONtpe6Vb7VadfHiRdP7nTqIkeRxT/mMruMpx3aGh4e7dRtrapUrV1ZQUFCGflxKTEzUzz//rJ9++knr16831Ll0l6sgIjucPXtW33//vX7++WcdPHgw3bDYUXYf61JyqL1kyRItXbpUW7ZscVmbMi2evq6e1D6X3L9GSll3PuWH8Dg7/155+3rh7eu2M94KjqXk965t27b2Wu42m03z5s0zDRSZ4urVq6Yel94oWZG6hrQ7PDnXHXslZ6RciDf+dqbFk9fG8XN2cHCwR8G/4/rOys2lcKzznfpOPHc5rnPixAnFxsaa2uHtzz+O13V/f/8MfUe4ePGiYdqTz9EAbkyExwDghtR1RVN4OqjZk08+qebNmzt9bO3atW7X5b1w4YJhesGCBVqwYIFHbXHG3ecTHBzs8bYdB3Fy1tNPMj+3CxcuaOTIkR7vz5En75UnPYgcXblyRaNHj9bixYtNvYs94epLT1a4ePGiqX0ff/xxlmw7KirK1Mslde88ydzDyB2ehnEZkRXt9PHxUZkyZVzeMuvMli1bNHz4cFMdRk9l97GTwmazadq0aZo8eXKGQu4U2d3eNWvWaNSoUZnu4expOz3tHeh4jUwrhE9ISDC93p6GVxldJy/Kzr9X3r5eePu67Uxm/j5mxDPPPGMYCHThwoUaOHCg056bixYtMoTwderUcVoKIat5eoy5e65L5h/XSpYs6dG+pORSXDnFk+ugYymd3H4NdfaZ5PLly6bw2Nuffxw/Rx88eNDrn6MB3JgIjwHADc5uV46IiPDoduHbbrtNt912m9PHLly44HZ47PhBNKtcu3bNreXcGZQpo7Lrw6kn4VZGB8qLjo5Wt27dsmRQkcwEz+7Izi8Bzo4jxy/AGRls0hsDVDr2Ls3oPj0NE9atW6cXXnjB7XPQFU97/mbUsGHDsuRHq+w81hcuXKihQ4dmyWvi6Tay6zrp7NzNyHGakVA1L8rOv1fevl54+7rtjLcGkk1RpUoVNWvWzD5oZWRkpH7++Wc99thjpmUdayI/9dRTXmmjN48xd3qHO8qpwZ2lzL02efEaevny5XTLZ2T355/c8DkawI2J8BgA3FC1alX5+/sbbnd2NUJ2dsrILdfuyO7A0h3Z9dy84f333zcFx2XKlNGDDz6ohg0bqkKFCipZsqQKFiyoAgUKGHrZbNiwQc8++6zX2pqdr7M7x1FGvhTmxPGZ0S+vnrQ1KipKgwYNMoU3TZs2VatWrVS7dm2VKVNGRYsWVYECBUw97oYMGaKFCxdmqJ0ZtWjRIlNwHBQUpAceeEBNmjRReHi4SpUqpcKFC6tAgQKmGuLVq1fP9jYeO3ZMI0aMMIS+vr6+atmypW677TbVrFlTpUqVUlhYmAICAkyva5cuXTweSCwvyQ3X+xtNdl8vcvq6nVM6d+5sD4+l5JDYMTz+559/DCU9goODPRqULLdyvC45G7w5PXn5c5W3ZOTczej5nt2ff3i/AWQXwmMAcENAQIDq1aunzZs32+dt27ZNSUlJplvlsltoaKih9ticOXM8GpQkN3OsTdm8eXN9+eWXOdMYDxw7dswU4D333HMaNGiQW4PveXvwRcfX2d/fXzt27DDdNppVHOsWZqQurzfKMTj2JMpo/WBP6qHPmjVLkZGR9umQkBB99tlnatasmVvre/vYsdlsGj9+vGFes2bNNG7cOIWFhaW7vrfKakycONEQtJQtW1aTJ092u2aot9rpKWf1e69evaqiRYt6tJ2cqtnvqdwcanr7euHt63Zucffdd6tMmTL20jNbtmzR/v37DT9COdZ0bdu2rcf1p3Mjx2MsI+ett+vg53bOrqEZeY2c1et3tm1vf/5xbMPjjz+ud9991+N9AoCjG/vTBgBkobvuusswff78ef32229eb4djQOM48F1e5hiAnDhxIoda4plVq1YZQo4mTZro9ddfdys4lmQID73B8XW+fv16hgb2c5djncxTp055vA1vHOdZ0U6r1epRfd2VK1capt944w23g2PJ+8fOrl27DK9LSEiIPv30U7eCY8k77U1MTNSvv/5qmPfBBx94NNhUdpUHyqyAgABTKPbvv/96vJ2MrJMRjr3s0qofnBZvDKiYUd6+Xnj7up1b+Pr66sknnzTMS12i4tKlS1qxYoXhcW8MlOcNjuNtHDlyxONtOA66l98FBASYyq9k5Hro7DOJs/DY259/8urnaAC5H+ExALjp0UcfNYWBjjX2vKFmzZqG6U2bNnm9DdnF8bmdPHky0wNdeYPjyN2PPvqoR+vv3LkzK5uTrtDQUNOgLdl5HDmWKdizZ4/H28jIOp5ybOfhw4c9rvN35MgRt3sDJyYmGgbI8/Pz04MPPuj2vpKSkrzyuqTmeKy3atXK6RfmtHjjWD99+rQhdCxdurSaNm3q9voXL170WriaEXnlfJLMtTo97SmfkaDFW7x9vfD2dTs3eeKJJ+Tv72+f/vHHH+2v2/fff2+4y6BJkyaqUqWK19uYHerUqWOY3rZtm8fb2LFjRxa15sZRrVo1w3RGytA5rlOhQgWnNcG9fb12/JF0586dio+P93ifAOCI8BgA3FSqVCk98MADhnm//fabVq1a5dV2tGjRwjC9Zs2aG+aDYYUKFUyDE/7yyy851Br3Xbx40TDtOGCKK1arNUM92B3LpXjao6958+aG6Z9//tnjNrirfv36huk//vjD49qNq1evzsomOVW5cmVDEJqUlOT2QJYpPGlnZGSkocd6WFiYAgMD3V5/48aNHt/GnNnj5tKlS4ZpT0eOd+wRnB0ycz5K3mljZjieT56eG2fPnvXaD1aOt917egdBbq477e3rheTd63ZuUqxYMd1///326atXr2rJkiWy2Wz67rvvDMveKL2OJalhw4aG6SNHjmjv3r0ebWPp0qVZ2aQbguPr6ngHkDuWL1/ucpspvP35p3Hjxoa7U2JjY3PkLkkANx7CYwDwwIABA1SgQAHDvLfeektnz571Whtatmxp+GB46dIlff31117bf3a77777DNPTp0/PtfVHU6TuESV5dqv1L7/8kqFejo6jrnsaIjq+zr/++mu29VBq1qyZoUfO5cuX9dNPP7m9/t9//+2VW28tFotatWplmDd37ly3109ISND8+fPdXt7xuImJiTEM8JaeGTNmuL1sisweN5k51k+fPq1ly5Z5tL+MyEwbk5KSNGvWrKxuUpZyLKG0bt06HTt2zO31v/nmG4+Os8wIDw83TG/fvt3tfcfFxenHH3/MjmZlCW9fLyTvXrdzm86dOxum582bpz///FPHjx+3zytWrJjatGnj7aZlm7Jly6pRo0aGeZMmTXJ7/ZUrV+rAgQNZ3aw8z/G8PXDggEc/VO3bt8/U6//OO+90uqy3P/8EBASY2jJhwgSvXfMB3LgIjwHAAxUqVNArr7ximHfhwgU9/fTTOnTokFfaULRoUVPPmvHjx2fodsYUuWlQoueee87wQfvChQsaMmRIrmqjo9KlSxum3e3lcf78eY0ePTpD+yxWrJhh2tPjr1WrVqpbt65h3quvvpqpmrRpvUeFCxc2lWMYM2aMW3Vlr127luHXKCMca2tu3LhRS5YscWvdadOmGYKM9BQpUsTUQ8jdL7ALFizQH3/84fa+UhQvXtww7WkoX6pUKcP0n3/+6Vbv5aSkJA0ePNgrI8E7no+HDx92u+7jhAkTcn3Y0qxZM1WqVMk+nZiYqFGjRrl1jTxy5Ii++OKLbGydUc2aNQ1h/oULF9zu2f3xxx/n2trTKbx5vZC8e93ObRo0aKDatWvbp/fs2aP33nvPsMzjjz+ugIAAbzctW3Xq1MkwvWLFCi1YsCDd9U6ePKlRo0ZlV7PytObNm+vmm282zBs1apSuXbuW7rrXr1/XW2+9ZThvSpYsqXvvvdfp8jnx+eeFF14w1Jvfv3+/PvjgA4+3kyKvXCMAZC/CYwDwULdu3fTII48Y5v3777966qmnNH36dLc+fKZ24sQJj+sWPv/88ypZsqR9Oj4+Xj179vS4V9/hw4f19ttv6+OPP/ZovexUrFgx9e7d2zBvxYoV6tu3r0dfkBMSErR48WK1a9fOdKt9VmvSpIlhesmSJekGyCdOnFCXLl1Mt9i7q1atWobpefPmefwB33FQv2PHjqlTp07at2+f29uw2Wxav369+vbt67KES48ePQxf6s+fP69evXrp8uXLaa4TFxenl156yVAXOLvdcsstpvdz2LBh+vvvv12ut2DBAk2YMMGjfVksFt16662GeaNHj3b5mkjSwoUL9dZbb3m0rxTVq1eXj89/H/+OHj2a7nNLrUmTJoYvpSdOnND48eNdrhMbG6uXXnrJayUIihUrZqh5arPZ9Oabb7q8Vdhms2nKlCke9erLKRaLRX369DHM+/PPP/X222+7DPJPnDihHj16eLXMUWBgoKmX37vvvqtz5865XG/ixIl54o4ab14vUnjzup3bOAapqX/88vHx0RNPPOHtJmW7hx56yFQSYfjw4Zo0aVKa17S///5bXbp00blz50x3yyFZ3759DdMRERF68cUXXdYgj4+P16BBg0ydNXr37m264yU1b3/+qVatmjp27GiYN2vWLL355pse1WWPiYnRnDlz1L59e4/bAODGQ3gMABnw/vvvG+rvScm3Rv/vf/9TmzZtNHLkSK1YsUJnz541fbiPiYnRrl279O2336p37966//77tWHDBo/2X7RoUU2cONHwpeDKlSsaOHCgnnzySS1YsEDHjh0zhIlWq1VnzpzRb7/9pk8//VSPPfaYHnjgAc2dO9fjQX6yW+/evZ3entu6dWu99957+vvvv02lLOLi4rRr1y4tWLBAAwcOVLNmzTR48GCvDAzVunVrQ5iflJSkF154QR988IEOHjxofx+sVqv27Nmj//3vf3r44YftI6c7hg/ucLx1ffHixWrfvr3GjBmjr776St98843hP2flCW699VYNGTLEMO/w4cNq3769+vfvr5UrV5rC7evXr+vw4cNatmyZRo0apVatWqlr165as2aNy+AqPDxc/fr1M8zbvn27HnroIc2ZM0fnz5+3z4+MjNT333+vhx9+WL///ruk5F5n3jJ69GhD7eFr167pueee04gRI7R792777Z/Xr1/Xhg0b9NJLL+nNN9+UzWZTSEiIKleu7Pa+nnrqKcN0RESE2rVrpx9++MHwY0lMTIzWrFmjHj16aMiQIUpMTFSBAgVUr149j55bwYIFTXVTn3/+efXv319TpkzRnDlzDMeNY63F4sWLm24Lnzp1qvr27at//vnH0LP433//1VdffaX777/fvh3HsDy7OL6uGzZsUIcOHfTLL78YzoXLly9r2bJl6tixo8aOHSspufZ01apVvdLOjGrXrp1uv/12w7xvvvlGHTt21PLlyw0ByIkTJzRp0iQ9+uij9hI53jyfHMsN/Pvvv3riiSe0cOFCQ0mRqKgoLVu2TE888YQ+/fRTSWnXEc1NvHm9kLx73c5tHnnkEYWGhjp9rGXLlipfvrx3G+QFPj4+eu+99wwlh6xWq8aPH68777xTb775pqZNm6Yvv/xSH330kdq1a6du3brZB5vs379/TjU9V3vooYf08MMPG+b98ccfeuihh/Ttt98azqGoqCgtXLhQjz76qKnW8e23365nnnnG5b5y4vPP8OHDTdfPBQsW6O6779b48eO1ZcsW0w+JV69e1datWzV37lz16dNHzZs316hRo3T06FGP9w/gxuOX/iIAAEf+/v4aO3asqlatqkmTJhlqiZ0/f94evKQoVKiQ/P39FRsbm+5AGTVq1DB9MXSmXr16mjRpkl555RVD74Vt27bZe0X4+PgoJCREiYmJiomJyTO3nlksFn344YeyWCyGAfNiYmI0a9Yse03SwMBABQYGKiYmxiu3w6elQIECGjp0qF5++WX7vMTERM2cOVMzZ85UQECAgoKCFB0dbao716JFC/Xs2dPjXpn33XefJk6caA+gpeTbeNMKy++44w4VLlzYNL9Lly6Ki4vTuHHj7CFCUlKSli9fbv+S5O/vr0KFCik+Pj5TPzQ8//zz2rdvn2GQp/Pnz2vUqFEaNWqUChYsKIvFYur5U758eQ0bNkyPP/54hvftiYoVK+rjjz/Wyy+/rMTEREnJX9a//fZbffvtt/L19VXhwoUVHR1tOKcsFoveeecdzZkzx/C+uNK6dWvdddddhlv5//33X73xxhuSZH/PnIX/b731ljZt2uRxzdNevXrp77//NoRaqd/v1Jo0aaLWrVsb5r322mvasGGDIfhbs2aN1qxZIz8/PxUuXNjpOVmqVCl9/PHHpp6o2eGpp57SokWLtHv3bvu8AwcOaMCAAbJYLAoODlZiYqLpWPP399fHH3+sqVOnZnsbM+ujjz5Sly5dDCVrdu/ebQ+LgoODFR8fb/qbc/fdd6tNmzaZKnXkiebNm6tt27ZatGiRfd7p06ftf+eCg4OVlJRkei9q1qypkSNH6rHHHvNKOzPKm9eLFN68bucmBQoUUPv27Z2WXrmRBspzFB4erhkzZqhnz56GvwUXL150WcLiscce03PPPaf//e9/9nn0RP7P22+/rXPnzhk+f506dUojRozQiBEj0vxMkqJOnTr63//+Z7gbJy3e/vwTEBCgSZMmacCAAYbnd+nSJU2aNMl+l01QUJACAgJy/HM0gNyPnscAkEE+Pj566aWX9P3336tZs2Yul42JiVFUVJTL4LhGjRp67733tHDhQlPPwLTcfvvt+v7779PszWe1WhUVFaWrV6+mGRwXKFDANKhRblCwYEGNHz9eb7zxhtPQU0ru4RUVFeXyA294eLhXviw98MADGjp0qHx9fU2PJSQkKCoqyhQct27dWhMnTjTcguyulC8GjnX7MqJXr16aPn16mr22rl+/rqioKJcBRNGiRU31cB35+vrq448/VocOHZw+HhcXZ/riVLlyZX355ZcKCwtL51lkrXvuuUfjx49XcHCw6bGkpCRdvnzZcE75+/vrvffeM92R4I6PP/5YTZs2dfrY1atXTcGxv7+/Ro8enebrmJ5mzZrp7bffNvSW9ETFihU1adIkpz0AExMTnZ6T4eHhmj17tqkecXYJCAjQ5MmTVb16ddNjNptN0dHRpmOtcOHCmjBhgqlHb25VrFgxffXVV2n2Pr9y5Yrpb07r1q31ySefuBV2ZKW3337bdLdEiitXrpjei8aNG+uLL75I89qf23jzepHCW9ft3KZTp06G0juSVK5cObVs2TKHWuQdDRs21HfffefW3Rv+/v7q37+/PvzwQ9NdWiEhIdnVxDyncOHCmjFjhjp06OD0mujsM0mK++67T7Nnz1bRokXd2ldOfP4pWrSoZs6cqV69eqVZCzw2Njbdz9E1a9bM0P4B3FgIjwEgk2rVqqVZs2Zp4cKFevbZZ92+bdLf31+1a9fWc889p8WLF2vx4sXq0KGD6UtReipUqKCvv/5as2fPVps2bdz6sl2kSBHdc889Gj16tNatW2e6rTg36datm3799VcNGDDAraDUYrGoRo0aeu655/Tdd9/p559/NtzumZ26du2qOXPmpPtjQs2aNfXJJ59o0qRJhsEBPRUeHq4ffvhB48eP12OPPabq1asrNDTUZe29tLRo0ULLly/Xhx9+qMaNG7u1jXLlyqlDhw6aNGmS/vjjD7duMffz89N7772nGTNmqH79+mkuFxoaqr59+2rhwoWqUKGCR88lq7Rp00bLli1Tu3bt0nyffHx8dNddd+mHH37IcF3AwoULa+bMmRo6dKjLcNXf318PPfSQfvzxR1M9Q0898cQTWrFihV599VW1atVK5cqVU6FChdy+/tx6661atGiR2rdv7/JYKVmypAYOHKhFixapYsWKmWqzp0qVKqXvvvtOL774Ypq3ukvJPa+efPJJLVu2zDRKfW5XvHhxffvttxo2bJjLvz2VKlXS+++/r0mTJhkGafSWwMBATZw4USNHjnR5jJcuXVpvvvmmR6FMbuGt60Vq3rpu5yYVKlQwDBgpJV/PPP3slBdVqVJFs2fP1owZM9SxY0dVrVpVISEh8vPzU1hYmBo3bqyXXnpJq1atUr9+/WSxWEwlTAiPjQICAvTee+9pwYIFat26tcvrY0BAgG6//XbNmTNHn376qcef33Li84+fn58GDRqk1atXq0ePHrrpppvSXcfX11cNGjTQCy+8oKVLl2ru3LmZagOAG4PFllfuYQaAPOTChQvav3+/Tp06pcuXLys+Pl6BgYEKCQlRSEiIypUrp2rVqmXLqOBJSUnas2ePjh8/rqioKEVHRysgIECFChVS6dKlFR4ervLly+fZL1oXL17Uzp07dfHiRUVGRioxMVFBQUEqUqSIKlWqpCpVquSK3mrnzp3T5s2bdfbsWcXGxqpgwYIqU6aM6tatq3LlyuV089IVFxen7du368yZM4qKilJsbKyCgoJUuHBhlS9fXlWqVFGJEiUyvZ+TJ09qx44dOnfunK5du6bQ0FBVrVpVDRo0yFCP7OwSFxenjRs36vTp04qMjFTBggVVvnx5NWrUKEtDLqvVqn379mn37t2KjIyU1WpVcHCwKleurAYNGmTqx4bscvXqVW3ZskUnTpxQdHS0/Pz8VKJECVWvXl01atTwei9XZ65fv65du3bpwIED9l6goaGhqlKliurVq5ct1+KcsGvXLh08eNA+IF3JkiVVq1YtVatWLYdb9h+bzaZ9+/Zpz549unTpkpKSklSsWDHVqFFDderUyRXHS2Z563rhbL/euG7npAMHDhgGLfb399fatWtVvHjxHGxV7rVkyRK9+uqr9ul7771Xn332WQ62KHdLSEjQli1bdPr0aV26dElWq1VFixZV6dKl1ahRoyz98S2nPv+cPn3a/hkjMjJSNptNhQoVUlhYmCpVqqTw8PAc+ZERQO5GeAwAAAAAyPVGjRqlOXPm2KcfeOABjRs3LucalMu9/PLLhjq7gwYNUq9evXKwRQCAvChvdjsDAAAAAOQbV65cMQy8KEnPPPNMzjQmDzh06JBWrFhhmNeiRYscag0AIC8jPAYAAAAA5GozZ840DABXo0YNtwaQuxG4GnDZmUuXLmnAgAFKSkqyz6tbt67q1KmT1U0DAOQDhMcAAAAAgFxry5Yt+vzzzw3zevfunUOt8b5u3brp3Xff1d69e10uZ7VatWrVKnXo0EERERGGx/r06ZOdTQQA3MCoeQwAAAAAyBUOHz6sDRs2SJKio6O1Z88erVixQlar1b5M7dq19f33398QAyy647HHHtO+ffskSWXLllXdunUVHh6u0NBQ+fj4KDo6WkeOHNE///yjM2fOmNZ//PHH9e6773q72QCAG0TuGcYcAAAAAJCvbdu2TSNHjkzzcX9/f7333nv5Jjh2dOrUKZ06dcrt5R999FG99dZb2dgiAMCNjvAYAAAAAJDrBQYG6uOPP1aNGjVyuileFR4erv3798uTm4bLlSunPn366IknnsjGlgEA8gPKVgAAAAAAcoUffvhBb7zxhn06MDBQ5cuXV4sWLfTss8+qQoUKOdi6nHP69Gn9+eef2rp1qw4fPqzTp08rOjpa8fHxKlCggIoUKaISJUqoQYMGatq0qe688075+dFXDACQeYTHAAAAAAAAAAATn5xuAAAAAAAAAAAg9yE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgIlfTjcA7omMjMzpJmQ7i8Wi0NBQSVJUVJRsNlvONghAmjhfgbyBcxXIOzhfgbyD8xXIO/Lj+RoWFpal26PnMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BoBcqG3btmrWrJmaNWumUaNG5XRzPHbq1Cl7+5s1a6alS5fmdJNyZZsAAAAAAMjNCI8BAAAAAAAAACZ+Od0AAADym99++00HDhyQJAUHB+upp57K4RYBAAAAAGBGeAwAgJf99ttvWrZsmSSpdOnShMcAAAAAgFyJshUAAAAAAAAAABPCYwAAAAAAAACACeExAAAAAAAAAMCE8Bh5yvYdNq+uBwAAAAAAAORXDJiHPGPGTKtmzpL69JI6d7K4vd7Xc22aMs2m7l1t6tGd30tSJCYm6uDBgzp8+LCioqJ07do1BQQEqHDhwipTpowqV66skiVLerTNuLg4HTp0SMePH1dUVJTi4+NVqFAhhYWFqWbNmipfvnyWPofjx49r//79OnfunKxWq8qVK6fGjRurSJEiaa5jtVq1Z88eHThwQNHR0SpUqJBuuukmNWrUSP7+/pluk81m065du3TixAlduHBBQUFBKlu2rBo3bqwCBQpkevvuunbtmnbs2KGzZ88qMjJS/v7+Cg0NVY0aNVS5cuVMbfvy5cvavHmzrly5IqvVqsKFC6tq1aqZ3m5WtOncuXNKSkpSyZIls7RN586d05EjR/Tvv//q6tWrkqSQkBCVKlVKdevWVeHChbNkPzda2wAAAAAAeRvhMfKE7Ttsmjkr+d9TpiX3InYnQE4JjiVp5izplsY21a/nfvB8I4qJidHMmTP1008/KTIy0uWyJUuW1B133KGePXsqLCzM6TKnT5/WqlWr9Mcff2jPnj1KTExMc3tlypTRU089pXbt2ikgICDdti5dulSjR4+2T//www8qW7asNm7cqM8//1w7d+40rRMQEKDHH39cffv2NYXBP/74o2bMmKGzZ8+a1itSpIheeOEFPfbYY+m2a9SoUVq2bJkkqXTp0lq0aJEk6fvvv9ecOXN06tQp0zpBQUFq27atnn/+eRUsWDDdfWRURESEpk+frvXr1ys+Pt7pMmXKlFGXLl306KOPys/P/T8D586d0/jx47V27VolJSWZHq9Vq5b69u2rW2+9NcPt91R2tclqtWrbtm1atWqVNm7cqJMnT6a5rI+Pj5o0aaKuXbuqYcOGaS63efNm9evXzzT/zJkzatasWZrrrV+/PtvbBgAAAACAM4THyBPq17OoT6//gmN3AuTUwbEk9ellyffB8fHjx9W/f3+dOXPGreXPnTun77//Xg888ECa4fHgwYMVERHh1vZOnz6tsWPHasWKFfrggw9UokQJt9ueYs6cOZowYYJsNuelSBISEjR37lwdPHhQn3zyifz8/JSYmKiRI0dq1apVaW738uXLev/993X27Fn16tXLozYlJibqrbfe0urVq9NcJjY2VnPnztXvv/+uiRMnqlSpUh7tIz02m00TJ07U3LlzZbVaXS57+vRpffTRR/r555/10UcfpfneprZt2zYNGjRIMTExaS6zZ88eDRgwQP369dNdd93l8XPwVHa26eDBg3rhhRfcWtZqtWr9+vXasGGDunXrpt69e7u9n4zIzW0DAAAAANxYCI+RZ6QExe4EyM6CY09KXdyIEhIS9OqrrxqC46CgIDVo0EA33XSTChUqpMTEREVHR+vo0aM6cOCAy1DOmdKlS6tKlSoqW7asChUqJB8fH0VHR+vQoUPasWOHvWfo7t27NXjwYE2bNs2jUhGrVq3SpEmTJEmFCxdW06ZNVb58eSUlJSkiIkKbNm2yB6cbN27UzJkz9fzzz+vDDz+0B8elS5fWrbfequLFiysuLk5btmzRgQMH7Pv44osv1LhxYzVu3Njtdk2ePNkeHAcHB6t58+YqU6aM4uPjtX//fm3fvt3erpMnT6pfv36aMWOGy/IanrDZbBo2bJgpvK5WrZpq1aqlsLAwJSYm6uTJk9q0aZO9tMHOnTv1wgsv6IsvvnDZG/rAgQN65ZVXFBsba59XoEAB3X777QoPD1dsbKwOHz6sTZs2KTExURMmTHCrZ3lmpNWmpk2bqmLFirJarVnWJj8/P1WpUkWVKlVSsWLFVLBgQV2/fl0XLlzQrl27dPz4cUnJ78PMmTMVEhKip59+2rQdi8UiX19fScmhbuofQFLm51TbAAAAACAnbd+RsTvFM7oe3Ed4jDzFnQCZ4Ni5VatW2YMkSXrkkUf08ssvq1ChQk6XT0xM1LZt27Ro0SKXpQ0qV66shx56SC1btlTZsmXTXO7SpUuaPHmylixZIknau3evvvnmGz377LNuP4dp06ZJkjp06KAXXnjB1Pbt27dr0KBB9nB07ty5KlOmjJYsWSJ/f38NHDhQbdu2lY+Psfb1/PnzNWbMGPv01KlT7ftKz8WLFzV37lxJUrt27dS/f39TEBsREaHhw4fr6NGjkpID5PHjx2vEiBFuP3dXvvzyS0Nw3KhRIw0aNEhVqlQxLRsTE6OpU6fqu+++kyQdOXJEY8aM0bBhw5xuOzExUe+8844hpG3RooWGDRtm335UVJRsNptOnTqlkSNHaseOHfrss8+y5Ll50qY333xTxYoVMyyb0Tb5+vqqVatWeuihh3TLLbcoKCgozWW3bdumDz74wP7+Tpw4Ua1btzbVDG/UqJHWrVsnKe3SJznVNgAAAADIKYxxlbvxyiLP6dzJoj69/ruYTJlm09dzk8NiguO0bdq0yf7vm266SW+88UaawbGU3KPxlltu0ejRo1WjRo00lxs1apSeeuopl8GxJBUtWlRvvvmmOnToYJ+3YMECp3Vq05KYmKgnn3xSr732mtO2169fXy+++KJ9Oi4uTu+9954kafTo0Wrfvr0pOJakjh076t5777VP79ixw2ndYmeuX78um82mdu3a6fXXX3fag/fmm282lapYtmyZ9u3b59Y+XDlx4oSmT59un27durU+++wzp8GxJBUqVEivvPKKunbtamhL6h8WUlu6dKmhLMktt9yijz76yBTSSlLZsmU1btw4VatWTQkJCRl9SunyRpuqVKmiDz/8UC1btnQZzkpSgwYNNHXqVHsgm5iYqAULFri9L0/l5rYBAAAAgCccx7hKyXfS4zjG1fYd7q0HzxEeI09yFiA/+KiV4NiFS5cu2f9drVo1pyGqNzz33HP2fZ87d87teslS8gB+qcNhZ+6//34FBgbap61Wq1q3bq1WrVq5XM9xoLxdu3a53a4SJUqof//+LpcpVqyYBgwYYJj3ww8/uL2PtMydO9cewBctWlRDhw51qwRCz549Vbp0aUnJr9HixYudLrdw4UL7v/39/TVkyBCXPdGDgoL0xhtvePIUPJYb21SkSBE9+eST9umUHsa5QW5uGwAAAID8LXmMK+cdBNPCGFfeRXiMPMsxQI6O/u8xgmOz1D1iIyIi0h1ULbsUK1bMMECbJyHtww8/nG6N5MDAQFOv2/bt26e77dq1a8ti+e+YOXLkiNvtevTRR13WDE5x11132QNbSfrtt9/c3oczSUlJWr58uX36oYcectmbPDV/f3+1bNnSPr1582bTMmfOnNH+/fvt0y1atFD58uXT3XbNmjVVr149t9rhqdzYphSpj7sjR44YymrktNzcNgAAAAD5m6s7zB1xx7n3UfMYeVrnThbNnWczBMchIZ7VyMkvatWqpbVr10qSjh07pnfffVf9+/fPskHbrl+/rnXr1mnDhg06ePCgzpw5o9jYWF27ds20bOpSFefPn3d7H/Xr13druZIlS2r37t2SkuvD1qlTJ911AgMDFRISosuXL0uSrly54na7br/9dreWs1gsatGihb3H8eXLl3XixAlVqFDB7X2ltn//fkMI2KBBA4/WT73fiIgI2Ww2Q4DuGOzfdtttbm/7jjvu0I4dOzxqjztyok3nz5/XqlWrtGvXLh0+fFhRUVGKjY1VYmKiYbnUA+BZrVZduHBBN910k8f7u1HaBgAAAADuYoyr3IvwGHna13ONwbGU3AP567k2LiAOHnnkEX311Vf2weR++uknrVq1SrfeequaNGmi+vXrq2rVqm6VPHC0dOlSTZw4UZGRkR6vG+34Brrg7iBfqXsBh4SEqECBAm6vlxIex8XFubWOj4+PwsPD3VpWSi4ZktqRI0cyHB4fOHDAMD148GCP1k8dKCYlJSkmJkaFCxe2z0sZZC3FzTff7Pa2HZ9nVvFmmy5fvqyJEydq6dKlGeqp78mx7anc3DYAAAAAyAhXATLBcc4hPEae5XjhCAn5r3SFs1+o8ruwsDC9//77euONN+wBcnx8vP7880/9+eefkpJrw9arV0/NmzdX69atVbx48XS3O27cOM2bNy/D7fJkEDN3Q+DMriMZg1VXChcu7NE+ihYtapj2pIezo6ioKMO0J4MPOnP16lVDeOzYttTlRtLj+DyzirfadPHiRfXr188UVnsiuwYNzM1tAwAAAIDMcBYgO95xTnDsXYTHyJPS+sUp9XwCZLNbb71Vc+fO1cyZM7V8+XJT3dPY2FitX79e69ev16effqoHH3xQL774YpqlLVatWmUIjn19fXX77bfr9ttv180336ySJUsqKChIBQoUMJRDaNu2rc6cOSPJ/ZA2t0o9OF9Glne3h7MzmQmenXHswep4fLhT1zmFp6+Lu7zVpnfffdcQzoaFhemBBx5Qo0aNVL58eRUvXlwBAQEKCAiwL7N582b169fPPp1dx3ZubhsAAAAAZJZjgExwnLMIj5HnuLpVwZ0aOfldyZIl9frrr2vAgAHaunWrtm3bpp07d2r37t2Kj4+3L5eUlKQlS5Zo48aNmjZtmkqVKmXa1vTp0+3/DgwM1Lhx49yqu5uZwDS3cVbT2ZPlPQk/HTmGofPnz89wCQxngoKCDNNxcXFu18j29HVxlzfatHv3bv3111/26QYNGujjjz829Mp2xhvHdW5uGwAAAABkFca4yj18croBgCfcqXHjySid+VlgYKCaN2+uvn37atKkSVq9erUmTpyoDh06GAK6s2fP6p133jGtf/LkSUPvx86dO7sVHF+/ft1eNuNGEBMT41EJgEuXLhmmg4ODM7zv0NBQw/S///6b4W0549g2T2paOz7PrOKNNqWUcZGSBzkcMWJEuuGsJ9vPjNzcNgAAAADIKq7GuIJ3ER4jz/CkODoBsuf8/PzUuHFjvfbaa5o7d65KlChhf+yff/7RqVOnDMsfP37cMN28eXO39rN///5M1+bNTZKSknTo0CG3l4+IiDBMV65cOcP7dlx369atGd6WM5UqVTJMO7bdFU+W9YQ32pT62K5YsaLKli3r1np79+51uy0ZlZvbBgAAAABZwdkYVynId7yP8Bh5wvYdno+q6SxA3r6DC4w7SpcurWeffdYwzzF4c6y3624P2tWrV2eucblQ6t6grthsNq1bt84+XaRIkUyVmahXr55hsL7Vq1dnaTBfp04dw3Tqtqfnjz/+yLJ2pOaNNqU+tt09rhMTE/X777+73RY/v/+qRjnWms7ptgEAAABATnHWcXDZjz50EMxBhMfIE+rXs6h71+R/e1IcPXWA3L1r8nbgnnLlyhmmr1+/bph2rD17+vTpdLd54cIFLVmyJPONy2WWLFniVj3dtWvX2gcKlKRWrVplar8BAQGGbZw8eVKLFy/O1DZTK126tKpVq2af/uuvv9wqjbFv3z7t2LEjy9rh7TalPrZTv1+uLF68WBcvXnRrWcd9eDLwoTfaBgAAAAA5Ib0xrgiQcwbhMfKMHt19NPFTz0fV7NzJoomfWtSje/4+3Hfv3u3R8tu2bTNMlylTxjBdpUoVw/SPP/7ocnsJCQkaOXLkDVXvOMW5c+c0YcIEl8tcunRJ48ePN8xr3759pvf93HPPycfnv2N7/PjxHpevOHXqVJoBbOo2Xr9+XR988IESExPT3FZcXJzef/992WzZ90c8u9sUHh5u//f58+cNA9Q5c+DAAU2cONGtbadIfT7FxcXpyJEjuaZtAAAAAOBtjHGVe+XvNA15TkZ7DtPjWHrzzTf1zDPP6Ntvv9XZs2fTXM5qtWrRokWaM2eOfV6pUqVUs2ZNw3Jly5Y1BMirV6/WlClTnIZ4x48f14ABA/TPP//Ix8fHUGohr/P395fFYtGCBQv0v//9z2kP5IiICL344ouGnqIPPvigatSoken9V6pUST179rRPx8fH66WXXtKMGTNcBvXXr1/Xn3/+qWHDhqljx446ePCg0+Uefvhh3XzzzfbpTZs26fXXX3c6ANvp06c1cOBA7d+/XwEBAZl4Vq5ld5tatmxpmB41apTpx5QUK1eu1IsvvqjY2FgVLFjQ7edQt25dw/SHH36offv2pVt2xBttAwAAAABvYoyr3M0v/UUA3CgOHTqksWPHaty4cSpXrpyqV6+uEiVKqHDhwrp+/brOnDmjLVu26Pz584b1Bg4caOjdmqJ3794aPHiwffrLL7/Uzz//rKZNm6pEiRKKiYnR/v37tWPHDnso1rVrV/38889u33Kf2xUrVkytW7fWnDlz9P3332vFihVq3ry5ypYtq/j4eO3fv1/btm0z1LUtX768BgwYkGVt6N69u06ePKlly5ZJSq5x+/nnn+urr75S3bp1FR4eruDgYMXHxys6OlpHjhxRRESEW6U2/Pz8NHz4cPXp00exsbGSkusMt23bVi1btlTlypUVGxurw4cPa+PGjfYfD1566SWNGTMmy56jO21q166dmjVrpooVKyopKUlHjhzJUJtq1KihVq1a6bfffpMkRUVFqU+fPqpfv75q166twMBAXbx4UZs2bbIPJBkYGKg+ffpo7Nixbj2HWrVqqVq1ajpw4ICk5J7+3bp1k4+PjwICAmSx/Pdh6Ndff/Vq2wAAAADAWzI6xpUk+3pTptlUtw4dB7ML4TGQD9lsNp08eVInT550uZy/v79ee+013XnnnU4fb9mypZ577jl98cUX9nlnz55Ns4RF+/bt1atXL/38888Zbntu1LdvX506dUq//vqrrly5ohUrVqS5bPny5TVx4kQVKVIky/ZvsVg0YsQIhYeHG3p/x8fH659//tE///yT7jb8/f3TfKxatWr65JNPNGjQIMXExNi3vXLlStOyPj4+6tu3r2677bZsC49dtSklVM1sm4YNG6Z///3X0CN7+/bt2r59u2nZoKAgvf/++4ZB8NwxcuRIDRgwwPBjjdVqTTfU90bbAAAAAMAbkse4smnmLM/HuJKSg2PGuMpelK0A8omRI0fqqaeeUnh4uKFXozNBQUF64IEHNHfuXD366KMul+3Vq5dGjx6t8uXLp7lMrVq19N5772nw4MHp7jsv8vPz0/vvv69XXnlFpUuXdrpMUFCQnn76ac2ePVulSpXKlnZ07txZCxYs0OOPP67Q0FCXy1osFlWtWlVdunTRN998oxYtWrhcvkGDBvrmm2909913y9fX1+ky1apV09ixY9WlS5eMPgWPZGebgoOD9fnnn+vJJ59Ms8xKYGCg7r33Xs2ePVtNmzb1uP3h4eGaO3euBg4cqGbNmqlUqVIKDAxM9xzxRtsAAAAAwFsY4yp3s9iyc1QjZJnIyMicbkK2s1gs9sArKioqWwfcyu+uXLmiQ4cO6dSpU4qMjFR8fLwKFCigIkWKqFKlSrr55ps9rktstVq1f/9+7d+/X1FRUSpYsKBKlCihatWquQyW86JRo0bZS0SULl1aixYtsj9mtVq1c+dOnThxQpcuXVJQUJDKli2rRo0aKTAw0GtttNlsOnjwoA4dOqTLly8rJiZGBQoUUEhIiMqXL6/w8PAM936OiorSli1bFB0dLavVqsKFC+vmm29W5cqVs/hZeNamzZs36+zZs7LZbCpRokSWtSkmJkbbtm3TyZMnFRcXp7CwMJUoUUINGjRQUFBQFrT+xmwbcgf+tgJ5B+crkHdwvgJ5R348X8PCwrJ0e4THeQThMZB7uAqP8wvOVyBv4FwF8g7OVyDv4HwF8o78eL5mdXhMv24AAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwsNpvNltONQPoiIyNzugnZzmKxKDQ0VJIUFRUlDk0g9+J8BfIGzlUg7+B8BfIOzlcg78iP52tYWFiWbo+exwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAAAADAhPAYAAAAAAAAAmBAeAwAAAAAAAABMCI8BAAAAAAAAACaExwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAAAADAhPAYAAAAAAAAAmBAeAwAAAAAAAABMCI8BAAAAAAAAACaExwAAAAAAAAAAE8JjAAAAAAAAAICJX043AAAAmDVr1sz+7x49euj555/PwdbkLp9//rlmzJhhn16/fn2ay/bt21dbt26VJDVs2FCTJ0/O9vYBAAAAwI2CnscAAAAAAAAAABN6HgP5yIEDB/Tbb7/Zp5966ikFBwfnYIsAAAAAAACQWxEeA/nIgQMHDLd6P/TQQ4THAAAAAAAAcIrwGACAXMhVHV+4jxrHAAAAAJBx1DwGAAAAAAAAAJgQHgMAAAAAAAAATAiPAQAAAAAAAAAm1DwGkCXOnj2rPXv26OLFi7p69arCwsL00EMPyc8v5y8zBw8e1KFDhxQZGamEhAQVKVJE5cuXV926dRUQEJBj7Tp+/LgiIiJ04cIFxcXFqUyZMrrvvvtcrhMTE6Pt27fr3Llzunz5sgIDA1W0aFHVrl1bZcuWzVR7Tp06pR07dujixYvy9fVVyZIlVaNGjUxv1xmbzabdu3fr5MmTunjxoqxWq2rXrq1GjRq5XO/cuXPatWuXLl26pKtXryo4OFglSpRQgwYNFBISkqG2xMfHKyIiQkeOHFF0dLTi4+NVoEABFSlSRGXKlFF4eLjCwsI8em6HDx/WwYMHdenSJcXFxcnf31+FChVS6dKlVbFiRZUrVy5DbXWX1WrVnj17dOzYMUVFRclmsyksLEyVKlVSzZo15eOTdb8dR0RE6NChQzp//rz8/f1VvHhxNWrUSEWLFs2yfeQGsbGx2rp1q86cOaOrV6+qSJEiqlq1qmrWrClfX99MbTsyMlI7d+7UhQsXFB0drUKFCqlYsWKqX7++ihUrlkXPAAAAAAA8l/OpDoBs16xZM6fz27dvn+Y6EydOVOPGje3TS5cu1ejRo+3TP/zwg8qWLavt27drypQp2rZtm2w2m2Ebd999t4KDgyVJo0aN0rJlyyRJpUuX1qJFi9xqe1r7TU9MTIzmzp2rH3/8UefPn3e6TGBgoO677z716NFDJUuWdKs9nvj88881Y8YM+3TKAGi///67vvjiC+3bt8+wfOHChdMMj7dt26bp06dr69atSkpKcrpMeHi4unfvrjZt2shisbjdzj179mjcuHHasWOH6TGLxaJGjRrppZdeUo0aNbR582b169fP/vhXX32l6tWrO91u3759tXXrVklSw4YNNXnyZCUlJWnu3Ln6/vvvdebMGcPyLVu2dBoeW61W/fzzz5o7d64OHTrkdF++vr665ZZb1KtXL9WuXdut533x4kVNnz5dK1asUExMjMtlK1SooJYtW6pXr14qUKCA02USEhL0zTffaOHChabn5igsLEwtWrRQ9+7dVb58eafLpD5ve/Tooeeffz6dZyRduXJFs2bN0pIlS3T58mWny4SGhuqxxx7Ts88+q0KFCqW7zbTO3d9//12ff/65IiIiTOtYLBa1atVK/fv3z5YfHzzh7Dh05tSpU4Zr4rBhw/Twww/rypUrmjhxopYvX664uDjTesWLF1fPnj3Vtm1bj9v2+++/a9asWdqzZ4/p+pmiTp06ev7559W0aVOPtw8AAAAAmUV4DCDDZs+erSlTpqQZZuaULVu26M0331RkZKTL5a5du6bFixdr5cqVGj16tFq0aJHtbRszZozmz5/v9vIJCQl6//339fPPP6e77OHDhzV8+HCtXLlSo0aNUmBgYLrrzJ8/X2PHjpXVanX6uM1m0+bNm9WrVy8NHTpUJUqUcLvtjq5cuaJXX31V27dvd3udc+fO6bXXXtP+/ftdLpeUlKQNGzZo48aN6tWrl7p37+5y+Z07d2rQoEGKjo52qx0nTpzQnDlz1KlTJ6fh8cWLF/Xyyy87DVKdiYyM1E8//aRmzZqlGR57aufOnXrttdcUFRXlcrmoqCjNmjVLS5cu1ZgxY1SjRg2P9zVu3DjNmzcvzcdtNpvWrl2r7du367PPPlPVqlU93kduEBERoddee83ljwEXLlzQBx98oAMHDmjw4MFubffKlSsaNmyYNmzYkO6yu3bt0oABA9SuXTsNGjQoV9zNAQAAACD/4BsIkA+k3FJts9kMIaGrW63T67m6evVqTZw4UZJUoEABNWrUSJUqVVJAQIDOnz+vv//+Owta7rm1a9dq+PDhun79un1esWLF1KBBA5UuXVoFChTQpUuXtGXLFh0/flxS8u3or732msaOHasmTZpkW9tmz55tD46DgoJ06623qnz58vL19dXp06e1c+dOw/Lx8fEaMGCAtm3bZp/n4+Oj2rVrq1q1aipSpIji4+N19OhR/fPPP4qPj5eU3Jtx0KBB+vTTT12+x8uWLdOYMWMM80JCQtSsWTOVKVNGCQkJOnTokDZv3qyEhAS9++676tu3b4af/8iRI+3BcYkSJXTrrbeqRIkSio+P17Fjx0yh2PHjx9WvXz9Dz/GCBQuqfv36qlSpkgoVKqSrV69qz5492rVrl2w2m2w2m6ZOnarExMQ0e+pGRUXp1VdfNQTHISEhatiwocqVK6egoCDFx8fr8uXLOnLkiA4cOGB/bdMyfPhwQ3AcEBCgevXqqXLlygoJCVFSUpKuXr2q48ePa//+/Wn2Cs6o7du3a8CAAbp27Zp9XoECBdSkSRPddNNNslgsOnbsmDZs2KCEhARJyYH3Cy+8oAkTJqhWrVpu72v69On24Dg0NFS33nqrypQpI4vFoiNHjmj9+vX2fURGRmr48OGaNWtWjpaIyYgLFy5o6tSpOn/+vCwWi2rWrKnatWsrJCREUVFR2rRpk/0aIiXfFVG3bl098MADLrcbGRmpvn376ujRo/Z5/v7+qlevnqpUqaLg4GDFxsYqIiLCcKfBwoULFR8frxEjRmTL8wUAAAAAZwiPgXxg3bp1kswlIObPn5/hW8qnTJkiKbk0xaBBg0x1ORMTE7O0rqo7jh8/rlGjRtmD47CwMPXv31/33HOP0956a9eu1fvvv6/Lly8rKSlJb731lr755huFhoZmS/tSXrPHH39cffv2NZUMSB14S8m9lFMHx3fffbdefPFFp+/ZpUuX9Mknn2jVqlWSpM2bN+vLL79Ujx49nLbl7NmzpuD4qaeeUp8+fUw9lk+cOKGRI0dq9+7d9ufgqR07digpKUkBAQF6+eWX1bZtW9Pxkfr5x8fHa+jQofbg2M/PT88++6w6deqkwoULm7YfERGhUaNG2QPcmTNnqlGjRobSKym+//57Q3jbrVs3de/ePc1yFNeuXdOmTZv0ww8/OP1RZevWrdqyZYt9ukWLFho2bFiaNX9T6hEvWbIkzX16IiYmRm+99ZYhOG7ZsqWGDBliasPFixf17rvv6q+//pKU/MPJiBEj9NVXXykoKCjdfV24cEEzZsyQj4+PevXqpU6dOplC4VOnTunVV1/V4cOHJUlHjhzR8uXL9cgjj2T2qXrVjBkzdP36dVWrVk3Dhg1TtWrVDI9brVZ98803mjBhgr3kxNSpU3Xfffelee2z2Wx6++237cGxxWJRu3bt1LNnT6fHy6lTp/Tuu+9q8+bNkpJ/8Lnlllv04IMPZuEzBQAAAIC0ER7Dbb7H/pLf7oXyuXwi2/aR+P8BX2BiYrbtIydYi1RQYu12SqqY/WURvCUpKUmtW7fWO++84zQoyYlbq99//33FxsZKkooWLaqpU6eqQoUKaS5/5513qmzZsnr++ecVHx+vyMhIfffdd+rVq1e2tC8pKUmdOnVS//79nT7u7+9v//fmzZv1448/2qeffvppDRgwIM1tFy1aVKNHj5aPj49WrFghSZozZ46eeOIJe93p1L788ktDnV9X269QoYI+/fRT9erVK82aw+lJ6T357rvv6o477nC6TOrn/9VXX+ngwYOSkntbv/fee2rZsmWa27/55ps1efJk9ejRQ8eOHZPVatXnn3/uNDzetGmT/d+33HKL+vTp47LtgYGBuuOOO9Jsd+rtFS5cWKNHj3YZxPr4+KhOnTqqU6eOy/26a+7cuYayCnfccYfef/99p73OixUrpo8++kiDBg2yl0w4efKk5s2bp+eeey7dfSX+/7V5+PDhaQaYZcuW1YcffqhnnnnG3gN52bJleS48vn79uqpUqaIpU6Y4fT99fHz0zDPP6OjRo1qyZIkk6cyZM9q6davT406SfvrpJ3vtc0kaOHCgnnjiiTTbULZsWY0fP14vvfSSvW7z9OnTdd9992V6kD4AAAAAcAfhMdzie+wvBS7sLYs1e0PdlOGCbrSvxL6nt8vvwC+61n6akm5qntPNyRJBQUEaPHiw13sXp2XXrl32cEWSXnnlFZfBcYpq1arpiSee0OzZsyUl3xr+/PPPezTgnLvKlCmTblCZIqU9klSlShXDIHWuvPLKK/rjjz8UFxen2NhYLV++XI8//rhhmZiYGC1fvtw+Xbp06XTbVahQIb322mtut9+Ze++9N80ANrVr165pwYIF9um2bdu6DI5TFC5cWC+//LIGDhwoKXmQwcOHDys8PNyw3KVLl+z/rlmzprvNT1Pq7VWsWNGtHrxZ5fr161q4cKF9ulChQhoyZIjLYNHPz09vvvmmnnzySfsAcD/88IOeffZZt370ueOOO9Lt+VqhQgXdfvvtWrNmjSRp7969SkpKynOB5/Dhw9N9P59++ml7eCwlX4uchcc2m01ff/21fbp58+Yug+MUfn5+Gjx4sDp16iSbzaZTp05p/fr1uu222zx4JgAAAACQMbkj9UGu57d7YbYHxzc6izVRfrt+yOlmZJnWrVurSJEiOd0Mu2XLltn/XaJECd19991ur9umTRv7vyMjI+2322e1Rx55xK26rxcvXjT0TuzQoYPbPblDQ0N1yy232KdTbndPbfv27fYe2pL08MMPu1U+oUGDBpka+Kx9+/ZuLffnn38aykq4E7ClaNq0qUJCQuzTzp5/wYIF7f8+cOCA29tOS+rtHT9+3FA+Irvt2rXLEF7fd999phIyzpQsWdJw3F+4cEG7d+92a5+OP0akpWHDhvZ/X7t2zeWgc7lR3bp13RpMMDw83HAtTF3LOLU9e/YYHvPkuK5cubKqVKlin3Z2XAMAAABAdiA8BpAhjRo1yukmGKTudVy3bl2PekQ79lDOikDRGXdfs9R1jqXk0NYTqZ9P6kHcUjiGhE2bNnV7254sm1pAQIDbZRpSv5ehoaGqVKmS2/vx8fEx1IR29l6mHhxuw4YNmjx5sr0Hbkak3t6VK1c0dOhQnTt3LsPb84TjIIvu9NBOcdddd7ncljO+vr6qX7++W9svU6aMYfrKlStuty038OQal/q5ph6IMbXUx7XFYnH7dUyR+rzOrmsUAAAAADiibAXckli7nfwO/ELv40yw+fgpsY57PS/zgooVK+Z0E+wSEhIMPfp+/fXXTN3SnVb4k1nuvmaOwVCXLl082o/VarX/O3UP3hT//vuvYTp1j8b0eLJsauXKlXO793Tq5x8VFeXxe5lSX1ly/l527NhRS5YssdfvnTVrlubPn68WLVrolltuUf369VWpUiW3S5e0atVKZcqU0enTpyVJf/31l9q1a6dGjRqpWbNmql+/vqpXr26o6ZxVjh8/bph2HNTNlerVqxumjx07lu46wcHBpgEV05K6R7YkQ2/3vKBEiRJuL5v6uab1Q0Tq49pms+mee+7xqD2pz+vsukYBAAAAgCPCY7glqWILXWs/TX67fsjWAfNSwqXEG3HAvDrtb5h6x1Jyfdnc4vLly7LZbPZpm81mCBA9dfXq1axolomzgeuciYqKMkxn9XNJ3QPUz8/Poxq9GS1V4snxkt3PPzw8XMOGDdN7771nH9AtNjZWq1at0qpVqyRJISEhatiwoZo3b667777bUArDUUBAgD766CO98sorOn/+vL3NmzZtsg+mV6BAAdWuXVtNmjTRPffco3LlymX4OaWW+r308fFRWFiY2+sWLVpUPj4+9lDSnUDS3eDYmdTnaF6Q0eea1vPM7uMaAAAAALID4THclnRT82wNPy0Wi0JDQyVJV6Oi8lzQkN+424vUG7I6SEndwy8rufuaZeXzcXYepQSmkjzuDZvR3rOeHC9Z+fzTei/vv/9+Va9eXTNnztTatWsNr4mUHKT+9ttv+u233zR27Fg9/vjjev7559MMFG+++WZ9/fXXmj17tpYuXWoKCuPj47VlyxZt2bJFU6dOVatWrTRgwABTaQdPxcTE2P8dGBjo0UCPFotFBQoUsPeUzWs9g/MabxzXAAAAAJDVck/6AwAZ5DjYW7du3dSnT58cak3mpX4+Pj4++u2337K05EHqXsDXrl2T1Wp1u0Z06rAyu6R+/vXq1dO0adOyZT+VK1fWqFGjdPXqVW3evFnbtm3Trl27tHfvXsPdD/Hx8ZozZ442btyoyZMnp9mLukiRInrxxRfVp08fbd++XVu3btWuXbu0c+dOw+tms9m0du1abd68WRMnTvSo1ISjQoUK2f997do12Ww2twNkm82m+Ph4+7QnPdDhudTHdYkSJbRkyZIcbA0AAAAAuIfwGIBXeNIjMjV3BjJL6bGewrGmb16T+vlYrVadOnUqS2tMp96+zWbT2bNn3e4Bm1LXNzuFhobqzJkzkrzzXhYuXFitWrVSq1atJCWHsFu2bNGqVau0cuVKXb9+XVLy4IPjx4/Xm2++6XJ7fn5+aty4sRo3biwpuTzB3r17tXbtWkOv5CtXrmj48OGaO3eufH19M9T21KVQrFarIiMjVbRoUbfWvXTpkqEHq6vSHMi81OfdhQsXFB8fb/rhCwAAAAByG/e6mgFAJqUeUOratWtur3fhwoV0lwkKClKpUqXs09u2bfOobblN5cqVDdNbt27N0u079nTds2eP2+vu3bs3S9viTOrnf/HiRdOgcNktMDBQLVq00IgRIzRjxgxDj9wVK1Z4dPxKkq+vr+rUqaMXX3xR8+fPNww6eOzYsUwdrzfddJNh2nGwRVf2799vmM5Ng2DeiFIf1zabLc9fpwAAAADkD4THQD7iWHfWm3UzU/eQvHz5stv1Vd0NTm+55Rb7v8+fP6/Nmzd71sBc5NZbbzVML1++PEu3X69ePcP0ypUr3VovLi5O69aty9K2OJP6vZSy/vl7olq1amrbtq19Oj4+PlNhdnBwsPr27WuYFxERkeHtOb6Xv//+u9vrrl271jBdt27dDLcD6ctNxzUAAAAAuIvwGMhHHGuaXrlyxWv7zkivu4iICO3YscOt7d97772G6SlTpigpKcmjNuYWpUuXNgR5W7du1d9//51l269SpYqqV69un/7999+1b9++dNebNWuWVwZVu/322w3H6nfffaeLFy9m+37TUq5cOcN0ShmL3LC92rVrG8pULF++3K3X6vz581q1apV9ukSJEqpdu3aG24H01atXT6VLl7ZPL1++XIcOHcrBFgEAAABA+giPgXzEsa6tJ+UKMqtOnTqG6W+//dbl8teuXdPo0aPd3n7Tpk0NgevOnTs1duxY2Ww2t7cRHx+v7du3u718durZs6dh+u2339aRI0c82sbBgwcVGRnp9LGnnnrK/m+r1aqhQ4fq7NmzaW5rzZo1mj17tkf7z6giRYqoY8eO9ukrV65oyJAhunr1qkfb2bRpk9P5u3bt8mg7jj90pA4AJWnfvn0e/VDhuD1360074+/vr3bt2tmnY2Ji9OGHH7psT2Jiot577z3DDwHt27c33ZmArOXn56du3brZp5OSkvT666/r/PnzHm1n27ZtSkhIyOLWAQAAAIBzhMdAPlK5cmUVLlzYPv3ll1/qr7/+8riGa0aULVtWDRs2tE9v2LBBEyZMUGJiomnZw4cP64UXXtD+/fvl7+/v9j6GDh1q6LG6YMECDRw4MN2yAIcOHdLUqVPVrl07zZkzx+39ZaemTZvqkUcesU9HRUWpR48emj9/vuLj49NcLy4uTitXrtTAgQPVuXPnNIOpBx54QE2aNLFPnzp1Sl26dNHs2bN14sQJJSYmKjY2Vjt37tS7776rN998U0lJSV4rbdCtWzdVrVrVPr1z5051795df/75p8sfBC5cuKDvvvtOnTt31htvvOF0mZ49e+r555/XokWL0gzXJSkhIUFffPGFoaxHvXr1VKxYMcNy48ePV8eOHfXll1+mW9Ji7dq1+uyzz+zTBQoUUPPmzV2uk55OnToZAu3ff/9dQ4cO1aVLl0zLXrx4Ua+//rqhJ3v58uX15JNPZqoNcM8jjzxiOO9Onjyprl276pdffnEZ+EdHR2vJkiXq3bu3+vTp4/IaAAAAAABZiW5GQD7i5+enhx9+WPPmzZOUfOv6K6+8Iik5xPLx+e/3pLFjx6pBgwZZuv/evXurb9++9vDv66+/1urVq9WsWTMVLVpUV69e1d69e7Vr1y5ZrVYVL15cHTp00NSpU93afuXKlfXOO+9o6NCh9nBl/fr1Wr9+vcLDw+23+Pv4+OjKlSs6ffq0Dhw44HHPP28ZPHiwzpw5Y+9BGxsbqzFjxmjKlClq0KCBKlSooEKFCunatWuKiorSoUOHdOjQIbfLIIwcOVL9+vWz92iOjo7WxIkTNXHiRKfL16lTRz179tSAAQPs83x9fTP5LJ0rWLCgPvroI/Xt29feI/rEiRN69dVXVaJECTVs2FAlSpRQYGCgYmJidOHCBR04cEAnTpywH1+pfyhxtHPnTu3cuVMfffSRKlasqJtvvlnFixdXUFCQ4uPjderUKW3evFlRUVGG5/ryyy873d6pU6c0ZcoUTZkyRaVKlVL16tVVpkwZFS5cWElJSTp//ry2b9+ukydPGtbr27evChUqlKnXqlChQnr77bfVv39/+3H/22+/af369WratKl9ILxjx45pw4YNhuAxKChIo0aNMpW0Qfbw9fXV6NGj9cILL+jgwYOSpEuXLmnkyJEaN26cGjZsqDJlyqhgwYKKjY1VZGSkIiIidPTo0TxbhgcAAABA3kZ4DOQzvXv31t69e03lGRx7smVHUNGgQQP169dPEyZMsM87ffq0Fi5caFq2RIkS+t///mcPWNx12223aerUqRo6dKhOnTpln3/48GEdPnw43fU96emc3fz9/TV27FhNmDBB3377rT0UjYmJcWvgOovF4rIUQdGiRTVx4kS9++676W6vdevWGjp0qOm4cRXQZlbZsmX15ZdfasSIEYYSFOfPn9eKFSvSXd+d99JqterIkSPplgQJCgrS6NGjVatWrXS3efbsWZclQCTJx8dHzz33nKF8SGbUr19fEyZM0GuvvWYPvOPj410OoFe0aFGNGTNGNWvWzJI2wD0hISH6/PPP9f777xuO46ioKP3666/pru/r62v4oQ8AAAAAshPhMZDPFCxYUJMmTdKaNWu0du1aRURE6MKFC7p27ZqsVmu2779z584qX768JkyYYOqFKSX3gL777rs1YMAAhYaGehweS1KNGjX07bff6qefftL8+fPTHZQqLCxMt956q9q0aaMWLVp4vL/s5Ofnp5dfflmPPfaYvvrqK/3++++KiYlJc3lfX19Vr15dt99+u+6//36VLVvW5fZTAsQNGzZo+fLl2rFjhy5cuCBfX1+VLFlStWrV0kMPPaRGjRpJkqEnriQFBwdn+jm6EhYWps8++0x///235syZo23btjktdZIiMDBQDRo00J133qk2bdo4XWbMmDH6888/tWnTJqfHYGpFihTRPffco+7du5vKVaQYOHCgVq9erQ0bNigiIsLlDy8BAQFq3ry5unfvrho1arjct6fq1q2r7777TrNmzdKSJUsUHR3tdLnQ0FA9+uij6tq1a6Z7PSNjChYsqFGjRumJJ57Q7NmztX79epelKPz9/VWnTh3dcccduu+++3jfAAAAAHiNxebJaFLIMa7qct4oLBaLQkNDJSUHVByaNzabzab9+/dr//79ioqKUlBQkEqVKqWGDRtmeSB56dIl7dq1SxcvXlR0dLQsFouCgoJUunRpVaxYUeXLl5fFYsnSfWaXpKQk7du3T8ePH9fly5cVGxurggULqkiRIqpQoYLCw8OzNVgaN26cvexJwYIFtXnzZl25csVr52tcXJx27typs2fP6vLly0pMTFTBggVVrFgxVaxYUZUqVfKo93hkZKQOHz6sU6dO6fLly0pISFBgYKBCQ0MVHh6uqlWrejSQXFxcnA4dOqSTJ0/q0qVLunbtmvz9/RUcHKxKlSrp5ptv9krwZ7VatWfPHh09elSRkZH262ulSpVUq1Yteq7mMgkJCdq9e7f+/fdf+3EYFBSk0NBQ3XTTTapcubICAwMztG3+tgJ5B+crkHdwvgJ5R348X8PCwrJ0e4THeQThMYCcZrVa9fjjj9vLgTRq1EjffPMN5yuQi/G3Fcg7OF+BvIPzFcg78uP5mtXhMV2PAABuWbx4saGO9F133ZWDrQEAAAAAANmN8BgA8qno6Ght2LDBrWV/++03jRs3zj7t7++vDh06ZFPLAAAAAABAbsCAeQCQT129elUDBgxQeHi42rRpo4YNG6py5coKDg6WzWaz14petmyZ1q1bZ7i9p2fPnmkOIAcAAAAAAG4MhMcAkM8dPnxY06ZNc3v51q1b69lnn83GFgEAAAAAgNyA8BgA8ik/Pz/5+fkpMTHRreWDgoLUpUsXdevWTT4+VD0CAAAAAOBGR3gMAPlUyZIl7SUptm/froMHD+rMmTO6cuWKEhMTVahQIYWEhKhatWpq1KiR7r33XoWEhOR0swEAAAAAgJcQHgNAPhYSEqIHHnhADzzwQE43BQAAAAAA5DLcdwwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTH2WD06NGqXr264b8hQ4bkdLMAAAAAAAAAwG2Ex1ls27ZtmjNnTk43AwAAAAAAAAAyhfA4C12/fl3Dhw+X1WrN6aYAAAAAAAAAQKYQHmehadOm6cCBA5KkEiVK5HBrAAAAAAAAACDjCI+zyOHDhzVlyhRJUsGCBfXKK6/kcIsAAAAAAAAAIOMIj7OAzWbT8OHDlZCQIEl64YUXVK5cuRxuFQAAAAAAAABkHOFxFpg3b57++ecfSVK1atXUvXv3HG4RAAAAAAAAAGQO4XEmnT17VmPGjJEkWSwWvf322/L398/hVgEAAAAAAABA5hAeZ9I777yjK1euSJKeeOIJNWrUKIdbBAAAAAAAAACZR3icCStWrNDKlSslScWKFdOgQYNyuEUAAAAAAAAAkDUIjzPoypUreuedd+zTQ4YMUZEiRXKwRQAAAAAAAACQdfxyugF51UcffaRz585Jklq0aKFHH300W/dnsViydfu5QernmB+eL5CXcb4CeQPnKpB3cL4CeQfnK5B3cL5mHuFxBmzatEnz58+XJAUEBOitt97K9n2GhoZm+z5yE3pxA3kH5yuQN3CuAnkH5yuQd3C+AnkH52vGULbCQwkJCRo+fLhsNpskqU+fPqpUqVLONgoAAAAAAAAAshg9jz00ceJEHTlyRJJUuXJlPf/8817Zb1RUlFf2k5MsFov9V6DLly/bA3oAuQ/nK5A3cK4CeQfnK5B3cL4CeUd+PF+zunoB4bEH9u/frxkzZtin3377bQUEBHhl3/nh4E7NZrPlu+cM5FWcr0DewLkK5B2cr0DewfkK5B2crxlD2Qo3Wa1WDR8+XNevX5cktWvXTk2bNs3hVgEAAAAAAABA9iA8dtPs2bO1fft2ScndvwcPHpzDLQIAAAAAAACA7EN47IZr165p3Lhx9unBgweraNGiOdcgAAAAAAAAAMhmFhvFPtIVHR2tW2+91T7t6+ub7jo2m01Wq9U+bbFY5OPzX1bftm1bvffee263ITIy0u1l8yqLxWIv6h0VFUUdGiAX43wF8gbOVSDv4HwF8g7OVyDvyI/na1hYWJZujwHzMiApKcnjdWw2m2G91MEyAAAAAAAAAOQ2lK0AAAAAAAAAAJjQ89gNISEh2r9/v0frbNiwQc8++6x9ul27dvrggw+yumkAAAAAAAAAkC3oeQwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgIlfTjfgRtW0aVPt378/p5sBAAAAAAAAABlCz2MAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAAGBCeAwAAAAAAAAAMCE8BgAAAAAAAACYEB4DAAAAAAAAAEwIjwEAAAAAAAAAJoTHAAAAAAAAAAATwmMAAAAAAAAAgAnhMQAAAAAAAADAhPAYAAAAAAAAyAHbd9i8uh7gKcJjAAAAAAAAwMtmzLSqX3+bvp7rWRD89Vyb+vW3acZMaza1DPgP4TEAAAAAAADgRdt32DRzVvK/p0xzP0D+eq5NU6YlLztzFj2Qkf0IjwEAAAAAAAAvql/Poj69LPZpdwLk1MGxJPXpZVH9ehYXawCZR3gMAAAAAAAAeFnnTu4HyM6C486dCI6R/QiPAQAAAAAAgBzgToBMcIycRHgMAAAAAAAA5BBXATLBMXKaX043AAAAAAAAAMjPUgLhlKB4yjSb5s6zKTr6v2UIjpET6HkMAAAAAAAA5DDHHsgEx8gNCI8BAAAAAACAXKBzJ4tCQozzQkJEcIwcQ3gMAAAAAAAA5AJfzzWWqpCSeyA7DqIHeAvhMQAAAAAAAJDDHAfHS90DOfUgeoA3ER4DAAAAAJANtu/IWNCT0fUA5F2OwXGfXhYt+9HHUAOZABk5gfAYAAAAAIAsNmOmVf36ex70fD3Xpn79bZox05pNLQOQ2zgLjlNqHDsOokeADG8jPAYAAAAAIAtt32HTzFnJ//Yk6EkdIM2cRQ9kwF15uZe/q+A4BQEychLhMQAAAAAAWah+Pc+DHmcBUv16FhdrAJDydi9/d4LjFATIyCmExwAAAAAAZDFPgh5PAiQA/8nLvfy37/D8vHd2XckNvadxYyM8BgAAAAAgG7gTIBMcAxmXl3v5169nUfeu/7XB3fM+9XWle1dxhwKynV9ONwAAAAAAgBtVSiCUElal/L9zJwvBMZAFXJ1jjnLbOdeju49uaWzzOADu3MmiunUIjuEdhMcAAAAAAGQjZ+HW3Hk2RUf/t0xOh1hAXuZOgJzbguMUGQ2ACY7hLZStAAAAAAAgmzmWsCA4BrKWqzIxuTU4BvICwmMAAAAAALygcyeLQkKM80JCnN9eD8BzzgLkBx+1EhwDmUB4DAAAAACAF3w911iqQkrugZzeAF8A3EcvfyBrER4DAAAAAJDNHG+bT90DOfXt9QAyj17+QNYhPAYAAAAAIBs5q7e67EefNOuzAsgcevkDWYfwGAAAAACAbOJqoC5XA3wByBh6+QNZi/AYAAAAAIBs4Co4TkGADGQdevkDWY/wGAAAAACALOZOcJyCABnIPHr5A9mD8BgAAAAAgCy0fYf7wXEKZ+HW9h2EW4A76OUPZB/CYwAAAAAAslD9ehZ175r8b3eC4xSpw63uXZO3A8A1evkD2csvpxsAAAAAAMCNpkd3H93S2OZxANy5k0V16xAcA+7IaC9/Sfb1pkyzcc4BLtDzGAAAAACAbJDRMIoQC3APvfyB7EfPYwAAAAAAAORJ9PIHshc9jwEAAAAAAJBn0csfyD6ExwAAAAAAAAAAE8JjAAAAAAAAAIAJ4TEAAAAAAAAAwITwGAAAAAAAAABgQngMAAAAAAByte07bF5dDwCQjPAYAAAAAADkWjNmWtWvv01fz/UsCP56rk39+ts0Y6Y1m1oGADc+wmMAAAAAAJArbd9h08xZyf+eMs39APnruTZNmZa87MxZ9EAG8iLuOMgdCI8BAAAAAECuVL+eRX16WezT7gTIqYNjSerTy6L69Swu1gCQ23DHQe5BeAwAAAAAAHKtzp3cD5CdBcedOxEcA3kJdxzkLoTHAAAAAAAgV3MnQCY4Bm4M3HGQuxAeAwAAAACAXM9VgExwDNxYuOMg9/DL6QYAAAAAAAC4IyUQSgmKpkyzae48m6Kj/1uG4Ai4MTg731PPlwiOvYGexwAAAAAAIM9w7JFIcAzcuLjjIOcRHgMAAAAAgDylcyeLQkKM80JCRHAE3ICcBcgPPmolOPYSwmMAAAAAAJCnfD3XWKpCSu6BnN6gWgDyJu44yDmExwAAAAAAIM9wvFU9dQ9kV4NqAcjbuOMgZxAeAwAAAACAPMFZjdNlP/qkWRMVwI2DOw5yBuExAAAAAADI9VwNjuVqUC0AeR93HOQcwmMAAAAAAJCruQqOUxAgAzcm7jjIWYTHAAAAAAAg13InOE5BgAxkj+07MnYeZXS9FNxxkPMIjwEAAAAAQK60fYf7wXEKZ4FSZgMsID+bMdOqfv09D2a/nmtTv/42zZhpzdB+ueMgdyA8BgAAAAAAuVL9ehZ175r8b3eC4xSpA6XuXZO3A8Bz23fYNHNW8r89CWZTB78zZ3neA5k7DnIPv5xuAAAAAAAAQFp6dPfRLY1tHgfAnTtZVLcOwTGQGfXrWdSnl+xBbsr/Xf2Q4yz49eQ8zOgdB6nbN2WaTXXrSA3qc/5nFj2PAQAAAABArpbRAJjgGM7kVP3evMqTnr2e9BhOC3cc5C70PAYAAAAAAEC+MGOmVTNnSX16ue496yglFO3e1aYe3fNfX0xnPXtTz5eyJjhOwR0HuUf+O9oBAAAAAACQ7+RU/d4bhaseyFkZHKfgjoPcgfAYAAAAAAAAN7zk+r2eDayW2fq9NxpnAfKDj1qzPDhG7kF4DAAAAAAAgHzB2/V7b0SOr2F09H+P8RrdeAiPAQAAAAAAkG+4EyATHLvWuZNFISHGeSEh7teRzq+lP/IiwmMAAAAAAADkK96u33uj+XquzdDjWErugexOHemv59rUr79NM2Zas6l1yEp+Od0AAAAAAAAAwNtSAuGUoHjKNJvmzrNRhiEdjuF6ainz03rNHAcfvKWxLV/XkM4L6HkMAAAAAACAfIn6vZ5xFRynSKuONIMP5k2ExwAAAAAAAMi3Mlu/N79wFv6mDt5TcwyQKQWSd1G2AgAAAAAAAPmWq/q9BJzJ0gt/nfVGTj2P4DjvIjwGAAAAAABAvuQYioaE/Fe6Ir36vflFesGxY+3o1BznERznPZStAAAAAAAAQL7jLBRd9qOPoRRDWvV784vtO9wrN+FYO9oZguO8ifAYAAAAAAAA+Yqr3rSOQWh+DpDr17Ooe9fkf6cX/roKkAmO8y7KVgAAAAAAACDfcGfwNsdSDPm5hEWP7j66pbFN9eul/9w7d7Jo7jxjDWkGH8zb6HkMAAAAAACAfMGd4DgFPZD/405wLLkefBB5E+ExAAAAAAAAbnju1u9NzVmAvH0HQagzzgYfTJGfg/e8jvAYAAAAAHBDyGigQxAE5A+e1O9NLXWA3L2r6164+fU6xOCDNy7CYwAAAABAnjdjplX9+nseTHw916Z+/W2aMdOaTS0DkJv06O6jiZ96Pnhb504WTfzUoh7d047S8ut1iMEHb2yExwAAAACAPG37Dptmzkr+tyfBROrAY+asvN/zD4B73K3f68l6+fU65O7ggwTIeRfhMQAAAIAbUn69dTg/ql/P82DCWeCR0UAJAPLjdYjBB/MHwmMAAAAAN5z8eutwfuZJMOFJ4AHkFvwglvvlp+sQgw/mH4THAAAAAG4o+fXWYbgX3OT1wAb5Ez+I5R355TrkjcEHkTv45XQDAAAAACArJd86LPsX85T/u/pim9dvHcZ/Ut5nZ+//jRDYIP9x/EFMcn09S+H4g9gtjW1c17wkv1yHenT3ydBx1bmTRXXrEBznFRabzcbP6XlAZGRkTjch21ksFoWGhkqSoqKixKEJ5F6cr0DewLmK/M7dL+i54Ys852vWc3xfQ0Kk6Oj/Hs/LgQ1yVk6cr55ep3LDdQ1ch3KD/Pj3NSwsLEu3R9kKAAAAADek/HLrMJxzfP8JbJCX5adaujcSrkO4ERAeA/g/9u48Po7qzPf/t3qxLBlkmZ2whn2xW0zMkoQkEBKymGB2ywglRpgYE2ecSXLnzuT+Zu6dmTvLneUOA3cISzCKE0VIZjfBYQkEskwCBJJu26xhh7Aj2WBJVi/1+6ORJbVarTqtqu5aPu/XK6/ITZ/u0111qqqfes5zAAAAQqtSwIUAS/h1tFtqbp74WHOzsyn/gN9wQyyYOA4h6AgeAwAAAAi1cgGXRYsLBFgioLvHnpDpJxUz/0wXHQP8ghtiwcNxCEFH8BgAAABA6DF1OHrK1RodVWnKP+B3Ub4hls5UN26rbTdTHIcQBgSPAQAAAEQCU4ejo1wG5ob1Mcc1YwG/i+INsTVdBa1abT5uu3tsrVpta01XwaOeTf2+HIcQBgSPAQAAAEQCU4ejodLUfZNFxwC/i9INsXTGVtfa4t8m43b88aBrbe0ykDkOIUwIHgMAAAAIPaYOR4OTmq8EbhAWUboh1poyH7fljgetKe8D6xyHEDYEjwEAAACEGlOHo8FksTACNwi6KN4QMxm39Vo8kOMQwojgMQAAAIDQYupwNKQz5oGictu/XotqASaifEPMyXG7XoFjjkMIK4LHAAAAAEKJqcPR0Zqy1Lms+LdJoGj89u9cpppMaQdmghtilT9nvQLHEschhJdl23b4jiQh1N/fX+8ueM6yLLW0tEiSBgYGxK4J+BfjFQgGxiqizDSAUM+Ag8R4dUs6Y1cVeKm2HaKpXuPV6XGq3sezWilXumN8Deh6fW6OQ/4SxfPrvHnzXH09Mo8BAAAAhApTh6Or2sALARv4HbV0Jyv9nH4IHEschxA+BI8BAAAAhApThwGECTfEptbRbk1YLFAqZiCHMdMaqJdEvTsAAAAAAG5b3hnTsQvNpwB3tFtaMJ/AMQD/KN4Qs9W11vyGmFQMHIf1hlh3jz0h41gqZiB399gEkAGXEDwGAAAAEEpMHQYQFtwQm6xSzePRxwkgAzNH2QoAAAAAAACf44bYmHI1oDesj0Wi1jNQawSPAQAAAAAAEAiVFg+MymKBQC0RPAYAAAAAAIDvVQocjyKADLiL4DEAAAAAAAB8zUngeBQBZMA9BI8BAAAAAADgW+mM88DxqHIB5HSGADJgiuAxAAAAAAAAfKs1ZalzWfFvJ4HjUeMDyJ3Lwrl4IOC1RL07AAAAAAAAAFSyvDOmYxfaxgHgjnZLC+YTOAaqReYxAAAAAAAAfK/aADCBY6B6BI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAAAAwCcFjAAAAAAAAAMAkBI8BAAAAAAAAAJMQPAYAAAAAAAAATELwGAAAAAAAADCUztg1bQfUA8FjAAAAAAAAwMCaroJWrbbV3WMWCO7usbVqta01XQWPega4i+AxAAAAAAAA4FA6Y6trbfHvq691HkDu7rF19bXF53atJQMZwUDwGAAAAAAAAHCoNWVp5Qprx7+dBJDHB44laeUKS60pq0ILwB8IHgMAAAAAAAAGOtqdB5DLBY472gkcIxgIHgMAAAAAAACGnASQCRwj6AgeAwAAAAAAAFWoFEAmcIwwSNS7AwAAAAAAAEBQjQaERwPFV19rq6fX1tatY88hcIygIvMYAAAAAAAAmIHSDGQCxwgLgscAAAAAAADADHW0W2punvhYc7MIHCPQCB4DAAAAAAAAM9TdM7FUhVTMQC5dRA8IEoLHAAAAAAAAwAyULo43PgN5/CJ6QNAQPAYAAAAAAACqVBo4XrnC0ob1sQk1kAkgI6gIHgMAAAAAAABVKBc4Hq1xXLqIHgFkBBHBYwAAAAAAAMBQpcDxKALICDqCxwAAAAAAAIABJ4HjUR3tls5YPPZvkwByOkOgGfVF8BgAAAAAAABwKJ1xHjiWpDVdBd2+Xjrh+LHHrr7WnjYw3N1ja9VqW2u6CjPuM1AtgscAAAAAACA0qs3UJMMTTrWmLHUuK/49XeA4nbHVtbb490MPjwWQO5cVX2cq4zObu9ayf6J+CB4DAAAAAIBQWNNV0KrV5jVlyfCEqeWdMV15ReXAsVQMEI+vefzQw9IZpxfbT6VcSYxKgWbASwSPAQAAAABA4I3P8DSpKUuGJ6rlNKBbumje7Xdoyv3TpJaynzEDIDwIHgMAAAAAgMArzfB0EkAmwxO1UhpALrd/hiVwzAyAcCF4DAAAAAAAQsFJgG5UWAJ1CI5K+2dY9kdmAIQPwWMAAAAAABAaUcrwRPCU2z8XLS6EZn9kBkD4EDwGAAAAAAChEoUMTwRX6f65devYfwvD/sgMgHAheAwAAAAAAEIn7BmeCLaOdkvNzRMfa25WaPZHZgCEB8FjAAAAAAAQSmHP8ERwdffYE/ZHqbh/mi4y52fMAAgHgscAAAAAACC0wp7hieApDZyO3z9NFpkLAmYABB/BYwAAAAAAEFpRyPBEcJTLuN2wPma8yFyQMAMg2AgeAwAAAACAUIpShif8r1KpBpNF5oKIGQDBRfAYAAAAAACEThQzPOFfTmr8hjmAzAyA4CJ4DAAAAAAAQiXKGZ7wH5PF4cK4fzIDINgIHgMAAAAAgNCIeoYn/CWdcR44HlVu/0xngrl/MgMg+AgeAwAAAACAUIh6hif8pzVlqXNZ8W+TxeHG75+dy4qvEzTMAAiHRL07AAAAAAAAMFPVZnhK2tHu6mttLZgfzEAd/Gt5Z0zHLrSN96uOdiuw+6PTGQDSxPE3/nH4A5nHAAAAAAAg8KKc4Qn/q3a/CuL+yAyAcCHzGAAAAAAAhEIUMzwBP2EGQPiQeQwAAAAAAEIjShmegN8wAyB8yDwGAAAAAABAzaUz5lniM2mH2mAGQLiQeQwAAAAAAICaWtNV0KrV5vVtu3tsrVpta01XwaOewQ3MAAgPgscAAAAAAAComXTGVtfa4t8mC6SNX4ita23xdQB4i+AxAAAAAAAAaqY1NVbfVnIWQB4fOJaK9XTJUgW8R/AYAAAAAAAANTV+gTSpcgC5XODY6UJsAGaG4DEAAAAAAABqzkkAmcAxUF8EjwEAAAAAAFAXlQLIBI6B+kvUuwMAAAAAAACIrtGA8Gig+OprbfX02tq6dew5BI6B+iDzGAAAAAAAAHVVmoFM4BjwB4LHAAAAAADUSDpTfkEwr9oBQdLRbqm5eeJjzc0icAzUEcFjAAAAAABqYE1XQatWT14QbDrdPbZWrba1pqvgUc8Af+jumViqQipmIJuOGQDuIXgMAACAyCMTEIDX0hlbXWuLf49fEGw64xcM61rLcQfhVbo43vgMZJMxA8BdBI8BAAAQaWQCAqiF1tTEeq5OgmGlwbSVKyy1ppi+j/Apt69vWB8zHjMA3EfwGAAAAJFFJiCAWipdEKzScadcMI26rwijSvu6yZgB4A2CxwAAAIgsMgEB1JqTYBiBY0SFk32dADJQXwSPAQAAEGlkAgKotUrHHY4ziAqTfZ0AMlA/iXp3AAAAAKi30R+roz9iR/9//I9YAjoA3FTuuNPTa2vr1rHncJxBWKUz5ufUcmNmwXwx+wfwGJnHAAAAgMgEBFB7pccdAseIitaUpc5lxb9N9vXxY6ZzGYFjoBYs27bJ8w+A/v7+enfBc5ZlqaWlRZI0MDAgdk3AvxivQDAwVqtTGihubiagA+8xXqNt0eLChONMc7O0YT25Xn7FeHVPOmNXFQCuth2iJ4rjdd68ea6+HmcjAAAAYBwyAYHwSWeqCxZU285Ed8/EUhVS8bhDPVdEQbUBYALHQO0QPAYAAABKdLRbam6e+FhzswgcAwG0pqugVavNF9fq7rG1arWtNV0Fj3pWfqbDKBYEAwD4AcFjAAAAGPFzBp9byAQEwiGdsdW1tvi3STB2fFC3a603x69ytdQ3rI9NWXsdAIB6SNS7A0FVKBT00ksv6cUXX9Qbb7yhrVu3amRkRE1NTWppadERRxyhQw89VPF4vN5dBQAAcM2aroK61korV5hl4Y4GSTqX2Vre6e/8hUo1j0cfJwMZCIbWlKWVK8bGrpMxXC6o6/YU+UqLcI7+v0mfAQDwCsFjA++++67WrFmjxx57TE888YSGhoYqPn/u3LlavHixli9frr333rtGvQQAAPBGaQaf5CyYUZrBd+xC/y5yM1VAZ/zjBHKAYDEJxlYK6rrFyXsQQAYA+IW/0z585tVXX9V1112nxx57bNrAsSRt2bJFP/zhD7Vo0SLdcsstNeghAACAd4oZfGbTqWuRweeW6TIBmUoOBJeTMeyXwLFJnwEA8BqZxzOw22676bDDDtMBBxyguXPnKh6Pa2BgQE888YR+//vfq1AoLqwwODio73znOxoZGdHSpUvr3GsAAIDq+S2Dzy1kAgLhV2kM1+J4lc6Yv0e5Pi+Yr4o34dKZ6mZ3VNsOABBuBI8NxONxHXfccfr85z+vE088UQcddNCUz3311Vf1d3/3d3rggQd2PPaP//iP+vjHP67999+/Br0FAADwhpMgatgCx6MIIAPBVm4M9/ROXCDTq+NVa8pS5zL7g7rxzt9jfJ87l1UOHEehLj0AoLYs27aZ9+KRfD6vr371q/rVr36147ELL7xQ3/nOd4xfq7+/382u+ZJlWWppaZEkDQwMiF0T8C/GKxAMXo9VJ/WBxz/uR+mMrVWrzfta+hmvvMK/5TgQDJxba6t0DI+qxfHKq8xgjme1w3gFgiOK43XevHmuvh63FD0Uj8f17W9/e8Jjv/jFL+rUGwAAAHeVq8e5aHEhMIFjaTQTsPi3aSbg6GefLhMQgP90tFtqbp74WHNzbWYRVHu8mK5d2OvSAwDqg7IVHjv66KPV1NSkwcFBSdJrr71W5x4BAAC4p3QKeC2mfrtteWdMxy40zwTsaLemrT0KwJ+6eyaWqpCKx6/uHjsQx62phLUuPQCgfsg8roE5c+bs+DsK6fEAACBa6pnB5xavMgEB+E9p0HT88ctJtq7flZsVUvqZCBwDAJwieOyxoaEhDQwM7Pj3fvvtV7/OAAAAeKBSBh8A+Em5oOmG9THjcg9+VymATODYO+lMdftNte0AJ9gvMVMEjz121113KZvN7vj3ySefXL/OAAAAuCzsGXwAwqNS0NRJtm7QhKEufZCs6Spo1Wrz/aa7p7jQ4Zqugkc9Q5SxX8INBI899OSTT+qf//mfd/y7paVFy5Ytq2OPAAAA3BOVDD4Aweck2zYKAeQg1qUPgnTGVtfa4t8m+834/bJrLZmecBf7JdxC8NhFtm3rvffe06OPPqp/+Id/0Hnnnaf+/n5JUlNTk6644grttttude4lAADAzEUtgw9AcJmUaQjj8SsMden9rjVlvt+U2y+pow83sV+OsQdeUeHFh6TscL27EkiJencgyJ577jl96Utf2vHvQqFQdkG8k046Sd/5znf04Q9/uOr3sqzgD9bpjP+MUfi8QJAxXoFg8GqsdvdMnPZ86SWWOton5iR8+QJLllXQVdcUn3f1tbYsS5OeB6CIc6s30hl72uNVqXLHr9SC4AZQunsKZevS/+gGm2NylcqNV5PznpPzKOCGSO+X2SElnvqJEpk+5V5LS5KaZrdo+IwrVdh3YZ07FyyWXS7aCUeeffZZLVq0aMr/HovFdMEFF+jiiy/WXnvtVcOeAQAAeOO664d02eWDO/79zW806eKLGl17PgC47cqrBvXdq4eMjz+jx6+vrWzUqkubPOyhd0qPwXPnWtqyZSwEwDHZfdOd9zgvoh6itF/abz2jwiM/VOF3fdLwlslPaNlPyW8/UvuOBRjB4xmYLng8KplMqqOjQ9/61rc0a9asGvQMAADAfY8+ltVXOsfS15z+sCj9QfKDrmYt/EjSkz4CQDmPPpat6rhTbTs/mCoYFKYgkV/x3cOPwrxf2rkR2U9sUOGRH8h+/r+mfX7ir56V1TCnBj0LB4LHLhoZGdHAwICeeOIJ3XXXXbrjjjuUzWZ3/PcTTzxRV199dVUB5IGBARd76k+WZWnu3LmSpC1btpQtAQLAHxivQDB4MVbXdBV0/fdt46mM3T3FKZMXXWhpeWeAp0ACHuHcCjeNHnNHlR6zp/vvqMzJeC39jpubJy5YyHeOegjbfmlteUWJTJ+Sm26RNfiOozb53Q/X8Jdvk0JcIqqlpcXV1yN47KEnn3xSK1eu1GuvvbbjsUsuuUTf+ta3jF9rdOG9MLMsa8cOPjAwwAUz4GOMVyAYvBqr6YxdVe3PatsBUcC5FW5xukCgyUKCmMjpeC39jkfxXaOeAr9fFnKKP/9zJdO9ir/wS1lyfr4s7LSXhk+/XIW9Ux52sP7mzZvn6usRPPbYM888o7POOmtHBvLs2bP1wAMPGG9IgscA/ITxCgQDYxUIDsYr3GAaECaAXB2T8bpo8cQFC5ubpQ3rg5PZiXAK4n5pvfeGEptuUnLjTYq9/7pZ472OVuz4ZXrvgFNkJ8NfrsLt4LG/94wQOPTQQyfURR4eHtaDDz5Yxx4BAAAAAMImnTEPBHe0W1q5Yuw5V19rK53hxoVbunvsCQE6qVgioLuH7xj1E6j90i4o/uKvNHv9n6rpus+o4df/6ThwbMcblD3qTA219ynxtZ8qftxXpFk7edzhcErUuwNR8PGPf1y33377jn8/9dRTdewNAAAAACBsWlOWOpfZ6lprlkE8+ryrr7XVuUyUF3JJaVb3+Nqyo4+T5Y1aC8x+OfiukptvVTKzTrEtLxk1Lcz7sLKtbcoeeYbU2CLLsmSFuL5xLRA8roHddtttwr/ff//9OvUEAAAAABBWyztjOnaheX35jnZLC+YTOHbLVOVAxj/uq0AdIsH3+6VtK/bqo0pm+pR45m5Z+azzprGkcod+VrnUUuX3PS7Ui+HVA8HjGigNFjc3N9epJwAAAACAMKs2AEzg2B2V6kiPz/Ie//8EkOE1X++X299T8vH1SmR6FX/nD0ZNC837KJtqU+7os2TP2W36BqgKweMaePzxxyf8e++9965TTwAAAAAAgBecLEBY90AdIsev+2Xs9U1KZnqVeHKDrNyQ43a2FVP+oJOVTbUpf8CJUizuWR9RRPDYY8PDw7rjjjsmPPbxj3+8Tr0BAAAAAABucxKgGxXFAHI6Y15OZSbtUOS7/TI7qMSTdyqZ6VP8jc1GTQtzdlduwXnKLjhX9s4kZdYSwWOHRkZG9Nxzz+mII45w3KZQKOh//a//pT/+8Y87HmttbdVBBx3kRRcBAAAAAECNpTPOA3SjygXqwlp3ek1X4YOFHM0CkaOBz85ltpZ3xjzsYTj5ab+Mvf20Euk+JZ9YL2vEbB2w3AEfL2YZH/RpKZ6cUT9QHYLHDg0PD+vMM8/U5z73OZ111lk68cQTNWvWrCmfn06n9a//+q965JFHdjwWi8X0//1//18tugsAAAAAAGqgNWWpc5n9QYB0+gDdqPGBus5l4QwcpzPF70Uyy2QdnzHbtVZVLQQZdXXfL3PblXjmnmKW8auPGjW1Z7coO/9sZRcskT3vgOreH66xbNu2p38atm7dquOOO27HvxsbG3XEEUfokEMO0dy5c9XY2Kht27bp9ddf18aNG/Xyyy9PaG9Zlv7hH/5B55xzTlXv39/fP6P+B4FlWWppaZEkDQwMiF0T8C/GKxAMjFUgOBivQHBMNV4pzVCeSemEap6Pymq9X1r9LyiZuVHJzbfIGh4wapvfZ6GyqaXKHXqqlGgwfu+y/Yng+XXevHmuvh6Zx1UaGhrS7373O/3ud7+b9rl77rmn/vZv/1af/vSna9AzAAAAAABQa9UGgMMcOJbMaukSOHZfTfbLfFbx536mZLpXiZd+bfQ+9qydlD3qDOVSS1TY7TDDXqIWCB47NGfOHP3zP/+zfvGLX+iRRx7RG2+8MW2bo446SmeddZbOPvts7bTTTjXoJQAAAAAAgL84CSATOA4e673XlMzcqMSmmxTb9pZR2/ye85VNtSl3xCIp2eRRD+EGgscOxeNxnXnmmTrzzDMlSW+++aaeffZZvfLKK9qyZYu2b9+upqYm7bTTTtp333119NFHq7m5ub6dBgAAAAAA8IFKAWQCxwFSyCv+wi+LtYyff1CWXXDc1E40KnfEacqm2lTYa76HnYSbCB5XaY899tAee+xR724AAAAAAAAEQrkAck+vra1bx55D4NifrG1vK7H5FiUz6xTb+qpR2/yuhyiXWqrskadLs0m0DBqCxwAAADXGgjoAACCqSgPIBI59zLYVf/lhJTK9Svzhp7IKOedN40nlDv2Csq1tKnzoI5LFdg2qWL07AAAAECVrugpatdpWd4/ZSs/dPbZWrba1psv51EAAAFC9dMbsXD3TdlHS0W6ptNJnc3P5RfRQB0MDSj76fTV9/zQ13nShkk/f5ThwXJi7v7Z/6s+1bcWD2r7oX1TYZ2HNAseMWW8QPAYAAKiRdMZW19ri31df6zyAPL4OYNdaLnD9jB8tABAO3Oz1VnfPxFIVUjED2fT7hotsW7E//l4Nd31Hc649WQ0P/rNi/c87a2rFlTvkVA2dc50GL/qJssdeJDXO87jDEzFmvUPwGAAAoEZaU5ZWrhjLvHASQC63gAylK/yJHy0AEA7c7PVW6bXN+Axkk+8bLhnZpkS6V43dZ6up93wlH79NVn67o6aFnfbS9o//qQa/er+GF1+h/AEnSlbtQ42MWW8RPAYAAKHi98zPjnbnAWRWHg8OfrQAQHhws9c75b6nDetjxt83Zi721pNq+OnfaM41n9Ls+/5W8beedNTOlqXcgZ/U0BlXavDie5X96Ndk77SHx72tjDHrLYLHAAAgNIKS+ekkgEzgOFj40QIA4cLN3upUugla6XtaMF8EkGshO6zE5tvUeMNSNf3wLCUzfbKyg46aFpp21cjxKzS4/B4Nn32t8gefIsUSHnfYOcasd/yzlQEAAGagNPNTcrboSmnm57EL7ZoE8EpXGh/fZy5og6nSNi3FNgYA/5vquP7lC8aO1909BY7nH1jTVVDXWmnlisnnvkrnvdH/1rms+LiT8yjMWO8+p2SmT8nNt8navnX6BuPk9jtBuVSbcod8RorP8qiH7ig3Zi2roK9/bew5XIOZs2zb5lZOAPT399e7C56zLEstLS2SpIGBAbFrAv7FeIVfmV4M+uHisVzdv/ELyMykT4zV+phuv/LDfgf/YbwC/lV63L70Ektf/9ouuu76IV12+VjWZpSP5+lMcRbXqHLBYSf/7corLG3cJM6TbsiPKPGH+5RI9yrxysNGTe2GZmWPPlPZVJvsXQ7yqIPeKd2vvvmNJl18UaP+87vv6qprwr9vzZvn7mKFBI8DguAxAD9hvMLPnAbm/BTAK+3LqJn2ibFaP1PtX37a7+AvjFfA30qP33PnWtqyheP5eOXOcQvmy7WgMqWdnLG2vKLkxhuV2HSzYoPvGLXN792qbGqpcod9QUrO9qiHtRHlMUvwOKIIHgPwE8Yr/C6ImZ+LFhcmZBw3N0sb1s9seQrGan15mVWO8GG8Av7n1c3eMCl3jbV9u/1BOQtngePS1+pcJi3vZMmuigo5xZ//uZLpXsVf+KUsOT+H2Mkm5Y48XdlUmwp7HOlhJ2svqmOW4HFEETwG4CeMVwRBkDI/yTwOr6j+aIE5xisQDF7c7A2bqTKQRzOHTa7F0pnarEURVNb7byqx8UYlN96k2PuvG7XN73a4sq1LlTvydGnWHI96WH9RHLNuB4/D/W0BAIDIKrfi8qLF/lvUplx26ihWGg++jnZrwjaVitu43vsdAMBcd489IQglFWeUhOFcnc5U9xnKtSt3DbZxU/Fv05v4BI7LsAuKv/grzV6/Wk3fO0UNv/5Px4FjO96g7FFnanDpDRr68q3KtS4NdeA4zGO2lhL17gAAAIBXSldc9lvJACfZ0aw0HmyVfrSwTQEgOCrVTw36uXpNV+GDshJmn2GsrIQ9qaxE6TXY1dfa6um1fXctFiiD7yq5+VYlM+sU2/KSUdPCvA8r29qm7JFnSI0t3vTPZ8I8ZmuNzGMAABBqfs38rJR5Uy5jhwyJ4CGrHADCofR4fukllv7r57vom99o2vFYPY/rM8kaTmeK9Ygls88w/jvpWussA5nAcRVsW7FXH1XDhj/XnO+drIZf/JvjwLEdSyh72Bc0dO73NXjhncp+ZFlkA8ff/EaT/uvnu+jSS7i+rgbBYwAAEGp+nK7mZMomAeRgK7eNN6yPsU0BIGDKn7OLoZSLL2qsezBqTVdBq1abv293j61Vq2399lHb+NxU7juZqryEX2/i+97295T83Y/U+IPFaurrUPLJH8vKZx01LTR/SNs/8U0NfvV+bf/SZcrvf4JkRef7Lnez5+KLGiVJHe1ci1WD4DEAAAgtP2Z+mtT6I4AcTGSVA3CTm7VoYcbZzd76BaPcyhpeMF+OP4NpzWI/3sT3s9gbm9Vwz19pzjUnqeFnf6/4O39w1M62YsodfIqGzrpGgxfdo+zxK2TP2d3j3vpPpZs9o7gWM0fwGAAAhJIfMz/TGbMfXFL5C1wCAv5FVjkAN800q3RNV8GjnoVfEG72tqbM33eqrGEnn6GawLHfbuL7UnZQiY03qfFH56npR+cquelmWbkhR00Lc3bXyAmXanD5vRo+40rlP/wpKRb3uMP+FIQxG1QsmAcAAEJnusxPaeICLuMf91JrylLnMvuDRWmc1/ob3+fOZaw87lemP1qk+uyHAIKhNKtUcnaMKM0qPXahzXnDULU3e6WJx/UF870/Z5ucT6Y7T1V6rZkGjlkUeLLY208rkVmn5OO3yxp536ht7oCPK5tqU/6gT0vxpEc9DI4gjdkgsmzbJrQeAP39/fXugucsy1JLS4skaWBgQOyagH8xXuFnTn/cmP4IclM6U90PedN2jNXaSWeKWX6jnO5PpfvhlVdMXTcS4cZ4rY9aHY+r5VbADubWdBWmvNlbabyOboPOZdLyztpN9p5u25vsG+Uyhk0Wu3OzL6GTG1HimbuVzPQp/uqjRk3t2S3Kzj9b2QVLZM87wKMOBtdUY3a682u9xqyX5s2b5+rrETwOCILHAPyE8Qq/4kf2RIzV2qoUaKgkjD9aYI7xWntBGbNBuCkaVlPdJJhuvNbq5kIpJ9m+4x83eS2nbdlfy7P6X1Ry4zolN98qa8gsvpPfZ6GyqTblDv2clGjwqIfhUG7sOTm/1mvMeoXgcUQRPAbgJ4xX+BGZn5MxVmvP71mM8C/Ga20F7ZxBJqe/+Hm8zjRreLxFiwsT2jY3SxvWT33DhJv4JfJZxZ/7mZKZPiVe/C+jpvasnZQ96gzlUktU2O0wjzoYDX4er15xO3hMzWMAABAK1BOGH1S7/7DfAbVVXGjMrO74VAuN1YKbtWgRbqX7SrWB4+4ee0Lb0dfq7rHLvgY1Z8dY772mZOZGJTbdpNi2t4za5vc8WtnUUuWOWCQlmzzqIWCGzOOAIPMYgJ8wXuFnZH6OYawCwcF4rY+gTbF3M6sU1QvCeDXNGh6v2v0sKKVgPFHIK/7ir4q1jJ97QJZdcNzUTsxW7ojTlE0tVWGv+R52MpqCMF7dRuYxAABABWR+AgCcqpTRO8ovgWPJvaxShJtp1nBp2+nqJk+Vqb+8M6ZjF5rfjO9otwKbcWxte1uJzbcomVmn2NZXjdrmdz1YudT5yh55ujS72aMeAjNH8BgAAAAAEFlBKwnR0W6pp9eelFVa737BHyplDU9XnqXS/u7kRosUkZv4tq34K48okb5BiT/cJ6uQdd40nlTu0M8rm2pTYZ+FkhWgz43IIngMAAAAAIi0coGx0gCtHwLH0syyShFuM8kadnKjxGkAObSGBpR84nYl032K9T9v1LQwd39lU0uUPfosqWkXjzoIeIPgMQAAAAAg8oJQEmImWaUIt5lkDZtk2EcugGzbir2WVjLTp8RTP5GV3+68qRVX/uBTlG1tU37/j0lWQOs5I/IIHgMAAAAAIH+XhJhJVinCbSZZwwvmy7g0S7nXcrtmcd0XQB7ZpsSTP1Yy3af4W08YNS3stJeyC85Vbv65snfec+Z9AeqM2x4AAAAAAKhySQivpTNTv0el4OCC+cV/j7r6Wrsm/YU/mGYNl+4rGzdJncumb1vptTqXuRs4XtNV0KrV5vtxd4+tVattrekqVP3esbeeVMNP/0ZzrvmUZv/0bxwHjm1Zyh34SQ2dcaUGL75X2Y+tInCM0LBs2+asEgD9/f317oLnLMtSS0uLJGlgYEDsmoB/MV6BYGCsAsHBeK2/SiUhJG9LV6zpKqhrbfn3qBQcHP1vncukhgbLd4v7hZVfxms6UwyWjnK6zUv3qSuvKLapa6bvuNdz6zM57ld2WImn71Iy06v4a2mj/haadlVu/jnKLjhP9tx9jdpGVa2zyv0yXmtp3rx5rr4emccAAAAAEAKVMle9aBcm5QK0G9bHapLRm87Y6lpb/j2cBI4lqWstGchOhG2MtKYs17KGqw0Auxk4Hn090/243Dhx0i/r3ec164H/oznXnqzZd3/HKHCc2/d4DZ/2fzX41fs18olvEjh2qJ5Z5ageNY8BAAAAIODGMlfN6t2OZa7aWt4ZzdyimSw05oZisMysFu1UwbLWlCb11+1atEEV1jGyvDOmYxeaZ2R2tFu+3TdMxp1J2Q5JUn5EiT/cp0SmT4mXHzLql93QrOzRZyqbapO9y0FGbTH5RpnkbCyW3iirZn/HzPjvyAcAAAAAcKxS5molpT/I/Zpd6SWnC415ndFrUot2uj57WYs2qMI+RvySNewmJ+POJHBsbXlVs355mZq+d4pm3/kto8Bxfu9WDX/+n7RtxQMaOfk7BI6rVMuscriLzGMAAAAACLCpMlcrZXTxg9x8oTHJ2wzkcu+xcoWlK68YC/I57bOfs0rrgTESTJXGnaOxUMgr/vzPi7WMn/+FLDkP/tvJJuWOPF3Z1BIV9jhqhp8EozzNKodnCB4DAAAAQMDxg9xMOmP+HZT7jt0O0E4VQG5NmW83Ap0TMUaCqdx26+m1Ky5mab3/phKbblJy402Kvfea0fvldztc2dalyh3xJalhp5l/AEziZCwyBv2F4DEAAAAAhAA/yJ0rLjRmf1AD12yhMUkf1MD1JkBbTbAMzkw1RsbfBDAZI48+ltXBVDDwXOl2KzsW7ILiL/1ayXSf4s/eL8vOO359Oz5LucO/qGyqTYW9j5EsxpbXZpxVjpqybNv2Z9EeTNDf31/vLnjOsiy1tLRIkgYGBsSuCfgX4xUIBsYqUB/pjPliPpZl6dnn5mjhR5IzHq9T/fDmB/lk1WyrmbQzUbq9Rrm93fz8HXil3Hc7WovVyRixLEs33dKgyy4f1EUXWrrowmB+D0GzaHFhQuC4uVna0LdFyc23KpnpU2zgJaPXK8w7UNlUm7JHnSk1trjaVzhTOhabm6e4OTADUbwenjdvnquvR/A4IAgeA/ATxisQDIxVoPbWdBWMs1kl6Uc32LrqGltfW9moC84fmfF4rcUPcnivbLBsvXvr3le7v47uX53LpOWd7vWnlqYKzo+q9J2MjtdRV15BPWSvTdxeto7Z5TGdd+A6fWHfuxVX1vHr2LGEcod8VrnUUuX3O54sYx/w+kZZFK+H3Q4eU7YCAAAAAFyQzhTLIEhmC6qN/+H83auHNP/omFILZtYXR9O8YayWWbrdPRNLVUjF7djdY7uy/dzYX7vWSscuDGYGcukYGa/SGCkNdF16CYFjr41+5zsl3tNp+65X28HrdNCcPxi9RqH5Q8ouWKLc/LNlz9ndo56iGh3t1qTSPM3N7i5IipkJ5i1CAAAAAPCZ1pS1Y+q7VAxKdfdUznAqDUR98xtNrgWiOtotNTdPfIwf5NVb01XQqtXTb9NS3T22Vq22taarYNSmNHN8lJP9ygk39tfiYn7B3Z/KjZFKyo3XjnbCKl7q7rH1YN8m/c/W/6l7P/dpfSf1j44Dx7YVU+6gT2vozKs1eNE9yp5wCYFjH6p0owz+wFEOAAAAAFzS0e48IFcuEHXxRY2u9YUf5O4pzdJ1+h2WZummM9O3Kxeg3bA+ZhzodWIm+2sYMtjLjRGp/Pfg9XhFieygfnvdTfrkE+fphpOW6OwDblZjYshR08Kc3TVywqUaXH6vhs/8rvIHnSTF4h53GNWoxY0yzBxlKwAAAADARZVWkR9Vbuq724HjqWoem5QoQFExS7fyNi1VTZZupQCtk/2qGtXsr2EJHFeqCz7+e/B6vGJM7O1nlMisk52+XSfb70kGpVt/89bHtOXQNp247BQpnvSuk3CFk8VdOV/5A8FjAAAAAHBZpYBc+R/M7k0K5Qe5N0yCt9UEW520qUcAOQqB43JjRCp+D6W1WN0er5CUG1HimXuUzPQq/uqjRk3t2S1Kx87S/7zjPL207QDp19LK2ZY62j3qK1xRjxtlqJ5lR2GZwRDo7++vdxc8F8UVMIGgYrwCwVA6Vn+fLtRsoScARdNlN47+YHbr3DpdoC+MgcBa8+I7Nm3j1XZ0ur8Gmen2G8/t8Rp1Vv+LSm5cp+TmW2UNmcU88vssVDbVptyhn5MSDZO225VXBLsed5g5PX65dZyL4nidN88gZd8BMo8BAAAiYE1XQdd/39bKFWaZG6MX7p3LbC3vJNMKMFWaQeVlIK6ematR4naWbjpj3qZcHxbM14yDZbXcX+uhmjEyisUmXZLPKv7cA0pm+pR48VdGTe1Zc5Q98gzlUm0q7H7YhP82frt1Lpv5WIA3TI6RnK/8g8zjgCDzGICfMF6BYBgdq48+ltVXOsciAE4DAGTxAO5ZtLgwIRDX3CxtWD92Q2am51a/ZK5GiZtZumu6Cupaa74dxm7wydUbfNPtr0Fkss9PlX1M5nH1rPdeU3LjTUpsvEmxbW8atc3vcZSyrUuVO3yRNGtOxecyW8q/0hlbq1abn3dmej0axfFK5jEAAACMLPxIUpdeYumqa7xd6AlAed09E2umSsUgY3eP7UrA1k+Zq1HiZpbu8s6Yjl1oHvTqaLdc325e76/1YDJGKpWtGH38yxcE83uoObug+Au/VDLTp/hzD8iyC86bJmYrd/giZVuXqrDXAsftOIb5V2vKUucy2/hGGVnl9UfmcUCQeQzATxivQDCUjtUf/qhQ0xpzAGpX89hvmatREqYs3TDXPHYyRsqd/6TJJSwuvcTS17+2iySuhcuxtr2txOZblcz0Kbb1VaO2+V0PVi61VNkjF0uzmz3qIeqp2uzwattF8bcrmccAAACoipPacQSOAfdMNZ7GP+5WJqOfMlejJExZuib7a9A+mzT9GKl0/lswX9q4aezzX3WNrdmzh3TxRY3edzwobFvxVx5RItOrxDM/lVXIOm8aTyp36OeVTbWpsM9CyQre/gXnqj3fcJ6qH4LHAAAAEeL2Qk8Ayqs0nsqNQ8sq6Otfm9l78oO8tipl6QYtyGq6v45/PEiqCRyPtmtNFf8efd5llw9Kks4926POBsXwFiUfv03JdJ9i/c8bNS3M3U/Z1BJljz5batrFow4CmCmCxwAAABFTLhDQ02uHZmoyUG9ObsSUjkMyGYMlTFm61eyvQflsTpjcOC39Hi67fFDDw5YuOD/434MR21bs9YySmT4lntwgK7/deVMrrvzBn1Y2tVT5Az4mWcEs8QJECcFjAACACHJzoScAY2YaiJLIZPS7MGXpzmR/9ftnc6LaxSYtSzsWob3qGlvzj45IBv/INiWe/LGS6T7F33rCqGlhpz2VXXCecvPPlb3znh51EIAXCB4DAABEVEe7NSnjuLk52IEAoJ6qDURJEwPIhx4SU2qBd/1E9cKUpevG/nr1tXaga2a3pix1LrONF5vsaI9p9uwGXXb5oC660Ars53cq9taTSqZ7lXjiDlnZQcftbFnKH/gJZVNtyh90khQjBAUEESMXAAAgosK00BPgB9UHosYyGb+2slGtqZFIrAYfNGHL0p3J/ioVP1PnsuAGjkdVu9jkxRc16k+OSejgg7b5drymM+afa0e7I7cr8cxdxSzj135v1L7QuIty889RdsF5slv2M35/AP5i2X49ymGC/v7+enfBc5ZlqaWlRZI0MDDg2xMwAMYrEBSVxmqlhZ4kSlcAM1FNwMayLD373Bwt/EiSc6sPpTO2Vq02X1C09Fh75RX+y1KdUYDRZ5+lVoJwLbymq2B8Y0CS7vjBc8o91KfzDrlNs+2t0zcYJ7fv8cq1til38GelxCzTLgOeCMJ4ddu8efNcfT0yjwEAACImTAs9AX5UbUBt4UeSLvcEbglzlm61ffLjZ0FROlPcVyWH5/P8iOLP3q937unV+SMPSQdLchhfsxualT3qDGVTbbJ3PXhmHQfgSwSPAQAAIiRMCz0FCZl9QPBVW96go90KdF1gBE9rytLKFdOfz60tryq58UYlNt2s2ODb2tfgPfJ7pZRtXarcYV+Qko1udR2ADxE8BgAAiIgwLfQUJGNTh82+x9Ht1bnM1vLOmIc9xHQI/mMUWboIiinP50sLij//cyUzvYo//wtZTlOMJdnJJuWOPF3Z1BIV9jjK/U4D8CWCxwAAABHQ3VMI1UJPQWE8dfgD4wP9XWtVVbYj3EHwH0BQjT+f79bwlnI/u1n2mzeqsfC60evkdzusmGV8xOlSw05edBWAjxE8BgAACLlHH8vqqmvMFnoqF0Bm2rU5p1OHxyuXIc73Xh8E/wEEml3QshN/o1P7+3TA0H1KxPJSwWHT+CzlDv+isqk2FfY+RrI4hgFRRfAYAAAg5BZ+JKmLLrR0/fft0C30FAQmmdxOSougdgj+AwikoX4lN9+qZKZPsYGXdLAkOZwAUWg5QNnWpcoedYbUOM/LXgIICILHAAAAEbC8M6aFHymw0FOdOAkgEzj2J4L/AALBthX74++UzPQq8fTdsvIjjpvmlVDhsM8ql2pTfr8TyDIGMAHBYwAAgIhgoaf6qhSEJOjobwT/WTQQ8K3t7yn5xHol0n2Kv/OMUdM/Dn5IP379PF3wz+fInrO7Rx0EEHQEjwEAAIAaKReE7Om1tXXr2HPCFnQMiygH/1k0EONxI8EfYm9sVjLdq8STd8rKDTluV7At/eKNT+nGF5bqv948UQXFVbjdUke7h50FEGgEjwEAAIAaKg1CEjgOjigG/1k0EONxI6HOsoNKPPUTJdN9ir+x0ajptthu+tET5+jWl87Va0MfUnPz2Np5JmMbQPRw1AYAAABqrKPdUnPzxMeam/nhHgQd7ZZWrhjbTmEOHEujiwaOfaarr7XV3WNXaMGigWFVeiNhuv1gVOmNhHTG3vF61fYjamJvP6NZ9/+D5lx7smbf81dGgePc/h/T3S3/oZNu/6m++9RqvTb0Ia1cYWnD+pjx2AYQTQSPAQAAgBrr7pmYrSoVg5D8cA+GqAX/SwPmlYJMYS/hEWVu3khY01XQqtXmwcruHlurVtta01WY/slBlxtR4okfq7GvQ00/WKxZv++Wtf09R03t2XM1srBT2zp/outG1ugvfnCqcnZS0sQxaTK2AUQXZSsAAACAGioNpjQ3j2WvMnU4GCoF/8O67Vg0EJKz/WDUVPsDpVAqswZeUjKzTsnNt8ga6jdqm//QR5RNtSl32OelRIOjMWmyTQFEE8FjAAAAoEam+iE//nF+uPtblIP/UV40EGNmeiOhmMFsFqwMfSmUQk7xZ3+mZKZPiRd/ZdTUnjVH2SPPUC7VpsLuh+143GRMEkAGUAnBYwAAAKAGKv2Q54d7MBD8j+aigZhspjcS3MhgDgPrvdeV3HijEhtvUmzbm0Zt83scqWxqqXJHnCbNmjPhv6Uz5t9ZuW2yYL7CFaQHUBWCxwAAAIDHmDocfAT/x5R+XgLH0TTTGwmRLYViFxR/4VdKZvoUf+5nsmzn9ZvtxGzlDl+kbOtSFfacL1nlv4vWlKXOZcXyICbf2fht0rksmoHjdKa6cijVtgOCgOAxAAAA4CGmDgcfwf/JOtqtSYHCMC8aiPJmeiMhSqVQrMF3lNh0i5Ib1ym25RWjtoVdDla2damyRy6WZjdP30DS8s5YVXWhO9qtyGYcr+kqfBBwNzuWje6rnctsLe+MedhDoD4s27ZZSjMA+vvNCuUHkWVZamlpkSQNDAyIXRPwL8YrEAyM1fpLZ2ytWm0e/CgNmlx5RcjqewaIaQCr2oBX0MZr6eccFfQAH6qzaHFh0o2EDeudB9Eq1RKX/LdfOR6vtq3YK48omelV4pmfyipkHb+HHUsqd+jnlG1tU2GfY6fMMoY7OF+HV9DOr26YN2+eq6/HLREAAADAI8Wpw8W/TacOr1xRfG5Upw77QbV1Q0e3nVTMpExnwvVDtVygb9TV19rq7gnX53Wi2m0chn2ju2diBrpUDPya7Ael48bPgWNHhrco+dgP1LT2S2q6cZmST/3EceC4MHc/bf/ktzW44mfaftq/qbDvcQSOa6C4kOPEY/d0+3DoF3IEPkDZCgAAAMBDTB0OLuqGTsaigZNFeap7pYxh0/0g8KVQbFux1zNKZvqUeHKDrPx2502tuPIHnaxs6/nKH/AxyQrm/hB0LOQIlEfwGAAAAPBYtcHDMAUdg4rg/xgWDZwsnSneXJDMPvP477Jrrarax+rN7RsJlTKYfb0fjWxT4okfK5npVfzNJ4yaFnbaU9kF5yk3/xzZO+/lUQdhIrILOQIVEDwGAAAAgAoI/rNo4FSKU93NPnMYprq7fSPBzQzmWrFff1yFR9aq6fc3yRrZ5rydLOUP/ISyqTblDzpJihGW8ZsoLeQIOMFRCgAAAAAwJZNgSRQDyFGb6u72jYRAlULJDivxzF1KpvuUe+33kiSnPSo07qLc/LOVXbBEdst+nnUR7ii3D5eWVQni+AWqQfAYAAAAAFBWtYsGShODLmEr4VEqKlPd3b6REJRSKFb/80pm1im5+VZZw1uM2ub3PU7ZVJtyh5wqJWZ51EN4oXQfJHCMqCJ4DAAAAAAoi0UDnQv7VHe3byT4vhRKfkTxZ+9XMt2nxMu/MWpqNzQre9QZyqbaZO96sEcdRC0EfiFHwAUEjwEAAAAAU2LRQOfCPNXdzRsJfi6FYm15VcmNNyqx6WbFBt82apvfK6Vs61LlDvuClGz0pH+orcAu5Ai4yLJt257+aai3/v7+enfBc5ZlqaWlRZI0MDAgdk3AvxivQDAwVoHgYLyGS2lwdFRQA8fjpTPmNxLGt0tnbK1abZ6FXfqdXnmFiwsNFvKKv/BzJdN9ij//c1lyPv7sZJNyR3xJ2dQSFfY82p3+wBcqLeQohWM8R0EUz6/z5s1z9fXIPAYAAAAAwEVhnupebcB2tJ2fSqFY77+pxKabldx4o2LvvWbWeM8jFTt+md474LOyZ82ZcV/gL4FayBHwGMFjAAAAAABcxFT3yupaCsUuKP7Sb5TM9Cn+7P2yCjnnTeOzlDvsC8odc752PvJkWZYlDQxIEchkjJKgLOQI1ArBYwAAAAAAXFJpqjuBpjEzzWA2NtSv5ObblMz0KTbwolHTQssByrYuVfaoM6TGebIsqxg4Ruj4fiFHoA4IHgMAAAAA4AKmuvuMbSv2x98pmelV4um7ZeVHnDeNJZQ/+DPKti5Vfr8TJILFoefnhRyBeiJ4DAAAAADADDHV3Ue2v6fkE+uVSPcp/s4zRk0LO++tbGqJckefLXunPTzqIPwmnXEeOB5VblzPuKwK4EMEjwEAAAAAgZLOmNfLnUm76TDV3R9ib2xWMtOnxJN3ysoOOm5ny1L+oJOUTbUpf+AnpVjcw17Cj/y0kCPgNwSPAQAAAACBsaar8EGAxyzwOhrg7Vxma3lnzLX+MNW9zrJDSjy1Qcl0n+JvbDRqWpizm3Lzz1V2wbmym/fxqIMIirou5Aj4GMFjAAAAAEAgpDPFzEDJLPA6PsDbtVZVBYim6g9T3evDeucPSmbWKfn4bbK2v2fUNrf/R5VNLVX+4FOkeNL4vdMZWyd9yriZZ5nvcE/NF3IEAsC9260AAAAAAHioNWVp5YqxIM3V19rq7rErtCifGexWoKc41X3sdU2muo9+Dqa6G8iNKPHknWrs+7LmrD1ds373Q8eBY3v2XI0s7NS2zg0aPrdL+cM+X1XgeE1XQV/704Kuu37IqF13j61Vq22t6SoYvycA1BOZxwAAAACAwDAp/WBSUqJaTHX3njXwUjHLePMtsob6jdrmP/QnyqaWKnfY56VEw4z6MT7z/bLLizWVzz17+nZeZb4DQC0QPAYAAACACPLbonMmnASQaxE4HsVUdw8Ucoo/94CS6V4lXvyVUVN71hxlj1ysXKpNhd0Pd61Lxcz3sf3tsssHNTxs6YLzp96OXma+A0AtEDwGAAAAgIjx26Jz1agUQK5l4Bjust57XcmNNymx8UbFtr1p1Da/x5HFLOMjTpNmzfGkfx3tlixLuuqa4v511TW2bLt+me8A4DWCxwAAAAAQIX5bdG4mygWQe3ptbd069hwCdgFgFxR/4VdKZvoUf+5nsmzndYHtxGzlDl+kbOtSFfacL1neb+uO9phmz27YUbqi3pnvQDWCPPsEtUXwGAAAAAAipHTqvZMAsp+n3pcGkAkcB4c1+I4Sm25RcuM6xba8YtS2sMvByqbalD1qsTR7rkc9nNrFFzVKUtkAMoFj+F0YZp+gdggeAwAAAEDE+G3RuZnqaLcmZRw3N5sFRVAjtq3YK48omelT4pl7ZRWyzpvGksod+jllW9tU2OfYmmQZV3LxRY0aHh7aUcKCzHcEQZhmn6A2CB4DAAAAQAT5bdG5mejumRiwk4oZyN09ti/7G0nDW5R8/HYlM32KvfucUdPC3H2VXbBEuflny27a1aMOVqejPSbbLpD5jsAI2+wTeI/gMQAAAABEVBgWnSvtZ3PzWADPJKsOHrBtxV7fqGSmV4knN8jKb3fe1Iopf9CnlW1dqvwBH5cs/06RJ/MdQRO22SfwFsFjAAAAAIiwIC86N1VQY/zjBJDrYGSbEk/eqWSmV/E3nzBqWthpT2UXnKfc/HNk77yXRx10F5nvCKIwzT6BtwgeAwAAAEDEBXHRuUpBDZOsOrgn9tZTxSzjJ+6QNbLNqG3ugE8o29qm/EEnS7HghCq6ewpkviOwwjD7BN4LzhEZAAAAAOCZIE29dxLUIIBcI9lhJZ65W8l0r+Kv/d6oaaFxF+Xmn63sgiWyW/bzpn8euu76scXyJDLfEUxBnn2C2iB4DAAAAAAIzNR7k2w4AsjesfqfVzKzTsnNt8oa3mLUNr/Pscq2LlXukFOlxCyPeuit664f0mWXD+74N5nvCLIgzj5B7RA8BgAAAKB0xq5q5fRq28FfgrLoXDpjPo26XCBvwXyx31Yjn1X82fuVTPcq8fJvjJraDTsre9SZyqaWyN71EI86WBvdPQVddU35wPEoAsgImiDNPpnJNUtqgQcdCjn/LlcKAAAAoCbWdBW0arWt7h57+ieP091ja9VqW2u6Ch71DLVQLpN3w/qYVq4Y+2F+9bXm+4cXWlOWOpcV/zbJhutot3Z8ns5lBI5NWVtf1axf/YearjtFjT/+M6PAcX6vlIY/9w/atuJBjXz6f4QgcGxPKFVx6SWVM9/9OI6AcirNPvGTaq9Zrrt+SF/70wLXLFWwbNv2116Asvr7++vdBc9ZlqWWlhZJ0sDAgNg1Af9ivALBwFiFE+lMMQA8ymlArjTgeOUVFgG5GajXeJ2uBIRfF0wiU74GCnnFX/i5kuk+xZ//uSw53yftZJNyR3xJ2dQSFfY82sNO1lbp8fKb32jSuWdvn3a8+u14yfhBqUqzTyR/HftNr1ksy9JNtzRMKDNT7zHotXnz5rn6emQeAwAAABHWmjLPjCsXUAzzj7CwcrronB8zJ6vd39hPp2e9/6aSv7lKTWtOVeNtX1Pi+QcdB47zux6q4VP+WttWPKDtp/5tqALH0sTM929+o0kXX9ToqJ2fMt+ZaYJSQZt9Yn7NUphUn5xzgRlqHgMAAAARZ1Kb06+ZqDDDonOYwC4o/vJDxSzjZ++TVcg5bxqfpdxhX1C2dakKex8jWeHeL5Z3xnTcsdJJn3IWOB7V0W7VvdZ2OmOra23xb5NxPP540bVWOnYhGchhUelc4Ndj/0yuWS69xNIF57PvmiJ4DAAAAMDRjzECx+HAonPYYahfyc23KZnpU2zgRaOmhZYDlG1dquxRZ0iN7k6R9rugZr4XszbNgoHMNAkvp7NPpGAGkEs/n9MyM5iM4DEAAAAASZV/jBE4Do/i1PtiBqLponNScb+o99R7zIBtK/ba75VM36DE03fLyo84bxpLKH/wZ5RtbVN+vxMki0qYQcNME0jhmH1ics0yWmZmYGB77TsaAiyYFxAsmAfATxivQDAwVlGtoCycEyb1GK8smhUx299X4on1Smb6FH/7aaOmhZ33Vja1RLmjz5a90x4edTA4wnB+9XqxTI4T/hW2hXKnu2a59BJLX//aLpKCO15Nub1gHpnHAAAAACYozeYhcBxOQZ16DzOxNzYrmelT4sk7ZWUHp2/wAVuW8h/+VDHL+MBPSbG4h71ErZlkbZ5wvFmW6Wj7zmW2lneSne43YZt9Mv01C/vgTJF5HBBkHgPwE8YrEAyMVczUosWFCT/CmpulDev5EeYFxitclR1S4qmfKJnuVfyNjUZNC027KbfgHGUXnCe7eR+POhhsYRqv02Vtjgp6diomC9vsk6muWcI0Xp0i8xgAAACA57p77EkBhK1bi4+TeQz4k/XOH5TMrFPy8dtkbX/PqG1u/48qm1qq/MGnSPGkRz2E31TK2jzheOmhhzXhv7O4XniEafZJpWuWL1/gv/4GDcFjAAAAABNUykTzy0I5AD6QG1HiD/cWs4xf/a1RU7thrrLzz1J2wRLZu3zYow7C7zraLfX02pOyNv/vv8QmnA9YXA9+NN01i2UV9PWv1alzIUHwGAAAAMAOUwUAnAYQADeFbVq1m6yBl5XcuE6JTbcoNvSuUdv8h/5E2VSbcod+XkrO9qiHCAonM00qHf8JHKNenFyzXHWNrdmzh3TxRY316mbgETwGAAAAIKlyAMBJAAFw05quwgcLOrFY1w6FnOLPPaBkuk+JF39p1NSeNUfZIxcrl2pTYffDPeogTPjh5ojJTBMni+sROEatmFyzXHZ5cbHQc8+ucSdDguAxAAAAAEcBAALIqJV0xlbX2uLfJvvZ+P24a6107MJwZCBb772h5MYbldh0k2Lvv2HUNr/7kcq2LlXuiNOkWXM86iFM+eHmSDUzTcY/XlrqgsAxaqWaa5bLLh/U8LClC85nHzVF8BgAAACIOJPMMQLIqIXWlKWVK8z2s9At1mUXFH/xv4q1jJ97QJadd940MVu5wxcpm2pTYa8FkhXg7yGE/HBzZCYzTcotrkfgGLVies1iWcXSFVLx/22baxZTBI8BAACACEtnzKcclwssLJjvzxXYEVwmNyrCNHXeGnxHiU23KLlxnWJbXjFqW9jlYGVTbcoetViaPdejHmKm6n1zZKYzTcotrhfU8YZgqe6aJabZsxt2lK7gmsUcwWMAAAAgwlpTljqX2R9Mn3YecBsfWOhcxo8weCMyi3XZtmKv/lbJdK8Sz9wrq5B13jSWVO7QU4tZxvseR5ZxQNTr5shMZ5r87vfTL66HYPNDLe6pVHvNMrpY3mWXD3LNUgXLtm17+qeh3vr7++vdBc9ZlqWWlhZJ0sDAgNg1Af9ivALBwFiFCT//WIwCxmtlTmqzjn88MIa3Kvn47Upm+hR791mjpoW5+yq7YIly88+W3bSrRx1EOW6O1+n2YTf38XTG1qrV5q9V2odR4xfXm2nf4A9jtbjNtuVYLW7VZKFSk2uP8eP1wZ/3K7XAw475xLx581x9vboEj5999lkdfPDBtX7bQCN4DMBPGK9AMDBWgeBgvE6vNIAV2MCVbSv2+kYlM31KPLVBVm7YeVMrpvxBn1a2danyB3xcsrwP0sxUGG9MuT1ea3lzpNrg4Lf/e0EPPTz279DcwMEObt1cuPIKf9Wbj+L51e3gcV3KVpx22mk67rjjdP755+vUU09VMpmsRzcAAAAAAAER+MW6RrYp8eSdSmZ6FX/zCaOmhTl7KLfgPGUXnCt757086qD7xgKVZjVxx7IY7ZpkMdZbufIQpXWF3drHl3fGjBfa6+6xywaOp+r7+McRHPWuxQ3/qlvN49/+9rf67W9/q1122UXnnHOOlixZon333bde3QEAAAAA+FwQF+uKvfW0EpleJZ9YL2tkm1Hb3AGfULa1TfmDTpZiwVqyKJ0p1iWVzAKK44NRXWtlHOgMqlreHDENHM9kcT0ES1QXKkVldb2FZ9u23nnnHX3ve9/T5z73Oa1YsUI/+9nPIpFCDgAAAAAw090z9WJdvpLbrsTjt6uxt11NPzxDs9I3OA4c243zNHLcxdp20d0aPud7yh/y2cAFjqXRLMaxQNLV19rTbqeoZzF2tFtqbp74WD1vjpgurme6veFPTrYlgeNoqcsZ6KijjtLjjz8uqVh7RJIKhYJ+8Ytf6Be/+IX22msvLVmyROeee6523333enQRAAAAAOAjlWoe+yXT0ep/XsnMOiU33ypreItR2/w+xyrbulS5Q06VErM86mFtkcVoptLNkVp/F+mM+fYot70XzDfLdIY/VBq7jNXoqcuCeZK0efNm9fT0aMOGDRoaGtoRRB7tjmVZisfj+sxnPqOlS5fqYx/7WD266RssmAfATxivQDAwVoHgYLxWVssFxYzls4o/e7+SmV4lXvqNUVO7YWdljzpT2dQS2bse4lEH62+67eSL7WjAi/HqxwUhq11cb6xmtSJRszrM/Lhfmori+dXtBfPqFjwe9f777+u2225TX1+fnnnmmWKnLGtCEFmS9t9/f51//vk666yzNHfu3Lr1t14IHgPwE8YrEAyMVSA4GK9T82vg0dr6RyU3rlNi082KbXvbqG1+zwXKtrYpd/giKdnoUQ/9xdc3AAy5PV79/N2kM9XVnK62HfyndD8cFYSxKkXz/Bq64PF4jz76qG644Qbdc889GhkZKZuNPGvWLH3xi1/U0qVLdcwxx9Sxt7VF8BiAnzBegWBgrALBwXgtz2nwrGZBtkJe8Rd+oWSmT/Hnfy7LLjhuaicalTvyS8qm2lTY82j3+xYAYchilNwdr369OQKMt2hxYdJCpRvWByOrPIrnV7eDx76qur9w4UItXLhQAwMDuvnmm7Vu3Tq9+OKLksaykbdv367bb79dt99+uw477DC1t7fr9NNPV1NTU517DwAAAABwi+liXZKz2rrVsLa9pcSmm5XMrFPsvdeM2uZ3PbRYy/jI06WGnV3pT1CVbqcgBo7d5GQf93rfBqbjp1rcqA9fZR6X8+tf/1o33HCD7r//fuVyubLZyE1NTVq8eLHa2tp0xBFH1LO7niHzGICfMF6BYGCsAsHBeJ0onbG1arV5tmVpMO7KK6zqp87btuIv/0bJdJ/iz94nq5Bz3jQ+S7nDPq9saqkKH/oTySLAMl6Qsxgld8araUYxGciohzDMFoji+TXUZSsqefvtt7Vu3TrddNNN+uMf/zjpv48GlVtbW9Xe3q4vfvGLSiaTte6mZwgeA/ATxisQDIxVIDgYr5PVbbGuoX4lH79dyUyfYv0vGDUttOyvbGqpskefKTW6++M9LIJeP1Wa+Xj1xc0RYBp+rsVtIorn18gGj0fZtq0HHnhA//t//2+99tprEx6XxoLIu+yyiy644AItW7ZMc+bMqUtf3UTwGICfMF6BYGCsAsHBeC2vZot12bZir/1eyXSvEk/fJSs/4rxpLKH8wZ9RtrVN+f1OkKzgZNDWWhiyGCV3xmvdbo4ADoSpFncUz6+RDh5v2bJFt956q/r6+vTCCy9M+u+2be+ojSyN7SB/9Vd/pdNOO63GvXUXwWMAfsJ4BYKBsQoEB+O1Tra/r8QT64sL4L39tFHTws57K7vgPOXmnyN7pz086mB4hCWLUXJvvNbs5ghgwHcLlc5QFM+voV4wbyqPPfaYent7dffdd2tkZGRHkFgayzg+9NBDtdNOO+l3v/udpLEF9vr7+/Xf/tt/0zPPPKM/+7M/q9dHAAAAAAD4ROzNx5VM9ynx5I9lZQcdt7NlKf/hTxWzjA/8lBSLe9jL8KgUZIrygnDVBoAJHMMrflqoFP7h2+Dx+++/r9tvv119fX165plnJI1lFo8GhhOJhD772c/qggsu0HHHHSdJevbZZ9XT06NbbrlFQ0NDO557zTXX6OMf/7iOP/74en4sAAAAAEA9ZIeUeOonxSzj1zNGTQtNuym34Bxl558ne+4+HnUwnJwEowhCAfWXzphnEpcbuwvmc4MjbHwXPN60aZN6e3t15513anh4eFItY9u2tccee2jJkiVqa2vT7rvvPqH9wQcfrL/+67/W17/+df3Lv/yLbr311h1tu7u7CR4DAAAAgEuCMO3eeudZJTN9Sj5+m6zt7xm1ze330WKW8cGnSPFZHvUwvMhiBIKjNWWpc5ltXIt7/NjtXEbgOIx8ETweGhrSj3/8Y/X29urxxx+XNHEBPNu2Zdu2jjvuOF1wwQU69dRTFY9Xnh40b948/dM//ZMGBwd19913S5J+//vfe/o5AAAAACAqxhb8MgvwjS34ZXu34FduRIk/3FvMMn7lEaOmdsNcZeefpeyCJbJ3+bA3/YsAshiB4FneGdOxC81v7nW0W4zVEKtr8Pipp55SX1+f1q9fr23btk0IGI8GjZuamnTGGWeovb1dhxxyiPF7LF26dEfw+N1333W1/wAAAAAQRelMMTtNMssQHZ+J2rVWVQUpKrEGXlZy4zolNt2i2JDZ77/83sco29qm3KFfkJKzXetTVJHFCAQTtbhRqi7B49tuu029vb1Kp9OSymcZH3LIITr//PN15plnas6cOVW/1z77jNWjyufzM+s4AAAAAECtKUsrV5iVGChXwsCVYEMhp/hzDxQXwHvxl0ZN7WSTckctVjbVpsLuR8y8L5iALEYACL66BI//8i//ckegeHyWcTwe12c+8xldcMEFrtUmnq68BQAAAADAnEmNWpPat05Z772hxKablNx4o2Lvv2HUNr/7kcq2LlXuiNOkWdUnK4WZW/WsyWIEgGCre81j27a1++6771gAb4899nD19RsaGnTccce5+poAAAAAAGcBZFcDx3ZB8Rf/S8l0r+LPPSDLdj671I43KHfEomKW8V4pySI4ORVf17MGANRU3YLHowvgtbe369RTT1Ui4U1XdtttN/3whz/05LUBAAAAIOoqBZBdCxwPvqvk5luUzKxTbMvLRk0LuxykbKpN2aPOkGbPNX/viPFrPesocSvrGwDcUJfg8dKlS3XBBRfo0EMPrcfbAwAAAABcVC6A3NNra+vWsecYB45tW7FXf1usZfzMPbIKWedNY0nlDj21mGW873FkGRvwVT3rkDAJ6o7P+jap+0zWNwCv1CV4/Dd/8zf1eFsAAAAAgEdKA8hVB46Htyr5+O1KZvoUe/dZoz4UmvdRNtWm3PyzZTftatQWY+pdzzpMTEqAlMv6dhIMJusbgJfqXvMYAAAAABAOHe3WpIzj5mYHZQ9sW7E3NimZ7lXiqQ2ycsOO39O2Ysof9GllU23KH3iiZJF16Yaa17MOIdMSIKVZ39L0wWCyvjGKcifwCmdVAAAAAIArunsmBo6lYgZyd49dvsHINiUy66TrzlVTzxIlN9/iOHBcmLOHXvrw1zR48U81fMZ/Kv/hTxI4dllHu6WVK8aCSldfa+/YlgSOp1cMBpf//kxs3FT+cbYBRq3pKmjVavP9q7vH1qrVttZ0FTzqGcKAzGMAAAAAqKN0xtYxrcHPFisNZDU3j5WuKM26jL31tBKZXiWfWC9rZJvR++QOOFHZVJt+8PDJuuryuDoHpOWdrnwElOFJPesImUkJkFFkfaMSFrmE17gtCwBARKUz5pkvM2kHAJhsLFvMLOvLb9li5QJZG9bHJmRdXn/dsB5ac7saey9Q0w/P0Kz0DY4Dx3bjPI0cu1zbLrpbw+dcp7WPfFZXfS8uqRj04NzkrdIMZALHZiplcI8qN4bI+oYT1WS4U+4EJsg8BgAggkwWbxmPlbwBwD3js8WuusbW7NlDuviixmnb+S1brFIgq6Pd0tzcCxr5zTqdsf+tatmyRdri/LXz+xyrbOtS5Q45VUrMmvL9CHp4r+p61pBUOQN5umAwWd+YDotcwksEjwEAiBimtgGAP5QujnXZ5YOSpHPPnrqN3wKnUwYh8lnFn71fyUyvzn/7N9Ihzl/zvezOemHuYh18bpsKux3q7P3guUr1rNkGzlRTAqS0DYFjTIVFLuEVUoYAAIgYprZVz+tSH5QSAaKndDr7ZZcPTlnCwm8/+sv158tfek2zfnW5mq47RY0//jMlXvqN49d7M7lA/+t3/1un3nO/vtz7P/SDeyZGnP32+aOkXD3rUdUuAhdV1ZQA6Wi3JnznElnfKI9FLuEFgscAAESQk9p7o7jQLPJ6FWtWyQaiq6Pd0qWXjB1Xr7rGWT3Ueh6L05mx/sSU1z9+5ee6uOlralpzqmY9dLVi29529Dr5WKOy88/V4AU3qelP12nvL56j4XyTJIIefuGknjUBZDOmweBKWd9AqXLX+YsWFziGomqUrQAAIKKY2uac16U+KCUCL6Qz1e0P1bbDzHS0xzR7dsOO0hUm9VDroTVladWX39T239yiZUffqJ0HXpMGnLd/ZuuhemXPJTruojOkhp13PF7NtH54Z7p61pKzGquYyKQESLms79G2fOeYCuVO4CYyjwEAiDCmtjnjdakPSonAbWSyB9PFFzXqm99o2vFvX2aL2bbiL/1GDT/+pi5+77P6+pFXaOfCa86axpPKHnm6Btt+pDfPuk3HXdoxIXA8qppp/XCfk+sAk5lMKDIpAULWN2aCcidwC5nHAABEHFlezni9ijWrZMMtZLIH28UXNWp4eEhXXeOzbLGhfiUfv13JTJ9i/S8YNS207K9sqk3Zo8+SGudJklr3qdymo92adC4i6FE7JucZMpCdm+p7Hf/4+P9O1jdmgkUu4RaCxwAAgKltDnld6oNSInBDMZPdLKhAJru/dLTH9KMb8vUPnNq2Yq/9XslMnxJP/URWfsR5Uyuu/CGfUTbVpvz+H5Uss0mvBD3qZ3w9a6n6G6AL5ovjyDjVlAAp99xRBJBRCeVO4CbKVgAAAElMbXPK61IflBKBG+q5KGY6U9306WrbhVF3T6G+i2Ntf1+J9A1q/OFZauptV/Lx2x0Hjgs7763tH1+twa/er+HTL1f+gI9XFTh2Oq0f7mtNWepcVvzb9Abo6HGncxmB4/GqKQFS6blTtWF8QKLcCdxH5jEAAJBElpcJr0t9UErEP+qx6Jxb71mPTPY1XQV1rZVWrjC78TTaj85ltpZ3Rju/5brrx0pWSLXNFou9+biS6T4lnvyxrOyg43a2LOU//EllU0uV//CnpFi86j6YTOvnGOid5Z2xqkrXdLRbZByXMDnOLphv/vpkfWM8FrmEF6J9ZQYAACSR5VUNrxd0YsGo+qvHonNuv2ctM9lLay07/QyltZajnIF83fVDuuzysaBtTbLFskNKbL5VjT1tauo+R8mN6xwHjgtNu2rk+Es0uPxeDZ91jfIHf9qTwLFEhmU9VBt8JGg5xrQEyPis71FXX2tPe1wk6xsSi1zCO5Zt2+wlAdDf31/vLnjOsiy1tLRIkgYGBsSuCfgX4zVcnGR5jX8cEy1aXJhUl3TDevfuz8/k9Rmr1UtnisHYUU73/9Jxc+UVzmsHe/melWofmryXaV+me12OM2N+dIM9IeO49Ltw+7uy3nlWyUxfsSTF9q3TNxgnt99HlW1tU/7gU6T4rKr7MJ7Tz8c+Az8wOb+Ozchwvq+mM7Y2btIHMzLkeEbGTGa9INg4/04titfD8+bNc/X1KFsBAECEMbVtZrwu9UEpkfqpx6JzXr5nrRbFNDluROmH63RKv4tLL7F0wfkeLI6VG1HiD/cqmelT/JVHjPpoN8xV9ugzlU21yd7lw0Ztp2OyL3BuQtBUUwKkNWWpNSXj8hMEjqOJRS7hNYLHAABElNOpbRI/0svxehVrVsmuv3oEQr18z452a1LtbC8WxaxHreUgK/0uvvmNJp179vaymVHVHpOtLa8omVmnxKabFRt616h/+b2PUba1TblDvyAlZxu1dYKgB6KAEiDwUrHciW2c4T7+WEq5E1RCzWMAACLINMuL2mgTeb2KdZRXya623q1XdXKd7P9uB0K9es9KmezVqPSdV/oM//p/CwSOP1AaOP3mN5p08UWNFduU+27LbotCTvE/3KfZt6xQ05rPadYj33McOLaTTcqm2jT45Vs1dP4Nyh11pieBY2lijVfToAc1XgGgaHlnTFdeYX4+7Wi3dOUVVuQXq0Vl1DwOCGoeA/ATxmuw1aOWa5hMF7SbaSDRzdcP2litpi6kNPadmNSFNFWP2uBuvqfbNY+dbqvS921okLZvr/59w2j0u7z0Ektf/9oukpyN16n2e+u9N5TYdJOSG29U7P03jPqS3/0IZVuXKnfEl6RZc8w/zAxUW6uVGq+oh6CdX4Eoi+J4dbvmMcHjgCB4DMBPGK/B5+cgnZ95vaCT268fpLEahJsatVp0zu33dDvwbbqtSt9n1BmnS3/+7egdR8pJZ2wd0xozHq87Aqd2QfEXf61kplfxZ38my847fm873qDcEYuUTbWpsFdKsgjEAtMJ0vkViLoojleCxxFF8BiAnzBew4EsLzNer2LtxfODNlaDsFL4VIFQL997Ju/pVaa8abvPfL4wIeO4oUG6724Cx+NVNV4H31Vy8y1KZtYptuVlo/crzPuwsq1tyh51pjR7rnmHgQgL2vkViLIojle3g8dcsQEAEFEs3uJctQs6OapLWoPXDwqT+tr1WnCto91Sc/PEx7xYdM6N93S6KGY1tbRN2n37v08MHEvF0hVhrNldE7at2CuPqOHO/6Y53ztZDb/4v44Dx3YsqezhX9TQeWs1eOGdyn5kGYFjAABQEcFjAEBd+W1xLKAcrxd0YsGoMfVYoM6E24vOefWetVgU00m7b//3gh56eOzfDQ2q+HxUMLxVyd91q/EHp6tp3VeUfOpOWfmso6aF5n20/RPf0uBX79f20/5d+f2OpzwFAABwhLIVAUHZCgB+4tZ4pe4ugsbrUh9uv36Qz631WKDOtE9+rXlc6/rRU22T0sDxCcdL//dfYnXdhn421XiNvb5RyXSvEk9tkJUbdvx6thVT/qCTlU0tVf7AEyWL8yXgliCfX4GoieJ4peZxRBE8BuAnbozXICyOBQRd0M+t9QjWOu1LLYLZM3nPWt+cK+1TQ4MmlKoYDRxP99mibMJ4ffNVxZ+8U8lMn+JvbDZ6ncKc3ZVbcJ6yC86VvfPeHvQUQNDPr0CURHG8uh08Trj6agAAONSasrRyhXYED0b/33RxLALHgD94kZU9ejwYHfd+CxyX66OTY1kt3nN5Z0zHLjTfJh3tlhbMNy+BUtqnSoFjp58hiuzXn1Dhtz9Q0+9ulDXyvlHb3AEnKptqU/6gk6V40psOAgCAyCHzOCDIPAbgJ26OV6fZZ2SpAeZqdW71Ost10eLChMBxc7O0YX1tpuDX4xgV5OPiZz4/cXG8hgbpvrun3lZ+/Aw1l9uuxNN3F7OM//iYUVN7douy889WdsES2fMO8KiDAErx2xUIjiiOV7czjyl8BQCoq3otjsVCfYA70hlbXWuLf5ssgDZ+XHetnXps1WOBuvHv7fWic354T7f8679PDBxLxQzkSn0q9xmicpy1+l/QrAf/VXOuPVmz7/oLo8Bxfp+FGv7iv2rbigc18qk/J3AMAAA8Q/AYAFB3lQIgXgSO13QVtGq1eZClu6dYp3lNV2FG7w+ESbEEjVkA02kJmnI1j03eZybSGfNjz0wDofV4T7d099i6ff3Yvxsaxv6ebluN/wydy8xLZgRKPqv40/do9k0XaU7XFzXr0etlDQ84amrP2kkjx1ygwa+s11Bbt3JHfklKzPK2vwAAIPKoeQwA8IVy9S97em3Xa5yWZkmOf+9KSrMkq6klCoSVSf3amZZkGP+4l3VyW1OWOpfZxuU4xn8XpoHQerynG0q31RmLpT//VsxoW1VbazkorK1/VHLjjUpsukmxbW8btc3vOV/ZVJtyRyySkk0e9RAAAKA8ah4HBDWPAfiJl+O1NAgxys06mKbZzNTkRFDV+tw63Vhxq5ZvLcekFwsB+vE9q+WnbeU7hbziL/yyWMv4+Qdl2c5nrdiJRuWOOE3ZVJsKe833sJMAqsFvVyA4ojhe3a55TOYxAMBXOtqtSRnHzc3uZhZ6kSUJoPLYcnMROJMxPFPVBmNnEsStx3tWw2/byi+sbW8psekWJTeuU2zrH80a73G4Yscv03sHnip71k7edBAAAMAAwWMAgK9UWhyr1gFkAseAuZmUoDFdLK70fcY/Dm+xrUrYtuIvP6REpk+JP/xUViHnvGk8qdyhX1Cudal2PvoUWZYlDQxIEciMAgAA/kfwGADgG+UWxxoNOHkRbHAjSxLAZKVjy0nguNrF4sa/z9XX2qGum+sXbKtxhgaUfPw2JTN9ivW/YNS0MHd/ZVvblD36LKlxnizLKgaOAQAAfITgMQDAF+q1OFatFuoDosa0BE1QF4uLoshvK9tW7LXfK5npU+Kpn8jKjzhvasWVP/gUZVuXKr//RyUr5mFHAQAAZo7gMQCg7ipl+dZiunM1WZKoXpAWA0P1qilBs7wzpmMXmm/njnYrHFmsARLJbbX9fSWevEPJdJ/ibz9l1LSw017Kps5Tbv65snfaw6MOApVx/gUAVINb3QCAunK64NLKFWOPXX2tre4ed2tBdrRbam6e+JjbC/VBWtNV0KrV5tuvu8fWqtW21nQVPOoZ3FSuBM2o6cZvUBaLQ3S2VezNJ9Tw07/RnGtP0uz7/s5x4NiWpdyHP6WhM76rwYvvVfajXyNwjLrh/AsAqBbBYwBA3ZguuORlALlSlmQl6Ux1fai2XZClM8Vp7pLZ9hu/n3StjeZ3FyTlxvWG9THPbwABrsoOKbH5VjX2tKmp+2wlM32ysoOOmhaadtXI8ZdocPm9Gj7rGuUP/rQUY8In6ofzLwBgJggeAwDqotoFl0oDUG78kKk2S5IsHjOtKfMbAOUCkUHLWoyS6UrQEECejBtQ/mK986xm/ewfNefakzX77v+h+OsZx21z+52g4dP+XYNfvV8jn/gz2XP38bCngHOcfwEAM0HwGABQF8UFl4p/my64NPoDyI0Fl6rNkiSLpzomAUSTzHTUn19K0AQJN6B8Ij+ixFMbNHvdMs1Z+yXN+t0PZW3fOn07SXbDXI18ZJm2XXinhs/7vnKHf1GKz/K4w4A5zr8AgGoxfwoAUDf1XnBpJgv1FbN4zBbyI4unyMkiiPxwDRbTEjSSt4tgBkHpDSjJ2XdQegOqmmMoiqwtryiZWafE5lsUG3zHqG1+71ZlW5cqd+gXpORsj3oIuIvzLwCgGgSPAQB1Va8Fl5xmSUpT/8gyCYLxY2yiSt8d31WwVFuCRpq4/d24IRQk3ICqk0JO8eceVDLTp/gLv5Ql51nfdrJJuSNPVzbVpsIeR3rYScA7nH8BAKYIHgMAIsfNLEmyeKpX7rvr6Z24cCHflf8VS9AUs2hNS9BIxe3uRgmaIOIGVO1Y772hxKablNx4k2Lvv27UNr/7EcUs4yO+JM2a41EPgdrh/AsAMEHwGAAQKV5kSZLFU73S744frsFU7xI0QcYNKA/ZBcVf/LWSmV7Fn/2ZLDvvvGm8QbnDv1jMMt67VbL4vhEunH8BAE5Ztm1Hd5WSAOnv7693FzxnWZZaWlokSQMDA2LXBPwr6ON1TVfBOEtSGgvgdC4rBsum+u+jmpv5MebUosWFCd9Vc7O0YT3r+s5U0MdqlEwVICZwXIXBd5XcfKuSmXWKbXnJqGlh3oeVbW1T9sgzpMYWb/o3BcYr6sHN8286U10N9mrb1RPjFQiOKI7XefPmufp6ZB4DACLHqyxJsniq090zcaqsVPzuuntsvjNEBtPIZ8i29fzPf6sjtq1T4pm7ZeWzjpsWrITyh52qXGqp8vseR5YxIsPN8+/YjXmzBVDHbszbZW/MAwDqj+AxACCSvFqor6PdmhTwaW42+yEVJZWytZ0sIAaECTegqjC8Vckn1uv9B3u1oPCsUdNC8z56pHCevnPzWTqjZTct34/AFaLDzfNvOlOse2/adnwfutaqqhv7AADvcYUEAICLKmXxYKJy0/E3rI9p5YqxH45XX2vz3SFSOtotNTdPfIwbUJPFXt+khnv+SnOuPVkNP/sH7eowcGxbMeUOPkVDZ12j7zXepUt6vqp3t++mrrXFABgQBW6ff1tTlnHbcn0gcAwA/kTmMQAALiGL1rlKdVydLCAGhBVlXCrIDirx5J1KZvoUf2OzUdPCnN2VW3CesgvOlb3z3sVj0PcIXCF6vDr/mrSlljsABAvBYwAAXOBksSuCoEVOfjQSQEYUhf0GVLWLYj3zX0/r6KE+JZ9YL2vkfaO2uQM+rmyqTfmDPq305oRad2YRQkSX1+dfJ23dHn9RWqQPAOqFshUAAMzQdFk8lGEYY/Kjke8OURL2Mi5rugpatdqg/7ntSjxxh977fxfoT35zhmalexwHjvu3t+j7f+jU6fdt0HXbr1P+0M+puy+hVattfeNbBQLHiKRanX8rtXU7cGx8XPlAd4+tVattrekqVP3eABAllm3bwbwCjZj+/v56d8FzlmWppaVFkjQwMCB2TcC/GK9jnP4QItOtmOWzarX5d/Cv/17Q7evH/n3lFc6ml5NVxFgNiumOD0E/fpiMfav/BSUzNyq5+RZZwwNG75PfZ6GyqaX64WOf1ZXfm7Xj8ROOlx56ePLz/fY9Ml7hlWrPv6XHHqfn33Jtx8+kMOnDVOrxmcZjvALBEcXxOm/ePFdfj8xjAACqRBatmdaUpc5lxb+d/shb01UMHJ9wfPHfncvk6EceWUUICqfTyIN8/Jh2Ma18VvGn79Hsmy7SnK4vataj1zsOHG+3dtLIMRdo8Cu3a6itW7kjv6TzL5g94f2CEDgGvFTN+VeaeOxxev4t11ZyN3AssUgfANQSmccBQeYxAD9hvNY/4yXInGYEl37HZ5wu/fm3p7/vzXc8hrHqb6YZxUHPQC7t/39b/pqWHHSzEptuUmzbW0avtXngaN34QpvuevWLunD5nLLfw7f/eyFQgWPGK7xWj/rAixYXJgSOm5ulDevdy2Gr1wwwxisQHFEcr2QeAwDgA/XI4gkLp5+5NKvo9jtEVhFCI50xD2SUy0BOZ4LzA6ij3dKlXy3oE3v8XP9x/Cqd/+bnNOuhqxwHju1Eo7Lzz9Fg+436xRE36raXztFwvqlsxmF3j102cNzcHOxFB4HxTMf/6Pmw2namunvsCYFjqZiB7ObMCSczM4J+4w0A6i1R7w4AABBUyztjOnaheTZOR7ulBfOjGTg2ZbLqOz8OESTFG1C2utaa34CSimMhSDegrG1vKbHpFn11aJ1iH/2jUdv8rocol1qq7JGnS7ObJUkd7cX/Vu7YUHosGG80cMWxAUG3pqvwwfHD7IbI6PjoXGZread3uWSVah5XOpdXo9K1AtcGADBzlK0ICMpWAPATxitqLewLinmFsep/9ZhGXjO2rfjLDyuR6VXiDz+VVcg5bppXUoUjvqBsa5sKH/qIZJX/rNMtyjXV4348RjBe4ZTfS2dNdU72+lzt9SJ94zFegeCI4nilbAUAAIicStNSCRwjyKoN3Pg6cDw0oOSj31fT9xep8aYLlXz6LseB45e27adf7/xtDa18QNsX/YsK+yycMnAsVV6Ua9TKFZY2rI8FetFBYDw/LxZX6Zzs9eKfXi/Sh4mqLZsUpHJLAIrIPA4IMo8B+AnjFfVSy6yiMGCsomZsW7HX0kpmepV46i5Z+e2Om+YKcT3w+qd104ttemL7R3XnevPKeqWLco0K0iwFxitM1WuxOL/3x+tF+iTG61jZFLNtN1Y2RZ6WTQHGi+J4dTvzmJrHAAAgMErrGhI4BupsZJsST9yhZKZP8beeNGr6fmwvrX38XN324jl6a/seOx43rUlcblEuSTrh+Mk1VU3qqAN+52R/9lvg2Gm/Z9KPqRbpY5y7I50p1uuXzLbd+H2ka62qWjcEQH1wqwcAAB9jSuBkHe2WmpsnPtbc7G7wh+8dGFNuv469+YQafvo3mnPNpzT7vr91HDi2ZSl34Cf1k5b/1Em3363vPX2p3tq+x4QxbTKVvdLieA89rLKv4/XUeaCW/FDWKZ0xf59y/Z7pObTc7KTxr884d4efy6YA8AbBYwAAfGpNV0GrVpv/2OnuKS6ks6ar4FHP6qtSVpEb+N6BMRPGQ3ZYic23qbGnTU3dZyuZ6ZOVHXT0OoWmXTVy/AoNLr9H1w1fo+/84NPK28VJkNXWJJ4qcHzC8WN/T/U6XgSugHoptz8vWlyoWYmW1pSlzmXm7zO+353LZlbLvVxwklrn3jG5CefnckEAnKFsxQwMDAzo6aef1osvvrijbsrcuXP1oQ99SMccc4x23nnnencRABBQTAksr1LNYzemvfK9A2NGx8OBOz2nnX61Tsk3bleDXaY+RAUPv3W8mk9p076nfFaKz5p2MS3J2VT20tdZ+BHp0cfGXm/8f5/qdca/30wDV0C91bus0/LOWFXnvo52Swvmux84rua4AjN+KpsCwFssmGegUCjot7/9re6991795je/0dNPPz3lcy3L0sc+9jFdeOGFOumkk2b83iyYB6Aa6Ux1Aazp2jFea8P0gjvsF+hTfT63P3eYvnfGKqqWH1HiDz/VO/f2aZ+Rh42abh1p1vqXz9BNLy7RF9oP3jEe3FpMa6r/Xnrucvp+1Z4rZ9K2XDvGK9xQi8Xi/KRei/QxXsfU6voMqFYUx6vbC+YRPDbwuc99Ti+++KJxu9NOO01/93d/p5122qnq9yZ4DMCUl6sgM15rxy8rl9dbtcEkr97Pq/d1G2MVpqwtryi58UYlNt2s2OA7Rm1fT7bqyoeX6J5Xv6DthdkTxoNbN2X8dHPH7fMs4xUzNVUpF7+dm9xSz+MB43WiSjPDpPDugwiGKI5Xt4PHlK0w8O6770567MADD1QqldJuu+2mhoYGvf766/r1r3+t119/fcdz7rzzTr355ptas2aNGhoaatllABHF1PvwYEqgs8/n9rRUvndESiGn+PM/VzLdq/gLv5Ql5z+q7GSTckeertteXaJ/6Dpix+Pjx0O1i2lJE8dgY6Otq68de061rzPTKfIS51n4j9dlnfzGreOKG8cD1L9sCgBvETyuwj777KPzzjtPZ511lvbaa69J/z2fz2vdunX6p3/6J23fvl2S9Mgjj+g//uM/9Bd/8Re17i6ACCqugmwWSGMVZP+qFMgMewDT5PPVMoAc9u8d0WC994YSm25ScuNNir3/+vQNxnlqy2F6Y7+l+shXFqv7piZd3TX1eCgupmUbZ+mW1iQ+56yYBgbMs329qG3MeRZ+4iRTP2wBZLeOK4xB93S0W+rptSeVTQnLPgdEGWUrDCxevFjLli3TmWeeqXg8Pu3zH3zwQa1cuVKFQnHV9WQyqfvuu0977rmn8XtTtgJANbyaes94rY+oTQlMZ2ytWm0eoC39nq68YmYBmiB/74xVTGIXFH/p18Us42d/JsvOO28ab9DTyS/q7+9doo39KUmW0Xhwqz6wV/X8q+HmeZbximrUuqyT39TreMB4nSxqZVMQHFEcr5StqKNbbrlFiYTzr+ykk07SaaedpjvuuEOSlM1mdd9996m9vd2rLgLABEy9D5eoTQn0S1ZR1L53hNTgu0puvlXJzDrFtrxk1LQw78PKtrYpe+QZ2qexRSe22NpYxXiodiyWtnPrddzAeRb1VI+yTn7jp+NBlEWtbAoQNQSPDZgEjkeNDx5L0saNG93sEgBMi6n34RK1KYHLO2NV1QTtaLdcrWMYte8dIWHbiv3xMSXTvUo8c7esfNZ501hCuUM+q1xqqfL7HS9ZY/s642EizrOoh3qWdQLGi2LZFCBqCB57bP/995/w77fffrtOPQEQZeV+NJT+8OcHbTB090zcblIxs6O7xw7t9vNDVlHQvnc/TetHHWx/T8nH1yuR6VX8nT8YNS00f0jZVJtyR58le87uZZ8TtPFQC5xnUUssFge/qHQTg5sWQHjE6t2BsNu2bduEf1eTvQwAbuhot7RyxdjFGj9o/SWdmb72VrkpgaOuvtZWd0/463fVQ9C+9zVdBa1abd6v7p5ijek1XQWPeuYNJ2PHzXZ+Fnt9kxru+SvNueYkNfzs7x0Hjm0rptxBn9bQmVdr8KJ7lD1+RcXAcZDGQy1xnkWtFMs6Ff82Les0uo+yWBxmymnZlPHHxXqcJ7hOAGaO4LHHnnrqqQn/3muvverUEwAoXsCN/6EvRXuqsV84CfaVu0BvXzpxu0U9cOOFct/7hvWxuv8Qmko6U6wRLY32y1kgePzn7FobnB9MUQuUl5UdVGLjTWr80blq6jlPyU03y8oNOWpamLO7Rk64VIPL79Xwmd9V/qCTpNjUi0IHbTzUA+dZ1MryzpiuvML8pkRHu6Urr7C0vJNQAKpnWjalXucJrhMAd3DG8Nj69esn/PujH/1onXoCAJWnGqM+Jgf7Jm+Lchfoo88vFfXAjZumm4rpx4BZa2piv666xtZ111cOJJb7nEHIRnMydsoJaqC8VOztpzXr/r/XnGtO0ux7/1rxNzY7bps74OMaOv1yDV58n0ZOXC27+UPTtgnieKgHzrOoJT+UdUL0VFs2pfQ84fX5N+rXCYCbqKHgoYcfflgPP/zwjn/vvPPO+sQnPlHVa1lW+E/w4z9jFD4vUGvdPYWKqyBbltTR7uyeIuPVPce0Wrr0koKuumasHtz4bVG63S69pPh9jz6/3GOm2xOTlfveS7/PL19gybKm3nb1Utqvyy4flCSdd87kserkc/rVdGOnnHKf95jWYHxeSVJuu+LP3KNkulfxVx81amrPblF2/tnKpZbInnegJCnjsMZ1kMdDLc30PMu5FSgKQt3+KI/XY1otXXRhQdd/3za6bhh/nrjoQu/Pv5G8TkBZUR6vbrFs2+Y2igeGhoZ05pln6oUXXtjx2OrVq7Vq1ar6dQpAZF13/dCOAJIkffMbTbr4osYpH0ftldsWkhw9NrrN2J7uMP0e/fq9T9cvv/bblNPPEeTPa7/zvAqP/ECF3/VJg+8atbUOOEGx474i66jTZCVn73h89Pv42spGrbq0acr2YRkPXuM8C7jjyqsG9d2rh4zHitNjGtzz6GNZLfxIsmbtqhWF6wTAawSPPfKXf/mXuvXWW3f8+6CDDtJtt92mhoaGOvYKQBRFJYAUBqXbYrzpAsdTvcYPuppreoEedI8+ltVXOsfmnDsdD3793qMS0Arjcc7OZ2U/eY8Kj/xA9rMPmjVu2FmxY85T7Lgvy9rzyEn/2en+Grbx4JUw7n9APXDMgVc4TgMzQ/DYA2vXrtU//uM/7vj3rFmzdMMNN2j+/PlVv+bAwIALPfM3y7I0d+5cSdKWLVvErgnMXHdPYVJ5g3JTtZw+bxTj1Tul20KaulTFVNto9DUuupAFcaqxpst8Kqbkz+/dsizdePOsCT+Ixk+ll4JVqqKSqY5jpse3erO2vqbExhuV2HijYtveMmr7+MBReuuApTr2K6dJs+aUfY7p9xGm8eAFN8+znFsB82NUvY7xjNfgCct1AsxFcby2tLS4+noEj11211136Zvf/KYKhbFVOf/P//k/Ouuss2b0uv39/TPtmu9ZlrVjBx8YGIjEgAa8ZLIKsunzGa/eKt0WpcE+JwuT1LLuXxgFod6iE6Njdaqsdif7UpC4MXbqopBX/MVfFWsZP/+gLNv56u52YraeTJ6m/33XEj2+pZioMNXnND0vjArLeHCb2+dZzq1AkdOxVe0xzQ2M12AK7HUCZiSK43XevHmuvh7BYxf9+te/1ooVKzQyMrLjsW9/+9tasWLFjF+b4DEAE+mMrVWrzS+mSy+orrzCKvvDn/HqvdJtMYqLWpgYP1Y/9sl3JvxAam6WNqwPX2ZNkMaOte1tJTbfomRmnWJbXzVqm9/1YOVS5yt75OnS7OZpgyj1DLKEkRfnWc6twBi/H9MYr8EVpOsEuCOK49Xt4HH4fjHUSSaT0de+9rUJgePly5e7EjgGAFOtKUudy4p/m1wIdbRbWrmi+NzOZQp1xpjfdbRbam6e+Fhzs7ioRVWuu35oQuBYKmbadPeE7+LZ92PHthV/6SE1/PibavreKWr45WWOA8d2PKnsEV/S4JIfaugrdyj7JxdIs4sfdvzxWyquKj+6fesdZAkjzrOAtzimwSu+v04AfIjMYxc8/fTT+vKXvzyhLvF5552nv//7v3ftPcg8BlANr6YaM169R1YE3GBZlm66paFizeOw7VO+HTtDA0o+flsxy7j/eaOmhbn7K5taouzRZ0lNu1R8LlNya8vN8yznVmAyvx7TGK/B5dvrBHgmiuPV7czjhKuvFkEvvfSSLrroogmB4y984Qv6u7/7u/p1CgA+UG1GE5lQ9VXph9Lo41zcwoniIjBjgePRH0bj97Ew7VO+Gzu2rdhraSUzfUo89RNZ+e3Om1px5Q8+RdnWNuX3/5hkOZswOPr5Rj+vH4IsYcZ5FvAWxzS4yXfXCUBAULZiBt544w1deOGFeuutsZWwTzrpJP3bv/2bYjG+WgCAuXJTMTesj005dROYSnePXWb18OJ+VGk6cFD5auyMbFMi3avG7rPV1Hu+ko/f5jhwXNhpL23/2Nc1ePF9Gl58hfIHnOg4cDyKKbkAwoRjGtzgq+sEIGCIcFbp3Xff1YUXXqhXXx2rUXf88cfriiuuUDKZrGPPAABBVamGXxiDfeDFqQEAAJiySURBVPBO6b70zW80qaN94mVfmPYpv4yd2FtPquGnf6M513xKs+/7W8XfetJRO1uWcgd+UkNnXKnBi+9V9mOrZO+8Z9X96O6xI1PjOuzSmeq2WbXtAD/imIaZcuM6geMxoozgcRXef/99XXzxxXruued2PJZKpXTVVVdp9uzZdewZACConCz+EqZgH7xTLnB88UWNZZ8bhn2q7mMnO6zE5tvUeMNSNf3wLCUzfbKyg9O3k1Ro3EUjx31VgxfdreGzr1X+4FOk2MyqypWbkjsqiNs3ytZ0FbRqtfk26+6xtWq1rTVdBY96BtQOxzTMlBvXCRyPEXXUPDY0PDyslStXavPmzTseO+yww3Tddddpp512qmPPAABBZbJqeGntP+qzYbx0ZuK+dOkl1pSB41Hl9qkF84NRk7WeY8d693klM71Kbr5d1vYtRm1z+x6vXGubcod8VorPqur9y5nq+whrjeswS2dsda0t/m2yzcZv66610rELq1vQD/ADjmmYKTeuExbMF8djRB6ZxwZyuZy+8Y1v6JFHHtnx2IEHHqiuri7NnTu3jj0DJmJKDRAcpcE+J4u/lMuO8OP45VhUe60pS53Lin8X9yXni6yN7lOdy4IROK7L2MmPKPHUTzT7xgs15/uLNOuxHzgOHNsNzRr5yFe07cI7NbxkrXKHL6pJ4FgKR4Z51LSmzLdZuX0gCGMZKIdjGmbKreuE0bbjH+N4jKgheOyQbdv6y7/8Sz3wwAM7Httnn330/e9/X7vttlv9OgaUYEoNECyTg33OLiz9HuzjWFQ/yztjuvIK8xXoO9otXXmFpeWdwbg8rOXYsba8olm/vExN3ztFs+/8lhIvP+S4n/m9Uhr+/D9q24oHNHLyd2TvcpDjtk7VvXQHPGGyzUyy6wC/45gGN7h5ncDxGFFn2bbNEdaBV199VaeccsqExyzLUixm9gNrn3320b333mv8/v39/cZtgsayLLW0tEiSBgYGxK5pLp0pBl1GOT1RlZ7grryCO6OojPHqvnSmuqls1bbzEsci/4jCWPVs7BTyij//oJLpXsVf+KUsOf/u7GSTckeermxqiQp7HGXcNxOmP1KD9KM2TMdFJ6Yar9NtsyBtU2A6QTmmReH8GhZunks4HgdTFMfrvHnzXH29YKSW+EC5ncu2beXzeeP/AV5hiiMQXNWOOz+OV45FqCW3x471/ptK/ua7alpzqhpvX6XEC79wHDjO73a4hj/zv7RtxYPa/tm/8TxwHOayN/WaveDHcjuVMt4IVCBMwnxMQ/24eZ3A8RhRxYJ5QMiYLAjECQ6AVzgWIVDsguIv/VrJdJ/iz94vy3Z+s9+Oz1Lu8C8qm2pTYe9jJKt2+25xSm5xYTXTKblScVz6sexNvRaLW9NV+OC7NFt8a/R9O5fZnpV9KXdM7em1tXXr2HM4diLownpMQ7hwPEYUUbYiIChbAVNMqYGXGK9wimNRfTFWpzHUr+SmW5TMrFNsy0tGTQvzDlQ21absUWdKjS2edM+pMJZ3qPXUdT+U23EyXkvfz7S/QBAE4ZjG+RUcj4MjiuPV7bIVBI8DguAxqjHVDymCNZgpxitMcCyqH8ZqGbat2B8fUzLdp8Qzd8nKZ503jSWUO+SzyqWWKr/f8TXNMo4ip8cIt44l9a616nS8LlpcmJDh1twsbVhPNUKglji/QuJ4HBRRHK9uB48pWwGEGFNqAPgBxyL4wvb3lHx8vRKZXsXf+YNR00Lzh5RdsES5+WfLnrO7Rx1EKSflb9wM4Aah3E53z8RjpyRt3Vp8nGMoANQOx2NECcFjIORKfwgRrAFQD06ORUGYporgib2xWcn0DUo8uUFWbshxO9uKKf/hk5RNtSl/4CekWNzDXmIqlQK6XgRwax2wNlH6vs3NY8dSk9rQAICZqffxmGtm1Br59EAEdLRbam6e+FhzMz8wANRWpWPRmq6CVq0eW7Haqe6eYp3SNV0FF3uKwMsOKrHxJjX+6Dw1/ehcJTfd7DhwXJizm0ZOWKnB5fdq+MzvKn/QSQSO66zc6vaLFhc8C+CWe7/RY5NfAscrV1jasD42ZT8BAN6o9/GYa2bUA5nHQAQwpQaAH0x1LPrXfy/o9vXFf5tka4y/eO9aKx27kGyKqIu9/YwSmT4lH79d1sj7Rm1z+39M2dRS5Q/+tBRPetRDVKvWM6n8VG6nUsDapNQGAGBm6n08Tmdsda2V8etzzYyZIngMhFy9p9QAgFT5WHT7eumE46WHHi7+28mxqdzFOxfBEZUbUeKZe5TM9Cr+6qNGTe3ZLcoefbayqfNkzzvQm/7BNR3t1qQArpczqfxQ+stJpjMBZADwnh+Ox60pSytXmL0+18xwA2UrgBCr95QaAJCcHYseergYQB5V6dhUr2nj8Ber/0XN+vm/as73Ttbsn/y5UeA4/6GPaPgL/6xtKx7QyEl/TuA4ICrNpPJKPUt/mRzrKpXaAADMjJ+OxyavzzUz3ELmMRBS9Z5SAwCS2bFoNIBcKQOZi+CIy2cVf+5nSmb6lHjxv4ya2rPmKHvkGcql2lTY/TCPOgiv1GsmVb1Kf6Uz5se6ctd3C+aLDDMAmAE/Ho/9vLgrwonMYyCEnE6pIUMFgJeqORZVykDmIji6rPde06z/+n9quu6zarzjG0aB4/weR2n41L/TthUPauQzf03gOIDqNZOqXMDay/cbrzVlqXNZ8W+TY934Y2rnMgLHADBTfj0e+3FxV4SXZds20aIA6O/vr3cXPGdZllpaWiRJAwMDYtesjumJghMLqsF4xXRmeiwan4EsTcwydPJ6KAr0WC3kFX/xV0pm+hR/7gFZtvPVwe3EbOUOX6Rs61IV9lrgYSeDKZ2pbqGcatvNxHTHEq+uY6Z6XS+vm8qN1yBtKyBKAn1+RVX8ejyuNDNH4ppZiuZ4nTdvnquvR9kKIET8OKUGQPS4cSx66GHpjNOl2+8o/ncugqPD2va2EptvUTKzTrGtrxq1ze96sHKppcoeuVia3Tx9gwha01VQ11pp5QqzMg+jP047l9la3lmbyYv1WpzIT6W/qr0e4zoOANzl1+OxHxZ3RfhRtgIIEb9OqQEQLW4di/7827G6LVTlN+lMdRkS1barOdtW/OWH1XDnt9T0vVPU8MvLHAeO7XhS2SO+pMElP9TQV+5Q9k86CBxPIZ2x1bW2+LdJ2YXxwdSutbXZr+q1OBGlvwAAQVPPxV0RDWQeAyGzvDOmYxeaT43paLfIOAbgGjeORfVaqMpvZpop+rWVg1p1aZOHPZyBoQEln7hdyXSfYv3PGzUtzN1P2dQSZY8+W2raxaMOhktrytLKFWZZs+WCqV5fK9RrJpVpwLr0/cY/DgBArXDNDK8RPAZCyOspNX6t9wTAX2ZyLKpUvy1KQZrSTFHJ2ece//199+ohffSEpA4+yLNumrFtxV5LK5npU+Kpn8jKb3fe1Iorf/CnlU0tVf6Aj0kWk+hMmQQ967UuQnH2gv3BTROz2QuSPiivYXYMovQXACCIuGZGLXDFDcDImq6CVq02n57Z3WNr1Wpba7qcL3gEIJrKBaw2rI9Fcpp4MVPU7HOXfn/f/EaTFn4k6VkfHRvZpkSmT43d56ip93wlH7/NceC4sNOe2v6xr2vw4vs0vPj/KX/giQSOZ8BJ2YV6L6i7vDOmK68wf8+OdktXXmEZ12Wm9BcAIGi4ZkatkHkM+Iyfs3rdyIDrWquqprIDiAY/LVTlFzPJFL30EksXX9RYg15OLfbWk0qme5V44g5Z2UHH7WxZyh/4CWVTbcofdJIU47LVTZX2q3oHjkfVenEiSn8BAIKCa2bUElfhgI/4fQX0oNRKBBBMTheqkqJ3Mezkc5f//uqUnZsdVuLpu5TM9Cr+WtqoaaFxF+Xmn6PsgvNkt+znUQchld+venrtSK/UXuuANQAAprhmRq0RPAZ8IihZvUGolQggeFioanpByBS13n1eyUyfkptvk7V9i1Hb/L7HKZtqU+6QU6XELI96iFKl+1WUA8cAAPgd18yoB8u2bYqfBEB/f3+9u+A5y7LU0tIiSRoYGFAUd03TH//1DBZM995+CWTAG4xXuCmdKdZEH+X0eFF6nLnyimjMbKi0MIo08furyVjNjyjxh/uUyPQp8fJDRk3thmZljzpD2VSb7F0Pdr9vcGzR4sKE/ai5WdqwnrrStcS5FQgOxivqgWvm6kRxvM6bN8/V1yPzGPCRIGX1BiEDDkAwFBeqsj8o22O2UJWkD8r2RGfauF8yRa0tryq58UYlNt2s2ODbRm3ze6WUbV2q3GFfkJL1rcmM4jXF+P1IKu5X3T02528AAHyCa2bUC5nHAUHmcbQEKavXJAMO4cF4Dbd6Ldzp5wVD/chJpqjrY7WQV/z5nxdrGT//C1ly/np2skm5I76kbGubCnscNbN+wDWcx/2DcysQHIxX1BPXzGaiOF7dzjxmLhrgQx3tllauGDuoX32tre6e4gHOT4FjaXJf+cEJBNuaroJWrR475jjV3VOcRremq1D1e7NQlXOVMkW9YL3/ppK/+a6a1pyqxtu/psTzP3ccOM7vdpiGP/M/tW3Fg9p+6t8SOPaRctcUG9bHprwGAQAA9cc1M2qNshWATwVpBfSOdmtS35qbKcQPBE1QFu6MukqZoq4uhGIXFH/pN0pm+hT/w32y7LzzpvFZyh3+RWVTbSrsfYxksT/4TaWb0SywAwAAgFEEjwEf80tdy+lQKxEIh9aUpZUrzAJG5QJQBI69M1XAb/zjMw70DfUruflWJTN9ig28ZNS00HKAsq1LlT3qDKnR3elycI+TWUwEkAEAACARPAZ8z+9ZvTXLgANQE0FauDNqqskU/fIFDreHbSv2x8eUTPcp8cxdsvJZx/2yYwnlDvmscqk25fc7gSxjnzMZtwSQAQAAQM1jwOdqXdfSBLUSgXCqVHd9FIHj2nKaKTp5u01Tg3r7e0r+/kdq/MEZaurrUPLJOxwHjgvNH9L2E/9Mg1+9X9u/dJny+3+UwLHPpTPm47bcfpXOBP+8Xu1nCMNnBwAAMEHmMeBjfs7qpVYiEG6VxjGB49qaSaboVdfYmj17SBdf1DjhebE3NiuZ7lXiyTtl5YYc98WWpfxBJymbWqr8gZ+QYnHTj4M6ak1Z6lxWrG1uMm7H71edy4K/4M6arsIH34HZtcnoWOxcZmt5Jzk4AAAgGizbtrl9HgD9/f317oLnLMtSS0uLJGlgYEBR3zWd1LUc/7gf+lbt8xA8jNfoqHQTS2Jcey2dsbVqtflxtHS7/aCrWQfv95biT9xZXADvjU1G/SjM2U25+ecqu+Bc2c37GLWF/6Qz1S1qWW07P3FrTF15hfv13b08t0Z5mwNe4FoYCI4ojtd589xde4Rb5oAPTZfVW8+yEKYZcJSwAIKtdBwTOK6tYqZo8W/TTNHR7fb/LX9Zx7z2N2q65iTNvvevjQLHuf0/qqEvXa7Bi+/XyInfIHAcEtUGA8MQRCwuDGp2bRL0hUHXdBW0arX5NVh3TzHQvqZrmvI3AAAg1Mg8Dggyj6PDz1m9fs7WQW0xXqNn0eLCpIU7N6znHnStGGf/5UaUeOYebf91r+YOPGr0XvbsucoefbayqfNkz/uwYU+BYPDj9ZYX51au3QBvcC0MBEcUx6vbmcfUPAZ8xO8roFMrEYimSgt3knlcG06Pm1b/i0puXKfk5ltlDfVrtsF75D/0EWVTbcod9nkp0VBdR4GAcHIdFYbyW8VMa7PrxaBnWgMAAHcRPAZ8otoV0KWJPwgWzPc2OLu8M6ZjF5rXv+totzzvGwD3+XnhTlOhrflZyCn+7M+UzPQp8eKvjJras+Yoe+Ri5VJLVdj9MI86CPhTkBcGNTkumSQc+P1zAwCA2mO+KeATbtS1rFVWb5RrJQJRUi6IsGF9LJC1zMNY89N67zXN+q//p6bvfUaNd6w2Chzn9zhSw5/9W21b8aBGPvM/CRwjssqtz7BoccHXAdRqjmcd7ZZOOH7s3+WO3QSOAQBAOWQeAz5CVi8AvygXRFgwv/i3admcemfupjPFcjuSWbb0+O+ga62qOj67zi4o/sKvlMz0Kf7cz2TZzoPadmK2cocvUrZ1qQp7zpcszhmANPmY5ueFQWdyPHvo4YmPBSnTGgAA1A8L5gUEC+YB8BPGa7iVCyJs3z653rmTYMPoczqXFW+Q1YtpYMRvgRRr29tKbL5VyUyfYltfNWu8+6GKHb9M7x34OdkNO3vTQSAE6r0wqNNz60yPZyccrwmB5PHliJy8HgCuhYEgieJ4dXvBPMpWAEAF6Ux1J5Zq2wH1NlXG8fhMt9GpzuWme4+fBl2auVvPcTFdX8fzTeDYthV/+WE13PktNX3vFDX88t8dB47tWFLZw0/TUNsPlfjTnyv+0Yul2c0edxgIrkoLg/rNTI9n//dfJpYfInAMAAAqIXgMAFMIY41UoJKpFu5sTU0dqCgXxEhn7LIBi3qXfHAScPFF4Hh4i5KP/UBNa7+kxhuXKfnUT2QVso6aFubup+2f/LYGV/xM20/7NxX2PU4W5SlCgxua3ii3MOgov9Z1n+nxrKPdmvA5peLnJnAMAABKETwGgDJKawo6/eHop0xLwFSlhTsrBSpKF+7cuEn1D8BOodLnqGvg2LYVey2thrv/h+Zcc5IaHvgnxd59zllTK67cwZ/R0NnXafCiu5Q97mLZTbt63GHUGjc0vRHkhUFncjwLUqY1AACoL2oeBwQ1j4HaC3qNVC8xXsOt0gJ3lfbzdMb2deB4vHKZhnWZuj2yTYknf6xkuk/xt54walrYaU9lF5yn3PxzZO+8V9nnMFbDIZ0pBoBHOd0/S/fzK6+o/wwAP3ESYK3l8aza8Wp6PPPN8Q8IMM6vQHBEcby6XfM44eqrAUCIlK6+XmlV8ygFjhF+lYJLlcZFUALH0uTPUevASeytp5TM9CrxxB2yRrY5bmfLUv7ATyibalP+oJOkWHAv5SrdpPCiXZAVS8c4Ox+N8mPpGD9xct42uQ6oJ5Pj2VSfe/zjfv2cAACgPsg8Dggyj4H68Vtmkh8wXhGWzLVFiwsT+t3cLG1Y71FVr+ywEs/cVcwyfu33Rk0LjbsoN/9sZRcskd2yn+N2fh2ra7oK6lprvp+M7nedy6TlndGrvub0fBPF85IJv84smul4ne54xvUM4B6/nl8RLtxod0cUx6vbmcfRu+oGAEO+rZEK1FHpuAhi4LhWNT+td5/XrAf+j+Zce7Jm3/Udo8Bxft/jNLzo3zT41Z9p5JPfNgoc+xU15asXmEUffWyqhUErmWphUD+Z7njmNNM6CLWeASAKWOsAfkLmcUCQeQzUX1gyLd3AeMWommbuusjz8ZwfUfzZ+5VM9ynx8m+MmtoNOyt71JnKptpk73pw9X2Qf8eqXzM/g8JJ6YHxj2Miv2a+e1Xz+ITjpYceHvs34w2YOb+eXxEOrHXgriiOV7czjwkeBwTBY8AfSk/Io6L2w4rxCim448HLwJu15VUlN96oxKabFRt826htfq+Usqk25Q7/opRsNGo7ZX98PFYpwTAz3NCcGT9OBa5mvDo9npX+d9PXJQABTOTn8yvCgRvt7onieGXBPACoo452Sz299qRMS07MiJpKgSs/L7ZU6cK66sWxCnnFn/+5kplexZ//hSw5vyC1k03KHfElZVNLVNjzaJOPEnhOvm9+CE2t3os+Bl21gVA/BVBNjmdSMQPZ6X4xvn3nMn99bgCIAhZvh58QPAYAA5VqCnKCRlQ4yXTzYwDZac1PydmFuvX+m0psulnJjTcq9t5rRn3J73aYsq1LlTvidKlhJ6O2YVLp++aH0PS4oRld1RzPHnrY7Hqlo93SgvkEjgGgXrjRDr8geAwADgU10xJwkyeZuzVgcmFd8XPYBcVf+o2SmT7Fn71fViHnuA92fJZyh31B2dalKux9jGTV/3vxg3Lfd2lAdOWKYhCrGmFecZwbmtHk2vHMgbCOHQAICm60ww/8v6INAPhAuRPzhvUxViVHpDjNdPPbuEhnzC+sSz9H7/ff1Vt3rFFT1xfVePNyJZ65x3HguNBygLaf9BfatuIBbf/iP6vwoT8hcFyi9PsuDRxv326z4niJcjc0R/lh3MEbbhzPrr7WVjrD/jGdar8jvlsAbit3HF+0uEDgGDVD8BgApjFdpqXfAmWAF0wz3fw0LlpTljqXFf82ubDuOF/6mwt/p7//k7/UT79wij78zL8pNvCSo7Z2LKHcoZ/X0LldGuz8ibILL5Qa3V24Imw62q0JAVCpGBBdMF/qWlv8t8m+NH6f7VobroAONzSjq+rj2bjjMjWMp7emq8ANKwC+Mt2NdgLH8JJlR2GZwRDo7++vdxc8F8UVMOF/TgNmUZsyxHiNlnSm+GN4lNP9u3RcXHmF5WrAwrQcwejzp223/T0ln1ivRLpP8XeeMepTYee9lU0tUe7os2XvtIdRWy8EaayW7i+jRn8oseJ40XSfLcyfPexMxmu15VjCXMbFLX4958FfgnR+RbgsWlyYtNbBhvXkhVYSxfE6b567SSvsYQAwhSBnWgJu8mOmWzVZYa0pq2JWWOyNzWq4568155qT1HD/3zsOHNuylDvoZA2deZUGl9+r7AkrfRE4DpLpSjBIcnyMDXPwNKilY+C+ao+nBDOn15oyH0PlxibfNQC3VVrrAPASmccBQeYxUFtknVTGeJ1eGLPC/PKZXB2fRw4p8dRPlEz3Kf7GRqN+FObsptz8c5VdcK7s5n2M2tZKEMbqVAHRco9LlTOQox44nsnzUX9BGK9RwuwzVMJ4Ra1VWrxd4thTSRTHK5nHAFADfsy0RHCEtVaiXzLd3MgK+07nH3Tc2/+oOdeerNn3/JVR4Di3/0c19KX/0ODF92vkxG/4NnAcBKY15UefM/6x0W0f5gAOi6QBteckiz/Mxx0A/sFaB6g3Mo8DIiqZx88+N0cLP5I0vhvk50w9BJtfMi39Jop3b50ia712TLPCkrERfWbve7X6o336UPZRo/eyZ89V9uizlU2dJ3veh2fc91rx81idSVafpMhl36zpKqhrrflnG/3+OpdJyzvJG/EzP4/XKDOZHRG24w6mxnhFrbDWwcxFcby6nXlM8DggohA8vv77tq7/vq1vfqNJ55693fGA5kcRUHtRPAGbYHp57Ti5oP5x94s654Abdcb+t2qXBrPzaf5Df6Jsqk25Qz8vJWe71u9a8etYdWOMSBMDyE5fK8i4oRlufh2vYLo4JmO8ohYon+OOKI5Xt4PHCVdfDahSOlMMHEvSZZcPanjY0gXnm2Xqda2Vjl3IjyMA9Td6sTZ6fBr9fy723Dfld700r19+/2dKPd2rlZ/9L6PXtGfNUfbIxcql2lTY/XB3O4yqSzBIE7fzlVdYkwI4zc3lx1lY+KV0DBA1pccgAscAvGa6eLvk7LcHUA3SNOELrSlLl14ydmC76hpWNQYQbNRKrJ3x3/Ues1+XHvxPDf3zZ/SFgdX6+B7OA8f5PY7U8Gf/VttWPKiRz/xPAscecaum/MZNYsVxADXT0V68YTVe2G9YAagP1jqA35B5DN/oaI9p9uwGXXb5oCQy9QCY8eN07kpZABzHXGQXtOxjv9Ln+3u1//ADilvOFxy0E7OVO3yRsqk2FfZaIFlsg1pY3hmrarZQR7ulBfOLgeOpppCTbQPAC9099pQ3rDjeAHBT8Ua7bbzWwfjfHizeDjdR8zggolDzeLQOzXXXD+0IIEsUhAf8yG91o/y+kBS1Er1hDb6jxKZblNy4TrEtrxi1LexysLKpNv3OPl3zF7YYv3dQasj6bay6gcWrEFZhHK9hwXkcpRivqAU/JscEURTHq9s1jylbAd+5+KLGCSUsxk/15ochgFLpTPGuvFS+NMRUSmumezmtq3QaGT84Z8C2FXv5YTXc+W01XftpNfzy3x0Hju1YUtnDT9Pgkh9ocNkdujp9gVZ+u9m4zEF3j61Vq22t6XKe4Qx3VLoOcFIqBgBMlTvubFgf43gDwHOsdQC/oGwFfKmjPSbbLkyY6t3TaxNwATBJa8rSyhVmC0TUo2Z6R7s16ThGrUQDw1uUfPx2JTN9ir37nFHTV7btq1f2XKIFHWfLbtpV0uSbDpKzbcFCrfXj5AYyC8YA7iDbrWi6G1YSxxsAQPiReQzfIlMPgFMmGYf1msFQqVYipmDbir2WVsPd/0NzrjlJDQ/8k+PAsW3F9HzDZ3Tpr6/R6ff9RCt7luuHt+2y478XbzqYZY2xUGv9mK44TkYgUL01XQWtWm0+bsI2K8PpDSuONwCAsCN4DF9jVWPAmWpLLoRpBV4nP+DqGTgurZVYqZ+RN7JNicw6Nf7oHDXdsFTJzbfKym931PT92J7a/rGva/Di+7T7qv9U61mflP3B5U7pd+3mTQfGoHdYcRyonSCUgqoFblgBADCG4DF8jUw9YHrVZAilM3ZVGUJ+/zFY6QecXwLH1EqcWuytp9Rw399qzrUnafZP/5fibz7huO2v3jxRd7VcIa3+qbIfWyV7570kTf+j3o2bDmTpeau44njxb9MVx0e3LSuOA84wK4MbVgAAlLLsKCwzGAL9/f317oLnSlfA/OGPCpMy9ShdAUyUzhSDT6OcjIs1XYUdWUWjrrxi+h96oz8OO5dJF18U9/WKtX5ZFX26oCOLgErKDivxzN1KpnsVf+33Rk3f3T5Pt710tm558Vx9qeMA4zrXTraFk4xj0zFY7v2cjMFqhGl1aWqwIuz8NF6dnp8qPS/IY3b0Wsn0vDz+Wml5J3laYean8QqgsiiO13nz5rn6egSPAyJqweP//O67uuoa8x/xQBSZjIvSQNd0z5/qPb77/2I66VPFE5JfT8ClfR7ll8Cx6fPCxup/XsnMumJJiuEtRm23tByrf7pvie577VRlC7NcC9hWe9PBdBvWcptH8WIZCCq/jdeZ3AANQ/A1yMFveM9v4xXA1KI4Xt0OHidcfTXABdddP1Q2cCyxqjFQjsm42LjJ/PWDOh21o91ST+/E0je1qpluWitRishxLT+i+LP3K5nuU+Ll3xg1tRt2VvaoM5VNLVF810O0t1VQ1jAwMf67LlfGoHRbOM1WN9mGUb1ZACB4Kh3bpss4Hl83efxrVVJaN/nYhfUNwlb73kG4RgIAwASZxwERlczjm25p0GWXD+54LGpT5ICZMM0QGs90rAXh7m29Mo/9XsagHqytryq58UYlNt6s2ODbRm3ze6WUTbUpd/gXpWTjhP/m1fF+0eLCpJsOG9ZPnwHnxzIlQRirAIr8Ol6rmZXh5xkZgBv8Ol4BTBbF8UrmMUKru6egq66ZPnAsTZ0JsX27/cEUObOsvbEpcnbdp8gB1TLNEJrquaOC/EOu0g9drzN7i4t72cbTdafLig2cQl7xF36uZLpP8ed/LkvOL9LsZJNyR5ymbKpNhT2PnvJ5XmSFVVqo1cmCSZJ5lh4A+Fk1szIqHQ9Lb+A5PT6S6AEAQH2QeRwQYc88Ls3Uu/QSSxecb56pNx7ZfogqkwyhahcJ8/Pd22o/k9uiOgvCev9NJTbdrOTGGxV77zWjtvldD1W2dalyR54uNezsUQ+n5tZCi35ZsFHy91gFMJHfx2s1szJKj4cLPyI9+pj5udlPtZAByf/jFcCYKI5XFsyLqLAHjyXp+u/buv77tr75jSade/Z2xwN6/MVkQ4PFFDlAZiUbqgl0+fUE7MeyAZFgFxR/+SEl072KP3u/rELOedP4LOUO+4KyrUtV2PsYyarP9nD7pkO9F2wc5dexCmAyP4/XmRzTpmp7wvHSQw9P/1okesCP/DxeAUwUxfFK8DiiohA8tixLzz43Rws/kjQe0OMz9UwzGKZ7HhBUJhlCpj8K/XgCjtLY901W81C/kptvUzLTp9jAi0ZNCy37K5taquzRZ0qN7l7cmPLqpkO1tZPd5MexCqA8v45XN2ZTVJotWOk1wnDORjj5dbwCmCyK49Xt4DFzfuArCz+SrKrd+GBIR7u1o56rVKyx1t0z8eDAhSjCrlLd1nI62i01N098rLnZu7rAbjMZ006OEX62pqugVavN+9zdUywPtKarMLMO2LZirz6mhp/8d8259mQ1/PxfHAeO7VhCuUM/r6Fzr9dg50+UPbbT94Fjqbp9xnQMAoAflTtGblgfMz4mlh5Hxzvh/2/vzuOcqu89/r9PJmEZcBgQcAFRAbVsGRXFWq3Wpa3VuivgMHY6QlmkF7fea/tr9eKvve1te9WiFZSCU36dzmVRq3il2rreVr1SxU4URAuKKMqiMKwDJJPz+yNNyDaZczJZzklez8eDBzmZfDPfJOebTN7nez7fcen/3uDvdQAAnIHwGCUp0xd9/hBFqUs3Qyiqoy94bg66WgL2x3S694iWgDsea+OiyGU7oXf8PtG4SNk91gN75P17s3r+7gpVLpkk3ztPymg/aKlp+LCjdOCsm7RvynPaf+mv1D7kTMko/p8g+TrokM0YBACnyfQemc1BtXQHqqVI6QomegAA4FzF/+YG5Em6P2ovvizMH6IoadnMEHJ70FXjN9RQH7lsZ0zHv0c01MsV9RNr/NnNgE3eJ+w8Vs+W1er+5zvVa/656vH8j1Xx2XuW2pkyFDr+XLVdMVf7Jv9ZwTOmy+w90PLvzbd8HXTI1Sw9ACimfJyVke5Adbq2BMcAADgLNY9dolxqHuejDo1TFi0C8i2buq2SslokzIl1oxxTB7gA8l7fOdgm77sr5GtZoootb9nqW7iyv0JjrlZwzLUyqwbZaltoCxvDalxk//MgfqHWyQ2elOujnLBgoxPHKoD0nDJe7b5XWbl9Z3WTO7qev9fhVE4ZrwA6V47jlQXzyhThcdc4YdEiIJ+yDRPj2Qm6yvED2GnyEVQan6+TL7BUvjWPyziw21Z/QkO+qKB/otqHnS9VZFe/vhhyddDBqQs2MlYB93DCeG0JROrjR1l9j0p+b3vgPqPTxayzXUQPcAInjFcA1pTjeGXBPMAmN9dyhftkWze3K/V2u1K3NVMbty8sF1WM16QQclbbPXRQ3rVPqeeS69Vr0aXq9ubvLAfHZvc+Ojj229r77RXaf02j2k/8uquCYyn7ciXZBMdS6YwrAKUp16Wg7NRNjuemRXsBACh13mJ3AMinTKfIRa/nD1PkyqFT4O3tV4dOgTcTToG3Ipu6remMGZ3++uh9RX9H9P/rJ7lj3BTjNSmkdK9P82LT0im/RutH8gWWyLf6MRlt9s5uaT/6FAX9ExQ64euSr0f2D6AEZFs7WUp83caMdkfdbQClb3KDR6eNtX9WRl2tkfBeZrVu8pt/N/XaysT7ik704O90AACKz7nfiIEuYtEiFFJLwFTjoshlO/tV/H7auMj+bFe7M4SSgy6p88XirCwS5kTFek0KLfn1yRgch0OqWPesejz6HfV6+Gvq9vpCy8Gx2a2XDtZcp33XP662ic0Kjby87INjqbwWbARQPrp6VoadUj7JwXEUf6cDAOAM1Dx2CWoe2+PERYtQ+vKxwIxVduq2xi8SZme2Y/wiYVNuqHBF3ahiviaFlqm2u7F7s3xvPSLvW8vk2bvV1v22DxihYM1Ehb5widStVy67XFKcumBjOdZ4A9yqVMar1brJyZ+5Z4xT2iDZTZ/FKB+lMl6BclCO4zXXNY8pW4GSY/UUOSn1VHz+MEVX2Nmvch1S2gmfcnU6qhsU8zUppHS13XfvCuvFxpd1Ub8lqnj/BRlm2PL9mRXdFfrCJQr6Jyh85BjJcMfzUEy5qJ0MAKUgckaGGTtQbeczN3r92FOlN1ZFfsbf6QAAFBfhMUqK3UWLJAJk5JaV/coJIWU5BV1ueU2yldz3IYd/rvP7/kHXHLtMg3d8LNk4cSXcb5iC/gkKjrxM6tEnD70FgFROnbmP7GU6UN3ZInrRA9Xxt+PvdAAAiofwGCWDRYvgFJnCSjeHlG5Wqq/Job6bGnv46/r+BUs1/OCfZYSDlu/D9PgUOuGrkVnGg09nljFyjmAQmZT6wqblzG5wnNyOiR4AADgDNY9dgprH1sTXcs3uC4j4AoKcSf6CVFXVyWJmLuLWulGl9Jo0NZv6fWOrvjn4SV1z3BINO+x9W+3DfQYrOGa8QqOvkll5eJ56iWIr9ljlcxmZWK2Nmyz5vfyB+4ySONBQ7PGab7zeKCWlPl6BUlKO45Wax0AG5VTLFc6XPGPGrSFlKSmJ18Q09adFAR359yX601f/qJ7e/ZabhuVReNh5CvonqP24sySDUA750xKI1DyV7M0YjA+KGhcpq891uEON39D0qfZmlqabucr+4Q5WaiGnE//Z3VDP3+sAABQaM49dgpnHgHtdfFk4IaSsqpJWLHd3aOf28ZrpNXHsKfYH98q79intfnGxBoTesdV0a9tAPbbxGj324dW66ltHuSMkR04Ue6zaLQvj5jIyyJ7V173U949ij9dCceznLGBDuYxXoBSU43jN9cxjd6cXQBlpCWT3BpdtO+RGU7OZEFJKkdmuTc28LsWS6TVZ2BjWzFmm7denqTlyKu7CxnAOexrh2fauuj93l3rNP1c9nv13W8Fx6Niz1XbZ/frDcc/qwXdnauv+I/XgfJP3hRLi9M+GulpD06ceCnsenN/x+Cr1YBAds7KfsH+UjnJatBcAgFJA2QrABVhMxp0y1ddl0ZfisPKaxF8u2in2oQPyvve0fIElqvjkTVtNzZ59FRx1lYL+8TKrh0iSJg2XTMPklN8S45bPBiuLXhEMolQXNgUAAHA7wmPA4agZ6U4dfdGNv54AubCsvCbxilF709jxgXyBpfKt/oOM/TtttW0fdJqCNRMVGv5Vydst5efUdi8tbvtsIBiEFen2k+bFpjvr0wMAAJQIwmPA4VhMxn0yBSFWZuAh9+y8JvEyvT45C7zag6pY/7x8LYvl/ej/bDU1ux+m4MgrIrOMDx/e6e15Hygd2X02hIv62UAwCCtKYmFTAACAEkJ4DLiAncCRGVzF1dHzH7/Ii53Xk8Vhus7KmLAbIOdinBm7Nsn31jJ5335Unr2f2WrbfsQYBWsmKHTSxZKvp622KB123ksWPNymeQ8V/7OBYBBW1NUaKQcWqqo40AoAAFAMFEEFXILFZJyvo+c/3SJsVl/PfC3CVi7sjInk1yRe/OvTpXEWblfF+y+qxx+mq3LBV9XttYcsB8emt6eCY67VvkmPqG3SUoVGX01wDEvvJQsebtO9c/bFtov92VBXa6iqKvE6gkHEY7FZAAAA52DmMeAi1Ix0rpZAxzOOO6pLmu71jNakpWZ113X0mmTS2QzkbE+xN/ZslXf1Y/IFlsqz+1OLjyCi/fATIrWMR1wqdT/MVluUh8yfDWHNe8g5wbGUORgsdt9QfCw2CwAA4CzMPAZcJt0ss4svS61jyRerSHhYqHY1fkMN9ZHL8c9/pC5px7MC41/PhvrU4Dh6fwTH9nX0mnQm+TWJf/1sBcdmWBUbX1WPJ29W5YIL1P3lOZaDY7Oim4IjLtW+Cb9X27eeUOjkWkcHx4Uca0ivo8+G+FIVM6YV/7MhXTAYlW7WNMpLus+/Fcs9nc6uBwAAQP4Ypmny15cL7Nixo9hdyDvDMFRdXS1Jam1tFbtmZslfsKIIjiMWNobVuMj+8xF9XhvqpckN9o+vdVSjuLOZ4dF2bplB7qbxmm3d6Ph2F18WTqm9uWJ5B/tH2w75Vj8uX2CJPK0f2vqd4eohCvonKjjqCqlnX9t9LoZijTWk19Fnwy03Veqaqw4Udax29P7mlvc95Fdn+0E57Cdu+mwFyh3jFXCPchyvffvm9rsk4bFLEB4jHVuBVhlpCURqBUdZ/YKZ/MX0gftyO+O3lL4Yl9N4tXSgxjTl+fTv8rUslve9p2W0H7R8/6ZRofbhFyjon6D2IV+UDPeMYaeOtXKX/NnQp4+hV/63X1HHaim9/yH3rL7+pb6flNNnK+B2jFfAPcpxvOY6PHbPN1QACVhMpmOdlYpIpxClIjItbFXqX4jdqrNT7Jc07Zb3783q+bsrVLm4Vr53llsOjsOHHaUDX5qlfd95XvsvnaP2Y7/kquBYcu5YK2fpPht27jS14OG24nRI1t7frCz8h9LUlYVN2U8AAADyjwXzABdiMZnOZVpAKlkhg9t0/cp2ETbkV6ZT7F9YvEbjj1usb3zylHpstR7KmTLUfvw5CtZMUPtx50ieinx0vaCcOtbKUabPhnvn7NP+/YYmXVfY59tuMChZ25dQGnKxsGn8YrMAAADIPXdNcQLAYjI2WJmhVIwwK7lfBMfOk3a/uHa/vG8/pu9oopZ85RpdfdwjqvRaC47Dlf11cNw07Zv8Z+2/8kG1Dz2vJILjKKeOtXLS0WfDjGmHnuN5D3X82ZCPRQ+zDQaT9yUWVixduVrYlOAYAAAgf6h57BLUPIZEzchsOXWRJjfXrC7l8Zq8X/zghvW68phl8q15XMaB3bbuK3TMFyOzjIedL1V0y3VXHcepY63UZXp+DcPQI491171z9qX9uZTfRQ9ZUBFW5GJh01JQyp+tQKlhvALuUY7jlQXzyhThMVhMpmsync4tFf55srQIm4OV6niNvi4+z0FdcNSfNeuLS3V08HVb92F276Pg6CsVHDNeZr/j89RT53LaWCt1nb3nR8fqgofb0gbIhVj0kGAQsKZUP1uBUsR4BdyjHMdrrsNjah4DLkDNyK5Lfl6cFBxTs9oZWgKmnmzaqFkjlumKIX9Qv+7bpaCN9ttP1rIN43XJbRdpzCk989dRh3PSWCt1dj4bptzQU/v3t2neQ6mfDdOn2vvMsLvoYbYBMMExAAAAUHycBwg4HDUjc6eu1lBVVeJ1VVWFDWqpWe1A4ZAq1j2rM/4xVU9deJFuOGFhJDi2wPRVKlgzUcsOf0z1f/29BlxweVkHx1FOGGulLrvPhtT3mpaAaalmdRRntwAAAADlhZnHgMNFFpMxbdeMjJ/9x2IyEU3NZsIsSCkyK7Kp2SxI+JEpdGHGeOEZu7fI99Yyed9+RJ49W2y1bR8wQsGaiQp94RKpWy99Q9LRp3CKfVSxx1o5yPVng5X3IIJjAAAAoPxQ89glqHkMN9SMdHIfi12HtdRqVrt2vJphVXz4inwti1Xx/osyzHbrTSu6K/SFixX0T1D4SL9kOO91cYJij7Vy09n7Z0djtaN2LHoIFI9rP1uBMsR4BdyjHMcrC+aVKcJjON3CxrDtGXDSoaCioV6a3JCfSjrFDkPs/h43hDSuG6/7tsv39qPyvbVMnp0f2Woa7jdUQf8EBUdeLvXok6cOloZijzWkymascgAAKA7XfbYCZYzxCrhHOY5XFswD4Dgtgcip05K9cgvxAUXjIum0sbmfgVzsUhHZ1qxO7teY0e4vPVLwmemmKc+m1+VrWSLvP/4kI2x99TvT41PohAsV9E9UePDpzDK2oNhjzamcfEZGR1j0EAAAAEAUC+YB6LIav/XFlqLSBU2FDI6j7CwUlY1IXdKOf39H4vtVCjWrFzaGNXOW/ee2qdnUzFmmFjaGrTfav0u+Vb9T5aJLVbn0W/K9+5Tl4DhcNUgHzr5V+77zvA5cco/Cx4wjOLbACWPNiQq63+cYix4CAAAAkJh5DCBH7MwsLMQp7HZ+R75nRU5u8GQ1q7qu1iiZGcd5n5lumvJsfku+wBJ5310hI7Tfcv9Mw6P2oecp6J+g9uPOkgyOq9rhpLHmJE4+I8MKFj0EAAAAIBEeA8ghK8FQIYJjJ5aKyPZ+3B4cS9GZ6fYCQ8sz0w/ulXftU/IFlqhi6xpb/Qr3GqDQmGsVHHONzMOOstUWEU4ca06R1/0+zzLVPC7lwB8AAABAKsJjADmVKUAu1KJZkVIRpu0F/OL7XgqlIpwk1zPTPdvekzewWL53lss4uNdWX0LHnhWZZTz0K1KFz1ZbJGKsZea0MzKssLLoIQEyAAAAUD4MsxyWGSwBO3bsKHYX8q4cV8AsZZlmrkmZg5FcLTDlxoWq3CLb8dpZQJbx56ED8r73dGSW8Sdv2uqv2bOvgqOuUtA/Xmb1EFtt0TnGWmZd2u+7yM5YLWY/AfC3MOAmjFfAPcpxvPbt2zen98fMYwB5kTzjzmpwvLAx/M9ZjPZmtUVDjYZ6U5MbIjVr3VAqotxCt2xmphs7NsgXWCrf6sdk7N9p6/e1DxqroH+iQid8TfJ2y9GjQDI3jLVicsIZGZ2xuuihVB41qwEAAABEMPPYJZh57F7lFg4mu/iycEJwXFUlrViefkGyloCpmbPshyi/vCesJ5Yf2n7gPmt1Qov9HB8Kyu2FRYeCcsWC8kLr6njtbGb6jd8J6frTX5AvsFjejf9n677Nbr0VHHmFQv7xCvc/wVbbQij394Ry1pUzMrJlZazaDbCdEngDpaZU/xYGShHjFXCPchyvuZ55zJLyQB4tbAxr5ixTTc32g7WZs0wtbAznqWeF0dRsJgQjUiQo6ej5iCwwdSiAeHB+58/dTbcmBsdWF5gq9nPcEojUiZWsPc6o+NCmcVHkftyorjbxtY7uJ0f2/EQLr7tPU/ZcoJ7/c7Ot4Lj9iDHa/7WfaO+0l3Tw/B86Mjgu9/eEctfRfi8VL4DNdtHD5Pdqt74XAQAAAMiM8BjIk3IPB9PNsIvK9HykCyU6uu0v7wnrjVWHts8YZ+30aSc8x9kE5elm+7l5JmpdraGqKsmjdn154EuaM+5GPXXh1zV270Py7P3M0n2Y3p4Kjr5G+yY9orZJSxUafbXkq8xzz7NT7u8JiIju9/GqqopX+iGy6GHkst1FD6PvYaW86CEAAABQ7qh5DORJJBy0VxuyVMLBjk5pjr8+0/Nhpa5mU7OZMONYkl5bGbneLc+xnfqhpXia+KO/26rxRzyqq8Yt09GVn9pq2374cIVqJio44jKp+2F56mFulfN7Ag7JdEZGscb05AaPThtrvyxKXa2hMaMJjgEAAIBSRngM5FE5hoOZHoed58POAlNnjIsEx53dpxOfY6tBudP6nTXTVMVH/6dPnlys2rbn5RsRst60wqfQiRcp6J+o8NGnSIb7noNyfE/AIZlqHhd78TkWPQQKg7r3AADAbShbAeSZlTIMpRISWXkcdspSpLvtxZeFU37H3b/wuPo5zvScOLnftrTtkO+N36rytxer5yM3aNiBP8nnsRYch6uH6MA5/6q9U1/SgW/8QuFBp7oyOI4qp/cEHJLuNV2xvPP3LuRetqVfKBmDrqLuPQAAcCNmHgMFYGcWrVtDIjuPoyszkDtaYMrtz3G6/jcvNh2xoFbWTFOeT/8uX8tied97Wkb7QctNQ+EKvbD5fO0fNUHnfftMySitY51u319hT67OyEDXLWwMq3GRNH2qvec4+ho21Jua3FBa70cojOS691J26zRkU2IGAACgKwzTNJlG4QI7duwodhfyzjAMVVdXS5JaW1tVirtmplOWJfeGRC2ByIyYKKuPI/n5eOC+juu5XnxZOOG5qqqSVixP/QLv9uc4uf9RTut3xvF6YI+8a5+Ur2WJKj5719b9hnsfqdd1rX746FXadmCgJOc99lxy+/6Kzlk9GJCvgwbl8NlqVSE+q4BMOhvnyeP1d79PPduKzwTAGfh8BdyjHMdr3759c3p/TJ0ACij5dPVSCYlq/IYa6iOX7TyO+Oejob7j2pmZFpjKdJ/R20W54TmuqzVUVZV4XVWVO2YherauUfc//7t6zT9XPZ77fy0Hx6YMhY4/R22Xz9W+KX/WyKk36ur6I2I/L+VT+d2+vyIzu2dkUMIivyKLVtp7jlm0ErlkZ5w3NRMcAwAAZ2DmsUsw87i0WJ1F6zb5WAQm25mZbn2O3Tbz2Dy4T3tX/re8LUtUsTlg6z7ClYcrNPoaBcdcK7PPoJSfl9NsP7fur+iYU2a5ltNnq1XFng0OdLRvRcfrgofbdO+cfSk/B+AcfL4C7lGO45WZx4DL2ZlF6zbZBhxWg2OrC0y59TlOF5RHOW0WovH5erWvuEOhX56i7s/80FZwHDrmDLV9817t+87zOnj2zWmDY8n6zHS3c+v+iszyfUYGsseilSi2TPsgwTEAAHAaZh67BDOPSwP1Ta3r7It7Rz9363Ns9fEUtf+hg/Ku+7N8gSWq+Phvtpqa3fvokyOuUPX542X2G2qrbbYz2t3ArfsrrMvHGRl2lMNna7Zc8b6LksZnAOBefL4C7lGO4zXXM48Jj12C8Nj9+JJqXbanFJ8xTnptpVLaOf05zjYoLxSj9SP53loq79uPydO23Vbb9qNOVrBmgkInXCT5euSph+7EewIKodQ/W7uK8A7F1lG5qhnTDE26jn0PcCo+XwH3KMfxmuvw2JvTewMKqNizuezIFAZF/4/+PPp/uX5ZtbvAlHToOUsXHKe7nZOeYyuPtyj9D4dU8f5LkVnGG/4qQ9Y/YE1fpUIjLlWwZqLCA76Qvz66GO8JgDMkjzeCYxRaXa2h5sWJ5Yv69DFUV+spiy+3AADA+ah5DFda2BjWzFn2a8A2NUcWMFrYGM5Tz9L/TivhoN0V4EtRS8D+jMu6WkNnjEu87vJLU4M2Jz7HdoPyQvTf2L1FvlcfUOWCC9Vz+Xfl3fAXy8Fx+4AvaP+Fs7V32v/qwIWzCY47wHsC4Cx1tUZCjXkpMgOZ4BiFkK7u/c6dppqaC/e3KgAAQCbMPIbrtARMNS6KXLYzIy8+sGlcJJ02Nv8zkLsyi7YcZxtGFpiKvL5WZ3w1NZsJM47Hnir9623pj4s56TnONiiXEvs/ZnQOFtQyw6r48BX5Whar4v0XZZjt1tt6eyh40jcU9E9Q+Ei/ZJTP/poN3hMA58m0aCXjDfmUqWzKvIdMmSbv+QAAoPiYeQzXqfHbn5GXLrDJd3CcbTiY/NhaAuU123Byg0cP3GctOE5+ji+/VJpzT+a3Nac8x5GgPHLZzqnR8f1vqO9icLxvu3x/W6DKhy9Sz8e+I+/65ywHx+G+x8vzjf9X3n/7uw5e9DOFj6ohOO4E7wmA86QL76KY8Y98Sve36R+frNAtN1XGrmMfBAAATsDMY7iSnRl5xVp8KptZtFLiY+tyOOhSVh+z25/jyQ2erGbA19Ua2c84Nk15Nr0uX8sSedf9SUZ70HpTj0+hEy5UyD9R4WPGqTpahP9Aq/1+lCG3769AqbGyaCUz/pEPmf42nXJDT0nSvXP2SWIfBAAAxWeYrMTgCjt27Ch2F/IumxUwOwuGcxEcd3WBPTct7OdWPMcW7N8l35on5AsskWf7eltNw1WDFPRPUGjUlTJ79ZdUnivW5gr7KwqJsZpeIf5+ANLJtG/Fj9dfz92ueQ+xDwJOxecr4B7lOF77Rid65Qgzj+FqmWYgJ/9xno3ofTTUm5rckF2Vl2zDHkIi63iOO2Ca8mx5W76WxfK+u0JGaL/1poZH7UO/oqB/gtqPPUvyVNj61QSkHWN/BYrL6qKVEjXHkVv26t57ZJph9kEAAFB0hMdwvXRf8JoXpy5+E38bpy6wB+TEwb3yrn1KvsASVWxdY6tpuNcAhcZcq+CYa2QedlRWv35hY/ifpRnsfcnNxcEaAMiERStRLI5aKBcAAMAGwmOUhOQ/ruOD4+hiU3a+/BVjgT2gqzzb3pM3sES+d5bLOLjHVtvQsV9S0D9R7UO/IlX4su5DSyBS01fiYA0AZyG8QzFR9x4AALgV4TFKRl2tkTLjuKoqMbhy8gJ7QFZCB+R975nILONPVtlqavaoVnD0VQqOGS+z77E56U6N39D0qRysAeA8hHcotqIslAsAANBFhMcoGU3NqaUqdu2KXF9Xa1g6/ZTgGG5h7NggX2CpfKsfk7F/p6227YPGKuifqNAJX5O83XLeNzunejPmABQS4R2Kjbr3AADAbQiPURKSA6iqqkOlK+KDKzsL7BFiwXHag6pY/4J8gcXybnzVVlOzW28FR16ukH+Cwv1PyFMHD+FgDQCnIrwDAAAArCM8hut1FEDFX99ZgJxc7oIQC05i7PpEvreWyfv2I/Ls/cxW2/YjRivon6DQFy6WfJV56mF6HKwBAAAAAMDdCI/hapkCqEzBVWcL7JVbiNUSyG5xsmzbwYJwuyo2/CVSy/iD/5Vhhi03Nb09FfrCJQr6Jyh85Og8drJzHKwBAAAAAMC9CI/hWlZmLnYWIHe2wF45WNgY/ufiQfYee/T5b6g3NbnBk8celhdj7zZ5335MvreWyrPrE1tt2w8frlDNRAVHXCZ1PyxPPbSPgzUAAAAAALgT4TFcyc4p7x0FyJIyLrBXDloCkVXnpcyLmiWLf/4bFymrxYcQxzRV8dFr8gaWyLvuWRnhkPWmFT6FTrhIwZoJCh99qmQ483XgYA0AAAAAAO5DeAzXaQnYr5WaKUCWOl5gr9TV+A1Nn5p5UbNk6YJ7guMste2Qb80T8gWWyLNjg62m4T5DFKyZoOCoK6WeffPTvxxqajbL/mANAAAAAABuQ3gM16nxG2qoN/9ZasH6Ke/JAXJUZwvslbpMpT2SschZDpimPJ/+Xb7AEnnf/aOM9oPWmxoVah92voI1E9U+5IuS4Y5yIcn7TbkerAEAAAAAwG0Ij+FKkxs8OSmVYHWBvVJn5bETHHfRgT3yrn1SvpYlqvjsXVtNw72PVNB/rUKjr5HZe2CeOpgfHe035XqwBgAAAAAANyE8hmvZDY67usBeqcv02AmOs+fZuka+liXyrv0fGcF9ltuZMtR+3NkK1lyn9uO/LHnc93adab8p57EGAAAAAIBbuC+NALKQiwX2yiHUSvfYkxc5Izi2INgm73tPy9eyWBWbA7aahisPV2j01QqOuVZmn8F56mD+cbAGAAAAAAD3IzxGycvVAntjRtuf7exGyY+d4Ng64/P18gWWyLfmCRkHdnXeIE7omDMU8k9QaPgFUkW3PPWwMDhYAwAAAABAaSA8RsnLxQJ7DfXlERxH1dUaKTOOq6oI9NJqPyjvumflbVki78crbTU1u/dRcNQVCvrHy+w3NE8dLCwO1gAAAAAAUDoIj1EWsl1gr67WKMsQq6k5MTiWIjOQm5pNAuR/MnZ+LF9gqbxvPypP23ZbbduPqlHQP1GhEy+SfD3y1MPi4GANAAAAAAClg/AYZSPbMKrcQqzkkgNVVYdKV5R9SYFwSBXvvyRfYIkqNvxVhszO2/yT6atUaMSlCvonKDxwRB47WXwcrAEAAAAAoDQQHgOI6ahWbfz15RggG7u3yPv2I/K99Yg8ezbbats+4AsK1kxU6AvflLr1ylMPnSefB2taAvaD6a60AwAAAACgXBEeA5CUeZGzslzUzAyr4sNX5QssVsX6F2SY7dabVnRX6KRvRGYZH1UjGSX8PBXYwsbwP0ti2Nv/ovt3Q72pyQ2ePPYQAAAAAIDSQXgMIGNwHFU2AfK+7fKtfky+wFJ5dn5kq2m47/EK1kxQcMTlUs/q/PSvjLUEIrWUJXv7X/z+3bhIWZXUAAAAAACgHBEeA2XOSnAcVbIBsmnKs+kN+QJL5P3HMzLag9abenwKnXChQv6Jah98OrOM86jGb2j6VHv7X7r9m+AYAAAAAABrCI+BMtYSsB4cR6ULkF27yNn+XfK9s1zewGJVfL7eVtNw1dEK+icoNOoqmb3656mDSGbnAIadAyMAAAAAACAV4TFQxmr8hhrqzX/WkLUerMUHeA317guOPZvfkq9lsbzvrpAR2m+5nWl41D70Kwr6J6j92LMkT0Uee4mOWAmQCY4BAAAAAOg6wmOgzE1u8GRVA7au1nDXjOPgPnnXPiVfYIkqtqy21TTca4BCo69RcMw1MquOzlMHYUemAJngGAAAAACA3CA8BpB1AOyG4Njz2XvytiyR753lMg7usdU2dOyXIrOMh54nVfjy1ENkK12A3LzY1K5dh25DcAwAAAAAQPYIjwGUntABed97JjLL+JNVtpqaPaoVHH2VgmPGy+x7bJ46iFxJDpAJjgEAAAAAyB3CYwAlw9ixQb7AMvlWPyZjf6uttu2DxkYWwDvha5K3e346iLyoqzVSZhxXVaVfRA8AAAAAAFhHeAzA3dqDqlj/gnyBxfJufNVWU7NbbwVHXq6Qf7zC/U/MUwdL2xurgho21H67loD9OtsdaWpODI6lyAzkpmaTABkAAAAAgC4gPAbgSsauT+R7a5m8bz8iz97PbLVtP2KUgv6JCn3hYslXmacelr4H5u3T3AfbNGOaoUnXWQ9powvaNdSbmtzg6VIfkhfHq6o6VLoifhE9AMi1bA+C5fLgGQAAAJBvXfvWDgCFFG5XxfsvqcfjN6py4VfV7bUHLQfHpreHgqOv1r7aZWqb9IhCY64hOO6CloCpuQ+2SZLmPWSqqdnspEVEfNjbuChyP9lKDo6nTzW0YrlH06ceCmUenG+9bwBg1cLGsGbOsv/+0tRsauYsUwsbw3nqGQAAAJBbzDwG4HjG3m3yvv2YfG8tlWfXJ7bath8+XCH/RAVHXCr1qMpTD8tPjd/QLTdV6t45+yRZm+WbLuzNdvZduvuK/u7kRfSYgQwgl1oCphoXRS7beX9JPnh22lhmIAMAAMD5CI8BOJNpquKjlfIGFsu77lkZ4ZD1phU+hU64SMGaCQoffapk8OU8H6bc0FOSLAXImcJeu6zcFwEygHyp8RuaPtXe+0suD54BAAAAhUR4DMBZ2lrlW/O4fIEl8uzYYKtpuM8QBf3jFRx1pVTZLz/9Q4IpN/TU/v1tmvdQxyFKoYPjKAJkAPli5/0ll++BAAAAQKERHgMoPtOU59O/yxdYIu+7f5TRftB6U6NC7cPOV7BmgtqHnCkZlHIvtLpaj0wznDZEyWVo0hKwf1/pAp4xo8WMPwBdZiVAJjgGAACA2xEeAyieg3vlfedJ+QJLVLFtra2m4d5HKui/VqHR18jsPTBPHYRV6UKU5sWmdu06dJuuhiY1fkMN9ZFao3buK75vDfUExwByJ1OATHAMAACAUmCYpsky9C6wY8eOYnch7wzDUHV1tSSptbVV7Jqly7P1ncgs43eelBHcZ7mdKUPtx52tYM1EtR9/juTh+FexdDRek8OSqFyGJi2B7BaZyrYd4GZ8thZG8ntfVZVyevAM5YHxCrgH4xVwj3Icr3379s3p/ZG8ACiMYJu87z0tX8tiVWwO2GoarjxcodFXKzjmWpl9Buepg8iFulojZcZxVVVu6wxnGwATHAPIl+QZyATHAAAAKBWExwDyytj+vnyBJfKtflzGgV2dN4gTOuYMhfwTFBp+gVTRLU89RC41NScGx1IkRGlqNglPAJS0Qhw8AwAAAAqN8BhA7rUflHfds/K2LJH345W2mprdqxQcdYWC/gky+w1NexvKDzhTptO20y0kBQClhINnAAAAKEWEx0CRlGLdVmPnx/IFlsq7+jF59n1uq237UTUK+icqdOJFkq9Hh7eLBpQN9aYmN3i62mXkSEcLQ8VfT4AMoFRx8AwAAACliuQFKIKFjWHNnGWqqdleofamZlMzZ5la2BjOU8+yEA6pYv3z6vHYVFUu/Jq6/e03loPjfaGeWrZhvJYd/ojarlus0KgrLAXHktS4KBKko/iamsNpg2MpEpZMn3ooMHlwvv39HgCcLN3BsxXLPbz3AQAAoCQw8xgosJaAqcZFkct2ZiMlB6enjS3uDGRj9xZ5335EvrcekWfPZltt2/ufpJcPTtAPFl+ivaHeUkD63Jf5tN50X86dOgO7nCx4uE3zHkofHEclLyTFLDwApaKjsy4k3vsAAABQGgiPgQKr8RuaPtXel0nHBKdmWBUfvipfYLEq1r8gw2y33rSiu0InfUNB/wSFj6rRqYah6yutlTTI9OUcxbPg4TbdO2dfbDvT60KIAqDUWPls4r0PAAAAbkd4DBSBnS+TjghO922Xb/Uf5AsslWfnRltNw32PU9A/QcGRV0g9qxN+ZuV5cMTjR4qWgGk5OI5K93qPGS1mkANwHTufTQTIAAAAcDPCY6BIHB+cmqY8m96QL7BE3n88I6M9aL2px6vQ8AsV8k9U+zHjJKPjPmd6HgiOnavGb+jG6T0198E2zZhmaNJ11l6X+Ne7oZ7gGID7tATsfzZx8AwAAABuZZimyeodLrBjx45idyHvDMNQdXW1JKm1tVXlsmt2FJAWLTg9sFu+NcvlDSxWxefrbDUNVx2toH+CQqOulNlrgK22mVaqlwiOnSY6Xt9YFdSwoXttj9eWQHFrdgPlolw/W/NtYWNYjYvsfzZFP+sa6qXJDaxbjUSMV8A9GK+Ae5TjeO3bt29O74/w2CUIj0ubE4JTz+a35QsslnftChmhNsvtTMOj9uPPVdA/Qe3HnS15KrLuQ/LzEEVw7DzlPF4BN2Gs5k+2B8E4eIaOMF4B92C8Au5RjuM11+ExZSsAB0g+nbVgwXFwn7xrn5IvsEQVW1bbahruNUCh0dcoOOYamVVH56Q7dbWGmhebCY+/qoq6kAAA58k2ACY4BgAAgJsQHgMOUcjg1PPZe/K2LJHvneUyDu6x1TZ07Jcis4yHnidV+HLar6bmxMcvRYL0pmaTABkAAAAAAKDACI8Bh8h7cBo6IO8//hSZZbzpDVtNzR7VCo66SkH/tTL7Htf1vqSRqXQHK9MDAAAAAAAUHuEx4AD5DE6NHRvkCyyTb/VjMva32mrbPmhsZAG8E74mebtn9futsLJoIAEyAAAAAABAYREeA0WWl+C0PaiK91+Qr2WxvBtftdUfs1tvBUderpB/vML9T7TVNhsdPX4ptRY0ATIAAAAAAEDhEB4DRZTr4NTY/al8gWXyvv2IPHu32epL+8CRCtZMVOiki6VuvWy1zVamxx9FgAwAAAAAAFAchMdAkeQsOA23q2LDXyO1jD94SYYZttwH09tDoS9coqB/osJHjs72oWTFyuOPIkAGAAAAAAAoPMJjoAhyEZxef/nn8q5+TL7AUnl2bbL1+9sPH6aQf6KCIy6TelRl8xC6pCVg/fFHpXsexoyWavwEyAAAAAAAAPlAeAwUWNeC07BOO3yljn9jqXpueVYeM2T595oVPoVO+LqC/gkKDxorGcULXWv8hhrqTTUusvb4o+ID5IZ6gmMAAAAAAIB8IjwGCiyr4LStVQ0nPa4JVy5V3/YPIteZmZtEhfsMUdA/XsFRV0qV/bLveI5NbvDotLGm7QC4rtZgxjEAAAAAAEABEB4DRWApODVNeT5tkS+wWN53n5bRfkDdLd6/aVSofdh5Cvonqv3YMyXDk5N+51q2ATDBMQAAAAAAQP4RHgNF0mEAenCvvO88GVkAb9taW/cZ7n2EgmOuVWj0NTIPOyIHvQQAAAAAAEC5IjwGcqQlYL8EQ3w7z7a18rUslvedJ2UE91lub8pQ+3FnK1gzUe3HnyN5GNYAAAAAAADoOlImIAcWNob/WcNYlhd/k6T//n2bNj79Rw09bamOam+x9TvDPfspNPpqBcdcK7P6GLtdBgAAAAAAADIiPAa6qCUQWfxOkh6cH1nFrrMA2dj+vtYvXaIJrY+r6pRdUrv13xcaPE6hmgkKDb9QquiWbbcBAAAAAACAjAiPgS6q8RuaPvVQcNxhgNx+UN51z8nbsljej1fKL0kWs1+ze5WCo65QcMx4mYcPy13nAQAAAAAAgA4QHgM5EA2K0wXIxs6P5XtrmbxvPyrPvs9t3W/7kX4FayYqdOJFkq9nbjsNAAAAAAAAZEB4DORIfIBcYYT0zhP/q+3bl+qYg3+VIdPy/Zi+SoVGXKqgf7zCA0fmq7sAAAAAAABARoTHQA5df9k2jd2zTMdse0RH9twsHbTetr3/iZFZxl+4VOreO3+dBAAAAAAAACwgPAa6ygyrYuOr8rUsUcX653W62S5ZrDBhVnRT6KRvKOifoPBRJ0tG5oX2AAAAAAAAgEIhPAaytW+7fKv/IF9gqTw7N9pqGu57nIL+CQqOvELqWZ2X7gEAAAAAAABdQXgM2GGa8nyySr6WxfL+4xkZ7UHLTYNhr/7y2QU688aJaj/mDGYZAwAAAAAAwNEIjwErDuyWb81yeQOLVfH5OltNP9l3tB798Fo9vvFKfX5ggKb7jdjiegAAAAAAAIBTER4DGXg2vy1fYLG8a1fICLVZbheWR/+7+Rw9smGCXtl6lnpXVWjXgcjPHpxvShIBMgAAAAAAAByN8BhlryVgqsYfF+QG98m7doV8gcWq2LLa1n2Fe/XXm7pGP3z8am1uO1qSNH1qZKZxU7MZC44JkAEAAAAAAOB0hMcoawsbw2pcJE2fKn3ra/+QN7BUvjVPyDi4x9b9hIacqaB/on73t69o7m8ODatocCwdCooJkJ0r5UBCntsBAAAAAAA4GeExylZLwFTT7w7q4kF/0rjVS1S5eZWt9jsOVGv5R1dq9Leu1UlfPD4ys/g3Zuzn8cFxFAGyc8UfSLDzekRnlDfUm5rc4MljDwEAAAAAAAqL8BhlydjxoU5vXar/vfQP6mnusNX2zc9P0bIPJ+jZT76mG6b00ElfTCxJIaUPjqMIkJ2nJWCqcVHksp3XI/51b1wknTaWGcgAAAAAAKB0EB5nYe/evVqzZo0CgYACgYDeeustbdq0KfbzQYMG6fnnny9iD5FWe1AV778gX2CJvB++Yqup2a2XVnsv1+ynrtW63SdKOhQQtwSsB8dR6QLkMaNF8FgkNX5D06faC/TTHTDg9QMAAAAAAKWE8NiGxsZGPfbYY1q3bp3C4XCxuwOLjN2fyhdYJu/bj8izd5uttu0DRypYM1FNLd/QrxdUxq6PD4hr/IYa6s1/ljzoPDiOig+QG+oJjovNzoxwOzPNAQAAAAAA3Irw2Ia//e1veu+994rdDVgRblfFhy/LF1iiivdflGFaD/vbQj309KaLFT51gr5e548EhQsyB4WTGzxZlSyoqzWYcewgVgJkgmMAAAAAAFAuCI+7qLKyUqNGjdLq1au1b9++Ynen7Bl7P5N39WPyBZbKs2tT5w3itB8+TK8enKAfLLlUu0NVUos059Gwdu06dJtMQWG2ATDBsbNkCpAJjgurJZBdDels2wEAAAAAgESExzZ0795dfr9fY8aM0ejRozVmzBgNGzZMHo9H559/PuFxsZimKj7+m7wt/y3vuudkhIPWm3p8Cp3wNQVrJio8aKxONgxN6nUoILQaHKO0pAuQmxeb7A8FtLAx/M9SMPYWk4wG/A31piY3ePLYQwAAAAAASh/hsQ333ntvsbuAeG2t8r3zhHwtS+TZ8YGtpuE+xyjoH6/QqCtlVh6e8LO6WiMlKKyqshdgwf2SA2SC48JpCURqiEvWFi+Mip8Z3rhIWZWSAQAAAAAAhxAew11MU55PW+QLLJH33T/KaD9gvalRofZh5ynon6j2Y8+UjPSzEpuaE4NjKRIcNjWbBIZlhgMJxVHjNzR9qrXFC6PSlRQhOAYAAAAAoGsIj+EOB/fK+86TkQXwtq211TTc+wgFx1yr0OhrZB52RMbbJgdQVVWHZpzamQGJ0sCBhOKxsnhhFLWoD6FONAAAAAAglygICUfzbFur7s/OVq+HzlGP5+6yHBybMhQ67stqu+zX2jflWQXPnGk7OJ4+1dCK5R5Nn3ooUHlwvqmmZjNdc5SYdAcSoh6cb+qX94Szut+WAPuPVXW1Rqfjj+D4kIWNYc2cZf89qqnZ1MxZphY2ZrdPAwAAAABKFzOP4ThmsE3e1X+Qt2WxKj5tsdU23LOfQqOvVnDMtTKrj7HcLlMAZWcGJEpDR/tD/PVPLJc2bw7r7l9YPwbHYm72ZRp/BMeHUCcaAAAAAJAPhMdwDGPHh2p/5R6F/75U3dtabbVtH3y6gv4JCg3/quTtZqutlQCKALl8dHYg4dPNpp5YHvnZayul2/7NWoBMSJe9dOMvuRZ1OQfHEnWiAQAAAAD5QXjsEoZR2l/oK9Y+pe7P/D8Kh2wsgNe9SqFRVyjonyDz8GGSJLvPUlNzOCE8mTHNUF1t+iDw+kmGDCOseQ8dCmcMQx3eHu5jZX/4t9sqtGVLu/7vtcj2ayul790e1t2/qLB1vyfXuHu/iX9PKsT7U/L4iw+OM43bcmLnPcrOex/crdBjFUD2GK+AezBeAfdgvHadYZomBThz4Pzzz9emTZskSYMGDdLzzz9f5B65hxlsU+i/xkr7tlu6vTH4VHlO/5aM0ZfJ6FaZ9e99Y1VQ32o4lEDdclOlptzQs9N2Cx5u071z9sW2/7/GKo091Zd1P+AMya9rZ/vDtBt36a8vB2PbZ5/l00Nzq1JuZ/d+kdmXztmunTsPfWz16WPolf/tV8QeOU9n+xz7JAAAAADAKqYZofj2bOs8OO5WKc9p18s748/yTlshz6kTuxQcS9LYU326cXokMLETnky5oaduuSnyu2+c3pPguAS8sSpoO0x7aG6Vzj7r0Gv/15eDuuvHexJu05WQ7o1Vwc5vlMN2brDg4baE4FiSdu40teDhtiL1yJni36Mk6d45+2LPEcExAAAAAMAOZh7nSL5nHre2tub0/hwlHFLP35wvz56tqT/qf6KCNdcpNOJSqXvvvPz6lkB2tWezbQdnWtgY1sO/NW2fvn/bvx0qYSEdOv2/qflQ+YD46/PZl+jvvOHbRt4X5DMMQ3369JEk7dy5U/n+KEl+PquqKF3RGZ4zSIUfqwCyx3gF3IPxCrhHOY7X6urqnN4f4XGO5Ds83rFjR07vz2k8m1apxx//TZ5dmyRvdwVPvEhB/wSFjzpZoiYNCiTbAwK/vDusJ548tJ0c0tlZzK0lYGrmrMwLOKaTvPjZA/fld/EzwzBiH0itra15/QDuaBFDK4tdlrvk5yiK56p8FHKsAugaxivgHoxXwD3Kcbz27ds3p/fHlCM4QnjQqWqb/Cd5b10p74/W6eA3fq7w0acQHKOgsg1b//U2j6ZPPdQ22+A42of4+3pwvqmm5swfbulC1FKZFZ8pIK6rtf9clZu6WkNVSaW4q6pEcAzLWgLZjals2wEAAABwFsJjOIenQkbfITIqqCEM98llSGcnFC3l2bdWHhsBcmZNzWbCwQwpcnCD5whWLGwMa+Ys+2OqqTlyBsXCxnCeegYAAACgUAiPASAHch3SWQlFyz04jiJATi/5OYw/uMFzhM60BEw1LopctrO/xO93jYuYgQwAAAC4HeExAHRRvkK6TKFoKQfHLQH7jy3dc5Xr0MpNp++n2z9WLPcQssMySugAAAAAkAiPAaBL8h3SpQtFL74sbDtcddPsvxq/oYb6yGU7oXj8c9VQn30N63TcdPo+daKRK5TQAQAAAOAtdgcAwK06C+kkxX4e/T/bGsjx92F3Qb5oPxvqTU1ucMcxw8kNHp021rQdANfVGhozOrfBcfLp+9Hf05nk0/ezeTx2Wa0TLeVm30Tps7K/EBwDAAAApcsdKQLgIE47dd1p/SkXhV7Mbczo1OusLMjn5vqj2QatuQ5o3XL6PnWikS/lWkIHAAAAAOExYIvTTl13Wn/KRTFCurfeTr2uswX5qD+aO04/fd+pdaJROnJVQgcAAACAuxAeAxY5beV5p/WnXBQjpEsOI+N19NozGzD3rATIxXrenVgnGqUneQzYLaFTaJyZAwAAAHQd4TFgkdNOXXdaf8pFoUO6dK9Z/Osupb72BMf54+TT9yc3ePTAffZ/Z12toQfuM1xTDxvFVVdrqKoq8TorJXQKjTNzAAAAgNwwTNNkeoVFmzZt0le/+tW0P2tvb0/YrqioSHu73/72txo3bpzt371jxw7bbdzGMAxVV1dLklpbW+XUXdNqQFSoIMlp/SkXLYHsFj+z0y7Ta5ZuNnI01CzE6+yW8Zovyc9/VZXzZ2GiPOV6rHZ0JoST9vmWQCQAjrLat+TH9sB9HGBFYZX7ZyvgJoxXwD3Kcbz27ds3p/fnzem9lTjTNFNC4o50dLty2ElLndNWnndaf8pFvhdz6+w1S37dky+na4PcSX7+CY5RDjIdNEn32VMskTNzMn8uJuPMHAAAACA9zlEFsuC0U9ed1h90jdXXLPl1j8frnH9uOX0fyIV070srlntysiBoPjh9kUsAAADALZh5bMPgwYP17rvvFrsbcIh0M36bF5tFm4HotP4gO3YX5KurNVJeZ0kaMzpfPURUU3Pq875rV+R6xhlKSaZw1crZL8XCmTkAAABA1zHzGOgCp60877T+wD67C/KlCzAl6a2389A5xKQ7fT/KSbMvga6yEq7ameVbaJyZAwAAAHQN4TGKoiWQ3ZfKbNvlk9NOXXdaf2Df5AaPHrjPWnBcqACzlMZsV7nt9H0gW3bCVbcFyBdfFiY4BgAAACwgPEbBLWwMa+Ys+18qm5ojq6cvbAznqWfZyXTqOv1BtjpbqKmQAWapjdmu6Oz0faeGZ4BddkvoSOnHgFMOIHFmDgAAAJAdwmMUVEvAVOOiyGU7wUp8YNO4yDmzGZ126rrT+oP8KGSAWWpjtivcfvo+YIfdEjpR8WOgob7zA2GFxJk5AAAAgH2ExyioGr/9YCVdYOOEL6NOO3Xdaf1BfhQ6wCylMdsVpXL6PmCH1RI6yepqDT1wn6HJDc76M5MzcwAAAAD7nPVXPcqCnWDFqYvZOO3Udaf1B/lRrAAz/X2lL0Xh1DHbFaV2+j5gR7YHfpx2wIgzcwAAAIDsEB6jKKyEUU4NoZx26rrT+oP8KHaAmXxf8x4yteDhtoTbOHXMdlUpnr4PlBPOzAEAAACy5y12B1C+ogFM9AvdvIdM9ejRpik39FRTszNXQbc781M69Pii/+fycTitP8ifSIAZqT9sN8CUIq93VwPM5H3o3jn7JEnXXFW6wXHU5AaPThtr2n7+6moNjRlNcAwUS2dn5kh8LgIAAACZGKZpMs3CBXbs2FHsLuRN8he7Pn0M7dzpvBCqJWBq5iz7/Up+fA/cl5v6r07rDwqjJWA/wOxKu3TSnf4dX0fUKWMWgGQYhqqrqyVJra2tKqc/+6we1Cr1g19wj3Ier4DbMF4B9yjH8dq3b9+c3h9lK1B0yafDOzE4lpx36rrT+oPCcEL90bpaQzOmHbo/gmMATsMilwAAAEBuMPPYJUp55nHUxZeFE0KoqippxXLnHd9wwsxPJ/cH5cEwDF18WTjhYI9TxyxQzspxpgVn5sCtynG8Am7FeAXcoxzHKzOPUZKams2E4FiKzGZ04swfJ8z8zMX98oUYXdHUnBgcS84dswDKC2fmAAAAALnDgnkoukw1j1m8BnCeTDWPGbMAnIBFLgEAAIDcYOYxiio5hLrlpkq98r/9EuqpUnsQcI50Y/aPT1ZQLxSA43BmDgAAANB1hMcomuQQasY0Q1Nu6ClJqqv1EEYBDpMuOD40ZllwCgAAAACAUkN4jKJIvwp64u5IGAU4R6aDPVGMWedqCWT3OmTbDgAAAABQGgiPUXDpg+P0p4gSRgHFZ+VgTxRj1nkWNoY1c5b916Gp2dTMWaYWNobz1DMAAAAAgNMRHqOgWgLWg+OodGEUs+GAwmDMultLwFTjoshlO0F+/AGDxkXMQAYAAACAckV4jIKq8RtqqI9cthJCRcWHUQ31LGYDFApj1t1q/PZngqebac7rBwAAAADlyTBNk+lELrBjx45idyGnWgJmShhhGIaqq6slSa2trUq3a6ZrByD/kseelfGarh2Kw2q5IDtlheAOVscqgOJjvALuwXgF3KMcx2vfvn1zen/MPEZRZBsmEUIBxcGYdTcrtagJjgEAAAAAyQiPAQAoA5kCZIJjAAAAAEA63mJ3AAAAFEY0EI4GxQ/ON9W82NSuXYduQ3AMAAAAAIhi5jEAAGUkeQYywTEAAAAAoCOExwAAlJm6WkNVVYnXVVWJ4BgAAAAAkIDwGACAMtPUnFiqQorMQE5eRA8AAAAAUN4IjwEAKCPJi+PFz0COX0QPAAAAAADCYwAAykRycDx9qqEVyz0JNZAJkAEAAAAAUYTHAACUgXTBcbTGcfIiegTIAAAAAACJ8BgAEKclkF1gmG07FEam4DiKABkAAAAAkIzwGAAgSVrYGNbMWfYDw6bmSLuFjeE89QxdYSU4jiJABgAAAADEIzwGAKglYKpxUeSyncBwwcNtmvdQ5LaNi5iB7DQtAevBcVS6AJnXFQAAAADKE+ExAEA1fvszThc83KZ75+yLbU+faqjGnzmYRGHV+A011EcuWwmOo+ID5IZ68boCAAAAQJnyFrsDAABniAaL0Zmq0f/TBY5NzWHNeygxOLYaTKKwJjd4dNpY03YAXFdraMxogmMAAAAAKGeExwCAGCsBcnIN3RnTDE26joDRybINgAmOAQAAAKC8ER4DABJkCpCTg+NbbqrUNVcdkGlSExcAAAAAgFJDeAwASJEuQG5ebGrXrkO3ueWmSk25oadaWw8Uo4sAAAAAACDPWDAPAJBW/KJpkhKC4xnTDE25oWcRegUAAAAAAAqF8BiO1xLI7nT4bNsBOKSu1lBVVeJ1VVVSXS0fHwAAAAAAlDq+/cPRFjaGNXOWqaZme0FwU7OpmbNMLWwM56lnQHloak4sVSFFZiA3NTO2AAAAAAAodYTHcKyWgKnGRZHLD863HiDHL+jVuIgZyEC2khfHi5+BPO8hUwsebitCrwAAAAAAQKEQHsOxavyJ9VatBMjJYdf0qYZq/EaGFgDSSTeWViz3JIzJe+fsI0AGAAAAAKCEER7D0ZIX7MoUIKcLu+pqCY6RijramWUaS8lj8t45+yhhAQAAAABAiSI8huNZCZAJjmEVdbQzszKW6moNzZh26Lp5D9l/PgEAAAAAgPMRHsMVMgXIBMewijramdkZS3W1Ht1yU2Vs287zCQAAAAAA3IHwGK6RLkC++LIwwTEso452x1oC9g/CTLmhZ0qAXKrBOgAAAAAA5YjwGK6SHCDv2nXoZwTHsII62unV+A011Ecu23mcU27oGSth0VCvkgzWAQAAAAAoV95idwCwq67WUPNiMyE4rqpSyYZ6yL3ovhINhqP/x+9D5RQcR01u8Oi0sabtALiu1qPRo8IExwAAAAAAlBhmHsN1mpoTg2MpMgOZequwgzra6WUbABMcAwAAAABQeph5DFdJDvWqqg6Vrkg3exTIJN0M5ORZ7eUUHAMAAAAAAMRj5jFcI91s0BXLPbYXQAPiUUcbAAAAAAAgPcJjuEKmMgJ2FkBDcbQEsns9sm1nV12toaqqxOuoow0AAAAAAMod4TEcz0r9WQJk51rYGNbMWfZfj6ZmUzNnmVrYGM5TzxJ/F3W0AQAAAAAAEhEew9HsLFxGgOw8LQFTjYsil+28HvGve+Oi/M5ATldHO4p9CAAAAAAAlDPCYzhWS8B6cByVLkAuVOkDpKrx2w/00x0wqPHnp3wEdbQBAAAAAAA6RngMx6rxG2qoj1y2s3BZfIDcUK+8BY+wxs6McDszzbuKOtoAAAAAAACZeYvdASCTyQ0enTbWtB0A19UaGjOa4NgpoqFsNKyN/h8fDDslOLbTZwAAAAAAgFLGzGM4XrYBMMGxs2Sazeu04NhKnwEAAAAAAEodM48BFEy62bzNi03t2nXoNvkMjrOtox3ta/R/ZrUDAAAAAIBywMxjAAWVPJu3UMGxRB1tAAAAAAAAO5h5DKDg6mqNlBnHVVWFqSdMHW0AAAAAAABrmHkMoOCamhODYykyA7lQ9YSpow0AAAAAANA5wmMABZW8YF1V1aGfsSAdAAAAAACAcxAeAyiY5OB4+lRDK5Z7EmogEyADAAAAAAA4A+ExgIJIFxxHaxwnL6JHgAwAAAAAAFB8hMcA8i5TcBxFgAwAAAAAAOAshMcAOtQSyC68jW9nJTiOIkAGAAAAAABwDsJjAGktbAxr5iz74W1Ts6mZs0wtbAyrJWA9OI5KFyBnG2IDAAAAAAAge4THAFK0BEw1LopctjP7N36WcbR9Q33kfyvBcVR8gNxQL9X4rbUDAAAAAABA7niL3QEAzlPjNzR9qmJBcPT/TOFvuvIUNf7Iv9PGmrYD4LpaQ2NGExwDAAAAAAAUCzOPAaRlp/5wZ3WNsw2ACY4BAAAAAACKh/AYQIesBMh2FsQDAAAAAACAexAeA8goU4BMcAwAAAAAAFC6qHkMoFPRQDi+BnLzYlO7dh26DcExAAAAAABAaWHmMQBLkmcgExwDAAAAAACUNsJjAJbV1Rqqqkq8rqpKBMcAAAAAAAAliPAYgGVNzYmlKqTIDOTkRfQAAAAAAADgfoTHACxJXhwvfgZy/CJ6AAAAAAAAKA2ExwA6lRwcT59qaMVyT0INZAJkAAAAAACA0kJ4DCCjdMFxtMZx8iJ6BMgAAAAAAAClg/AYQIcyBcdRBMgAAAAAAAClifAYQFpWguMoAmQAAAAAAIDSQ3gMIEVLwHpwHJUuQG4JECADAAAAAAC4FeExgBQ1fkMN9ZHLVoLjqPgAuaE+cj8AAAAAAABwJ2+xOwDAmSY3eHTaWNN2AFxXa2jMaIJjAAAAAAAAt2PmMYAOZRsAExwDAAAAAAC4H+ExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQAAAAAAAAAgBeExAAAAAAAAACAF4TEAAAAAAAAAIAXhMQDXaAmYBW0HAAAAAABQzgiPAbjCwsawZs4y1dRsLwhuajY1c5aphY3hPPUMAAAAAACgNBEeA3C8loCpxkWRyw/Otx4gNzWbenB+5LaNi5iBDAAAAAAAYAfhMQDHq/Ebmj7ViG1bCZDjg2NJmj7VUI3fyNACAAAAAAAA8QiPAbhCXa31ADldcFxXS3AMAAAAAABgB+ExANewEiATHAMAAAAAAOQG4TEAV8kUIBMcAwAAAAAA5I632B0AALuigXA0KH5wvqnmxaZ27Tp0G4JjAAAAAACArmHmMQBXSp6BTHAMAAAAAACQW4THAFyrrtZQVVXidVVVIjgGAAAAAADIAcJjAK7V1JxYqkKKzEBOXkQPAAAAAAAA9hEeA3Cl5MXx4mcgxy+iBwAAAAAAgOwQHgNwneTgePpUQyuWexJqIBMgAwAAAAAAdA3hMQBXSRccR2scJy+iR4AMAAAAAACQPcJjAK6RKTiOIkAGAAAAAADIDcJjAK5gJTiOIkAGAAAAAADoOsJjAI7XErAeHEelC5BbAgTIAAAAAAAAVhEeA3C8Gr+hhvrIZSvBcVR8gNxQH7kfAAAAAAAAWOMtdgcAwIrJDR6dNta0HQDX1RoaM5rgGAAAAAAAwC5mHgNwjWwDYIJjAAAAAAAA+wiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIj4EOtATMgrYDAAAAAAAAnITwGEhjYWNYM2eZamq2FwQ3NZuaOcvUwsZwnnoGAAAAAAAAFAbhMZCkJWCqcVHk8oPzrQfITc2mHpwfuW3jImYgAwAAAAAAwN0Ij4EkNX5D06casW0rAXJ8cCxJ06caqvEbGVoAAAAAAAAAzkZ4DKRRV2s9QE4XHNfVEhwDAAAAAADA3QiPgQ5YCZAJjgEAAAAAAFCqCI+BDDIFyATHAAAAAAAAKGXeYncAcLpoIBwNih+cb6p5salduw7dhuAYAAAAAAAApYaZx4AFyTOQCY4BAAAAAABQ6giPAYvqag1VVSVeV1UlgmMAAAAAAACUJMJjwKKm5sRSFVJkBnLyInoAAAAAAABAKSA8BixIXhwvfgZy/CJ6AAAAAAAAQKkgPAY6kRwcT59qaMVyT0INZAJkAAAAAAAAlBrCYyCDdMFxtMZx8iJ6BMgAAAAAAAAoJYTHQAcyBcdRBMgAAAAAAAAoVYTHQBpWguMoAmQAAAAAAACUIsJjIElLwHpwHJUuQG4JECADAAAAAADAvQiPgSQ1fkMN9ZHLVoLjqPgAuaE+cj8AAAAAAACAW3mL3QHAiSY3eHTaWNN2AFxXa2jMaIJjAAAAAAAAuB8zj4EOZBsAExwDAAAAAACgFBAeAwAAAAAAAABSEB4DAAAAAAAAAFIQHgMAAAAAAAAAUhAeAwAAAAAAAABSEB4DZaQlYBa0HQAAAAAAANyL8BgoEwsbw5o5y1RTs70guKnZ1MxZphY2hvPUMwAAAAAAADgR4TFQBloCphoXRS4/ON96gNzUbOrB+ZHbNi5iBjIAAAAAAEA5ITwGykCN39D0qUZs20qAHB8cS9L0qYZq/EaGFgAAAAAAACglhMdAmairtR4gpwuO62oJjgEAAAAAAMqJt9gdKAWtra1atWqVNm/erD179mjgwIEaPHiwTjnlFFVUVBS7e0BMNACOBsPR/+ODYYJjAAAAAAAASITHXfLBBx/o7rvv1osvvqhgMJjy8wEDBmjChAmaNm2aunXrVoQeAqkyBcgExwAAAAAAAIgyTNNkBawsPPHEE5o9e7b27dvX6W1Hjhyp+++/X4MHD8769+3YsSPrtm5hGIaqq6slRWZzs2vmV3JQXFUl7dp16OcEx8iE8Qq4A2MVcA/GK+AejFfAPcpxvPbt2zen98fM4yy89NJL+v73v69wOBy77rjjjtMZZ5yh6upqbdy4US+88IL2798vSVqzZo2mTZumJUuWqHfv3sXqNpAgeQYywTEAAAAAAADiER7btHXrVt1yyy2x4NgwDN1+++2qr6+Xx3No/cHt27frpptu0sqVKyVJ69at05133ql77rmnKP0G0qmrNdS82EwIjquqRHAMAAAAAAAAeTq/CeLNmzdPe/fujW3/y7/8ixoaGhKCY0nq16+fFixYoGHDhsWuW7FihdasWVOwvgKdaWpODI6lyAzkpubSP40DAAAAAAAAmREe2/DZZ59p2bJlse0hQ4Zo6tSpHd6+e/fuuuOOO2Lbpmlq3rx5ee0jYFW6msdRD843CZABAAAAAADKHOGxDc8995yCwWBse/z48fL5fBnbnHnmmRo6dGhs+6WXXrK0yB6QT8nB8fSphlYs92j61EPlKgiQAQAAAAAAyhvhsQ3PP/98wvZFF11kqd3Xv/712OUDBw7o5Zdfzmm/ADvSBcfRGsd1tQYBMgAAAAAAACQRHtvyxhtvxC73799fxxxzjKV2p5xySsL23/72t5z2C7AqU3AcRYAMAAAAAAAAifDYsi1btmj37t2x7REjRlhuO3LkyITt9evX56xfgFVWguMoAmQAAAAAAAAQHlv0/vvvJ2wfffTRltv2798/oTbyBx98kLN+AVa0BKwHx1HpAuSWAAEyAAAAAABAuSA8tmjLli0J20ceeaTltoZh6IgjjujwvoB8q/EbaqiPXLYSHEfFB8gN9ZH7AQAAAAAAQHnwFrsDbrFv376E7crKSlvte/XqFbscCoV04MABde/e3XJ7wyj90C7+MZbD4y20KTdU6PTTTNsB8PWTDPnH2G+H0sZ4BdyBsQq4B+MVcA/GK+AejNeuIzy2KDk8thP8prv93r17bd1HdXW1rd/ndn369Cl2F0rSuecUth3KA+MVcAfGKuAejFfAPRivgHswXrND2QqLDhw4kLAdX8PYim7dumW8PwAAAAAAAABwEmYeW5Q8SzgYDNpqf/DgwYz315nW1lZbt3cjwzBiR4F27twp02RxNsCpGK+AOzBWAfdgvALuwXgF3KMcx2uuqxcQHluUXOPY7szh5NvH10C2ohx27nimaZbdYwbcivEKuANjFXAPxivgHoxXwD0Yr9mhbIVFyeHx3r17bbWPv73X67U98xgAAAAAAAAAConw2KIjjjgiYXvLli2W25qmmXD75PsCAAAAAAAAAKchPLZo2LBhCdubNm2y3Pazzz5LqJE8dOjQnPULAAAAAAAAAPKB8NiigQMH6rDDDottv/POO5bbrlmzJmGb8BgAAAAAAACA0xEe2zB27NjY5c8//1wbN2601G7VqlUJ26effnpO+wUAAAAAAAAAuUZ4bMMFF1yQsP30009bavfMM8/ELnfv3l1nnXVWTvsFAAAAAAAAALlGeGzD+eefL5/PF9tetmxZQi3jdF599VV98MEHse1zzz1XlZWVeesjAAAAAAAAAOQC4bEN/fv31/jx42PbGzdu1Pz58zu8/YEDB/STn/wktm0YhmbMmJHXPgIAAAAAAABALhAe2zRt2jT16tUrtn3//fersbFR4XA44Xbbt2/XlClTtG7duth1F198sUaOHFmwvgIAAAAAAABAtgzTNM1id8JtXnzxRc2YMSMhMD7uuOP0xS9+UdXV1frwww/1wgsvaP/+/bGfDx8+XEuWLFHv3r2z+p07duzocr+dzjAMVVdXS5JaW1vFrgk4F+MVcAfGKuAejFfAPRivgHuU43jt27dvTu/Pm9N7KxNf+cpX9LOf/UyzZ89WW1ubJGnDhg3asGFD2tuPGDFCv/71r7MOjgEAAAAAAACg0ChbkaUrrrhCjz32mC688MKERfTiDRgwQDNnztTSpUs1ePDgAvcQAAAAAAAAALLHzOMuGDp0qB544AHt2LFDq1at0ubNm7V37171799fxxxzjE499VRVVFQUu5sAAAAAAAAAYBvhcQ707dtXF1xwQbG7AQAAAAAAAAA5Q9kKAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwmMAAAAAAAAAQArCYwAAAAAAAABACsJjAAAAAAAAAEAKwzRNs9idAAAAAAAAAAA4CzOPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKbzF7gDcq7W1VatWrdLmzZu1Z88eDRw4UIMHD9Ypp5yiioqKgvdn7969ev3117Vlyxa1traqX79+GjRokMaOHatu3boVvD+AkzhlvO7Zs0f/+Mc/9P7776u1tVXBYFBVVVU68sgjdfLJJ6tfv34F6wvgVE4ZrwA659Tx+vnnn6ulpUUfffSR9u7dq27duqlfv34aMmSIRowYoV69ehWtb0CxOGm8hsNhrVu3Tu+884527NihtrY29erVS4cffrhGjhyp4447ToZhFLRPADpW7nkT4TFs++CDD3T33XfrxRdfVDAYTPn5gAEDNGHCBE2bNq0gg2jr1q2655579Mwzz2jfvn0pP+/Tp48uu+wy3Xzzzerdu3fe+wM4iRPG61tvvaU//elPeuWVV7RmzRqFw+EOb+v3+1VfX69LLrmEP5hRdpwwXq1obGzUf/7nfyZcN27cOP3ud78rUo+AwnPqeH3uuefU2Nio119/XaZppr2Nx+PRqFGjdP311+vyyy8vWN+AYnHSeN29e7cWLFigRx99VNu2bevwdoMGDdLEiRNVX1+v7t2757VPgFPs3btXa9asUSAQUCAQ0FtvvaVNmzbFfj5o0CA9//zzBe0TeVOEYXb0VwWQxhNPPKHZs2enHTTJRo4cqfvvv1+DBw/OW3/++te/6nvf+5527NjR6W2POeYY3X///RoxYkTe+gM4iRPGa0NDg1555RXb7c4880z94he/0MCBA3PaH8CpnDBerfj444916aWXpvST8BjlxInjdceOHfr+97+vF1980XKbiy++WPfee2/+OgU4gJPG65tvvqmbbrpJW7Zssdzm+OOP1wMPPKBhw4blpU+AEzQ2Nuqxxx7TunXrMk40KnR4TN50COExLHvppZc0ffr0hMF83HHH6YwzzlB1dbU2btyoF154Qfv374/9fPjw4VqyZElejsCsXr1akyZNUltbW+y6gQMH6pxzzlH//v316aef6oUXXtCuXbtiPx8wYIAeeeQRHXnkkTnvD+AkThmvl19+udauXZtw3dFHH62TTz5ZAwcOVGVlpT777DOtXLlSGzZsSLjdsGHD9Pvf/159+/bNWX8AJ3LKeLVi8uTJ+utf/5pyPeExyoUTx+uWLVtUX1+vDz74IOH6E088UX6/X/3791d7e7u2bt2qt99+W+vXr5dEeIzS56TxunbtWk2aNEl79uyJXWcYhsaOHatRo0bpsMMO086dO/X222/rzTffTGg7YMAALV26VEcffXRO+wQ4xY033qjnnnuu09sVMjwmb0pEeAxLtm7dqosuukh79+6VFPmgu/3221VfXy+P59C6i9u3b9dNN92klStXxq675JJLdM899+S0P/v379dFF12kTz/9NHbdDTfcoFtuuSXhVKM9e/bojjvu0IoVK2LXnXLKKVq8eHFO+wM4iZPGazQ87t+/v6688kpdffXVOv7441NuZ5qmnnnmGd15553auXNn7Pqvf/3ruu+++3LWH8BpnDReO/P444/r9ttvlxT54zj+dFvCY5QDJ47XAwcOaPz48QkHak877TTdeeedOumkk9K2+eijj/TEE0+otbVVP/rRj3LeJ8AJnDReTdPU+PHjFQgEYtedeOKJuvvuu3XiiSem3H7NmjW69dZbEw4IXXjhhXrggQdy1ifASdKFx5WVlRo1apRWr14dO3OgUOExeVMqT+c3AaR58+bFPngl6V/+5V/U0NCQ8MErSf369dOCBQsSTqtZsWKF1qxZk9P+NDU1JQzkq6++WrfffntKjarevXvr7rvv1plnnhm77s0339Szzz6b0/4ATuKk8dqvXz99//vf1wsvvKDvfe97aYNjKfIH/UUXXaTGxkb17Nkzdv0zzzyT8Ic2UGqcNF4z2b59e6zOsWEY+sEPflCQ3ws4iRPH69y5cxOC48suu0xNTU0dBsdS5NTa7373uwTHKGlOGq/R+q1Rffr00cMPP5w2OJYi5TMWLVqkww47LHbdc889Z6vcBeAm3bt3l9/v16RJk/Szn/1M//M//6M33nhDTU1NRTkLlbwpFeExOvXZZ59p2bJlse0hQ4Zo6tSpHd6+e/fuuuOOO2Lbpmlq3rx5OetPMBjUggULYtuHHXZYbCZUOh6PR3fddVfCHwpz587NWX8AJ3HaeP3Nb36jhoYGy4uPjBo1SvX19QnXPfPMMznrD+AkThuvmfz0pz+N1XubMGGCampqCvJ7Aadw4nhdt26dFi5cGNseNWqUfvazn7HgLMqe08brq6++mrA9fvx4DRgwIGObI444Qtdee21Cn1577bWc9QlwknvvvVfLli3TnXfeqauuukonnHBCyoGeQiFvSo/wGJ167rnnElalHT9+vHw+X8Y2Z555poYOHRrbfumllywtUmDFa6+9llCw/Jvf/Kb69OmTsc2xxx6rL33pS7Ht1atX66OPPspJfwAncdp49Xq9tttccsklCdvMPEapctp47chf/vIXPfnkk5Ii5Spuu+22vP4+wImcOF4bGxsT+vTDH/4wq89doNQ4bbwmzxg++eSTLbU79dRTE7a3bt2ak/4A6Bh5U3qEx+hUck2Ziy66yFK7r3/967HLBw4c0Msvv5yX/sT/nkyS+22lIDvgNk4br9k49thjE7Y///zzIvUEyC83jNd9+/bp3//932PbP/jBD1RVVZW33wc4ldPG6969exNqLI4YMUJjx47NyX0Dbue08Rq/YJ8k9ejRw1K7+FJukjirACgA8qb0CI/RqTfeeCN2uX///jrmmGMstTvllFMStv/2t7/lpD+vv/567HJFRYX8fr+ldslHbnPVH8BJnDZesxFfn07KbvYy4AZuGK+/+tWvtGnTJknS2WefnXJmAFAunDZeX3jhhYRZkYxN4BCnjdfBgwcnbMfXUs0k+vkblTzBAkDukTelR3iMjLZs2aLdu3fHtkeMGGG57ciRIxO2169f3+X+hMNhbdiwIbZ97LHHqlevXpbaDh06NOEoby76AziJ08Zrtt59992E7SOPPLJIPQHyxw3jNRAIqKmpSVKkHmT8DGSgnDhxvP79739P2D7ttNNycr+A2zlxvH75y19O2P7jH/9oqV382QWVlZU644wzctIfAOmRN3WM8BgZvf/++wnbRx99tOW2/fv3T6gt9cEHH3S5P5s2bdKBAwey6o9hGAkh1EcffZRQCwtwO6eN12wtX748YfuLX/xikXoC5I/Tx2soFNIdd9yh9vZ2SdKMGTM0ZMiQnP8ewA2cOF7ffvvt2GWv1xsLyLZs2aL58+dr4sSJOvvss3XyySfrvPPO0/XXX6+5c+eWXA1GIJkTx+sXvvAFfeUrX4ltv/zyy/rv//7vjG0WLVqk//u//4ttNzQ06LDDDstJfwCkR97UMcJjZJRc3N/ODEDDMHTEEUd0eF+F7o+khP6EQiFqqaKkOG28ZmPDhg2xhbmkyKlCX/3qV4vSFyCfnD5eFyxYoLVr10qShg0bpsmTJ+f8dwBu4cTxGj+jacCAAerRo4eam5t10UUX6e6779abb76pbdu2qa2tTZ988olWrlypOXPm6Bvf+IZ+8pOf6ODBgznpB+A0ThyvkvTjH/84oXzG7Nmzdeutt+q1117Tnj17ZJqmdu/erVdffVX/8i//op/+9Kex25533nmaMWNGzvoCID3ypo5RSBIZJa8wW1lZaat9/BT/UCikAwcOqHv37ln3J7kWalf6k+7+ADdz2ni1KxwO60c/+lHCEdorrrjCcp06wE2cPF43bNiguXPnSop8kb7rrrvUrVu3nNw34EZOG6/hcDjhtPwBAwboV7/6lebNm9dp22AwqN/97ndavXq1fvOb36h3795Z9wNwIqeN16iBAwdqyZIlmj17tv70pz9Jkp566ik99dRTHbbp3bu3pkyZoqlTp6qioqLLfQCQGXlTx5h5jIySP3ztfnAm376rgyfX/Um+P8DNnDZe7XrggQcSFhbo16+fvve97xW0D0ChOHW8mqapO+64I3bK3lVXXaXTTz89J/cNuJXTxuvu3btlmmZs+4MPPogFx16vV5MmTdKyZcu0atUqvfnmm3r00Ud1/fXXJyxAu2rVKv3whz/sUj8AJ3LaeI13+OGH6/7779f8+fM7ndE4ZMgQ/epXv9KMGTMIjoECIW/qGDOPkVF8vRdJCTWgrEieqZR8f27vD+Akbh4fzz77rB544IHYtmEY+o//+A/169evYH0ACsmp4/WRRx7RypUrJUl9+/bVv/7rv+bkfgE3c9p4Tf4yGp2F3L17d82bN09nnXVWws9Hjx6t0aNH64ILLtD06dO1f/9+SdLTTz+t559/Xueff36X+gM4idPGa7wtW7boZz/7mZ5++umEA0DpbNy4UVOmTNEpp5yin/zkJxo+fHjO+gEgPSe/fxQbM4+RUfKRE7sFv5PrqXX1lB+n9QdwEreOjzfeeEO33XZbwh/R3/3ud/kyi5LmxPG6bds2/eIXv4ht33777erbt2+X7xdwO6eN147a33zzzSnBcbwzzzxTt956a8J1Cxcu7FJfAKdx2niNWrt2rS6//HL98Y9/lGmaMgxDl156qRobG/Xqq6/q7bff1quvvqqFCxfqm9/8pgzDkCS9+eabuuaaaxLOzgOQH059/3ACwmNklFzjxe6Rk+TbJ9eAKXZ/7NawAZzMaePVinfffTdhFpQkXXfddfrud7+b998NFJMTx+uPf/xj7dq1S5I0btw4XXnllV2+T6AUOG28pvv7tU+fPpo0aVKnba+77rqEs3reeOMNtba2dqk/gJM4bbxK0s6dO/Wd73xHO3bskBSZzThv3jz913/9l770pS+pX79+8vl86tevn84++2zdfffdmjt3bmzWY1tbm7773e9q27ZtXe4LgI6RN3WM8BgZJe/sdms+xd/e6/V2+chLVwuQJ9++EOEYUChOG6+d2bhxoyZPnhwLqyTp4osv1p133pnX3ws4gdPG63PPPadnnnlGUuRL7V133dWl+wNKidPGa48ePRLqF0vSl770JUv3261bN5199tmxbdM09eabb3apP4CTOG28StKDDz6orVu3xrZvvvlmnXfeeRnbnH/++brpppti262trZYWxQSQPfKmjhEeI6MjjjgiYXvLli2W25qmmXD75PsqdH8kafPmzbHLXq9Xhx9+eJf7BDiF08ZrJlu2bNG3v/3thBkUX/7yl/WLX/xCHg8fTSh9Thuv//mf/xm7PHXqVA0dOrTL9wmUCqeN13T3c8IJJ1hue+KJJyZs2/17GnAyp41X0zT1+OOPx7YrKytVV1dnqe3111+fEIY/+eSTCofDXe4TgPTImzrGgnnIaNiwYQnbmzZtstz2s88+S6gRk4svooMGDVKPHj1ip7jb6Y9pmgmDeciQIbYLoANO5rTx2pHt27eroaEhoX+nnXaafv3rXzMmUTacNl6jp9JKkRlSDz74oK32K1eu1MiRI2Pbp59+uhYtWtTlfgFO4LTxGu1TfD/69OljuW3ybXfu3JmTPgFO4LTxunHjRm3fvj227ff71aNHD0tte/TooTFjxui1116TJO3atUsffvihjj/++C73C0Aq8qaOMb0LGQ0cOFCHHXZYbPudd96x3HbNmjUJ27n48PV4PDruuONi2xs3brR8KsH69esTatAwqwqlxmnjNZ09e/ZoypQpWr9+fey6UaNG6aGHHrL8hzRQCpw8Xtvb2y39y9SOmVEoJU4cr8OHD0/YTl6kJ5NSXtAHcNp4/fzzzxO2+/fvb6v9gAEDErbjD/YCyC3ypo4RHqNTY8eOjV3+/PPPtXHjRkvtVq1albB9+umn57w/7e3tCgQCltol13PLVX8AJ3HaeI23f/9+TZs2TatXr45dN3z4cC1YsEC9e/fO+e8DnM7J4xVAIqeN13HjxiVs2zm1Nn5mlCT17ds3J30CnMJJ4zX54IzdBbja2toStktpAS7Aicib0iM8RqcuuOCChO2nn37aUrvowjtS5EPzrLPOKmp/km+XfD9AKXDaeI0KBoOaNWuWXn/99dh1Q4YM0cMPP5yw6jtQTpw0Xl9//XW9++67lv8999xzCe3HjRuX8PPf/e53Xe4T4CROGq+SdNZZZyWESMmhVybJX3DjS84ApcBJ4zW55mn82XdWJN+ev5uB/CJvSo/wGJ06//zzE2q1LFu2LKEWVDqvvvqqPvjgg9j2ueeem7OjpOPGjUv40Hzqqae0a9eujG0+/PBDvfLKK7HtUaNG6ZhjjslJfwAncdp4laRwOKzbb79dL730Uuy6I488Uo2NjXlfmA9wMieOVwDpOW28duvWTRdeeGFsOxAI6L333uu03fr16/XGG2/EtgcOHGhrsT3ADZw0Xo888kgNHDgwtv3+++9r7dq1ltq+9dZb2rBhQ2x70KBBCfcFIPfIm9IjPEan+vfvr/Hjx8e2N27cqPnz53d4+wMHDugnP/lJbNswDM2YMaPD23/88cc66aSTYv/OP//8jP3x+XyaMmVKbHv37t0Jq8QnC4fD+vd///eE+os33nhjxt8BuJXTxqskzZ49W0899VRs+/DDD1djY6MGDx7caVuglDlxvAJIz4nj9cYbb5TXe2j989mzZ2cMyEKhkGbPni3TNGPXXX/99Z3+HsBtnDZezzvvvITt2bNnd1qn/MCBA7rrrrsSruNzHLCPvCk3CI9hybRp09SrV6/Y9v3336/GxsaUBXG2b9+uKVOmaN26dbHrLr744pyfDjdp0iQdddRRse1HH31UP//5z1M+hPfs2aPbbrtNr776auy6U045JWGmBlBqnDRe77nnHi1ZsiS23adPHz388MMlt4AAkC0njVcAmTltvB5//PGaMGFCbPuNN97QjBkztHXr1pTbbtu2TTNnztTKlStj1w0aNEi1tbU57RPgFE4ar1OnTk2YCf3mm29q8uTJHdZifv/991VfX6+33nordl337t0TAi0A+UPelMow4w89Axm8+OKLmjFjRsIH7nHHHacvfvGLqq6u1ocffqgXXnhB+/fvj/18+PDhWrJkScbFsD7++OOEejCDBg3S888/32l/Vq9erUmTJiUsIjBw4ECde+65Ovzww7V582Y9//zzCacYDBgwQI888oiOPPJIy48bcCOnjNeTTjopYdswDHk89o9bJq9+DZQSp4xXO5Lve9y4cdQ5Rllw2ng9ePCgvv3tbyeUoujRo4fOOussDRs2TFIkiHr55ZcT/mbu2bOnfv/732vUqFHWHjjgQk4ar0uWLNGdd96ZcF1FRYXGjh2rkSNHqnfv3tq9e7dWr16tVatWpYTcP//5z3XFFVdYediA62zatElf/epX0/6svb09YbuioiLt7X7729+mLCYrkTflirfzmwARX/nKV/Szn/1Ms2fPjg2gDRs2JNRhijdixAj9+te/zvjB2xWjRo3S/fffr+9973tqbW2VJG3dulXLli1Le/vBgwfr/vvvL8mBDCRz2niNMk0z5Q8AoNw5dbwCSOW08dqtWzfNnTtXt956q15++WVJ0v79+/Xcc8+lLGwZNWDAAM2bN4/gGCXPSeM1epbAT3/601hY3d7erpUrVyacEZCssrJSd9xxB8ExSpqd74gd3S7X82LJmxJRtgK2XHHFFXrsscd04YUXJpx6E2/AgAGaOXOmli5dmveapl/+8pf15JNP6oorrlDPnj3T3qZPnz66/vrr9cQTT3B6L8qK08YrgI4xXgH3cNp4ra6u1sKFC3XXXXdp+PDhGW83bdo0PfXUUxozZkxe+wQ4hZPG64QJE7R8+XJdd911CSU10undu7cmTZqk5cuX66qrrspbnwB0jLzpEMpWIGs7duzQqlWrtHnzZu3du1f9+/fXMccco1NPPbXDUwnyae/evXr99df16aefaufOnerXr58GDRqk0047Td26dSt4fwAncdp4BdAxxivgHk4cr2vXrtX69eu1ZcsWtbe3q2/fvjrhhBM0ZsyYrEpHAaXCSeO1vb1d7777rt577z21trZq3759qqysVHV1tU466SSdeOKJfOYDDlLueRPhMQAAAAAAAAAgBYeeAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAHufnmm3XSSSfF/n3rW99Se3u7pba7du3SBRdckNB+7ty5ee4xAAAAShXhMQAAAOAg//Ef/6GhQ4fGtl977TXNmTOn03amaerf/u3f9PHHH8euO+ecczRjxoy89BMAAAClj/AYAAAAcJBevXrp/vvvV2VlZey6+fPn64UXXsjY7qGHHkq4zaBBg/TLX/5ShmHkra8AAAAobYTHAAAAgMMMHz5cP/7xj2Pb0VnFH330Udrbv/rqq7rvvvti2926ddOcOXNUXV2d764CAACghBEeAwAAAA70zW9+U3V1dbHtXbt26aabbtLBgwcTbrdlyxbddtttCXWRf/jDH2rMmDEF6ysAAABKE+ExAAAA4FDf//73dfLJJ8e2V69enTAjORgM6uabb9bnn38eu+7yyy/XxIkTC9lNAAAAlCjCYwAAAMChfD6f5syZo759+8auW7p0qR5//HFJ0i9/+UutWrUq9rMTTzxRd911V6G7CQAAgBJlmKZpFrsTAAAAADr2yiuvaPLkyQqHw5KkHj16aOrUqQl1jnv37q1HHnlExx9/fLG6CQAAgBJDeAwAAAC4wNy5czVnzpwOf37ffffp61//egF7BAAAgFJH2QoAAADABWbMmKFzzz037c8aGhoIjgEAAJBzzDwGAAAAXOKDDz7QRRddlHDdCSecoMcff1xer7dIvQIAAECpYuYxAAAA4ALhcFg/+clPUq5///33ExbNAwAAAHKF8BgAAABwgQceeEB//etfU65vb2/Xrbfeqm3bthWhVwAAAChlhMcAAACAw/3lL3/R3LlzY9s9evTQ2WefHdvetm2bbrnlFrW3txejewAAAChRhMcAAACAg3366af63ve+p3A4HLtu9uzZuv/++zV8+PDYdX/72990zz33FKOLAAAAKFGExwAAAIBDHTx4UDfddJNaW1tj140fP15XXnmlKisrdd9996mysjL2s4ULF+rZZ58tQk8BAABQigiPAQAAAIf6+c9/rpaWltj2qFGj9KMf/Si2PWzYsIRF9EzT1A9+8AN99NFHBe0nAAAAShPhMQAAAOBAK1asUFNTU2y7qqpKc+bMUffu3RNud8kll2jSpEmx7V27dmnWrFk6cOBAwfoKAACA0kR4DAAAADjM+vXr9cMf/jC2bRiGfv7zn+uYY45Je/vvf//78vv9se01a9boxz/+cd77CQAAgNJGeAwAAAA4yL59+zRr1izt27cvdt13vvMdnX/++R226datm+bMmaPq6urYdcuWLdMf/vCHfHYVAAAAJY7wGAAAAHCQO++8U+vWrYttjxs3TjfffHOn7Y4++mj98pe/lGEYsetmz56ttWvX5qObAAAAKAOExwAAAIBD/P73v9eTTz4Z2x4wYIDuvfdeVVRUWGp/zjnnaMaMGbHt/fv366abbtKePXty3lcAAACUPsM0TbPYnQAAAAAAAAAAOAszjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKQiPAQAAAAAAAAApCI8BAAAAAAAAACkIjwEAAAAAAAAAKf5/zUFCP1Glb+kAAAAASUVORK5CYII=" }, "metadata": { "image/png": { - "height": 711, - "width": 711 + "width": 711, + "height": 711 } }, - "output_type": "display_data" + "output_type": "display_data", + "jetTransient": { + "display_id": null + } } ], - "source": [ - "fig = plt.figure(figsize=(7, 7))\n", - "ax = fig.add_subplot(111, xlabel=\"x\", ylabel=\"y\", title=\"Generated data and underlying model\")\n", - "ax.plot(x, y, \"x\", label=\"sampled data\")\n", - "ax.plot(x, true_regression_line, label=\"true regression line\", lw=2.0)\n", - "plt.legend(loc=0);" - ] + "execution_count": 4 }, { "cell_type": "code", - "execution_count": 6, "id": "d8186653-8967-4658-a52f-6440237bccdc", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:21:02.208482Z", + "start_time": "2025-09-19T00:20:59.485775Z" + } + }, + "source": [ + "with Model() as model: # model specifications in PyMC are wrapped in a with-statement\n", + " # Define priors\n", + " sigma = HalfCauchy(\"sigma\", beta=10)\n", + " intercept = Normal(\"Intercept\", 0, sigma=20)\n", + " slope = Normal(\"slope\", 0, sigma=20)\n", + "\n", + " # Define likelihood\n", + " likelihood = Normal(\"y\", mu=intercept + slope * x, sigma=sigma, observed=y)\n", + "\n", + " # Inference!\n", + " # draw 3000 posterior samples using NUTS sampling\n", + " idata = sample(3000, random_seed=rng)" + ], "outputs": [ { "name": "stderr", @@ -135,63 +172,43 @@ }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ca1af33594e84a2db519d729405704f2", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "Output()" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n"
       ],
-      "text/plain": []
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "cb8c6453693b42858342f593903c301e"
+      }
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
     },
     {
      "data": {
+      "text/plain": [],
       "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" + "
\n"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 2 seconds.\n"
+      "Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.\n"
      ]
     }
    ],
-   "source": [
-    "with Model() as model:  # model specifications in PyMC are wrapped in a with-statement\n",
-    "    # Define priors\n",
-    "    sigma = HalfCauchy(\"sigma\", beta=10)\n",
-    "    intercept = Normal(\"Intercept\", 0, sigma=20)\n",
-    "    slope = Normal(\"slope\", 0, sigma=20)\n",
-    "\n",
-    "    # Define likelihood\n",
-    "    likelihood = Normal(\"y\", mu=intercept + slope * x, sigma=sigma, observed=y)\n",
-    "\n",
-    "    # Inference!\n",
-    "    # draw 3000 posterior samples using NUTS sampling\n",
-    "    idata = sample(3000)"
-   ]
+   "execution_count": 5
   },
   {
    "cell_type": "markdown",
@@ -203,77 +220,137 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
    "id": "b18297f4-6592-4afb-a1e3-364b81039e8d",
-   "metadata": {},
-   "outputs": [],
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2025-09-19T00:21:03.033016Z",
+     "start_time": "2025-09-19T00:21:02.998421Z"
+    }
+   },
    "source": [
     "# This single import should be all that's needed\n",
     "from pymc_extras.inference import fit_dadvi"
-   ]
+   ],
+   "outputs": [],
+   "execution_count": 6
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
    "id": "dc6e3943-cd0d-4c66-a177-6e5f2a34c5a1",
-   "metadata": {},
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2025-09-19T00:21:04.496368Z",
+     "start_time": "2025-09-19T00:21:03.043764Z"
+    }
+   },
+   "source": [
+    "# We can fit DADVI now. It prints some progress of its convergence -- note we could change this\n",
+    "# to look different / remove it.\n",
+    "# Note that unlike regular ADVI, deterministic ADVI converges automatically. This is one of its key advantages.\n",
+    "with model:\n",
+    "    dadvi_res = fit_dadvi(random_seed=rng)"
+   ],
    "outputs": [
     {
      "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "498e10628ec243e7b595a5d05ad15a8e",
-       "version_major": 2,
-       "version_minor": 0
-      },
       "text/plain": [
        "Output()"
-      ]
+      ],
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "cc60ba5dabb74b928eb5219c0604d725"
+      }
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
     },
     {
      "data": {
+      "text/plain": [],
       "text/html": [
        "
\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Output()"
       ],
-      "text/plain": []
+      "application/vnd.jupyter.widget-view+json": {
+       "version_major": 2,
+       "version_minor": 0,
+       "model_id": "05849597991f45f69c3da3658da2f327"
+      }
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
     },
     {
      "data": {
+      "text/plain": [],
       "text/html": [
-       "
\n",
-       "
\n" - ], - "text/plain": [ - "\n" + "
\n"
       ]
      },
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "display_data",
+     "jetTransient": {
+      "display_id": null
+     }
     }
    ],
-   "source": [
-    "# We can fit DADVI now. It prints some progress of its convergence -- note we could change this\n",
-    "# to look different / remove it.\n",
-    "# Note that unlike regular ADVI, deterministic ADVI converges automatically. This is one of its key advantages.\n",
-    "with model:\n",
-    "    dadvi_res = fit_dadvi()"
-   ]
+   "execution_count": 7
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
    "id": "c47cb209-907b-4873-a3bf-39bff5578502",
-   "metadata": {},
+   "metadata": {
+    "ExecuteTime": {
+     "end_time": "2025-09-19T00:21:04.525784Z",
+     "start_time": "2025-09-19T00:21:04.509661Z"
+    }
+   },
+   "source": [
+    "# DADVI returns draws like MCMC\n",
+    "dadvi_res"
+   ],
    "outputs": [
     {
      "data": {
+      "text/plain": [
+       "Inference data with groups:\n",
+       "\t> posterior\n",
+       "\t> optimizer_result\n",
+       "\t> observed_data"
+      ],
       "text/html": [
-       "
\n", + "\n", + "
\n", + "
\n", + "
arviz.InferenceData
\n", + "
\n", + "
    \n", + " \n", + "
  • \n", + " \n", + " \n", + "
    \n", + "
    \n", + "
      \n", + "
      \n", "\n", "\n", "\n", @@ -293,76 +370,28 @@ " */\n", "\n", ":root {\n", - " --xr-font-color0: var(\n", - " --jp-content-font-color0,\n", - " var(--pst-color-text-base rgba(0, 0, 0, 1))\n", - " );\n", - " --xr-font-color2: var(\n", - " --jp-content-font-color2,\n", - " var(--pst-color-text-base, rgba(0, 0, 0, 0.54))\n", - " );\n", - " --xr-font-color3: var(\n", - " --jp-content-font-color3,\n", - " var(--pst-color-text-base, rgba(0, 0, 0, 0.38))\n", - " );\n", - " --xr-border-color: var(\n", - " --jp-border-color2,\n", - " hsl(from var(--pst-color-on-background, white) h s calc(l - 10))\n", - " );\n", - " --xr-disabled-color: var(\n", - " --jp-layout-color3,\n", - " hsl(from var(--pst-color-on-background, white) h s calc(l - 40))\n", - " );\n", - " --xr-background-color: var(\n", - " --jp-layout-color0,\n", - " var(--pst-color-on-background, white)\n", - " );\n", - " --xr-background-color-row-even: var(\n", - " --jp-layout-color1,\n", - " hsl(from var(--pst-color-on-background, white) h s calc(l - 5))\n", - " );\n", - " --xr-background-color-row-odd: var(\n", - " --jp-layout-color2,\n", - " hsl(from var(--pst-color-on-background, white) h s calc(l - 15))\n", - " );\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=\"dark\"],\n", "html[data-theme=\"dark\"],\n", "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", - " --xr-font-color0: var(\n", - " --jp-content-font-color0,\n", - " var(--pst-color-text-base, rgba(255, 255, 255, 1))\n", - " );\n", - " --xr-font-color2: var(\n", - " --jp-content-font-color2,\n", - " var(--pst-color-text-base, rgba(255, 255, 255, 0.54))\n", - " );\n", - " --xr-font-color3: var(\n", - " --jp-content-font-color3,\n", - " var(--pst-color-text-base, rgba(255, 255, 255, 0.38))\n", - " );\n", - " --xr-border-color: var(\n", - " --jp-border-color2,\n", - " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 10))\n", - " );\n", - " --xr-disabled-color: var(\n", - " --jp-layout-color3,\n", - " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 40))\n", - " );\n", - " --xr-background-color: var(\n", - " --jp-layout-color0,\n", - " var(--pst-color-on-background, #111111)\n", - " );\n", - " --xr-background-color-row-even: var(\n", - " --jp-layout-color1,\n", - " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 5))\n", - " );\n", - " --xr-background-color-row-odd: var(\n", - " --jp-layout-color2,\n", - " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 15))\n", - " );\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1f1f1f;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", @@ -418,7 +447,6 @@ "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", @@ -427,7 +455,7 @@ "}\n", "\n", ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + " border: 2px solid var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", @@ -559,9 +587,7 @@ ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", - " border-color: var(--xr-background-color-row-odd);\n", " margin-bottom: 0;\n", - " padding-top: 2px;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", @@ -572,7 +598,6 @@ ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", - " border-color: var(--xr-background-color-row-even);\n", "}\n", "\n", ".xr-var-name {\n", @@ -622,15 +647,8 @@ ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", - " border-top: 2px dotted var(--xr-background-color);\n", - " padding-bottom: 20px !important;\n", - " padding-top: 10px !important;\n", - "}\n", - "\n", - ".xr-var-attrs-in + label,\n", - ".xr-var-data-in + label,\n", - ".xr-index-data-in + label {\n", - " padding: 0 1px;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", @@ -643,12 +661,6 @@ " float: right;\n", "}\n", "\n", - ".xr-var-data > pre,\n", - ".xr-index-data > pre,\n", - ".xr-var-data > table > tbody > tr {\n", - " background-color: transparent !important;\n", - "}\n", - "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", @@ -708,247 +720,1419 @@ " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", - "\n", - ".xr-var-attrs-in:checked + label > .xr-icon-file-text2,\n", - ".xr-var-data-in:checked + label > .xr-icon-database,\n", - ".xr-index-data-in:checked + label > .xr-icon-database {\n", - " color: var(--xr-font-color0);\n", - " filter: drop-shadow(1px 1px 5px var(--xr-font-color2));\n", - " stroke-width: 0.8px;\n", - "}\n", "
      <xarray.Dataset> Size: 32kB\n",
              "Dimensions:    (chain: 1, draw: 1000)\n",
              "Coordinates:\n",
              "  * chain      (chain) int64 8B 0\n",
              "  * draw       (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n",
              "Data variables:\n",
      -       "    Intercept  (chain, draw) float64 8kB 1.035 1.124 1.073 ... 1.072 1.056 1.044\n",
      -       "    slope      (chain, draw) float64 8kB 2.135 2.02 2.016 ... 1.916 2.137 1.978\n",
      -       "    sigma      (chain, draw) float64 8kB 0.5326 0.5372 0.4899 ... 0.5494 0.5225\n",
      +       "    Intercept  (chain, draw) float64 8kB 1.057 1.03 0.9942 ... 0.9848 0.9706\n",
      +       "    slope      (chain, draw) float64 8kB 2.033 2.118 2.131 ... 2.141 2.087 1.996\n",
      +       "    sigma      (chain, draw) float64 8kB 0.5354 0.5371 0.6019 ... 0.5204 0.536\n",
              "Attributes:\n",
      -       "    created_at:                 2025-08-29T09:17:23.403627+00:00\n",
      -       "    arviz_version:              0.22.0\n",
      +       "    created_at:                 2025-09-19T00:21:04.484541+00:00\n",
      +       "    arviz_version:              0.21.0\n",
              "    inference_library:          pymc\n",
      -       "    inference_library_version:  5.25.1
    • created_at :
      2025-09-19T00:21:04.484541+00:00
      arviz_version :
      0.21.0
      inference_library :
      pymc
      inference_library_version :
      5.25.1

\n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " \n", + " \n", + "
    \n", + "
    \n", + "
      \n", + "
      \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
      <xarray.Dataset> Size: 593B\n",
      +       "Dimensions:    (variables: 6)\n",
      +       "Coordinates:\n",
      +       "  * variables  (variables) <U11 264B 'sigma_log__' 'Intercept' ... 'slope'\n",
      +       "Data variables:\n",
      +       "    x          (variables) float64 48B -0.6438 1.043 2.057 -3.072 -3.155 -2.591\n",
      +       "    fun        float64 8B 173.9\n",
      +       "    success    bool 1B True\n",
      +       "    message    <U37 148B 'Optimization terminated successfully.'\n",
      +       "    jac        (variables) float64 48B -9.823e-12 8.792e-12 ... 9.037e-10\n",
      +       "    nit        int64 8B 20\n",
      +       "    nfev       int64 8B 21\n",
      +       "    njev       int64 8B 20\n",
      +       "    status     int64 8B 0\n",
      +       "    nhev       int64 8B 67\n",
      +       "    method     <U9 36B 'trust-ncg'

      \n", + "
    \n", + "
    \n", + "
  • \n", + " \n", + "
  • \n", + " \n", + " \n", + "
    \n", + "
    \n", + "
      \n", + "
      \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
      <xarray.Dataset> Size: 3kB\n",
      +       "Dimensions:  (y_dim_0: 200)\n",
      +       "Coordinates:\n",
      +       "  * y_dim_0  (y_dim_0) int64 2kB 0 1 2 3 4 5 6 7 ... 193 194 195 196 197 198 199\n",
      +       "Data variables:\n",
      +       "    y        (y_dim_0) float64 2kB 0.8887 1.673 0.7346 ... 3.651 2.462 2.891\n",
      +       "Attributes:\n",
      +       "    created_at:                 2025-09-19T00:21:04.494392+00:00\n",
      +       "    arviz_version:              0.21.0\n",
      +       "    inference_library:          pymc\n",
      +       "    inference_library_version:  5.25.1

      \n", + "
    \n", + "
    \n", + "
  • \n", + " \n", + " \n", + " \n", + " " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 8 + }, + { + "cell_type": "code", + "id": "2d911a25-5970-4c30-bd2e-21aa0fa74217", + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:21:04.744779Z", + "start_time": "2025-09-19T00:21:04.534848Z" + } + }, + "source": [ + "f, ax = plt.subplots(3, 1, figsize=(8, 8), layout=\"constrained\")\n", + "var_names = [\"Intercept\", \"slope\", \"sigma\"]\n", + "\n", + "for axis, name in zip(f.axes, var_names):\n", + " az.plot_kde(\n", + " idata.posterior[name].values.ravel(),\n", + " ax=axis,\n", + " plot_kwargs=dict(label=\"MCMC\", color=\"tab:blue\"),\n", + " )\n", + " az.plot_kde(\n", + " dadvi_res.posterior[name].values.ravel(),\n", + " ax=axis,\n", + " plot_kwargs=dict(label=\"DADVI\", color=\"tab:orange\"),\n", + " )\n", + " axis.set_title(name)\n", + " axis.legend()\n", + "plt.show()" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAZXCAYAAAD6rSYVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Xd8VFX6x/Hv9HSSQELvvVcpNroUKypYUWyIfe1tXXVdd+26trVgF8WGHUS6oFTpNfTe0+u0+/uDnwOXkJAhZZLJ5/168VrOc88997mzuZKZZ845FsMwDAEAAAAAAAAAAKBErKFOAAAAAAAAAAAAoCqhuAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAABAJfPQQw+pdevWgT+jR48OdUoAAAAAgGPYQ50AAAAAgKpl4cKFWrRoUaDds2dP9erVK4QZoSpYt26dpk+fHmi3bdtWgwYNCmFGAAAAwKmjuAIAAAAgKIsWLdLrr78eaN9+++0UV3BS69atM/3cjBgxguIKAAAAqiyWBQMAAAAAAAAAAAgCxRUAAAAAAAAAAIAgUFwBAAAAAAAAAAAIAsUVAAAAAAAAAACAIFBcAQAAAAAAAAAACII91AkAAAAAKH/r16/XmjVrdPjwYVmtViUmJqpNmzZq27atLBZLqNMzcbvdWr58ufbu3au0tDS53W4lJiaqTp066t69uyIjI8v8moZhaN26dUpJSdHBgwfl9XpVo0YNDRw4ULVr1z7p+VlZWVq+fLkOHToUyDkmJkZ169ZVy5Yt1ahRo1Ll5/P5tGrVKu3atUuHDx9Wfn6+EhISlJycrG7duikuLq5U45+IYRhavXq11q9fr7S0NNntdtWuXVtt2rRR8+bNy/x6AAAAQFVCcQUAAACo4gYMGKDdu3cH2jNmzFCDBg3k9/v11Vdf6d1339XOnTtPeG7t2rU1btw4jRo1SnZ70W8PXnvtNb3++usnPPb6668XeUySRowYoWeeeeak97F48WK99957WrBggfLy8k7Yx+l06owzztDtt9+uDh06nHTMvxT1GuXl5em9997TxIkTdfDgwULnJScnF1lc8Xg8mjRpkr7++mutWbNGPp+vyOvXqVNHffv21SWXXKLOnTuXOO/169fr7bff1ty5c5WVlXXCPjabTd27d9ett96qPn36lHjs0aNHa9GiRYH2xx9/rF69esnr9eqTTz7R+++/rwMHDpzw3FatWunmm2/WeeedV+w1Jk2apIcffviEx7799lt9++23RZ7bs2dPffLJJyW4EwAAAKDiUVwBAAAAwlB6erruuusuLViwoNh++/fv15NPPqk5c+bov//9ryIiIioow6NSU1P18MMPa/bs2Sft63a7NWvWLM2ePVtXXnmlHn30UdlstlO67pYtW3TLLbdo27ZtQZ87d+5cPf7446aCTXH27dunL774Ql988YVmzpyp+vXrF9s/Ly9PTz75pL777jsZhlFsX5/Pp0WLFmnRokUaMmSInn322VOe3ZOamqpbbrlFy5cvL7ZfSkqK7r33Xv3000966aWXFBUVdUrXAwAAAKoq9lwBAAAAwkxOTo6uu+66QoWVyMhIxcTEnPCc2bNn6/HHH6+I9Ey2bNmiUaNGFVlYiYyMVFxcXKGlywzD0IQJE3TbbbfJ6/UGfd39+/drzJgxhQorkZGRJy0UfPjhh7r55puLLKw4nU7Fx8cXWfQ5WbHk4MGDuuqqq/Ttt9+esK/L5VKNGjVktRZ+Ozd16lRdc801ys7OLvYaJ5Kfn6+bbrqpUGGluNdk1qxZGjduXJEzjQAAAIBwxcwVAAAAIMw8/vjjWrt2rSSpU6dOuu6663T66acrPj5ekpSRkaFp06bplVdeMS2F9d133+miiy464dJS/fr1U61atSQdKcQcWwzp16+f+vXrV2Q+TZs2PWE8PT1dN9xwg/bs2ROI2Ww2DR06VBdddJG6desWKAYVFBRo6dKl+vTTTzV9+vRA/1mzZumVV17RfffdV/yLcpx//OMf2r9/vySpffv2uuGGG3TGGWcEXqOsrCzNmTNHDRo0MJ03adIk/ec//yk03uDBg3XBBReoZ8+egTEkac+ePVq9erVmzZqlGTNmKCMjo9i83G63br75Zq1Zs8YU79evny699FJ1795diYmJkiSv16uVK1fqq6++0vfffx9YlmzlypV67LHH9PLLLwf1mrzxxhtavXq1JCkpKUm33HKLzjnnHCUlJUmSDh8+rOnTp+vNN9/Uvn37AuctXLhQzz77rJ544olCY3bp0iUQX758ub777jvTsYsuuqjIfJKTk4PKHwAAAKhIFFcAAACAMLNs2TJJ0h133KHbb7+90PEaNWro0ksv1RlnnKHLL7/c9EH5hAkTTlhc6dixozp27ChJOnTokKm40qFDB11xxRVB5/nQQw+ZCit16tTRf//7X3Xp0qVQX5fLpT59+qhPnz76/vvv9cgjjwRmrIwfP17nnHOOOnXqVOJrb9q0SZJ0/fXX6/777y80CyQ2NrbQfiIbNmwoVEBISEjQa6+9ptNOO+2E16lXr57q1aunc845R3l5efrqq6+KXbLrmWeeMRVWYmNj9fzzz6t///6F+trtdnXr1k3dunXTeeedpzvuuEM5OTmSpMmTJ2vIkCEaOnRo0S/CcVasWCFJ6tq1q9555x3FxcWZjtesWVOXXXaZzj33XI0bN06LFy8OHJs4caLOO+889ejRw3ROs2bN1KxZM0lH/j88trjStGnTU/q5AQAAACoDlgUDAAAAwtDo0aNPWFg5Vt26dQttNj579mwVFBSUZ2qSpPnz52vWrFmBdmxsrD744IMTFlaOd+GFF5pmqhiGofHjxwedw/Dhw/Xggw+ecHmtE3nllVdMr01UVJQmTJhQZGHleJGRkbrmmmtUs2bNEx7ftm2bPv/880DbbrfrrbfeOmFh5XhnnHGGnnnmGVPsnXfeKVFex0pOTtbbb79dqLByrJiYGL311lumfWMMw9D//ve/oK8HAAAAVFUUVwAAAIAwEx8fr3vvvbdEfQcPHmz6sN/j8Wj9+vXllVrA8cWQ22+/PTDDoSRGjx6tRo0aBdrTpk1Tampqic93OBx69NFHS9x/06ZNpmKQJD388MNq3rx5icc4mffff19+vz/QvvLKKwvNBCnOOeeco549ewbaa9asKbS82Mncd999qlGjxkn7xcTE6IEHHjDFfv/9d+3YsSOo6wEAAABVFcUVAAAAIMxceOGFxS49dSybzVZoOa0tW7aUR1oBqamp+v333wPtiIgIjRw5Mqgx7Ha7hgwZEmj7/X79+eefJT5/wIABgT1kSmLq1KmmzeVr166tiy++uMTnn4zf79fkyZNNsdGjRwc9zvDhw03tY5fuOpn4+HgNGzasxP0HDx4c2I9FOjJ7Zc6cOSU+HwAAAKjKKK4AAAAAYebY2Qsl0bBhQ1M7MzOzLNMpZMmSJaZCRbdu3RQdHR30OO3atTO1/9prpiR69eoV1LUWLVpkag8fPlx2e9ltYblu3TplZWUF2o0bNzbNzCmp9u3bm9rBvCZnnnmmnE5nifvbbDb169fPFPtr3xYAAAAg3LGhPQAAABBmjt0LoySOL2xkZ2eXZTqFHP8BvNvtNu01UlKbN282tQ8ePFjic1u1ahXUtdauXWtqd+3aNajzT+b418ThcJzSa3L48GFTO5jX5PjCTEkcX+DasGFD0GMAAAAAVRHFFQAAACDMxMTEBNXfZrOZ2sfu+1EeDh06ZGovWbJES5YsKfW4GRkZJe5bkn1F/uL1egvN5jmVWSXFOf412bRpk5544olSjxvMa1KvXr2gxz++kJeWlhb0GAAAAEBVxLJgAAAAQJixWCyhTqFYwXzgH4y8vLwS942Kiipx3/T09EKx2NjYEp9fEpXhNQm2KHeic8p7STkAAACgsqC4AgAAAKBCeTyeUKdQamVdwKqqr8mxe+cAAAAA1QnLggEAAACoUMcvyXXXXXfp1ltvDVE2JxcfH18olpmZGfTeNsU5/jW59NJL9fTTT5fZ+CVxKnvt5OTkmNpxcXFllQ4AAABQqTFzBQAAAECFSkxMNLV37twZokxKxm63FyoabN++vUyvURlekz179gR9zu7du03thISEskoHAAAAqNQorgAAAACoUG3atDG1y2Iz+/LWvn17U3vZsmVlOv7xr8mqVatUUFBQptc4mTVr1gR9ztq1a03tVq1alVU6AAAAQKVGcQUAAABAUGw2m6nt8/mCOv+MM84wtXfs2HFKH+xXpJ49e5rakydPltfrLbPxu3fvrsjIyEA7NzdXc+bMKbPxS2LevHlyu90l7u/z+TR79mxTrHPnzkX2L+3PDQAAAFCZUFwBAAAAEJTo6GhTO9i9OurWratOnTqZYq+++mqp8ypPQ4YMMW1if+DAAU2aNKnMxnc6nerXr58p9vrrr8vv95fZNU4mPT1dU6ZMKXH/adOm6eDBg4G2xWJR3759i+xf2p8bAAAAoDKhuAIAAAAgKLVq1TK1t2zZEvQYt912m6k9e/ZsffTRR6eck2EYp3xuSTRv3lyDBg0yxZ555hlt3ry5zK5x6623mgo4GzZs0DPPPHPK453Ka/Liiy8qIyPjpP2ys7P13HPPmWKnn366GjduXOQ5ZfFzAwAAAFQWFFcAAAAABKVt27am9qJFi7Rp06agxujXr5/OPPNMU+yZZ57Ryy+/HNRyW2lpaXr77bd14403BnX9U3HXXXcpIiIi0M7JydHVV19d4j1j8vLy9Mknn+jw4cMnPN6qVSuNHDnSFPvoo4/06KOPKi8vr8R55uTkaMKECbr44otLfM5f9u/fr5tvvlmZmZlF9snOzta4ceNMm9lbLBaNGzeu2LFbt24tq/XoW9Bt27Zp/vz5QecIAAAAVAb2UCcAAAAAoGpp1qyZmjRpom3btkmSPB6PRo4cqUGDBqlly5aKiYkxzcBo2rSpevfuXWicF198UaNGjdL27dslSX6/X2+99ZZ+/PFHXX755Tr99NPVunVrORyOwDnp6elKSUnR2rVrNXv2bC1evFher1ctW7Ys35uW1LJlSz3xxBN66KGHArHU1FRdddVVOuecc3ThhRfqtNNOU40aNQLH9+7dq9WrV2vWrFmaPn26MjIy1L9//yKv8dhjj2njxo1atmxZIPb1119r5syZuvzyy3XWWWepffv2crlcgePZ2dnauHGj1q1bp99++01//PGHCgoKFBUVFdT9de7cWStWrNCyZcs0fPhw3XrrrRoyZIhq1qwZuNdp06bpzTff1L59+0znjho1qtC+NMeLjIxUnz599PvvvwdiN910kwYMGKB27dopNjbWVHxJTk7WwIEDg7oHAAAAoKJQXAEAAAAQtHHjxpmKDLm5ufrhhx9O2HfEiBEnLK7Ex8frvffe06233qqUlJRAfPfu3XrxxRf14osvSjqyV4fdbld2dnbIN0EfMWKE0tLS9Pzzz5v2Q/n111/166+/SpJcLpciIyOVnZ0d9Kb3TqdTb775pu666y4tWrQoEE9NTdWbb76pN998U5IUFRUlp9OpnJwceTyeMrgz6fbbb9err76qVatW6eDBg3ryySf15JNPBoo0ubm5JzzvtNNOM/0sFGfs2LGaP39+4LXzeDyaOnWqpk6dWqhvz549Ka4AAACg0mJZMAAAAABBGzFihO644w7ZbLZSjdOwYUN9+eWXuvTSS4scKycnRxkZGUUWViwWi1q3bl2qPIJx/fXX680331RycvIJjxcUFCg9Pb3IwsqxszNOJDExUR988IHGjh0rp9N5wj65ublKT08vtrBy/PJtJ+NyufTOO++oa9euha5VVGGlb9++evvtt0s8S6Z379568sknTcurAQAAAFURM1cAAAAAnJLbb79d559/vn744QctXbpUW7ZsUWZmpvLy8oLaTD0yMlJPP/20br75Zr333nuaNWuW9u/fX+w5TqdTXbp00VlnnaXhw4erQYMGpb2doPTv31/Tp0/X559/rkmTJiklJaXYe65fv7769++vUaNGqV69eicd3263695779Xo0aP14Ycfatq0adqxY0ex59hsNnXs2FGnn366hg8ffkpLpSUmJurTTz/VJ598ovfff18HDhw4Yb+WLVtq7NixuuCCC4K+xqhRo9S3b1/98MMPWrx4sTZt2qT09HTl5eWZZgMBAAAAlZnFCOZdDwAAAABUgG3btmnDhg1KT09Xenq6LBaLoqOjVbNmTTVt2lRNmzYtclZHKBw8eFArV65Uamqq0tLSJB1Zzqx+/fpq0aJFmRR/9u7dqzVr1igtLU1paWkyDEPR0dFKSEhQkyZN1KxZM0VGRpZ4vNGjR5uWHvv444/Vq1evQNvv92v16tXasGGDUlNT5XA4lJSUpHbt2ql58+alvh8AAACgKmPmCgAAAIBKp0mTJmrSpEmo0yixpKSkct8fpG7duqpbt265XuNYVqtVnTp1UqdOnSrsmgAAAEBVwZ4rAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQbAYhmGEOgkAAAAAAAAAAICqgpkrAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBHuoE6jK0tLSQp1ClWexWBQfHy9JSk9Pl2EYoU0IwCnjeQbCB88zED54noHwwfMMhA+eZyA0EhISynQ8Zq4AAAAAAAAAAAAEgeIKAAAAAAAAAABAECiuAAAAAAAAAAAABIHiCgAAAAAAAAAAQBAorgAAAAAAAAAAAASB4goAAAAAAAAAAEAQKK4AAAAAAAAAAAAEgeIKAAAAAAAAAABAECiuAAAAAAAAAAAABIHiCgAAAAAAAAAAQBAorgAAAAAAAAAAAASB4goAAAAAAAAAAEAQKK4AAAAAAAAAAAAEgeIKAAAAAAAAAABAECiuAAAAAAAAAAAABIHiCgAAAAAAAAAAQBDsoU4AAAAAQDnz5Ml2OEW21I2yZu6SNXOXLAXpsvi8kuGT4YiWEREvf1RN+Wq2kq9mG/kTm0tW3i4AAAAAwInwbgkAAAAINz6P7HsWy7FtlhzbZsuaukkWGUENYTii5a13mjwN+8jTcrj8cQ3LKVkAAAAAqHoorgAAAABhwJJ7SI5ts48UVLb/Jos7q3TjeXLk2D5bju2zpXn/kadBHxV0uFyelucyowUAAABAtce7IgAAAKCq8ubLsflXudZ+JfuOeUHPTgmGY9d8OXbNl2/BK8rvdafcrS6QrLZyux4AAAAAVGYUVwAAAIAqxnZwjZxrvpRz/XeyFmSU6BxDFvnjm8gX31T+uAYyopNkWB2S1SaLO1uW/HTZMnbIdmi9rNl7i752+lZFT71brj/fUe7Af8tXp2tZ3RYAAAAAVBkUVwAAAIAqwJKfIeeG7+Rc86XsB9eU6Bxvckd5mvSXp0lf+Wq1kxyRJbtWzkHZdy+QY8fvcmyaLGtBZqE+9kPrFPvFxSrodLXyznhIckYHdT8AAAAAUJVRXAEAAAAqMWvaFkUse0/OtV/L4isotq/hiJKn0ZnyNBkoT9P+MqKTT+maRnSSPK3Ol6fV+VK/J+TYMk0Rf74r+4GVpn4WGYpY+YkcO35XzvDX5Etqf0rXAwAAAICqhuIKAAAAUNkYhux7Fsu19B05tsw46V4qngany91+lNwthkr2iLLNxR5xpNDS8jw5ts5Q5B/Py3Z4g6mLLX2LYr8Yodyz/yF3p6vL9voAAAAAUAlRXAEAAAAqC79Xjk2/KGLpu7LvX1F815i6Kmg3Uu52l8pfo1H552axyNNskDyN+8q17D1FLnxFFm/+0cM+t6Jn/V22jO3KO/NhyWIt/5wAAAAAIETCsrji8XiUkpKiDRs2KCMjQwUFBYqJiVFSUpI6dOig+vXrhzpFAAAA4ChPnlxrv5Jr6buyZe4sspthtcvTfIgK2o+St+GZktVWgUn+P5tDBT3GydNimKKn3FFoqbCIpe/Kmr1fOYOfl+yuis8PAAAAACpAWBVX9u/fr3fffVfff/+9MjMLb7r5l5YtW+rKK6/UZZddJpstBG9IAQAAAEmWvDS5Vn4s14qPZM1LLbKf3xkrd8erlN9ljIyYOhWYYdH88Y2VNeprRf7+nCKWjTcdc6b8IEvuIWWf95bkigtRhgAAAABQfiyGYRS/gHMVMX36dD3yyCPKyMgo8TmdOnXSG2+8oeTkU9voMy0t7ZTOw1EWi0Xx8fGSpPT0dIXJjyNQLfE8A+GD57n8WTN3yrX0PbnWfCGLN6/Ifr7Y+iroeoMK2o+SnDEVmGFwnGu/VtSMh2Txe01xb3InZV3yueSMDlFm4HkGwgfPMxA+eJ6B0EhISCjT8cJi5sq8efP0t7/9TR6PJxCz2+3q3bu3WrVqpcjISKWlpWnZsmVat25doM/KlSt17bXX6quvvlJMTOV9swoAAIDwYDu4RhFL3pZj48+yGL4i+3mTOym/+1h5WgyVrJX/V3Z3u0vlj05SzM+3yOLJDcTtB1Yqesodyjn/nSpxHwAAAABQUlX+HU5+fr4ee+wxU2HltNNO03PPPad69eoV6j9//nzdf//9OnjwoCRpy5YtevXVV/XII49UWM4AAACoRgxD9p1/KOLPt+TYMbfYrp7GfZXf/WZ5G/SRLJYKSrBseBv3VdYlXyjm++tkzTsUiDu3zZQx+3Hl9v9XlbsnAAAAACiKNdQJlNbMmTO1Z8+eQLtJkyZ65513TlhYkaQ+ffpo/PjxstuP1pW+/vprud3ucs8VAAAA1YjfK0fKT4qdeIFiv72qyMKKYbGpoM0IZV45RdkXfSRvw9OrbBHCV7ujskZ+IX9EvCnuWjVBriX/C01SAAAAAFAOqnxxZf78+ab2mDFjFBUVVew5bdq00cCBAwPtnJwcrVq1qlzyAwAAQDXjyZNrxSeK+3iAYqbcLvuBE/+eaTiilN/lemWOmaPcIS/Ll9S2ghMtH/6E5so+f7wMm9MUj/rjOTnWfx+irAAAAACgbFX5ZcH2799vanfp0qVE53Xr1k1Tp04NtA8cOFCWaQEAAKCaseSlybXyY7lWfCRrXmqR/fyRNVXQZYwKOo2WcdwMj3Dhq9dDOUNeUfTk22TR0Q1ao6ffr+yY2vI26B3C7AAAAACg9Kp8ccXv95vaERERJTovMjLS1LZU0aUXAAAAEFqWzN2KWDZertUTZfHmFdnPV6Ox8rvdJHe7SyV7yX5nrco8LYcr76xHFTX3X4GYxedW9E9jlXXZ9/InNA1hdgAAAABQOlW+uNKgQQNTe+/evWra9ORv1Hbv3m1qN27cuEzzAgAAQHizHtqgiD/fljPlB1n83iL7eZM7Kb/HOHmaD5GstgrMMPQKut4ga+YuRaz4MBCzFmQq5scblXnZd5IrNmS5AQAAAMHw+XzasGGD9u/fr7S0NGVmZioiIkIxMTGqV6+eWrdurejo6FCnWaby8vK0du1apaamKi0tTTk5OYqJiVFsbKyaNGmiFi1amPY2r26q/J2fddZZ+vzzzwPtKVOm6PTTTy/2HJ/PZ1oSrH79+mrdunW55QgAAIDwYdv7pyIW/0/OrdOL7edp3Ff53W+Wt0GfKrtBfalZLMo7+zFZs3bLuWVaIGxL26yo2Y8rd8hLIUwOAAAAlcWePXt08cUXF4p3795db7zxRtDjZWRk6LzzzpPH4zHFW7ZsqU8++SSosebOnavJkydryZIlysrKKrKf1WpVixYtdM455+icc85RcnJykX1/+ukn/etf/yoUv+mmm3TDDTcElZ8kzZs3T/fdd1+h+GWXXaa77747qLHcbrd++OEHzZo1SytXriz0Gh7L6XSqS5cuGjp0qPr163fSvdDDTZUvrvTr10+tW7fWhg0bJEnffPONBgwYoP79+5+wv2EYeu6557Rt27ZA7LbbbpPVaq2IdAEAAFAVGYbsO+YqYvEbcuxeWHQ3i03uVueroPtY+ZLaVWCClZjVppyh/5X1y0tkP7QuEHatnyRv47PlbnNR6HIDAABApbZ06VLt27dPderUCeq8adOmFVsUKIlVq1bp1Vdf1apVq0rU3+/3KyUlRSkpKXr77bc1YsQIXX/99YqPjy/xNadMmXJKxZUpU6YEfU5R47z99tvat29fifq73W4tWrRIixYt0quvvqrrrrtOl1xySbWZzVLl79Jms+nll1/WlVdeqfT0dPl8Pt1666267LLLdNFFF6lVq1aKjIxUWlqali9frg8//FALFx59Q3z55ZfrkksuCeEdAAAAoNIy/HJs/lURi9+Q/UDRb6oMe4QK2l+ugm43yB/XsAITrCIcUco5/x3FThguq/vot/2iZv1d3rrd5a/BawYAAIDCDMPQlClTdN111wV13uTJk0t13Z9++knPPPOMvF7z8r9RUVHq0qWLkpOTlZCQoPz8fB0+fFjbtm1TSkpKoJ/H49GXX36pnJwcPfbYYyW+7q5du7RixQp17ty5xOdkZWVp7ty5Je5/Ij6fTy+88IK+/fbbQseSkpLUsWNHJSYmKi4uTpmZmUpNTdXatWtNRZj09HS9/PLLiomJ0bnnnluqfKqKKl9ckaTmzZvrq6++0qOPPqpFixbJ7/fr888/Ny0XdrxatWrpzjvv1GWXXXbK17VU1+UdytCxryGvJ1C18TwD4YPnWZLPI8eG7xWx+E3Z0jYX2c0fES9352tV0GWMjMhESVI1fcVOyqjRSHkD/63oKXcEYhZ3tqKn3qXskV9J1rB4a1Lp8DwD4YPnGQgfPM+FHf86REREKD8/X5L0yy+/6Prrry/xWNu2bdPatWsDbZfLpYKCgiKvdbyPP/640FJkLVu21Lhx49SrVy85HI4Tnrd//37NnDlTH330kdLS0oq9XnH3O2XKFHXp0qXYHI81ffp0ud3uQuMUd/1j+Xw+Pfjgg5o3b54p3rdvX11//fVq06ZNkeempKRo8uTJ+uabbwI5lOSa4SJs3sE0atRIn3zyiSZNmqRnnnlGGRkZRfZt166dnnjiiaAqgCcSzJQunFyNGjVCnQKAMsLzDISPavc8e/KkpZ9If7wqZewsul9sPen022Xtdq0iXDGKqLgMq7Ze10h75ksrPguE7HuXKn7FO1L/R0KYWPVQ7Z5nIIzxPAPhg+f5iOzsbFN7wIABmjp1qnw+n7Zv367t27eX+LPcGTNmBP7erVs37d+/X7t375Z0ZBWk4j7T/f333/Xmm2+aYrfffnuJtpWIj49X69atdc011+jtt9/Wu+++K6fTecLrHb83yaBBg/TTTz9JkmbOnKmnnnpKTqez2Ov95di9xQcPHqwff/wx0Ha5XCf9DPvll182FVYiIyP18ssvF7ntxrF69uypnj176sYbb9TTTz+tmTNnKioqqtp8bh42G41s3rxZ119/vR5++OFiCyuStHbtWo0aNUpjx44t8fpxAAAACGP5mdLcl6RXOkpT7i+6sJLYTDr/Vemu5VKf2yRXTIWmGRaGPyclNDXHfnte2v5HaPIBAABApVOrVi2dccYZgfZ3331XovP8fr+puDBixIgSXzM1NVUPPPCADMMIxO677z7dcccdQe3XHR0drXvuuUdvvPGGYmJK9n5h4MCBgUJbZmamqUBUnG3btmn58uWB9kUXXVTiPCVp4cKFeueddwJth8Oh8ePHl6iwcqwGDRrozTff1O23316t9jYPi5krv//+u2677Tbl5eVJOvJDMHLkSJ177rmBPVfS09O1cuVKTZw4Ub/99pskac6cORoxYoQ+/fRTNW/ePOjrpqenl+VtVEsWiyXwH46MjAzTf7wAVC08z0D4qFbPs88t58oJilj0qqx5qUV3q9VW+afdJk/L4ZLVJmXnScqruDzDjG3IK4r58hJZ/P+/hrXhl//rG5R11S8yIvj2ZlmqVs8zEOZ4noHwwfNcWGZmpqldUFCgwYMHBz7H/emnn3TrrbcWuSTXXxYtWqS9e/dKOjJr4/TTTzfNRPH5fEV+pvv222/r0KFDgXbPnj01cuTIU/4MuFu3burQocMJz8/NzTW1PR6PBgwYENjz5KuvvlKfPn1Oeo2JEycG/t6hQwclJiaajhcUFBSb/wsvvCC/3x9o33DDDWrRosUp3/Po0aPldrsr7efmZT2jpsoXV3bs2KHbb789UFiJi4vT+PHjC00TS0pK0sCBAzVw4EB9/vnneuKJJyQdqUjecsst+v777xUZGRnUtfkPX9kyDIPXFAgTPM9A+Ajb59nwy5HykyLnvyBbxo4iu3nrdlfeabfJ26S/9Ne6weH4elQwb+3Oyu99tyL/eD4Qs2btUcS8/yh34H9CmFl4C9vnGaiGeJ6B8MHzfMSJXoOzzz5bMTExys7OVmZmpubOnXvSGRU///xz4O9nnXWWoqOjC419omvl5eVp0qRJgbbFYtH9999f6v9vHA7HCcc4UU7Dhw8PFFcWLFigw4cPFyqWHH/OlClTAu3hw4eX6Fp/Wb16tVauXBlo16tXT1dffXW53XM4qvJzdF544QVTpe+f//znSdffu+KKK3TFFVcE2tu3b9dnn31WzBkAAAAIF/Ydvyt24oWK+eXOIgsrnsZnK+vSL5Q18mt5mw44WlhBmcnvPk6eBr1NMdfqz2XftSBEGQEAAKAycblcGjBgQKB9bCHhRHJzczV79uxAe/jw4SW+1qxZs0yzZ3r06KGGDRuWPNky0LFjx8A1fT6ffv3112L7//nnn4EtL5xOpwYNGhTU9Y5fau3888+X3V7l52JUqCpdXMnKytL06dMD7UaNGmno0KElOnfs2LGm9vfff1+muQEAAKBysaZtVsx31yr226tkP7DqhH3czQYp8/IflX3Rx/LW70VRpTxZbcoZ/KIMR7QpHDXjEcmbH6KkAAAAUJkcWyD5448/it1re+bMmcrPP/J7ZGJionr16lXi6yxbtszUHjJkSJCZlo1hw4YF/j558uRi+x57/IwzzlBcXFxQ16os91yVVeniyqpVq+Tz+QLt0047TZYSvgGuV6+eGjRoEGhv3LhRBQUFZZ4jAAAAQsyTq8h5zyju06FybJ9zwi7eut2VeelXyjl/vHy1O1ZwgtWXEVdfeaffZ4rZ0rcoYvEbIcoIAAAAlUmXLl1Uv359SZLX6y12NsexxYYhQ4bIZrOV+DrHbgovSe3btw8u0TIybNiwwOfbKSkp2rx58wn75eXlnfIsHUk6ePCgdu/eHWgnJCSoXr16wSdczVXp4srhw4dN7aSkpKDOP7a/3++vtBvtAAAA4NTYd/yuuE/PUcSfb8ni9xQ67ktoruzz3lbWyK/lq39aCDJEQadr5K1tXtY3Ysn/ZD20IUQZAQAAoDI5dqWiopYG27t3r2kmRjDFhvz8fO3cuTPQjoyMVOPGjU8h09KrW7euunTpEmgXNXtl1qxZga0yEhIS1KdPn6Cus3HjRlO7devWwSUKSVW8uOJyuUztv6Z9lVReXp6pHRUVVeqcAAAAUAl4chU142HFfnuVbJm7Ch32RyUpZ8C/lXn1VHmaD2H5r1Cy2pQ78BkZ1qPrO1v8XkXPfFgy/CFMDAAAAJXB8OHDA7M51q5dq61btxbqM2XKlMAm6i1btlTLli1LPP7xS40lJibKag3dx+bnnntu4O9Tp041rdz0l2OLLuecc07Qe6Ucf8/BTlrAEVV6h5rExERTu6hpUifi8Xi0Y8fRDUydTqdiY2PLLDcAAACEhjVts2J+vkW2wymFjhlWhwq63qC8nndIzugTnI1Q8CW1VX63sYpc8mYgZt+7VM7VE+XueGUIMwMAAJWdz28oI98b6jSCYrFY5LMf2Z4gI9cTKApUtBoRdtmslf9LRvXr11enTp20YsUKSUcKKbfeequpz7HFhmP3LSmJYzeyl6To6NC+T+jfv79eeOEF5efn69ChQ1q8eLF69+4dOL5//34tXbo00A72fqXKd89VVZUurrRr104Oh0Mez5ElHhYtWqSDBw+WqNI2Y8aMwNQpSabpVgAAAKiaHCk/KXr6g7J4cgod89TvqdyB/5E/oXkIMsPJ5Pe6U86Nk2XL2BaIRf7+rDzNh8iIqhm6xAAAQKU1bf0hPTNtq1JzCy//ipNLjHLoocFNNbhNrVCnclLDhw8PFFd++eUXjRs3LjC7ZOXKldq168hsdZvNFvTG7Dk55vcOkZGRZZDxqYuOjlbfvn01depUSUcKR8cWV6ZMmSK//8gM7+bNm6tNmzZBX6Oy3XNVVaWXBYuKilKvXr0C7YKCAv3rX/866XlpaWl67rnnTLEBAwaUeX4AAACoID63Imc/oZgptxcqrBiOKOX2e0rZl0yksFKZ2SOUO8D8u7y1IEORvz8booQAAEBl989fNlNYKYXUXI/++UvJVwIKpUGDBgW2iDhw4ID+/PPPwLFjZ6306tVLNWsG98Wc42dtHL+VRCgcu2fMb7/9ZiqGHLvvzKnMWpEq5z1XRVW6uCJJt912m6n9yy+/6M4779TBgwdP2H/lypW68sortXv37kCsVq1auuyyy8o1TwAAAJQPS84BxX49ShErPix0zFurjTKv+EkFnUdLlir/q2/Y8zY6U+5W55lirrVfyrZnSYgyAgAAQGUQHR2ts88+O9D+q8BQUFCgGTNmBOLBbGT/l7i4OFP7+FkdoXDaaacFVmfKz8/XrFmzJEmrV6/W9u3bJZ3aLJ2/VMZ7roqq/DvMbt26ady4cabY1KlTNWDAAN1www169tln9dprr+mpp57SJZdcopEjR2rLli2Bvg6HQy+88AKb2QMAAFRB1rQtiv3yYtn3LS90rKDdSGWN+lb+hGYVnxhOWe5Zj8lwxphiUbMfl/yFN/IEAADV2z+GNldilCPUaVRZiVEO/WNo1ZnZfewsjVmzZikvL0+//fabsrKyJEkxMTE666yzgh63Ro0apnZqampg2a1QsVqtpsLJzz//bPpfyVyACdbx93zo0KFTGqe6q9J7rvzl7rvvlsPh0Jtvvimf78ibLrfbrXnz5mnevHlFnpeYmKhnnnlGffr0qahUAQAAUEZs+5Yp5vvrZc1PM8UNm0u5/Z+Su/2oEGWG0jBiaiuv198UNffoEmH2g2vkXD9J7nYjQ5gZAACobAa3qaUBrWpWyQ3ta/z/zIGMzEw2tC+hv5b8Onz4sPLy8jRr1ixNmzYtcHzgwIGBpcOCERERoYYNG2rnzp2SjiyRtX37djVt2rTMcj8V5557rj799FNJ0vLly7Vjxw7TLJ1TXRJMklq2bGlqr1+//pTHqs7CorgiSbfffrsGDBigDz74QFOnTlVBQUGRfWvWrKlLL71U1157bdBr8AEAACD07LsXKub762Tx5JrivhqNlHPuW/IltQtRZigLBV3GyLXmC9lSNwZikX88L3fLcyUHM84BAMBRNqulys1esVgsio85UgSweR0hK65UNX8tg/XZZ59JkiZOnKjNm4/uGXMqS4L9pUuXLoHiiiStWbMm5MWVpk2bqk2bNlq/fr0Mw9ATTzyhzMxMSUc3vT9VSUlJql+/fmDrjLS0NO3Zs0f16tUrk9yri7AprkhSu3bt9Pzzz+vpp5/W2rVrtXnzZmVmZio/P1/R0dFKSEhQu3bt1KxZM1ksVacqCwAAgKPsO35XzI83yOLNN8W9yZ2UfeH7MqJqhSgzlBmrXblnPaLY7687Gso5oIglbym/zz0hTAwAAAChNHz48EBxJSUlJRBv0KCBOnfufMrjdu3aVT/++GOg/euvv+q8884r5oyKMWzYsMCskrVr1wbiAwYMUERERKnG7tq1q2lf8l9//VVjxowp1ZjVTZXfc+VEnE6nunTpoksuuUTXXXedbrnlFl1zzTU6//zz1bx5cworAAAAVZR95x+K+eH6QoUVT+OzlXXJ5xRWwoi3SX95Gp9tikUsfUeWrL0hyggAAACh1qJFC7Vq1apQvDRLZElS//79TZu8L168WLt27SrVmGVhyJAhstsLz48ozSydv1xwwQWm9o8//hjYcgMlE5bFFQAAAIQf277livnxRll85uVf3c2HKPv88ZIzOkSZobzknvmoDMvRtywWb74i5z8fwowAAAAQascXUiwWS6mLK5GRkRoxYkSgbRiGXnjhhVKNKR3ZF7w04uPjC+0XXrduXXXp0qVU40pSp06d1LFjx0B79+7dmjBhQqnHLe09VyVhtSwYAAAAwpP1cIpivh9TaI8Vd8tzlTPkFclWtdbZRsn4a7WWu/3lcq3+LBBzrZukgs5j5KvdKYSZAQAAIFSGDx9uWpkoJiamTPYKueyyy/TDDz8oLS1NkrRgwQJ99tlnuvLKK09pvN9++02LFy/WvffeW6q8xo4dq+7duwfaZbnlxc0336w77rgjsO/P+PHj1aVLF3XqFPzv2oZhaPz48apfv36ZzKypCpi5AgAAgErNmrFTsd+OljU/3RR3tzxXOUP/S2ElzOX1uUeGM8YUi5z3jMTGrwAAANVSjRo1dPnllwf+lNXeKImJiXr88cdNhYtXX31V77//fqD4UBI5OTl688039eCDDyonJ6fUebVs2dJ0vz179iz1mH/p0aOHrrnmmkDb7Xbrrrvu0h9//BHUOHv27NH999+v9957T36/v8zyq+worgAAAKDSsuQeVsy3V8uas98U9zQ6SzlDXpasTMQOd0ZULeWddpsp5tj1h+w75oYoIwAAAISr3r17a+zYsabYO++8o2uvvVZ//PGHvF5vkeceOHBAn3/+uS699FJ9/PHHQRVkQummm25S7969A+28vDzdc889evjhh7Vhw4Ziz924caNeeeUVXX755Zo3b155p1rp8G4UAAAAlZPPrejJt8iWsd0U9tbtpuzz3pZszhAlhopW0OU6Raz4WNbso5vZR/7+rLIanSlZ+L4YAAAAys51112nhIQEPf/884EN3lNSUnTPPfcoKipKXbt2VXJysuLj41VQUKBDhw5p27ZtSklJKTSWzWar6PSDZrfb9cILL+jZZ5/Vjz/+GIjPmjVLs2bNUlJSkjp16qTExETFxcUpMzNThw8f1tq1a7Vv375C41WFey4rFFcAAABQ+RiGomY/LsfuRaawt2YbZV/wgeSIClFiCAl7hPJ6/U3RMx48Gjq4Ro6Un+RpfUEIEwMAAEA4uuiii9S0aVO9+uqrWrNmTSCem5ur33///aTnu1wuXX755aYltyozu92uRx99VJ07d9a7776r/fuPrhxw8OBBzZgx46RjJCUl6aabbtKQIUPKM9VKheIKAAAAKh3nqk/lWv25KeaPqavsER/LiKgRoqwQSu52lyhi6TuypW0OxCLnvyhPi6HMYgIAAECZ69y5s9577z399ttv+vnnn/Xnn38qOzu7yP5Wq1WtWrXSsGHDdM455yghIaECsy0b5513ngYPHqzvv/9es2bN0qpVq4pdCs3lcqlbt24aPny4zj77bLlcrgrMNvQsRlVZ/K0SSktLC3UKVZ7FYlF8fLwkKT09vcqsRQigMJ5nIHyE+nm27V+p2C8vkcXvCcQMe4SyRn4tX3KHCs0FlYtj0y+K+XmcKZbb7ykVdB4doowqv1A/zwDKDs8zED54nqsmr9er9evX68CBA0pLS1NmZqYiIiIUGxurevXqqU2bNoqKCq8Z9rm5uVq7dq1SU1OVlpam3NxcRUdHKy4uTk2aNFGLFi1kt1ed+RtlXfCqOncOAACA8FeQqegpt5sKK5KUM/gFCiuQp/kQeet0lX3fskAsYtF/VdD2YskZHcLMAAAAEO7sdrs6dKhe70mioqLUo0ePUKdRabH7IwAAACoHw1D09Idky9hhCud3v1meVueFKClUKhaL8s540BSy5h5SxPL3Q5QQAAAAgOqK4goAAAAqBeeaL+XcNNkU89btrrw+94UoI1RG3ga95WnczxSL+PNtWfJSQ5MQAAAAgGqJ4goAAABCzpqxU1G//dMU80fEK3vYa5LNEaKsUFnlnfGADFkCbYs7WxFL/hfCjAAAAABUNxRXAAAAEFqGX1HT7pPFk2MK5w5+QUZsvRAlhcrMl9RO7tYXmmKuFR/LknMgRBkBAAAAqG4orgAAACCkXMvel2P3QlOsoP3l8jQbFKKMUBXk97lHhtUeaFt8BYpY8mYIMwIAAABQnVBcAQAAQMhYM3Yqcv4Lppgvtr5yz3o0RBmhqvDXaCR3u5GmmGvVZ7Jk7Q1RRgAAAACqE4orAAAACA3DUNTsf8jizTeFc895QXLFhigpVCX5p90mw3p0Tx6Lz62IxW+EMCMAAAAA1QXFFQAAAISEY9MUObbNMsXyO42Wt0GfEGWEqsYf10AFHS43xVxrvpA1c1eIMgIAAABQXVBcAQAAQMUryFLUnCdNIX9UkvJOvz9ECaGqyu9xqwybM9C2+D2KWPR6CDMCAAAAUB1QXAEAAECFi1zwoqw5+02x3L7/kFxxIcoIVZURW1cFHa80xZxrv5I1fXuIMgIAAABQHVBcAQAAQIWy7V8l14qPTTFP47PlaXleiDJCVZff41YZ9ohA22L4FLHotRBmBAAAACDcUVwBAABAxTEMRc15XBbDfzRkcym331OSxRLCxFCVGdHJKug02hRzrp8ka9qWEGUEAAAAINxRXAEAAECFcWyaIvvepaZYfs875I9vHKKMEC7yu4+T4YgKtC2GXxELXw1hRgAAAADCGcUVAAAAVAyfW5G/P2cO1Wis/G43hSghhBMjqqbyO19rijk3fC9r6qYQZQQAAAAgnFFcAQAAQIVwrfpMtoxtpljeGQ9IdldoEkLYKeg2VoYzJtC2yFDkgpdDmBEAAACAcEVxBQAAAOWvIEsRi8xLNHnrdJGnxfAQJYRwZEQmKL/L9aaYc+PPsh5aH6KMAAAAAIQriisAAAAodxHL35c1L9UUyzvzETaxR5kr6HqD/M5YU4zZKwAAAADKGsUVAAAAlCtLQYZcS8ebYu5mg+St3zNEGSGcGRE1VHDcPj7OzVNlO7A6RBkBAAAACEcUVwAAAFCuXEvfk9WdZYrl9bkvRNmgOsjvcp38rhqmWMSCV0KTDAAAAICwRHEFAAAA5caSn66I5e+bYu6W58pfq02IMkK14IpVQfexppBz63TZ9q8MUUIAAAAAwg3FFQAAAJQb19J3ZXFnB9qGLMrr9bfQJYRqI7/ztfJHJppi7L0CAAAAoKxQXAEAAEC5sOSlKmL5B6aYu/UF8tdsGaKMUK04Y5Tf/WZTyLFtlmx7l4YoIQAAAADhhOIKAAAAykXEn2/L4skNtA2LVfm97gxhRqhuCjqNlj+ylinG7BUAAAAAZYHiCgAAAMqcJS9VrhUfm2LuNhfJn9A8RBmhWnJEKb/HOHNox1zZdi8OUUIAAAAAwgXFFQAAAJQ51/IPZfHmBdqGxab8nsxaQcUr6HS1/FFJphizVwAAAACUFsUVAAAAlC13tlwrPjSH2lwof3yTkKSDas4eofzTbjWFHLv+kH3XghAlBAAAACAcUFwBAABAmXKt/lzWgkxTLL/7LSHKBpAKOlwhf3RtUyxiwUuSYYQoIwAAAABVnT3UCQAAACCMeAsUsXS8KeRuNlj+mi1DlBCg/5+9cruiZj8WCDl2L5J913x5G54ewsQAAAAgSXv27NHFF19cbB+HwyGn06kaNWqoZs2aatiwoVq2bKmuXbuqdevWslgsZZbP6NGjtXHjxkC7Zs2a+uGHH2Sz2YIe688//9Rtt91WbB+HwyGXy6X4+HjVqlVLjRo1UqtWrdStWzc1a9asRNf56aef9K9//SvQPu+88/T3v/896HyPN3bsWK1cuTLQHj9+vDp06FDkdW+44QbddNNNpb5uVUBxBQAAAGXGuf5bWXP2m2LHL8kEhEJB+1GKWPI/WbP3BGKR819SVoM+Uhm+EQcAAED58Hg88ng8ysnJ0Z49e7Rq1arAseTkZA0fPlwjR45UzZo1S3WdjRs3mgorknT48GEtXLhQp59ePl/M+evesrOztWvXLi1fvjxwrFGjRjr//PN18cUXKzo6usgxBgwYoBdffFF5eUf2vpw5c6buu+8+RUREnHJeu3fvNhVWGjdubCqsVHcsCwYAAICyYfgVsfRdU8jToI98dbqGKCHgGHaX8nrebg7tXSL7jrkhSggAAADFsdlspj/FzUw5cOCAPvzwQ1166aWaMGGCjFIs//rzzz8HFQ+WxWIJ6t527NihN954Q5dccokmT55cZL+oqCj169cv0M7NzdXs2bNLlevx1xs+fHipxgs3zFwBAABAmbBvnyNb2mZTLL/HuBBlAxTmbnepIha/IVvW7kAscsFLymp0FrNXAAAAKpGuXbvqf//7nylmGIZycnKUmZmpvXv3atWqVVqyZImWLFkS6JOXl6fXXntNy5cv13/+8x/Z7cF9/O31ejV16tQTHps7d64yMzMVFxcX/A0dY9iwYfrHP/5hivn9fmVnZys7O1vbt2/X6tWrtWDBAq1ZsybQJz09Xf/85z+1Zs0a3X///Scc+9xzz9WUKVMC7SlTpmjo0KGnnOsvv/wS+LvVatWwYcNOeaxwxMwVAAAAlImIpe+Z2r6areRtdHaIsgFOwOZUfs87TSH7vuWyb58dmnwAAABQYhaLRTExMapXr566d++uMWPG6PXXX9dnn32mvn37mvrOnTtXzz33XNDX+OOPP5SWlhZoH1uccbvdmj59+qnfQDGsVqvi4uJUr1499enTRzfddJPee+89vfvuu+ra1bwSwDfffKMPPvjghON0795dderUCbQXL16sgwcPnlJOy5cv1+7dR7+U1KNHDyUnJ5/SWOGK4goAAABKzXZwnRw755li+V1uYDYAKh1324vlq9HIFIuc/7JUiqUjAAAAEDrNmjXTs88+qzvuuMO0vNYPP/ygb7/9Nqixjl8Ga+zYscUeL28dO3bU66+/rssvv9wUf+edd/THH38U6m+xWEyzS/x+f5EzcU6GJcFOjuIKAAAASs21/H1T2x9ZU+42F4YoG6AYNkfh2SsHVsqxdUaIEgIAAEBZuOqqq3TllVeaYuPHj1dBQUGJzs/IyNDvv/8eaNeqVUtXXXWVWrRoEYitXr1a27dvL5uES8hms+lvf/ubBg4cGIgZhqG33nrrhP2PL4Icu0xYSRUUFGjmzJmB9vH7ueAIiisAAAAoFUvOATk3fG+KFXQaLdkjQpQRUDx3m4vki29qikUseInZKwAAAFXcLbfcosaNGwfahw8f1o8//liic3/99Vd5PJ5A+5xzzpHNZiu0z0hFz175yyOPPGLa7yUlJcVUDPpLw4YN1alTp0B78+bNWr9+fVDX+u2335SdnR1oDxw4UBERvL87HsUVAAAAlIpr5aey+NyBtmFzqqDT1SHMCDgJq135ve4yhewH18qx+dSWTAAAAEDlYLfbNWrUKFOspDM3fv75Z1P7r6LKkCFDZLPZTOP5/f5SZhq86OhoXXDBBaZYUfdW2tkrxxeQzj333KDOry4orgAAAODUefPlWvWpKeRuM0JGVK0QJQSUjLvV+fIlNDfFIha8IhkV/0YZAAAAZWfYsGGmYsiGDRuUn59f7Dlbtmwxze5o0aKFWrZsKenI8mA9evQIHDtw4IAWL15cxlmXzPnnn29qr1ix4oT9Bg8eLJfLFWj/+uuv8nq9JbrG4cOHtWjRokC7fv366ty58ylkG/4orgAAAOCUOdd/L2teqimW3/WGEGUDBMFqU97xs1cOr5dj0y8hSggAAABlISoqSs2bH/0Sjdfr1apVq4o9p6hZK0W1Q7U0WOPGjU1Lgx08eFC7du0q1C86Olp9+/YNtNPS0rRgwYISXeOXX36Rz+cLtIcPHy6LxVKKrMMXxRUAAACcsuNnrXganSV/zVYhygYIjqflufId9/MaueBlye8r4gwAAABUBe3atTO1i9uE3ufzaerUo8vD2mw2DRkyxNSnX79+ioqKCrTnzJmjnJycMso2OG3btjW1d+zYccJ+p7o02LH9LBZLocISjrKHOgEAAABUTbZ9K2Q/YP4GWEHnMaFJBjgVVpvyev1NMZNvDYRsqRvl2PizPK0vKOZEAABQafh9suSnhzqLoFgsFslxZIkmS26GZBghycOIiJestpP2q4pq1qxpamdmZhbZd+HChTp06FCgfdppp6lWLfMyxxEREerfv39ghkt+fr5mzJhRaA+UinD8vWVkZJywX8+ePZWUlKSDBw9KkubOnausrCzFxsYWOXZKSoo2bdoUaHfp0kX16tUrg6zDE8UVAAAAnBLXqgmmti+2vjxN+oUmGeAUeVoMlbdWG9kPHV1jO3LhK/K0PDdsP2wAACBcODb+rKhZj8uad+jknSupGiG8tj+ylnL7P3nk954wc3wBobjiyvFLgg0dOvSE/YYPH27qO3ny5JAUV0p6b1arVUOHDtUnn3wiSXK73Zo+fbpGjBhR5NhsZB8clgUDAABA0Cz5GXKm/GCKuTtcwYfRqHosVuX3vtsUsqVtKfTzDQAAKp+o6Q9V6cJKqFnzDilq+kOhTqNcREZGmtq5ubkn7JeVlaV58+YF2lFRUerXr98J+3br1k116tQJtFesWKHdu3eXPtkglfTepMLFkeL2ivH5fPr1118D7YiICA0YMOAUs6weKK4AAAAgaM5138jizQ+0DatdBe1HhTAj4NR5mp0jb1J7UyxiwX8lvzdEGQEAAKA0ji84REdHn7DftGnTVFBQEGj369dPERERJ+xrsVhMe7EYhhGSje1Lem+S1KRJE9P+M6tWrdLOnTtP2HfBggVKTU0NtPv372/aZwaFUVwBAABAcAyj0JJgnuZDZEQnhyghoJQslsKzVzK2ybn+2xAlBAAASiJ30DPyR9Y6eUeckD+ylnIHPRPqNMpFdna2qR0XF3fCfscXR47fBP54x2/uPmXKFBkVvGdOSe/tL8fPXvnll19O2C/Y1wLsuQIAAIAg2XcvkC1tsylW0PGqEGUDlA1P04HyJneS/cDKQCxi0Wtyt75IsjlClxgAACiSp+W5ymg+tEpuaF+jxpHdVjIyMir8w/m/hPOG9sduUC8V3qdEkrZv367Vq1cH2snJyerWrVux4/41E2Tt2rWSpD179mjZsmUnPa8sHX9vJyuuDB48WP/973/ldrslHSkI3XjjjbJYLIE+2dnZpuXR6tSpox49epRh1uGJ4goAAACC4lr5qantS2gub4M+IcoGKCMWi/L63K3Y768LhGwZO+RcN0nuDpeFMDEAAFAsq01GVM1QZxEci0WKjpckGR57yIor4WzdunWmdtOmTQv1OX6mxtChQ2W1nnyhp6FDhwaKK3+NU5HFlfXr15vaTZo0KbZ/XFyczjrrLM2YMUPSkYLQ8uXL1bVr10Cf6dOnm5ZHGzp0qKn4ghOjuAIAAIASs+QckGPzVFOsoONVR94gAlWct3E/eet0lX3fskAsYtGrcrcdIdmcIcwMAAAAJZWbm6vNm4/OtHc4HGrf3ry/nt/v15QpU0yxTz/9VBMmmJc/LomZM2fq3nvvLbTRfHnYtm2bMjMzA+3k5GTVq1fvpOcNHz48UFyRjhSEji2usCTYqWHPFQAAAJSYa81Xshyzybdhj5C77SUhzAgoQxaL8nrfYwrZsnbLufarECUEAACAYE2ZMkU+ny/QbtOmTaFN6hcvXqwDBw6YYn6/Xz6fr0R/jpWbm6vZs2eX2/0c66effjK1u3TpUqLzevfurZo1j87wmjlzpvLz8yVJu3bt0sqVR5fG7dixoxo1alT6ZKsBiisAAAAoGb9PztWfmULuVufLiKgRooSAsudtdKY89U4zxSIXvS55C4o4AwAAAJWF1+vVV1+ZvxhzolkYx8/UKK2ff/65TMc7kZycHP3www+mWElnmNhsNg0ZMsQ01ty5cyWp0Ayec889t5SZVh/VYlmwvXv3atWqVdqzZ49yc3PlcrlUq1YtNW3aVG3atJHTyRR/AACAk7FvnyNb1m5TrKDj1SHKBignFovye98tx6QrAyFr9l651nyhgs7XhDAxAAAAnMxbb72lbdu2BdpJSUmFigU5OTmaM2dOoB0ZGanJkycHvazXZZddpu3bt0uSli5dqn379qlOnTqnnvxJ/Oc//zEtCdamTRv17t27xOcPHz5cn3129MtykydP1qBBg/TLL78EYi6XSwMHDiybhKuBsC2u+P1+/fDDD/r444+1Zs2aIvs5HA517dpVY8eO1VlnnVWBGQIAAFQtrjUTTW1vckf56nQOUTZA+fE26CNP/V5y7F4YiEUsfkMF7UdJ9ohizgQAAECofPHFF4X2TLnxxhsLfbF+xowZgSWxJKl///6ntF/K0KFD9fbbb0s6uofLdddddwqZF8/n8+nNN9/U9OnTAzGLxaJbbrklqHFatGih1q1ba8OGDZKkRYsWacaMGdq9++gX6M4++2zFxsaWTeLVQFguC7Zr1y5dccUVevDBB4strEiSx+PRokWLtHDhwmL7AQAAVGeWnINybJ1pihV0uCJE2QDl7P9nrxzLmrNfrlWfFXECAAAAQmXr1q165JFH9PLLL8swjEB8xIgRuvDCCwv1P34Jr1PdvH3YsGGyWCyBdlkvNSZJa9as0Z133lmoaHTLLbeoV69eQY937L36fD49++yzRR7HyYXdzJWNGzfquuuu08GDBwMxi8WiTp06qU2bNqpZs6YKCgoCS4Xt3LkzhNkCAABUDc713xbeyL7V+SHMCChf3ga95Wl4hhw7fw/EArNXnDEhzAwAAKB6MgxDubm5ysrK0p49e7R69WotXrxYS5YsMRVVJKlfv3669957C42xa9curVixItCuU6eOunfvfkr51KlTR926ddOff/4pSdq5c6dWrlypTp06BT2W3+9XTk6OsrKytHPnTq1atUoLFy7UqlWrCvUdOXKkrrnm1JarHTJkiF577TV5vUfe22VlZQWOJSUlqWfPnqc0bnUVVsWV1NRU3XjjjabCyqBBg/Twww+rQYMGJzwnJSVFkyZNYroTAABAUQxDrrVfmkLulsMlF78/Ibzl9b7bVFyx5h1WxJ/vKL/PPSHMCgAAIPwtW7ZMZ5xxhinm9/sLFVGOFxUVpZtuukmXX365aVbJX46fXTJ06NAT9iupYcOGBYorf41/suLKlClTNHXqVFOsJPeWkJCgO++8U8OGDTvlfOPj43XGGWeY9pz5y5AhQ2Sz2U557OoorJYFe/rpp7Vv375Ae9y4cXrjjTeKLKxIUqtWrfTQQw/p5ptvrogUAQAAqhzbvmWypW4yxdztLwtRNkDF8dXrIXfTQaZYxNJ3Zck5EKKMAAAAqg+fz2f6U1zxoXbt2hozZoy+/vprXXHFFScsmBiGoSlTpphipV0Ga8CAAYqIOLon3/Tp01VQUFDsOYZhBHVvjRo10u23366vv/66VIWVv5x77rlBxVG0sJm58scff+inn34KtAcOHKi77767mDMAAABQEq415lkrvhpN5K3HdHFUD3lnPCjHtpmyGH5JksWbp8gFLyt34H9CnBkAAED1YrPZ5HK5FBcXp1q1aqlRo0Zq0aKFunXrptatW590BsrSpUu1d+/eQLtDhw5q1KhRqXKKiopSv3799Msvv0iSsrOz9dtvv2nw4MFBjWO32+VyuRQfHx+4t9atW6t79+5q2rRpqXI83umnn66EhASlpaUFYm3bti3z61QHFuNk842qiDFjxmj+/PmSJIfDoSlTpqhhw4bles1jfwBxaiwWi+Lj4yVJ6enpJ53+BqDy4nkGwofpeT64RzXe6SGLJydwPK/P/crveVuIsgMqXtT0h+RaMzHQNixWZV79q/yJLUKYVcnw7zMQPniegfDB8wyERkJCQpmOFxbLgu3cuVMLFiwItPv27VvuhRUAAIDqwLFxsqmwYlisKmh3SQgzAipeXu+7ZdiPLvdgMfyK/P2ZEGYEAAAAINTCorgyefJkU4WX9eEAAADKhmvNF6a2t3FfGTF1QpQNEBpGTG3ld7vJFHNumS777kUhyggAAABAqIVFcWX58uWmdo8ePUKTCAAAQDg5tKnQh8cF7UaFKBkgtPK7jZU/sqYpFjnv3xLLeAAAAADVUlhsaL969erA32vXrq3k5GRJ0vbt2zVp0iTNmzdPe/fuVV5enhISEtS0aVOdccYZuvDCC1WzZs2ihgUAAKjeln9qavojE+VpNjBEyQAh5opVfq87FTX78UDIvm+5HJumyNNyeAgTAwAAABAKVb64kpWVpQMHDgTaDRs2lNfr1VtvvaX//e9/8nq9pv65ubnavXu35s2bp9dee0033nijbr31VlkslopOHQAAoPLyeaXln5tC7jYjJJszRAkBoVfQ4Qq5ln0gW8a2QCzy9+fkaTaIZwMAAACoZqp8cSU9Pd3UrlWrlh555BF9//33Jz03NzdXr776qtavX6+XX35ZdntwLwcFmdI79jXk9QSqNp5nIHxYLBZp8wwpe58p7m5/Gc83qje7S/lnPqDon28NhGwZ2+Ra/bncXcaELq9i8O8zED54noHwwfMMhAeLYVTtRYLXrl2rESNGBNqxsbHKysqSJEVERGjMmDEaPny4GjduLI/How0bNujLL7/UDz/8oGNv/YYbbtADDzxQ4fkDAABUSl9eI6095ssq9bpJY2eFLh+gsjAMafwgafeSo7GomtKdy6WIuJClBQAAAKBiVfkN7XNzc03tvwor8fHxmjhxou6++261bt1aERERio2NVY8ePfTcc8/pueeek9V69Pbff/99rV+/vkJzBwAAqJTy0qQNU8yxrleFJhegsrFYpHOeMsdyD0t/vBqafAAAAACERJVfFszpPPHaxv/85z/Vtm3bIs+74IILtHr1an300UeSJMMw9P777+u5554r8bWPX5IMwbNYLKpRo4YkKSMjQ1V8IhVQrfE8A+HDteozRfrcgbZhcyqz4SAZ/O4DHFGjnaKbDZZjy7RAyPjjNWW2GikjpnYIEyuMf5+B8MHzDIQPnmcgNOLj48t0vCpfXImOji4Ua968uYYMGXLSc8eOHavPPvtMHo9HkjR79mz5/X7TjJbi8B++smUYBq8pECZ4noGqzbH2G1Pb03Sg/K4aR5ZDAiBJyj3jQcVtnSGL4ZckWbz5ipj/knIHPRPizIrGv89A+OB5BsIHzzNQdVX5ZcFOVFzp379/ic6tVauWOnXqFGhnZGRo06ZNZZYbAABAVWNN2yr73j9NMXfbi0OUDVB5+RNbyN3+MlPMufZLWQ+nhCgjAAAAABWpyhdXatasKYfDYYq1bNmyxOe3atXK1N6/f3+Z5AUAAFAVOdd/a2r7IxPladwvNMkAlVxe77tl2CMDbYvhV9Tcp0OYEQAAAICKUuWLKw6HQ40aNTLF/lqzsCSO75uRkVEmeQEAAFQ5hl/O9ZNMIU/rCyWbo4gTgOrNiE5WfrebTDHH9jmyb50VoowAAAAAVJQqX1yRpBYtWpjabre7iJ6FHd/X5XKVSU4AAABVjX3PYtkyd5li7raXhCgboGrI736z/NHJpljUb09JvpK/JwEAAABQ9YRFcaVnz56mdjBLe+3bt8/UTkhIKJOcAAAAqhrnOvOsFSW1kS+5Q2iSAaoKZ7TyznjQFLKlb5FrxcchSggAAABARQiL4sqgQYNksVgC7aVLl5boPMMwtHz58kDbZrOpTZs2ZZ0eAABA5efNl3Pjz+ZY58ulY37HAnBi7jYj5K3d2RSLXPhfWXIPhSgjAAAAAOUtLIorderUUbdu3QLtmTNnKjU19aTnzZs3T3v27Am0O3XqpJiYmHLJEQAAoDJzbJ4qizv7mIhF6nRZyPIBqhSLVbl9/2EOubMUOf/FECUEAAAAoLyFRXFFku64447A3wsKCvTUU08V2z8nJ0dPP/20KTZ69OhyyQ0AAKCycx2/JFizflJcvZDkAlRFvrrdVdBmhCnmXD1RtgOrQ5QRAAAAgPIUNsWVPn36qF+/foH25MmT9eCDDyorK6tQ3x07dui6667T1q1bA7GOHTtq2LBhFZEqAABApWLJOSD7jrnmYOcrQpMMUIXlnfGgDHtkoG2Rocjf/ikZRgizAgAAAFAe7KFOoCw999xzuuyyywJFk++++04zZszQWWedpUaNGsnj8SglJUULFiyQx+MJnJeYmKhXX31VVmvY1JoAAABKzLnhe1kMf6BtOKJkaXteCDMCqiYjpo7yT7tNkfNfCMQcuxfJsWmyPC3PDWFmAAAAAMpaWBVXatSoofHjx+vOO+/UmjVrJElZWVmaPHlykec0a9ZMb7/9turVY9kLAABQPTnXfWNqe1oMl9MZHaJsgKotv9uNcq6ZKFvmrkAscu6/5Wk6ULJHhDAzAAAAAGUp7KZqNGjQQF988YXuuece1a9fv8h+ycnJuv/++/Xtt9+qUaNGFZghAABA5WE7uEb2Q+tNMXe7S0KUDRAG7BHKO/NRU8iWtVsRf74dooQAAAAAlIewmrnyF4fDoZtvvlljx47VqlWrtHXrVh08eFAWi0WJiYlq27at2rRpE+o0AQAAQs553Eb2/ph68jboHaJsgPDgaTFUnga95di1IBCLWPI/udteLH9cwxBmBgAAAKCshGVx5S8Wi0WdOnVSp06dQp0KAABA5eP3yrn+e1OooO0IyRJ2k5uBimWxKO/sf8j++XmB/Yws3nxFznlSOeePD3FyAAAAAMoC75wBAACqKfv2ubLmHTLF3G1GhCgbILz4ktqpoONVpphzy3Q5tkwPUUYAAAAAyhLFFQAAgGrKtd68kb23dmf5E1uEKBsg/OT3uU/+yFqmWOScJyRPXmgSAgAAAFBmKK4AAABUQ5aCDDk2/2qKudteGqJsgPBkRNRQ3lmPmGK2zF2KWPJmiDICAAAAUFYorgAAAFRDjo2TZfG5A23D6pC71XkhzAgIT+42I+Sp39MUi/jzbVnTtoQoIwAAAABlgeIKAABANeRcN8nU9jQdICMyIUTZAGHMYlFuv6dkWO1HQz63omb+XTKMECYGAAAAoDQorgAAAFQz1owdcuxZbIq5214comyA8Oev1VoFXa43xRy7/pBz3dchyggAAABAaVFcAQAAqGac68wb2fsjEuRp0j9E2QDVQ16vu+SPqWeKRc59WpbcQyHKCAAAAEBpUFwBAACoTgyj0JJg7lbnSzZniBICqglntHL7P2UKWfPTFTXnnyFKCAAAAEBp2E/eBQAAAOHCvmexbJk7TTF320tClA0qA8MwlOfxKz3Pozy3X26fXwVev9w+QwVev3x+QzarRQ6rRTarRXabRXarRVFOm2JdNsW67IpwWGWxWEJ9K5Wep9lAuVueK+fGnwMxZ8oPKmg7Ql5mjwEAAABVCsUVAACAauT4JcF8iS3kq90pRNmgPBmGoQNZbu3NLNDBbLcOZrt1IOvI/x7K8Sgt16P0PK8y8jxy+0q3sbrNIsVG2BUXYVftWKeSY12qHesM/L1RQoQaJkTIYWPifG7fx2XfMVfWgsxALGrm35V59a+SMzqEmQEAAAAIBsUVAACA6sKbb/rGvCQVtLlYYsZBleY3DO1My9fGg7nadjhP21LztOVwrran5inX7a+QHHyGlJ7nVXqeVzvS8k/Yx261qGF8hJrWilSzmlFqkRSljvViVDfOVa1mvRjRyco781FFz3gwELNl7VbkgpeUd/ZjIcwMAAAAQDAorgAAAFQTjs1TZXFnB9qGLHK3GRHCjBAsj8+vTQdztW5/jlIO5Gj9/hxtPJhTYUWU0vD6DW1NzdPW1DzNVGogXjPaoQ51Y9SxXqw61YtVx3oxinDYQphp+XO3HyXn+kly7F4YiLmWfyB3qwvkq9M5hJkBAAAAKCmKKwAAANWE67glwbyNzpQRWzdE2aAkDma7tXJ3llbtydLKPdlaty9b+d7yLaQ4bBa5bFY57VY5bUf2WfH5DXkNQ16fIa//yP+WVR6HczyasylNczalSZJcdqu6NYhTn6bxOr1pvJrVigy/mS0Wi3IH/kdxE4bK4nMfCRl+RU9/QJmX/yDZXSFOEAAAAMDJUFwBAACoBizZ+2XfMc8Uc7e9OETZoCgHsgq0ZEemluzI0JKdmdpZxBJbwXDZrUqOcapWjFPJsU4lxTiUFO1UQrRD8ZEOJUTaFR/lUI1Iu6KdNllLWMjw+g3lFHiVVeBTdoFXWfk+peZ6tD+rQAey3Nqf5db+rALtySjQ4RxPifMt8Po1f1u65m9L10uzpNqxTp3RLEHntKmpHo1qyGYNj0KLP6GZ8nveqcj5LwRitsMbFLHwFeWf8WAxZwIAAACoDCiuAAAAVAPODd/JYhydaWA4ouVuPiSEGUGSsgq8WrQtQ/O3pWvx9owi9yspicQoh1okRalJYqSa1oxUk5qRapoYqeRYZ7nM/LBbLaoR6VCNSMdJ+2bme7XlUK62Hs7T1sN52nwoV2v3ZSs9z3vSc/dnuTVpxX5NWrFfNaMdGtS6poa0raXO9WNLXAiqrPK7j5Vj48+yH1oXiEX8+bY8zQbJV7d7CDMDAAAAcDIUVwAAAMKdYRRaEszdcrjkiApRQtWX3zC0Zm+2/tiargVb07VqT5Z8RvDjNEyIUNva0WqVHK3WydFqUztatWKcZZ9wGYmLsKtLgzh1aRAXiBmGoZ3p+Vq1J/v/lz3L0ob9OfIX83oczvHoi6X79MXSfaoT69T5HZN1aZfaSo6tosto2ZzKPedFxU68UBb/kdk9FsOv6F/vU+aVkyVHZIgTBAAAAFAUiisAAABhznZwjWyHU0wxlgSrOPkenxZuz9Ccjan6bXNaUEtkSVKM06YO9Y5s+N7x/zd8jy/BbJHKzmKxqFFCpBolROrc9kmSjsxwWbgtXfO3puuPrenan+Uu8vx9WW69+8cuvT9/l/q1TNRl3eqqR6O4Krc/iy+pnfJ7/U2R858PxGzpWxX5x7PK6/tE6BIDAAAAUCyKKwAAAGHOue5rU9sXW1/e+r1ClE31kJrr0bzNaZq9MVXzt6Ur31Pyzd9jXTZ1axin0xrVUI9GNdQiKSps9hk5mbgIuwa3qaXBbWrJMAxtOZynuZvT9Ou6Q1q3P+eE5/gMaUZKqmakpKppzUhd3r2uLuyYLJfdWsHZn7r8HjfLsXWa7PuWB2IRyz+Up9k58jY8PXSJAQAAACiSxTCMU1iIAJKUlpYW6hSqPIvFovj4eElSenq6+HEEqi6eZ6CS8rlV473esualBkJ5Pe9Qfp97izyF5/nU7Mss0PQNhzUz5bBW7M4qdnmrYzltFnVtEKfTm8arZ5MaapkUXW2KKcHYnpqnqesOaeq6Q9pyOK/YvrViHBrTs74u7lJbkQ5bBWVYOta0zYqbMFwWX0Eg5outr8yrfpFcsac8Ls8zED54noHwwfMMhEZCQkKZjkdxpRQorpQe/5gA4YPnGaicHFumKebHm0yxjGtmyZ/QtMhzeJ5Lbk9GvqZvOKzpGw5r1Z7sEp/XNDFSpzeLV5+m8erWMK7KFAAqiw0HcvT1sn36ec1B5RUzKygxyqFre9bTpV3rKMpZ+V9j17L3FfXbP02xgvaXK3fQM6c8Js8zED54noHwwfMMhEZZF1dYFgwAACCMOdeaN7L31u1ebGEFJ7cnI1/T1x/WtA2HtXpvyQoqVovUuX6c+rVMUN8WiWqcyEblpdE6OVqPDmmuO/s11k+rD+rLpfu0LbXwbJbUXI9enr1dHyzcrRv7NNCobnXksFXe5cIKuoyRY/NUOXYvDMRcaybK3XyIvE37hzAzAAAAAMdj5kopMHOl9KjUA+GD5xmofCx5aaoxvqcs/qMbqOcMeFrujlcVfx7PcyGpuR79uu6QJq89WOIZKhEOq05vGq++LRJ1VvMEJURV/U3oKyvDMLRwe4Y+WLBbi7ZnFNmvYUKE7u7XWP1aJlbaje+tGTsVN2GoLJ6je8z4o5OVedVUGZHBf9OO5xkIHzzPQPjgeQZCg5krAAAAKBFnyk+mwophc8rT6rwQZlS15Hl8mrMxTZPXHtT8renylmATlViXTf1aJmpg65rq1biGIljuq0JYLBb1bhKv3k3itXxXpt79Y5f+2JpeqN/OtHzd8+0GdW8Yp3sHNFHbOjEVn+xJ+Gs0VO7Zf1f0jIcDMWvOAUXNfEQ5w9+UKmlRCAAAAKhuKK4AAACEKee6r01tT7PBMlw1QpRN1eDzG1q8I0OT1xzUjJTDynUXvZ/HX+Ii7OrfMlGDWtdUryY1KvWyU9VBlwZxemNUO63ek6V3/9il3zYXnm3+585MXfXRSp3fIUl/69+k0s0qcre/XM5NU+XYPjsQc26aIs+6b+Rud2noEgMAAAAQQHEFAAAgDFlTN8m+f4UpVtD2khBlU/ntSMvTj6sO6odVB3Qg233S/vGRRwoqg9vUUo9GcRRUKqEO9WL130vbavmuTL00c5tWHbc/jiHph9UH9dvmNN0/sKmGtatVeZYKs1iUM/g5xX06RNb8o8WhqDlPyFu/l/w1GoYwOQAAAAASxRUAAICw5Fw3ydT2R9WSt/HZIcqmcspz+zRtw2F9v+qAlu7MPGn/CLtV/Vomanj7JPVmhkqV0aVBnD4a3VFT1x3Wf+ds075Mc/EsPc+rR3/aqJ/XHNSjQ5qpXo2IEGVqZkQnK3fgfxTz87hAzOLOVtSv9yj7komSlSXnAAAAgFCiuAIAABBu/D651n9rCrlbXyRZ+dXPMAyt3JOt71fu16/rDyvH7Su2v9Ui9WxcQ8PbJ2lAy5qKdvGBdlVksVg0tF0t9WuZoM/+3Kv35+8u9P/9H1vTdcl7y3XbWY10Rfe6sllDP4vF02KoCtqNlGvtV4GYY89iuf58WwWn3RrCzAAAAADwDhsAACDM2Hf8Jmv2XlPM3fbiEGVTOWQVePXz6oP6atk+bTmcd9L+rZOjdW77JA1tV0tJMc4KyBAVIcJh0/W9G+i89sl6dvoWzUxJNR3P9/j14sxtmrHhsJ46r6UaxId+Fktu38dl37VAtsydgVjkgpfkbXy2fMkdQpgZAAAAUL1RXAEAAAgzrjVfmtre5A7yJbULUTahteFAjr5atk+T1xxUnqf4zenjI+06t32SLuiYrFbJ0RWUIUIhOdapF0e00cyUw/rPtC06lO0xHV++O0uXfbBc9w1oqos6JYd2LxZnjHKGvKzYr0fJYhz5Gbb4vYqe+jdlXvGTZA99AQgAAACojiiuAAAAhBFL7mE5tkw3xdztLgtRNqHh9vo1I+Wwvly6T8t3ZxXb12qRTm8arws71dbZzRPktLOPSnUyoFVNnda4hl6dvV1fL99vOpbr9uufv2zWb5vT9NiQZkqMDt0MJl+9HsrvcasiF78eiNlSNyly3jPK6/dEyPICAAAAqjOKKwAAAGHEuf5bWfxHv4Vv2Fxyt7kghBlVnD0Z+fpm+X59u3K/0nK9xfZtmBChCzsm6/wOSUqOdVVQhqiMYl12PTqkuYa1S9LjkzdqV3qB6fjsjalauTtLjw9rrrNbJIYoSym/111ybJ8j+4FVgVjEig/laTpA3sZnhywvAAAAoLqiuAIAABAuDEOuNV+YQu4Ww2S4aoQoofLnNwzN35quL5ft07zNafIbRfe1WaR+LRM1qltdndYoLrRLPaHS6dYwThPHdNFLs7Zp0grzLJbUXI/u+ma9rj6tru7s21gOWwhmONkcyhnysuI+P08Wb34gHD3tPmVeNVVGZELF5wQAAABUYxRXAAAAwoRt3zLZUjeaYu72o0KUTfnKyPPo+5UH9PXy/dqZnl9s31oxDl3SubYu7lybWSooVrTLpseGNtfZLRL0zymblZpr3ovl08V7tWJXlp65sJXq1aj4vU78iS2Ud+Yjipr9j0DMmnNAUTMfUc7wNyUKhgAAAECFobgCAAAQJo7fyN5Xo5G8DXqHKJvyse1wnj77c49+XH1Q+SfZoP60RnEa2bWO+rVMDM1MA1RZfVsk6qvrY/TU1C2avTHVdGzV3mxd/sEKPXluS/VvWfHLhBV0Gi3H1hlybJ8TiDk3TZFn3Tdyt7u0wvMBAAAAqiuKKwAAAOHAnSNnyo/mULtRkqXqFxUMw9DC7RmasHiP5m1JL7ZvtNOm8zokaWTXOmpeK6piEkRYSox26qURrfX18v16YcZWuX1H15zLKvDpnknrdVWPurqrXwUvE2axKGfw84r7dIis+WmBcNScJ+St30v+Gg0rLhcAAACgGqO4AgAAEAacG3+WxZMTaBsWqwqq+LfYC7x+TV5zUJ8t2atNh3KL7dsyKUqjutXR8HZJinLaKihDhDuLxaKRXeuoU71Y3f/9Bu1MMy9BN2HJXq3em63nLmyt5FhnheVlRCcrd+B/FPPzuKO5urMVPfVuZV06UbLyNg8AAAAob1X/q4wAAAAotCSYt3FfGTF1QpRN6RzKdut/c3do2P+W6J+/bC6ysGK3WjSkbS19cFUHfXFdZ13apQ6FFZSL1rWj9dm1nXROm5qFjq3YnaWrPlqhZbsyKzQnT4uhKmhn3lPJvneJIpa8VaF5AAAAANUVX2kCAACo4qypm2Tfu8QUK2h/WYiyOXUpB3L06eI9+mXdIXmOWYLpeHERdl3SpbYu61pHtePYoB4VI8Zl1zMXtFKPRoWXCTuU49HYz9fongFNdHm3OrJU0MbyuX3/IfvuBbJl7AjEIha+Ik+js+Sr07lCcgAAAACqK4orAAAAVZxr7Vemtj+ypjxNB4Qom+AYhqHFOzL10cLd+mNrerF9myRG6soedXVe+yRFMkMFIfDXMmEd6sbovu82aE9GQeCY12/ouelbtXpPlv4+tLkiHRXwM+qMUc6QlxX71UhZDP+RHP1eRU/9mzKv/FlysO8QAAAAUF4orgAAAFRlPo+ca78xhdxtL5ZsFbf/w6nw+g1NX39YHy/arXX7c4rt27tJDV3Zo57OaBYvawXNCACK07ZOjCZc20mP/LBR87elm45NXntImw7l6uWL26hejYhyz8VXt7vyT7tdkYteDcRs6VsV9du/lDvw3+V+fQAAAKC6orgCAABQhTm2zZQ175ApVpmXBMt1+/TdygOasGSP6Vv/x3PaLBrePklX9airFknRFZghUDLxkQ69NrKt3pq3U+Pn7zIdSzmQq6s+WqlnL2ytno1rlHsu+T3vkGPHb7LvWx6IuVZ/Jnfzc+Rr2r/crw8AAABURxRXAAAAqjDn8RvZ1+0uf2KLEGVTtMM5bk38c5++XLZPmfneIvvFR9p1ebe6Gtm1thKjK/fsG8Bmtei2sxupXd0Y/eOnjcp2+wLH0vO8uvWLNbq7fxNd2aNu+e7DYnMoZ8gripswTBZvXiAcPf1BZY2eJim+/K4NAAAAVFMUVwAAAKooS/Z+ObbNMsUq26yVHWl5+mjhHv20+oBpA/DjNYyP0NU96+n8DkkVs1cFUIb6t0zUp9d20t2T1mvr4aPFDZ8hvTBzm9btz9HfhzRTRDn+bPvjmyj3rEcVPevvgZg1Z78iZz0mXfFxuV0XAAAAqK4orgAAAFRRrtWfBzaxliTDES13y3NDmNFRKQdy9P6C3Zq2/pD8RddU1LFujK7pVV/9WybKZmU/FVRdjRMj9fHojnrs502avTHVdOznNQe15XCuXhrRRnXiXOWWg7vjVXJu+VWO7b8FYs4N30trvpXajyi36wIAAADVkTXUCQAAAOAU+Dxyrf7cFHK3vkByhnZ/khW7s3TX1+t02QcrNHVd0YWVs1sk6L0rO+ij0R01qHVNCisICzEuu14c0VrjzmhY6Ni6fTm68qMV+nNnRvklYLEoZ9Bz8rvizPGf7pGy9pXfdQEAAIBqiOIKAABAFeTYOkPWnP2mWEGnq0OSi2EYmr81XTd9vlpjPl2l3zannbCfw2bRRZ2S9c0NXfTfS9qqW8O48t2HAggBq8Wim89sqJcubqMop/ntVlquV+MmrtWXS/fKMIqZ0lUKRkwd5fZ7yhzMS5V+uFMqp2sCAAAA1RHLggEAAFRBrpWfmNreut3kS2pfoTkYhqG5m9P09u87tXZfTpH9op02jexaW1f2qKekGDapR/XQv2WiPh7dSfdMWq8dafmBuNdv6D/Ttmrd/hw9PLiZnPay/76bp/UFcm+eKuemyUeDG6fKueaLSrcvEwAAAFBVUVwBAACoYqypm+TY+bspVtBpdIXmsGh7hl7/bbtW7ckusk98pF1X9qiry7rVVVwEv3ai+mleK0qfXtNJj/yYonlb0k3Hvlt5QJsP5uqFEW2UHFvGRUeLRbkD/iX7nkWy5h4KhCPn/FOeBqfLX6PwsmUAAAAAgsOyYAAAAFWMa9UEU9sfmSh3i2EVcu0Vu7N088Q1unnimiILK8kxTt03oIkmj+uum05vSGEF1VpshF2vXNJWN/ZpUOjYqr3ZuuqjFVqxO6vMr2tEJip34LOmmMWTo6hp90mGv8yvBwAAAFQ3vNMFAACoSjy5cq792hRytxsp2SPK9bIb9ufojbk7NLeI/VQkqWF8hMb0rq/z2ieVy1JHQFVls1p029mN1Co5So9P3qQ8z9HixqEcj278bLUePqeZLu5cu0yv62k2UAXtR8m15stAzLF7oZyrJ8rd8coyvRYAAABQ3VBcAQAAqEKcG36U1X30W+6GLCroeFW5XW97ap5en7Nd0zYcLrJPg3iXxp7RUMPaJcluZYN6oCiD29RSk5qRuvub9dqdURCIe/2Gnvpls9bty9YDg5rKYSu74mTe2f+Qa9cCKWNHIBY17z/yNB0gI6ZOmV0HAAAAqG74SiEAAEBVYRhyrfzYFPI26Sd/jUZlfqn0XLee/HGNLhm/rMjCSnKMU48OaaZJN3bV+R2SKawAJdAyKVoTru2k3k1qFDr29fL9Gvv5Gh3KdpfdBV2x0vmvmEIWd5aiZj0mGUbZXQcAAACoZiiuAAAAVBG2/ctlP7jGFMsv443sPT6/Jizeo77Pz9YHv2+T11/4w9eEKLvuG9BEP9zcTZd2qVOm37IHqoMakQ69NrKdrulZr9Cx5buzdNVHK7Vmbxnuw9JioNT5ClPIuWWaHJumlN01AAAAgGqGd8IAAABVhGvlJ6a2L7a+vI37ltn4v21K1cj3l+v5GVuVkecpdDzWZdPtZzfSTzd311Wn1ZOLfVWAU2a3WnR3/yb69/ktFXHcs3Qg263rJ6zWD6sOlN0Fh/xb/siaplDU7H/Ikp9edtcAAAAAqhHeEQMAAFQBlrxUOVN+MsUKOl4lWW2lHntPRr7+9s063fXNem1PzS903GGzaEyv+vp5XHfd0KeBopylvyaAI4a1S9IHV3dQnTinKe72GXp88iY9N32rPD5/6S8Ulai8fk+YQtbcQ4qc++/Sjw0AAABUQxRXAAAAqgDX6s9l8R3dh8GwOeVuP6pUY3p8fn24cLcueW+55mxKO2Gfc9rU1Lc3dtVd/RorNsJequsBOLE2tWM04drO6tEortCxz//cq1u/XKvU3MKzyYLlaXW+3E0HmmKutV/KvntRqccGAAAAqhuKKwAAAJWdzyPXCvNG9u4Ww2VE1TrlIZftytSVH67Uf2dvV76n8LfiOzeM1ze39NFzF7VR/fiIU74OgJJJjHLozVHtdGX3uoWOLdmRqas+WqG1+7JLdxGLRbn9n5LhiDaFo2b9XTqmeAsAAADg5CiuAAAAVHKOTZNlzdlvihV0veGUxsp1+/T01M26fsJqbTqUW+h4YpRD/zqvpb695XR1b5x4StcAcGocNqvuH9RUTw5vIafNYjq2L9OtMZ+u0sQ/98owjFO+hhFbT3l97jXFbIdT5Fr23imPCQAAAFRHFFcAAAAqM8NQxLL3TSFPvdPkq90x6KH+3JmhUe8v19fL9xc6ZpE0smttfXtTV53XIVlWq6XwAAAqxAUdk/X+VR2UHGPeh8XjM/Ts9K2677sNysr3nvL4BZ2vkTepvSkWufC/smbuPOUxAQAAgOqmWhVX/vWvf6l169amPw899FCo0wIAACiSbd9S2fevMMUKulwf1Bj5Hp9emLFVN322RrszCgodb50crY9Gd9Qj5zRXHPuqAJVC+7qx+mxMJ3VtEFvo2MyUVF3x4Qqt2XuKy4RZ7cod8LQMHS2iWrz5ipz1uFSKWTEAAABAdVJtiivLly/XhAkTQp0GAABAUI6fteKLrS9P88ElPn/1nixd8eFKTViyV8d/ZBrhsOreAU306bWd1LFe4Q9wAYRWzWin3r68vcb0qlfo2O6MAo35dJU+P8Vlwnx1uqig09WmmHPbTDk2Tz3lfAEAAIDqpFoUVzwejx577DH5/YU3awUAAKisLJm75dj0iylW0GWMZD357BK/YejDhbs15tNV2paaV+h41wax+uK6zrr6tHqyswQYUGk5bFbd1a+JXr20jWocN7PM6zf0XCmWCcs7/X75o5JMsag5T0ruU5wRAwAAAFQj1aK48s477yglJUWSlJSUdJLeAAAAlUPEyo9lMXyBtuGIkrv9qJOel5br0Z1fr9N/Z2+X77gvtDttFt3Tv4nevaKDGiVElnXKAMrJWc0TNfG6zupcv+hlwlbtyQpuUFeccs9+zBSyZu9V5IJXSpEpAAAAUD2EfXFly5YteuuttyRJkZGRuueee0KcEQAAQAl4cuVc/bkpVNBupAxXjWJPW7YrU5d/sEK/b0kvdKx93Rh9PqazRvesJxuzVYAqp06cS+9eUfQyYdd9ukpv/75TXn/JlwnztDpfnkZnmWKuFR/Kmrqp1PkCAAAA4SysiyuGYeixxx6T2+2WJN16662qX79+iLMCAAA4Oee6b2QtyDTFCjpfW2R/v2Hovfm7dNNnq3Ug2206ZpE09vQG+vDqjmpWK6o80gVQQY4uE9ZW8ZHmZcJ8hvTWvJ26fsIq7UgrvBzgCVksyu3/lAyb82jI71XUb/9kc3sAAACgGGFdXJk4caKWLFkiSWrVqpWuu+66EGcEAABQAoZfEcs/NIXcTQbIn9DshN2zC7y6e9J6vf7bjkLLgNWMduh/l7XTLWc1Ym8VIIyc1TxBn4/prC4nWCZs1Z5sXf7BCk1avr9Em93745sov9tYU8yx/Tc5ts4ss3wBAACAcBO2xZX9+/frxRdflCRZLBY9+eSTcjgcIc4KAADg5OzbZsuWttkUK+h6/Qn7bjucp2s+XqXfNqUVOtazcQ1NHNNZvZrEl0eaAEKsTpxL717ZQePOaCjbcbXTPI9fT03drL99s04HsvJPOlZ+j1vkj65tikX+9pTkLSjLlAEAAICwEbbFlaeeekpZWUc2dBw1apS6desW4owAAABKJnLxm6a2r2YreRueUajf3M2pGv3xSm1NNS//Y7VIt5zZUG+OaqdaMc5C5wEIH3arRTef2VAfXN1RDRMiCh2fsylN57z8m75fvrv4WSzOaOWd+ZApZMvYJteKD8s4YwAAACA8hGVx5ddff9W0adMkSTVr1tS9994b4owAAABKxr57kex7l5hi+d3GSpajX0s3/n9/lbu+Xq9st8/UNz7Srv9d1l5jz2jIpvVANdKxXqy+GNNZl3SpXehYeq5Hd01crnu/Xa/DOe4TnH2Eu/VF8tY1fyktctFrsuQcKPN8AQAAgKou7IorWVlZeuqppwLthx56SDVq1AhhRgAAACUXcdysFX9MPblbXxho53t8euiHFL3+2w4d/x301snRmnBtJ/VszO8+QHUU6bTp70Oa65VL2igxqvCSyDNTUnXpe8v1y9pDJ57FYrEo9+zHzSF3tiLnv1heKQMAAABVVtgVV5577jkdOHDkm1Wnn366LrjgghBnBAAAUDK2g2vk2D7bFMvvfpNkO/IhaWquRzdPXKtf1x8udO7QtrX0wdUdVK9G4WWBAFQvfVsk6usbuuicNjULHUvP8+rhH1N0/3cblHqCWSy+Op1V0PZSU8y59itZD20ot3wBAACAqsge6gTK0uLFi/XVV19JkpxOpx5//PGTnFE6FgtLbZTWsa8hrydQtfE8A6UXseQtU9sfmSh3hytksVi0PTVPt3+5VjvTzRtTWy3Snf0a69qe9cvs2eN5Bqq+xGinnruojc7ZcFj//nVLoULKjJRULd2ZqYfOaa5z2tQ0Pev5Zz4g56bJsnhyJUkWw6+o359RzkUfVuQtADgO/z4D4YPnGQgPYVNccbvdeuyxxwLT28eNG6cmTZqU6zXj4+PLdfzqhuXbgPDB8wycgsObpY0/m0LW3rcqPqmulmxL1U2frlJarsd0PNZl1+tXdVPfVknllhbPM1C1XdorXv3bN9A/vl+jn1ftNR1Ly/Pqwe83aFpKbf3zwvaqFx955EB8vHT6ndKcZwJ9HdtmKT51hdSsbwVmD6Ao/PsMhA+eZ6DqCptlwd544w1t3bpVktS0aVPddNNNIc4IAAAgCL//VzL8R9vOGKnnjfpp5R5dOX5hocJK/fhIfXPr6eVaWAEQHmrGuPTGVd30+pVdlXCCvVimr9uvwS/N0Ye/b5XP//97sZx+hxRT29xx2mOS31/ofAAAAKA6CouZKxs2bNB7770XaD/55JNyOp3lft309PRyv0a4s1gsgQp9RkbGiTfWBFAl8DwDp86StVdxKz7XsQsC5He8SuPn7dULM7YW6t+2drReHdlOSS5fufw+wvMMhI9jn+ezGkfr6xu66N9Tt2hGinnvphy3T0/8uFZfL9mhfwxroVbJ0XL2+puiZjx8tNPeFcpZ9JE8bUZU5C0A+H/8+wyED55nIDTKeiWqKl9c8fv9euyxx+TxHPk254gRI9SrV68KuTb/4StbhmHwmgJhgucZCE7E4jdl8R3dD8GwOfVm/hC9+nvhwspZzRP0zAWtFOW0VchzxvMMhA/DMJQY5dDzF7XSr+sP67npW5V63Ky41XuzdeWHKzS6Zz2N7X2xXMveky11U+B4xO/Py918qGSPqOj0ARyDf5+B8MHzDFRdVX5ZsE8++UQrVqyQdKTy9MADD4Q4IwAAgJKzZO+Ta81EU+z32KF69c/8Qn1Hdq2tly5uoyinraLSAxCGLBaLhrStpUk3dtGITsmFjnv9hj5YsFujPlyj5S3vMB2zZe2Wa+WnFZUqAAAAUGlV6eJKfn6+XnnllUD7gQceUGJiYugSAgAACFLEkv+ZZq145ND9+wYX6ndH30Z6eHAz2a2WQscA4FTUiHToH8Na6N0r2qtxYuGZKDvT83XJnFpKiehkikcseUvy5FZUmgAAAEClZDGq8LyzzMxMnXbaaYG2zXbyb3EahiH/MZswWiwWWa1Ha0wXXXSR/v3vf5fo+mlpaUFkixOxWCyBte7S09OZBglUYTzPQPAs2ftU48OzTcWVT7yD9Jj3+kDbapH+PqS5RnSufaIhyicvnmcgbJT0eS7w+vX+/F16f8Fuef3mPl0tG/Wt63FTLPeMB1XQ45ZyyRnAifHvMxA+eJ6B0EhISCjT8ar0zJXj+Xy+k/45trAiHSm2FHccAACgvEQsectUWHEbNr3pvTDQdtosev6i1hVaWAFQPbnsVt1yViNNvK6zutSPNR1bZrTUTF8XUyziz7elgqwKzBAAAACoXMKquAIAAFBVWLL3y7X6M1PsC19/7VVNSVK006bXR7bTgFY1Q5EegGqqea0ovXdVBz06pJliXUdXBnjJe6mpnzU/XVryXgVnBwAAAFQe9lAnUBpxcXHasGFDUOcsXLhQ11xzTaA9YsQIPfPMM2WdGgAAQLEi/vxfoVkr//NeIElKiLLrjZHt1LZOTKjSA1CNWS0WXdqljga0TNQrs7frx9UHtdpopqm+HhpiWxLoZ1vyrn6KOE9DujWX1cJ+UAAAAKhemLkCAABQwSzZ++VcaZ618qWvn/aolmrHOvXBVR0prAAIucRop/55bkuNv7K9mteK1MvHzV6JU44Ozn5DN362WhsP5oQoSwAAACA0KK4AAABUMM/vr8vqL7zXSv0aLr13ZQc1TowMYXYAYNa9YQ19PqazhvU9S1P8vU3Hrrf9oq279uiKD1bopZnblFPgC1GWAAAAQMWiuAIAAFCBdu7Yqtj1E02xr3z95EhsoPeu7KD68REhygwAiuawWXVNr/pqdclj8uvoEmCxljyNtf8snyF9sniPLh6/TNPWH5JhGCHMFgAAACh/FFcAAAAqyIYDOUr59mlFyBOIuQ2bfo67TO9d2UG141whzA4ATi6xUXt5Wl9oio2xTVVNZUiSDmS79cD3Kbr9q3XakZYXihQBAACACkFxBQAAoAKs2Zulpz+fpouMmab4NNdg/euq/qoZ7QxRZgAQnPxed8mw2ALtKEuBxtp/MvX5Y2u6Rr63XG/N26ECr7+iUwQAAADKHcUVAACAcrZsV6ZunrhWN/smym45+iFjgZzqPOofSohyhDA7AAiOP6Gp3G1GmGLXOmYoXlmmmNtn6O3fd2nke8v1+5a0ikwRAAAAKHf2UCdQ0Xr16qUNGzaEOg0AAFBNLNqeobu+Wafm3s06z7XAdKyg6/WKrlkvRJkBwKnL73mHnOsnyWIcKRhHGPma0G6xxuwYqoPZblPfnen5uv2rdRrUuqbuG9CEJRABAAAQFpi5AgAAUE7mbk7THV+tVb7HrwfsX5iO+V1x8ve8JUSZAUDp+OMby33c3ittd32h70a30NWn1ZXNUvic6RsOa8T4Zfp40W55fCwVBgAAgKqN4goAAEA5mJlyWPdMWi+3z1Bv61r1ta00Hc/vPk5GRI0QZQcApZff41YZOlpFsbqzlLh+gu4d0FSfjemszvVjC52T5/Hr5VnbdeWHK7VsV2ZFpgsAAACUKYorAAAAZWzK2oN64LsN8voNSYYesE80HfdHJamgy3WhSQ4Ayoi/Zkt5WgwzxVzLxkueXLVKjtb7V3XQE8OaKz6y8GrUmw7l6voJq/X4zxuVmuupqJQBAACAMkNxBQAAoAx9t3K/Hv1xo3zGkfZg65/qZt1k6pPX607JERmC7ACgbOX3vM3UtuanybVqwpG/Wyy6sFNtfXtTV13SufYJz/9h9UFdMn6Zflp9QIZhlHu+AAAAQFmhuAIAAFBGvli6V09O2ay/Ph60yq/77F+a+vhqNJa7/eUVnxwAlANfUnu5mw40xSL+fFvy5gfa8ZEO/X1oc310dUe1To4uNEZ6nleP/bxJt325TrvT8wsdBwAAACojiisAAABl4ONFu/XMtK2m2EjbHLW27jLF8nrfI9kcFZkaAJSr/NOOm72Se0jOtV8X6tepfqw+vbaTHhjUVDFOW6Hj87el69L3l+uTRXv+f1lFAAAAoPKiuAIAAFAKhmHof3N36OVZ203xKOXr75HfmGLeWm3kaX1+RaYHAOXOV7ebPA3PNMUilr4r+X2F+tqtFl3Rva4m3dRVg1vXLHQ83+PXS7O26dpPVmrLodxyyxkAAAAoLYorAAAAp8hvGHphxja988euQsfGN5ujWG+qKZZ35qOShV+/AISf/B63mNq2jO1ybP6lyP5JMU49d1FrvXRxGyXHOAsdX7svR1d8uEITFu+Rn71YAAAAUAnx7h4AAOAUeP2G/jllsz77c2+hY4/1iVSfA1+YYp7G/eRtfFZFpQcAFcrb8HR5kzuYYhFL3pJOUhjp3zJR39zYRaO61il0zO0z9MLMbRo3cY32ZhaUab4AAABAaVFcAQAACJLb69dD/8fefYdHVeV/HP9MTS+EJLTQqzQpilixN+wd0RUVBcvqWnZ1/VnQXcsWXRW7gGIXFburooKLigLSeyf0AOllMu3+/ggMuZkEMmkzmbxfz5Mnc849995vlDN35n7vOefT1fp0aY6p3iLp/87opqtcb8lSaTFnw2JV6fH3NXGUANCELBa5ho43Vdlzlsq+5ZdD7poYY9dfT++mKaP7q0taXND2edmFumzyIn22NEcGo1gAAAAQIUiuAAAAhKDM7dMd01fp+zXmKb9sFunRc3vq8vZ7FLPSvNaKu98V8rfu1ZRhAkCT8/Q4S76Uzqa62N9fqvX+g7OS9e6YgRp9RLugbcVunx76ap3u+ni1ckvc9Y4VAAAAqC+SKwAAALVUVO7VzdNW6JeN+aZ6p82iJy/qo7MOS1fc7L+bthmOBJUNv6MJowSAMLHa5Bpyg6nKkT1btpxltT5ErMOmu0/pqleu6Ke2ycFrscxcm6tLpyzWzLW51ewNAAAANB2SKwAAALWQW+rRje8u16JtRab6eKdVz13aVyN6pMmx8Ts5tv5q2u464mYZCRlNGSoAhI277yXyx6Wb6mJ/fznk4xzZOUXTrhuk8/oHv3/mlnp05/RVevSb9XJ5fHWOFQAAAKgPkisAAACHsKOwXGPfXqZVu0pM9cmxdr18eT8d2TlF8nkUN/tx03Z/Ynu5hlzflKECQHjZY1U+aIypyrH2S1kLskM+VFKMXQ+P7KmnLuytVvH2oO0fLtqlq99YqvV7SusaLQAAAFBnJFcAAAAOYnVOia55c6k25paZ6tMTHJp8ZT/1b58kSYpZ9o5s+RtMbcqO/Ytkj22yWAEgEpQPvFqGIz5Qthh+xSyYVOfjndSrtT68bpBO7JkWtG3dnlJdNXWJpi/exWL3AAAAaFIkVwAAAGrw26Z8Xf/2Mu0uNi+e3D4lRlNGD1CPjARJkqW8QLG/Pm1q480cKHfv85oqVACIGEZsisr7jzLVxayYJkvp3jofMy3Bqacu7K2HzuquWIf5a6zL69ffvl6vez9bo6Jyb53PAQAAAISC5AoAAEA1/rtit279YKVK3Ob5/Lu2jtOUK/urY6sDI1Jif5soqyvP1K7shPslCx+1ALRMrsHXy7AemMrL4nUpZvHUeh3TYrHogoFt9M41A9UzIz5o+7er9mr01CVanVNSzd4AAABAw+IbPwAAQCWGYWjqb9t03+dr5fWbp5gZnJWs168aoDbJMYE6a+46xSx+3dTO3f0MeTsMa4pwASAiGUnt5e59vqkuZvFUyV3/xEfX1vF68w8DdfmQtkHbtuS5dM2bS/XZ0px6nwcAAAA4GJIrAAAA+3j9hv7x3UY9PWtz0LZTe7fWi5f3VXJspUWVDUPxPz4si//ANDSGzamy4/7aFOECQERzDR1nKlvLCxSz/P0GOXaM3ap7T+umJy/sbX5fllTu9euhr9bpb1+vV7nX3yDnAwAAAKoiuQIAACCpqNyr2z9cqfcX7AzaduXQdvrH+b0UYzd/dHJs/E6O7NmmOtfgsfKndmnMUAGgWfC37iV311NMdTGLpkj+hlsX5eRerfXetYdrQLvEoG3TF+/StW8t1bZ8V4OdDwAAANiP5AoAAGjxtua7NObNpfplY37QtjtO6qy7T+kiq8Vi3uB1Ke5/fzNV+RPayHXkLY0YKQA0L+VVRq/YCrfKsf7bBj1Hu+QYTR7dv9ppwlbuKtGVU5fo12re3wEAAID6ILkCAABatIVbC3X1G0u0YW+Zqd5ps+jxc3vpD8M6yFI1sSIpduFk2QqyTXVlx/1VciY0arwA0Jx42x8pb5vDTXWxCyc1+Hkctoppwh47t6diHeavuYUur279YIXemb9DhmHUcAQAAAAgNCRXAABAi/X5shyNe2+58svMU9SkxTv0yqj+OrNverX7WYp3Knbe86Y6b7uhQYs3A0CLZ7HINfh6U5V9xwLZdvzeKKc7q2+G3rp6oLqkxZnqfYb0r+836pGv18vNOiwAAABoACRXAABAi+Px+fXEjA168Mt18vjMTzH3SI/Xm38YoMM7JNW4f9xPT8jiKQ2UDVlUOmKCVM0IFwBo6Tw9zpI/sb2pLnbB5EY7X/eMeL31h4E6uVda0LZPllQk1feWuBvt/AAAAGgZSK4AAIAWJafIrRveXV7twvXHdUvVa1f1V/uU2Br3t22fr5jVn5jq3P0ul6/NgIYOFQCig80h1+BrTVWO9V/LWrCl0U6ZEGPTvy7orXHHZgVtW7StSFdNXaJVu4ob7fwAAACIfiRXAABAizE/u0BXTl2sxduKgraNPqKdnr74MCXG2Gs+gN+n+B8nmKucSSo75u4GjhQAokt5v8tlOA6sSWUx/IpZNKVRz2m1WDT+uE765/m9gtZh2Vnk1rVvL9OMVXsaNQYAAABEL5IrAAAg6hmGoTfnbtf495Zrb4nHtC3GbtWEs7rr7lO6ymY9+LRezhXTZM9ZZqpzDb9DRnz1a7MAAPaJSVZ5v8vNVcunyVJe0OinPq1Pul4fPUBtk52mepfHr798ukYvzM6Wn4XuAQAAECKSKwAAIKrll3l058er9dTMTaqyvIo6pMTo9av66/yBbQ55HEt5geJ++ZepzpfWU+UDr27IcAEgapUPvlaG5cBXUIunRM5l7zfJuXu3SdDbfxioQdWsp/XqL1v118/WqJyF7gEAABACkisAACBq/b6lQFe8tliz1uYGbTu2W6revmag+rRJrNWxYn99WtYy83FKT3hQsjkaJFYAiHb+5I7y9DjLVBe76DXJ56lhj4aVluDUK6P66YKBmUHbvl21V+PeW6680qaJBQAAAM0fyRUAABB1fH5DL/+0RTe+u1y7itymbRZJ44/tqGcvOUwpcbVLjFj3rlXM4jdMde7up8vb+fiGChkAWgTX4OtNZWvxDjnWfdVk53fYrHrwzO76y6ldZasyE+TibUW65q2l2pxb1mTxAAAAoPkiuQIAAKLKrsJy3fjecr308xb5q0wD1irermcvOUzjjusoq+Xg66sEGIbif5wgi+E7UGVzquz4+xswagBoGXzthsjbbqipLnbBZKkJ1zyxWCwaNbSdJl7aVwlOm2nbljyXrnlzqRZuLWyyeAAAANA8kVwBAABRwTAMfbl8ty6dskgLtgTfFBvWOUXvXztIx3VvFdJxHeu/kWPLz6Y615Ab5U/pVK94AaClcg0eayrbc5bIvn1uk8dxdNdUTRndX22SzAvdF7i8Gvfecv13xe4mjwkAAADNB8kVAADQ7OWWenT3J6t1/xdrVVTuM22zWaRbT+ikFy/vq4xEZw1HqIHXpbjZfzdV+RPbynXkzfUNGQBaLE/30+VL7miqi1kwKSyx9MpM0BtXD1SfNgmmeo/P0H2fr9XkOVtlNOGoGgAAADQfJFcAAECzNnPNXl0yeaF+WBO8aH275BhNHj1A1x+dVftpwCqJXfCqbIVbTXWlx/1VcsTXOV4AaPGsNpUPvs5U5djwnax5G8MSTmaSU5Ov7K/jqxnZ+Nz/svXI1+vl8fnDEBkAAAAiGckVAADQLBWUefTAl2t158erlVfqDdp+dt90vX/t4Tq8Q1Kdjm8p2q7YeS+Y6jztj5Sn13l1Oh4A4IDyvpfK7zzw/myRoZhFU8IWT7zTpqcu6qPLh7QN2vbJkhz96aNVKqkyMhIAAAAtG8kVAADQrBiGoRmr9ujiyYv0xbLg+fBT4+z61wW99ei5vZQUa6/zeeJ/elwWb9mB88qishEPSXUYAQMAqMKZKPeAK01VMSs+kKUsL0wBSXarRfec2lV3ndxFVd/pf9mYrxveW6a9Je6wxAYAAIDIQ3IFAAA0GzlF5brz49X6y6drtLfEE7R9RI9W+vD6QTq1d+t6nce+ba6caz431bn7j5Ivs3+9jgsAOMB1+BgZ1gNJcIvXpZhl74QxIsliseiqI9vr3xf2Vqzd/HV55c4SjXlrqTbnltWwNwAAAFoSkisAACDi+Q1DHyzcqYsnLdKstcFrqyQ6bXr47B76z0V91DohxEXrg07mU9ysh8xVMckqO+bu+h0XAGBiJLWTu+dIU13M4qmSL/yjQ07u1VqvjOqn1DjzCMit+eUa89ZSLdteFKbIAAAAEClIrgAAgIi2fEexrn1rmR77doOK3cHz3Z/QvZU+uH6QzhuQKUsDTNnlXP6e7HtWmupcw++UEZdW72MDAMzKB481la0lOXKu+SJM0ZgNaJ+k168aoPYpMab6/DKvbnhvuWavD072AwAAoOUguQIAACJSbqlHj/x3na5+Y4mWVPOEcKt4u544r5eevriP2ibHVHOE0FlcBYr75d+mOl/rXiofeFWDHB8AYOZrM0CeDkeZ6mIWTpIMI0wRmXVOi9PUqwaoT5sEU73L49cdH63Sx4t3hSkyAAAAhBvJFQAAEFG8fkPvzN+h819ZoI+X5Ki622vn9c/Q9LGDdcZh6Q0yWmW/2N/+I6vLvJhy6YgJktVe/Q4AgHorH2IevWLfvUL2rXPCFE2w9ESnJo3qr+FdUkz1PkN65Ov1euXnLTIiJBkEAACApkNyBQAARIx5mws06rXF+tf3G1VcHjwFWMdWsXrxsr56eGRPpcY5GvTc1tx1iln8pqnO3f1MeTse06DnAQCYebqeIl9KF1NdzMLJ4QmmBgkxNj17yWEa2S8jaNuLP23Ro99ukNdPggUAAKAl4TFMAAAQdjsKy/WfHzZpxuq91W6Pc1g19pgsXXVEezntjfNsSPz//i6LcSChY9icKjv+/xrlXACASixWlQ++XvGzHghUOTd+r7K89fK36h7GwMwcNqv+NrKHMpOceu3XbaZtHy3apT3Fbj1+Xi/FOWxhihAAAABNiZErAAAgbMq9fr3y8xZd9OrCGhMrZ/VN1yc3DNZ1w7MaLbFi3zRTjs2zTHWuwWPlT+nYKOcDAJiV971Y/hjztFuxC6eEKZqaWSwW3Tais+45tauqTkr547o8jX9vhfLLPGGJDQAAAE2L5AoAAGhyhmFo5pq9unjSQr340xa5vP6gNr0y4zX5yv567NxeykxqmAXrq+XzKP5/fzdV+eMz5Dry5sY7JwDAzBGv8gGjTVXOlR/JUpYbpoAO7oqh7fSP83vJaTOnWJZsL9K1by3T9gJXmCIDAABAUyG5AgAAmtTGvaW6ZdpK3fnxam0rKA/anhJr119P76Z3rjlcQzomN3o8MUvfki1vvamu7Ni/SM7ERj83AOCA8sOvkWE9sJ6WxetSzNJ3whjRwZ3WJ10vXN5XSTHmacA25ZbpmjeXavWukjBFBgAAgKZAcgUAADSJ4nKvnvphky6bslhzNuUHbbdapEsHt9EnNw7WZYPbymatOuFKw7OU5Sn216dNdd7MAXIfdnGjnxsAYGYktpG717mmupjFr0ve4ER8pBjaMUWvjR6gNklOU/2eEo+ue2ep5mzMD09gAAAAaHQkVwAAQKPyG4Y+W5qjC15dqDfnbZfXbwS1GZyVpHeuOVz3nd5dqXGOao7SOGJ//Y+s5QWmutITHpQsfEQCgHAoH3K9qWwt3SPn6k/DFE3tdM+I19SrBqhHerypvtTt120frtSnS3aFKTIAAAA0Ju4cAACARrN8R7HGvLVUD321TntLghf4zUh06rFze2rylf3Vu01Ck8Zm3btGMUvfNtW5e50jX4cjmzQOAMABvox+8mQdY6qL/f1lyQhemyuStEmO0ZTR/TW0ynSWXr+hCf9dr5d+ypZhBD9cAAAAgOaL5AoAAGhwuSVuPfzfdbr6jSVaur04aLvDZtG1wzvokxsG66y+GbJYGn8KMBPDUPz//iaL4TtQZYtR2bH3Nm0cAIAgrqE3msq2vPVybPw+TNHUXlKsXc9f1len92kdtO3ln7fq4f+ul8cX2UkiAAAA1J493AEAAIDo4fUbmrZgp178KVvF5b5q2xzfvZXuOrmLOqfFNXF0Bzg2/iBH9mxTnWvojfInZ4UpIgDAft7OI+Rt3Uf2vasCdbHzX5an22lhjKp2YuxWPX5eL7VL3qypc7ebtn26NEe7isr1rwt6KzGGr+IAAADNHSNXAABAg5i7uUBXvLZI//p+Y7WJlY6tYvXsJX307CWHhTWxIp9bcbP/bqryJ7SRa+j4MAUEADCxWFR+xDhTlX3HfNm2zw9TQKGxWiz600lddO9pXWWtMjDz100Fuv6dZcopKg9PcAAAAGgwJFcAAEC97Cgs158/Wa1x7y3X+j1lQdvjHFb9cUQnfXjdIB3fPS0MEZrFLH5DtvyNprqyY++RnE275gsAoGbunufIn9jeVBf7+8thiqZuLh/STv++sI9i7eav3WtySnXNm0u1bndJmCIDAABAQyC5AgAA6sTl8enln7foolcX6rvVe6ttc1bfdH1yw2BdNzxLTnv4P3ZYSvcq9rdnTHXeNofL3eeC8AQEAKiezSHXkOtNVc4NM2TNXRemgOrmpJ5pemVUP7WKN08DtrPIrWvfXqa5mwvCFBkAAADqK/x3OQAAQLNiGIZ+WLNXF09epJd+2iKXN3hx3t6ZCZoyur8eO7eXMpNiwhBl9eJ+fUpWd5GprnTEg5KFj0QAEGnK+10hf0yKqS7291fCFE3dDWifpKlXDVSnVrGm+uJyn26ZtkJfLt8dpsgAAABQH9xJAAAAtbZxb6lunrZCd328WtsLgueLT4m166+nd9Pb1wzU4KzkMERYM+ueVXIue9dUV977fPnaDQ1TRACAg3ImqPzwP5irVn0sS/GuMAVUdx1bxer1qwZoYPskU73Xb+j+L9Zq0i9bZRhGmKIDAABAXZBcAQAAh1Tm9unZHzfrsimL9eum4ClMrBbp0sFt9MmNg3XZ4LayVV3BN9wMQ/H/+5ssxoFRNoY9tmKtFQBAxCo//BoZNmegbPF7FLtoShgjqrtW8Q69fEVfndwreP2x52dn64Ev16m8mtGgAAAAiEwkVwAAQI32TwF20eSFeu3XbfL6g5+qHZyVpHeuOVz3nd5dqXGOMER5aI4NM+TY8rOpzjV0vIyk9jXsAQCIBEZ8utx9LzXVxSx9RyovDFNE9RPrsOmf5/fW6CPaBW37cvlujXtvuXJL3GGIDAAAAKGyH7pJ85Ofn681a9Zo8+bNys/Pl2EYSklJUfv27TVo0CAlJSUd+iAAALRwW/Jc+sd3G/Tzhvxqt2ckOnXHSZ115mHpslgibKRKZd5yxc1+1FTlT2wn19BxYQoIABAK15Ab5Fz6jiyqSPBb3EWKWfauypvp+7jNatHdp3RVu+QYPfnDJlV+bGHxtiJd9cZSPXNJH/XMSAhbjAAAADi0qEiu+P1+zZ8/XzNmzNCvv/6qNWvW1NjWYrHo6KOP1pgxYzRixIgmjBIAgObB5fHp9d+26bVft8ntCx6pYrdadNWR7XTDMR0V77SFIcLQxCyeKlvBZlNd6bH3So64MEUEAAiFP7WLPD3OknPdV4G62IVTVH74GMkeE77A6mn0ke3VsVWs/vr5GpW6D0wHtqOwXGPeWqrHz+2lE3oETyEGAACAyGAxomDVvNNPP12bN28+dMMqRo4cqUceeUSJiYl1Om9eXl6d9sMBFotFqampkhQYZQSgeaI/R4fZ6/P0z+82aGt+8GL1knREp2Tde1o3dU+Pb+LI6sZSukcpU0+SxV0UqPO2G6KiSz+SInm0TZjRn4HoES392bZzsZLfP99UV3LKP+Tuf3mYImo4a3eX6PYPV2lHofnaa5F0x0lddNWR7SJ7hCiaTLT0ZwD0ZyBcWrVq1aDHi4qRK7m5uUF1Xbp00cCBA5Wenq6YmBjt3LlTc+bM0c6dOwNtvvzyS+Xk5Gjy5MmKiWm+TzwBAFBf2wtc+vf3mzRzbfA1VZLSExy68+QukT8FWBVxc540JVYkqfSEB0msAEAz42t7uDxZw+XY+mugLnb+C3L3vViyNu+vtT0zEvTWHwbojumrtWT7gWuWIempmZu0YW+p7ju9mxw2lkwFAACIJM37U2gVHTp00KWXXqoLL7xQbdu2Ddru8/k0bdo0Pf744yovr3gqaN68eXr66ad1zz33NHW4AACEncfn19vzd+jln7bI5fUHbbdZpCuGttP44zoqMaZ5fWyw7V4u57L3THXlfS6Sr+2g8AQEAKgX19DxpuSKrWCznGs+l7vPhWGMqmGkJTj1yqh++tvX6/Xl8t2mbZ8syVF2nkv/PL+XWic4wxQhAAAAqoqKR1/at2+vxx57TDNmzNBNN91UbWJFkmw2m0aNGqWJEyfKaj3wp7/55pvatWtXU4ULAEBEWLKtSKOnLtEzszZXm1gZ1CFJ74w5XHef0rXZJVZkGIr7398Cix9LkmGPU9mxfwljUACA+vB2HiFvm8NNdbFzJ0p+X5gialgxdqv+NrKHbj2hU9C2BVsKdeXrS7RkW1E1ewIAACAcoiK5Mn36dF188cWy2Wq3qO6IESM0cuTIQNnj8ej7779vrPAAAIgoReVePf7tBo15a6nW7i4N2t4q3q6Hz+6hyaP7q1dmQhgirD/H+m9MTzdLkuvIm2UkVv8ABgCgGbBY5Br2R1OVLW+DHGu/DFNADc9isej6o7P07wt6K9Zh/rqeU+zW9e8s04eLdjI3PwAAQASIiuSK3R7607SVkyuStHTp0oYKBwCAiGQYhmas2qOLJi3UtIU7VfW2jEXSpYPb6JMbhui8AZmyNtd1Sbwuxc1+1FTlS+og15AbwhQQAKCheLqeIm9GX1Nd3LznJCN4BGZzdkrv1ppyZX+1TTJPA+b1G3r0mw16+L/r5fJEx4gdAACA5ioqkit10amTeaj1nj17whQJAACNb3uBS7d/tEp/+XSN9hR7grb3zIjX1KsH6L7Tuys5tplNAVZFzKLXZCvcYqorO+5eyR4bpogAAA3GYpFr2G2mKtveNXKs+yZMATWew9om6u0xh2tY55SgbZ8uzdF1by/T9gJXGCIDAACA1IKTKyUlJaZyXUa/AAAQ6bx+Q2/M3aaLJy/S7PV5Qdtj7Vb96cTOevuagRrQPikMETYsS0mO4uY+Z6rztD9Snp7nhCkiAEBD83Q/Xb7WvU11sXOflaJwqqy0eIeev6yvrhnWPmjbyl0lGj11iX7dmN/0gQEAAKDlJldWr15tKrdtyxzsAIDosmx7ka6aukT/mblZLk/wdCnHdkvVR2MH6ZqjOshhi46PBHG//FsWz4EHKAxZVHbCg1JzneIMABDMYlXZsFtNVfY9K+XY+F2YAmpcdqtFfzqpi/55fi/FVVmHJb/Mq1s+WKEpv26VPwqTSwAAAJEsOu6k1MFnn31mKg8fPjxMkQAA0LCKy736x3cb9Ic3l2p1TknQ9vQEh/5xXi9NvOQwtU+JnqmybDnL5FzxganOfdjF8rUZEKaIAACNxdPjbPladTfVxf4WnaNX9jutT7re/MNAdU4zX7v9hjTxx2z98YOV2lviDlN0AAAALU+LTK7MnTtXc+fODZSTkpJ03HHHhTEiAADqzzAM/bBmry6etEjv/V7zgvXTxw7W6YelyxJNozkMQ3E/PiJLpb/acCSo7Ni/hDEoAECjsdrkqjp6JWep7JtmhSeeJtI9PV5v/mGgTuyZFrTtl435uvy1xUwTBgAA0ERa3EIjZWVleuCBB0x11157rRISEkI+VlTdlAqTyv8N+e8JNG/05/DaUVCuf8zYoFnrcqvd3iMjXg+c2V2Hd0hu4siahmPtV3Jsn2uqcx15i5TYRvxrDB39GYge0dyfPb3Pk++3Z2TL3xSoi/v1KRV3PSmqp4NMjnXoqYv6aMqcrXr+f9mmhyn2lnh007QVunZ4B918fKeomfYTFaK5PwMtDf0ZiA4Ww4jicdPVuPfee/Xxxx8Hyt26ddMnn3yimJiYMEYFAEDdeH1+TZ2zWU9+u1qlbl/Q9hi7Vbef2lM3HN8tem+weMqk54ZJBdkH6lI7SbfMkxzRM+0ZAKAaC9+WPr3ZXHf5W9Jh54Ynnib2y7o9+tP7i5RTVB60bVDHVE0cNVgd0+LDEBkAAED0i9K7LNWbOnWqKbHidDr1r3/9i8QKAKBZWratQBe88LP+9sWKahMrx/dM14w7RujmE3tEb2JFkn55zpxYkaTT/kZiBQBagoGXS617mOt+eFTyB18Xo9ExPdL139uP10m9M4K2LdqSr7Ofma3PF28PQ2QAAADRr8WMXPn66691xx13yO/3B+qeeOIJXXjhhXU+Zn5+fgNE1rJZLBalpKRIkgoKCtRC/jkCUYn+3HRK3T69MDtb78zfLn81/5nT4h3686lddWa0ratSDUvRdiVPPVkWb1mgztvhKBVf8n5UTwnT2OjPQPRoCf3ZsfozJfz3j6a6kjOflqdP3b/rNTeGYeitedv1zKzN8lbz4eDCgZn686ndFO+0hSE6NJSW0J+BloL+DIRHampqgx6vRay5MmfOHP35z382JVbuuuuueiVWJPHG18AMw+C/KRAl6M+N53/rcvX4jA3aWeiudvuFAzN1+4mdlRLnkBT916r42Y+ZEiuGxarSEQ9WzD8f5X97U6E/A9EjWvuzu+dIxcx9Xva9qwJ1sXP+I3ePkZLNEcbImtZVR7bXkI7JuvezNdqS5zJt+3hJjuZuLtCEs3voiE4pYYoQDSla+zPQEtGfgeYriucIqbBkyRLdfPPNcrsP3IS6/vrrdeONN4YxKgAAQpNT5NafP1mt2z9aVW1ipWvrOE2+sr8ePKtHILES7ezb5sq55nNTnbv/KPky+oUpIgBAWFisch19p6nKVrBZzpUfhSmg8OnbNlHvXnO4RvYLniZsW0G5bnx3uf79/Ua5PC1j2jQAAIDGFNXJlTVr1uiGG25QaWlpoO7SSy/VX/7ylzBGBQBA7fkNQ9MW7NDFkxbqu9V7g7Y7bRbdfHxHvX/t4RrSMTkMEYaJ36e4HyeYq2KSVXb0XeGJBwAQVp5up8nb5nBTXdxvz0peVw17RK+EGJv+fk5P/W1kD8U5zF/5DUlvz9+hUa8v0dLtReEJEAAAIEpEbXIlOztb1113nWldlDPPPFOPPPJI+IICACAEa3eXaMxbS/X4jI0qrmbB+iM7JWvadYN0wzEdo3vB+mo4l78v++4VpjrX8DtlxKWFKSIAQFhZLCo7+m5TlbV4u2IWvxGmgMLvnP6ZmnbdIA3OCn74YlNumca8tVQTf9wst9dfzd4AAAA4lKi8E7Nr1y6NGTNGu3fvDtSNGDFC//73v2W1RuWfDACIIqVun/4zc5OufH2Jlm4vDtqeGmfXw2f30MtX9FPntLgwRBheFleB4n75l6nO17qXygdeFaaIAACRwNvpOHk6HGWqi507UZay3DBFFH5ZqbGadGU/3XVyFzltFtM2vyFN+XWbrnpjiVbtCv68AQAAgIOLukxDbm6uxowZo23btgXqhg0bpmeffVYOR8uYgx4A0DwZhqEZq/bowlcX6o252+X1By9qeG7/DE0fO1jnDciUxWKp5ijRL/a3/8jqyjPVlY6YIFnt4QkIABAZLBaVHXevqcrqLlLsb8+EKaDIYLVYdNWR7fXumMPVr11i0Pa1u0t19RtL9fz/shnFAgAAEIKoSq4UFxdr7Nix2rBhQ6Bu4MCBevHFFxUbGxvGyAAAOLjNuWW6ZdpK/eXTNcopDl6wvlOrWL18RT89MrKnWsW33IcFrHvXKGbxm6Y6d/cz5e14TJgiAgBEEl/bwSrvfb6pLmbJW7LmrgtTRJGjW3q8Xr9qgG49oZPsVvMDGl6/oUlztuqK1xZr0dbCMEUIAADQvERNcsXlcmn8+PFavnx5oK5Xr16aNGmSEhODn84BACASlHl8ev5/2bp0yiLN2ZQftN1utWjs0Vmadt0gDeuc0vQBRhLDUPyPD8tiHFh/xrDFqOyE/wtjUACASFN2zF9k2GICZYvhU9xPj4cxoshht1p0/dFZeuuageqVGR+0fWNuma57e5memLFBJeXB670BAADggKhIrni9Xt1+++2aN29eoK5Lly567bXXlJLSwm9EAQAi1o/rcnXJ5EWaNGerPL7gKcCGd0nRh9cP0i0ndFKMPSou2fXiWP+NHFt+NtW5ho6TP7ljmCICAEQiI7mDXEPGmuqcG7+XPfunMEUUeXpnJuitPwzU2KOzgkaxGJLeX7BTl0xeqNnr86o/AAAAAJp/csUwDN17772aNWtWoK5Dhw56/fXXlZ6eHr7AAACowbZ8l27/aKX+9NEqbS8oD9qemejUP8/vpRcu69siF6yvlteluNmPmqr8ie3kOmJ8mAICAEQy1xE3yR9n/j4YN/vvkp/RGPs5bFbdckInvXXNQPVtmxC0fWeRW7d9uFL3fb5GuaWeMEQIAAAQ2Zr9yq/bt2/X559/HlR3yimnhHScDh06aMaMGQ0ZGgAAJuVev96Yu02T52xTeTULxtos0ugj2+vGYzoqIcYWhggjV+yCSbIVbjHVlR5/n+QIntIEAAA5E1V2zF1K+P6vgSr7nlVyrvhQ7v6XhzGwyNM7M0FTrx6od+Zv14uzt8hV5TPKf1fs0ZyN+frzKV11Vt90WSyWGo4EAADQskTFyJXq6nw+X8g/AAA0BsMwNGPVHl00aaFemL2l2sTKkI7Jeu/aw3XHSV1IrFRhKdqh2HnPm+o8HYbJ0/OcMEUEAGgO3H0vk691b1Nd3Jx/S+7iMEUUuexWi/4wrEONa7zll3n1f1+s1R8/XKntBa4wRAgAABB5mn1yBQCASLZqV7HGvrtcf/l0TbVTgKXFO/S3kT00aVQ/9cgInpIDUvxPj8viLQuUDYtVZSMeknhyFgBwMFabSo//P3NV6W7FzZ0YpoAiX8dWsXrp8r6acFZ3JVXzsMfPG/J1yeRFenvedvn8wQ86AgAAtCTNflqwrKwsrV69OtxhAABgsqfYref+l63PluaoulsPVot06eC2uuX4TkqKbfaX40Zj3/KLnGs+M9W5+10hX0a/MEUEAGhOvJ1PkKfziXJsnhWoi1k4WeV9LpI/vXfNO7ZgFotF5w9so2O7tdI/vtuo71bvNW0v8/j17x826csVu3X/Gd3Vt21imCIFAAAIL0auAADQgMq9fr3261Zd8OpCfVpDYmVwVrLevmag7j2tG4mVg/G5FT/zAVOVPyZZZcfcHaaAAADNUemIB2RYHYGyxe+tuL5UM8U0DkhPdOpfF/TWkxf2VnqiI2j7yp0luvqNJfr39xtV6maabQAA0PKQXAEAoAEYhqHvV+/VxZMW6tkfs1VSzU2Gdskx+uf5vTT5yn7q04anPA8l9vdXZctbb6pzHf1nGXFpYYoIANAc+Vt1l2voOFOdY/tcOVdND1NEzcvJvVpr+vWDddHhbYK2+Q3p7fk7dPGkhfpxXW4YogMAAAgfkisAANTT6l0luvG95br7k9XaVs26KnEOq249oZM+vmGwTuuTLgtrhRyStSBbsXOfNdV5MweqfMCVYYoIANCcuY68Rb7kLFNd3OzHZHEVhCmi5iUp1q4HzuyuKaP7q1vruKDtO4vc+tNHq3TXx6uUUxT8WQgAACAakVwBAKCOthe4dP8XazXq9cWan10YtN0i6fwBmfr0xiG6/ugsxdi57NaKYSh+1kOy+A7cnDEsVpWe/KhkDV5cFwCAQ3LEqWzEw6Yqa9lexc75d5gCap4GZyXrvWsP1y3Hd5LTFvywyA9rcnXRpEV67/cdLHgPAACiHnd5AAAIUX6ZR//+fqMueHWhvly+u9p1VQZ1SNJb1wzUhLN7KCPR2eQxNmeO9d/IsWmmqa584B/kazMgTBEBAKKBp9spcnc7zVQXs+Qt2Xb8HqaImieHzaqxx2Rp2nWDNKxzStD2ErdP//huo8a8tVSrc0rCECEAAEDTILkCAEAtlXl8mjxnq859aYHenr9DHl9wWqVtslP/OK+Xpozur75tWVclZO4Sxf9ofrLYH5+hsqPvDFNAAIBoUjbiIRn22EDZIkMJ390jeZnKKlSd0+L00uV99beRPZQaZw/avmxHsUa/vlhPz9ykMha8BwAAUYjkCgAAh+D1G5q+eJfOf2WhnvtftoqruUGQ4LTpluM76eOxg3X6YayrUldxvz0ta/EOU13pCQ9IMclhiggAEE38yVkqG36Hqc6Wu06x854LU0TNm8Vi0Tn9M/XxDYN1/oDMoO0+Q5o6d7sunrxIs9fnhSFCAACAxkNyBQCAGhiGoZlrc3XZlEX629frtbvYHdTGbrXoyqHt9Nm4IRp7TJZiHawJUle23SsVs3CKqc7T8Th5ep0bpogAANGofPD18maap5qMnf+ibLtXhCmi5i81zqEJZ/fQq6P6qXNabND2HYXluu3Dlbrn09XVfp4CAABojkiuAABQjUVbC3Xt28t05/RV2ri3rNo2Z/VN18c3DNafT+2qtHhHE0cYZQy/4mfeL4txYFSQYXOq9KRHJEYBAQAaktWu0lP/IcN6YCori9+r+G/ulLyuMAbW/B3RKUXTrh2kccdmyVHNgvffrtqriyYt1AcLd8pvsOA9AABo3kiuAABQyfo9pfrTRyt17dvLtHhbUbVtju6SqnfHDNRj5/ZSVmrw05kInXPZu7JXWVDYNXS8/K26hSkiAEA082X0leuIm0x19r2rFPfLv8MUUfRw2q0af1wnvX/t4RraMXhaz+Jynx77doOufWuZ1u1mwXsAANB8WQyDx0XqKi+POWPry2KxKDU1VZKUn58v/jkCzVdz7885ReV68act+mxpjvw1hH5YmwTddmJnDe+S2qSxRTtL4TalvH2GLO7iQJ0vpbMKr/pGspO8Cofm3p8BHEB/PghvuZLeP1/2PatM1UUXviVvp+PCFFR0MQxDny3N0X9mblaByxu03W616A/D2usGplatFfozED3oz0B4tGrVqkGPx8gVAECLVuTy6tkfN+u8VxbqkyXVJ1Y6pMTosXN76q1rBpJYaWiGoYQf7jMlViSp9KS/kVgBADQue4xKznhGhs1pqk749i5ZXPnhiSnKWCwWnT+wjabfMFgj+2UEbff6DU35dZsunbJIv27Mb/oAAQAA6oHkCgCgRSr3+vXG3G065+UFeu3XbSr3+oPapMbZ9ZdTu+rjGwbrrL4ZsrL2R4Nzrpoux+YfTXXlfS+Tt/MJYYoIANCS+NN7q+zYe0111pJdiv/+PomniBtMWrxDfz+np168vK86VjOl6tb8ct00bYXu+3yNcktY8B4AADQPJFcAAC2Kz2/o82U5uuDVBfrPzM0qrGaKiliHVTcck6XPxw3RqKHt5LBxuWwMlpIcxf34sKnOn5CpshP+L0wRAQBaovJBY+TpdLypzrnuKzmXvxemiKLX8C6pmnbd4Rp7dJbs1uCHVv67Yo8unLRI0xfvYsF7AAAQ8bhbBABoEQzD0E/r8zTq9cV68Mt12lkY/FSkzSJdOriNPr9xiG4+vpMSY+xhiLSFMAzFz3xA1vJCU3XpyY/KiEkJU1AAgBbJYlXJaf+WP9Y8B3f8rIdky1kWpqCiV6zDpltO6KT3xhyuQR2SgrYXurz629frNfad5dqwpzQMEQIAANQOyRUAQNRbvqNIN763XH/8cKXW7q7+S/qpvVvro7GDdd/p3ZWe6Ky2DRqOc/Wncq7/xlTn7nWePN1OC1NEAICWzEhso9JTHjfVWXxuJXx1i1TlQQA0jO4Z8Zo8ur8eOKO7kmKCF7NfuLVQl7+2WM/M2qxSty8MEQIAABwcyRUAQNTanFumv3yyWle9sVTzs6u/MTKkY7LeuHqA/nVBb3VOi2viCFsmS9F2xc18wFTnj2ut0hMnhCcgAAAkeXqcKdega011toLNSpjxZ9ZfaSRWi0UXDWqj6WMH64zD0oO2e/2GXv9tmy54daG+XrFHBv8fAABABCG5AgCIOntL3Hrs2/W6ZPIizVi9t9o2PdLj9ewlh2nSqH4a0D54Sgo0EsOvhBl/ltVdZKouPelvMuLSwhQUAAAVyo77q7xtB5vqnOu/UczCyWGKqGVIT3TqifN66blLD1OHlJig7buL3frr52t0w7vLtXZ3SRgiBAAACEZyBQAQNUrKfXpxdrbOfXmBPli4S15/8NONbZOcevjsHnrv2sN1fPdWsliCF1NF44lZ/IYcW3421ZX3uVCenmeHKSIAACqxOVV81nNB66/E/fyE7Ft/DVNQLcex3Vrpg+sHacxRHapd8P73LYUa9dpi/fO7jSpyecMQIQAAwAEWg3G1dZaXlxfuEJo9i8Wi1NRUSVJ+fj7DvIFmLJz92ePz66NFu/TKL1uUV1r9F+3kWLuuH95Blw9tpxg7zxaEgzV3nZLfGSmLrzxQ509sp8KrvmYR+wjD9RmIHvTnurFvmqXET6+VRQf+e/nj0lR0xWfyJ2eFMbKWY+PeUv3zu436dVNBtdtbxdt1+4jOOndApqwt5GEZ+jMQPejPQHi0atXq0I1CwN0lAECz5TcM/XfFbl08aZH+8d3GahMrMXarxhzVQZ+PG6I/HNWBxEq4+NxK+OZOU2JFkkpO+xeJFQBAxPF2OVGuYX801VnLcpXwxY2SpzRMUbUsXVvH64XL+urJC3urXXLwVGF5pV5N+O96XTV1ieZnV5+AAQAAaEz2cAcAAECoDMPQzxvyNfF/m7Ump/obHFaLdG7/TI0/rqPaVvOFHE0r7ud/yJ6zxFTnOnyMvJ2OC1NEAAAcnGv4n2TbvVzOjd8H6uy7Vyjhmz+p5OwXJastjNG1DBaLRSf3aq2ju6Zq6m/b9Nqv2+T2mZ/uXrmrRDe8u1wn9UzT7Sd2Vue0uDBFCwAAWhqmBasHpgWrP4ZBAtGjqfrzoq2Fmvi/bC3YUlhjmxE9WumPJ3RW94z4RokBoXFs+E6Jn4811fladVPhqC8lBzdAIhHXZyB60J/rqbxQye9fKFveelO1a+AfVHbiw1ILmY4qUmzNd+nJHzZp1trcarfbrRZdNritbjg2S6lxjiaOrvHRn4HoQX8GwqOhpwVj5AoAoFlYu7tEz/0vW/9bV3Nie2D7JN1+YmcN6ZjchJHhYCxF2xU/425TnWFzquSs50isAAAiX0yyis99VUnvnS+ruyhQHbvkDfmT2qn8iJvCGFzLk5Uaq/9c1Ec/b8jTkz9s0sa9ZabtXr+hd37foc+W5ujqYe01+oj2SohhhBEAAGgcJFcAABFtW75LL/60RV8t362anuXp1jpOt57QSSf2TJOFJ0gjh9+rxP/eJqsr31RdesID8mX0DU9MAACEyN+qm0rOfUWJn1wji88dqI//+R8yEtrIfdhFYYyuZTq2Wysd1SVV0xfv0ouzs5VfZl53r9jt04s/bdG7v+/QdcOzdOngNop1kGQBAAANi+QKACAi7S1x69VftuqjRbvk9VefVmmb7NRNx3XSyH4ZsllJqkSa2F//I/uO+aY6d4+z5R5wVZgiAgCgbrxZR6vktH8r8evbTPXx3/1F/rhW8nY5KUyRtVz7pwA7q2+6pszZqrfn75Cnynos+WVePTVzk96at11jj8nS+QMy5bRbwxQxAACINqy5Ug+suVJ/zDEJRI+G6s9F5V698dt2vT1/u8o8/mrbtIq3a+zRHXXJoDZ8QY5Q9s2zlfjJH2SpNN7Il5yloiu/lBGTEsbIUBtcn4HoQX9uWDELJil+9t9NdYYtRsXnvyZvx2PCFBWkitHOz8/O1tcr9tQ42jkz0ak/DGuviw5vozhn8xvJQn8Gogf9GQiPhl5zheRKPZBcqT8uJkD0qG9/LvP49MGCnZry6zYVuLzVtklw2nT1sPa6ivmzI5qlcJuS3ztP1rK9gTrDalfRpR/K13ZQ+AJDrXF9BqIH/bnhxf34iGIXTTHVGY54FV3wpnzth4YpKuy3JqdEL8zO1o8HWacvNc6u0Ue01+VD2ioptvlM6EF/BqIH/RkID5IrEYTkSv1xMQGiR137s8vj00eLdum137Zpb4mn2jYOW8W0D9cdnaW0eEdDhYzG4ClT0geXyL57uam69Pj/U/mQG8IUFELF9RmIHvTnRmD4Ff/tXYpZ9bG52pmkooveka/NgDAFhsqWbCvS87OzNXdzQY1tEp02XTSoja4Y2k7tkmOaMLq6oT8D0YP+DIQHyZUIQnKl/riYANEj1P5c7vVr+uJdmvLrVu0prj6pYrVI5/bP1LjjOjaLL7wtnmEo4evb5Fzzuana3fUUlZz7qmRhCrfmguszED3oz43E71XCf/8o57r/mqtjU1V8/lT52h4epsBQ1dzNBXr1ly2an11YYxubRTqld2tddWR7DWif1ITRhYb+DEQP+jMQHg2dXGk+418BAFHB7fXrk6U5mvzLVuUUu2tsd3KvNN1yfCd1S49vwuhQH7Hzng9KrPhSu6nkjP+QWAEARBerXSVnPiN9US7nph8OVLvylfTxaBWfN1neDkeFMUDsN6xzioZ1TtGirYWa8us2zV4f/JCkz5C+XbVX367aq4Htk3TlEe10cq80OWx8fgEAADVj5Eo9MHKl/sjUA9HjUP3Z7fXr82U5mvTLVu0sqjmpckzXVN10XEf1j+CnBhHMsfozJX59m6nOcCap8PKP5U/rEaaoUFdcn4HoQX9uZF6XEj8bK8eWn0zVhi1GxSNfkrfrSWEKDDVZvatEk+ds1Xer99a48L0ktU5w6IKBmbro8DZqnxLbZPEdDP0ZiB70ZyA8mBYsgpBcqT8uJkD0qKk/l7l9+mjxLr0xd7t2H2SkylGdUzT+uI4alJXcFOGiAdm2/66k6aNk8R34/2vIopJzJ8nT7ZQwRoa64voMRA/6cxPwlCrxi3FyZM82VRtWu0rOeFqeXueEKTAcTHZemd79fYc+XZKjMo+/xnYWScd1b6VLBrXRMd1ayW61NF2QVWOhPwNRg/4MhAfJlQhCcqX+uJgA0aNqfy4o8+j9BTv0zvwdyi/z1rjfkZ2SNf64ThrSkaRKc2TN36ykaRfKWpZrqi89/n6VDxkbpqhQX1yfgehBf24i3vKKdcfWf2OqNmRR2fH/xzUxghW6vPp48S69+/sO7TrI6GpJSk9waGS/DJ07IFPdwzB1Lf0ZiB70ZyA8SK5EEJIr9cfFBIge+/tzTpFLL3y3Sh8s3KkSt6/G9oOzknXz8R11RKeUJowSDclSuldJH14qW94GU71r4NUqO/ERyRK+JztRP1yfgehBf25Cfq/iZ/xFMaumB21yDbpOZSfczxpkEczj8+v71bmatnCnFm4tPGT7fu0SdV7/DJ1xWLpS4hxNECH9GYgm9GcgPEiuRBCSK/XHxQSIHlvyXfpg8V69P3+L3N6ap1YY2jFZY4/J0lGdU2Th5nvzVV6opI9Gyb57uana0/lEFZ83SbLawxQYGgLXZyB60J+bmOFX3KwJil3yRtAmd4+zVHLGfyR7ZKzfgZqt212iDxft0pfLdqv4IA8LSZLDZtGJPdJ07oBMDe+SIoet8RJo9GcgetCfgfAguRJBSK7UHxcToHkzDEPzswv11vztmr0u76CLgp7QvZWuHd6BNVWigadUSR//QfYd803V3vQ+Krr0Q8mZGKbA0FC4PgPRg/4cBoah2PkvKO6XfwVt8rY5XMUjX5KR1C4MgSFUpW6fvl6xRx8t3qkVO0sO2T4l1q6Te6Xp9D7pOqJzSoOvz0J/BqIH/RkID5IrEYTkSv1xMQGap3KvX1+v2K235+/Q2t2lNbazWqTT+qTr2uEd1DszoQkjRKPxlivx87FBi/b6kjqo6NIPuVkUJbg+A9GD/hw+zlUfK37GX2Txe0z1/rh0FY98Ub4OR4YpMtTF+t2l+nxZjr5cvlt7SjyHbJ8aZ9cpvVvr9D7pGtIxuUESLfRnIHrQn4HwILkSQUiu1B8XE6B52VPs1gcLd+qDRTuVV1rzIvV2q0Xn9s/QNUd1UOe0uCaMEI3KW66E/94i54bvTNX+hEwVXfKB/KmdwxQYGhrXZyB60J/Dy77lFyV+MU4Wd5Gp3rDaVTpigtwDRrNGWTPj9RuaszFfny/N0ax1ufL4Dt2n0uIdOqV3mk7u2VpDOyXXeeow+jMQPejPQHiQXIkgJFfqj4sJEPkMw9DvWwr10aJd+n7N3oN+gUyKtWvUsE66uH+aMpOcTRglGp3XpcQvxsmx+UdTtT82VUWXTJO/da8wBYbGwPUZiB705/Cz7l2jxM9vkK1gc9C28n5XqPTEhyV7TBgiQ30VlHn0zco9+mLZbi3dUVyrfRKdNh3TLVUn9kzTcd1aKSm29uvU0Z+B6EF/BsKD5EoEIblSf1xMgMhVUObRF8t266NFu7Qxt+ygbTu1itWVR7TX1cf1VEKMnf4cbdzFSvz8Bjm2zjFVG85EFV34tnxtDw9TYGgsXJ+B6EF/jgwWV4ESvv6jHJv/F7TNmzlAJWc9xwjQZm57gUszVu3Vt6v21Gp9FqlitPeQjska0SNNJ/ZspfYpsQdtT38Gogf9GQgPkisRhORK/XExASKLYRhasr1YHy7aqRmr9qrc6z9o+2GdUzT6iHY6rnsr2axW+nMUspTkKPHTa2XfvdxUbzgSVHz+a/J2GBamyNCYuD4D0YP+HEH8PsX98i/F/v5S0CbDmaiSkx+Tp/d5YQgMDW1rvkvfrtqjGav2atWu2iVaJKlr6zgd0zVVw7ukaminZMU5bKbt9GcgetCfgfAguRJBSK7UHxcTIDLsKXbr65V79NnSnIMuUC9JTptFZ/XN0Ogj26lnxoFF6unP0ce6d60SPx0jW9E2U70/JlnFF0yVr+3gMEWGxkZ/BqIH/TnyONZ8roQZf5HFGzwyuLzfFSod8ZDkYM26aLE5t0zfrd6rWWtztayWU4dJksNm0eCs5IpkS9dU9cqIl5WHmYCowfUZCA+SKxGE5Er9cTEBwqfM49Ostbn6cvlu/boxX4dai7NzWqwuPrytzh2QodQ4R9B2+nN0sW+do4TPb5S1ygK8/rg0FV/whnyZ/cMUGZoC/RmIHvTnyGTbvVIJ/71FtrwNQdt8aT1VfNZE+dP7hCEyNKacIrdmr8/VrLW5mru5QO5DfQCvJD3BoSM7p+j43u00vFuaWtk9jRgpgMbG9RkID5IrEYTkSv1xMQGalt8w9Ht2ob5YlqPv1+SqxO07aHu71aKTe6XpkkFtdUSnZFkslhrb0p+jhGHIufQtxf/4iCx+85d2X0pnFZ//uvytuoYpODQV+jMQPejPEcxdovhZDypm5UdBmwybU2VH363ywddLVls1O6O5K3X7NGdjvn5cl6vZ6/OUX+YNaf+MRIeGdEzREZ2SdUTHFHVOiz3oZ3UAkYXrMxAeJFciCMmV+uNiAjQ+v2Fo2fZifbd6r2as2qOdRe5D7pOVGqOLDm+j8wdkKi3BWavz0J+jgNel+B/uV8zKD4M3tR2k4nMny4hvHYbA0NToz0D0oD9HPufK6Yqfeb8snuCpWT0dhqn09CflT+4YhsjQVHx+Qyt2FuuXjfn6dWO+lm4vOuSo8qrSExwalJWsAe0TNbB9kg5rm6gYu7VxAgZQb1yfgfAguRJBSK7UHxcToHH4/IYWbyvS96v36vs1e7WrFgmVOIdVJ/dqrXP6Z2hY5xRZQ3zyjf7cvFkKtynxy5tkz1kStM3d/XSVnPEM87+3IPRnIHrQn5sHa956JXx1q+x7VgZtM5yJKjv6LpUP/AOjWFqIonKv5m0u0JyN+ZqzMV/bCspDPobdalGfNgka2D5JA9onaWCHRLVLjmF0CxAhuD4D4UFyJYKQXKk/LiZAw/H6DS3cUqjvVu/VD2v2ak/JoedhtlqkYZ1TdE7/TJ3UM03xzrp/Yac/N1+OdV8r/rt7ZC0vCNrmGjpOZcf8hZs5LQz9GYge9OdmxOtS3JynFLPgVVkU/P/Jm9FPpSc/Kl/bQU0fG8IqO69M8zYXaP6WQi3YUqScotCTLVLF6JaBHfYlW9on6bC2CYpz8BkPCAeuz0B4kFyJICRX6o+LCVA/eaUe/bIxX7PX52nOxnwVumo3V3PPjHid0y9DZ/bNUGZS7ab9OhT6czPkLlb87EcVs+zdoE2GI14lp/1bnp5nhyEwhBv9GYge9Ofmx771V8V/e5dsRduCthmyyN1/lMqOvUdGbEoYokM4WSwWpaSkaNPeUv2wbIt+zy7Q/OxC5RQfepR6dexWi3pmxKt/+0T1b5ek/u0S1aV1XMgj2AGEjuszEB4kVyIIyZX642IChMYwDK3aVaLZ6/P004Y8LdteXM1zjdXrkhanU3u31ml9WqtXZkKDx0Z/bl7sG39Qwg/3y1q8PWibL7Wris95Rf7WPcMQGSIB/RmIHvTnZqq8SPH/+5tiVkyrdrM/rrXKjr9P7j4XSdwIbzGq68+GYWhLvksLtxRq6fZiLdlepHW7S2v9HaGqRKdNfdslqv++n37tkhrsYSwAB3B9BsKD5EoEIblSf1xMgEPLKSrX3M0Fmru5QHM25WtP8aGn+9qvZ0a8TunVWqf2bq1u6XGNOscy/bl5sBZsUdxPj8u57qtqt7t7jlTJKY9LMclNHBkiCf0ZiB705+bNvu03xf9wv2y5a6vd7ukwTKUn/k3+9N5NHBnCobb9ubjcq+U7KhItS7cXa+n2IuWX1W6Ee3XaJDnVr12iBrSvGN1yWJtEJcQwnRhQH1yfgfAguRJBSK7UHxcTIFheqUfzsws0L7siobI51xXS/n3aJOjU3q11Sq/W6tK66RYgpz9HuPIixc17XjGLpsjiC546wnDEq3TEBLn7XsoTsKA/A1GE/hwFfG7FLJyiuN+ekcVbFrTZsFjl7nupyobfISOxbRgCRFOpa382DEPZeS4t2V6kJdsqEi5rd5fIX8e3A4uk7unx6tcucd+UYonqnh4vh81atwMCLRDXZyA8SK5EEJIr9cfFBJB2F7u1aGuhFm8r0vzsQq3OKQlp/1iHVUd1TtHx3Vvp2G6t1DY5ppEiPTj6c4TyuhSz9B3Fznte1rK91TbxZB2t0lMelz+1S9PGhohFfwaiB/05elgLtyrux4fl3DCj2u2GPVauQdepfOg41mOJUg3Zn0vdPi3fUaxlO4q0bEexlm0vrvPaLZIUa7eqT5sE0wiX9ikxjTpyHmjOuD4D4UFyJYKQXKk/LiZoafyGoY17yrRwW6EWbS3S4m2F2ppfHvJxOqbG6rjurXR891Ya0jFZMfbwPyVGf44w7mLFLJ+m2N9fkrUkp9om/pgUlR3/f4xWQRD6MxA96M/Rx7HhO8X9OEG2wq3VbjecSXId/geVD75eRlxaE0eHxtTY/TmnqFzLdxRr6Y5iLd/3U+L21fl4reLt6t8uqWKEy76flDhHA0YMNF9cn4HwILkSQUiu1B8XE0S7vSXuwBeT5TuLtWRbkYrKQ/+CkhRj0xGdUnRk5xQd0zVVndOabrqv2qI/RwZr4RbFLJqqmOXvy+IuqraNYbWrfOAf5DrqNhmxqU0bIJoF+jMQPejPUcpTptj5Lyp2wavVThUmVUz5WT7gKrmGjJWRkNnEAaIxNHV/9huGNu0tqxjZsqNIy7YXa+3uUnnrOp+YpI6tYvclWipGt/RukxARD4oBTY3rMxAeJFciCMmV+uNigmhS5PJq+c6KRMqKfb93FdVtaH2sw6ohWck6snOKhnVOUe/MBNmskT2ygP4cRj63HBt/kHPFh3Js+kEWw19jU3e3U1V23H3yt+rWhAGiuaE/A9GD/hzdLCU5ivv1aTmXvy+LUf0DPIYtRuX9R8k19EYZSe2bOEI0pEjozy6PT6tzSrVse8V0Yst3FGtLfmhrRFZmt1rUKzPeNMKlS+s4WRlVjSgXCf0ZaIlIrkQQkiv1x8UEzVVBmUdrckq1OqckkEjJzqv7l4oEp00D2yfp8KwkHdkpRQPaJza7BSHpz03MUyZH9v/kWP+NHBu+l7W84ODNOx6nsuF/kq/9EU0UIJoz+jMQPejPLYM1b73i5jwlx9qvZFH1/48Ni02enmfJNeha+doOYUrQZihS+3NeqScwWn//Gi75Zd46Hy/RaVPf/VOJ7Vu/JSPR2YARA+EXqf0ZiHYkVyIIyZX642KCSGcYhrYXlGt1TolW7yqp+J1Top2FdV/sUZLaJjs1qEOyBmcl6fCsZPVIj4/4kSmHQn9ufNbCrbJvnSPHhhlybP6fLN6DJ/QMWeTpfppcg2+Qr8ORTRQlogH9GYge9OeWxZq7TrHzXpBz9ac1jmSRJG+bw+UadJ08Pc+SbNy0bi6aS382DEPbCsq1bPuBZMuqXSUq99Y8uvpQ2iQ5TcmWvm0TFe+0NWDUQNNqLv0ZiDYkV2opPz9fCxYs0M6dO1VcXKzMzExlZWVp8ODBstka5gJMcqX+uJggknh8fm3YU6ZVu4q1et+olDU5JSquwxoplcU5rDqsbaL6tU1Uv3aJGtQhSW2SYxoo6shBf25gXpdse1bJtnu57Dt+l33rb7IVbavVroYjQeX9LlX54dfKn9q5kQNFNKI/A9GD/twyWfM3K3b+i3Ku/FAWf80jCPxxreXufZ7ch10sX0Y/RrNEuObcnz0+v9btLg1MJbZ0e5E27i2rYZzVoVlUsX5Lr8wE9cyIV6/MBPXKjFe75BhZ+HeMZqA592egOSO5cggbN27Uk08+qVmzZsnj8QRtz8jI0OWXX65x48bJ6azfEzokV+qPiwnCJbfUo7U5JVq7u1Rr9o1G2bCnrF6LM0qSw2ZRr8yEQCKlX9uKOYOb+6iU2qA/15HPLWtBtmz5G2XN2yjb3lWy5yyXNXfdQZ84rY6n/TC5+14id4+zpJikRgoYLQH9GYge9OeWzVK4TbG/v6yYFR/UuPD9fr7WvVV+2MVy9z5fRmKbJooQoYi2/lxc7tXKnSVauqOoYkqx7cXKKa7fDAGJTpt6ZsarZ0ZFsqVnRoJ6ZMQzygURJ9r6M9BckFw5iE8//VQTJkxQaWnpIdv27dtXEydOVFZWVp3PR3Kl/riYoLG5vX5t3FumNbtLtDanVGt3l2jd7lLtKQlOvobKYbOoR0a8emUkqO++RErPjHg57c1rrZSGQn+uwu+VpSxXlrJcWctyZSnbK2vpHlmLdshavL3id9EOWUp2HnQB+oMxLFZ5OwyTp/sZcnc7XUZyhwb+I9BS0Z+B6EF/hiRZXAVyLn9fMYun1mokrLfdELm7nylPjzPlT+nUBBGiNlpCf84pKteyHcWBES7LdxSrxF2/mQQkqV1yjLqlx6lb63h1bR2nbunx6tY6Tkmx9gaIGghdS+jPQCQiuVKDH3/8UePHj5fff+AGVZcuXXTUUUcpNTVV2dnZmjlzplyuA/PT9+jRQ++//74SExPrdE6SK/XHxQQNxTAM7SxyB0ajrN1dqrU5JdqcWyZfA/yzSom1q3ebiqefemcmqHebBHVJi2t2i843pubcny2uAtl2LZbF55H8norEiN974LWv0mu/R/J5Kp7+dJfI4imVxVPpd1l+RSLlEAvM15U/tlVFQqXbqfJ0PUVGXFqjnActW3PuzwDM6M8w8XvlWD9DMYumyLF9Xq128Wb0lafrqfJ2Ok7etoNYoyWMWmJ/9vkNbcotC0wltnxHsdbuLq33jAP7ZSQ61a11nLruS7zsT8C0inc0yPGBmrTE/gxEApIr1cjJydGZZ56pkpISSRVvUPfcc4+uueYaWa0Hbnzm5ubq9ttv19y5cwN1I0eO1FNPPVWn85JcqT8uJgiVYRjaW+LRxr1l2rC3VBv2lO1LptR/bZT9slJj1CszIZBE6Z2ZoDZJTubuPYTm2p8dG2Yo4cubK5ImEcaQRf5WXeXL6C9v+yPk6XCU/K17ShaSemhczbU/AwhGf0ZNrHkb5Fw5Xc5VH4ewrlu8vB2OkqfjsfJmDZcvvY9k5cn/pkJ/ruDy+LR+T6nW5JQGpnleu7tUha6a1xcKVWqcXV3S4tSpVaw67f/dKk4dW8UyxRgaBP0ZCA+SK9V4+OGH9c477wTKt912m2655ZZq25aXl+vCCy/U+vXrJVW8mU2fPl19+/YN+bwkV+qPiwlqsn8kyoY9FQmUjXtLtWFvmTbuLWuwD80xdqu6p8epZ8aBJErPzHglxfAFsS6aa39Oev8C2XcuCncY8seny5fabV8ypa+8Gf0rblg4E8IdGlqg5tqfAQSjP+OQDL/sW3+Vc+VHcqz/VlZ3Ue13dcTL22agfOmHyde6t3zpveVL68Xnl0ZCf66ZYRjKKXJrze4Srck5kHDZnFumBhrkEpCe6FCnVvsTLhVJl05pseqYGqtYB4kX1A79GQgPkitV7NmzRyeeeGJg8fpOnTrpq6++ksNR8xDOOXPmaMyYMYHy6aefrokTJ4Z8bpIr9cfFpGUzDEO7iz3amu/Slrwybcl3aUueS1vyXdq0t0xlnrqtQ1GdDikx6pmZoJ4Z8ft+EtSxVWyLWGi+qTTX/pzwxY1yrv+2Uc/hj02VEZsmIy5N/qS28id1kD+xnfxJ7eRPbC9/aicZMSmNGgMQiubanwEEoz8jJD637Ft+kXPd13Js+FbWsty6HSY5S/7kTvKndJI/uaN8KVnyJ2dVfB6KTZURkyxZG+AmtGFIvnJZvC7JUyaLt+JHnjJZ9pXlLZPF46r0uqyivbdym3Jp3xp4vsx+Kh98vYzY1PrH18Doz6FzeXzanOcKemhvS56rwaYWq6xNklPtU2LUPiVW7ZJj1D4lRu1SKn63TYppsetzIhj9GQiPhk6uNPvHs7///vtAYkWSLrvssoMmViTp6KOPVrdu3bRhwwZJFeu1lJaWKj4+vlFjBVoar9/QnmK3dhaWa2ehW7uKyrWzqOL1tvyKJIqrARMokpQYY1PPjIq1UXrsS6L0SI9XQgxPEKF6pSc+Iski+67FMiw2yeqQbHYZVnvFa6tdxr7fFfUOyeqQ4YiX4YiXnAn7XifIcMTJiEmpSKLEtZYRlyYjrhXTZQAAgObB5pS3y4nydjlR8v9d9u3z5Ng4U/YtP8m+e0XtD1O4VbbCrdLWX6rdbsgiIzZlX5LFLllsMqy2wGtZbTIsdlkMn+RzV6x353NXJFL8Hsnnrih7ymRRA9+Q3PSDbLnrVTLyhYY9LsIi1mGrmO450zyayuPzK3tf0qViyukybdhTMdLFXY9FO3cVubWryK2FW4NHgFlUscZLINmSHKPMRKcy9v8kOZWe4GBdTwBoRpr93Z4ffvjBVD7zzDNrtd8ZZ5yhF198UVLFVGE///yzTjvttAaPD4g2Pr+h4nKvcks92lviUV6pJ/A6t9Sj3JKK17uKyrW72N3gQ7D3i7Vb1aV1nLq1jlO39Hj1yqxIpLA2CkJlJLZVyTkvhzsMAACAyGK1y5t1tLxZR0uSLKV7Zd/6ixzZP8u+dY5sBZvrfGiLDFlc+ZIrv2FibWC23cvDHQIamcNmVff0eHVPNz9k6/Mb2lbg0oY9ZcrOK1N2XsXsCtm5ZdpZ5K7XOQ1JOcVu5RS7tXhbzdPvtYq3H0i47PtpneBQqziHUuMdahVvV2qcQ6lxdhIxABBmzT658vvvvwdep6enq2PHjrXab/DgwabyvHnzSK4gahiGIbfPkNvrV3mlH7fPr3KvcaC8r87lqSiXuH0qLveqqNyn4vKK18XlPhW5Kn4Xu70qdTfsSJNDSXTa1HVfAqVb6zh1TY9Tt9bxapcSIytJFAAAAKBJGPGt5el1rjy9zpUkWUr3yL5zoWy7V8i2Z7Vse1fJmr9JFqNpvy80Bnfv88IdAsLEZrXsW08lLmiby+PT1nyXsvP2/eSWBV7vLq5f4qWyvFKv8kq9WpNTesi2iTE2tYqvSLS0iq9IwCTH2pUUa1NSjF1JsXYlxdgO/N5XF+ew8lAiADSAZp1c2bVrl4qKDmT7DzvssFrvW3UB+/0L3AMNzes3VO7xy+X1qdzrV9m+RIYr8NsnV9UkSOUEiO9AIsQVSIgYcnnM2w60r9i3OYmxW9UhJUYdW8VW/KRWLArYLT1OGYmMRAEAAAAijRGfLk+30+TpVukhRa9Lttx1suZvkrVwi2wF2bIWbpW1YIusJTsr1jpp7LgsNskRL8MeK8MRJ9njqryOk+GIrfQ6TrLFVExLZrHKlzlA3g5HNXqcaH5iHTb1yEhQj4yEoG1lbp+y813anu/S9oLyip/Ccm0vcGlHQbmKyn2NElPxvgcjt4S4JLDNon0JF7sS9ydi9iVhEmNsSnTaFe+0KSHGpgTnvp9qXjNyBkBL16yTK/vXTNmvffv2td43PT1dDocjsF7Lxo0bGzQ2RLb9CY9yb0ViI5Do8Pr3JUL21/kCdWXe6pMirn3t99eVV6pzefyNskhec+O0WdQmOUZtk5z7flcs6tdpXyIlI8nJKBQAAACgubPHypfZX77M/tVv97pkceXLWpYniytPFndxxULyfq/k91WsseL3Svt/W2ySzSnD5qhIgNicFWvi2Z0y9q2Bp30JEsNekTCR7eBrsAKNIc5Z/dou+xW5vPuSLeXaUVCRdMkpcmt38YGf+qz1EiqfIeWXeZVf5q3XcZw2i+KdNiXG2CqSMU67EpxWJcTYlei0BSdoKpcr1ceTqAHQTDXr5MquXbtM5bZt29Z6X4vFojZt2mjr1q3VHgt1s73ApVK3T4Ykv1ExPVXl3+bXFR8c4vd45TcMFRUVy+c35PUb8vj8+35XvK74bcjjr3jtrVzvr7Tdt2/kxv7khte3L4liTpyQ8GgYiU6b0hIcSot3BH633vc7I+lAMqVVnJ3RJwAAAEBLZ4+VkdhWvsTaf3cHokFSrF29Y+01Jl8Mw1Chy7sv0eIxJV12F7uVW+JRfplXeaUeFbjqlxBpSG6fIXcDJGkkyWGzKMZuVazDqji7TbEOa6Aca7cq1mEzleMqlx1WOW1WOWwW2a37fmwW2a3WwGtHoG5ffVBbi6wWiywWySIdeG2xyLqvjvsaAKpq1smV0lLz/JPx8fE1tKxeQsKBi5rX61V5ebliYmIaJLaWprjcqxvfXa6Vu0rCHQoOwm6t+LDitFsUY7PKaa/4sFJRZ1XCvidOEvfNxVrx+sDvpBhb4HWreIdi7DxZAgAAAABAfVgsFqXEOZQS51CPjIO39foNFZZ5lLcv2ZIf+O1RXqlXReVeFbkq1lKt+O1VscunYnfjTE3WUCoemK2Y5kzyhDucGlVOtFgsqj4hU/m1RbLoQL3FYtn3W7JZK9a+MQx/oK7ydosqva58nKBjVtqvUmzVH7Oac1hq2Haw/arbtu+1KsWxn2nbvn33N7SY2lgCr1WlvnK7qtuCz7E/Cpn+W0iSYUjGvt+SYSob+8qmdlXqVKlu3yH27W9UOm6lcnV1lfZRlfL+x8FNdTWeo0osVdp0bBWrq49sr27pod0zR+1FVXIl1MRI1fYlJSUhHYOM9QHTF+eQWAmBw2bZ9+SFVbH7nshw2iuevjAlPGxWxdgtpgSI6bWt6n6WoO0xjorfDnvFExtAYzF/cOLfGtCc0Z+B6EF/BqIH/RlSxf2E1okxap0Y2j0wn99QiXtfwsW1PwnjU2GVZExxuU+lbp+K3V6Vun0qKfepxL3vp9wXuIHbUvkr3/mueBGuUIBD+n1LoX7fUqhPbhgiG/cEG0WzTq6Ul5ebyg5HaHOrOp3Ogx7vUFJTU0NqH83SkvPDHUK9OWwWxTps+34qhpjGVvqJc1j3/a5ct6+t01aRJHHaKoanOm1V2pqPxxsaol1KSkq4QwDQQOjPQPSgPwPRg/6Mumhdz/39fkNlHp+Ky70VPy6vSsorEjUl++uq1Be7vCpxV/zev72kvOIYABrfljyXEpKSFeuwhTuUqNSskytVR5nsX5y+ttxu90GPh9q7Ylgn/b45T18v3ymXxy/rvqGR+4dBWvfNUVl1zsqKsnmbY988mY59ozJMZdu+sr2iLlC2WeWwV5SdtookyP5ER9VESOUESuUECAkPAAAAAACA6lmtFiXE2JUQY1ebeh7L7zdU6vHtS7p4VOb2q8zjk8vjC/x2eXwqc/tU5vEfKAd++1XmPtCu3OsPrN/rDazd6z+wrq/PkHffmr1AS3LOwHZM69+ImnVypeoaK6GOPKnavvIaLLWRn58fUvtoN+HMrnrojC4hDU+2WCyBJ24KCgoCcw02LkPSvickvJLHK3nKmuC0QJQLT38G0Bjoz0D0oD8D0YP+jGgUKynWKckpSdZ9P6HNTBMKwzDkMyTv/kSM35DHZ8jnN+SvtLZF4LVhyF9l7Qu/cWBdC/++7ar82jjwuuq6G5XX74iPT5AhQ0XFJVXW1ai6X/XrglS7JodpWw3H3BefJNPfW7lc3Tof/n0774/LVK50zP3Hkcz7V64/cC6jUjvz/6fK9UalnaquSVL1WKpcX+X8MhRY56XyOjWqbh0bVbyourbMfoG6ffupSrvK67xUXaMm6LiV6qyV1rQJirXSeaym81YfZ+e0OB3RKVkFBQVChYaeiSqqkislJaGt+VG5vd1uD3nkCh9kqlfX/y4Vb9z8NwWiAf0ZiB70ZyB60J+B6EF/BurOZpFsdqvCOX+NxWIJ3OTNz8+nP6NR8e+r8TTrMUFt2pgHIe7atavW+xqGYWpf9VgAAAAAAAAAAADVadbJle7du5vK27Ztq/W+e/bsMa3R0q1btwaLCwAAAAAAAAAARK9mnVzJzMxUUlJSoLxy5cpa77tixQpTmeQKAAAAAAAAAACojWadXJGkoUOHBl7v3btX2dnZtdpvwYIFpvKRRx7ZoHEBAAAAAAAAAIDo1OyTK6eccoqp/PXXX9dqv2+++SbwOiYmRscee2yDxgUAAAAAAAAAAKJTs0+unHzyyXI4HIHyBx98YFpLpTpz5szRxo0bA+URI0YoPj6+0WIEAAAAAAAAAADRo9knV9LT03XZZZcFytnZ2XrllVdqbF9eXq6///3vgbLFYtFNN93UqDECAAAAAAAAAIDo0eyTK5I0btw4JSQkBMoTJ07Ua6+9Jr/fb2qXm5ursWPHat26dYG6s88+W3379m2yWAEAAAAAAAAAQPNmMQzDCHcQDWHWrFm66aabTAmVLl26aPjw4UpNTdXmzZs1c+ZMuVyuwPYePXro/fffV2JiYp3OmZeXV++4WzqLxaLU1FRJUn5+vqLknyPQItGfgehBfwaiB/0ZiB70ZyB60J+B8GjVqlWDHs/eoEcLoxNPPFGPP/64JkyYoLKyMknSpk2btGnTpmrbH3bYYXruuefqnFgBAAAAAAAAAAAtU1RMC7bfBRdcoOnTp+vUU081LXJfWUZGhm655RZNmzZNWVlZTRwhAAAAAAAAAABo7qJm5Mp+3bp10/PPP6+8vDwtWLBAO3fuVElJidLT09WxY0cNGTJENpst3GECAAAAAAAAAIBmKuqSK/u1atVKp5xySrjDAAAAAAAAAAAAUSaqpgUDAAAAAAAAAABobCRXAAAAAAAAAAAAQkByBQAAAAAAAAAAIAQWwzCMcAcBAAAAAAAAAADQXDByBQAAAAAAAAAAIAQkVwAAAAAAAAAAAEJAcgUAAAAAAAAAACAEJFcAAAAAAAAAAABCQHIFAAAAAAAAAAAgBCRXAAAAAAAAAAAAQkByBQAAAAAAAAAAIAQkVwAAAAAAAAAAAEJgD3cAaH7y8/O1YMEC7dy5U8XFxcrMzFRWVpYGDx4sm83WpLH4/X6tW7dOK1euVF5ensrKypSQkKDWrVurb9++6tKliywWS5PGBDQnkdSfJWnVqlVatWqVcnNzZRiG2rRpo65du6pfv35NHguA+ikpKdH8+fO1a9cu5efnKy0tTR06dNDQoUPldDrDHR4AAADQ7GzdulWbN2/Wjh07VFBQoPLycsXFxSklJUU9evRQnz59+KwNNCGSK6i1jRs36sknn9SsWbPk8XiCtmdkZOjyyy/XuHHjGv2NvKioSJMmTdJHH32k3bt319iuQ4cOuuKKK3TNNdcoJiamUWMCmpNI6s8ul0tvvfWWXn/99Rr7c6dOnTRq1Chdc801YUn6AJGqpKREK1as0JIlS7RkyRItXbpU27ZtC2zv0KGDfvjhhyaNKScnR0899ZS++eYblZaWBm1PSUnReeedpz/96U9KTExs0tgAAGipiouLtXbtWm3YsEH5+fnyeDxKTk5W27ZtNWjQIKWlpYU7RCDiRMJnbbfbrRdffFELFizQsmXLVFxcfND2cXFxOuuss3T99derR48ejRobAMliGIYR7iAQ+T799FNNmDCh2pskVfXt21cTJ05UVlZWo8SycOFC3X777dq1a1et9+natauef/55de/evVFiApqTSOrPmzZt0vjx47Vx48ZatR88eLCeeeYZtWnTplHiAZqL1157TdOnT9e6devk9/trbNfUyZWffvpJd999t/Ly8g7ZtmPHjpo4caIOO+ywJogMiHyRcAOnMrfbrRUrVmjp0qWBmDZv3qzKXx9Xr17dZPEAzUmk9OelS5fq22+/1S+//KIVK1Yc9DPDwIEDdc0112jkyJHM/oAWL5I+a+fm5uroo48OeT+Hw6E//vGPGjduXCNEBWA/kis4pB9//FHjx483XVC6dOmio446SqmpqcrOztbMmTPlcrkC23v06KH333+/wZ9IXbVqlUaPHm3K1FssFg0dOlT9+vVTUlKSCgoKtGzZMi1cuNC0b0ZGhqZNm6b27ds3aExAcxJJ/Xnr1q265JJLTDdhHQ6Hhg8frl69eslut2vz5s2aPXu2SkpKAm369Omjt99+myfe0aLdfPPN+v777w/Zrilvxi5fvlyjR49WWVlZoC4zM1MnnHCC0tPTtWPHDs2cOVOFhYWB7RkZGfrwww/Vtm3bJokRiESRdANHkj777DO9/vrrWrNmTbWjWysjuQKYRVJ/vvbaa/XLL7+EvN/RRx+tf/7zn8rMzGyEqIDmIZI+a1dNrqSkpKh3797q2rWrUlJS5HQ6VVhYqLVr12r+/PlB1+5x48bpzjvvbNQYgZaMacFwUDk5ObrjjjsCHwwtFovuueceXXPNNbJarYF2ubm5uv322zV37lxJ0rp16/Tggw/qqaeearBYDMPQAw88YEqs9OrVS08++aR69eoV1H7FihW68847A0/E7969W48++qief/75BosJaE4iqT/7fD7ddtttpsTK4MGD9a9//UsdO3Y0tc3Pz9eECRP03//+V1JFkrWh4wGiQXx8vPr166fly5fXamRaQ3K5XLrllltMiZXrrrtOd9xxh2lqweLiYj3wwAP66quvJFVcm//0pz/pvffea9J4gUgyb948rVmzJtxhBCxdulTLly8PdxhAsxRJ/Tk3Nzeorn379ho0aJAyMzMVHx+vPXv2aO7cudq0aVOgzZw5czRmzBi9/fbbatWqVRNGDES2cH3Wtlgs6tevn84880ydcMIJ6t27d42jy3Jzc/Wvf/1L06dPD9S98sorOuGEE3TEEUc0VchAi0JyBQf14osvmp4Y/+Mf/6hrr702qF1aWpomTZqkCy+8UOvXr5ckffXVVxo7dqz69u3bILHsH1K9X0pKiqZMmaKMjIxq2/ft21dTp07VyJEjVVRUJEn6/vvvtWvXLqYUQosUSf35q6++Mt246d69u6ZMmaL4+PigtqmpqXrqqafkcrk0c+ZMSdKXX36pMWPGaODAgQ0SD9DcxMTEaODAgRowYID69++vAQMGqHv37rJarTr55JObPLny1ltvaceOHYHyxRdfrHvuuSeoXWJiop588knl5eVpzpw5kiqm+/zuu+906qmnNlm8QKQLZ7K0OjExMerTp4+2bt2qvXv3hjscoFkJd39OT0/XhRdeqIsvvlhdu3YN2m4Yhr755hs9+OCDKigokCStX79eDz30kJ599tmmDheICJH0WbtVq1amZMnBpKWl6fHHH5fFYtFHH30kqaKPv/766yRXgEZCcgU12rNnjz744INAuVOnTrrxxhtrbB8TE6MHHnhAY8aMkVTxBv7iiy9q4sSJDRLP/psw+1122WU1Jlb2a9OmjS699FJNmTIlENNvv/2m8847r0FiApqLSOvPb7/9tql8//33V5tY2c9qtWrChAmaPXu2vF6vJOn555/Xyy+/3CDxAM3Nf/7zn3CHEODxeDRp0qRAOSkpqdrEyn5Wq1UPP/ywzjzzzMBIuhdeeIHkClqsSLqBI0l2u119+vTRgAEDAj/7p+u8+uqrSa4ABxFJ/TktLU333nuvRo8ebRpFWpXFYtGZZ56pjh07mqb3/Oabb7RkyRIeZkKLFEmftevi7rvv1ieffCKfzyepYl1EAI2D5Apq9P3335vmarzsssvkcDgOus/RRx+tbt26acOGDZIq1ncoLS096E3T2qq6gP2gQYNqtd+QIUMCyRWpYmokoKWJpP5cXFxsGoXWoUMHHXPMMYfcr23btjr++OMDo1d+/vlnFRYWKjk5uV7xAKif3377zTTF3znnnKOUlJSD7tO5c2cdc8wxgS96y5cv15YtW4KmBQRagki7gXOw5CiAg4uk/vzqq6/Kbq/9LZ9+/frpmmuu0UsvvRSo++abb0iuAM1QWlqaunXrprVr10qSysrKlJeXx1R/QCOwHroJWqqqi3KdeeaZtdrvjDPOCLwuLy/Xzz//3CDxVF0QMDY2tlb7xcXFmco1zU0JRLNI6s+rVq0KPEEj1T5RKlUkS/fzeDyBRAuA8Kn6/lL5feNgqr4P1WbRUAAAUDuhJFb2GzlypKlc+YEoAM1LYmKiqWwYRpgiAaIbyRXU6Pfffw+8Tk9Pr/XTpIMHDzaV582b1yDxZGVlmcqV53Y/mG3btpnKnTt3bpB4gOYkkvpz5SfcJYW0BlJmZmaDxwOgfubPnx94bbPZav2Ea+VkqUR/BgAg3Kp+V2YaQKD52r59e+B1YmKiUlNTwxcMEMVIrqBau3btCiwCL0mHHXZYrfetuuD1/gWx6+v44483lf/73//War+vvvoq8Do+Pl5HHXVUg8QDNBeR1p9dLpepfLA5oKuKiYkxldetW1fveADUnd/v16ZNmwLlzp07KyEhoVb7duvWzTQKtaE+LwAAgLopKSkxlesy+gVA+M2dO9c0tf6IESNktXILGGgM9CxUa/8aC/u1b9++1vump6eb1nLYuHFjg8TUp08fnXjiiYHyzz//rHffffeg+0ydOlW//vproHzttdcqKSmpQeIBmotI689V10gpLCys9b5V21b92wA0rW3btqm8vDxQDuX9xWKxqG3btoHyli1bTGtDAQCAprV69WpTufJ1GkDzsGPHDv3f//1foOxwOHTTTTeFMSIgupFcQbWqLh4fyocqi8Vimuan6rHq429/+5tpOqMJEybozjvv1G+//abi4mIZhqGioiLNmTNHf/zjH/XYY48F2p500klcUNAiRVp/rjq1VyijT/YvyLdfQUGBSktL6x0TgLqpz/uLZJ4W0Ov1Mv0IAABh9Nlnn5nKw4cPD1MkAEJRUlKipUuX6plnntG5556r7OxsSRWjz5544gn17NkzzBEC0YsxnqhW1ZuV8fHxIe1feUoQr9er8vLyoOl86iIzM1Pvv/++JkyYoG+//VaS9OWXX+rLL7+scZ/ExESNHTtWN954o2w2W71jAJqbSOvPvXr1UmJiooqLiyVJixYtUl5enlq1anXQ/QzD0I8//hhUX1paGvLfBKBhVJ0+pD7vL9UdDwAANI1Nmzbp888/D5RtNptOO+20MEYEoDput1uDBg0KlA3DkN/vD2o3ZMgQ/fWvf631eogA6oaRK6hW1Zuxod5Irdq+IW+WtG7dWhMnTtQrr7xyyCdkO3XqpKefflo33XQTiRW0WJHWn202m0444YRA2e12a8qUKYfc7/PPPw88gVMZI1eA8Gno9xf6MwAATc/v9+v+++83Tc95wQUXmGaNABAZDMOQz+cL/FSXWDnnnHP02GOPkVgBmgDJFVSr8vzpkkxrLtRG1QWqqx6vPnbt2qU//elPGjdunHbu3HnQttnZ2Ro7dqyuuOIKFr5GixWJ/fm6664zladMmaIZM2bU2H758uX6+9//Xu02l8tV73gA1E0kvr8AAIDQPP/885o3b16gnJaWprvvvjuMEQGojy+++EJnn3227rnnHhUVFYU7HCCqMS0YqlX1SdJQF5h1u90HPV5drVq1SmPGjFFeXp6kivUgzjnnHF100UXq06ePkpKSVFRUpBUrVujjjz/Wl19+KcMwtHDhQl1yySV69dVXdeSRRzZILEBzEYn9ecCAARo1apTeffddSRXTjd1222265JJLdOmll6pXr16y2WzKzs7W559/rtdff11lZWWSKqYRqjx6hinBgPCJxPcXAABQe999952ef/75QNlisejRRx9VWlpaGKMCUJOYmBitXr06UPZ6vSooKNCaNWv0/fff66OPPlJpaan8fr8++eQTrVq1Sm+88YZSUlLCGDUQvUiuoFpVb1aG+iRp1fZV51Svi4KCAt1www2BxIrD4dDEiRN10kknmdqlpaXpuOOO03HHHaeRI0fqtttuk8fjUVlZmW699VZ98cUXysjIqHc8QHMRif1Zku677z5t3bpVs2fPllQxHcG0adM0bdq0Gve5+OKLtXv3bv3vf/8L1CUnJzdIPABC19DvLyRLAQBoOr///rvuuusuGYYRqLv11lt18sknhzEqAKGw2+1q3bq1jj76aB199NEaM2aMbrnlFq1atUpSxUPKjzzyiJ588skwRwpEJ6YFQ7Wq3twIdY2Fyu3tdnuDPIn60ksvKScnJ1D+05/+FJRYqerkk0/W7bffHijn5+frxRdfrHcsQHMSif1ZqpgO6OWXX9YNN9wQNDVQVXa7XbfccoseeeQR7d69O1BvtVqVmJjYIPEACF19F6Sv2r6hkrcAAODgVq9erfHjx5um2B01apRuvfXWMEYFoL6ysrI0efJk00iVL774QmvXrg1jVED0IrmCarVp08ZU3rVrV633NQzD1L7qserCMAx98skngXJ8fLyuuuqqWu179dVXm24uf/7559Uu+AVEq0jrz5XZbDbdfffdmjFjhu644w4NGzZMmZmZcjqdSklJUZ8+fXTDDTfos88+02233SabzaZt27YF9u/WrZusVi5lQLjU5/1FkmnttP1P3QEAgMaVnZ2t66+/XoWFhYG6s88+Ww8++GAYowLQUNLT0zV69GhT3bfffhumaIDoxrRgqFb37t1N5co3Mw9lz549pjnXu3XrVu94srOzlZubGygPHDhQsbGxtdo3NjZWAwYM0G+//SZJKiws1ObNm9W1a9d6xwU0B5HWn6vTtm1bjR8/XuPHjz9ou02bNpm+BA4YMKBR4gFQOx06dFBsbGzgqddQ3l8MwzAlVzp16iSHw9HgMQIAgAN27dqlMWPGmEaDH3/88frnP//JQ0tAFDn22GP1wgsvBMqV12kB0HC4cqJamZmZSkpKCpRXrlxZ631XrFhhKjfEzdi9e/eayunp6SHtX3WNlf3rtgAtQaT15/pYsGCBqTxw4MAwRQJAqpiar0uXLoFydnZ2racGW79+vWnNlXC/vwAAEO1yc3N17bXXmh6GOOKII/Tcc8/xgAMQZaqOCC8uLg5TJEB0I7mCGg0dOjTweu/evcrOzq7VflVvfh555JH1jqXqGg+hLphbVlZmKrNgLlqaSOrP9fHFF18EXjscDp155plhjAaAZH5/8fl8WrJkSa32W7hwoakc7vcXAACiWXFxscaOHav169cH6vr166eXX3651rNCAGg+qiZTkpOTwxQJEN1IrqBGp5xyiqn89ddf12q/b775JvA6JiZGxx57bL1jqZpxr/yBsDaqtk9LS6t3TEBzEkn9ua7Wr1+vX3/9NVA++eST6ctABKjr+0vVdlWPAwAAGobL5dK4ceO0fPnyQF2PHj00adIkJSYmhjEyAI2l6iwU7dq1C1MkQHQjuYIanXzyyaahwR988IFp7YXqzJkzRxs3bgyUR4wY0SCjRNq2bavMzMxAecOGDVq1alWt9l26dKk2bdoUKHfo0MF0LKAliKT+XFePPvqo/H6/pIqpiK6//vqwxQLggGHDhpkSnV9++aVpbaTqbN68Wb/88kug3K9fP3Xs2LHRYgQAoKXyeDy67bbbNH/+/EBdp06dNGXKFB5UAqKUYRj68MMPTXXHHHNMmKIBohvJFdQoPT1dl112WaCcnZ2tV155pcb25eXl+vvf/x4oWywW3XTTTTW237p1q3r37h34Ofnkkw8az0knnWQqT5gwQW63+6D7lJeX6+GHHzbVHeo8QDSKtP4cqscff1w///xzoDxq1CgdfvjhDXoOABVC7c8Oh0Njx44NlIuKivTEE0/U2N7v9+uhhx4KJEsl6eabb65/4AAAwMTv9+uee+7Rjz/+GKhr27atXnvtNbVp0yaMkQEtV6iftWs75W5lzzzzjGm/du3a6aijjgr5OAAOjeQKDmrcuHFKSEgIlCdOnKjXXnvNdENEqlgYb+zYsVq3bl2g7uyzz1bfvn0bLJYbb7zR9OT9woULdf3119e4dsSGDRt0zTXXaOnSpYG6mJgY0w0goCWJpP4sSS+88IL+8Y9/mM5TVXZ2tsaPH6/XX389UNelSxfdeeedDRoLgPoZPXq0aaqBjz76SP/4xz+CHoIoLi7WXXfdpTlz5gTqBg8erFNPPbXJYgVaksZ++AFA06lLf54wYYK+/PLLQLl169Z67bXXlJWV1ZihAmhA119/va677jp99dVXQesJV7Vu3TrdeuutevHFF0319957r5xOZ2OGCbRY9nAHgMjWpk0bPfXUU7rpppvk9/tlGIaeeOIJvffeexo+fLhSU1O1efNmzZw5Uy6XK7Bfjx499MgjjzRoLFlZWXrggQf04IMPBurmzp2rM888U0OHDlXfvn2VmJiooqIiLV++XAsWLAi6afzII4+obdu2DRoX0FxEUn+WKp5unzJliqZMmaJOnTpp4MCBatu2rZxOp/bu3asVK1aYkqNSxRM3r776KnNDo8Xbtm2bTjvttGq3+Xw+U7uaEqOvv/66hg0b1iDxxMbG6vnnn9fo0aMDX/qmTJmiL774QiNGjFDr1q21c+dO/fDDD6YpwzIyMvT00083SAwAAOCAp556Su+//36gnJKSoilTpqhbt25hjApoHiLps7ZhGPr555/1888/y+l0qmfPnurdu7dSU1OVkJCg0tJS7d69WytWrKj2wcU//vGPOvPMM+sdB4DqkVzBIZ144ol6/PHHNWHChMANk02bNpnWManssMMO03PPPdcoNz8vv/xySdJjjz0WuPnr8/k0d+5czZ07t8b94uPj9cADD+iCCy5o8JiA5iSS+nNl2dnZNY5C2+/II4/Uk08+yRQGgCq+ZFX+YncwNbUzDKMhQ1K/fv00ceJE3X333crPz5ck5eTk6IMPPqi2fVZWliZOnMhDD2jxIukGzn41nafq+0lN7R577DE+d6NFiqT+/PLLL5vKhYWFuuiii0I+TtVFsYGWIBI/a0uS2+3W8uXLtXz58kO2TU5O1j333KNLLrmkweMAcADTgqFWLrjgAk2fPl2nnnqqaWquyjIyMnTLLbdo2rRpjTrM+PLLL9dnn32mUaNGmaY4qk5iYqJGjx6tzz77rE4fJIFoFCn9efjw4TruuOMUHx9/0Hb9+/fXv//9b7355pskVoAId/zxx+vzzz/XBRdcoLi4uGrbpKSk6Oqrr9ann37a4NMNAs3R/hs41f1UVVO7hr6BU994qo4eB1qKSOzPtYntYD8Awuvxxx/XxRdfrE6dOtWqfZcuXXTHHXfo66+/JrECNAGL0VhXbkStvLw8LViwQDt37lRJSYnS09PVsWNHDRkyRDabrUlj8fl8Wr16tdasWaP8/HyVlpYqPj5eqamp6t27t3r16tXkMQHNSST0Z4/Ho5UrV2rDhg3au3evXC6X4uPj1b59ex1++OE81Q40UyUlJZo/f7527NihgoICpaWlqUOHDjriiCOY8xmoZOvWrTrllFPqdYw33nij2oVqqx67Q4cO+uGHHw55vN69e9crnscff5wHm9AiRVJ/rm8/3m/16tUNchwA9ZeXl6d169Zp69atysvLk8vlUmxsrBITE9WmTRv1799frVu3DneYQItCcgUAAAAAAAAAACAETAsGAAAAAAAAAAAQApIrAAAAAAAAAAAAISC5AgAAAAAAAAAAEAKSKwAAAAAAAAAAACEguQIAAAAAAAAAABACkisAAAAAAAAAAAAhILkCAAAAAAAAAAAQApIrAAAAAAAAAAAAISC5AgAAAAAAAAAAEAKSKwAAAAAAAAAAACEguQIAAAAAAAAAABACkisAAAAAAAAAAAAhILkCAAAAAAAAAAAQApIrAAAAAAAAAAAAISC5AgAAAAAAAAAAEAKSKwAAAAAAAAAAACEguQIAAAAAAAAAABACkisAAAAAAAAAAAAhILkCAAAAAAAAAAAQApIrAAAAAAAAAAAAISC5AgAAAAAAAAAAEAKSKwAAAAAAAAAAACEguQIAAAAAAAAAABACkisAAAAAIsrVV1+t3r17B35+++23cIcEAAAAACYkVwAAAAAAAAAAAEJAcgUAAAAAAAAAACAEJFcAAAAAAAAAAABCQHIFAAAAAAAAAAAgBCRXAAAAAAAAAAAAQkByBQAAAAAAAAAAIAQkVwAAAAAAAAAAAEJAcgUAAAAAAAAAACAE9nAHAAAAACA6bNmyRatWrVJOTo6Ki4tlGIbi4uLUqlUrdejQQd27d1dqamqTxeN2u7Vw4ULt2LFDubm58vv9SktLU5s2bTRkyBDFxcU1ynl37typRYsWafv27XK73UpPT1dWVpaGDh0qh8PRYOdxu91atGiRduzYoby8PLndbqWlpalt27YaOnRoo/19AAAAAEiuAAAAAKiHkpISvf766/r444+1ZcuWg7a1WCzq3Lmzjj/+eF144YXq169fo8S0bNkyvfjii/r5559VVlZWbRun06mjjjpK48eP1xFHHFHrY0+fPl1//etfA+ULL7xQTzzxhCRp/vz5euaZZzR37txq901NTdX555+v2267TYmJiSH8RWbz5s3T5MmT9euvvx707zv22GN16623qn///nU+FwAAAIDqkVwBAAAAUCdLlizRrbfeql27dtWqvWEY2rRpkzZt2qTt27frhRdeaNB43G63JkyYoOnTp8swjEO2nT17tmbPnq0zzjhDTzzxhOLj4+t87ueee07PPffcQc+bn5+vqVOn6uuvv9YzzzyjwYMHh3SO3Nxc/fWvf9WsWbMO2dbtdmvmzJmaNWuWrrzySv3f//2fbDZbSOcDAAAAUDPWXAEAAAAQsg0bNmjMmDE1JlYSEhLUqlUrOZ3OJomnuLhYY8eO1UcffVRtgiM2NrbG5Mk333yjq6++Wrm5uXU69+TJkzVx4kTTeW02m5KTk2WxWILa79q1S2PHjtXixYtrfY4NGzbosssuqzGxEhcXV+35DMPQ22+/rVtuuUVer7fW5wMAAABwcIxcAQAAABCyRx99VCUlJYGy0+nUqFGjdNZZZ6lPnz6m9T5KS0u1bt06LVmyRLNmzdKvv/7a4PE89NBD+u2330x1bdu21fjx43XqqacqIyNDkpSXl6eZM2fqxRdfVHZ2dqDtsmXL9Oc//1mTJk2qNiFSkzVr1ujzzz+XJFmtVl1++eW69NJL1adPH9lsNrndbs2bN09Tp07Vjz/+GNivuLhYt9xyi7766islJycf9Bz5+fm6/vrrtX379kCdzWbTmWeeqQsuuEBDhgwJTDNWXl6uBQsW6K233tJ3330XaD9z5kw9/fTTuvvuu2v9twEAAAComcU41Hh5AAAAAKgkJydHJ5xwQmCkhsPh0Jtvvlnraa5ycnK0fPlynXTSSdVuv/rqq03rlrzxxhs66qijajzel19+qTvvvNNUd+yxx+rZZ5+tcW0Tl8ulu+++WzNmzDDV33///br66qtrPFfVNVf2i4uL00svvaThw4fXuO/rr7+uxx9/3FR3ySWX6NFHH61xH0kaP368Zs6cGSi3bdtWzzzzjAYNGnTQ/T799FPdd999gRErFotF06ZN08CBAw+6HwAAAIBDY1owAAAAACFZuXKlaQqs008/PaT1QzIzM2tMrNRF1bVbevTooeeff/6gi8bHxsbqqaeeCko0vPLKK/J4PCHH8Nhjjx00sSJJY8aM0ZgxY0x1H3/8sXbu3FnjPnPmzDElVpKSkvTaa68dMrEiSeeff75ppIphGJo0adIh9wMAAABwaCRXAAAAAISksLDQVM7KygpTJBXJh3Xr1pnqHnzwQdO0ZDVxOp16+OGHTdOA5eTk6JtvvgkphuHDh+vss8+uVdvbbrtN6enpgbLP59O0adNqbF81GXLrrbeqW7dutY7t6quvVqdOnQLlGTNm1HltGQAAAAAHkFwBAAAAEJKqa4QsW7YsTJHItI6JJPXq1eugU4hV1bdvXx155JEHPeahjBo1qtZtExISdP7555vqalqkPjc3Vz///HOgHBsbq0svvTSk2Ox2u84444xA2e/36/fffw/pGAAAAACCkVwBAAAAEJIBAwaYRnv8/PPPevrpp+V2u5s8loULF5rKp512WsjHqJx8qO6YB2O323XiiSeGdL5TTjnFVF69erVcLldQu/nz55umXxsyZIgSEhJCOpdUkUCqLJS/DwAAAED17OEOAAAAAEDzkpaWptNPP900fdaLL76oadOm6eyzz9aIESPqnAgI1erVq03l/v37h3yMqvts2bJFpaWlio+PP+S+3bp1U2xsbEjnO+yww2S1WuX3+yVJXq9X69atC4pj8eLFprLb7da7774b0rkkaf369aby7t27Qz4GAAAAADOSKwAAAABC9sADD2jZsmXatm1boG7v3r1688039eabb8put6tXr14aMmSIhg0bpqOPPjpoOrH6crvdKisrM9V16NAh5ONUt2ZMQUFBrZIr7du3D/l88fHxSk1NNa19kp+fH9Ruz549pvL8+fM1f/78kM9XVUFBQb2PAQAAALR0TAsGAAAAIGQZGRn64IMPapyGy+v1asWKFXrrrbd022236ZhjjtEtt9zSIMmB/apLEiQmJoZ8nKSkpFoduzp1OV915ywsLKxzDKGqmpACAAAAEDqSKwAAAADqpHXr1nruuef06aef6pprrlGXLl1qbOvxePTdd99p9OjRuuuuu1RcXNwoMVVeC6Yx96mvymup1MTj8TRBJAAAAADqgmnBAAAAANRLnz59dN999+m+++5TTk6O5s+frwULFuj333/XypUrgxIJX3zxhXbv3q3XXntNNputzudNSUkJqisqKgr5ONWNGqnu2NWpa5Ko6n7VTZlWNYbbb79dN998c53OBwAAAKBhMXIFAAAAQIPJzMzU2Wefrfvvv18ff/yxfvrpJ91///1Ba6H89ttvmj59er3O5XQ6g9ZFqbwGTG1t3bo1qK62yZXt27eHfL7S0tKgNVZSU1OD2qWlpZnKW7ZsCflcAAAAABoHyRUAAAAAjSY9PV1XX321vvjiCw0cONC07bPPPqv38Xv16mUqL1u2LORjVN2nY8eOtVrMXpI2bNggl8sV0vlWrlwpv98fKNvtdvXo0SOoXZ8+fUzlhlyvBgAAAED9kFwBAAAA0Oji4+P1xz/+0VS3Zs2aeh938ODBpvKMGTNCPsY333xz0GMejNfr1axZs0I63/fff28q9+rVS7GxsUHtjj32WFM5Oztby5cvD+lcAAAAABoHyRUAAAAATSIrK8tULi0trfcxR4wYYSqvWbNGc+fOrfX+q1at0rx580x1J554YkgxvPfee7VuW1JSEjRip6bztWvXLmi0z7PPPhtSbAAAAAAaB8kVAAAAACHxer112m/Dhg2mckZGRr1jOfroo9WzZ09T3SOPPFKrqbo8Ho8eeughGYYRqMvMzNTpp58eUgxz5szRV199Vau2zz77rHbv3h0o22w2XXbZZfh8z5EAAQAASURBVDW2v+WWW0zlWbNmaerUqSHFV1nlvxUAAABA3ZFcAQAAABCSJ598UnfddZcWL15c633y8vL09NNPm+qOOuqoBonnpptuMpXXrl2rW2+99aAjY8rLy3XXXXdp0aJFpvpx48bJ4XCEHMN9992n33777aBtpk6dqtdff91Ud/7556tdu3Y17nPiiSfquOOOM9U98cQT+s9//hNSkisvL08vv/yyxo4dW+t9AAAAANTMHu4AAAAAADQvXq9XX3zxhb744gt17NhRp512moYOHarDDjtM7dq1k9Va8QyXz+fT5s2bNWvWLL322mvKyckJHMNms+nKK69skHhGjhypH374QV988UWgbvbs2Ro5cqTGjx+vU089Va1bt5Yk5efna+bMmXrppZe0adMm03GOO+44jR49OqRz9+vXT6tXr1ZZWZnGjBmjK664Qpdeeqn69Okjq9Uqt9ut+fPna+rUqUFrs2RkZOjee+895DmefPJJXXbZZdq8ebMkye/366WXXtLnn3+uK664Qsccc4x69+5tSgrl5+drzZo1WrFihWbNmqV58+bJ6/UGjfIBAAAAUDcWg3HhAAAAAELw6KOP6o033qh2m8ViUWJiomw2m0pKSuTxeKptd+edd2rcuHHVbrv66qtN66a88cYbhxzlUlxcrJtuuqnG9Vbi4uJksVhqHM3Sv39/vfrqq0pLSzvoeaZPn66//vWvgfKFF16oXr166R//+Iepnd1uV0JCggoLC6udiishIUGTJk3SkCFDDnq+/bZs2aKbb75Za9asqbFNQkKC7Ha7iouL5fP5qm3Ts2dPUxIKAAAAQN0wLRgAAACAkFgslhq3GYahoqIi5efnV5tYiY+P10MPPVRjYqWuEhMTNXnyZF188cXVxldWVlZjYuWMM87Qm2++ecjESk2uu+463X777abzer1eFRQUVJtYycjI0KuvvlrrxIokdezYUdOmTdMll1wim81WbZuSkhIVFBTUmFixWCzq3bt3rc8JAAAAoGZMCwYAAAAgJHfffbdOOOGEwHRTa9eurfGG/n5t2rTRyJEjNWbMGLVp06ZR4nI6nXrsscd05ZVX6oUXXtAvv/yisrKyGtsOGzZMN910k4444oh6n/vmm2/WsGHD9Mwzz9Q4eiYlJUXnnXeebr/9diUlJYV8jri4OD366KMaN26cJk+erJkzZ2rXrl0H3cfpdGrQoEE6/vjjdfbZZysrKyvk8wIAAAAIxrRgAAAAAOqlpKRE69ev15YtW7Rnzx6VlZUFpgfLyMhQ79691alTp4OOeGkMbrdbCxYs0I4dO5Sbmyu/36+0tDS1bdtWQ4YMUVxcXMjHrG5asCeeeMLUZufOnVq4cKG2b98uj8ej1q1bKysrS0cccYRpXZSGsGnTJq1evVr5+fnKz8+XxWJRQkKCWrdura5du6pr165yOp0Nek4AAAAAjFwBAAAAUE8JCQkaOHCgBg4cGO5QTJxOp4YPH97k523btq3OOuusJjlXly5d1KVLlyY5FwAAAIADWHMFAAAAAAAAAAAgBCRXAAAAAAAAAAAAQkByBQAAAAAAAAAAIAQkVwAAAAAAAAAAAEJAcgUAAAAAAAAAACAEJFcAAAAAAAAAAABCQHIFAAAAAAAAAAAgBBbDMIxwBwEAAAAAAAAAANBcMHIFAAAAAAAAAAAgBCRXAAAAAAAAAAAAQkByBQAAAAAAAAAAIAQkVwAAAAAAAAAAAEJAcgUAAAAAAAAAACAEJFcAAAAAAAAAAABCQHIFAPD/7N11mF3V2cbhZx8fn4m7G3EjwSFIFLcEJ0DQFmiR0n7QAqVQKLQUl0BIcNcIEIOEEHeHuOv4zPH9/ZFykp0zScb3yO++Li5Y75bzHAh75D1rLQAAAAAAAAAl4LI7QHWWmZlpdwT8j2EYSk9PlyRlZWXJNE17AwGoVXgGAbALzx8AduIZBMAuPH8AlEZGRka53o+ZKwAAAAAAAAAAACVAcwUAAAAAAAAAAKAEaK4AAAAAAAAAAACUAM0VAAAAAAAAAACAEqC5AgAAAAAAAAAAUAI0VwAAAAAAAAAAAEqA5goAAAAAAAAAAEAJ0FwBAAAAAAAAAAAoAZorAAAAAAAAAAAAJUBzBQAAAAAAAAAAoARorgAAAAAAAAAAAJQAzRUAAAAAAAAAAIASoLkCAAAAAAAAAABQAjRXAAAAAAAAAAAASoDmCgAAAAAAAAAAQAm47A4AAAAAABXFKMyUI2uDHHk7ZARyJKdXpjvxwF/eVEXTWspMyLA7JgAAAIBqhuYKAAAAgJohGpFr689ybflJrl3L5NyzQg5/5rEv86YpUrejIg27KdKgm8INuyua3loyjEoIDQAAAKA6orkCAAAAoPoyTTl3LZVnzRfyrP1ajoK9Jb6FI5Atx/a5cm+fG6tFUpsr1HaQgh3OVaRhDxotAAAAACxorgAAAACofsJ+edZ+Le/iMXLtWVnut3fmbJFz0Wj5Fo1WuEE3BXpcp2CHcyWXr9xfCwAAAED1Q3MFAAAAQPURDcuz8mMlzP6PHPm7i3WJ6XApmtJUpi9dioZkhAplhPJlFO6XEQ0f83rX7mVyfX+vEmY+rkCXEQp0v1pmSpMyvhEAAAAA1RnNFQAAAADVgmvLLCVO/5uc+3856nnh+l0Uanm6Ig27K1LvOEVTm0qOIn70iYblyNkq5/5f5dy9XM7dy+XatUSOgj1F3tdRuF8J81+Sb9FoBbpdJf/xd8hMrFcebw0AAABANUNzBQAAAEDVFshV4szH5V3+/hFPiaQ2V7DTRQp2PF/ROu2Kd1+HS9H0Voqmt1KozdkHaqYp596Vcv/6rTyrPpUzd1vcZUYkKN/iMfKu+Ej+XjfK3+dmyZNcmncGAAAAoJqiuQIAAACgynJt+kFJk/8sR972Io+Hmp2gQK+bFGo1QHI4y/6ChqFI/S6K1O8if/+75N4wRd4l4+TeMjP+1FC+EuY+J+/Kj1Qw4O8KtTmn7K8PAAAAoFqguQIAAACg6olGlDDrKfkWvFrk4XD9zio85f8UbnFyxWVwOBVqO1ChtgPl2P+rvIvfknflRzIiQetpeTuV/PUoBdsNVcEZD8tMalBxmQAAAABUCQ67AwAAAADAoQx/lpK/vL7IxorpTlTBGY8o94pvKraxcphonXYqPPMx5Vw7RYHjLpFpxP8o5fl1glLfPlvuNV9VWi4AAAAA9qC5AgAAAKDKcO5ZpZT3z5N784y4Y6FmJynnqm8V6HGdVERzozJEU5urYOAzyrlqkkItTo077gjkKHnSnUr8/j4pVGBDQgAAAACVgeYKAAAAgCrBtfVnpXx8iZw5Wyx10+FWwRmPKu/idxVNa25TOqto3Q7Ku3Cc8gf+W1FfRtxx78qPlfr+uXLuWWFDOgAAAAAVjeYKAAAAANu5Ns9U8pcjZRw22yOaWF+5l3ygQI9rJcOwKd0RGIaCx12snGsmK9jh/LjDzsz1SvnwInlWfWpDOAAAAAAVieYKAAAAAFu5NkxT8lc3yAj7LfVwo17KueIbRZr0sSlZ8ZiJdZU/5DnlD3pWpjvJcsyIBJX03T1K+OFRKRq2KSEAAACA8kZzBQAAAIBt3Ou+U/I3N8uIBC31YLshyr3kA5nJDW1KVnLBThcq58rxCjfoHnfMt/hNJX91oxTMtyEZAAAAgPJGcwUAAACALdy/TFDShNtlREOWerDDecof8rzk8tqUrPSi6a2Ue/kn8ve4Pu6Ye9MPSvl0hIz8PZUfDAAAAEC5orkCAAAAoNK513+vpIm/l3HYUlmBThcrf9CzksNlT7Dy4PSo8IyHlX/2UzKdHssh1+5lSvn4EjkyN9gUDgAAAEB5oLkCAAAAoFK5Nv+kpAl3yDAjlnqgy3AVnPMvyeG0KVn5Cna5XLmXvK+oL8NSd2ZvVsrHl8i5e7lNyQAAAACUFc0VAAAAAJXGuXOxkr8ZFbfHir/b1So464ka01j5TaRxH+Ve/qkiqc0tdUfhfiV/dpWcu5bZlAwAAABAWVTjufYAAAAAqhNH9mYlf3WjjFCBpR7ofLkKBzwqGTXzs1/RjDbKvfxTJX91g1yHzFZxBLKV/PlVyrvwbUUa9bAxIQAAAI4lEolozZo12rVrlzIzM5WTkyOfz6fk5GQ1adJEHTt2VFJSkt0xy1VhYaFWrlyp/fv3KzMzU/n5+UpOTlZKSopatWqldu3ayeWqvS2G2vvOAQAAAFQaw5+l5C+vl6Nwn6UebD/swIyVGtpY+Y2Z1EC5l3yg5K9Hyb3151jdEchR8udXK++itxVp1NO+gAAAADbavn27Lr744rh6nz599OKLL5b4ftnZ2Tr33HMVCoUs9fbt2+vtt98u0b1mzJihCRMmaP78+crNzT3ieQ6HQ+3atdPAgQM1cOBANWjQ4IjnfvPNN3rsscfi6qNGjdKNN95YonySNHPmTN17771x9eHDh+sPf/hDie4VDAb11Vdfadq0aVq6dGncv8NDeTwe9ezZU4MHD9YZZ5yhxMTEEmevzmr2TzAAAAAA7BcOKOmbW+TMXG8ph1qcqvxB/6lxS4EdkSdZeee/qVDzUyxlRzBXyZ9fI8e+tTYFAwAAqJoWLlyonTt3lvi677///qhNgeJYtmyZRo0apfvuu0/Tpk07amNFkqLRqNauXasXXnhBl1xyif79738rKyurRK85ceLEUmUt7XVF3efyyy/X008/rQULFhzz32EwGNTcuXP16KOP6uKLL9aHH36ocDhcLlmqA2auAAAAAKg4pqnEyX+Se9scSzlct5Pyhr4kOT02BbOJO0F5548+MINl84xY2RHMVcoX1ytn+OcykxvaGBAAAKDqME1TEydO1MiRI0t03YQJE8r0ut98843++c9/xjUKEhMT1bNnTzVo0EAZGRny+/3at2+fNm7cqLVrD35QJhQK6aOPPlJ+fr4eeuihYr/u1q1btWTJEvXoUfwlY3NzczVjxoxjn3gUkUhETz/9tD7//PO4Y/Xr11e3bt1Up04dpaamKicnR/v379fKlSstja+srCz95z//UXJysoYNG1amPNUFzRUAAAAAFca74FV513xhqUWTGirvgjclb4o9oezm8invvNeV/M3Ncm/6MVZ25G1X8lcjlXvpR5In2caAAAAA9vL5fPL7/ZKkSZMmlai5snHjRq1cuTI29nq9CgQCxb5+3Lhxeumllyy19u3b69Zbb1W/fv3kdruLvG737t2aMmWKxo0bp8zMTEkHmkPFcej7nThxYomaK99//72CwWDcfYorEono/vvv108//WSpn3766Ro5cqQ6dep0xGt/+eUXjR8/Xp999lksQ3Hfc03AsmAAAAAAKoRr0wwlzHrKUjPdico7/w2ZKU1sSlVFuHzKG/aqwo16Wct7Vip5wu1SpGzLWAAAAFRnp5xyipzOA0vHbtq0ScuXLy/2tYfOWunevbsyMjKKfe2cOXP08ssvW2o33nijxo4dq5NPPvmIjRVJatCgga644gp9+umnuu666+RwFP9X76eddlrsn6dMmRJrVBTHoe/39NNPL/Z1v3n99dctjRWfz6enn35aTz755FEbK9KBptPdd9+tDz74QKeeemqJX7u6o7kCAAAAoNw5srcoadLvZZjRWM2UofzBzyvSoKuNyaoQd4LyzhutSFora3nTj0qc/lepFn3qDwAA4FB169ZVv379YuPi7ikSjUb17bffxsZDhw4t9mtmZmbqkUcescy8uOOOOzRq1KgSNUoSExN122236cknn1RSUlKxrjn11FOVmpoqqWTLfG3evNnSeCrJ+5WkBQsWaNy4cbGx2+3Ws88+q1NOOeUoV8Vr0qSJnnrqKd14440l+ndV3dWedwoAAACgcoQKlfTNzXL4syxl/4n3KNTmLHsyVVFmYl3lXfiWogl1LHXv8vflXfq2TakAAADsd2ijoLgb1M+fP1+7du2SdGA5sLPPPrvYr/fBBx9o//79sXG/fv10zTXXlCCx1amnnqrf//73xTrX4/HorLMOfp9c3D1jDj2va9euat68eYkyvvLKK4pGD34Y6oYbblDPnj1LdI/fGIahUaNGlejfeXVHcwUAAABA+TFNJU79P7n2rrKUg20HyX/87TaFqtqi6a0OLJXm8lnqCT88IteWWTalAgAAsNdpp52m5OQD+9Dl5ORo5syZx7zm0GbDqaeeGrv+WAoLCy2buRuGofvuu6+EieN5PJ5in3toM2n27NmWRk9RTNPUpEmTiry+OJYvX65ly5bFxk2aNClTM+k3JXnP1R3NFQAAAADlxrPyY3lXf2apRTLaKv+cpyWDHz+OJNKol/IHPmOpGWZESRNulyN7s02pAAAA7OP1enXmmWfGxsdaGqygoEDTp0+PjUvSbJg2bZpycnJi4759+5Z4FkhZdevWLfaakUhE33333VHPX7BggXbu3CnpQEOjpDNGvvjiC8v4vPPOk8vlKtE9ajt+ugEAAABQLhz71h7YK+QQpidZeee9JnlTbEpVfYTaD1NhP+vSEQ5/lpK/HiUF82xKBQAAYJ9DGySzZs1Sdnb2Ec+dOnWq/H6/JKlOnTrq379/sV9n0aJFlvGgQYNKmLR8DBkyJPbPx1oa7NDjJ598cmzPluKqKu+5OqO5AgAAAKDsQoVKnnCHjLDfUs4/+ylFM9raFKr68Z/wBwXbnGOpOfetUeL0v9mUCAAAwD49e/ZU06ZNJUnhcPioszkObTYMGjRITqez2K+zePFiy7hLly4lC1pOhgwZIsMwJElr167VunXrijyvsLCw1LN0JGnPnj3atm1bbJyRkaEmTZqUPHAtR3MFAAAAQJkl/vCwnPt/sdT83a9RqH3JftCr9QyH8gf9R5G6HSxl76pP5V7zpU2hAAAA7DN48ODYPx9pabAdO3ZYZmKUpNng9/u1ZcuW2DghIUEtW7YsRdKya9y4sWVD+SPNXpk2bZoKCgokHWiMnHjiiSV6nV9+sX7f3rFjx5IFhSSJRdQAAAAAlIln9RfyrvjQUgvXO06Fp/6fTYmqOU+y8s59XanvnysjmBsrJ019UDmNeyuaWrnrfwMAUJVFoqayCkN2x6iW0nwuOR2G3TGOaejQoXrzzTdlmqZWrlypDRs2qHXr1pZzJk6cKNM0JUnt27dX+/bti33/w5caq1OnjhwO++YkDBs2LNYo+vbbb3X77bfHzcI5tOkycODAEu+Vcvh7rl+/finT1m40VwAAAACUmiNzvRKnWpsopjtR+UNflFw+m1JVf9H0lsof8JiSv70rVjOCuUqadLdyL/1QcvCjHAAA45fu0ENfLNP+AporpVEn0a0HzmmtczrVszvKUTVt2lTdu3fXkiVLJB1opNx+++2Wcw5tNhy6b0lxHLqRvSQlJSWVMmn5GDBggJ5++mn5/X7t3btX8+bN0wknnBA7vmvXLi1cuDA2Lun7laree66uWBYMAAAAQOlEQkqadJeMUL6lXHDm44pmtLEpVM0R6nSBAp0uttRcOxbIN/d5mxIBAFC1PPDZUhorZbC/IKRHJxW9p0dVc+gyX5MmTVI0Go2Nly5dqq1bt0qSnE5niTdmz8+3fi+bkJBQhqRll5SUpNNPPz02PnxpsIkTJ8bef9u2bdWpU6cSv0ZVe8/VFc0VAAAAAKXim/u8XLuXWWqBzpcr2OlCewLVQAVnPKJIWgtLzTf3eTl3LrYnEAAAgA3OPvtseb1eSdLu3bu1YMGC2LFDmw/9+/dX3bp1S3Tvw2dtFBYWliFp+Ti0mfTjjz9amiGH7jtTmlkrUtV8z9URzRUAAAAAJebcuVi+eS9aapGMtio442F7AtVU3hTlD/6vTOPgOtuGGVXS9/dJ4YCNwQAAsN8/L+6uOoluu2NUW3US3frr4LZ2xyiWpKQknXbaabHxbw2GQCCgKVOmxOol2cj+N6mpqZbx4bM67HD88cfH9kHx+/2aNm2aJGn58uXatGmTpNLN0vlNVXzP1REL9QIAAAAomVChkr79owwzEiuZhlP5g/4juRNtDFYzRRr1kv+Eu5Xw8zOxmnP/L/LNfV7+k+61MRkAAPYa1r2xTmjmY0P7UqouG9r/ZsiQIfr+++8lSdOmTdN9992nmTNnKjc3V5KUnJysU089tcT3TUtLs4z379+vaDRq66b2DodDgwYN0jvvvCNJGj9+vM4991yNHz8+ds6hDZiSOvw97927t/RhazGaKwAAAABKJOGnJ+XMWm+p+fv9XpGG3W1KVPP5+9wq96+T5NqzIlbzzX9ZobaDFGnYzcZkAADYy+kwmL1SS/y25Ne+fftUWFioadOmxZotknTWWWfFlg4rCZ/Pp+bNm2vLli2SDiyRtWnTJrVu3brcspfGsGHDYs2VxYsXa/PmzZZZOqVdEkyS2rdvbxmvXr261PeqzVgWDAAAAECxubbMkm/JW5ZauGEP+Y+/w55AtYXTrYJznpbpOPj5OMOMKPH7+6RI0MZgAAAAlePwZbA++OADzZ07NzYuzZJgv+nZs6dlvGLFiqJPrEStW7eObVZvmqYefvhh5eTkSIrf9L6k6tevr6ZNm8bGmZmZ2r59e9kC10I0VwAAAAAUT9ivxCl/tpRMp1f5A5+RnHxitKJF6h8n//G/s9Rc+1bH7X0DAABQUx3aQFm7dq0ikQPL1DZr1kw9evQo9X179eplGX/33Xelvld5OnR2ysqVK2P/fOaZZ8rn85Xp3lX1PVcnNFcAAAAAFEvC7GflzN5kqRWe/CdF67SzKVHt4z/+doXrHWep+ea/LEfm+iNcAQAAUHO0a9dOHTp0iKuXZYksSRowYIBlk/d58+Zp69atZbpneRg0aJBcrvidPcoyS+c3559/vmX89ddfx5pVKB6aKwAAAACOyblnhbwLX7fUwo17K9DzensC1VZOjwoGPi3TcMZKRiSoxGl/lUzTxmAAAACV4/BGimEYZW6uJCQk6KKLLoqNTdPU008/XaZ7SlIwWLblW9PT03XiiSdaao0bN45bxqw0unfvrm7dDu7dt23bNr377rtlvm9Z33N1wob2AAAAAI4uGlHi5D/LMA9+ks10uJV/1j8lg89rVbZI/S4K9LpRvoWvxWruLTPl/uUbhTqcZ2MyAACAijd06FAZhhEbJycnq0mTJmW+7/Dhw/XVV18pMzNTkjR79my99957uvLKK0t1vx9//FHz5s3TPffcU6ZcN998s/r06RMbt2nTxvL+y+KWW27R73//e5n/+5DO6NGj1bNnT3Xv3r3E9zJNU6NHj1bTpk3LZWZNdUBzBQAAAMBReRePkWv3UkvN3/c2RevGL8mAylHY/y551n4lR97OWC3xx78ru+UZkjfFvmAAAAAVLC0tTSNGjCj3+9apU0d/+9vf9Ic//CHWbHjuuefk9/s1cuTIYjc08vPzNXbsWL399ttlnlEjSe3bt1f79u3LfJ+i9O3bV9dee63Gjh0r6cCsk7vuukv/+Mc/dNJJJxX7Ptu3b9e///1vzZw5Uw8++GCFZK2K+JgZAAAAgCNy5GxRws/PWGqRjLbyH3+HTYkgSfIkqeC0v1lKjvzdSpj9H5sCAQAAVH8nnHCCbr75Zkvttdde03XXXadZs2YpHA4f8drdu3fr/fff16WXXqpx48bFGjRV3ahRo3TCCSfExoWFhfrjH/+oP//5z1qzZs1Rr/3ll1/07LPPasSIEZo5c2ZFR61ymLkCAAAAoGimqcSpD8oIF1rK+Wf9U3J5bQqF34TaDVao5Rlyb5oeq3mXvKVg50sVqd/ZvmAAAADV2MiRI5WRkaF//etfsQ3e165dqz/+8Y9KTExUr1691KBBA6WnpysQCGjv3r3auHGj1q5dG3cvp9MZV6tqXC6Xnn76aT355JP6+uuvY/Vp06Zp2rRpql+/vrp37646deooNTVVOTk52rdvn1auXKmdO3fG3a86vOfyQnMFAAAAQJHca76Se9MPllqg65WKND3epkSwMAwVnPGIUt85R0bkwMahhhlVwo9/V97F70nltBY3AABAbXPhhReqdevWeu6557RixYpYvaCgQD/99NMxr/d6vRoxYoSuvfbaioxZblwul/7v//5PPXr00Ouvv65du3bFju3Zs0dTpkw55j3q16+vUaNGadCgQRUZtUqhuQIAAAAgjlGYqcQfH7XUokkNVHDKAzYlQlGi6S3l73u7EuY8G6u5t/4s9/rvFWo70L5gAAAA1VyPHj30xhtv6Mcff9T48eO1YMEC5eXlHfF8h8OhDh06aMiQIRo4cKAyMjIqMW35OPfcc3XOOefoyy+/1LRp07Rs2bKjLoXm9XrVu3dvDR06VKeddpq83to1u90wq8vib1VQZmam3RHwP4ZhKD09XZKUlZVVbdY0BFAz8AwCYJeKfP4kfnePvKs+tdTyhr2iULvB5fYaKCdhv9LGnilH3vZYKZLWSjnXfCc5PTYGQ03H90AA7MLzB3YIh8NavXq1du/erczMTOXk5Mjn8yklJUVNmjRRp06dlJiYaHfMclVQUKCVK1dq//79yszMVEFBgZKSkpSamqpWrVqpXbt2crmqz/yN8m54VZ93DgAAAKBSuDbPjGusBNsOpLFSVbl8Kjj5T0r+9q5YyZm9Ud4l4xTofZONwQAAAGoOl8ulrl272h2jUiUmJqpv3752x6iyHHYHAAAAAFCFhAqVOPUvlpLpSVHBGY8e4QJUBaGO5yvcqKel5pv7nIxCZtsDAAAAFYHmCgAAAICYhDnPypm92VIrOPl+mcmNbEqEYjEMFZz2kKXkCOTId8heLAAAAADKD80VAAAAAJIk5+7l8i4cbamFG/dVsNtVNiVCSUQa91Gww3mWmnfpO3JkrrcpEQAAAFBz0VwBAAAAIEUjSpzyZxlmJFYynR7ln/WEZPBjQ3VRePKfZDq9sbFhRpQw+982JgIAAABqJn5KAgAAACDvsvfk2r3MUvP3vV3Ruu1tSoTSiKY2U6DnSEvNs/YbOXcvtykRAAAAUDPRXAEAAABqOaNgn3w//8tSi9RpJ3/f22xKhLLw971NUU+KpZYw62mb0gAAAAA1E80VAAAAoJZLmPUvOQI5llrBgMckl/cIV6AqM31pCvS91VJzb5ou17Y5NiUCAAAAah6aKwAAAEAt5ty5WJ4VH1pqwQ7nK9zsBJsSoTz4e45UNLGepZbw01OSadqUCAAAAKhZaK4AAAAAtZUZVeL0v8nQwV+4m+5EFZz6FxtDoVy4E+Xvd5el5NqxQO4NU2wKBAAAANQsNFcAAACAWsqz4iO5di2x1Ar73SkzuZFNiVCeAl2HK5La3FLz/fyMZEZtSgQAAADUHDRXAAAAgFrI8Gcp4acnLbVIRhsFet1gUyKUO6dH/hPvsZRce1fJve47mwIBAAAANQfNFQAAAKAW8v38jBz+TEut4PSHJafHnkCoEMEO5ylSp72l5pvzLLNXAAAAgDKiuQIAAADUMo69q+Vd9q6lFmw7WOGWp9mUCBXG4VRh/zstJdfe1cxeAQAAAMqI5goAAABQm5imEmf8Q8YhMxdMl0+Fpz1oYyhUpFC7ofGzV2Y/y+wVAAAAoAxorgAAAAC1iGvTdLk3z7DU/H1uUTS1mU2JUOEcThX2v8tScu1bLfev39oUCAAAAKj+aK4AAAAAtUU0rMQZ/7CWkhrK3+cWmwKhsoTax89eSWDvFQAAAKDUaK4AAAAAtYRn+fty7v/VUis86T7JnWhTIlQawxE3e8W5b43cv06yKRAAAABQvdFcAQAAAGqDQI4SZv/HUgo36KrgcRfbFAiVLdR+qCJ1O1hqCXP+y+wVAAAAoBRorgAAAAC1QMK8F+Uo3G+pFZ76f5LBjwS1xpFmr/wywaZAAAAAQPXFT1IAAABADefI3iLv4jGWWrDtQIWbnWhTItgl1G6IInU7Wmq+eS9KpmlTIgAAAKB6orkCAAAA1HAJP/1TRiQYG5sOtwpP/rONiWAbw6HC/ndaSq69q+TaON2ePAAAAEA1RXMFAAAAqMGcO5fI88t4Sy3Q41pFM1rblAh2C7UdrEhGG0vNN/8lm9IAAAAA1RPNFQAAAKCmMk0l/PSkpRT1psnf7/c2BUKV4HDK3+dWS8m9fZ6c2+bZFAgAAACofmiuAAAAADWUa/NMubfOstT8x98u05duTyBUGcFOFyqa3NhSS2D2CgAAAFBsNFcAAACAmsiMKmHWYbNWkhsr0OM6mwKhSnF65O9zs6Xk3jhNzj0rbAoEAAAAVC80VwAAAIAayP3LeLl2L7fUCvvfLbl89gRClRPoMkLRhDqWmm/+yzalAQAAAKoXl90BAAAAAJSzSEgJs56xljLaKtj5EpsCoUpyJyjQc6QSfj74Z8X9ywQ5TtyoaHor+3IBAIBaZ/v27br44ouPeo7b7ZbH41FaWprq1q2r5s2bq3379urVq5c6duwowzDKLc8111yjX375JTauW7euvvrqKzmdzhLfa8GCBbrjjjuOeo7b7ZbX61V6errq1aunFi1aqEOHDurdu7fatGlTrNf55ptv9Nhjj8XG5557rh588MES5z3czTffrKVLl8bGo0ePVteuXY/4ujfeeKNGjRpV5tetDmiuAAAAADWMZ8UHcmZvtNQKT7pPcvDtP6wC3a+Vb/4rMkL5kiTDjMq76A0VDvi7zckAAACsQqGQQqGQ8vPztX37di1btix2rEGDBho6dKguu+wy1a1bt0yv88svv1gaK5K0b98+zZkzRyeddFKZ7n0kv723vLw8bd26VYsXL44da9Gihc477zxdfPHFSkpKOuI9zjzzTD3zzDMqLCyUJE2dOlX33nuvfL7Sz1zftm2bpbHSsmVLS2OltmNZMAAAAKAmCRUoYc5zllK4UU+F2g6yKRCqMtOXpkC3qyw178qPZRTutykRAADAAU6n0/LX0Wam7N69W2+99ZYuvfRSvfvuuzJNs9SvO378+BLVS8owjBK9t82bN+vFF1/UJZdcogkTJhzxvMTERJ1xxhmxcUFBgaZPn16mrIe/3tChQ8t0v5qmVn107bHHHtPbb79tqV100UX65z//aVMiAAAAoHz5Fo2Ro2CPpVZ48p+kclwmATWLv+dIeRe/KSMaliQZYb+8S9+Wv/9dNicDAAC1Va9evfTyy9a94EzTVH5+vnJycrRjxw4tW7ZM8+fP1/z582PnFBYW6vnnn9fixYv1xBNPyOUq2a+/w+Gwvv322yKPzZgxQzk5OUpNTS35GzrEkCFD9Ne//tVSi0ajysvLU15enjZt2qTly5dr9uzZWrFiReycrKwsPfroo1qxYoXuu+++Iu89bNgwTZw4MTaeOHGiBg8eXOqskyZNiv2zw+HQkCFDSn2vmqjWzFxZvHix3n33XbtjAAAAABXGCGTLu/BVSy3U8nSFm51oUyJUB2ZKYwU7nm+peZeMk8J+mxIBAADEMwxDycnJatKkifr06aPrr79eL7zwgt577z2dfvrplnNnzJihp556qsSvMWvWLGVmZsbGhzZngsGgJk+eXPo3cBQOh0Opqalq0qSJTjzxRI0aNUpvvPGGXn/9dfXq1cty7qeffqoxY8YUeZ8+ffqoUaNGsfG8efO0Z8+eIs89lsWLF2vbtm2xcd++fdWgQYNS3aumqhXNlVAopIceekjRaNTuKAAAAECF8S58Q45AjqVWePL9NqVBdRLoZd101FG4T55Vn9qUBgAAoPjatGmjJ598Ur///e8ty2t99dVX+vzzz0t0r8OXwbr55puPeryidevWTS+88IJGjBhhqb/22muaNWtW3PmGYVhml0Sj0SPOxDkWlgQ7tlrRXHnttde0du1aSVL9+vVtTgMAAACUP6MwU77Fb1pqwfbDFKnfxaZEqE4i9Y9TqOVplppv4WgpGrEpEQAAQMlcddVVuvLKKy210aNHKxAIFOv67Oxs/fTTT7FxvXr1dNVVV6ldu3ax2vLly7Vp06byCVxMTqdTd999t84666xYzTRNvfLKK0Wef3gT5NBlwoorEAho6tSpsfHh+7nggBrfXFm/fn3sD1pCQoL++Mc/2pwIAAAAKH/eBa/JCObFxqYMFfa/275AqHb8va2fzHRmbZB7Q8UsfQEAAFARbrvtNrVs2TI23rdvn77++utiXfvdd98pFArFxgMHDpTT6YzbZ6SyZ6/85i9/+Ytlv5e1a9damkG/ad68ubp37x4br1u3TqtXry7Ra/3444/Kyzv4s8VZZ50ln89XitQ1W41urpimqYceekjBYFCSdPvtt6tp06Y2pwIAAADKWd4eeZe8ZSkFO56vaN329uRBtRRufrLC9Ttbar4Fr9mUBgAAoORcLpcuv/xyS624MzfGjx9vGf/WVBk0aJCcTqflfnZsP5GUlKTzz7fuk3ek91bW2SuHN5CGDRtWoutrixrdXPnggw80f/58SVKHDh00cuRImxMBAAAAFeCnZ2WECmJD03DI3/8uGwOhWjIMBQ6bveLasUDO7QtsCgQAAFByQ4YMsTRD1qxZI7/ff9Rr1q9fb5nd0a5dO7Vvf+CDSvXq1VPfvn1jx3bv3q158+aVc+riOe+88yzjJUuWFHneOeecI6/XGxt/9913CofDxXqNffv2ae7cubFx06ZN1aNHj1KkrflqbHNl165deuaZZyQd2MjnkUcekdvttjkVAAAAUM5yd0rzRltKwU4XK5rRxqZAqM6C7YcpmtzEUvMtZPYKAACoPhITE9W2bdvYOBwOa9myZUe95kizVo40tmtpsJYtW1qWBtuzZ4+2bt0ad15SUpJOP/302DgzM1OzZ88u1mtMmjRJkcjBffeGDh0qwzDKkLrmqrHNlb///e/Kzc2VJF1++eXq3bu3zYkAAACACjDj31L44CfxTIdL/v532hgI1ZrTLX+vGywl97rv5MjcYFMgAACAkuvc2brU6dE2oY9EIvr2229jY6fTqUGDBlnOOeOMM5SYmBgb//DDD8rPzy+ntCVz3HHHWcabN28u8rzSLg126HmGYcQ1lnBQjWyufPfdd/r+++8lSXXr1tU999xjcyIAAACg/Bm5O6QFYyy1YOfLFE1rYVMi1ASBriMU9aTExoZM+RaNPsoVAAAAVUvdunUt45ycnCOeO2fOHO3duzc2Pv7441WvXj3LOT6fTwMGDIiN/X6/pkyZUk5pS+bw95adnV3kef369VP9+vVj4xkzZsQmIxzJ2rVr9euvv8bGPXv2VJMmTY5yRe3msjtAecvNzdXf//732PiBBx5QWlqajYkAAACAiuGb+4IUCcbGpsOtwuN/Z2Mi1AieZAW7XSnfglcPllZ+osIT/igzse5RLgQAwAbRiIzCTLtTVEumL11yOI95XnWUkpJiGR+tuXL4kmCDBw8u8ryhQ4dazp0wYULcBvOVobjvzeFwaPDgwXr77bclScFgUJMnT9ZFF110xHuzkX3J1LjmylNPPaXdu3dLkk466SRb/oADAAAAFc2Rs0WeFR9aaoGuI2SmNrUpEWoSf8+R8i56U0Y0JEkyIgF5l46T/4Q/2JwMAIBDrPhcqePvlaNg77HPRZxoQj0VDHhEofY17xfoCQkJlnFBQUGR5+Xm5mrmzJmxcWJios4444wiz+3du7caNWqknTt3Sjqwmfy2bdvUtGnlfv9d3PcmHWiO/NZckQ40T47UXIlEIvruu+9iY5/PpzPPPLOMaWu2GtVcmTdvnj7++GNJksfj0d/+9rcKfT028qk6Dv1vwX8XAJWNZxAAO/jmvhD7xbckmU6vAv1+x3MI5SOlsUIdL5Bn1Sexknfp2wr0vU1yJxzlQtQmfA8EwC6xZ85Xd8kRKHpJJBybo3Cvkib/WdkdzrU7StzXEcMwyvS1pbCw0DJOTk4u8n6TJ09WIBCIjQcMGBDXvDg006BBgzR27FhJkmmamjhxokaNGnXULOX93g5vphzpvUlS69at1aVLF61YsUKStGzZMm3dulXNmzePO3f27Nnav39/bDxgwAAlJSUdM095v7/qpMY0V4LBoB566CGZpilJuvXWW9WqVasKfc309PQKvT9Kh2XgANiJZxCASrFvnbTyE0vJOP5GpTXrZFMg1Ehn/FE6pLniKNyv9I3jpeNvsjEUqiq+BwKA6skwjCrxO868vDzL2OVylSlXOBy2jBs0aFDk/Q7dyF6SLrvssqO+7vDhw2PNFUmaNGmS7r333qM2E5KTky1jj8dTpvcWCoUs40aNGh31fpdeemmsuSJJ06ZN05133hl33uTJky3j4cOHFytnYmKiZezz+arEn6nKUGM2tH/xxRe1YcMGSQc6csfqGAIAAADV1g9PSWbk4NiVIJ18t21xUEM17CK1O9ta+/lFKRop+nwAACrb+f+Vkuof+zwULan+gX+HNdBv20b8JjU1Ne6c9evXa/HixbFxo0aN1L9//6Pet23bturWrVtsvHXrVs2bN69sYUvo8Pd2rA84DBs2TB6PJzb+8ssvYxMUfpObm6upU6fGxk2aNNEJJ5xQDmlrthoxc2XNmjV64403YuNHHnnE8gemomRlZVX4a6B4DMOIPUiys7PjHhAAUJF4BgGoTI7MDUpZ9pEsn43rN0rZUZ9Mvj9FOXN1H6nkXw/5FOP+9cpf+JFC7YbYFwpVBt8DAbBL7PnT5SJlNzldYkP7UoltaF8Fvoc8fFP2cDhcpt+9Hto0kaSGDRvG3e+DDz6wjAcOHHjUje8PPW/ZsmWx8YcffqgOHToc8fzDZ+UEg8EyvbdDX1uS6tevf8z7nXrqqZoyZYqkAw2h6dOnq1evXrHjn3/+uWV5tEGDBik7u3hL7h2+TJnf76+yvzcv7xk11b65Eo1G9dBDD8WmQ1100UXH7DCWF75xrJpM0+S/DQDb8AwCUNG881+RYUYPFtxJ0sl3yQzx/EH5CzU7SeH6XeTac3ApCe+C1xRsO9jGVKiK+B4IgF1MwyEzoY7dMaqvKvLsPvxrSFm+rhQUFGjdunWxsdvtVpcuXSz3i0ajmjhxouW6d955R++++26JX2/q1Km65557jrhXS3m+t40bN1oaQA0aNFDjxo2Peb+hQ4fGmiuSNH78ePXs2TM2njBhguX8IUOGFDtjeb6/6qbaLwv29ttva8mSJZIOdJ7uv/9+mxMBAAAAFcPI3SHPqk+txX43SUn17AmEms8w5O99s6Xk2rFQzu3zbQoEAABwdBMnTlQkcnAZ006dOsnn81nOmTdvXtzyWtFoVJFIpFh/HaqgoEDTp0+vsPdzqG+++cYyPrRBcjQnnHCC6tatGxtPnTpVfr9f0oGZLEuXLo0d69atm1q0aFH2sLVAtW6u+P1+Pfvss7Hx/fffrzp16FQDAACgZvItfF1G9OAGlqbTK51wh42JUBuE2g9VJKWppeZb8KpNaQAAAI4sHA7r448/ttSGDh0ad97hMzXKavz48eV6v6Lk5+frq6++stSKem9FcTqdGjRokOVeM2bMkKS4GTzDhg0rY9Lao1ovCxYMBi1ruj300EN66KGHjnrN4VOSvvjiC8sfygsvvFCPP/54+QYFAAAAysgo2Cfv8vcttWCXy+VNaWhTItQaTrcCPUcqccZjsZJ7/WQ5MtcpmtHWxmAAAABWr7zyijZu3Bgb169fP65ZkJ+frx9++CE2TkhI0IQJE464rNeRDB8+XJs2bZIkLVy4UDt37lSjRo1KH/4YnnjiCcuSYJ06dSrRpvNDhw7Ve++9FxtPmDBBZ599tiZNmhSreb1enXXWWeUTuBao1jNXDlecKVvRaNRyjWmaRz0OAAAAVAXeJW/JCBfGxqbhVKDPLTYmQm0S6DpCUU9KbGzIlG/haBsTAQAAWH344Ydxe6bcdNNN8ng8ltqUKVNiS2JJ0oABA0rcWJGkwYMP7kFX1B4u5SUSiej555/X5MmTYzXDMHTbbbeV6D7t2rVTx44dY+O5c+dqypQp2rZtW6x22mmnKSUlpajLUYQa1VwBAAAAaqRArryL37KUgp0uUDStuT15UPt4khXsdpW1tOpTGQV7bQoEAABwwIYNG/SXv/xF//nPfyyrFl100UW64IIL4s4/fAmv4i6tdbghQ4bIMIzYuLyXGpOkFStW6M4774xrGt12223q379/ie936HuNRCJ68sknj3gcx1atlwVLTU3VmjVrSnTNnDlzdO2118bGF110kf75z3+WdzQAAACg3HiXvSNHMDc2NmXI3/d2GxOhNvL3HCnvojdi+/4YkaC8S8bJf+IfbU4GAABqA9M0VVBQoNzcXG3fvl3Lly/XvHnzNH/+/LitIM444wzdc889cffYunWrlixZEhs3atRIffr0KVWeRo0aqXfv3lqwYIEkacuWLVq6dKm6d+9e4ntFo1Hl5+crNzdXW7Zs0bJlyzRnzhwtW7Ys7tzLLrvM8vvtkhg0aJCef/55hcNhSVJu7sGfMerXr69+/fqV6r61VbVurgAAAAA1Xtgv38I3LKVQ20GK1mkn4wiXABXBTG6oYMcL5F31SazmXTpO/r63Se6SL6UBAABwJIsWLdLJJ59sqUWj0bgmyuESExM1atQojRgxwjKr5DeHzy4ZPHhwkecV15AhQ2LNld/uf6zmysSJE/Xtt99aasV5bxkZGbrzzjs1ZMiQUudNT0/XySefbNlz5jeDBg2S0+ks9b1rI5YFAwAAAKow74qP5Ci0Lr3kP55ZK7CHv8/NlrHDnyXvyo9tSgMAAGqyw/fSPlrzoWHDhrr++uv1ySef6IorriiyYWKaZty+KGVdBuvMM8+Uz+eLjSdPnqxAIHDUaw7fA/xY761Fixb63e9+p08++aRMjZXfDBs2rER1HBkzVwAAAICqKhKSd8GrllKoxamKNCz5UgNAeYjW7aBQyzPk3jQ9VvMuGq1At6skB590BAAAFcfpdMrr9So1NVX16tVTixYt1K5dO/Xu3VsdO3Y85gyUhQsXaseOHbFx165d1aJFizJlSkxM1BlnnKFJkyZJkvLy8vTjjz/qnHPOKdF9XC6XvF6v0tPTY++tY8eO6tOnj1q3bl2mjIc76aSTlJGRoczMzFjtuOOOK/fXqQ0M81jzjWqY8txz5dA/gLCXYRhKT0+XJGVlZR1zGh0AlCeeQQAqimfVp0r6zrpWdO4l7yvc7ERJPH9gD9eWWUr57EpLLW/oiwq159OOtQ3PIAB24fkDoDQyMjLK9X4sCwYAAABURWZUvnkvWUrhxr0VbnqCTYGAA8LNTlS4QTdLzTf/VYlfbAEAAKAWobkCAAAAVEHudd/JmbnOUvP3vUMqw4abQLkwjLi9V1y7l8q1bbZNgQAAAIDKV+v2XOnfv7/WrFljdwwAAADgyExTvnkvWkrhep0Uan2mTYEAq1C7IYqkNpczZ0us5lvwmvL+t2QdAAAAUNMxcwUAAACoYlybZ8i1e5ml5u97O7NWUHU4XAr0vslScm+cJsdePsgGAACA2oHmCgAAAFDFHD5rJZLWis3CUeUEOl+mqC/dUvMtfM2eMAAAAEAlo7kCAAAAVCHO7fPl3jbHUvP3vVVyOG1KBByBO1GB7tdaSp41X8nI22lTIAAAAKDy0FwBAAAAqhDfvJcs42hyIwU7XWRTGuDoAj2uk+n0xsZGNCTf4jE2JgIAAAAqB80VAAAAoIpw7lkhz8aplpq/9yjJ5T3CFYC9zMS6Cna+1FLzLntXCuTYlAgAAACoHDRXAAAAgCrCN/9lyzjqy1Cg6xU2pQGKx997lEwZsbERzJN3+fs2JgIAAAAqHs0VAAAAoApwZG+W+5cJllqg1w2SO9GmREDxRNNbKdRusKXmW/SmFAnalAgAAACoeDRXAAAAgCrAu3C0DDMaG5vupLjNwoGqyt/nZsvYkb9LnjVf2pQGAAAAqHg0VwAAAACbGYX75V35kaUW6DpCpi/NpkRAyUQa9VKoaT9Lzbfwdck0bUoEAAAAVCyaKwAAAIDNvEvflhH2x8amwyV/zxtsTASUXKD3LZaxc99auTZOtycMAAAAUMForgAAAAB2ChXKu2SspRTscJ7M1KY2BQJKJ9R6gCJ12llqvgWv2JQGAAAAqFg0VwAAAAAbeVZ9Ikfhfkst0HuUTWmAMjAc8ve27r3i3jZHzp1LbAoEAAAAVByaKwAAAIBdohH5Fo62lEItT1OkfmebAgFlE+x4gaJJDSw138LXbEoDAAAAVByaKwAAAIBN3Ou+lTN7k6XmP2zfCqBacXnl7znSUnL/OlGOrE1HuAAAAAConmiuAAAAAHYwTfkWvGophRt0Vbj5STYFAspHsNuVMj3JsbFhRuVdNPooVwAAAADVD80VAAAAwAaubXPk2mXdi8Lf+2bJMGxKBJQP05umQNcrLDXvyo9lHLa3EAAAAFCd0VwBAAAAbOBdYN2HIpLaTKH2Q21KA5Qvf8+RMh2u2NgI++VdMs7GRAAAAED5orkCAAAAVDLHvrXybJxqqQV63SQd8stooDozU5oo2PF8S827ZKwUKrQpEQAAAFC+aK4AAAAAlcx32KyVqC9dgS6X25QGqBj+3jdbxg5/prwrP7EpDQAAAFC+aK4AAAAAlcjI2ynPmi8ttUD3ayV3ok2JgIoRrddJoZanW2reRaOlaMSmRAAAAED5obkCAAAAVCLf4jEyoqHY2HR6FehxrY2JgIrj73OLZezM3iT3ukk2pQEAAADKD80VAAAAoLIEcuRd9p6lFOx8qczEejYFAipWuNmJCjfoZqn55r0kmaZNiQAAAIDyQXMFAAAAqCTe5e/LCObGxqYM+XvdZGMioIIZRtzsFdeeFXJtmm5PHgAAAKCc0FwBAAAAKkMkKN+iNy2lUNtBima0tikQUDlC7YYokt7GUkuY+wKzVwAAAFCt0VwBAAAAKoFnzZdy5O+y1Px9bznC2UAN4nDKf/xtlpJrxwK5ts22KRAAAABQdjRXAAAAgIpmmvItfN1SCjXpp0ijXjYFAipXsOOFiqQ0tdR8c1+wKQ0AAABQdjRXAAAAgArm2jhdzn1rLbVAH2atoBZxuuXve6ul5N7yk5w7FtoUCAAAACgbmisAAABABfMteMUyjtRpp1DrATalAewR7HyZokkNLDXfvBdtSgMAAACUDc0VAAAAoAI5dy6We9scS83f+2bJ4Ftx1DIu34E/+4fwbJgi554VNgUCAAAASo+f6AAAAIAK5FvwmmUcTWqgYMcLbEoD2CvQ7UpFfRmWmm/eSzalAQAAAEqP5goAAABQQRxZG+VeN8lS8/ccKbm8NiUCbOZOVKDXjdbSLxPk2P+rTYEAAACA0qG5AgAAAFQQ78LRMsxobGx6khXsdqWNiQD7BXpcI9OTEhsbMuWbz+wVAAAAVC80VwAAAIAKYBTsk3flx5ZaoOsVMr1pNiUCqgbTmyZ/j+ssNc/qL+XI3mJTIgAAAKDkaK4AAAAAFcC7ZKyMSCA2Nh0u+XveYGMioOoI9LpBpishNjbMiHzzX7YxEQAAAFAyNFcAAACA8hYqkHfp25ZSsOMFMlMa2xQIqFrMhDoKdLvKUvOs+kRG3k6bEgEAAAAlQ3MFAAAAKGfelR/L4c+01Py9b7YpDVA1+XuPkun0xMZGJCjfgtdsTAQAAAAUH80VAAAAoDxFw/IufN1SCrUaoGi9jjYFAqomM7mhAp0vt9S8y9+Tkb/bpkQAAABA8dFcAQAAAMqR+9eJcuZstdT8fW6xKQ1QtQX63iLT4YqNjbBfvvmv2JgIAAAAKB6aKwAAAEB5MU35FrxqKYUb9lC4aX+bAgFVWzS1uYLHXWqpeZe9y+wVAAAAVHk0VwAAAIBy4tr6s1y7l1tq/j63SIZhUyKg6vP3u8M6eyUSkG/+SzYmAgAAAI6N5goAAABQTnwLrMsZRdJaKtR2kE1pgOohmtpcwc6XWWreZe/JyNtpUyIAAADg2GiuAAAAAOXAuWel3Jt+tNT8vW+SHE6bEgHVh//4O2Q63LGxEQnKN/9lGxMBAAAAR0dzBQAAACgH3oWvW8bRhLpxn8YHULRoarP42SvL35eRu8OmRAAAAMDR0VwBAAAAysjI2SbPmq8stUCPayWXz6ZEQPVTWOTsFfZeAQAAQNVEcwUAAAAoI9/iN2WYkdjYdCUo0P1aGxMB1Y+Z2lSBLsMtNe+KD2XkbrcpEQAAAHBkNFcAAACAMjD8WfIuf99SC3S5XGZChk2JgOrLf/wdMp2e2NiIBJUw9wUbEwEAAABFo7kCAAAAlIF3yVgZoYLY2DQcCvS6ycZEQPVlpjRWoMsIS82z8iM5sjbaEwgAAAA4AporAAAAQGkF8+VdPMZSCrU/V9G05jYFAqo///G3y3R6Y2MjGlbCz/+2MREAAAAQj+YKAAAAUEre5e/L4c+y1Px9b7MnDFBDmMmNFOh5vaXmWfuVnHtW2BMIAAAAKILL7gAAAABAtRQOyLfwdUsp2PosReofZ1Og6ss0Te3LD2lrll/bsgPamuXX/vyQcvxh5QbCyvVHlBsIKz8QUdQ0D1wj6X//KJfDkM/tkM/tUILbKZ/LoUSPU6k+l1J9LqUl/O8vy9itNJ9LCW6HDMOw782jSP4+t8q77D0ZwdxYLWHW08q7YMxRrgIAAAAqD80VAAAAoBQ8qz+XI3+XpeY//nab0lQfoUhUv+4p0LIdeVq+PVerd+VrS5Zf/lDUljxup3FI08Uda8KkJRzSiDn8mM8lH02ZCmUmZMjf5xYl/Px0rObeOE2ubXMVbtrPxmQAAADAATRXAAAAgJKKRuSb/4qlFGraX5HGfWwKVHUFw1Et3parnzdkafHWHK3ala9A2J5GSlFCEVN780Pamx+SVFjs6zxOQ6k+l1J+a8wc8s+pPmfcsYxEt+okupXsddKUKSZ/z5HyLnlLjoK9sVrCT08p97KPJf4dAgAAwGY0VwAAAIAScv86Qc7sjZaa//g77AlTBeUHIvpx3X5NXrNPszZk2TYrpSIFLU2Z4nM7DdX5X6OlTtKBv9dNcqt+sldN0rxqnHbg7yleflSTJ0n+fncqcfpfYyXXjvlyb5iqUJuzbAwGAAAA0FwBAAAASsY05Zv3kqUUbtBV4Ran2hSoaji0ofLT+qxSzU5xOQw1TfeqaZpPjVK9/5v98b9ZIF6Xkr1OOR0HZiwcOm8hHDXlD0XlD0dVGIrIH4oqPxhRTmFY2f6wcvxhZReGle0PKbvwwDhqltMbL6FQxNSu3KB25QaPel6y13mg2ZLqVZM0n5ql+9SmXoLa1ktUvSR3rZn9Eug6Qt6Fr8uZsyVW8836l0KtB0iGw8ZkAAAAqO1orgAAAAAl4No4Xa69qyw1f987auUyRaZpatn2PH26eKe+W71P/hI0VJpn+NStcbK6NklR+/qJapbuU/1kT6x5UpGipqn8QETZvzVdCkOxJkxWYTjWlPmt/ltDpjKbMnmBiNbuLtDa3QVxx1J9LrWpm6A29RLVtl6C2tRNVLv6iaqX7KmccJXJ6ZH/xD8q6ds/xEqufavlWfOVgp0utC8XAAAAaj2aKwAAAEAJJMx70TKOZLRVqN0gm9LYIzcQ1sQVe/TJ4l36ZU/8L/8PZ0g6rlGSTmydrp5NU9W1SbLSE9wVH/QIHIahlP/tidIsvfjXRU1TeYFIrCFzoOESUU4grNxDmjC5gYPNmN8aNYXluDRajj+sxdtytXhbrqVeP9mjLo2T1aVRsjo3SlLnxvb+ey4vwQ7nyzv/Vbn2rY7VfD8/o2D7oZKzBjaUAAAAUC3QXAEAAACKybVtrlw75ltq/r631prliTZnFuqdedv19fI9x9xHxeUw1K9lms7pVFentaujOonV/5f8DsP434b1LjXP8JXo2sJQRJkFIe3PD2l/QUj7/vf3/fkh7c0/sEzY9uyA9uQdfbmwo9mTF9T0X/Zr+i/7Y7Vm6V51bpSsLo2T1bNpqo5rlCS3s5r9eXU45T/pXiV/fVOs5MzZIu/yDxToca2NwQAAAFCb0VwBAAAAisl3+KyVlKYKdrzQnjCVaMWOXL01Z7umrNmno62KdWhDZUD7OkqrAbMmykuC26mENKeapB29KRMMR7UzN6Dt2QHtyP7f33MCWr+vQBv2FR6zqXW4rVkBbc0K6LvV+yRJXpdDXRsnq1ezVPVslqLuTVOU4q36PxaGWp+lcOM+cu1YEKv55jynQKeLJG+KjckAAABQW1X976IBAACAKsC5e7ncm36w1AK9R0nOmtlAME1TP63P0ti52zR/c85Rz22a5tVFPRrqgm4Naua+H5XI43KoRUaCWmQkxB2LmqZ2ZB9otKzbW6j1ewu0ft+Bvxd32bFAOKoFW3K0YMuB/6aGpPYNEtWrWar6tkjT8S1Sq2ZTzDBUePL9SvlkeKzkKNwr34JX5T/pXhuDAQAAoLaiuQIAAAAUg2/+y5ZxNKGuAl2GH+Hs6ss0Tc1cn6VXf9qiFTvyjnie05BOb19Hl/RoqBNap8thVPxG9LWdwzDUNN2npuk+ndr2YD1qmtq0v1ArduRpxc48rdyRrzW78xUIH7vhYkpau7tAa3cX6MOFO2VI6tQwSf1apql/q3T1bJaiBLezwt5TSYSb9lew9dnybJgcq/kWvq5AtytlpjSxMRkAAABqI5orAAAAwDE4MtfJ/csESy3Q8wbJHT+7oLoqblMlyePUpT0b6oo+jdUw1VuJCXEkDsNQ67qJal03Ued2bSBJCkWiWr+3UCt25mnFjjwt3ZarX/cWHPNepqRVu/K1ale+xs7dLrfTUPcmKerXMk0ntk5X50bJcjrsa6QVnvKA3BunyTAjkiQjElDCz0+rYOC/bcsEAACA2onmCgAAAHAMvvmvyjhktxHTk6JAj6ttTFS+Zm/I0oszNmv5UZoq9ZM9uqpvY13cs2G12KOjtnM7HerYMEkdGybp4h4NJUnZhSEt2ZarRVtztXhrjlbszFMocrRddKRQxIwtI/byzC1KT3DppNbpOrlNhk5sna6MxMpdQixap50C3a6Ub+nbsZp31WcK9LxBkQZdKzULAAAAajd+KgIAAACOwsjdLs/qzyw1f/erZXrTbEpUflbvytN/p2/S7I3ZRzyneYZPN5zQVEM715fH5ajEdChvaQlundaujk5rV0fSgf1XVu7M08ItOVqwOUeLtubIf4ylxLIKw5qwcq8mrNwrQ1LXxsk6uU2GTm6Trs6NkytleTh//7vkXf25jODBZmDCjMeUd/H7EsvTAQAAoJLQXAEAAACOwrfwNRnRcGxsOr0HlgSrxrZl+fXijM2auHLvEc9pnuHTqJOaaUjn+nLZuAwUKo7X5VCvZqnq1SxVN54oBcNRLd2eq7mbsjV3U7aWb8/V0Sa2mJKW7cjTsh15euWnLaqX7NaZ7evq7I511at5aoX9uTET66mw7+1KnPVUrObeOlvuDVMVanNWhbwmAAAAcDjDNM2jzwPHEWVmZtodAf9jGIbS09MlSVlZWeKPNYDKxDMIqLmM/N1KG3OqjEggVvN3v1aFAx61MdVBJX3+ZBaENHrWVn20aKfC0aLPbZ7u000nNdPQLjRVarv8QEQLt2ZrzsZs/bwhS+v3FRb72oxElwb8r9HSt0Wq3M5ynvUU9it13Fly5m6LlSIZbZVz1STJWblLldVmfA8EwC48fwCURkZGRrnej5krAAAAwBH45r9iaayYDrf8fW6xMVHpFIYiem/+Dr01e5vygpEiz6mf7NGtpzTX+d0a0FSBJCnJ69Spbevo1LYHlhHbnu3XT+uzNHN9puZuypY/dOQlxDILwvpsyS59tmSXUn0undEuQ+d0qqcTWqeXz58vl0/+k+5T0rd3x0rOzHXyrPhAwe7XlP3+AAAAwDEwc6UMmLlSdfCJBQB24hkE1ExFzVoJdL1CBWc9YWMqq2M9f0zT1KRVe/Xf6Zu0KzdY5D2SPU5df0JTXdm3sRLczoqOjBoiGI5q4ZYczVyfqZ/WZ2nj/uLNaqmX5NaQzvV1Xrf6al8/qWwhzKhSPrhArt3LYqVoQl1lXzdd8qaU7d4oFr4HAmAXnj8ASqO8Z67QXCkDmitVB19UAdiJZxBQMyXM+Id8C1+PjU2HSznXTVM0tbmNqayO9vxZtTNPT03eoMXbcou81uUwNLx3I914YjNlJLKMEspm475CTVm7T5PX7NPqXfnFuua4hkk6t2sDDetST2kJpfsz6No6WymfjrDUCvveJv/JfyrV/VAyfA8EwC48fwCUBs2VKoTmStXBF1UAduIZBNQ8RsHeA7NWwgc/jR/oMlwFZz9pY6p4RT1/9ucH9cKPm/XF0t060tNoaOd6uv3UFmqa7qu0rKg9tmb5NWXNgUbL8h15xzzf63Jo8HH1dFmvRurSOLnEr5f09Sh51n8fG5tOj3KumaxoWosS3wslw/dAAOzC8wdAadBcqUJorlQdfFEFYCeeQUDNkzDzCfkWvBobm4bzwKyVKvbL2kOfP3v27dd787fr9Z+2HnFflX4t0/SHAS3VqWHJf4ENlMaOnICmrtmniav2akUxGi1dGifr8l6NNLBTXfmKuUydI3OdUt8ZJCMajtWCbQcq/9zXSp0bxcP3QADswvMHQGnQXKlCaK5UHXxRBWAnnkFAzWIU7lfamFNkhApitcBxl6pg4NM2pirab8+f6Wt26+Evlx9x34umaV7dc2YrndG+jgyDzephj/V7C/T18j0av2KP9uQVvQfQb9ITXBrRu7Eu792oWMvWJfzwqHyL37TUci8cp3DL08qUGUfH90AA7MLzB0Bp0FypQmiuVB18UQVgJ55BQM3i++kpJcx/KTY2DYdyrp2qaHor+0Idwa7coJ79YasmrdhZ5PEEt0M3nthMVx/fRF6Xo5LTAUWLRE3N3ZStL5bu0tS1+xWOHvnrps/l0AXdG+jq45uo2VGWsTMC2Uode6YchfsOvk5GW+VcNUlysqdQReF7IAB24fkDoDTKu7niKte7AQAAANWY4c+Sb8lYSy3Y8cIq11gJRaJ6b/4OvfrTFhWGokWeM6xLfd15egs1SPFWcjrg6JwOQye2TteJrdO1Ny+oL5bu1qeLd2pnbvxsFn84qg8X7tTHi3bq7I51ddNJzdS+flLceaY3TYUn3a+kKQc3sndmrpN3yVgFet9Uoe8HAAAAtRMzV8qAmStVB59YAGAnnkFAzeH7+RklzH0+NjYNh3Ku+V7RjLY2prJauCVHj3+3Tuv2Fr0EWJfGybrvrNbq0TSlkpMBpReOmpqxLlMfLdyh2Ruzj3ruwE51dfPJzdW2XqL1gBlVygcXyrV76cGSJ0XZ106VmVS/ImLXenwPBMAuPH8AlAbLglUhNFeqDr6oArATzyCgZjD82Qf2WgnmxmqBjheoYPB/bUx10P78oJ6dvklfL99T5PH0BJfuOqOlzu/WQA72VUE1tnZ3vsbN3a5vV+094pJhhqTBnevp5pOaq1XdhFjduWOBUj+6xHJuoPPlKjjnqYqMXGvxPRAAu/D8AVAaNFeqEJorVQdfVAHYiWcQUDP4Zv9HCXMONlJMGQdmrdRpZ2OqA/tTfLZkl57/YZNyA5Eiz7miXwvdcmIjpflY9Rc1x86cgN6dv12fLdmlgmDRy985DOm8rg10+6nNY0vgJX73R3lXfWY5L2f4F4o06lnRkWsdvgcCYBeePwBKg+ZKFUJzpergiyoAO/EMAqo/I5Ct1DdPkeOQWSvBDucqf8gLNqaSVu7M0+PfrdeKHXlFHu/YIElPXNpDvVtk8PxBjZXjD+v9+Tv0zvztyjtCg9Hnduj6fk11bb8mSgztU9rYATJC+bHj4YY9lHv5Z5LDWVmxawW+BwJgF54/AEqjvJsrjnK9GwAAAFANeRePtTRWTBkq7HenbXnyAxE9OXm9rh67tMjGSrLHqfvPbq13rz/QWAFqslSfS7ec0lzjb+2jUSc1U5InvkHiD0X1yk9bdMHri/Tleqmg3+8tx127lsiz/L3KigwAAIBagOYKAAAAardArryL3rCUQu2HKlq3gy1xZqzbr0vfWKQPFuxUUZ/BHNK5nj4b1UtX9Gksl4O9VVB7pPpcuv3UFvrm1t664YSmSnDH/zi7Jy+ov034VcOX9VVBSivLsYSfnpKRX/SeRQAAAEBJ0VwBAABAreZbMk6OQLalVnjYp94rw/78oB74aq3u/GS1duYG4463qpOgV0d00ePndVD9ZE+l5wOqivQEt35/ekt9dXNvXdKjoYrqMS7fHdSN+66y1BzBXCXMfLySUgIAAKCmo7kCAACA2iuYJ++i162ltoMVrdep0iKYpqmvlu3WxaMX69tVe+OOe10O/e60FvpwZA/1a5lWabmAqq5eskcPDm6rD0b20Amt4v/f+DnaRZ9HTrbUvKs/l2vLrMqKCAAAgBqM5goAAABqLe/St+XwZ1lq/v6VN2tlW5Zft3+0Un+b8Kuy/eG44/1apunjG3rqxhObyePiW3egKO3rJ+mlyzvr+UuPU5u6CZZj/whdrRwz0VJLnPagFA5UZkQAAADUQPyEBgAAgNopVCDfwsNmrbQ5R5H6XSr8pcNRU2/P3a5L31ys2Ruz446n+lx6eEhbvTK8s5pn+Co8D1DdGYahU9pm6IORPfSHAS1j+7HsVZqeCg+3nOvMXC/PgtfsiAkAAIAahOYKAAAAaiXvkrFyFO631Pz976rw112zO1/Xvb1U/562Uf5QNO74wE519emNPXVB94YyDDasB0rC7XTo2n5N9dlNvXRmhzqSpPciZ2lxtI3lPNfs57V5w2o7IgIAAKCGoLkCAACA2ieQI9/8VyylYOuzFGnQtcJe0h+K6PkfNumqt5Zo5c78uOMNUzx69pJOevKCjqrHhvVAmTRK9eqZizrp2Us6qWFqgv4vdKMi5sFmpVdB5X5xn16duVmhSHyTEwAAADgWmisAAACodXyL3pQjYF2Oy3/CHyrs9eZvztbwMUv05uxtipjxx4f3bqRPbuyp09vVqbAMQG10ers6+vTGnurd92S9HRloOXaKY5n2zX5H14xbpl/3xDc8AQAAgKOhuQIAAIBaxfBnybfoDUst2HZwhcxayfWH9fdJ6zTq/RXanOmPO966boLGXNVVD5zTRsleV7m/PgApwePUH89spXaXPKzdRl3LsYdc7yhr9xZdNXap3p23XVGziO4nAAAAUASaKwAAAKhVvAtekxHMjY1NGSqsgFkrU9bs08WjF+mzJbvijrkchm4+qZk+uL6HejZLLffXBhCvS6vGcg19ylJLNQr0D/cbCkaienrqRt3+4Urtzg3YlBAAAADVCc0VAAAA1BpGwV75Fo+x1EIdzlO0Xsdye43duUHd8/lq3fvFGu3ND8Ud79YkWe9f3123ndpCHhffjgOVyWh3lgLHXWypne1cpPMdsyRJczZl67I3l+j71XvtiAcAAIBqhJ/mAAAAUGv45r8iI1wYG5uGQ4Un3F0u946apj5dvFOXjF6kqWv3xx1P9Dj0p7Nba8xV3dSuflK5vCaAkis87a+KJtaz1B5xj1U9HdiHKccf1v1frtXDE35VYTBiR0QAAABUAzRXAAAAUCsYeTvlXfq2pRY87hJFM9qU+d4b9xVq1Psr9Ni365VXxC9jT2mTrk9u7KURfRrL6TDK/HoASs/0patgwGOWWoaRp4fdb1lqXy7bravGLdUvbHYPAACAItBcAQAAQK3gm/eijMjBvRRMh0v+fneW6Z6hSFRv/LxVw8cs1sItOXHHMxJdevy89nru0uPUONVbptcCUH5C7QYr2H6YpXauc44GO+Zaahv2Feqaccv0yeKdMtnsHgAAAIeguQIAAIAaz5GzVd7lH1hqwS7DFU1rXup7rtiRq6vGLtULP25WMBL/S9dzu9bXZzf10pDO9WUYzFYBqpqCMx5R1Jdhqf0neZwae6wzVQLhqP7x7Xr96cu1yg2EKzMiAAAAqjCaKwAAAKjxfHOflxE9uLm86fSo8Pjflepe+YGInpq8Qde+vUy/7CmIO94kzauXLu+svw9rr/QEd6kzA6hYZmI9FZzxsKWWENyvCW2+UKeG8fsifb9mn64Ys0TLt+dWUkIAAABUZTRXAAAAUKM5sjbKs/ITSy3Q7SqZKY1LfK9pa/fp4tGL9P6CHYoeNlnFYUhXH99Yn9zQUye2Ti9DYgCVJdThfAXbnG2pZWwcrw/6b9QVfeKfEduyAxr57nKNm7tNUZYJAwAAqNVorgAAAKBG8835rwzz4CbzpitB/r63legeO3MC+sNnq/XHz9dod14w7nj7+okad0033XNmayV4nGXODKCSGIYKBvxDUW+apZz6w0P6U3+f/n1xJ6X6XJZj4aip/0zbpLs+WaX9BSEBAACgdqK5AgAAgBrLse8XeVZ/YakFelwrM6lBsa4PR029O2+7Lh69SNN/2R933Oty6HentdC713VXl8Yp5REZQCUzkxuq4MzHLDVHIEdJ39+rAe3S9cHIHurZNP7/75nrszRizBLN35xdWVEBAABQhdBcAQAAQI2VMPs/MnRw6R7Tkyx/n1uLde3KnXm6dtxSPT11owpD0bjjJ7ZK18c39NSNJzaT28m31UB1FupwngIdL7DU3Ft+knfxW2qc6tXrV3bVTSc2k3HYdXvygrrlgxV6ZeZmRQ5fKxAAAAA1Gj8FAgAAoEZy7lkhz68TLDV/zxtkJmQc9br8QET/mrxB14xbqlW78uOO10l06/Hz2uvFy49T8wxfuWYGYJ/CAY8qmmzdZyXhp3/KsW+tXA5Dd5zWQi8N76y6SW7LOVFTevWnrbrlgxXanRuozMgAAACwEc0VAAAA1Ei+n/9jGUe9qQr0vvGo1/y2Yf17RWxYL0mX9Gioz0f10pDO9WUYh3+GHUB1ZnrTlD/wGUvNiASV9O3dUuTAXksntErXhyN76MRW6XHXL9iSo+FjlmjGuvglBAEAAFDz0FwBAABAjePcuUieDZMttUDvW2Qetmn1b461YX2bugkac1VXPTi4bdzm1gBqjnDzk+TvZW3CuvaslG/2wWZt3SSPXrj8OP3+9BZyHtZjzSoM685PVuuZqRsUisQvJwgAAICag+YKAAAAapyEn/9tGUcT6sjf8/q484q7Yf0HI3uoZ7PUiooLoAopPOk+Rep2sNR881+Ra9vc2NhhGLrhhGZ646puapTqibvHO/N2aOS7y7U1y1/heQEAAGAPmisAAACoUVzb5si9eYal5u97m+RJstSOtWH9Ca3S9NENPdiwHqhtXD7lD3pWpuPg3iqGTCV++wcZ/mzLqT2apujDkT11Zoc6cbdZsSNPV4xZom9X7a3wyAAAAKh8/JQIAACAmsM05fvZumdCNKmBAt2ujo2Lu2H9S5d3VouMhAqPDKDqidTvrMIT77HUnLnblDjlAcm0bsiU6nPp6Qs76s/ntJbnsHXC8oIRPfDVWv190joVhiIVnhsAAACVh+YKAAAAagzX5hlyH7J0jyT5j79Dch9okkxbu0+XvHHkDesv7tFQn93Ukw3rASjQe5RCTftbap5fJ8qz/P24cw3D0OW9G2vcNd3Vso4v7vhnS3bpmnFLtW5vQYXlBQAAQOWiuQIAAICawYwqYda/LKVochMFuoywbFi/K7foDevfvKqrHhrcVmkJ7rjjAGohh1P5g55V1JduKSf+8Igc+9YWeUnHhkl677oeOrdr/bhj6/YW6uqxS/Xxop0yzSK6uwAAAKhWaK4AAACgRnD/OlGu3csstfx+v9e7iw7MVjnWhvW92LAewGHMlMYqOPspS82IBJQ08U4pXPRm9Ykep/4+rL0eHdZOCW7rj9z+cFSPf7ded3+6Wvvz4xu9AAAAqD5orgAAAKD6i4aVMMu610pBSmuNmN9RT0/dqIIgG9YDKJ1Q24Hy97jOUnPtW62EGY8f9brzujbQe9f1UIcGiXHHflyXqcveXKIZ6+KbvgAAAKge+CkSAAAA1Z5n5SdyZq231O7bf75W7I7/ZHlGoosN6wGUSOEpf1a4bidLzbd0nNzrvj3qda3qJmjcNd01vHejuGP7C0K685PVevw7NrsHAACojmiuAAAAoHoL+5Uw51lLaWm0tcZH+sWdenGPhvr8pl5sWA+gZFw+5Q99QabLull94vf3y8jdftRLvS6HHjinjZ679DjVSYzf0+njRbs0YswSLd6aU66RAQAAULForgAAAKBa8y59W468nZbaU+ERkg42T9iwHkBZReu0U8HpD1tqjkC2kibdJUVCx7z+1LYZ+viGHjqtXUbcsc2Zft3w7nI9M3WD/MxiAQAAqBZorgAAAKDaihRmy/j5eUvtp0gXzYx2lSR5nIbuOJUN6wGUj2CX4Qq2H2apubfPU8LPTxfr+jpJHj17cSf936A28rmsP46bkt6Zt0Mj3mIWCwAAQHVAcwUAAADV0oodufp27D+UELb+EvJf4eGSDPVvmaaPb+ypm05iw3oA5cQwVHDW44qkNLWUfQtelXv998W8haFLezbS+9f3UNfGyXHHN+0/OIulMMgsFgAAgKqKnzIBAABQreQGwvrn9+v1h3EzdaH/S8uxSZHjtSmhkx47t71eHs6G9QDKn+lNU/7Ql2Q6rEsMJn53jxzZW4p9n1Z1EzTm6m6664yW8jite0D9NovlkjcWa8a6zPKIDQAAgHLmsjtARcjKytLatWu1adMmZWVlyTRNpaWlqUmTJurZs6dSUlLsjggAAIASMk1Tk9fs01NTNmhvXkh/c32hJCMQOx4xDS1pe6s+H9iLfVUAVKhIox4qPO0hJU7/a6zmCOQoacLtyr3sY+mwje+PxOUwdH3/pjqtbYb+NuFXLd+RZzm+IyegOz9ZpXM61tW9Z7VWgxRPub4PAAAAlJ5hmqZpd4iyikajmj9/vr7//nvNnj1ba9euPeK5hmHoxBNP1PXXX6/TTz+9TK+bmckniKoKwzCUnp4uSbGGGgBUFp5BQMXbnu3XE9+t18z1WZKkZsYeTfX8UR7j4JI5O1peIN+F/7UpoT14/gA2Mk0lTbpTnrVfW8r+bler8MzHSny7cNTUO/O26+UZmxWMxP+/nOxx6nent9ClPRvJ6TCKuEPl4xkEwC48fwCURkZGRrner0Y0VwYOHKhNmzaV+Lphw4bp0UcfVXJy/Dq3xUFzpergiyoAO/EMAipOOGrq3Xnb9crMLfKHo7H60+5XdKnzx9jYdHiUc91URVOb2RHTNjx/AJsF85T6wflyZq63lPMHPatgpwtLdcsN+wr0j2/Xa8GWoje179I4WQ8NaquODZNKdf/yxDMIgF14/gAojfJurtSIZcH2798fV2vVqpW6d++uevXqyev1aufOnfr555+1c+fO2Dnjx4/X7t279cYbb8jr9VZmZAAAABzD6l15emTiOq3elW+ptze26mLHDEst0P2qWtdYAVAFeJKVN/RlpX54gYywP1ZOnPKAInU7KlL/uBLfsnXdRL1+RRd9vXyP/jNto7IKw5bjK3bk6aqxS3RF38a65eTmSvbWiB/rAQAAqp0aMXOlb9++ys3NVdOmTXXZZZfpoosuUqNGjeLOi0Qi+uijj/TEE08oEDi4PvcNN9ygP/3pTyV+XWauVB18YgGAnXgGAeUrEI7qtZ+2aOycbSpiZRyN8f1HAzQvNjbdicq+/keZifUqMWXVwPMHqBo8Kz9R0vf3WmqRtBbKHfG1TF9aqe+bWRDSs9M26qvle4o8Xi/Jrd+f3lLndq0vh1H5S4XxDAJgF54/AEqjvGeuOMr1bjZp0qSJHn/8cX3//fe67bbbimysSJLT6dQVV1yh559/Xg7Hwbf+9ttva9euXZUVFwAAAEewaGuOho9ZrDdnxzdWDEn3dtpvaaxIkr/XTbWysQKg6gh2vlSBrldaas7szUr69m7JjBZ9UTFkJLr1yLD2ev2KLmpVJyHu+N78kP424Vdd9/YyLd+eW+rXAQAAQMnViObKZ599pksuuUROp7NY559++ukaNmxYbBwKhTRlypSKigcAAIBjyAuE9cR363XDu8u1ab8/7nibugkac1VX3RJ+x1KP+jLk7z2qsmICwBEVnP43hRv1tNTcG6fJN+e/Zb533xZp+nBkD916SnO5nfEzVJbvyNM1by/TX8f/oj15wTK/HgAAAI6tRjRXXK6SrzF7aHNFkpYtW1ZecQAAAFACM9Zl6rI3FuujRTvjjrkchm45uZnev76H+kQWy711tuW4//g7JG9KZUUFgCNzeZU39GVFE+payglz/iv3+rJ/mM/jcuiWk5vr4xt66pQ26UWe8/XyPbrw9YV6a842BcOlnzEDAACAY6sRzZXSaNGihWW8d+9em5IAAADUTpkFIf3f12t15yertDM3/pPWXRsn6/3ru+vWU1rI45QSZv3Lcjya3FiB7ldXVlwAOCYzpbHyh74g07CuqpD47d1yZG0sl9doWSdBz1/WWc9depxaZPjijhcEo/rv9E269M3FmrFuf7m8JgAAAOLV2uZKfn6+ZVya2S8AAAAoOdM09e2qvbp49CJNWBn/ARefy6F7zmylt67upnb1kyRJ7l8nyrXbOtO4sP/dkiv+F4sAYKdwsxNVeMqfLTVHMFfJ39wihQrK7XVObZuhT27sqT+c0VJJnvglsrdk+nXnJ6v1u49XauO+wnJ7XQAAABxQa5sra9assYwbNWpkUxIAAIDaI7MgpPu/XKsHvlqrrMJw3PF+LdP08Y09dfXxTeR0/G9fgWhYCbOesZwXyWijYOdLKiMyAJRYoNeNCnY411Jz7lujpMl/kkyz3F7H7XTo2v5N9cWoXrqgW4Miz/lpfZYue3Oxnpm6Qbn++OcuAAAASqfWNle++uory/iEE06wKQkAAEDt8MOv+3XZm4s1ec2+uGPJXqf+NqStXhneWc3SrbNRPCs/kTNrvaVWeOK9koOZxwCqKMNQ/tlPKVK3o6XsWfu1vIveKPeXq5fs0cND2+nta7qpW+PkuOPhqKl35u3QBa8v1GeLdykSLb8GDwAAQG1lmGY5fmymmpg7d66uueaa2DglJUU//PCDkpKSSnSfrKysck6G0jIMQ2lpaZKk7Oxs1cI/1gBsxDMIOLq8QFj/mrxBXy7bXeTxMzvU0QPntFGDFG/8wbBfqW+dLkfewc3uww26Ke+KryXDqKjI1QbPH6Bqc2RuUMr758sI5sRqpuFU3iXvKdKsYj7gFzVNjV++R/+dvlF780NFntOxQZLuP7u1+rRIK9Nr8QwCYBeePwBKIz09vVzvV+uaK4WFhbrwwgu1cePGWO3OO+/UHXfcYV8oAACAGmrWr3t13ydLtS0rfr3/jES3/n5hV53bvclRbvC89N2D1to1n0ttzyznpABQQdZMkt4fbq0l1Zdu/kFKa1phL5sXCOuFqb/qzZkbFIxEizxnWPfG+vOQTmqWkVhhOQAAAGqqWtdceeCBB/T555/Hxm3atNEXX3whr7eIT0oCAACgVAqDET05abXemrWxyONndWqgJy7ppgYpR9mQ3p8t/beHVJh5sNb6NOnar5i1AqB6mfa49MOT1lrTvtLICZKrYn8W3bQvX/8Yv0rfrdxV5HGvy6FbTmujW89oq0QPyy0CAAAUV61qrowdO1aPP/54bOzxePT++++ra9eupbofy4JVHUwHBWAnnkGA1dJtuXpo/Fpt2u+PO5bkceq+s1rrgu4NZByjQeKb9bR8c5+31HKHf6FI417lmrc64/kDVBNmVElf3iD3xmmWcqDHtSoc8PdKiTB7Y5b+NXmD1u0tKPJ4gxSP7j6jlYZ0rnfM5/NveAYBsAvPHwClwbJgpTRp0iT94Q9/UDR6cDr0P//5T1100UWlvmdmZuaxT0KlMAwj9j9HVlYWX1QBVCqeQcABoUhUr/60RWNmb1NReyX3bZGqR4a2U5O0o8xW+R8jb5fSxp4hI3xwObFg20HKP/fVckxc/fH8AaoPw5+tlA/OkzN7s6WeN+R5hTqcVykZwlFTny7eqZdmbFGOP1zkOT2bpujBQW3Vtv6xlwrjGQTALjx/AJRGRkZGud7PUa53q6J+/vln3XfffZbGyj333FOmxgoAAAAOWrs7X1ePW6o3fo5vrHhdDt13Vmu9OqJLsRorkpQw51lLY8U0HCo88d7yjAwAlcr0pSl/2KsyndZlwJImPyBH5rpKyeByGBreu7G+vLmXhvduJGcRE1QWb8vViLeW6IUfN8kfilRKLgAAgOqoxjdXli5dqttvv13BYDBWu/HGG3XzzTfbmAoAAKBmCEdNvTl7q64au1Rrd8cvNdO1cbLev767ruzbWI5iLjPj2P+rPCs+tNSCnS9XtG77cskMAHaJ1D9OBYctA2aE8pU8/jYpVPRyXRUhPcGtB85pow9G9lC/lmlxx8NRU2/8vE2Xj1miORuzKi0XAABAdVKjmytr167VqFGjVFBw8JvUyy67TPfff7+NqQAAAGqGrVl+3fTecj3/w2aFD5uu4nIYuuPUFhpzdTe1rnvspWUOlfDTP2WYB2ccmy6fCk/4Q7lkBgC7BbtcrkDnyyw15761Spz2oFTJy9q0q5+kV4Z31r8v7qRm6d6441sy/br1w5V68JtftL8gVKnZAAAAqroa21zZvHmzbrjhBsum84MHD9ajjz5qXygAAIAawDRNfbVst0aMWaIl23Ljjrerl6h3ru2um05qJpejeLNVfuPaNlee9ZMtNX/vUTKTG5YpMwBUJQVnPKpwvU6WmnfVZ3Gz9iqDYRga0L6OPr6hp248sWmRz+3xK/bo4tcX6culu9jXAAAA4H9qZHNl165duv7667Vnz55Y7fTTT9fTTz8th6NGvmUAAIBKkV0Y0v1frtXfJvyq/KB1LX6HIV3fv6neva67OjZMKvnNTVMJMx+3lKIJdeTvzXKuAGoYd4Lyh74s05NsKSdO/6uce1bYEsnndup3p7XU+9d3V/cmKXHHs/1hPTxxnW75YIW2ZfltSAgAAFC11LhOw/79+3X99ddr27ZtsVq/fv303HPPye1225gMAACgepu9MUuXvblEk9fsizvWLN2rN67sqrvOaCmPq3TfYrp/nSjXzsWWmr//XZI3/pd8AFDdRTNaK//spyw1IxJU0vjbpUCOTakOLBU25uqu+svANkr2OuOOz9uco8vHLNZnS5jFAgAAarca1VzJy8vTTTfdpPXr18dq3bt318svvyyfz2djMgAAgOorEI7qmakbdNuHK7UnLxh3/IJuDfTB9T3Vs1lq6V8kElLCT9ZfMkbSWirQ9YrS3xMAqrhQ+6Hy97zeUnNmb1LS9/dV+v4rh3IYhi7r1Uif3dRL53SsG3e8IBjV3yet052frNLuHGaxAACA2qnGNFf8fr9uvfVWrVhxcAp1hw4dNHr0aCUnJx/lSgAAABzJr3vydc24pXpn3o64Y2k+l/51YUc9PLSdkor4dHNJeJe/J2f2Rkut8OT7JaenTPcFgKqu8JS/KNyop6XmWfetvIvesCfQIeone/TUhR313KWd1Cg1/nk8Y12mBj77o75Zut2GdAAAAPaqEc2VcDisu+66S/PmzYvVWrVqpTFjxigtLc3GZAAAANVT1DT17rztumrsUv2ypyDueP+Wafrohh46u4hPNJeU4c+Wb/Z/LLVwwx4KtRta5nsDQJXn9ChvyIuK+tIt5YSf/inn9gX2ZDrMqW3r6JMbeumi7g3ijmUVhPS79xbp/75eq/xApIirAQAAaqZq31wxTVMPPPCApk+fHqs1bdpUb731lurVq2dfMAAAgGpqd25Qd3y0Uk9P3ahgxLosjcdp6L6zWuml4Z3VIMVbLq/nm/NfOfxZllrhqX+RDKNc7g8AVZ2Z2lT5g6xNZiMaVvLEO2QUxO9zZYckr1N/HdJOz13aSfWS4vczHb9ij64Yu0Qrd+bZkA4AAKDyGWY134Fu27ZtOvPMMy01wzDkcJSsb9S0aVN9//33JbomMzOzROej4hiGofT0dElSVlYWGysCqFQ8g1CTTF6zT49NWqdsfzjuWPv6ifrHee3Vvn5Sub2eI3O9Ut8ZKCN68PWC7YYof9jL5fYaNRnPH6Bm8f38jBLmPm+phVqcqrwL3pIcZVt+sTxlFYb0xHfr9d3q+MaPy2Ho7jNa6sq+jWXQJAdQQfgeCEBpZGRklOv9asTMlaJqkUikxH8BAADUVvmBiB6e8Kvu+2JNkY2Vq49vrLev7V6ujRVJSpj5uKWxYjo9Kjzlz+X6GgBQXfj7361Qs5MsNffmGfLNe8GmREVLT3DryQs66p/nd1CKz2U5Fo6aenrqRt396WplFoRsSggAAFDxqn1zBQAAAGWzZFuuRry1WF8u2x13rEGyR68M76x7zmwtr6t8v3V0bZklz/rJllqg50hF01qU6+sAQLXhcCp/8H8VTbLubeKb/axcm2faFOrIBneurwl3nqqezdPjjv24LlPDxyzR4q05lR8MAACgElT7ZcHsxLJgVQfTQQHYiWcQqqtw1NToWVs0etZWRYr4Y3t2x7p6cFAbpSXEr61fZtGIUt4fJtfe1QdLCXWVfd00yZta/q9XQ/H8AWom17Y5Sv70ShnmwRUWogl1lXPleJnJjWxMZvXbMygUieqJr5fqzdnb4s5xOQz9YUArXdGnEcuEASg3fA8EoDRYFgwAAABltjmzUDe8s0yv/hTfWEn0OPTI0HZ66oIOFdNYkeRZ+ZGlsSJJhSf+kcYKAEgKN+2vwpPus9QchfuUPOF3UqTqLbXldjp05xmt9NLlnVUn0fp1Ixw19a8pG/TAV2tVEGQ5bgAAUHPQXAEAAKhFTNPU50t2acSYJVq2Iy/ueI+mKfpwZE+d361BxX3COJCrhFnPWEqRuh0V7DK8Yl4PAKqhQJ+bFWx9tqXm2jFfCbP+ZVOiYzuxdbo+uqGH+rVMizv23ep9unrcUq3fW2BDMgAAgPJHcwUAAKCWyCwI6d4v1ujRSetUGIpajjkN6bZTmmv0lV3VLN1XoTkS5j4nR+FeS63g1Aclh+sIVwBALWQ4VDDwGUVSm1nKvoWvyb3uW5tCHVvdJI9euryzbjyxadyxDfsKdfW4pZqyZp8NyQAAAMoXzRUAAIBaYNb6TF3+5mJNXbs/7ljzDJ/eurqbbj65uVyOil0P37HvF3kXj7HUgq3OVLjlqRX6ugBQHZm+NOUPfUmm02OpJ353rxzZm21KdWxOh6HfndZSz17SSclep+VYYSiqe79Yo1d/2qIoeyQAAIBqjOYKAABADeYPRfTU5A264+NV2psfv07/xT0a6oPre6hrk5SKD2OaSvzhYRnR8MGS06PC0x6q+NcGgGoq0rC7Cg57TjqCuUoaf5sU9tuUqnhOb1dH71/fQx0bJMUde2XmFv3py7UqZB8WAABQTdFcAQAAqKHW7M7X1eOW6v0FO+KOpSe49O+LO+mhwW2V6HEWcXX5c/86Qe4tP1lq/l43KZrRulJeHwCqq2C3qxXscL6l5tqzQok/PGpTouJrlu7TW1d31fld68cdm7xmn0a+u1w7cgI2JAMAACgbmisAAAA1TNQ0NW7ONl0zbqnW7S2MO35S63R9fENPDWhfp/JChQqU+ONjllI0ubH8/X5XeRkAoLoyDOWf9YQiddpZyt7l78mz+nObQhWfz+3Uw0Pb6d4zW+nw1SfX7M7X1WOXavHWHHvCAQAAlBLNFQAAgBpkZ05At36wQv+ZvkmhiHUte6/LoT+d3VovXHac6iV7jnCHiuGb96IcedYZNAWnPSi5Eys1BwBUW54k5Q19WaYrwVJOnPIXOfattSlU8RmGoauOb6LnLz0ubh+W/QUhjXp/hb5YusumdAAAACVHcwUAAKCG+G7VXl3+5mLN2xz/6d+ODZL07nXdNaJPYxlGxW5afzjHvrXyLXjNUgs1O0mhdkMrNQcAVHfRuu1VcNbjlpoRLlTyhNulYL5NqUrmpDYZeufa7mpVx9okCkdNPTJxnZ6eskHhKBvdAwCAqo/mCgAAQDWXFwjrofG/6E9frVVuwLoxsCHp+v5NNO6abmpbz4ZZImZUSVP+LCMaOlhyuFRwxiNSJTd5AKAmCHa6SIGuV1hqzv2/KnHqXySzejQlWtZJ0Lhruumk1ulxx96dv0N3fbJK+QE2ugcAAFUbzRUAAIBqbOm2XF3x1hJ9s3xP3LGGKR69OqKL7jqjlTwue77t8y59V64dCyy1QK+bFK3b3pY8AFATFJz+N4Xrd7HUvGu+lGfZuzYlKrkUn0vPXXqcrj6+cdyxWRuydON7y7U7l43uAQBA1UVzBQAAoBoKR029+tMW3fDuMm3Niv/l06Dj6umjG3rq+JZpNqQ7wMjdoYRZT1pqkbSWKjzhbnsCAUBN4fIpf9jLinpSLOXEHx+Vc89Km0KVnNNh6J4zW+uRoe3kdlpnM67Zna9r316mX/ZUj+XOAABA7UNzBQAAoJrZnu3XqPeW65WZW3TYnvVK8jj12Lnt9cR57ZXqc9kTUJJMU4nT/yojmGcpF5z5uOTy2RQKAGqOaFoLFQx82lIzIkElTfy9FCqwKVXpnN+tgV4b0UXpCdavW7tygxr5znLN3pBlTzAAAICjoLkCAABQjUxcuUfD31yixdty4471aJqiD0f20LAu9St90/rDuX+dJM/67y21wHGXKtziZJsSAUDNE2o7SP5eN1lqzsx1SvzhEZsSlV7PZqkae003Nc+wNuDzgxH9/pNV+mLpLpuSAQAAFI3mCgAAQDWQGwjrwW9+0V++/kV5Qesmvw5DuvXk5hp9ZVc1Tbd/VohRmKnEaQ9ZatGEuio89f9sSgQANVfhyfcr3KCbpeZd8aHca7+2KVHptchI0Niru6lnU+tyZ+GoqUcmrtOLP26WaZpHuBoAAKBy0VwBAACo4hZvzdGIMUs0fkX8pvVN07x648quuuWU5nI57J2t8puEHx6Wo3CvpVZw+l9lJmTYlAgAajCnR/mDn5PpTrKUk6b8RY7sLTaFKr2MRLdeGdFF53SsG3ds9M9b9dD4XxUMR21IBgAAYEVzBQAAoIoKR029MnOzbnxvubZnx29aP6xLfX0wsod6Nku1IV3R3Ou+k3fNl5ZasPXZCnU436ZEAFDzRTNaq2DA3y01I5irpEl3SpGQTalKz+ty6J8XdNB1/ZrEHRu/Yo/u+HilcvxhG5IBAAAcRHMFAACgCtqW5deN7y7Xqz9tVfSwFVCSvU49fl57PXZueyV7bdy0/jCGP0uJU61Lf0W9qSo48x+SzXvAAEBNFzzuYgU6XWypuXYukm/Os/YEKiOHYejuAa3054FtdPjEzPmbc3T9O8u0PdtvTzgAAADRXAEAAKhyxq/Yo+Fjlmjp9vhN63s1O7Bp/ZDO9W1IdnQJPzwqR4F16bLC0/4qM7mhTYkAoHYpGPCoImmtLDXfvJfk2jLLnkDl4PJejfTsJccpwW399cWGfYW6ZtwyrdgR/7USAACgMtBcAQAAqCJyA2H95eu1evCbX5R/2Kb1TkO6/dTmev2KrmqSZv+m9Ydz/zpJ3tWfWWqhVgMUPO4SmxIBQC3kSVb+kOdkOg7OajRkKunbu2UU7rcxWNmc2jZDb1zZVfWS3Zb6/oKQbnp/hab/Un3fGwAAqL5orgAAAFQBi7fmaPibSzRx5d64Y83SvRpzdTeNOqm5nFVk0/pDGXk7lTjlAUst6klR/llPsBwYAFSySMPuKjzpfkvNkb9bid/fL5nmEa6q+o5rlKxx13RX23oJlro/FNU9n6/WBwt22JQMAADUVjRXAAAAbBSJmho9a6tuem+5duTEb1p/Xtf6+uD6nurWJMWGdMVgRpX03T1y+LMs5cLT/yozuZE9mQCglgv0vkmhlqdZap4Nk+Vd+o5NicpH49QDHzbo1zLNUo+a0pOTN+jpKRsUOXyjMgAAgApCcwUAAMAme/KCuv2jlXpxxmZFiti0/p/nd9Cjw9oryeu0J2AxeBe8JveWnyy1YPthCh53qU2JAAAyHMo/52lFE+pZygkzHpNj7xqbQpWPFK9LL1x2nM7vGr/32Lvzd+iez1er4LClNQEAACoCzRUAAAAb/LQ+U8PHLNbcTdlxx3o3T9VHN/TUoOPqFXFl1eHaNlcJs/5lqUWTG6vgzH+wHBgA2MxMaqD8c6zPaCMSUPKkO6Ww36ZU5cPtdOjhoe102ynN44798GumbnpvuXbnBm1IBgAAahOaKwAAAJUoFInqv9M36ncfr1JmQdhyzGFIt53SXK+N6KLGqV6bEhaPUbBXSRN/L8M8+OlgU4byBz4j05duXzAAQEy49QD5e4601Jz71ihh5hM2JSo/hmHo5pOb67Fz28t12H5kq3bl69q3l2rt7nyb0gEAgNqA5goAAEAl2Zbl143vLtdbc7bHHWuY4tHrV3TVzSdXzU3rLaIRJU26S478XZayv/+dCjc/yaZQAICiFJ78J4XrdbLUfEvGyr1+ik2JytewLvX1yojOSvO5LPVduUGNfHeZZq7LtCkZAACo6WiuAAAAVILvV+/ViDFLtGxHXtyx09tl6IORPdS7eaoNyUrON+e/cfushJqfIn+/O21KBAA4IpdP+YOfl+nyWcqJk++Tkb/bplDlq0/zNI29ppuaZ1jfY0Ewqrs+XaWPFu20KRkAAKjJaK4AAABUIH8oose+Xaf7v1yrvMM22HU7Dd13Vmv95+JOSk9w25SwZNzrv5dv7vOWWjSpofIHPys5nPaEAgAcVbRuexWc9pCl5ijcr6Rv/yiZUZtSla+WdRI09upu6tk0xVKPmtIT363XM1M3KBI1bUoHAABqIporAAAAFWTd3gJdM26ZPl28K+5Y8wyfxl7dTVf2bSyjmmz+7tyzUkmT7pKhg7+cMg2n8oa+KDOxno3JAADHEux6pYJtB1pq7i0z5V34uk2Jyl9GoluvjOiiIZ3jvya9M2+H7v1ijQoP+6ADAABAadFcAQAAKGemaeqLpbt09dil+nVvQdzxoZ3r6f3reui4Rsk2pCsdI3+3kr+6SUbI+n4KT3lAkSZ9bUoFACg2w1DBWU8qmtzIUk6Y9S85dy6xKVT587oc+se57XXzSc3ijk3/Zb9ufH+59uQFbUgGAABqGporAAAA5SgvENZfvv5Fj0xcJ3/YutSKz+3QI0Pb6bFz2yvJW42W0Ar7lfzNLXLkbbeUA8ddrECvm2wKBQAoKTMhQ/kD/y1TB2dMGtGwkibdKQVybUxWvgzD0G2nttCjw9rJ5bDODl21M1/XjFuqlTvj90ADAAAoCZorAAAA5WTFjjxd+dZSTVq1N+5Y+/qJeu+67jq/W4NqswyYJMmMKun7++TauchSDjfuq4Izn5Cq03sBACjc/CT5j7/DUnNmb1Li9L/alKjinNe1gV4e3lkph32gYVduUDe8u1zjV+yxKRkAAKgJaK4AAACUkWmaemfedl3/zjJtyfLHHR/eu5Hevra7WtdNtCFdGZimEn54RJ61X1vKkdRmyjv3VcnltSkYAKAs/P3vUrhxb0vNu/pzeVZ9ZlOiitO3RZrGXtNNzdKtX7MC4age/OYXPTN1g8JsdA8AAEqB5goAAEAZ7M8P6s5PVumZqRvjfjmT4nXq6Qs76oFz2sjrqn7fdvnm/Fe+JWMtNdOTrLzz3pCZWNemVACAMnO6lT/4vzI9KZZy4rSH5MjcYFOoitO6bqLGXtNdvZqlxh17Z94O3fHRSmUVhmxIBgAAqrPq91M+AABAFTFnY5aGj1mimeuz4o51b5KiD0b20Fkdq2cTwrtwtBLmPGupmQ638oa+pGi9jvaEAgCUm2hqc+Wf9bilZoTyD+y/Eql5G77XSXTr1RGdNbx3o7hjczdl66qxS7Vmd74NyQAAQHVFcwUAAKCEQpGonv9hk277cKX25ls/6WpIuuGEphp9ZRc1SfPZE7CMvIvfUuKMxyw1U4byB/1H4Zan2ZQKAFDeQh3OU6DLcEvNtXuZEmY9bVOiiuV2OvTAOW300OC2cjute4Ztzw7o+neW6bsi9k0DAAAoCs0VAACAEtiW5deN7y7Xm7O36fAV2uslufXS8M76/ekt5XZWz2+zPEvfUeIPD8fVCwY8qlCHcys/EACgQhWc/jdFMtpYar6Fr8m16QebElW8i3s01OtXdFW9ZLel7g9F9aev1uq/0zexDwsAADim6vlTPwAAgA2+XbVXI8Ys0bIdeXHHTm6Trg9H9tAJrdIrP1g58Sz/UEnTHoyrF5z6fwp2v8aGRACACudOVP6Q52U6PZZy0rf3yMjfY1OoitejaYrevbaHujVJjjv21pxtuvWDFdqdW/OWRwMAAOWH5goAAMAxFAYjemTir3rgq7XKC0Ysx1wOQ38c0ErPXXqc6iR5jnCHqs+7cLSSpvwprl540n0K9B5lQyIAQGWJ1O+iwlP+Yqk5Cvcq6ft7JDNqU6qK1yDFo9FXdNWF3RvEHVuwJUcj3lqs2RuyKj8YAACoFmiuAAAAHMWa3fm6auxSfbF0d9yx5hk+jb2mm67p10QOwyji6mrANOWb9XTcHiuSVNj/bvmPv8OGUACAyhbocZ2Crc+y1NybfpR30Rs2JaocHpdDfx3cVn8e2EYuh/VreWZBWLd/tFIvzdisCMuEAQCAw9BcAQAAKIJpmnp/wQ5dO26pNuwvjDs+rEt9vX9dD3VuFL+cSLURjShh2kNKmPdC3KHC4++Qv/9dNoQCANjCMFRwzr8UTbLO4kj46Sk5dy21KVTlMAxDl/dqpNFXdlWjFOssVFPS67O26pYPVmh3bsCegAAAoEqiuQIAAHCY3blB/e7jVXpq8gYFI9ZPqia4Hfr7sHZ67Nz2SvI6bUpYDkKFSppwu3zL3ok7VHDyn+Q/6T6pus7GAQCUiplQR/mDnpWpg89/IxpS0sQ7pWD8fmM1TY+mKXp/ZA+d1jYj7tiCLTm6/M0l+n71XhuSAQCAqojmCgAAwCEmr9mny99crFlFrLF+XMMkvX99D53bNX5t9urEyN+tlE9HyLPuW0vdlKH8s55QoO9tNiUDANgt3Pwk+Y+/3VJzZm9U4vS/2pSocqUnuPXsJZ30hwEt45YJy/aHdf+Xa/XgN78oNxC2KSEAAKgqaK4AAABIyguE9dfxv+i+L9Yo2x//C5Or+jbWW1d3U8s6CTakKz+OfWuV8uFFcu1aYqmbDrfyh76gYNcrbEoGAKgq/P3vVrhRL0vNu+ozeVZ/blOiymUYhq7t17TIZcIkafyKPbr8zcWavznbhnQAAKCqoLkCAABqvUVbczR8zBJ9vXxP3LF6yW69dHln3XtWa3lc1ftbJ/evk5T60cVy5m6z1KOeFOVdOFah9sNsSgYAqFKcbuUPfk6mJ8VSTpz6oBxZG+3JZIMeTVP0wcgeGtipbtyxnTlB3fz+Cv176kYVhiI2pAMAAHar3r8hAAAAKINQJKrnf9ikm95bru3Z8ZvUnt2xrj6+oadObJ1e+eHKUySkhBn/UPL4W2UctmZ+JLWZcod/rnDzk2wKBwCoiqJpzZV/1uOWmhHKP7D/SiRoU6rKl5bg1j/P76DHz2uv5MP2WjMlvT1vu4aPWcIsFgAAaiGaKwAAoFZasztf1769TG/O3qaodc96JXmcenTY/7N33/FRVekfx7/Tk8mkNyCh9ypIUVBBERvYsKx9BXtdXXXd3d+udZvu2tbuWtBF144NUFSKBUGq0nsPkJBGejLl/v4IjBmSQCZMMpPk83698srcc8+984Ty3Jt57jmnh/55Xi8lRNvCE2CImEpz5Jp2haKWvVxrn6fdEBVf8rF8ST3CEBkAINK5e52jyn6/Cmiz5qxQ9ILHwxRReJhMJp3VL1XvXTNYwzrF1dq/s6BC17+9Wn+btVklrMUCAECbQXEFAAC0KW6vTy98t0NXvrFC67JLa+0fkhmr9645RucMSJPJZKrjDC2HdddCxf1vvGy7F9XaV9lnooovfFuGMyUMkQEAWoqykx+UN7FbQFvU0pdk3f5tmCIKn/ZxDr10aX/ddUoX2Sy17xE++ClbF736k77bnB+G6AAAQHOjuAIAANqM1XuKdfnrK/SfH3bJc8hwFavZpNvHdNLLlw1Qh/ioMEUYIoYhx5IX5Zp2hcxluYG7LHaVjv2byk5/QrK28J8TAND0bM7q9VcsgQu7x3x5l0yltdcqa+3MJpOuGtFB70w6RoM6xNban11cpd98sE53f7ROe4pqTzkKAABaD4orAACg1atwe/Xvedv166krtSm3rNb+bsnRmvrrgbrm+ExZzC17tIoqixQz40Y55z8ikxG4wK43NkPFF72vqoFXSC18VA4AoPl40wao/IQ/BLSZy3Ll/PJuyecLU1Th1S3FqdeuGKDfndpVUbbaH63M2ZCvC15erlcX7FKVp23+GQEA0NpRXAEAAK3aT7uKdNnrK/T6j7XXVrGYpOtGZurtSceoT7orPAGGkGXfGsW9fa7sm7+stc/deYyKL5sub7tjwhAZAKClqxw8WVVdxga02bZ/Iy18PkwRhZ/FbNLlw9rrg2sG6/gu8bX2V3h8evbbHbr4tZ/0w5aCMEQIAACakskwDOPI3VCXggJujiKFyWRSQkKCJKmwsFD8swbQnMhBkam00qvnvtuhd5buUV1/I73TYvTg+O6toqgiSfY178s5588yeQOnIDFkUsXxv1XFiNskE8/VtDbkHwDNyVSWp7i3zpS5rMZ0YGabdM0sFbq6t+kcZBiGPlu1T0/O3abC8roXtR/TI1F3ntxFXZKjmzk6oPXhHghAYyQmJob0fBRXjgLFlcjBRRVAOJGDIothGPpqXZ4em7NN+0qqau23mk264YRMTTouQzZLKyg2eCrk/OYhOVa9XWuXLypRpWf+W57Oo8MQGJoD+QdAc7PumC/XR1fKVPPRhfhO2n/ZZ/I5ao/eaGv2l7v13Hc79MHy7Dof7rCaTbpoSLpuGNVRiU5bs8cHtBbcAwFoDIorEYTiSuTgogognMhBkWN7frn+8eUW/bh9f537+7d36cGzuqtHakwzR9Y0zPt3KmbmzbLmrKq1z9NusErOek5GXEYYIkNzIf8ACIeo+Y8qeskLAW3urmNVcs4rjJI8YM3eEj3y5Rat3FNS536Xw6LrR2bq0qHtZbfyZwYEi3sgAI1BcSWCUFyJHFxUAYQTOSj8KtxevbogS28sypLbW/vP324x6ZaTOumK4R1kbekL1h9g3TZXMV/cIXNlUa19FcdcrfKT/iRZ7GGIDM2J/AMgLLxuuaZdIdvuRQHNZaPuVeXwW8IUVOTxGYY+XZmjp7/ZroKyuqcK6xDv0I0ndNT4/qmt5h4FaA7cAwFoDIorEYTiSuTgogognMhB4fXtpnz98+utytpfWef+UV0TdO+4ruqc1ErmNzd8ilr0rKIWPhk4JYskwxqt0nGPyN37vDAFh+ZG/gEQLqaSbMW9PUHmslx/m2Eyq+SCt+TJHBnGyCJPcaVHUxZm6a3Fu1VVx0MgktQ5KUo3ndBJp/dNltlEkQU4Eu6BADQGxZUIQnElcnBRBRBO5KDw2FlQoSfmbtO8jfl17k9z2XXPqV00rneyTK3lQ4rKYsV8eZfsW76qtcub2F0lE16UL7lnGAJDuJB/AISTbed8uaZdKdUo9vucKSq6fKaMmLTwBRahdu+v0LPf7tDna3Lr7dMz1ambT+yok3smtZ77F6AJcA8EoDEorkQQiiuRg4sqgHAiBzWv4gqPXv5hl95eukceX+0/a4tJumJ4B90wqqNiHJYwRNg0zPmb5Jp+gywFW2rtq+o5QaXjHpXsrjBEhnAi/wAIJ5PJpISfX5bm/jWg3Z15vEomvimZrWGKLLKt2l2sJ+Zu1/Jdtaf2PKhfuxjdclInjeqaQJEFqAP3QAAag+JKBKG4Ejm4qAIIJ3JQ8/D4DE37aa9e+H6nCsvrnrd8SGac/u/0rq1mwfqDbJu+UMyXd8vkLg1oN0xmlZ/wB1Uee73EBy9tEvkHQDiZTCYlxMVJ/7tY2vR1wL7yYbeo4oR7wxRZ5DMMQz9sLdRz3+3Q2r2l9fY7JiNWN4zK1EiKLEAA7oEANAbFlQhCcSVycFEFEE7koKY3f0uBnpizTVvyyuvcn+i06rendNHZ/VNb1wcPPq+iFj6h6MXP1d4VlajSs56Vp9MJYQgMkYL8AyCc/DmoNE++F0+UuXh3wP7ic1+Tp+vY8ATXQhiGoXkb8/X8dzu1Kbes3n5928Xo+pGZGtMziTVZAHEPBKBxKK5EEIorkYOLKoBwIgc1nc25ZXpizjb9sLWwzv1Ws0mXDW2v60dlKjaqlU09UlWimM9/I/u2ObV2eVL7q/Tsl+SLywxDYIgk5B8A4VQzBxWvnSPX+7+Syef27/c54lV8+QyuVw3gMwx9uTZPL87foe35FfX2654SrWtHZur0PimymCmyoO3iHghAY1BciSAUVyIHF1UA4UQOCr3sokq9NH+nPl2ZI289f5xjeyXpjpM7q1NidPMG1wxMxXvk+vQaWXPX1tpX2fcClY39u2SNCkNkiDTkHwDhdGgOsi97Vc5vHw7o40k/RsUXvSdZHWGIsOXx+AzNXL1PL83fqd37K+vt1zExSpOPy9DZA1Jls5ibMUIgMnAPBKAxKK5EEIorkYOLKoBwIgeFTmG5W1MWZumdpXtUVU9VpU96jO4e20XDOsU3c3TNw5KzSq5Pr5G5NCeg3TBbVT76PlUO+jXrq8CP/AMgnGrlIJ9PMTNvlX3TzIB+FQOvVPnYv9ZxBtTH7fVpxup9em1hlnYW1D+SpV2sXVcfl6HzB6UpymZpxgiB8OIeCEBjUFyJIBRXIgcXVQDhRA46euVVXr21ZI/e+DFLJVXeOvukxNh02+hOOntAWqudBsO6dY5cM2+VyRO4towvKlGlZ78kT8aIMEWGSEX+ARBOdeagymLFvXOuLIVbA/qWnvqIqgZcGoYoWzaPz9BX63L16oJd2pxb99pzkpQcY9NVwzvoosHtFOOgyILWj3sgAI1BcSWCUFyJHFxUAYQTOajx3F6fpv2crZd/2KW8UnedfaJsZl05rIMmH58hp731flhgX/WOnHP+JJMRWFzyJnRTyXmvyZfQJTyBIaKRfwCEU305yLJvrWLfPV8m7y/TWhlmm4ovekfe9kPDEWqL5zMMfbMxXy8v2KW1e0vr7RcfZdVlw9rrsqHtFdfa1qMDauAeCEBjUFyJIBRXIgcXVQDhRA4Kns8wNGttrp7/bod2FdY9n7jVbNIFx6TrulGZSnXZmznCZmQYivrxKUX/+O9au9yZx6t0wosyohKaPy60COQfAOF0uBxkX/exYmbdGdDf50xV0WXTZbjSmzHK1sUwDC3YWqhXFuzS8l3F9faLsVv0q2Pb6cph7ZUU04rvo9BmcQ8EoDEorkQQiiuRg4sqgHAiBzWcYRj6fkuhnv12uzbklNXb76x+Kbr5xE7qmNjKF233eeSc8yc5Vr9ba1dlnwtUNu4RycIHIqgf+QdAOB0pB0V/9zdFLXs5oM3TbrCKL3xHsrbya3wzWLpzv175YZcWbttfb58oq1kXHJOuq4/roLRYRzNGBzQt7oEANAbFlQhCcSVycFEFEE7koIZZvqtIz3yz/bBPWZ7QLUG3j+6s3ukxzRhZmLjL5Jp5q2zb5tbaVT78VlWMvIeF63FE5B8A4XTEHOTzyPXJZNl2fBfQXNnvVyob9yjXuRBZtbtYryzYpW821f8Zhc1i0rkD0jTp+AxlJlDYQsvHPRCAxqC4EkEorkQOLqoAwokcdHjrskv07Lc7NH9LYb19BnWI1e1jOmlYp/jmCyyMTGV5cn16jazZPwe0Gyazyk5+SFWDrgpTZGhpyD8AwqkhOchUUajYd86VZf+OgPayMQ+ocvDk5gizzdiQU6pXF+zSV+vyVN/VwGKSzuyXqmuOz1C3FGezxgeEEvdAABqD4koEobgSObioAggnclDdtueX6/nvdujLdXn19umeEq3bRnfWmB6JMrWRp1dNpTmKnXa5LPmbAtoNi0OlZz0td/czwhQZWiLyD4BwamgOMueuU9x7F8jk/mVKUMNkVsm5r8rT5ZTmCLVN2ZZXrikLd2nmmlx5fHX/nZgkjeudrGtHZraNEcNodbgHAtAYFFciCMWVyMFFFUA4kYMC7S2q1H/m79SnK3PkreePon2cQzed2FET+qfKYm4bRRVJMpXsVeyHl8tSuCWg3ReVoJJzXpW3w9AwRYaWivwDIJyCyUG2jZ/LNfPmgDbD7lLRxR/Kl9K7KcNss3bvr9DrP2bp4xU5ctd3UyZpdPdEXTsyU4MyYpsxOuDocA8EoDEorkQQiiuRg4sqgHAiB1XLL3PrtQW79P7yvaqq5xf45BibrhuZqQuOSZfdam7mCMPLXLRLrmmX15oWxRuboZKJ/5UvsXuYIkNLRv4BEE7B5qCoH/+t6IVPBrR5YzNUfMnHMmJSmyrMNi+nuEpTF2fpg5+yVeH21dtvROd4XT8qU0M7xrWZEcVoubgHAtAYFFciCMWVyMFFFUA4tfUcVFLp0ZuLd2vq4t0qq6r7F3aXw6JJx2Xo8qHtFW23NHOE4Wfev0OuDy+TpTgroN2b0FXFF7wlI7ZDmCJDS9fW8w+A8Ao6BxmGnLPulGP9JwHNnnZDVHzh25KVhdabUkGZW/9bskfvLN2jkipvvf2GZMbqupGZGtk1gSILIhb3QAAag+JKBKG4Ejm4qAIIp7aagyrcXr23fK+mLMxSYbmnzj5RVrMuG9Zek47LUFyUtZkjjAzmgq2KnXa5zCV7Atq9id1VfMH/ZLjSwxQZWoO2mn8ARIZG5SBPhWKnXS7rnmUBzVW9zlHpmU9LfJjf5IorPHp32V69tWR3vfdwktS/vUvXjcxsU2vjoeXgHghAY1BciSAUVyIHF1UA4dTWcpDb69OnK3P0n/m7lFNSVWcfq9mkC45J13WjMpXqsjdzhJHDnL+purBSmhPQ7k3upeKJbzEFCo5aW8s/ACJLY3OQqSxXse+eL0vRroD28mE3q+KE34c6TNSjrMqrD3/K1n8XZym3xF1vv56pTl0/KlOn9k6WmSILIgT3QAAag+JKBKG4Ejm4qAIIp7aSg3yGoS/X5un573doZ0FFnX1Mksb3T9VNJ3ZUZkLbntrDnLtesdOukLk8N6Ddk9JXJRPflOFMDlNkaE3aSv4BEJmOJgeZc9cr7v0LZaoqCWgvG/OgKgdPCmGUOJJKj0+frMzRlIW7tLeo7gdnJKlrcrSuHZmpM/qmyGqmyILw4h4IQGNQXIkgFFciBxdVAOHU2nOQYRj6fkuBnv12hzbklNXb75SeSbrlpI7qkRrTjNFFJsu+NXJ9dKXM5fkB7Z60gSqZOFVGVEJ4AkOr09rzD4DIdrQ5yLptnlyfXiuT8cv6H4ZMKj3rGbl7nR3KUNEAbq9P01ft05SFWdpZWPeDNJLUMSFKk4/P0NkDUmWzmJsxQuAX3AMBaAyKKxGE4krk4KIKIJxacw5atrNIz3yzXT9lFdfbZ0TneN02upMGdohtxsgilyVnVXVhpaIwoN3TbrBKzn9DhiM+PIGhVWrN+QdA5AtFDrKvelcxswOnAjMsdpWc97o8HUeFIkwEyeMzNGttrl79YZe25pfX269dnF2Tj8vQeYPS5bBSZEHz4h4IQGNQXIkgFFciBxdVAOHUGnPQuuwSPfPNDv2wtbDePv3bu3T76E46rktCs8UV6Sx7f5br46tkriwKaPe0H6bi86ZIDgpQCK3WmH8AtByhykFRi55R9ILHA9oMe6yKL3pX3tR+RxsmGsnrMzRnQ55e/mGXNu6rf/Ryisumq0dk6MJj0hVttzRjhGjLuAcC0BgUVyIIxZXIwUUVQDi1phy0La9cz3+3Q1+tz6u3T7fkaN06upNO6ZkkE4ua+ln2LFPsx1fLVBU4ysedMUIl506R7EyXhtBrTfkHQMsTshxkGIqed7+iVkwNaPY5U1V88QfyJXQ+ykhxNAzD0DebCvTyDzu1Zm9pvf0SnVZdObyDfjWknVwOazNGiLaIeyAAjUFxJYJQXIkcXFQBhFNryEF7iyr10vyd+mxljrz1hN8h3qGbTuyo8f1SZWER0wCWrMWK/XRyrUV53ZmjVHLuK5LNGabI0Nq1hvwDoOUKaQ7yeRUz81bZN38R0OyNzVDxxe/LiO1wFJEiFAzD0IKthXr5h12HnTI2Lsqqy4a20yXHtlei09aMEaIt4R4IQGNQXIkgFFciBxdVAOHUknNQfmmVXluYpfeX71VVPVWV5BibrhuZqQuOSZed+bRrse5aKNen18jkDpwuw93pJJWc/R/JFh2myNAWtOT8A6DlC3kO8lTI9fGvZctaFNDsTeim4ovelRGTenTnR0gYhqGlO4v08g+7tGj7/nr7RVnNOndgmq4Y3l6dErkfQmhxDwSgMSiuRBCKK5GDiyqAcGqJOai4wqP/Ltqtt5bsVrnbV2efWIdFVx+XocuHtmf+7HpYd8yX67NrZfJUBLS7u5yikgkvSNaoMEWGtqIl5h8ArUdT5CBT5X65PrxM1n1rAto9KX1UcuE7MqISjvo9EDo/ZxXrlR926vsthfX2MUk6pVeSfj0iQ8dksP4cQoN7IACNQXElglBciRxcVAGEU0vKQeVVXr29bI/e+HG3iio8dfaJspl1+dD2uvq4DMVFMV92fazbv5Hrsxtk8lYGtFd1G6fSs56TrI4wRYa2pCXlHwCtT1PlIFNZnmI/vESW/E0B7Z70Y1R8wVuS3RWS90HorNlbolcX7NKcDfmH7XdMRqx+PaKDxvRIYppZHBXugQA0BsWVCEJxJXJwUQUQTi0hB1V5fJr2c7ZeWbBLeaXuOvtYzSZdODhd143MVIrL3swRtizWrXPlmnGjTN6qgPaq7meq9KynJQt/fmgeLSH/AGi9mjIHmUr2Kvb9i2Up2hnQ7s4YoZJzp0j2mJC9F0Jn475SvfHjbs1amyuPr/5/Dx0To3Tl8A46Z0Cqom2MkEbwuAcC0BgUVyIIxZXIwUUVQDhFcg7y+AzNXL1PL36/U3uKKuvsYzZJZ/dP1Y0ndlSHeKaxOhLb5i8VM/NWmXyBRaqqnhNUesZTkoWFW9F8Ijn/AGj9mjoHmffvVOwHF8tcsjeg3dN+qIrPmyI54kL6fgid7KJKvb10jz78KVslVd56+yVEW3XxkHa6aHA7pcXycAoajnsgAI1BcSWCUFyJHFxUAYRTJOYgn2Fo9vo8vfDdTm3NL6+337jeybr5xI7qluJsxuhaLtv6TxQz6y6ZjMAPCSp7n6ey0x+XzEyjhuYVifkHQNvRHDnInL9JsR9cInN5XkC7J/0YlZz/BmuwRLiSSo8++jlH/1uyW3uLq+rtZzWbdErPJF0ytJ2OzYyTycSUYTg87oEANAbFlQhCcSVycFEFEE6RlIMMw9D8LYV6/rsdWptdWm+/UV0TdOvoTurXjjnLG8q+6l05Z/9BJgX+/Vb2vVBl4/4pmZnSAs0vkvIPgLanuXKQZd9auT66QubywPU8PKn9VHL+VBnO5CZ5X4SO2+vT1+vz9MaPu7U+p/57VEnqkeLUr45tpwn9U+W0c3+FunEPBKAxKK5EEIorkYOLKoBwioQcdLCo8sqCXfo5q7jefkMyY3Xr6E4a2jG+GaNr+RzLX5Pz24drtVf2v1Rlp/5dMpnDEBUQGfkHQNvVnDnInLdBsdMul7ksN6Ddm9RTxRe8JSMmrcneG6FjGIYW7yjSfxdlaf6WwsP2ddktOmdgmn41pJ26JEc3T4BoMbgHAtAYFFciCMWVyMFFFUA4hTMH+QxD32zM18sLdmnt3vqfAuyTHqPbRnfSqK4JTLMQpKhFzyl6wb9qtVcMnqzy0fdL/HkijLgHAhBOzZ2DzAVbqgssh6zB4o3vopLz35AvoXOTvj9Ca9O+Ur2zdK9mrNmnCrfvsH2HdozTxGPSdWqvJEXZGM0C7oEANA7FlQhCcSVycFEFEE7hyEFen6Gv1uXp1QW7tCm3rN5+XZOidfNJHXVq72SZKQIEx/Ap+vt/KGrZy7V2lQ+/TRUj76awgrDjHghAOIUjB5n375Drw8tkKc4KaPdFp6jkvNfkTR/U5DEgtIorPPp0ZY7eXb5XOwsqDtvX5bBoQv9UnT8oTX3Smd62LeMeCEBjUFyJIBRXIgcXVQDh1Jw5yO316fM1uXpt4S5tz6//l8/2cQ7ddGJHje+fKquZAkDQPJWK+eoe2Td8VmtX+ajfqWL4rWEICqiNeyAA4RSuHGQu2iXXtCtk2b89oN2wOVUy/nl5upzcLHEgtHyGoYVbC/Xusr36bnOBjvSvqW96jM4/Jl1n9UtRrMPaLDEicnAPBKAxKK5EEIorkYOLKoBwao4cVFrp1UcrsvXWkt3aW1RVb7+OiVG69vgMje+fKpuFdUAapbJIruk3yLZrYa1dZWMeVOXgSc0fE1AP7oEAhFM4c5CpJFuuT66WNXddQLthtqrs1EdU1e+iZosFoZdVWKH3l+/VJytzVFjuOWzfKKtZY3om6ez+qTq+awIPFrUR3AMBaAyKKxGE4krk4KIKIJyaMgdlF1Xq7aV79OFP2Sqp8tbbr3tKtK4dmanT+6TIwi+UjWYq2SvXx5Nkzavjg5pxj6qq74VhigyoG/dAAMIp7Dmoskiu6TfJtuuHWrvKR/5OFcNvYQrPFq7K49O8jfn6aEW2Fm7bf8T+yTE2ndk3RRP6p6pPegxrDbZiYc8/AFokiisRhOJK5OCiCiCcQp2DDMPQqj0lemfpHn25Lk8eX/3n65Meo+tGZuqUXkmsqXKULPtWy/Xp9TKX7A5oN2wxKpnwgjydR4cpMqB+3AMBCKeIyEHeKsV8eY/sGz6ttatywOUqO/khyWJr/rgQclmFFfpkZY4+XZmj7OL6R3If1D0lWhP6p2p8v1SlxzmaIUI0p4jIPwBaHIorEYTiSuTgogognEKVg8rdXn2xJlfvL9+rtdmlh+07qEOsrhuVqRO7JfBEXgjYNnymmK9+J5MncB0bnzNFJee9Lm/agDBFBhwe90AAwilicpDhU/T8RxW19KVau9wZI1Q6/nkZzpQwBIam4PUZWrC1UB+tyNa3mwoO+yCSJJkkDe8crwn9U3Vqr2TFOCzNEyiaVMTkHwAtCsWVCEJxJXJwUQUQTkebg7bklmnaz9n6dGWOiivrn/rLJOmUXkm6angHDc6MO4qI4efzKmrB44pe8nytXd6Ebio5/w354juGITCgYbgHAhBOkZaDHMtfU/S3f5HpkKXQfa4OKjnnPzws0Qrll7k1a22uZqzep9V7So7YP8pq1kndE3VG3xSd0C1BUTYKLS1VpOUfAC0DxZUIQnElcnBRBRBOjclBRRUefbE2V5+tzNGqI/wiGGU169yBabp8WHt1TooORciQZCrLVcyXd8u2/Zta+zzth6rknJdlRCeFITKg4bgHAhBOkZiDbBtnKGbWXTJ5KwPaDYtDZaf+nfXTWrGteWWaubq60LKnqPKI/WPsFp3cM0ln9E3R8V3iZbOYmyFKhEok5h8AkY/iSgShuBI5uKgCCKeG5iC316eF2wo1fdU+zd2YL7f38LmqfZxDFw5O1wXHpCvRyVzhoWTd8b1iZv1W5rJ9tfZVDrhMZWMelKzMzY3Ixz0QgHCK1BxkyV4p1/QbZC7ZU2tfZf9LVXbyg5I1qvkDQ7PwGYaW7yrSjFX79NX6PJUcZmT4QXFRVp3aq7rQMqxTvCxmpt2NdJGafwBENoorEYTiSuTgogognA6Xg9xenxZv368v1+Vp7sZ8FVV4Dn8uSaO6JehXQ9rphG6J/GIXal63ohY+oaglL9aaMsQwW1U25gFVDbxSYh0btBDcAwEIp0jOQabSfYqZeYtsuxfX2udJ7afS8c/Ll9Cl+QNDs6r0+PTtpnxNX71PP2wpPOL6LJKUHGPTuN7JOrNvigZlxMrMfWFEiuT8AyByUVyJIBRXIgcXVQDhdGgOKq/yaPGO/Zq3sUBzNuSpsPzwBRWp+pe4s/un6sLB7dQxkScpm4Jl32o5v7xH1ty1tfb5nKkqPesZeTKPD0NkQONxDwQgnCI+B3mrFP3Nw4pa+WatXYY9VqWn/UvuHmeGITCEQ2G5W3PW52vWulwt3r5fDfnX2i7WrtP7pui03snq394lE4WWiBHx+QdARKK4EkEorkQOLqoAwslkMqnKEqU5a3P0xYosLdxeqAq374jH2SwmndwjSecMTNPIrgmyMkqlaXirFLXoWUUteV4mX+1Cl7vzySo9/TEZzpQwBAccHe6BAIRTS8lB9nUfyzn7jzJ5ymvtqxxwmcpO+rNkjwlDZAiXfSVV+np9nmatzdXPWcUNOqZdrF1jeyVrbO8kDc6IY4R5mLWU/AMgslBciSAUVyIHF1UAza3C7dVPu4r14/ZC/bhtv9Zmlzb42EEdYjWhf4rO6Jui+GjWUmlK1h3z5fz2IVnyNtTaZ5htKj/h96occo1kYgFTtEzcAwEIp5aUg8x5G+WaebMs+Ztq7fPGd1Lp6U/I22FYGCJDuO3eX6Gv1lUXWhp6T5/ktOmUXkk6tVeyhnWKk83CvWRza0n5B0DkoLgSQSiuRA4uqgCaWoXbq9V7S/TTrmIt2r5fP+0qUtURFqSvaWB7l07rk6JxfZLVPo6F0puauXC7or//m+ybv6xzvze5t0pPf1zetAHNHBkQWtwDAQinFpeDqkrlnPMnOdZ/XGuXYTKr8tjrVX7cnZItutlDQ2TYnl+uWWtz9cXaXG3Nqz3SqS5xUVaN6ZGoU3sn6/guCXJYKbQ0hxaXfwBEBIorEYTiSuTgogog1PLL3Pp5V5F+yirW8l1FWru3tEELYB5kNknHZMRqTI8kndYnWR3iWUelOZhKcxS15EU5Vr4pk7eq1n7DbFXFsFtUMeI2yWIPQ4RAaHEPBCCcWmQOMgzZV78r57cPy+Quq7XbG99JZaf8VZ7Oo8MQHCKFYRjalFumWWtz9fX6PG3Pr2jQcU67WSO7JGh0jySd2D1RSU5GqTeVFpl/AIQdxZUIQnElcnBRBXA0KtxebdxXprV7S7Rmb6l+yipq8C9QNbkcVo3sGq/R3RN1YvdEJTDlV7OpLqq8IMfK/8nkrayzjye1n8rG/ZPRKmhVuAcCEE4tOQeZC7cr5su7Zd2zpM79lb3PU/no+1iTDTIMQ5tzyzR7fb5mb8jTxn21i3J1MZuqpwMe3SNRo3skqVtytEwm1mkJlZacfwCED8WVCEJxJXJwUQXQUOVurzbkVBdS1u4t0drsUm3JLVMQM3z5mU1S//YuHd8lQacOyNSxnRJVVlJEDmouhiHL3mVyrHhT9o0z6hypIkm+6CSVj7xHVf0vkcyWZg4SaFrcAwEIpxafg3xeOZb9R9ELnpDJ56692xGv8hN+zz0EAmzPL9ecDXmasyFfq/aUNPi4zASHRnevHtEyJDNWUTb+TR2NFp9/AIQFxZUIQnElcnBRBXAor8/QrsIKbdpXpk37yrRxX6k25ZZpZ0GFgpjdK4DZJPVKi9HgzFiN6JygYZ3iFOuwkoOamam8QPYN02Vf/bas+9bU288wW1V5zNWqOO43MhzxzRgh0HzIPwDCqbXkIHPeRjnn/J9suxfXud+T3Eflo/8sT6cTmzkyRLq9RZWasyFPszfka/nOIjX0f4DdYtKxHeM0smuCRnZNUI8UJ6NagtRa8g+A5kVxJYJQXIkcXFSBtsswDOWXubXxQBHlYCFlS265Kjy+ozp3tM2sgR1iNSQzVoMz4jSwQ6xiHLWfMCMHNT1TyV7Zts2VbcvXsm3/Riafp96+htmqqn4Xq2L4LfLFdWzGKIHmR/4BEE6tKgcZPtlXv6vo7/4uc1VxnV2quoxV+Un/J19Sj2YODi1BXmmVvttcoG83FWjBtkJVuBv+u0iKy6bjuyRoVNcEDe8UrxQXawMeSavKPwCaDcWVCEJxJXJwUQVaP4/PUFZhhbbmlWtbfrm25ZX7XxdV1P9Be0OZJHVJjla/di71a+fSkMxY9UyLkdV85CfIyEFNoLJY1j1LZNv1o6w7vpN13+ojHmJY7KrqeyFFFbQp5B8A4dQac5CpNEfObx+WfcP0OvcbJouq+l+i8hG3y4ht38zRoaWo9Pi0aPt+fbspX99uKlBOSd3T19anc1KUhnaM17Ed4zS0Y5zaxTmaKNKWqzXmHwBNj+JKBKG4Ejm4qAKtR2mlt7p4kl+urXll1QWUvHLtKKiQp7HzeR3CbJK6JEWrbzuX+rWLUd92LvVOi5HT3rh5j8lBR8ldLkv+RllyVsmas0qWnBWy7Fsjk9Gwp/28cR1VOehKVfW7WEZ0UhMHC0QW8g+AcGrNOci6Y76iv/uLrLnr6txvWOyqHHi5Ko69QUZsh2aODi2JYRhal12qbzcVaP7WAq3eUxL0NMUZ8Q4N7RinYzvGaXBmnDolRrX5acRac/4B0HQorkQQiiuRg4sq0LKUu73aWVChHQUV2lFQHvA6t6T2YqJHIyHaqp6pTvVIjVGPVGf16xSnohtZSKkLOagehiG5S2WuKJCpvECmigKZS7Jl3r9D5qKdshTtlHn/TpnL9gV/aotD7u6nqbLPhfJ0Hs0is2izyD8AwqnV5yCfV/Y17yt6wWMyl+XW2cUw21TV53xVDLtJvsTuzRwgWqKiCo8Wbd+vhVsL9cPWQu0pqgz6HHFRVvVv59KADi4NaF/9lRTTtqYSa/X5B0CToLgSQSiuRA4uqkDkKXd7tauwQjvyK7SzsEI78ssPFFAqtC/IYfENEWU1q1tKtHoeKKIcLKQkOW1N/lRXW8tBluwVcqx6W6aSbJl8bslbdeC7WyZvVfX3qmKZKgqr20PEZ4+Vp8sYubueqqqup0qOuJCdG2ip2lr+ARBZ2kwOqipR1OLnFbX8lep7nToYMsnd40xVHHudvO2Oldr4qAI0jGEY2lFQoYXbqgsty3YUqaTK26hztY9zaGAHl/q2c6lXqlO902OU3IoLLm0m/wAIKYorDVRYWKhly5Zp7969KikpUVpamjIzMzVkyBBZLKF5upXiSuTgogo0vyqPT3uKKrVnf6Wy9ldo9/5KZe2v1O4Dr/NKQzsC5aBEp1VdkpzqmhytLknR6ppc/dUuziFLA9ZHaQptKQeZSnMUN3WczJVFTf5ehsUuT/ox8mQcJ0+nE+RpP0yy2Jr8fYGWpC3lHwCRp63lIFPJXkUtelaO1e/I5Kt/zT9PSl9VDrxCVX3Ol+yu5gsQLZ7XZ2h9TqmW7ijSsl1FWraz6KjWl0yOsalXaox6pTnVK636e+ekaNks5hBGHR5tLf8ACA2KK0ewdetWPf7445o3b57c7tof7KWmpuqSSy7RjTfeKLv96Cr4FFciBxdVIPTKq7zKLq7S3uJK7S2qVFZhpfYUVRdPsgorta+kSk31P81skjLio9TlQOHkYBGlS3K0EqIj78P1tpSDLLuXKO79i5rk3N6EbvKm9ZcnbYC86YPkaTdEskY1yXsBrUVbyj8AIk9bzUHmop1yLH1ZjtXvyuStf0onwxajqt7nqrLPBfJ2GCqZWv4H2mhePsPQpn1lWrqzSEt37NdPWcVH/RCb1WxSx8Qo/+9ZXZKj1TUpWp2ToxXrsIYo8qbXVvMPgKNDceUwPvnkEz344IMqKys7Yt9+/frpmWeeUWZmZqPfj+JK5OCiCgSntNKr7OJKZRdX+b/nFFdpb1Glcg60FVc2bjh6MNJcdnVKilKnxGh1SoxSx8SoA9+j5bC2nF8+21QOqipR3NvnyFK4NajDDLNNRlSCfM5k+eIy5YvrJF98R/niOsob11G++I6SzdlEQQOtV5vKPwAiTlvPQabSfXL8NEVRK6bKVFV82L4+Z6qqup8hd48z5ck8XjK3nA+xETkMw9De4iqt2l2s1XtKtHJPidbsLVGF2xeS86fE2NSlxsNtHROjlRHvUId4h6JskbXGYVvPPwAah+JKPb755hvddNNN8vl+uaB06dJFxx13nBISErRjxw7NnTtXFRUV/v09evTQu+++K5erccN0Ka5EDi6qQDXDMFRc6VWOv3BS9cvrouqiSU5xVaPn8W2MVJddnQ4UTTolRatjQpQ6JUUpMyFK0RF2g95YbS0HmcpyZdvytUwVBZLZJlnsMiw2yWw78N0uwxYtIypRRnSSfFEJ1VNiMPc4EHJtLf8AiCzkoAMqi+RY9bYcK96UpWjnEbv7ohLk7naa3J1Hy5NxnIyYtGYIEq2Vx2doa16ZVu4u0Zo9JdqQU6qNuWUhK7gclBJjU0ZC1IFiS5QyEhzKTIhSh3iH0mObf4pm8g+AxqC4UoecnBydeeaZKi0tlVSdYH//+9/r6quvltn8y5PP+fn5uuOOO7Ro0SJ/24QJE/TEE0806n0prkQOLqpoC9xen/aVVI8wOfg9p8b3fQfaKzyhvYk+krgoqzoceJqpQ7xDGfFRAd+j7a2jgHI45CAA4UL+ARBO5KBDGD5Zd3wnx8q3qh9EMRp2X+5N6CZP5nHV68ylD5IvoQtTiOGoeH2GdhZUaENOqTbsK9WGnDJtyClVdnFVk7yf1WxSqsuu9Fi70mLtSo91+F+nHXid4rLLGsICDPkHQGNQXKnDQw89pP/973/+7d/85je69dZb6+xbWVmpiRMnavPmzZKqk/G0adPUr1+/oN+X4krk4KKKlqzmaJO6CiYHt/PLmmaB+COJj7IqLdYeUDDpcOAJpQ7xjhY1L29TIQcBCBfyD4BwIgfVz1S8R44178u+cYYseeuDOtawx8qT2k/etIHypvWXN6GrfIldZTjimyhatBX7y93amleubfnl2pZXrq0HvmcVVsjbxP99zSYpOaa64JIcY1Oy06bkmAOvY2xKirEpJcaupBibXHaLTEcY9U7+AdAYFFcOkZubq5NPPtm/eH2nTp00c+ZM2Wz1L3i8YMECTZo0yb99+umn65lnngn6vSmuRA4uqohUbq9PuaXu6mJJcWW9I06ae7TJQQnR1oCnitrFOQKfNHLZ28TIk6NFDgIQLuQfAOFEDmoYc8EW2Td9LtumL2TNWdno8/iik+RL6CJfbKZ8zhQZzmT5og98dybLcMTLsDgkq8P/XWYbU7PiiNxen3YWVGhbfnlA8SVrf4UKyjzNHo/dYlJSTI3ii7O6+BIfZVN8tFWJTqsSou3qmJ6kJKdd3soS8a8cQEOEurjS4h83nj17tr+wIkm/+tWvDltYkaSRI0eqW7du2rJli6Tq9VrKysrkdLKQLoAjMwxDJVVe5ZW4lVdWpbwSt3JL3corrVLege+5pW7tK6lSfqlb4foVM9FpVbvYGsWSuEOGZ7vsEbcoIQAAANDa+BK7qWL4raoYfqvMRTtl2zRLth3fy7pniUxVJQ0+j7k8X+byfGnPsgYfY8gkX2JXlY+6V+4eZzYmfLQBNotZ3VKc6pZS+3OxsiqvsvZXKKuwUlmFFcraX3lgu/p1qNd2kaQqr6G9RVXaW9SwaczMpurpqhOjq4sv8dFWJUTblHDgdXy0TYkHvlfvsyrWYZXdyvR7AI5Oiy+uzJkzJ2D7zDMbdrNwxhln6IUXXpBUPVXY/Pnzddppp4U8PgCRz+szVFzp0f7yA18Vbv/rwnKPCsrdyi91K9dfPHGrMkwjTaTqp3jSYu1KdTn8RZKA77F2pcTYuVEEAAAAIowvrqMqj71OlcdeJ/k8suxbI2vWj7Lu+lHW7J9kLssN6fuZZMhSsEUxX92jwk4nSfaYkJ4frZ/TblHP1Bj1TK39b8cwDBWUuZW1v3qK6+wDMzZk+2drqH7tbuI5x3yGVHjg9/dgRFnNckVZFOewKjbKqrgoq2IdFsVGVRdf4qKsio2yKM6/r3o7NsqqGLtFZkaFAW1eiy+uLF261P86JSVFHTt2bNBxQ4YMCdhevHgxxRWghfEZhio9PpVVeVVa5VVp5YHv9bwuq/KqpNKjsipfdTGlorqAUlzhCdvokkMlRFtrFEocSnPZlXpI4SQ+ynrE+WcBAAAARDizVd70QfKmD1LlsddLhiFTabasOStlyVlV/ZW/WeainTIZ3qN6K1NViWSE7wExtE4mk0lJMXYlxdjr7WMYhgrKPb8UXYqrZ3jIK6t+eLH6dfUMEGVVzftvtMLjU0WJT7klwa9vajZJLodVcVGWA0WX6oKL026R025WjN2iaJul+rvdcmCfuXq/7WC/6td2q0k2Cw9HAi1Riy6uZGdnq7i42L/dt2/fBh976AL2Bxe4BxAcr89Qldcnt9dQlcf3y2uvT1UeQ26vT1UH9vlfe32q9PhU6fapwnPg9YGvippt/tfeX/YfaK/0VJ+rpbBbTEo9UCBJ9Y80cfgLJmmu6nZGmwAAAABtlMkkw9VOblc7ubvVePjT65a5aKfMhdtkKdwqc2mOTGW5MpflyVSed+B7rkzeuqdQMkxmVYy4XXLENtMPAvzCZDIpyWlTktOmPumH71vu9lYXWw4UXPIPTLmdX+pWYbn7wOgUt3+WiXDOKOEzpKIKj4oqPJIqj/p8FpNkt5rlOPBlt5rlsJjlsJllt5gVZTXLbjX599ssZlnNpuovS/V3m8Ukq9ns3/6lzSRrjf71tvmPqz6HzWwKOJfVYpbFJB72BGpo0cWVg2umHNShQ4cGH5uSkiKbzeZfr2Xr1q0hjQ1oDMMwZKi6YOHxGvL4DLn9r33y1Giv/dpXT3vgse4D7e4DxY/AYsgvr49YLPH65Pb41ILqG03CZbf4F9pLibEp2WVTstOupBhbjSKKXQnRjDYBAAAA0AgWm3yJ3eRL7KZ6Jz0yDMnnkbyVMnkqA74brnYyohKaMWCgcaJtFmUkWJSREHXEviaTSQ5nrArKqrQjO08FZQen93ar4OCU34cUZPaXe1RSdXSjwJqK15DK3T6VN8EaNqFmPbToElDkMdfef0iBpu72GoWdw+4/0jlqv//BYpLFXOM9arQBR6NFF1eys7MDttu1a9fgY00mk9LT07Vr1646z4XgzduYr9kb8lTh9skwqj9xr/m5+4Emf1utPofZbxzyAf4v5/qlj81qkyFDHrcn4BxGrWMCtw+21Nx/6PllVLf7DEM+o/q7YQRu+4zq96u531ujX/X3g30P9q/R12dEzNRUbVmU1az46Or5VBNqLHiXUqOAkuT/blM0C8IDAAAACDeTSbLYJItNht0lSfx+iVYv2m5RtD1aTrn8nyEdidvrU3GFR0UVXhVXVo88Ka7wqqiyesrw4gqPiiu9B9o9Kqr0qKTiwHalRz7+Y/kf5m0NTFKDCjQ1iz81izUmU/U5zKZfXptMpgPfq1+ba7bX6C9VTy9nCji25r7q8wTEe4Ra0KH7OyVG64y+KYqLatElgIjWov9ky8rKAradTmdQx8fE/LIYl8fjUWVlpRwOR4OP5yn0XyzYWqjfTlsX7jDQxlnNJsXYLYpxWAK/++c3tSjGYfXvS4iyKr5GASU+yqooiiVohJrXA64NAJoT+QdAOJGDAIRLY/OP3WpRssuiZFfw72kYhkqrvNXFmANTgv1SoPGorMqrMnf1urAH14YtP/C9zO090F69v7UUJ1o6Q5Lba8jdiqdl+Wpdnl66rL+/aIPQalXFlWAKI3X1Ly0tDeocCQkJQb1fa7Ypf1+4Q0CEMZkku8XsnzP04OuDXw6rRVE2s6KsFkXZLHLYzIqyVS/4VrM9ymaWw3bgtfVAH7vlwP7q7YNFE4fVzC91CLv4+PhwhwCgjSL/AAgnchCAcGnO/JMYgnMYRvVU66WVXpVVeWqsOes9sMasVxXuGuvPumusQ3vgdZXHVz0F/IFp2w9OCV9dKKjedh+YPt59YLr3g9PJ1zz20D5ofRbv2C+nK46HiZtIiy6uVFYGLhhls9mCOt5utx/2fGi4U/qk6ek5G0nEzcRkkmw15oi0Wcz+oYvVi5CZA9r9fS1m/4JkdqslsPhxaAHEUrMQUvc+h9VS7/FWs4lCBwAAAAAAQA0mk0kOq0UOq0VJMfYjH9BMDMOoXgPYV6Ng4/UdWAv4QIGmjqJMzcKOt442j79v4PkafHw95zn0eP9awwf2eRkdJEk6pmOC7BZzuMNotVp0ceXQUSYHF6dvqKqqqsOe70gKCwuD6t+aZcZIb08arO8256viwOJbBz9XPziv4MHXNV8c3DbVmEfw0M/jfznPL+c4tI/ZZFJUdLRMkioqymudu+7z1T537bhqvO+BeQ+r50OULCaTf+7Eg3Mrmv19TP55E80mHfLaVKu/6ZD22guCBS7aFTkLbvkOfP3y0u2WgvufCLR8JpPJ/7TU/v37GzzfLwAcLfIPgHAiBwEIF/JP0zNLsh/4kuXAl5/pwFfkfmjvO1gs8hrVBZ0aRZ2DhZiar6sLSweLP0Yd/Xy/vPYagessq3pd5YNrMRuqbvDVaK9ey/mXNaZrrt18MN5Dz1NTwGaNf+91rXd9UMfEKJ0/KF1FRftD8CfaOoR6JqoWXVw5dI2VYEeeHNq/5hosDUHiDtQ9JVrdUzLC8t4mk8n/n6OwsLDV/9209p8PaMkMw+D/KICwIP8ACCdyEIBwIf+gLib98vByVLiDCTP+fzSdyC0vNsChxZXS0tKgjq/Z32q1Bj1yBQAAAAAAAAAAtD0turiSnp4esJ2dnd3gYw3DCOh/6LkAAAAAAAAAAADq0qKLK927dw/YzsrKavCxubm5AWu0dOvWLWRxAQAAAAAAAACA1qtFF1fS0tIUGxvr3167dm2Dj12zZk3ANsUVAAAAAAAAAADQEC26uCJJQ4cO9b/Oy8vTjh07GnTcsmXLAraHDx8e0rgAAAAAAAAAAEDr1OKLK6eeemrA9hdffNGg42bNmuV/7XA4dMIJJ4Q0LgAAAAAAAAAA0Dq1+OLK2LFjZbPZ/Nvvv/9+wFoqdVmwYIG2bt3q3x4zZoycTmeTxQgAAAAAAAAAAFqPFl9cSUlJ0a9+9Sv/9o4dO/Sf//yn3v6VlZX661//6t82mUy6+eabmzRGAAAAAAAAAADQerT44ook3XjjjYqJifFvP/PMM5oyZYp8Pl9Av/z8fF133XXatGmTv238+PHq169fs8UKAAAAAAAAAABaNpNhGEa4gwiFefPm6eabbw4oqHTp0kXHH3+8EhIStH37ds2dO1cVFRX+/T169NC7774rl8vVqPcsKCg46rgRGiaTSQkJCZKkwsJCtZJ/1gBaCHIQgHAh/wAIJ3IQgHAh/wBojMTExJCezxrSs4XRySefrH/84x968MEHVV5eLknatm2btm3bVmf/vn376tlnn210YQUAAAAAAAAAALRNrWJasIPOP/98TZs2TePGjQtY5L6m1NRU3XrrrXrvvfeUmZnZzBECAAAAAAAAAICWrtWMXDmoW7dueu6551RQUKBly5Zp7969Ki0tVUpKijp27Khjjz1WFosl3GECAAAAAAAAAIAWqtUVVw5KTEzUqaeeGu4wAAAAAAAAAABAK9OqpgUDAAAAAAAAAABoahRXAAAAAAAAAAAAgmAyDMMIdxAAAAAAAAAAAAAtBSNXAAAAAAAAAAAAgkBxBQAAAAAAAAAAIAgUVwAAAAAAAAAAAIJAcQUAAAAAAAAAACAIFFcAAAAAAAAAAACCQHEFAAAAAAAAAAAgCBRXAAAAAAAAAAAAgkBxBQAAAAAAAAAAIAjWcAcARJq8vDz9/PPP2rlzp0pLS2W325WUlKROnTqpb9++iomJCXeIAFoRn8+nTZs2ae3atSooKFB5ebliYmKUnJysfv36qUuXLjKZTOEOE0AIFBYWasOGDdq+fbsKCwtlGIbi4+PVoUMHDR48WLGxsWGJq7S0VEuWLFF2drYKCwuVlJSkjIwMDR06VHa7PSwxAQAAAECko7iCZlVaWqo1a9ZoxYoVWrFihVauXKmsrCz//oyMDM2ZMycssc2ePVtTpkzRkiVLZBhGnX3MZrP69++vq666Suedd14zRwjgaERa/ikuLtYrr7yiDz/8UPv27au3X0ZGhi699FJdffXVcjgczRYfgKPn8/m0ZMkSffXVV1q4cKE2bNhQb1+TyaSRI0dq0qRJGjNmTLPEl5OToyeeeEKzZs1SWVlZrf3x8fE699xzdeedd8rlcjVLTACaRqQVd0tKSrRx40Zt2bJFhYWFcrvdiouLU7t27TR48GAlJSU1azwAmlak5SAACBWTUd+nyEAITZkyRdOmTdOmTZvk8/nq7ReO4kpBQYH+8Ic/aN68eQ0+Zvz48XryySebLigAIROJ+Wf58uW64447lJ2d3eBjunbtqueee07du3dvwsgAhNLpp5+u7du3B33chAkT9PDDDzdpQeP777/XPffco4KCgiP27dixo5555hn17du3yeIBEFqRWNxduXKlvvzyS/3www9as2bNYe/LBg0apKuvvloTJkxgBC/QAkViDmqIKVOm6JFHHgloGzFihKZOnRqmiABEOooraBa33HKLZs+efcR+zV1cyc7O1tVXX62tW7cGtPfq1UuDBg1SSkqKvF6vcnJytGrVKm3evFkSxRWgJYm0/LNu3TpdccUVKikp8beZTCYNHTpU/fv3V2xsrPbv369Vq1Zp+fLlAcempqbqvffeU4cOHZo8TgBHb9iwYSouLg5o69Kli/8ew+FwaO/evVqwYIH27t0b0G/48OF69dVXm2TE2urVq3XFFVeovLzc35aWlqbRo0crJSVFe/bs0dy5c1VUVOTfn5qaqg8++EDt2rULeTwAQi/SiruTJ0/WDz/8EPRxI0eO1D//+U+lpaWFNB4ATSvSclBD7Nq1S+ecc06t0bwUVwAcDtOCIWycTqf69++v1atX1zkVRVOrrKzUDTfcEFBYGTZsmO6//3717t27zmN27typTz75RIWFhc0UJYCmEK78YxiG7rvvvoDCSq9evfT444+rV69etfqvWbNGd911lz9P7du3T3/729/03HPPNVvMAI5eRkaGLr74Yk2cOLHO4oTX69V7772nf/zjH6qsrJQkLV68WE899ZR+//vfhzSWiooK3XrrrQGFlWuuuUa//e1vA9ZXKSkp0X333aeZM2dKqs4/d955p955552QxgOgaeTn59dqa0hxd8aMGcrJyQl5cbeueA5OB5SWlian06nc3FwtWrRI27Zt8/dZsGCBJk2apLfeekuJiYkhiwdA04q0HNQQDzzwQFg+mwLQslFcQbNwOBwaNGiQBg4cqAEDBmjgwIHq3r27zGazxo4dG5YL2PPPP69169b5t88991z985//POyw844dO+q2225rjvAAhEgk5Z+D670cFB8fr9dee02pqal19u/Xr5/eeOMNTZgwwf/0++zZs5Wdna309PRmiRlA43Xo0EFXX321zj//fFkslnr7WSwWXXbZZerQoYNuuukm/1Q5U6dO1aRJk0L6//3NN9/Unj17/NsXXnhhnQUcl8ulxx9/XAUFBVqwYIGk6ikNv/76a40bNy5k8QBoWpFU3JWklJQUTZw4URdeeKG6du1aa79hGJo1a5buv/9+7d+/X5K0efNmPfDAA3r66adDHg+AphVpOag+H3/8sb7//ntJ1aN1D7cmJgDUxLRgCLuxY8f6F5Vurml5Nm3apPPPP19ut1uS1L9/f7333nuyWqk3Am1Jc+efF198MWBKweuvv1733HPPEY979NFH9dprr/m3//Wvf+ncc89tkhgBhI7H4wn63uKee+7RZ5995t9+4IEHdPnll4ckHrfbrZNOOsm/zkpsbKxmz56t+Pj4eo/Zvn27zjzzTH/Bp3///po2bVpI4gHQdM4999wGFXcP+uabbwKKuzabTbNnzw5ZcXfy5MkaPXq0rrjiioBRcvWpa/rC999/X4MGDQpJPACaVqTloMPJz8/X+PHjVVBQIJPJpMcff1x33XWXfz/TggE4HHO4AwDCYcqUKf7CiiT96U9/orACoMkduoD94MGDG3TcscceG7Cdk5MTqpAANKHG3FtMmDAhYHvlypWhCkc//vhjwAL2Z5999mELK5LUuXNnjRo1yr+9evVq7dy5M2QxAWga06ZN04UXXtigDzUlacyYMQH5x+12N2jNuoZ6+eWXNXny5AYVVqTqQu7VV18d0DZr1qyQxQOgaUVaDjqcv//97/77o0suuUTHHHNMs7wvgNaB4granNLSUv/84ZLUt29fDR06NIwRAWgrDj6JdVBUVFSDjouOjg7YPtz0hQBatk6dOgVs5+bmhuzch47OO+OMMxp03Jlnnhmw3VwfdgBovEgr7oYinppTqwKIbJGWg+rz3Xff+UcMp6am6u67727y9wTQulBcQZszd+7cgDUWDr2AA0BTyczMDNiuue7B4Rycuuygzp07hywmAJGltLQ0YDuUI2uXLFnif22xWBo8vc6ho+cWL14cspgARI6mLO42xqH3O3l5eWGKBEBzaO4cVFZWpgceeMC//cc//lFxcXFN+p4AWh+KK2hzfvrpp4DtYcOGhScQAG3OSSedFLD9+eefN+i4mqPtnE6njjvuuJDGBSByrF+/PmC7rsVfG8Pn82nbtm3+7c6dOysmJqZBx3br1i1gpN3mzZtDEhOAyNKUxd3GiLR4ADSt5v4//9RTT/kfYjvxxBN58BZAo3B3gjZn1apV/tdWq1V9+/aVVL0WwieffKI5c+Zo165dKikpUWJiojIzMzVy5Eidc8456tixY7jCBtAK9OnTRyeffLLmzZsnSZo/f77efvttXXbZZfUe88Ybb2jhwoX+7cmTJys2NrapQwUQJp9++mnA9vHHHx+S82ZlZamystK/3aFDhwYfazKZ1K5dO39xZufOnXK73bLZbCGJDUBkaKribmNFWjwAmlZz/p9fsWKF3nzzTUmSw+EIGMECAMGguII2p+bTlqmpqYqKitL//vc//etf/wqYLkySysvLtXv3bi1atEjPP/+8Lr30Ut17770NXogRAA71l7/8RZdffrl/QegHH3xQixcv1iWXXKL+/fsrJiZGJSUlWrVqlf73v//pyy+/9B97yimn6Oabbw5X6ACa2KJFi7Ro0SL/dmxsrE488cSQnDs7OztgO9gPLNLT0/3FFY/Ho7y8PD7oBFqZpiruNlakxQOgaTXX/3mPx6P77rtPXq9XknTzzTfXmpIMABqK4graFJ/Pp+LiYv92amqqnnrqKb3wwgtHPNbtdmvq1KlavXq1Xn75ZblcrqYMFUArlZaWpnfffVcPPvigv3AyY8YMzZgxo95jXC6XrrvuOt1www2yWCzNFSqAZlReXq777rsvoG3y5MkNnrrrSA6dasPpdAZ1/KFxHHo+AC1bUxZ3G2Pbtm3+Raal6nWiTjvttLDFA6BpNWcOeuWVV7Ru3TpJUvfu3XXttdc2yfsAaBtYcwVtSnFxsQzD8G9v3brVX1ixWq264oor9P7772vZsmVavny5PvzwQ1111VUBc30uW7ZMf/rTn5o9dgCtR3Jysp555hn95z//OeKT3506ddJTTz2lm2++mcIK0Io99NBDAWuidOvWTdddd13Izn/o6FyHwxHU8Yf2P/R8AFqupi7uBsvn8+nPf/6z3G63v+38889nimaglWrOHLRt2zY9//zzkqqnPX3ooYeYmQTAUWHkCtqUQz8IODiKxeFw6IUXXtAJJ5wQsH/AgAEaMGCATj31VN10002qqKiQJH3xxReaM2eOxo4d2zyBA2hVsrOz9Y9//ENffPFFQMG3Ljt27NB1112nIUOG6K9//at69OjRTFECaC5vvPGGPvroI/+23W7Xv/71r6ALIIdTc70VSUGvl3LoBw+Hng9Ay9XUxd1gPffcc1q8eLF/OykpSffcc0/Y4gHQtJorBxmGofvuu89/D3PBBRdo+PDhIX8fAG0LI1fQptT3IcWdd95Zq7BS08iRI3XXXXcFtL366qshjQ1A27Bu3Tqdd955+vzzz2UYhkwmk8455xxNmTJFCxYs0KpVq7RgwQK9+uqrOvvss2UymSRJy5cv10UXXRTwYQOAlu+LL77QI488EtD28MMPa8CAASF9n0PvgWo+Ed4QVVVVhz0fgJapOYq7wfj666/13HPP+bdNJpP+9re/KSkpKSzxAGhazZmDPvjgA//UY4mJifrd734X8vcA0PZQXEGbUtf84vHx8briiiuOeOxll10WcFO/dOlSFRYWhjI8AK3c/v37df3116ugoEBS9ZPjL7zwgh577DGNGjVKSUlJstlsSkpK0oknnqjHH39czz//vP8J8/Lyct12223at29fOH8MACGyYMEC/e53v5PP5/O33X333Zo4cWLI3+vQe6BgR54c2j/YNVsARJ7mKu421NKlS3X33XcHjOq97bbbmC0AaKWaMwft27dP//znP/3bv//975WYmBjy9wHQ9lBcQZsSFRUVsH6KJI0aNapBT0XY7faABdUMw9Dy5ctDHiOA1uvFF19UTk6Of/vOO+/UKaeccthjxo4dqzvuuMO/XVhY6F8rCkDLtWLFCt1yyy0BI0KuvfZa3XDDDU3yfke7IP2h/cO1FgOA0GjO4m5DrF+/PmAaZqn64bbbbrstLPEAaFrNnYP+8pe/qKioSJI0YsSIsOU6AK0PxRW0Oenp6QHbPXv2bPCxvXr1CtjOzs4OSUwAWj/DMPTxxx/7t51Op6688soGHXvVVVcFPCX+2WefBfwiAqBl2bBhg66//vqAteAuvvhi3XvvvU32nofe/wR7D7N3717/a6vVquTk5JDEBaD5NXdx90h27Niha6+91v/BpySNHz9e999/f1jiAdC0mjsHzZ49W7NmzZJUPXPAQw891CTvA6BtoriCNqd79+4B2/Hx8Q0+9tC++/fvD0lMAFq/HTt2KD8/3789aNAgRUVFNejYqKgoDRw40L9dVFSk7du3hzxGAE1vx44duuaaawKmFj3zzDP18MMPN+n7ZmRkBOScrKysBh9rGEZAcaVTp07+6QoBtCzhKO4eTnZ2tiZNmhQw5elJJ52kf/7znzKb+bgCaG3CkYNqTj12ww03qFu3bk32XgDaHuuRuwCtS48ePfTtt9/6tw9doPVwWMwVQGPl5eUFbKekpAR1fGpqasB2QUGBunbtetRxAWg+dX2IOGbMGD322GNN/iGi2WxWly5dtG7dOknVRZ7S0tIGTe+1efPmgDVX+FACaJnCVdytT35+viZPnhxQ7B02bJieffZZCrhAKxSuHHRwvUupeprmF198MajjFy1apH79+vm3hw8frjfeeCNk8QFo2XgUBG3OiBEjAraDmRaj5lObklgADUCDHVqMDXYx6fLy8oBtFpMGWpb8/HxNmjQp4EPEESNG6Omnn262DxGHDh3qf+31erVixYoGHXfoGnPDhw8PaVwAml44i7t1KSkp0XXXXafNmzf72/r376+XXnqpwSN7AbQckZKDvF5vg74OdxzTMwOoieIK2pwTTjgh4EPJZcuWNfjYQz9cqPn0AgAczqHrE9T8MKEhDu2flJR01DEBaB4HP0TcsmWLv23QoEF64YUXmvVDxFNPPTVg+4svvmjQcYf2O/Q8ACJbJBR3a6qoqNCNN96o1atX+9t69OihV155RS6Xq9njAdC0Ii0HAUAoMS0Y2hy73a5x48bp008/lVS9mNqGDRtqLVZ/qM2bN2vp0qX+7bS0NPXs2bNJYwXQerRr105paWnKycmRJG3ZskXr1q1Tnz59jnjsypUrtW3bNv92RkaG0tLSmipUACFUUVGhm266KeBDxF69eoXlQ8QRI0YoKSnJv/7TjBkzdPfddysuLq7eY7Zv364ffvjBv92/f3917NixyWMFEBqRUtw9yO126ze/+Y2WLFnib+vUqZNee+01HhwBWqFIyEE1801D7Nq1K+BBkhEjRmjq1KmhDgtAK8HIFbR4u3btUu/evf1fY8eOPeIxt9xyi6zWX2qLDz74oNxud739PR6PHnzwQRmG4W+76qqrji5wAC1esPnnlFNOCdh+8MEHj7juU2VlpR566KGAtobkOQDh5/F4dMcdd2jx4sX+ti5dumjKlCmKj48/6vMHm4NsNpuuu+46/3ZxcXHAIq+H8vl8euCBBwKmv7jllluOOm4AzSOSirtSdU75/e9/r2+++cbf1q5dO02ZMkXp6enNHg+AphVpOQgAmgLFFbRJXbt21SWXXOLfXrp0qW6++Wb/E+U17du3T7feeqsWLVrkb8vIyNDll1/eLLECaD1uuOGGgKHvy5cv17XXXqsdO3bU2X/Lli26+uqrtXLlSn+bw+EI+HAUQGQyDEN/+MMfNG/ePH9bRkaGXn/9daWkpIQtriuuuELt27f3b3/44Yd69NFHaxV6S0pKdPfdd2vBggX+tiFDhmjcuHHNFiuAxou04q5U/VDJjBkz/NvJycmaMmWKMjMzjzoeAJElEnMQADQFpgVDs8jKytJpp51W576ai4VlZWXVu47J66+/Xmsx+qPxhz/8QevWrfNP9fXdd9/ptNNO0wknnKDu3btLqv5gc/78+QELSUdHR+uZZ57hSQughYik/JOZman77rtP999/v79t0aJFOvPMMzV06FD169dPLpdLxcXFWr16tZYtW1ZrwcSHH35Y7dq1O+pYADSt3bt367PPPqvVFux6JRkZGfrqq69CFldUVJSee+45XXHFFf77m9dee03Tp0/XmDFjlJycrL1792rOnDkqKiryH5eamqqnnnoqZHEAaDqRWNx94okn9O677/q34+Pj9dprr6lbt25hiQdA04nEHAQATYXiCpqFYRgBH2IeTn39ak7JFQp2u13PP/+87rrrLs2fP19S9bDV2bNna/bs2XUek5qaqhdeeEH9+/cPaSwAmk6k5Z+Do+b+/ve/q6Kiwv++ixYtChghdyin06n77rtP559/fshiAdB06sobweSjg4Lt3xD9+/fXM888o3vuuUeFhYWSpJycHL3//vt19s/MzNQzzzxDYRdoISKxuPvSSy8FbBcVFemCCy4I+jxr1qwJSTwAmk4k5iAAaCpMC4Y2LSEhQa+++qoeeugh9ejR47D9brzxRs2YMUMDBw5sxggBtEaXXHKJPv30U1122WWKiYk5bF+Xy6UrrrhCn376aaM+hACAupx00kn67LPPdP755ys6OrrOPvHx8brqqqv0ySef1DuyD0DkOVxxN9ivpowxkuIBEDotIQcBQKiYjFAPBwBasHXr1mnz5s3Kzs6W1+tVYmKievbsqYEDB8psphYJIPS8Xq/Wr1+vDRs2qLCwUGVlZXI6nUpISFDv3r3Vq1cvWSyWcIcJoBUrLS3VkiVLtGfPHu3fv19JSUnKyMjQsGHDZLfbwx0egCDt2rUr6CfE65KRkaE5c+Y06D0O11eSevfufdTxSNL69etDch4ATScSc1AwDj33iBEjNHXq1JCcG0DrQ3EFAAAAAAAAAAAgCDyKDwAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAKBZXXXVVerdu7f/68cffwx3SAAAAAAQFIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGguAIAAAAAAAAAABAEk2EYRriDAAAAAAAAAAAAaCkYuQIAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBGu4AwAAAADQMuzcuVPr1q1TTk6OSkpKZBiGoqOjlZiYqIyMDHXv3l0JCQnNEothGFq5cqW2bNminJwcmUwmpaamqn///urZs2eTv/++ffu0fPlyZWVlqaKiQrGxserdu7eGDBkiq/XIv2Zt375dK1asUE5Ojrxer5KTkzVgwAD17t37qGMrKSnR5s2btXXrVhUWFqq8vFwxMTGKj49X165d1a9fvwbFCAAAAKB+3FEDAAAAqFdpaalef/11ffTRR9q5c+dh+5pMJnXu3FknnXSSJk6cqP79+9fZ76qrrtKiRYv82//973913HHHNSieqqoqvfbaa3r77be1d+/eOvt07dpVN910k84//3xJ0rRp0/THP/7Rv3/ixIl65JFH6n2Pw/VftWqVnnzySc2fP1+GYdQ6NjU1Vbfccosuu+wymUymWvtnz56t5557TqtXr67zvXv06KE//OEPOumkk+qNry4rVqzQF198oYULF2rt2rXy+Xz19nU6nRo7dqxuuOGGkBRzAAAAgLaI4goAAACAOq1YsUK33XabsrOzG9TfMAxt27ZN27Zt0+7du/X888+HNJ4dO3boxhtv1JYtWw7bb+vWrfr973+vL7/8Uo8//njI3v+NN97Qo48+Kq/XW2+fffv26aGHHtKSJUv0r3/9SxaLRZLkdrt1//33a9q0aYd9j02bNum6667TH//4R02aNKlBcf32t7/VzJkzG/xzlJWVafr06ZoxY4Zuuukm3XHHHXUWggAAAADUjzVXAAAAANSyZcsWTZo0qd7CSkxMjBITE2W325slnh07duiqq66qt7ASGxsrm80W0DZ79mz99re/rXOESbDeeust/f3vfw8orNhsNsXHx9dZmJgxY4aeeuopSdVFp7vuuqtWYSU6Oloul6vO9/vHP/6hefPmNSi2oqKiOttNJpNcLpfi4+P9RZ6aDMPQCy+8oPvvv79B7wMAAADgF4xcAQAAAFDL3/72N5WWlvq37Xa7LrvsMp111lnq06ePoqOj/fvKysq0adMmrVixQvPmzdPChQtDGovH49Gdd95Zaxqw4cOHa/LkyRo1apQ/nqysLH355Zd68cUXVVhYqLlz5yo/P/+o3n/9+vWaPn26JCk+Pl7XXnutzjzzTHXu3FmSVF5errlz5+qxxx5TVlaW/7jXXntNEydO1Jdffqkvv/xSUvWUZTfeeKPGjBmjpKQkSVJeXp4+/vhjPfvssyorK/Mf//DDD+uEE06oVTSqT/fu3TVmzBiNGDFCPXv2VEZGhr/w4/P5tHXrVs2fP19vvfWWtm3b5j/uvffe04gRI3TOOec0/g8JAAAAaGNMRige4wIAAADQauTk5Gj06NH+ER82m01Tp07VkCFDGnz86tWrdcopp9S5P9g1V15++WU99thjAW233nqrbr/99nqns8rPz9fkyZO1bt26WvuCXXPloF69eumVV15Renp6ncft27dPF110UUARaMyYMVqwYIGqqqp07rnn6u9//3u9xZJFixZp0qRJAaNjnnvuOY0bN67eWCVp6tSpGjBgQIP/fqqqqvSXv/xF7733nr+tU6dOmjVrlsxmJjcAAAAAGoI7ZwAAAAAB1q5dGzCV1umnn97gD+4lKS0trd7CSrDcbrdef/31gLaJEyfqN7/5zWHXCUlKStKrr76qhISEkMSRkJBw2MKKVL2Y/W9/+9uAtm+++UZVVVUaNmyYHn300cOOQhkxYoTOO++8gLYvvvjiiLFdddVVQf392O12PfzwwxoxYoS/bceOHfruu+8afA4AAACgraO4AgAAACDAoWt4ZGZmhimS6nVTcnNz/dtOp1P33ntvg45NSUnR7bffHpI4br755sMWVg4644wz5HA4arX/+c9/btCokHPPPTdge/Xq1Q0PMggmk0nXXXddQFuop3MDAAAAWjOKKwAAAAACxMXFBWyvWrUqTJFI33//fcD2uHHj/GuVNMT555+vqKioo4rBYrHoggsuaFDf6Oho9ejRI6BtwIAB6tu3b4OOHzhwYMD2tm3b5PP5GhZokAYPHhyw/fPPPzfJ+wAAAACtEQvaAwAAAAgwcOBAmUwm/9Rg8+fP11NPPaVbbrlFdru9WWM59AP/0aNHB3W8y+XSkCFDtGDBgkbH0KtXr1oFp8Np3759wIiTYcOGNfhYl8uluLg4/+ghn8+nkpKSoN5fksrLy7Vx40bt27dPpaWlKi8vP2KRZs+ePUG9BwAAANCWUVwBAAAAECApKUmnn366Zs2a5W974YUX9N5772n8+PEaM2aMjj32WMXExDR5LFu3bg3YbugIkEOPOZriSocOHYLq73Q6j/r4mlOzlZaWNqi4kp2drQ8//FCff/65Nm3aFPSIl0OngwMAAABQP4orAAAAAGq57777tGrVKmVlZfnb8vLyNHXqVE2dOlVWq1W9evXSscceqxEjRmjkyJFBj644ktLSUrnd7oC21NTUoM/TmGNqio2NDaq/xWIJ2Ha5XEd1vNfrPWx/wzD0n//8Ry+88ILKy8uDeq+aSktLG30sAAAA0Naw5goAAACAWlJTU/X+++/rtNNOq3O/x+PRmjVr9Oabb+o3v/mNRo0apVtvvVVLliwJWQwlJSW12hozWibY4sahTCZTWI8/kj//+c964oknjqqwIsk/DRwAAACAI2PkCgAAAIA6JScn69lnn9W6des0bdo0ffPNN9q2bVudfd1ut77++mt9/fXXOvvss/XQQw8ddVHDZrPV+T5Wa3C/xhw6+qU1+fjjj/XBBx8EtDmdTp111lkaMWKEunXrpvT0dLlcLjkcjlp/dr17927OcAEAAIBWg+IKAAAAgMPq06eP/u///k//93//p5ycHC1ZskTLli3T0qVLtXbt2lojHqZPn659+/ZpypQptaa4CkZd04wVFxcrOjo6qPMUFxc3OoZIZhiG/v3vfwe0HX/88XrqqaeUmJh4xOOZBgwAAABoPIorAAAAABosLS1N48eP1/jx4yVJubm5+vzzzzVlypSA9Vl+/PFHTZs2TRdffHGj38tqtSohIUGFhYX+tq1btyotLS2o82zZsqXRMUSyVatWaffu3f7tuLg4Pf3004qPj2/Q8QUFBU0VGgAAANDqseYKAAAAgEZLSUnRVVddpenTp2vQoEEB+z799NOjPv+AAQMCtn/++eegz9GYY1qC9evXB2yPGTOmwYUVSVq5cmWoQwIAAADaDIorAAAAAI6a0+nU7bffHtC2YcOGoz7vkCFDArZnzJgR1PGrVq2qd52Yli4/Pz9gu0OHDkEdP3fu3FCGAwAAALQpFFcAAAAAhERmZmbAdllZ2VGf85xzzpHJZPJvr1u3TnPmzGnw8c8999xRxxCpbDZbwHZRUVGDj92zZ49mzpwZ6pAAAACANoPiCgAAAIAAHo+nUccdurZJamrqUcfSuXNnjRo1KqDtoYceClhrpD7vvvtuUIWYliY9PT1g+/vvv5fX6z3icV6vV/fee6/cbndThQYAAAC0ehRXAAAAAAR4/PHHdffddwe1VklBQYGeeuqpgLbjjjsuJPHce++9AaM09u7dqyuvvFI//vhjnf2rqqr07LPP6sEHH5QkORyOkMQRaUaMGBEwqmfnzp3697//fdhjysrKdPvtt2vRokVNHR4AAADQqlnDHQAAAACAyOLxeDR9+nRNnz5dHTt21GmnnaahQ4eqb9++at++vczm6me0vF6vtm/frnnz5mnKlCnKycnxn8Nisejyyy8PSTx9+vTR7bffrieeeMLflpWVpV//+tfq37+/Ro4cqbS0NFVWVmrr1q2aN2+efz0Sp9OpSZMm6fnnn/cfW7Mg0ZKlpKRo3Lhx+uqrr/xtL730kjZu3Khrr71WxxxzjL8olZWVpdmzZ+uVV15Rdna2JGn48OFavHhxWGIHAAAAWjqKKwAAAADqtXPnTr322mt67bXXJFUXJlwulywWi0pLS+udWuqOO+7QwIEDQxbHjTfeqP379+vVV18NaF+9erVWr15d5zF2u11PPfWUcnNza7W3Fr/73e/0448/Bqy3MmfOHM2ZM0dWq1Uul6vOv6f09HQ99thjGjNmTHOHDAAAALQKTAsGAAAAIMDhRnYYhqHi4mIVFhbWWVhxOp164IEHdOONN4Y8rnvvvVePPPKIEhMTj9i3Y8eOev311zVmzBiVlJQE7IuLiwt5bOHSuXNnPf/880pISKi1z+Px1Pn31K1bN02dOlXt2rVrpigBAACA1oeRKwAAAAAC3HPPPRo9erTmzZunxYsXa+PGjUdcKD09PV0TJkzQpEmTai20HkoTJ07UqaeeqpkzZ+qrr77S1q1b/SNTUlNT1a9fP40bN05nnXWWf4TKwSnCDmpNxRWpenqvjz/+WE8//bQ+++yzekcTpaWl6YorrtDkyZNb7To0AAAAQHMxGYZhhDsIAAAAAJGrtLRUmzdv1s6dO5Wbm6vy8nL/9GCpqanq3bu3OnXqFLFrmVxzzTWaP3++f/uFF17Q2LFjwxhR0ykpKdGyZcu0c+dOFRUVyWq1+v+O+vTpE7F/RwAAAEBLQ3EFAAAAQKtVWFioMWPGqKKiwt82f/58paSkhDEqAAAAAC0da64AAAAAaLWmTJkSUFjp1asXhRUAAAAAR43iCgAAAICI53a7Feyg+3nz5unll18OaLv00ktDGRYAAACANoriCgAAAICIt2nTJk2YMEFvv/12rQXqD1VYWKgnn3xSt9xyi7xer7+9ffv2Ov/885s4UgAAAABtAWuuAAAAAIh4a9eu9RdGzGaz+vfvr759+6pDhw6KjY1VVVWVCgoKtGrVKi1btixgKrCDx7zxxhsaMWJEGKIHAAAA0NpYwx0AAAAAAATD5/Np5cqVWrlyZYP6R0VF6R//+AeFFQAAAAAhw7RgAAAAACKey+VSWlpa0MeddNJJevfddzV+/PgmiAoAAABAW8W0YAAAAABaBJ/Pp+XLl2vx4sVauXKldu7cqezsbJWVlcnr9So2Nlbx8fHq3Lmzhg0bpjFjxqhPnz7hDhsAAABAK0RxBQAAAAAAAAAAIAhMCwYAAAAAAAAAABAEiisAAAAAAAAAAABBoLgCAAAAAAAAAAAQBIorAAAAAAAAAAAAQaC4AgAAAAAAAAAAEASKKwAAAAAAAAAAAEGwhjuAlqygoCDcIQARyWQyKSEhQZJUWFgowzDCGxAARDjyJgAEj9wJAMEhbwJo6xITE0N6PkauAAAAAAAAAAAABIHiCgAAAAAAAAAAQBAorgAAAAAAAAAAAASB4goAAAAAAAAAAEAQKK4AAAAAAAAAAAAEgeIKAAAAAAAAAABAECiuAAAAAAAAAAAABIHiCgAAAAAAAAAAQBAorgAAAAAAAAAAAASB4goAAAAAAAAAAEAQKK4AAAAAAAAAAAAEgeIKAAAAAAAAAABAECiuAAAAAAAAAAAABIHiCgAAAAAAAAAAQBAorgAAAAAAAAAAAATBGu4AAAAAACAkDENyl1W/tjklkym88QAAAABotSiuAAAAAIg8Pq9MZbkyl+yWuXiPzMW7ZS7bJ1NlsUxVJTJVFUtVJQe2D36VyGT4JEmGTDLsLskeK8MRK8Puki8mTd7EbvIldJU3sau8yb0luyvMPygAAACAlojiCgAAANCSHBydcaCIcKAxsI/JfGDkRgTPAuyplLlkj8xFu2QuypK5+JDvpdky+TyNPr1JxoECTLFUUncfw2SRN22APBkj5MkYIXfGcZIjrtHvCQAAAKDtoLgCAAAARJLKIlkKt8lcuPXA922y7N8hU3mBTJX7ZaoolMnwNuhUht0lwxZT/T3gK0aGPda/TzanDKtDsjhqfI+SYXFIVscv361Rv/Qx2yTDK3ndMvnckreqeuRIZdGBkSUHRpVUFMhcnlc9CqUsN+C76dCiUDMzGV5Zs3+WNftnadnLMsw2eTKPV1Wvc1TV+1zJGhXW+AAAAABELoorAAAAQLhUlVZ/uL93uSx7l8u692eZy/aF7PQHixwqzQ7ZOVszk88t247vZNvxnaLnP6LKAZerctBVMlzp4Q4NAAAAQIShuAIAAAA0I1NRluxbv5Zt81eyZi08qqmv2gLDbJPPlS6fq4MMV7p8jngZjljJ7pJhj5PhcFWPwrG7DqytEivJ5F+D5eC6LObKIpmLdspcuEWWgq0y799+2D97c3m+ohc/q6ilL6qq93mqGPEb+RI6N98PDgAAACCiUVwBAAAAmlplkezrP5Fj9Xuy5qwMdzQRxeeIky82Q764TPniMuSLzazeju0gX2x7Gc6Uplk7xl0u697lsmb9WP21Z5lM3qpa3Uw+jxxrP5R9/SeqHHCZKkbeIyMqPvTxAAAAAGhRKK4AAAAATcSy92c5Vr4p+4bpMnnKG3ycYTJXFxgSusib0FW+hC7yudJlOBJkRMXLcMTJMB96K2/65ZXhkapKZaoq9Y/g8H+5SwO3q0okT4VM3srq755KyVsZ8N3krWx47NbogFEkhiNOPmeKDGeKfNHJ1d+dyTJi0uWNywzfAvK2aHk6jpKn46jq7aoS2bZ/I8fKt2Xb+X2t7iafR1Erpsq+cYbKT/iDqvpd1DRFHwAAAAAtgskwjPCuItmCFRQUhDsEICKZTCYlJCRIkgoLC0WaAYDDI2+2Pua8DYr+4Z+yb/n6iH0Ns1XelH7ytB8ib7sh8qQNkC+uo2R1NEOkDWT4qhes91ZKB4stXrdktlYXeczW6oXu7THVr1s4c94GRf00RfZ1H8nkqaizj6fdEJWN/bu8qX2bOTocRO4EgOCQNwG0dYmJiSE9H8WVo0BxBagbN2wAEBzyZuthKspS9MInZV83TSbDV28/X1SC3F3Gyt3tNLk7nyTZXc0YJRrKVJanqKUvyvHzf+scvWOYbSofeZcqj71BMlvCEGHbRu4EgOCQNwG0dRRXIgjFFaBu3LABQHDIm62At0pRS19W1KKn651CyzBb5e46TpUDLpWn04mtYoRHW2Eu2qXob/8i++ZZde53Z45U6VnPynAmN3NkbRu5EwCCQ94E0NaFurjCb3QAAADAUbDuWiDnnD/LUrC5zv2+6CRVDr5Wlf0vlhGT1szRIRR8cZkqPfslVW6bK+e8B2XZvz1gv23XAsW9fY5Kzn5J3vSBYYoSAAAAQHNiBUYAAACgMSqL5fzyHsV+eFmdhRXDFqPy4+7Q/knfqmLErRRWWgFPl1NUdOUslQ+7WcYhi9mbS3Yr9sNLZN3+bZiiAwAAANCcKK4AAAAAQbLs/Vlxb0+QY+0HtfYZJrMqBl2l/ZO+UcXxv2U9ldbGGqWKE36v4gvflc/VLmCXyV0m16fXyrb+kzAFBwAAAKC5UFwBAAAAgmBf84FiP7hYlv07au3zpA1S8SWfqPyUv8hwpoQhOjQXb8ZwFV36mdwZIwLaTT63XF/cIcdPU8IUGQAAAIDmQHEFAAAAaAifV9Hf/U0xX90jk7cqYJdhj1XZyX9R8SUfseZGG2LEpKpk4puq6nVOrX3Obx5S1I//DkNUAAAAAJoDC9oDAAAAR1JZJNcXd8i2bW6tXZ72x6r0zH/LF9cxDIEh7Cz26r//6GRF/fx6wK7ohU9KJqsqRtwantgAAAAANBmKKwAAAMBhmEpzFPvRVbLkra+1r2LItSo/8Y+SmdvqNs1kVvmYB2Q4UxS94LGAXdEL/iXDYlPl0BvCFBwAAACApsBvgQAAAEA9zEW75Jp2hSz7twe0G2abysb+TVX9fxWmyBBxTCZVjLhNvqh4xcy9L2CX8/u/SxabKgdPDlNwAAAAAEKN4goAAABQB3PBFsVOu1Lmkt0B7b7oZJVMeFHejOFhigyRrGrQVTL5vHJ+82BAu/Obh2RYo1Q14LLwBAYAAICj4vV6tX79emVnZ6ugoEBFRUWKioqSy+VShw4d1Lt3b8XExIQ7zJAqLy/XmjVrlJ+fr4KCApWWlsrlcik2NlZdunRRjx49ZLW23RJD2/3JAQAAgHqYc9cp9qMrZS7LDWj3xndRyQVTWV8Fh1U5eJLk88j53V8D2p1z/iTDmSp3t3HhCQwAACBC7d69WxdccEGt9qFDh+q5554L+nz79+/X2WefLbfbHdDes2dPTZ06Nahzfffdd5o5c6aWLFmi4uLievuZzWb16NFDp59+uk4//XSlpaXV23f69On661//Wqv9+uuv17XXXhtUfJL0/fff65577qnVfskll+i3v/1tUOeqqqrSp59+qrlz52rFihW1/gxrstvtGjx4sM4880ydfPLJcjqdQcfeklFcAQAAAGow529S7LTLZS7PD2j3JvdW8cSpMmLq/yUJOKjy2Oskb5WcP/zT32YyfIr5/DYVX/i2vO2GhDE6AACAlmHZsmXau3ev2rVrF9RxX3311WGLAg2xcuVKPf3001q5cmWD+vt8Pm3YsEEbNmzQSy+9pIkTJ+qaa65RQkJCg9/z888/b1Rx5fPPPw/6mPrO89JLL2nv3r0N6l9VVaVFixZp0aJFevrppzV58mRdeOGFbWY0S9v4KQEAAIAGMBftrB6xckhhxZM2SCXnvyEjOjFMkaElqhx+i0zuUkUv/uVpS5OnQq7pN6rosukU6gAAAI7AMAx9/vnnmjw5uLXrZs6ceVTvO336dD3yyCPyeDwB7U6nU4MHD1ZaWpoSExNVUVGhvLw8bdu2TRs2bPD3c7vdeu+991RaWqr77rvv0NPXa9euXfr55591zDHHNPiY4uJifffddw3uXxev16vHHntMH330Ua19qampGjhwoJKSkhQXF6eioiLl5+drzZo1AUWYwsJCPfnkk3K5XJowYcJRxdNSUFwBAAAAJJnK8uT66NcylwQ+peXuMEIl574qOWLDFBlasoqR98hcki3H2g/8bebSHLmm36jiC9+RrI4wRgcAABCZoqKiVFFRIUn64osvgiqubNu2TWvWrPFvOxwOVVZWNvj4//73v3r++ecD2nr27KmbbrpJI0aMkM1mq/O4nJwczZ49W//9739VUFAgqbo41BA1f97PP/88qOLKV199paqqqlrnaSiv16t7771X8+fPD2gfM2aMJk+erD59+tR77MaNGzVjxgxNmzbNH0NDf+bWwBzuAAAAAICwc5fJ9ek1shRuDWj2tBuskvOmUFhB45lMKjv1H3J3PCGg2bp3uZzz7pfa0C+fAAAADXXiiSfKYrFIkrZv365Vq1Y1+Niao1YGDRqkxMSGjz7/8ccf9cILLwS0XXvttXrjjTd0wgkn1FtYkaS0tDRddtll+vDDD3X11VfLbG74R++jR4/2v549e7a/UNEQNX/eMWPGNPi4g15++eWAwkpUVJQee+wxPfroo4ctrEjVRac777xT77zzjk466aSg37ulo7gCAACAts3nUcznt8ua/XNAsye5j0rOe12yx4QnLrQeFptKz3pW3rjMgGbH6nflWPFmmIICAACIXMnJyRoxYoR/u6Frivh8Ps2aNcu/PX78+Aa/Z0FBgR566KGAkRe33nqrrr/++qAKJU6nUzfffLMeffRRxcQ07HeJk046SXFxcZKCm+Zrx44dAYWnYH5eSVq6dKn++9//+rdtNpueeuopnXjiiUGdp0OHDvrnP/+pa6+9Nqg/q5au2aYFKy0t1Zo1a7RixQqtWLFCK1euVFZWln9/RkaG5syZE9Q5d+3apVNPPbVR8aSnp+vbb79t1LEAAABoJQxDzrn3yb51dkCzNzajeo2VqITwxIVWx4hOVOnZLyv2vQtk8pT726O/fUielD7yZgwPY3QAAACRZ/z48VqwYIGk6qmv7rzzzsOOHJGkJUuWKDs7W1L1dGDjxo3T66+/3qD3e+edd5Sf/8vaiyNGjNBVV13VuOBVXTA57rjjGtTXbrfr1FNP9a95MnPmzAZ97l1z1MqAAQPUsWPHoGJ88cUX5fP5/NvXXHONBg8eHNQ5DjKZTLr++uuDGnXT0jV5cWXKlCmaNm2aNm3aFPAXBQAAAIRb1OLn5Vj1dkCbzxFfXVhxpYcpKrRW3tS+Kj39Mblm3upvM/k8cn1xu4oumyHDmRzG6AAAACLL6NGj5XK5VFJSoqKiIn3//fc65ZRTDntMzWLDSSedJJfL1aD3Ki8vD1jM3WQy6Xe/+13jAq/Bbrc3uO/48eP9MSxcuFD5+flKSkqqt79hGPriiy8Cjg/GqlWrtHLlSv92hw4djqqYdFAwP3NL1+RjdBYvXqwNGzY0S2HFbDbLYrE06MtqbbZBOwAAAIhA1q1zFLXgsYA2w+JQybmvypfUI0xRobVz95yg8uG3BrSZS/Yq5su7JIOH0QAAAA5yOBwaO3asf/tIU4OVlZVp3rx5/u1gig1z585VUVGRf3vYsGFBjwI5WgMHDvS/p9fr1ZdffnnY/kuXLtXevXslVRc0xo0bF9T7ffzxxwHb55xzDp+ZByksE6A5nU4NHz5cTqczpOf929/+pjVr1jToK9gpyAAAANB6mAu2yPXFHTLpl/mUDZlUeua/5e0wLIyRoS2oOP6uWgvc27Z/I8eSF8MUEQAAQGSqWSD54YcftH///nr7zpkzRxUVFZKkpKSkBk/JJUnLly8P2D7jjDOCjDQ0zjrrLP/rmqNw6lJz/wknnOBfs6WhIuVnbsmavLjicDg0aNAgXXHFFfrHP/6h6dOna+nSpXrzzTeVmJjY1G8PAAAABKoqkWv6DTJVFQc0l5/4R7l7nBmmoNCmmC0qPeMp+ZypAc3RCx6XNWtRmIICAACIPIMHD1ZGRoYkyePxHHY0R81iwxlnnCGLxdLg9/npp58Ctvv37x9coCFy1llnyWQySZI2bNigzZs319mvvLy80aN0JGnfvn0B66EnJiaqQ4cOwQfcxjV5ceXJJ5/U+++/r/vvv18XXHCBevbsKbM5LANmAAAA0NYZPsV8ebcs+ZsCmqt6navKY68PU1Boi4yYVJWe+W8Zpl9+NzIZXsV8frtM5fmHORIAAKBtOfPMXx6Aqm9qsD179gSMxAim2FBRUaGdO3f6t6Ojo9W5c+dGRHr02rdvH7CgfH2jV+bOnauysjJJ1YWRkSNHBvU+GzduDNju3bt3cIFCUjMsaA8AAABECseSF2XfPCugzZPSV6XjHpUOPCEWLj7jlynKTJL/iTW0Xp6Oo1Rx3B2KXvikv81cmi3n7P9T6YQXwv5vEgCAlsDrM7S/whPuMFqk+CirLObIv98YP368XnvtNRmGoTVr1mjr1q3q2rVrQJ/PP/9cxoH76Z49e6pnz54NPv+hU40lJSWFdXDAhAkT/IWiWbNm6ZZbbqk1Cqdm0eX0008Peq2UQ3/m1NTUenricCiuAAAAoE2w7F2u6AWPB7T5ohJUevZ/JFt0s8SQW1Kln7OKtSWvTNvyyrWjoEIFZW4VlLtVVvXLYuZmk+S0WxRjtygpxqZ2sQ61i3Ooe0q0+qTHqEdqjBxWRoO3BhXDb5M1a7FsO7/3t9k3fyH3ummq6nthGCMDACDyfbUuV498tVX5Ze5wh9IiJTlt+sNpXXVan5Rwh3JYGRkZGjRokH7++WdJ1YWUW265JaBPzWJDzXVLGqLmQvaSFBMT08hIQ+OUU07RY489poqKCuXm5mrx4sU6/vjj/fuzs7O1bNky/3awP68UeT9zS0VxBQAAAK1fZbFiPv+NTIbX32SYzCo961n54js22duWVHr047b9mr+lQEt2FmlnQUWDjvMZUkmlVyWVXmUXV2nt3tKA/RaT1DXZqd7pMerf3qVhneLUPcUpMyMdWh6zRaVnPKG4N8+QuaLA3+yc94A8GSPki2u6f58AALR0D3+xWSWV3iN3RJ3yy9x6+IvNEV9ckapHrxwsrnzxxRe66aab/KNLVqxYoV27dkmSLBZL0Auzl5YG3mtHRzfPg1f1iYmJ0ZgxYzRrVvWI+5kzZwYUVz7//HP5fNUPZnXv3l19+vQJ+j0i7WduqSiuAAAAoNVzzrtflqKdAW0VI26Xp9OJIX+vsiqv5m7M18zV+7Ro+355fMaRDwqS15A25ZZpU26ZZqzeJ0lKiLbq2I5xGt4p3l9sYWqxlsGISVPZqf+Qa8ZN/jZTVYmcX96tkgvelswNX4wVAACgNRo3bpyeeOIJVVZWKicnR0uXLtXw4cMlBY5aOe6445ScnBzUuQ8dtVFeXn70AR+l8ePH+4sr3377rUpLS/1x1lx3pjGjVqTI/JlbolZVXJk1a5ZmzpypzZs3q6CgQA6HQwkJCerZs6eGDx+us846S2lpaeEOEwAAAM3Ivu4jOdZ9FNDmaT9MFSNuD+n7bNpXqreX7tXna/ap3O078gEhVlju0ZwN+ZqzoXox9A7xDo3tlaRTeyVrUEYso1oinLvHmarse5Ecaz/wt9myFsmx/FVVDr0hjJEBABC57j+zO9OCHYWD04K1BDExMRo9erS++uorSdUFhuHDh6uyslKzZ8/29wtmIfuD4uLiArYPHdURDsOHD1dqaqr27duniooKzZ07V2effbZWrVql7du3S2rcKJ2DIvFnbolaVXFl3rx5Advl5eUqLCzUtm3b9NVXX+mxxx7TRRddpHvuuSck88jxJCBQt5r/N/h/AgBHRt5sOub9O+Sce19Am2GPU+lZ/5bJYgvJeyzeXqhXftilH7fvP3JnSS6HRf3audQt2akuydFKi7UrMdqm2CiLvwBS5fWprKp6WrCckirtLarUjvxyrc8p1Y78CjVkLMzu/ZV6c/Eevbl4j1JdNp3SK1njeiXr2E7xsraAhUvbovKTH5Rt10KZi3f526IXPCZP11PkS+4VxsgiE7kTAILTGvPm6X1TdWrvFBa0b6RIWtC+rn+Th7aNHz/eX1yZO3eu7r33Xn3//fcqLi6WJLlcLo0ePbrWcUfaTkhICNjOz8+XYRhNuqh9XTHVbLNYLDrzzDM1depUSdWjc84555yAUTrDhw+vNZCgIX+OUu2fOTc3t9XkhebUqoorR1JVVaX//e9/WrhwoV588UV17tz5qM536D9CALXFx8eHOwQAaFHImyHk80kf/UGqKgloNp37b8V3GnDUp/9xS56e+GqDftyaf9h+dotZx3VL0pheqTq+W7L6to87ql9iSyo9WrenSKt3F2nFrv1atC1PO/MPP4x/X4lb7y3bq/eW7VVSjF2n9U3X2ce016juKRHzCzUkKUG66GVpynjpQAnN5K1S3Jw/SNd+xfRgh0HuBIDgtLa8GdwkUIhEJSWB9+wHZySq6YwzzvCP5igvL9ePP/6oL7/80r9//PjxSk9Pr3XumkUSi8VS52e6Xbp00bZt2yRVP7BfUFCg7t27N/4HOgKn0xmwHRMTUyuuSy+91F9cWb58uQoKCgJG6Vx00UW1jmnIn6MkDR06NGB7w4YNfNbdCK2iuNK7d2+NGzdOQ4cOVY8ePZSQkCDDMJSbm6uff/5ZH3/8sb799lt//y1btuj666/Xu+++q8TExDBGDgAAgCaz+BVp+/zAtsFXSgMuOKrT7swv019nrNGs1dn19rGYTTqpZ4omDsnQuL7pinGE7rbb5bBqWJckDeuSFBDTj1vztWBznhZuyVNWYf3FlvzSKr27ZKfeXbJTabEOnTe4gyYOyVS/DnH1HoNm1HmUNOp26Yenf2nLWiotfL66HQAAoI2yWCw655xz9Nprr0mS3njjDa1fv96///zzz2/0uYcOHeovrkjSzz//3KTFlYbo0aOH+vfvr9WrV8swDP3ud7/T/v3Vo+VdLpdOO+20Rp87PT1dHTt21M6d1etS5uXladeuXcrMzAxJ7G1Fiy6uJCQk6J133tGQIUPq3J+ZmanMzExNmDBB33zzTcA/wO3bt+uvf/2rHn/88Ua/f2FhYaOPBVozk8nkfwpm//7E9lUXAADOM0lEQVT9MozQL+QLAK0JeTP0zPt3KPbrB1RzTIY3LlPFo/5PauQ9XFmVV68u2KWpi7JU5a377yjRadPFg9N10ZB2Sot1SJLc5SU6TK0jJGLN0rjuLo3r7pJhdNKGnDLNXp+rrzfkaUtu/W+eU1ypl7/bqpe/26qeqU6N75+q8f1SlR7naNqAcXjH3qrYtTNkKdjsbzJm/0XF7U+UL7FlzIveHMidABAc8iYiWVFRUcB2ZWVlnZ+9nnrqqf7iypo1a/ztmZmZ6t69e53H+Hy/rIfo9Xrr7DNgwAB9+OGH/u2PPvpIY8eODfKnaLiysrKA7dLS0jrjOuOMM7R69WpJ0sqVK/3tp5xyiioqKlRRURHQv6F/jpJ0zDHH+IsrkvTBBx9o0qRJQfwULU+oR+e06OKKy+Wqt7ByqDFjxuj555/X1VdfLY+neh7GGTNm6MYbb1SvXo2bv5iLEHBkhmHwfwUAgkDeDAHDUPRXv5fJHfgLS9m4f8qwOaUg/3wNw9Dna3L11Lzt2ldSVWef9Fi7rhmZqfMGpslhNfuPC5deaU71Suukm0/qpK15ZZqzIV+z1+dpbXb9C1Vu3Femf8/brqfnbdfwzvE6e0CqxvVOVrSNqaiancWh0nGPKvb9i2XyTw9Wqeiv7lXJRe9Ipqab/7ulIncCQHDIm4g0df17rKute/fu6tWrlzZs2BDQftZZZ9X7b/rQ9rr6nXzyyXryySf9xYnFixdr586dTTaSo66Y6orr9NNP19NPP+3/PPug8ePHN/jPrL4/l3PPPVfTp0/3b3/66ae68sorZbFw/99QbequfNiwYbrwwgv924Zh6PPPPw9jRAAAAAg1+6r/ybbrh4C2ygGXy9NxVNDnyiqs0I3vrNafpm+ss7CSEG3VH07rqk9vOFa/GtLOX1iJJF2Tnbp2ZKb+N+kYTb/xWP32lM7qmx5Tb39D0qLt+3X/jE06/dkl+vuXm7V2b0m9/dE0vB2GqXLw1QFttt2L5FjxZpgiAgAAiAxnnXVWwLbJZKrVFqzo6GhNnDjRv20Yhh577LGjOqdUvQb40UhISNDIkSMD2tq3b6/Bgwcf1XkladCgQRo4cKB/OysrS2+99dZRn/dof+aWpEWPXGmMiy66SO+++65/e8GCBbrjjjvCGBEAAABCxVS8W87v/xHQ5nN1UNmJfwzqPD7D0Ac/ZeupudtU7vbV2m81m3TJse10wwkdFRfVcm6pMxKi9OsRGfr1iAxtzi3TjNX79PnqfdpbXPcvQCVVXr2/PFvvL89W77QYTTwmTeP7pyo2hGvIoH7lo+6VbctsWYp+ma4hev4jquo2TkZshzBGBgAAED7jx4+XyfTLBMAul0sdOhz9vdEll1yiTz/9VAUFBZKkhQsX6n//+58uv/zyRp3v22+/1eLFi3X33XcfVVw33HBDwAL03bp1C/j5j8aNN96o22+/3T+65ZVXXtHgwYM1aNCgoM9lGIZeeeUVZWRkaPz48SGJL9K1ud+KBgwYIJvNJrfbLUnavXt3mCMCAABAqDi/eVCmqsBRFqXj/iE5Yht8jt37K/TQ55u1aPv+OveP7JKge07tom4pzqOKNdy6pzj1mzGdddvoTlq2s0jTV+3T1+vzVFrlrbP/+pxSPfLVVj01b7vG90vVxUPS1Sfd1cxRtzE2p8pOfUSxH13hbzK5y+T85kGVnv2fMAYGAAAQPvHx8br00ktDft6kpCQ98MAD+u1vf+svNjz99NOqqKjQ5MmTG1zQKC0t1RtvvKGpU6ce9YgaSerZs6d69ux51Oepy7Bhw/TrX/9ab7zxhqTqUSd33HGH/va3v2nUqIaP/N+9e7eeeOIJff/99/rzn//cJLFGojZXXDGbzUpISNC+ffskyV+JBAAAQMtm2zJb9s1fBrRV9vuVPJ3HNOh4wzD04c/ZenLuNpVV1R6t0i7Ort+P66YxPRJD9qRYJDCbTBrWKV7DOsXrD6d11TebCvTpyhwt2FqoumZnrnD7NO3nbE37OVsD27t00ZB2Or1PsqJYm6VJeDqdoMr+l8ix+pfR9/bNX6pq85dydz89jJEBAAC0Pscff7xuuOEGvfTSS/62//znP5o3b55uuukmjRgxQlZr3R+p5+TkaPbs2frvf//boj5zvv7667V+/XotXLhQklReXq677rpLp5xyiiZNmqTevXvXe+zGjRs1Y8YMTZs2rU1NB3ZQmyuuSFJFRYX/tcPhCGMkAAAACAl3uaK/eSCgyRedrPKT/tSgwwvK3Hro8036ZlPdvwRdeEy67jyls1ytfDqsKJtFZ/RN0Rl9U7R7f4U+XZmjT1bk1Dtt2Mo9JVq5Z5OenLtNvxrSTr86tp2SY+zNHHXrV37iH2Xb8rXM5Xn+Nue8B7S/4yjJzughAACAUJo8ebISExP1r3/9S15v9ajuDRs26K677pLT6dSQIUOUlpamhIQEVVZWKjc3V9u2bdOGDRtqnaslLA5vtVr12GOP6dFHH9Vnn33mb587d67mzp2r1NRUDRo0SElJSYqLi1NRUZHy8vK0Zs0a7d27t9b5WsLPHCqt+7fDOhQUFKi4uNi/nZycHMZoAAAAEApRi5+VpWhXQFv5Sf8nIyr+iMcu2r5ff65nwfp2sXY9cFYPHd81IVShthgd4qN004mddP2ojvpxW6E+/Dlb32zMl7eO4SyF5R7954ddev3HLI3vn6orh3VQ99SWPW1aJDGiElQ++j7FzLrT32Yu2aPohU+qfPR94QsMAACglTr//PPVtWtXPf3001q9erW/vaysTPPnzz/i8Q6HQ5deeql+/etfN2WYIWO1WvWnP/1JxxxzjF5++WVlZ2f79+3bt0+zZ88+4jlSU1N1/fXX64wzzmjKUCNKmyuufPvttwHbffr0CVMkAAAACAVz/iZFLQ1cf8KdMUJVfS447HFur0/Pf7dTb/yYVef0VxMHpemusV1a/WiVI7GYTRrVLVGjuiUqp7hSH63I0bSfspVTRzGqymvo4xU5+nhFjkZ1TdBVIzrouM7xrWoatXCp6n2e7Gs+kG3n9/42x09TVNVnorxpA8IYGQAAQOt0zDHH6NVXX9W3336rGTNmaOnSpSopKam3v9lsVq9evXTWWWfp9NNPV2JiYjNGGxpnn322TjvtNH3yySeaO3euVq5cKY/HU29/h8OhY489VuPHj9fo0aPb3CxRJuPg6jxhMHbsWGVlZUmSMjIyNGfOnCZ9P7fbrYkTJ2rjxo3+tr/+9a+6+OKLG3W+ljR3HtCcTCaTEhISJEmFhYUKY5oBgBaBvHkUDEOuaZfLtmvBL01mq4ounylfcq96D9tZUKE/frZBq/fU/uUo0WnVQ+N76KTuSU0Scmvg8Rn6blO+3lu+Vwu37T9s356pTv16RAed2S9VVjNFlqNhLtiquLfOkMn7S2HLk36Mii/5SDKZwxhZeJA7ASA45E3g6Hg8Hq1bt045OTkqKChQUVGRoqKiFBsbqw4dOqhPnz5yOlvX6O2ysjKtWbNG+fn5KigoUFlZmWJiYhQXF6cuXbqoR48e9a5BE4lCXfBqOT/5IbKzs+VwOPwXhSPx+Xy6//77AworqampmjBhQhNFCAAAgKZm2zgjoLAiSZVDrjtsYeXr9Xl6aOYmlVR5a+0b2SVBD0/ooRQX64YcjtVs0im9knVKr2Rt2leqNxfv0cw1++SuY86wjfvKdN+MTXplwS7deEJHnd4nRRaKLI3iS+yqihG3K3rB4/42a/bPsq/5QFX9fxXGyAAAAFo/q9WqAQPa1ohhp9OpYcOGhTuMiNViH29auXKlxo4d+//s3Xd0VOXaxuF7z0xmJpNC6L0TehcBBRREpSkqdvHY9eixl2PvvR57b1hRFFSUogIqKiIgvffeISFlMn1/f/gZ3JkECWRmUn7XWq7lvnd7co5s9uSZ9331xBNPaOnSpQc8dvny5brooos0btw4S/7XIkQAAACogIIFSv7lMUsUSW2ggl7XFX94OKInp6zTf79cEdVYcdgM3TSgmV46qx2NlVJqVTtF9w9tpYlXHqHLj26kjOTiv7+1Ya9Pd369Sme+M1/fLtutCN+WPSS+7lcoXL2lJUv+9QkZ/gOPIAIAAABQtmI+LdiWLVt0wgknFLsvHLZ+qLXb7cUeN2rUKPXs2dOSTZkyRVdffXXhdu3atdW+fXs1btxYaWlpMk1Te/fu1YIFC7RixYqoa1566aW69dZbS/vjWDAtGFA8hhoDQOnw3Dw07t+fV/LMZy1Z3tBXFcwcEnXs1n0+3fpV8dOANa3h1mMnt1a7eqkxq7UqKQiG9c3iXfpozlZt2Osr8bhWtTy65tgmOqZlddZkKSXHhp+V9uW/LJmv26VVbnF7np0AUDo8NwFUdRVuWjDTNKOaKCUp6biDedjv2rVLP/300z8e53a7dfvtt+vcc889qJoAAABQ/hi5W+We86olCzY6SsFWg6OO/WHVXt03YZVy/dHvmkPb19Jdg1rK4yz+Sz4oveQku87sVk+nd62r6auz9MaMTVq2PT/quNW7vbph7HL1aJKuGwc0U3uaWwct1LSfAi1PlHPNd4WZa8F78nc4R5GamQmsDAAAAKg6Kuy0YG3atNF5552nVq1ayWb75x+jdu3auuKKK/Ttt9/SWAEAAKjgkn99QkZo/6gI07Cp4Jh7pb+NgAiGI3pm2jrdNG55VGPFaTd0z+CWevikTBorMWIzDPXPrKGPLuisZ0e0Ves6xU/HO2djjka+t1B3fb1SW/eVPNIFVgX97pZp3z+FnREJyfPT/RLfQgYAAADiIubTgsWD1+vV6tWrtXnzZu3evVter1eGYSgtLU01atRQhw4d1Lhx4zK/L9OCAcVjqDEAlA7PzdKxb52j9M/OsGT+TiPlPe6Rwu1tOX7d9tUKLdoaPQ1Yk+puPXlqG7WpkxLzWrFfxDT1w8q9eu2XTVq921vsMU67ofN61NclvRspzR3zQfYVnvu3Z5Q860VLljfstWJHcFVGPDsBoHR4bgKo6sp6WrBK0VxJFJorQPF4YQOA0uG5WQpmRGmfnCrHzoWFUcSVrpwLfpDpqSlJ+nnNXt3zzWrt84WiTj+xbU3dM7ilUl384j5RIqapSUt366WfNmh7bqDYYzKSHbr86MY6s1tdJdkr7GD72At6Ve39gbLlbSuMwumNlPOvKZLDncDC4oNnJwCUDs9NAFVdWTdX+KQCAACACsO5YrylsSJJvl43yPTUVChi6vkfN+i6z5dHNVaS7IbuOLGFHh/emsZKgtkMQ8M61NYXl3fTdcc2UWox07JlF4T01NR1OvudBZq5Ljv+RVYUSR55+91piew5m+X+440EFQQAAABUHTRXAAAAUDGE/HL/9rQlCldvKX/nf2lnrl9XjF6sUb9viTqtUYZL753fSWd1qyfjb2uyILHcSXZd3LuRvvp3d51zRD05bNH/36zbW6CrxizVzV8sZz2WEgQzT1KwYU9L5p7zioyc6D8LAAAAAMoOzRUAAABUCK6FH8ies9mSFfS9QzM25Onsdxdo3ubcqHMGtq6hjy/qonb1UuNVJkqphidJtx3fQp9f2lXHta5R7DHTVu7ViLfm6/VfN8kXDMe5wnLOMFRw7P0yjf0f7YyQT55fHk1gUQAAAEDlR3MFAAAA5Z7h3yf37JcsWbDBkXpuU6au+WyZsgus04A5bIZuPb65njq1jdKYBqxCaFojWc+c1lbvjOyo9vVSovb7QxG99ssmnfH2fM1Yy9qHfxeu3V7+TiMtmXPVBDk2/5agigAAAIDKj+YKAAAAyj337Fdl82VbsnsLztZbM7eo6FKsDaq59O7Ijjr3iPpMA1YBdWuUrg8u6Kx7BrdURnJ0Y2zLPr+u/myZ7vx6pfbmBxJQYfnk632TIu4MS5b84wNSJFT8CQAAAAAOC80VAAAAlGtG7la55r9ryaaol0ZvaxB1bP/MGhp9URd1bJAWr/IQAzbD0IgudfXVFd11dvd6KmY5Fk1aulunvTVfXyzYIdMs2mKreszk6io46mZL5tizXK5FHyWoIgAAAKByo7kCAACAci155rMywv7C7ZBp0yP+syzHOGyGbhrQTP87rY3S3UwDVlmkux26/YQW+viiLurWKLphluML6cHJa3T56CVav6cgARWWL4GO5ylUq50lc//2jIyCvQmqCAAAAKi8aK4AAACg3LLtXiHnsrGW7OPwQK0z6xdu10tz6u3zOupfPRswDVgl1aZOit46r6PuGdxSaS571P4/NuXorHfn6/VfNikQiiSgwnLCZldB/weskT9HyTOeTlBBAAAAQOVFcwUAAADlVvKvT8gw9/+yPM9064XQiMLtvi0yNPriLurckGnAKru/pgobd1k3DWpXK2p/MGzqtV836Zx3F2j+5pwEVFg+hBr2VKD1cEvmXDxa9p2LE1QRAAAAUDnRXAEAAEC5ZN/0m5zrp1myN0PDtFvVZDOka45poufPaKeM5KQEVYhEqJXq1OPDW+vFM9qpQTVX1P51ewt0yUeL9cSUtfIGwgmoMPG8fe+Q6Ugu3DZkKvmnByTWpgEAAADKDM0VAAAAlDt5vqB2f3O/JdtlVtOb4WGqmZKk18/poEuPaiQb04BVWX1bVtfnl3TVBT0byF7kPwNT0id/bNfpb8/TjLVZCakvkcy0+vIdeY0lS9o6W0mrJiSoIgAAAKDyobkCAACAcmXNbq9ee/cttQissOTPh0aoXeM6Gn1RF/VoUi1B1aE8SXbadeOAZvrowi5qXy8lav/2nICu/myZ7pmwStkFwQRUmDi+7pcqnN7YkiX/8pgULEhQRQAAAEDlQnMFAAAA5ca0lXt04Qfz9S/fx5Z8baSe3D3O12vndFDtVGeCqkN51aZuit77V2fdOKCp3I7ojzjfLN6l09+ar++X75ZZVabGcrhV0O8uS2TP3SL33DcSVBAAAABQudBcAQAAQMKFI6Zenr5RN3+xQgNDM9TWtsmyP+uI63R1/5Zy2JgGDMVz2Axd0LOhPr2ki3o0SY/av9cb1K1frdTNX6zQztxAAiqMv2DLQQo2OsqSuee8KiN3a4IqAgAAACoPmisAAABIqFxfSDeMXaa3ftssu8K6wfG5Zb8vI1Mt+p2ToOpQ0TSpnqw3zumgewa1VKrTHrX/h1V7dfrb8/TFgh2VfxSLYajgmHtlGvs/9hkhn5J/fSKBRQEAAACVA80VAAAAJMza3V6NfH+hflmbLUkaYf9ZLWzbLceE+t4iGby24uAZhqERXetq7GVddWyr6lH78/xhPTh5ja78dKk2Z/sSUGH8hGu3U6DjuZbMteIr2bf+kaCKAAAAgMqBT6kAAABIiJnrsnXhh4u0KevPX247FdT1jnGWY0J1uyjY4sRElIdKoE6aS8+OaKsnhrdWdY8jav+sDft05jvz9eHsrQpHKu8oloLeNyniTLNknp8ekMxIgioCAAAAKj6aKwAAAIi7z+Zt1zWfLVWeP1yYnWOfpkbGbstxBUfdLBmss4JDZxiGTmxXS+Mu66ZhHWpH7fcFI3pm2npd/OEird6Vn4AKY8/01JSv9w2WzLFzoZzLxiamIAAAAKASoLkCAACAuAlHTD09dZ0e/W6twn8bKOCWXzc4x1uODTboqVCTfnGuEJVVRnKSHj4pUy+c0U710pxR+xdty9O5oxbq9V82KRiufCM6/J0vULh6S0uW/OuTUiAvQRUBAAAAFRvNFQAAAMRFvj+sm8Yt10dztkXte6jer6phZlky39G3MGoFZa5fy+r67NKuOqtbvah9oYip137dpJHvLdSKHZVsFIs9Sd5j7rZENu8uuWe/nKCCAAAAgIqN5goAAABibndeQJd+vFjT12RF7buqZ4ZO931uyYJNj1GoYc94lYcqJtXl0B0nttDb53VU0xruqP2rdnl1/vsL9cavlWsUS6jZAAWbDbBk7nlvy7ZvY4IqAgAAACqu6FUdAQAAgDK0Kcun/4xZos3ZfkvusBm6Z3BLnZX/sWy+bMu+gt43x7FCVFXdG6fr04u76o1fN+m937dYpqoLRUy9+ssm/bh6rx4c2kqtaqckrtAy5D3mbqVv/FlGJCRJMsIBJf/8iPJPej3BlQEAgKps69atGjFixAGPSUpKktPpVLVq1VSzZk01btxYmZmZ6tatm9q0aSOjDEe9/+tf/9KqVasKt2vWrKnx48fLbreX+lp//PGHrr766gMek5SUJJfLpYyMDNWqVUtNmjRR69at1b17d7Vo0eKg7vPNN9/o4YcfLtw+6aSTdPfddx/gjINzxRVXaOHChYXbb731ljp27FjifS+99FJdfvnlh33fioDmCgAAAGJmxY58Xf3ZUu3JD1ryam6HnhnRRj3qSK533rbsC7Q8UeF6XeJZJqowl8Oma49tquPb1NR9E1dr1S6vZf+y7fk6772FurJvY13Qs6Ectoo9VV2kekv5u1wo97z9f+6ca76Vf9MMhRofncDKAAAADiwYDCoYDCo/P19bt27VokWLCvfVqVNHQ4cO1ZlnnqmaNWse1n1WrVplaaxI0p49e/T777/r6KNj877018+Wl5enzZs3a/78+YX7mjRpopNPPlkjRoxQSkrJX/g57rjj9Mwzz6igoECSNG3aNN1yyy1yu6NHah+sLVu2WBorTZs2tTRWqjqmBQMAAEBMzNm4T5d9vDiqsdIow6X3/tVJRzSuJte8d2QL5BbuM2WooPdN8S4VULt6qfrows667KhGshfpnwTDpl78aaMu+XCR1u3xFn+BCsTX6zpFkmtYsuSfHpT+fzQLAABAeWC32y3/HGhkys6dOzVq1CidccYZ+uijj2SaZonH/pMJEyaUKi8twzBK9bNt3LhRL7/8sk4//XRNnDixxOM8Ho/69+9fuO31evXjjz8eVq1F7zd06NDDul5lw8gVAAAAlLkfVu3V7V+tUCBs/VDTuo5HL5/ZXrVSnTL8++Sa945lfzBzqCK12sazVKBQkt2mq49pov6Z1XXvhNVau6fAsn/Rtjyd8+4CXXtsU53Xo75sZTj1RDyZrmoqOOpmpUy7qzBz7Fku5+LRCnT+VwIrAwAA+FO3bt306quvWjLTNJWfn6+cnBxt27ZNixYt0pw5czRnzpzCYwoKCvTiiy9q/vz5euyxx+RwlO7X36FQSN9++22x+37++Wfl5OQoPT299D/Q3wwZMkT33nuvJYtEIsrLy1NeXp42bNigxYsXa+bMmVqyZEnhMdnZ2XrwwQe1ZMkS/fe//y322sOGDdOkSZMKtydNmqTBgwcfcq2TJ08u/HebzaYhQ4Yc8rUqI0auAAAAoExNWLJLt3yxPKqx0r1xut46r6NqpTolqfhRKz2vi2utQHE61E/Txxd10UW9GqroLGCBsKlnpq3XlZ8s0bYcf/EXqAACHc5RqEgjM/m3/8nw7UtQRQAAAAdmGIZSU1PVoEEDHXHEEbrooov00ksv6eOPP9axxx5rOfbnn3/Wk08+Wep7zJgxQ1lZWYXbf2/OBAIBTZky5dB/gAOw2WxKT09XgwYNdNRRR+nyyy/X22+/rTfffFPdunWzHDt27Fi9++67xV7niCOOUL169Qq3Z8+erV27dh1STfPnz9eWLVsKt3v06KE6deoc0rUqK5orAAAAKDNfL96pe75ZpUiRUfgDMmvolbPaK83154cTw7dP7mJHrbSJV6nAAbkcNl3fv6neGdlJTWtEz1M9e2OOznp7viYs2XVY004kjM2ugmPvs0a+LLl/fy4x9QAAAByiFi1a6IknntC1115rmV5r/Pjx+uKLL0p1raLTYF1xxRUH3B9rnTp10ksvvaRzzjnHkr/xxhuaMWNG1PGGYVhGl0QikRJH4vwTpgT7ZzRXAAAAUCbGL9qp+yasVtFfM5/WuY6ePLWNXI79r56ueW/LKDpqpdf1caoUOHhdGqbpk4u6aGSP+io6CVheIKy7v1mlW79aqeyCYLHnl2ehRkcp0Mo6tYNr4Qey7V2doIoAAAAO3ciRI3XeeedZsrfeekt+/8GNNt63b59+/fXXwu1atWpp5MiRatWqVWG2ePFibdiwoWwKPkh2u1033HCDBg4cWJiZpqnXXnut2OOLNkH+Pk3YwfL7/Zo2bVrhdtH1XPAnmisAAAA4bF8t3KH7J0Y3Vs4/sr7uGdxSjr/NrWT49sk93zqMPdh6mCI1W8ehUqD03El23TKwud44t4PqpTuj9k9ZsUdnvjNfczZWvCm1CvreKdO+/2cyIiF5pj8oVcTROAAAoMq76qqr1LRp08LtPXv26Ouvvz6oc7/77jsFg/u/MHPiiSfKbrdHrTMS79Erf7nzzjst672sXLnS0gz6S+PGjdW5c+fC7TVr1mj58uWlutf06dOVl5dXuD1w4EC53dGjuas6misAAAA4LF8u3KEHJq2Jaqxc2LOBbhrQzDI0Xyph1AprraAC6NGkmsZc0lUndawdtW93XlD//mSJXv9lk8JF58UrxyLVGsvX/XJLlrRhuhzrf0hQRQAAAIfO4XDorLPOsmQHO3JjwoQJlu2/miqDBg2S3W63XC8SiRxmpaWXkpKi4cOHW7KSfrbDHb1StIE0bNiwUp1fVdBcAQAAwCH7YkHxjZWLejXQ9f2bRjVWGLWCii7N5dBDwzL15CmtVc3tsOyLmNJrv27SVZ8u0a68QIIqLD1fj/8okmJdnNQz/WEpXHF+BgAAgL8MGTLE0gxZsWKFfD7fAc9Zu3atZXRHq1atlJmZKenP6cF69OhRuG/nzp2aPXt2GVd9cE4++WTL9oIFC4o97oQTTpDL5Src/u677xQKhQ7qHnv27NGsWbMKtxs2bKguXbocQrWVH80VAAAAHJJJS3fpoclrovKLezfUdcdGN1akkkatsNYKKp4T2tbSZ5d21VHNMqL2zd6Yo7Pfna/f1mXHva5D4kxRQZ/bLJE9e61cC95PUEEAAACHzuPxqGXLloXboVBIixYtOuA5JY1aKWk7UVODNW3a1DI12K5du7R58+ao41JSUnTssccWbmdlZWnmzJkHdY/JkycrHA4Xbg8dOrTYz3aguQIAAIBD8OOqvbrnm1VRI1YuPaqhrj2mSbEv34Yvu5hRKycpUjMzhpUCsVM71amXzmqna49tInuR/+SzvCH9Z8xSvfjTBoUqwDRhgbanKVTX+o1E9+/Py/DuTlBFAAAAh659+/aW7QMtQh8Oh/Xtt98Wbtvtdg0aNMhyTP/+/eXxeAq3f/rpJ+Xn55dRtaXTrl07y/bGjRuLPe5Qpwb7+3GGYUQ1lrCf458PAQAAAPb7fX22bvtqhcJFfl98Se+Gurpf8Y0VSXLNe4e1VlDp2AxDl/RupO6N0nXH+JXanmudSuudmVs0d1OOHhveWvXSXSVcpRwwbPIee5/Sx4wojGyBXCX/9oy8Ax9LYGEAAPyDSFiGLzvRVVRIpjtDstn/8biKqGbNmpbtnJycEo/9/ffftXv3/i+UHHnkkapVq5blGLfbrQEDBhSOcPH5fJo6dWrUGijxUPRn27dvX7HH9ezZU7Vr19auXbskST///LNyc3OVlpZW4rVXrlyp1atXF2537dpVDRo0KIOqKyeaKwAAADho8zfn6IZxyxUo0lk594j6uqaEEStSSWutnMyoFVQaXRula/TFXXTfxNWavjrLsm/+llyd8+4CPX5Ka/UuZhqx8iJcv7v8bU+Ta/kXhZlz8Sfydz5f4dodElgZAADFS1o1QZ4f7pOtgJGWhyKSXEveAQ8omFn5Fisv2kA4UHOl6JRggwcPLva4oUOHWo6dOHFiQporB/uz2Ww2DR48WB988IEkKRAIaMqUKTrttNNKvDYL2ZcO04IBAADgoKzYka9rP18mXzBiyU/pVEe3DGx2wHl4XfOLGbXSi1ErqFwykpP03Ii2uuW4ZnLYrH8e9vlCumbMUn08Z5tMs/xOE1bQ5zaZjuTCbUOmkn96UCrHNQMAqi7PlNtprBwGW8FueabcnugyYiI5Odmy7fV6iz0uNzdXv/zyS+G2x+NR//79iz22e/fuqlevXuH2ggULtGXLlsMvtpQO9meTopsjB1orJhwO67vvvivcdrvdOu644w6xyqqB5goAAAD+0Ya9BbpqzBLl+cOW/IQ2NXXP4JayHaCxYvj3yTXvHUsWbD1MkRqtYlIrkEiGYWjkkQ006vyOaljNOg1Y2JSemrpOD0xao0AoUsIVEstMrSffkf+xZElbflfS6oOboxsAAKA8KNpwSElJKfa477//Xn6/v3C7f//+crvdxR5rGIZlLRbTNBOysP3B/myS1KxZM8v6M4sWLdKmTZuKPXbmzJnau3dv4faAAQMs68wgGs0VAAAAHNCe/ICuHrNUWd6QJe/XsroeOTlTdlvJjRVJcs0fJRtrraCK6VA/TaMv6qIBmTWi9n21aKeu+GSJducFijkz8XzdL1c4raElS/7lUSnkS1BFAAAUz3v844ok1/rnA1GsSHIteY9/PNFlxEReXp5lOz09vdjjijZHii4CX1TRxd0nTZoU91HJB/uz/aXo6JXJkycXe1xp/7cAa64AAADgALyBsK79fJm27PNb8h5N0vXkKa2VZP+H7+r4c+Sa97YlCmYOVaRm67IuFSh30twOPX1aG73x6ya9/utmy74FW3J1/vsL9b8RbdW+XmqCKiyBw62CfncqdeLVhZE9Z7Pcc9+Sr+c1CSwMAACrYOYw7Ws5mAXtD1FlXtD+7wvUS9HrlEjShg0btHjx4sLtOnXqqHv37ge87l8jQZYuXSpJ2rp1q+bNm/eP55Wloj/bPzVXTjjhBD3//PMKBP78Ys+kSZN02WWXWaZ1zsvLs0yPVq9ePfXo0aMMq66caK4AAACgWMFwRP/9coWWbc+35O3qpui5Ee3kTvrnD2LuBe/J5rcusFjQ89oyrRMoz2yGoSv7NlGr2im6Z8Iqy5pFO3IDuuSjxbp/SCsNbl++vnUbbDVUwYY9lbRlVmHmnvOK/O3PkJla7wBnAgAQZza7TE/NRFeBcmbZsmWW7ebNm0cdU3SkxuDBg2Wz/fNET4MHDy5srvx1nXg2V5YvX27Zbtas2QGPT09PV79+/TR16lRJfzaE5s+fr27duhUeM2XKFMv0aIMHDz7gmpr4E80VAAAARDFNUw9PXqMZ67ItecNqLr1wRjuluA7iG27+XLnmvmWJAq2GKFKrbRlWClQMx7epqcbV3bpx7HJty9n/wdUfiuiOr1dq1a58XX1MkwOuXxRXhqGCY+6VY/TJMvTnVBdG0KvkX5+Ud9D/ElwcAABAybxer9asWVO4nZSUpA4dOliOiUQimjTJuqbchx9+qI8++qjU95s2bZpuvvnmqIXmY2H9+vXKydn/5bU6deqoQYMG/3je0KFDC5sr0p8Nob83V5gS7NCw5goAAACivPrLJo1fvMuSZSQ79PJZ7VUr1XlQ13AveF82/z5L5mOtFVRhbeqk6MMLO6t74+ipG96ZuUW3frlCvmA4AZUVL1ynowIdz7FkruXjZN82N0EVAQAA/LNJkyYpHN7/TtW2bduoRepnz56tnTt3WrJIJKJwOHxQ//yd1+vVjz/+GLOf5++++eYby3bXrl0P6rzevXurZs39I7ymTZsmn+/P9fQ2b96shQsXFu7r1KmTmjRpcvjFVgE0VwAAAGAxbv4OvTnDuj6E22HT86e3U9MaB/ltrECeXPPetEYtBylcu11ZlQlUSDU8SXrt7PY6o2vdqH1TV+7VlZ8uVZY3mIDKildw1M0yndY5yj0/PSCZkRLOAAAASJxQKKTPPvvMkhU3CqPoSI3DNWHChDK9XnHy8/M1fvx4S3awI0zsdrsGDRpkudbPP/8sSVEjeIYNG3aYlVYdTAsGAACAQr+uzdKj362xZDZDemx4a3VuGL0IZElcC96XrcjCor5ejFoBJCnJbtNdg1oqs06KnpqyTqGIWbhvwZZcXfThIr10Zns1ru4+wFXiw/TUUkGv6+T5+ZHCzLFjgZxLPlWg47kJrAwAACDaa6+9pvXr1xdu165dO6pZkJ+fr59++qlwOzk5WRMnTiz1tF5nn322NmzYIEmaO3eutm/frnr1Yrc23WOPPWaZEqxt27bq3bv3QZ8/dOhQffzxx4XbEydO1PHHH6/JkycXZi6XSwMHDiybgqsARq4AAABAkrRyZ75u+2qlwqY1v+PEFuqfWePgLxTIl3tukVErLU5QuHaHEk4AqqazutXTy2e1V6rTuobRxiyfLvxwoRZtzU1QZVb+LhcqnNHCkiX/+oSMgr0JqggAACDap59+GrVmymWXXSan0zqt8dSpUwunxJKkAQMGHNJ6KYMHDy789+LWcCkr4XBYL774oqZMmVKYGYahq666qlTXadWqldq0aVO4PWvWLE2dOlVbtmwpzI455hilpR38l+qqOporAAAA0M7cgK77fJnyA9b5gy89qqHO6Fq6b1+5Fn4gmy/Lkvl6XX/YNQKVUc+m1fTu+R1VN836oT/LG9IVo5foh1XloIFhd8rb/wFLZPNlK/nXJxNUEAAAwH7r1q3TnXfeqWeffVamuf+bYqeddppOOeWUqOOLTuF1qIu3DxkyRIZhFG6X9VRjkrRkyRJdd911UU2jq666Sr169Sr19f7+s4bDYT3xxBMl7sc/Y1owAACAKs4bCOv6scu0IzdgyQe1q6X/9CvlQoZBb/SolebHK1yn4+GWCVRarWqn6P1/ddK1ny/Typ3ewtwXiuiWL5brviGtNLxTnQRWKIWa9lMgc5icq/b/MsK15BP5O5ylcP3uCawMAABUFaZpyuv1Kjc3V1u3btXixYs1e/ZszZkzx9JUkaT+/fvr5ptvjrrG5s2btWDBgsLtevXq6YgjjjikeurVq6fu3bvrjz/+kCRt2rRJCxcuVOfOnUt9rUgkovz8fOXm5mrTpk1atGiRfv/9dy1atCjq2DPPPFMXXHDBIdU8aNAgvfjiiwqFQpKk3Nz9I6Vr166tnj17HtJ1qyqaKwAAAFVYKGLq9vErtXxHviXv2jBNDwxtJdvfvol1MFwLP5StYI8lY9QK8M/qpLn09nkddeuXK/Xb+uzCPGJK901crVxfSCOPbJC4AiV5+92tpPU/yAjubwB5frxXuWd/JdnsBzgTAACgdObNm6c+ffpYskgkEtVEKcrj8ejyyy/XOeecYxlV8peio0sGDx5c7HEHa8iQIYXNlb+u/0/NlUmTJunbb7+1ZAfzs1WvXl3XXXedhgwZcsj1ZmRkqE+fPpY1Z/4yaNAg2e2805UG04IBAABUUaZp6ump6/TzGusUXo2ru/W/EW3lcpTyVTFYIPcfb1iiQLPjFK7b6XBLBaqEVJdDz5/RVqcUM0rl6Wnr9crPG//xQ3csmWn1VVCkWerYuViuRR+VcAYAAMChC4fDln8O9B5Ut25dXXTRRfr888917rnnFtswMU0zal2Uw50G67jjjpPb7S7cnjJlivx+/wHPMU2zVD9bkyZNdM011+jzzz8/rMbKX4YNG1aqHCVj5AoAAEAV9dGcbfp07nZLlpHs0ItntFN1T1Kpr+da9JFsBbstGaNWgNJJstt035CWqu5xaNTvWy373pyxWbn+kP47sHmpR5WVFX/XS+Ra+rnse1cVZu4ZTynQaojMlNoJqQkAAFQNdrtdLpdL6enpqlWrlpo0aaJWrVqpe/fuatOmzT+OQJk7d662bdtWuN2xY0c1aVLKaZCL8Hg86t+/vyZPnixJysvL0/Tp03XCCSeU6joOh0Mul0sZGRmFP1ubNm10xBFHqHnz5odVY1FHH320qlevrqys/V+ya9euXZnfpyowzER+9amC+/t/gAD2MwxDGRkZkqTs7OyEfsMSACqCRDw3p63co1u+WKG/3ynJbuj1czqoW6P00l8wWKBqo/rJ5t3fXAk27a+8U0cddq1AVfXuzM164aeNUfmwDrV135CWSrInZiICx+bflDb2XEvmbzdC3hP/F9c6eOcEgNLhuQmgqqtevXqZXo9pwQAAAKqYJdtyddfXq1T04/SDQzMPrbEiybX4Y0tjRZIKejNqBTgcF/dupLsHtVDR72BOWLJLt3y5Qr5gOCF1hRodJX+bUy2Za9k4ObbMSkg9AAAAQCLQXAEAAKhCtu7z6fqxy+ULRSz5Ncc00eD2tQ7toiGf3HNes0TBpscoXK/boZYJ4P+d3rWeHhveWg6btcUyfXWWrvlsmfL8oYTUVdDvTpnONEvmmXaXFA4kpB4AAAAg3miuAAAAVBG5/pCu+3yZ9uQHLfmpnevokt4ND/m6rsWjZfPusmRFF70GcOgGtaul505vK7fD+vHtj005+vcnS5RdECzhzNgxU+qooPeNlsy+d5Xcf7we91oAAACARKC5AgAAUAUEwxHd+uUKrdldYMl7Nq2mO09s8Y+LP5aouFErTfopXP+IQy0VQDH6tKiuV85ur1SX3ZIv3Z6vK0Yv0d78+I8Y8Xe5QKE6HS2Ze9aLsmWtiXstAAAAQLzRXAEAAKjkTNPU49+v08z1+yx5i5rJevrUNoe1KLZryaey5e+wZIxaAWKjW6N0vXVuR9XwJFnyVbu8umz0Eu3Ki3ODxeaQ97jHZBr7nyFGOCDP1DslFkkGAABAJUdzBQAAoJJ7f9ZWjVtgbYDU8CTpxTPbKc3tOPQLh3xyz3nVEgUb91G4QY9DvyaAA2pTN0XvjOyoumlOS75uT4Eu/Xixtuf441pPuG4n+bteYsmStvwu59LP4loHAAAAEG80VwAAACqxKSv26LkfN1gyl8Om505vqwbV3Id1bdfiT2TL227JfIxaAWKuaY1kvX1eRzWs5rLkm7J8uvTjxdqS7YtrPQW9b1Q4zbpuU/LPj8jI31XCGQAAAEDFR3MFAACgklq8NVd3f7MqKn9oWCt1apB2eBcPFsg9+2Vr1OgohRr2PLzrAjgoDTPceuu8jmpS3dok3brPr8s+XqwNewtKODMGnCnyDnjYEtn8++SZ/lD8agAAAADijOYKAABAJbR1n0/Xj10ufyhiya87tolOaFvrsK/vWvShbF7rt9ILet902NcFcPDqpbv01nkd1bxmsiXfnhvQZaMXa+1ub9xqCTUfoEDrky2Zc+V4Odb/ELcaAAAAgHiiuQIAAFDJ5PpDuvazZdrrDVry0zrX0UW9GpZwVikE8qPXWmnST+GGRx7+tQGUSu1Up946t4Mya3ss+e68oC4bvVgrd+bHrRbvMfcq4kq3ZJ5pd0vB+DV5AAAAgHihuQIAAFCJBMMR3frlCq3dY50SqFfTarrjxBYyDOOw7+FeMEq2gr2WrOComw/7ugAOTY0Up944t4Pa1Uux5FnekK4YvUTLtufFpQ4zpbYK+t5lyey5W5Q889m43B8AAACIJ5orAAAAlYRpmnr8+3WauX6fJW9RM1lPndpGSfYyePXz58r1xxuWKNB8oML1uh7+tQEcsozkJL1+dgd1apBqyff5QrrikyVatDU3LnUEOpylYMNelsw1723Zdy6Oy/0BAACAeKG5AgAAUEm8P2urxi3YYclqeJL04pntlOZ2lMk93PPfkc1vbd74et9YJtcGcHjS3A69elYHdWtknZorzx/WVZ8u1fzNObEvwjDkHfioTLtzf2RG5Jl6uxQJxf7+AAAAQJzQXAEAAKgEpqzYo+d+3GDJXA6bnju9rRpUc5fJPQzfPrnmvmXJAi0HKVynY5lcH8DhS3HZ9fKZ7dSraTVLnh8I6z9jlmrOxn0lnFl2ItVbynfkNZbMsXOxXPNHxfzeAAAAQLzQXAEAAKjg/ti0T3d9vTIqf2hYK3VqkFZm93HNfVO2wP6phUwZKmDUClDuJDvteu70tjq6eYYlLwhGdO1nyzRzfXbMa/D1uFLhGpnWun57RracTTG/NwAAABAPNFcAAAAqsFW78nXD2OUKhE1Lft2xTXRC21pldh+jYK/c89+1ZMHWwxSp1bbM7gGg7LiT7Hp2RFsd26q6JfeFIrr+82X6eU1WbAuwO5U/8DFLZIQK5Jl2t2SaJZwEAAAAVBw0VwAAACqobTl+XTNmmfL8YUt+epe6uqhXwzK9l/uP12UE8wu3TcOmgl43lOk9AJQtp8Omp05to4Gta1jyQNjUTeOW64dVe2N6/3CDHvJ3GmnJkjb8JOeKL2N6XwAAACAeaK4AAABUQPsKgrp6zFLtzAtY8mNbVdftJ7aQYRhldi8jb4dcC96zZIE2pyhSo1WZ3QNAbCTZbXr8lDYa3M46ki0UMXXrlyv0/fLdMb1/QZ9bFUmpY8mSf7xfRv7OmN4XAAAAiDWaKwAAABWMLxjW9WOXa92eAkvepWGaHhveWg5b2TVWJCn59+dlhHyF26Zhl6/X9WV6DwCx47AZevikTJ3UsbYlD0VM3T5+pSYt3RWze5uuavL2f9CS2fz75Jl6J9ODAQAAoEKjuQIAAFCBhCKm7vh6lRZsybXkzWsm6/nT2yo5yV6m97NlrZNzyaeWLNDhLEUympXpfQDElt1m6IGhrXRaZ+sokogp3fX1Ko1fFLuRJMFWgxVofbIlc66bIufycTG7JwAAABBrNFcAAAAqCNM09fh3a/VjkXUSaqc69fJZ7VUtOanM75n829MyzP1ruph2lwoYtQJUSDbD0N2DW+qsbvUsuSnpvomrNXb+9pjd29v/QUU81qnJkn96QEZe7O4JAAAAxBLNFQAAgArijRmbNXbBDkuW6rLr5bPaqX66q8zvZ9+xSM5VEyyZv+vFMlPrlXAGgPLOZhi6/YTmGtmjftS+h79dq0/+2BaT+5rJ1eU97hFrLf4cpUy9g+nBAAAAUCHRXAEAAKgAxs3fodd+2WTJnHZDz45oq8zaKTG5Z/KMJy3bEVe6fD2uism9AMSPYRi6+bhmurh3w6h9T0xZp/dnbYnJfYMtB8nf5lRLlrT+BzmXfR6T+wEAAACxRHMFAACgnPtx1V498t0aS2ZIeuTk1urRpFpM7unY+KuSNv5syXw9rpLpjs39AMSXYRi69pgm+nefRlH7nv1hg97+bXNM7lvQ/35FPLUtmeenB2XkxmbEDAAAABArNFcAAADKsfmbc3T7+JWKFJk15/YTmuv4NjVjc1PTVPKvT1iiSEpd+btcFJv7AUgIwzB0Zd8muuaYJlH7Xpq+Ua/9slFmGU/ZZboz5B34qLWOQK5Spt7G9GAAAACoUGiuAAAAlFNrd3t1/djl8ocilvyyoxrprO7R6yWUlaTVk+TYudCSFfS6XkpKjtk9ASTOpUc10o0Dmkblr/+6WS9OL/sGS7DFCfK3HWHJkjZMl3PJmDK9DwAAABBLNFcAAADKoZ25fl09ZqlyfCFLfkqnOvpPv8axu3EkpOQZT1uicEYLBTqcFbt7Aki4C3o21K3HN4/K3525Rc9MW1/mDZaCY+9TJKWOJfP8/JCMnNis9wIAAACUNZorAAAA5UyuL6SrxyzT9tyAJe/XsrruHtxShmHE7N7OpZ/Jnr3WkhUcfbNkc8TsngDKh3OPqK+7B7WIyj+as01PTFmnSBk2WEx3NeUPfNySGYE8pUy9nenBAAAAUCHQXAEAAChH/KGIbhi3XKt3ey15p/qpemJ4azlssWusKFig5JnPWaJQnU4Kthoau3sCKFdO71pP9w9pqaJPmk/nbtfDk9eUaYMl1Pw4+dudYcmSNv4s5+LRZXYPAAAAIFZorgAAAJQT4Yipu75eqbmbcix50xpuPX9GOyU77TG9v2vBe7Ll77BkBX1uk2I4UgZA+XNK57p6+KRMFe3lfrFwp+6fuFrhSNk1WAqOvUeR1HqWzPPzI7LlbC6zewAAAACxQHMFAACgHDBNUw98vURTVuyx5LVSkvTKWe1V3ZMU0/sbvn1yz3nFkgUb91WoSd+Y3hdA+TS0Q209Xsxoua8X79Ld36xSqIwaLKarmvIHPmbJjGC+PN/fKpmRMrkHAAAAEAuVcvLsjRs3aunSpdq+fbsikYjq1q2rzMxMtW7dOtGlAQAAFOuVH9fo/d82WLJUp10vndVeDaq5Y35/95xXZPNbR8wU9Lk15vcFUH6d0LaWHHabbv1yhaWZMnnZbgXDET02vLWS7If/fb1QswHydzhbriWfFmZJm2fIteB9+btedNjXBwAAAGLBMM34rBaYn5+vpUuXauHChVq4cKEWLVqkLVu2FO5v2LChpk2bdlj3+Omnn/Tqq69q3rx5xe5v06aNLrvsMg0fPvyw7vOXrKysMrkOUNkYhqGMjAxJUnZ2tuL0mAGACmv8op26b+JqS5ZkN/Tyme11ZNNqMb+/bd9GpX9wvIxwoDALZA5T/tCXY35vAOXfz2uydMsXyxUIW9/p+mfW0BPDW8vpKIMJEfw5qvbhYNnythZGpt2lnPMmKFKjVbGn8M4JAKXDcxNAVVe9evUyvV7Mmyvvvvuuxo0bp9WrVysSKXlY9+E0V0zT1KOPPqr333//oI4fNmyYHn/8cTmdzkO6319orgDF44UNAA7er2uzdP3ny/T331kakh4f3lontqsVlxpSJvxHztUTC7dNm0M553+nSPUWcbk/gPJv5rps3ThuuXwh62e6vi0y9PRpbeUqgwaLY+MvSvvifEsWqttFuWeNlWzRky7wzgkApcNzE0BVV9bNlZivuTJ79mytXLnygI2Vw/XMM89ENVa6d++uCy+8UJdccon69Okj428LsU6YMEF33XVXzOoBAAA4GEu35+m/X65QkS+D65aBzeLWWHFsmWVprEiSv/O/aKwAsOjdPEMvntlOyUnWj5C/rM3WDWOXqSAYPux7hJr0la/LRZbMsWOB3LNfKf4EAAAAIIESsqC9x+PRkUceKY/Hc9jX+uGHH/Tmm28Wbqenp2vUqFEaPXq07rzzTt1222165513NG7cONWrV6/wuPHjx+uTTz457PsDAAAcis3ZPl372TIVBK1fQLmwV0Od16NBfIowI0qe/pAliriqydfr+vjcH0CF0qNJNb18Vnt5nNaPkTPX79N1ny+TN3D4DZaCPrcpnGFt7rpnvSD7jkWHfW0AAACgLMW8ueJyudS5c2eNHDlSjz32mL755hv98ccf+vDDDw97GI5pmvrf//5XuG0Yhl555RUdddRRUce2b99eo0aNksvlKsxeeukl+Xy+w6oBAACgtPZ6g7p6zFLt9QYt+SldG+j6/k3jVodz+Rdy7LT+wtLX+0aZ7oy41QCgYunWKF2vntVBqU67JZ+zMUfXfLZU+f7DbLAkJSt/0P9kGvuvb0RCSvnuRinEZzcAAACUHzFvrjz77LP67LPPdO+992rEiBHKzMyUzVY2t50yZYpWrlxZuH3KKafoyCOPLPH45s2b69JLLy3c3rVrlz777LMyqQUAAOBgFATCuv7zZdqYZf0lYZ9WNfXUGV1k+9tUpjEV9Cr51yctUbh6S/k7jYzP/QFUWJ0bpum1czoozWVtsMzbnKurxixRrj90WNcP1+sq35FXWzL73tVKnvH0YV0XAAAAKEsJmRasrEyePNmyPXLkP/8y4JxzzpHdvv9DQNFrAAAAxEooYur28Su1eFueJW9dJ0WvnX+EnGWwIPTBcs95Tbb8HZbM2+8uyZ4UtxoAVFwd6qfqjXM7KCPZutD8oq15uvKTJcrxHV6DxdfzGoXqdLRkrnlvy7H5t8O6LgAAAFBWKmxzJRQKafr06YXb9evXV+fOnf/xvLp166pr166F2/PmzdPevXtjUSIAAEAh0zT12HdrNX1NliWvl+7US2e2U5o7fk0NW/YGuf94zZIFm/RTqNmAuNUAoOJrW/fPBksNj/X5tXR7vq4YvUT7CoIlnHkQ7E7ln/g/mXZnYWTIlOe7WyR/7qFfFwAAACgjFba5snLlSuXk5BRud+vW7aDP/fux4XBYc+fOLdPaAAAAinpzxmaNW2AdKZLudujlM9urTpqrhLNiI3n6QzLCgcJt07DL2+9uKV5TkgGoNDJrp+jNczuoVoq1wbJiZ76u/HTpYTVYIjVbq+DoWy2ZPXeLPNMfOuRrAgAAAGWlwjZX1qxZY9lu167dQZ/bvn17y/batWvLpCYAAIDiTFiyS6/+ssmSuRw2PX96W7Wo5YlrLY510+RcN8WS+btcqEitNnGtA0Dl0aKWR2+d11F1Up2WfPmOfF01ZulhTRHm73aJgg17WTLX0jFKWvPdIV8TAAAAKAsVtrlStCHSoEGDgz63fv36B7wWAABAWZm/OUcPTFptyQxJj56cqa6N0uNbTMgnz08PWKJIci0V9L4hvnUAqHSa1kjWW+d1VN00a4Nl2fZ8/WfMUuUeaoPFsMl74tMynamW2DP1Dhne3YdaLgAAAHDYKmxzZccO67Qa9erVO+hzix67ffv2MqkJAADg7zZn+3TjuOUKhk1LfuvxzXVc65pxr8c99y3Z922wZAV9b5dccW7yAKiUGld3641zO0SNYFmyLe/PBov/0BoskfTG8h5zryWzFexR8tQ7JdMs4SwAAAAgthyJLuBQeb1ey3ZKSspBn1v02KLXOlgG85IDxfr7nw3+nACoqnJ9IV0/dpmyC6y/TDz3iPo6t4d1xG08nptGzha5Z79kyUL1uyvY/nSe1QDKTNMaHr15Xkdd9vFi7crbv7bT4m15umbMMr1ydnulukr/MTTY4SwF136vpLXfF2bONd9KCz6Rup7LcwwADgKf1QGgbFWa5orT6SzhyGgul3XR2ENtrmRkZBzSeUBVUq1atUSXAABxFwpHdO3Y2Vq7u8CSD2hTWw+f3k12W8kfZmP23PzuOink+1tgyHHys8qoXiM29wNQZWVkZOiTf6fp3DdmameuvzBfuDVX141dofcv7XVIDRaNeEV6pbfk3bM/m3Sr1KyvqmU0LoPKAaDq4LM6ABy+CjstmN/vt2yXprlS9Fifz1fCkQAAAKX34DdL9fMq61oAbeqm6YVzD9xYiZk1P0hLv7JmPS6RGnSNfy0AqoSWtVP18eW9VTvN+sW2uRuzddE7s5R3KFOEpdaRTn7emvlzpK/+I0Uih1EtAAAAUHoVduRK0dEngUCghCOjFT3W7XYfUg3Z2dmHdB5Q2RmGUfgtmH379slkLmwAVcinc7fp/d+s65rU8CTp2RGtFfblK7uY73TE9LkZDijtm5tl/1sUcVdXbo/rZPIuAyCGajml189ur8tHL9ae/GBhPmdDlv715m965az2SnbaD3CFYtTvJ0+70+VcNnZ/tm66CqY/L3/Xi8uocgConPisDqCqK+uZqCpsc8Xj8Vi2S9NcKTrqpei1DhZ/CQH/zDRN/qwAqDLmbc7RU1PWWTKn3dCzI9qqfrrroJ6HZf3cdM95Q/asNZas4Oj/KuKqxkLQAGKuec1kvX5OB10+erGyvPtHq8zbnKMbxi7T82e0k8tRugkVvMfeK8em32TL21qYuX9+TIHGfRWp0arMageAyozP6gBw+CrstGBFGyL5+fkHfW7RYw+1uQIAAPCXnbl+/ffLFQpFrB9SHxiaqc4N0xJSky1rndyzrFPohOp0UqDD2QmpB0DV1LKWR2+c00HVPdbv9v2+YZ9u/WqFguHSTelluqop/4SnLJkR9ivl25ukcLCEswAAAICyVWGbK3Xr1rVsb9++/aDP3bZtm2W7Xr16ZVITAAComgKhiG75coVl2htJuqR3Qw1uXysxRZmmPNPukhHeP7rXlCHvgIclWymn4QGAw9SqdopeP6eDqrmtDZbpq7N0z4TVCkdK9+3pUJM+UdOAOXYulHvOK4ddKwAAAHAwKmxzpWXLlpbtrVu3lnBktKKNmBYtWpRJTQAAoGp6cuo6LdqaZ8mObp6h//RrkqCKJOeysUraPMOS+btepHC9LgmqCEBVl1k7Ra+c3V6pRdZZ+XbZbj387RpFSjk9TUGf26SamZbMPetF2XcsPOxaAQAAgH9SaZorS5cuPehzlyxZYtmmuQIAAA7VuAU7NHb+DkvWKMOlR0/OlN1mJKQmw7tHyT8/bMkiqQ1UcNTNCakHAP7Svl6qXjizndxF1ln5cuFOPT11fenm/09Klk57XTL2N2uMSEgp390khXxlVTIAAABQrArbXMnMzFR6enrh9vz58w/63Hnz5hX+u91uV/fu3cuyNAAAUEUs2pqrx79fa8ncDpuePq2tqiUnJagqKfnnR2TzZVsy74AHJWdqYgoCgL/p1ihdz45oqyS7tQE9+o9tevWXTaW7WKMjpGNusUT2vauV/OuTh1smAAAAcEAVtrnicDh0zDHHFG5v27ZNCxYs+MfzduzYYTmuW7duqlGjRkxqBAAAlVeWN6j/frlCwbD1W9b3DmmpNnVSElSV5Fj/g1zLx1myQOYwBVscn6CKACBa7+YZeuKUNirSX9GbMzbrkz+2FX9SSY75r0J1Olki9/x35Ng0o4QTAAAAgMNXYZsrkjRkyBDL9scff/yP53zyyScKh8OF24MHDy7zugAAQOUWMU3dN3G1duQGLPnIHvU1pH3tBFUlyZ+jlKl3WqKIM03eY+9LUEEAULIBmTX00EmZKjqB4pNT1um7ZbsP/kL2JHkHPyvT7rTEnu//K/lzDr9QAAAAoBgVurkycOBAtW7dunD7q6++0uzZs0s8ft26dXr77bcLt2vXrq0zzzwzpjUCAIDK58PZW/XzmixL1qNJum4Y0CwxBf0/zy+PyZZn/cZ3Qb+7ZKbUSVBFAHBgQ9rX1p2DrGtgmpLu+maVfl+ffdDXidTI/HOB+7+x526RZ/rDJZwBAAAAHJ4K3VwxDEM33XRT4bZpmvrPf/6j3377LerYpUuX6qKLLpLf7y/MrrnmGrnd7rjUCgAAKoeFW3L14k8bLVkNT5IeO7m1HAlawF6SHBt/kWvxaEsWbNJPgQ5nJ6giADg4Z3Stpyv7NrZkoYipm75YrqXb8w76Ov6uFyvYqLclcy0do6S1U8ukTgAAAODvDNM0zX8+7NBt2bJFJ5xwQrH7/j49l/Tn4vLFGTVqlHr27FniPZ5++mm9+eablqx79+7q3LmzbDabVqxYoRkzZujvP+rw4cP11FNPHeyPUaysrKx/PgioggzDUEZGhiQpOztbMX7MAEDc5PhCOufdBdqWs//LGoakV85ur97NMg75uof93AzkKf3DQbLnbimMzKQU5Zz/rSLpjQ65LgCIF9M09cSUdfp07nZLXt3j0LsjO6lpjeSoc4p7dtpyNiv9o8EyAvubMhFPbeWc/53M5Oox/RkAoLzjszqAqq569bJ9H3SU6dWKYZpmVBOlJCUd908P+5tuukk+n08ffPBBYTZ37lzNnTu32OOHDh2qhx9meDgAADh4pmnqgUmrLY0VSbr0qEaH1VgpC8m/PmFprEiSt+/tNFYAVBiGYei/A5trb35Q36/YU5hneUO6esxSvXt+J9VOdR7gCn+KpDeSt989Spm6f4owm3eXPD/eq/whL8akdgAAAFRNFXpasL/YbDbdfffdeuONN9S1a9cSj2vdurWefPJJPfvss3K5XPErEAAAVHifzN2uaSv3WrJujdL17yJT2cSbY/Nvci/8wJIFG/VWoNPIBFUEAIfGbjP08EmZ6tm0miXfss+vaz5bqlx/6KCuE+hwloLNBlgy58qvlbTymzKrFQAAAIj5tGCJsGHDBi1ZskQ7d+5UOBxW3bp1lZmZqTZt2pTpfZgWDCgeQ40BVDbLtufpwg8XKRje/zzLSHbok4u6qG764X9h45Cfm0Gv0j8aLPu+/WvAmI5k5YycrEhG08OuCwASIc8f0hWjl2jZjnxLfkTjdL18Vnu5HH9+R/BAz04jb4fSPzxRNv++wizirv7n9GAptWP/QwBAOcRndQBVXYWbFiwRmjZtqqZN+YUCAAA4fAXBsO76epWlsSJJDw7LLJPGyuFInvGUpbEiSQVH/5fGCoAKLdXl0ItnttPFHy7WpmxfYf7Hphzd+fVKPXlKG9ltxgGvYabWlXfAg0qdfH1hZvNlyTPtDuWf9KZkHPh8AAAA4J9UimnBAAAAYuW5HzZo3d4CS3Zhzwbq1zKxCyM7Nv4i9/x3LVmofg/5u16UmIIAoAzVTHHqlbPbq2ZKkiWftnKvnv1h/UFdI9h6uAKthloy59opci4fV1ZlAgAAoAqjuQIAAFCCn9dkacy87ZasXb0UXX1MkwRV9CejIEsp391syUy7S/knPCkZvN4BqBwaZbj18pntleq0W/KP5mzT6D+2/fMFDEPeAQ8pklzLEif/eL+M3K1lWSoAAACqID59AwAAFGNvfkD3T1xtydxJNj16Umsl2RP4CmWa8ky7U7b8HZa4oM9tilRvkaCiACA22tRN0TMj2spRZBqwp6as0w8r9/zj+aanprwDH7FktkCuUqbcJrHWAAAAAA4DzRUAAIAiTNPUA5PXaK83aMlvPq6ZmtVMTlBVf3Iu/UzO1ZMsWbDpMUwHBqDS6tm0mu4d0tKSmZLuGL9S8zdl/+P5wZaD5G87wpIlbfxZzkUflWGVAAAAqGporgAAABQxbsEOTV+dZcmOaVldp3epm6CK/mTLXi/PT/dbskhyDeWf8DTTgQGo1E7uWEdX9m1syXyhiC57b7Y27fX+4/kFx96nSGo9S+b55VHZsjeUaZ0AAACoOvgUDgAA8Dcb9hbo6WnrLVkNT5LuG9JShmEUf1I8hANKmXy9jKD1l4jegY/LTKmToKIAIH6uOLqRhnesbcl25wV04buztK8gWMJZfzLd1ZR//BOWzAh65fn+v5IZKfNaAQAAUPnRXAEAAPh/oYipu75ZJV/Q+ou2+4e2VI0UZ4Kq+lPyjKfk2LHAkvk7nqtgyxMTVBEAxJdhGLp7cEv1alrNkq/dla+bxi1XIHTgJkmo6bHydzzPkiVtnSXXvHfKvFYAAABUfjRXAAAA/t+omVu0ZFueJTuzW131a1kjQRX9ybFumtxz37Rk4YwW8h5zT4IqAoDESLLb9NRpbZRZ22PJ/9iUo/smrlbkHxap9/a7U+F06/RiyTOelG3v6jKvFQAAAJUbzRUAAABJK3bm6/VfN1myZjWSdeOAZokp6P8ZuduU8t3Nlsy0O5U/9EUpyVPCWQBQeaW5HHrhjHaqnWodUTh52W69PH3jgU92psp7wlMytX+aRyMc+PM5GwnFolwAAABUUjRXAABAlRcMR3TPN6sUiuz/xrPNkB4c1krJSfbEFRYJKeXb62XzZVnign53K1y7Q4KKAoDEq5fu0otntlOK0/qMfmfmFo2dv/2A54Ya9Za/2yWWzLFjgdxzXi3zOgEAAFB50VwBAABV3hu/btaqXdaF4i/q1VCdGqQlqKI/uX9/QUlbZlmyQMtB8nf+V4IqAoDyo23dVL08srvsNsOSP/bdWv2yJquEs/5UcPR/Fa7ewpK5f39Btt0ryrxOAAAAVE40VwAAQJW2ZFuu3p252ZJl1vbo330al3BGfDg2zZB71ouWLJzWUN7jn5QMo4SzAKBq6d+mjh4+taMlC5vSbeNXaMWO/JJPdLiVf+IzMo39H4mNSFApU25lejAAAAAcFJorAACgyvKHIrpnwmqF/7b+scNm6MFhreR0JO41yfDuVsq3N8jQ/sJMw678IS/IdFdLWF0AUB6d27OJLjmqkSXzBiK65vOl2pbjL/G8cL1u8h3xb0vm2LFArnlvx6ROAAAAVC40VwAAQJX16s8btW5PgSW77KhGals3NUEV6c91ViZdK1v+TktccPQtCtc/IkFFAUD5ds0xTTS4XS1LtjsvqGvGLFWOr+SRKL5e1ytcvaUlS/7tGdmy1sSkTgAAAFQeNFcAAECVNH9zjt6ftdWStaubokuOapigiv7k/vlRJW3+zZIFmx4jf5FvVwMA9rMZhh4Y2krdG6db8rV7CnTTuOUKhCLFn+hwK//4J2Vq/3SLRjggz5TbJbOEcwAAAADRXAEAAFVQQSCseyeu/tukW1KS3dBDwzKVZE/g69GCT+QuMh1NJLWe8k/8n2Tw2gYAB+J02PTsiLZqXjPZkv+xKUf3TVytiGkWe164wRHyd73YkiVtnS3Xwg9iVisAAAAqPj6lAwCAKueF6Ru0Kctnya7q21gta3sSVJGkLXOl8ddZItPuVN6w12R6apVwEgDg79LdDr10ZjvVSkmy5JOX7daLP20s8byCo29RuFoTS5b86xOy7dsUkzoBAABQ8dFcAQAAVcrsDfv0yR/bLVmnBqm6oGfipgMzvLulT8+XwtaFl70DHla4XtfEFAUAFVSDam69eGY7eZzWj7ujft+iT+duK/6kJI+8Ax+3REbQK8/U26USRrwAAACgaqO5AgAAqox8f1j3T1ptyVwOmx4cmim7zSjhrBgLB5Uy4T9SzhZL7OtyoQIdzkpMTQBQwbWtm6qnTmkje5FH+5NT1unHVXuLPSfU+Gj5O55nyZI2/Srnkk9jVSYAAAAqMJorAACgynj2h/Xaus86OuTaY5qoWZH5+eMp+eeH5djyuyULNuypgn53J6giAKgcjm5RXXcPbmnJIqZ0x/iVWrQ1t9hzvH3vUCS1viXz/PyIjNwSRrwAAACgyqK5AgAAqoQZa7M0dsEOS3ZE43Sd26N+CWfEnnPxp3IveM+SRVLrK3/oK5I9qYSzAAAH69TOdXXF0Y0smS8U0fVjl2ljVkH0Ca405Q981BIZgVx5pt3F9GAAAACwoLkCAAAqvVxfSA9MWmPJkpNsun9oK9mMxEwH5tjyuzw/FBmdYncp/+Q3WMAeAMrQlX0ba3jH2pYsyxvSNZ8t015vMOr4ULMB8rc73ZI510+Tc8VXMa0TAAAAFQvNFQAAUOk9OXWdduYFLNmNA5qpUYY7IfXY9m1SyjdXyogU+aXeyc8rXLdzQmoCgMrKMAzdPbiljmqWYck3Zfl0w9hlKgiGo84pOOYeRTzWhkzyT/fLyN8Vy1IBAABQgdBcAQAAldoPK/fom8XWX4b1blZNZ3Stm5iC/LlK/fpS2XxZ1vzoa6Wu5yamJgCo5JLsNj15amu1ruOx5Iu25umur1cpHLFO+WW6M+Qd8JAls/my5fnxvpjXCgAAgIqB5goAAKi09uYH9NC31unAUp123TeklYxETAcWCSvl2xtk37PSEgebD5SOfyD+9QBAFZLqcujFM9qrXprTkv+waq+emrpOZpE1VYKtBiuQOcySOVdPVNKqiTGvFQAAAOUfzRUAAFApmaapR75bqyxvyJL/9/jmqpfuSkhNyTOelHPdVEsWrtla+YOfl2z2hNQEAFVJnTSnXjqzvVJd1mfup3O364NZW6OO9/Z/QBF3dUvm+eFeGQVZUccCAACgaqG5AgAAKqWJS3dr2sq9lqx/Zg2dXGRR43hxLv1c7j9et2QRd3XlnfyW5EpLSE0AUBW1rO3RsyPaKsluHcH47I8b9O2y3ZbM9NSSt//9lsxWsFvJ0x+MdZkAAAAo52iuAACASmdHjl+Pf7/WkmUkO3TPoBYJmQ7MvmW2PNPutGSmLUn5J72mSLUmca8HAKq6Hk2q6YGhraLyeyas0h+b9lmyYOvhCrQ43pK5ln8hx7ppMa0RAAAA5RvNFQAAUKmYpqkHJq1Rnj9sye8e1FI1UpwlnBU7tuwNSv3mChnhgCX3DnhYoYa94l4PAOBPQ9rX1vX9m1qyYNjUjWOXa81u7/7QMOQd8IgiTusow5Rpd0r+nHiUCgAAgHKI5goAAKhUPpu/Q7+tz7ZkwzrU1sA2NeNei+Hbp9TxF8vms87N7+t6iQIdz457PQAAqwt7NtBZ3epZslx/WNd8tlS78vY3xc3Uuio45h7Lcba87fL88lhc6gQAAED5Q3MFAABUGhuzCvTsD+stWZ1Up249vnn8iwkHlTLhKtmzrNOTBZodp4J+d8W/HgBAFMMwdOvxzXVsK+ui9dtzArr2s2XK84cKs0D7MxVs0s9ynGvxaDk2/hKXWgEAAFC+0FwBAACVQjhi6r4Jq+ULRiz5fUNaKt3tiG8xpinPD3crafMMSxyq1Vb5Q16QbPb41gMAKJHdZuix4a3VqX6qJV+xM183jVuuQOj//14xDHkHPiYzKcVynGfq7VIgP17lAgAAoJyguQIAACqFD2Zv1fwtuZbsjK51dXSL6iWcETvu2S/LteRTSxbx1Fbe8HckZ2oJZwEAEiU5ya7nzminxhluSz57Y47u+maVwhFTkhRJb6SCPrdbjrHnbFbyjKfiVisAAADKB5orAACgwlu1K1+v/LzRkjXKcOnGAc3iXotz2Tgl//a0JTMdbuWd/JbMtAZxrwcAcHBqeJL00lntVMOTZMmnrNijJ6esk2n+2WDxdx6pYMOelmPcC0bJvmV23GoFAABA4tFcAQAAFVogFNE936xWMGwWZoakB4dlyuOM7/Rbjo2/yjPlVktmylD+oOcUrtclrrUAAEqvSfVkvXRmO6UU+ftjzLztenPG5j83DJu8A5+QaXdZjkmZcpsU8sWrVAAAACQYzRUAAFChvTh9g1bstM51f0HPBurWKD2uddh2L1fqhCtlREKWvOCYexRsNTiutQAADl27eqn634i2SrIblvzVXzbp8/nbJUmR6s1VcPQtlv327LVKnvls3OoEAABAYtFcAQAAFdZv67L14extlqxVLY+u6tckrnUYuduU9tXFMgLWNV983S6Vv9slca0FAHD4ejatpoeHZcookj/23VpNXbFHkuTveolCda2jEl1z35R9+4I4VQkAAIBEorkCAAAqpL35Ad0zYZUlc9oNPTo8Uy5HHF9x/LlKHX+xbHnWJk+g1RAV9LsrfnUAAMrUie1q6bYTmluyiCnd+fVKzdm4T7LZlX/CUzLtzsL9hhlRypT/SiF/vMsFAABAnNFcAQAAFY5pmrp/0hrtyQ9a8hsGNFNm7ZT4FRIOKHXif+TYvdwSh+ofofxBz0oGr1oAUJGd3b2+Lj+6kSULhE3dOHa5VuzMV6Rma/l6XmvZb9+zUu7ZL8WzTAAAACQAn/gBAECF8+nc7fp5TZYl69siQ+d0rxe/IkxTnqm3K2njz5Y4nNFceSe/KTnc8asFABAzV/VtrNO71LVkeYGwrhmzVJuzffIdcaVCtdtb9rtnvyL7zsXxLBMAAABxRnMFAABUKKt35evZH9ZbspopSXpgaCsZRtHZ8WPH/dvTci0bZ8kiyTWVd8oomck14lYHACC2DMPQHSe20HGtrc/23flB/efTpdrjM+U94SmZNsf+c8ywPFNulcLBopcDAABAJUFzBQAAVBi+YFh3jF+lQNi05A8ObaUaKc4Szip7zoUfKnn2y5bMdCQrb/g7imQ0jVsdAID4sNsMPXpya3VvnG7JN2X7dPWYZcpObyNfj/9Y9jl2LZV7zqvxLBMAAABxRHMFAABUGE9MWafVu72WbGSP+jq6RfW41ZC09nt5frzXkpmGTflDXlK4Xpe41QEAiC+Xw6bnRrRV6zoeS75iZ75uHLtc+7r/R+GabSz73LNelG33iniWCQAAgDihuQIAACqErxbu0JcLd1qy1nU8uu7Y+I0UsW+fp5RJ18owI5bcO+BhBVsMjFsdAIDESHM79PKZ7dUow2XJ/9iUozsmrFfOwCdkGvs/ZhuRoFK+/68UCcW7VAAAAMQYzRUAAFDurdiZr8e+X2fJkpNsenx4azkd8XmdsWWtU+r4S2WEfJa8oOe1CnQ6Ly41AAASr1aqU6+c1UE1U5Is+Q+r9urB+anydb/Ckjt2LpRr7pvxLBEAAABxQHMFAACUa7n+kP775Qr5Q9bRIvcObqXmNT0lnFW2DO9upX51kWwFey25v90Z8vW+KS41AADKj8bV3XrpzHZKddot+RcLd+rZ0AiFq7ew5Mkzn5Vt7+p4lggAAIAYo7kCAADKLdM0df/E1dqUZR0tcnb3ehrcvlZ8igh6lTr+Utn3bbDGTfrJO/AxyTDiUwcAoFxpWzdVz57eVk679e+BN37frS8a3iZT+3MjHFDKlFulSDjeZQIAACBGaK4AAIBy66M52zRtpXW0SMf6qbppQLP4FBAJKWXiNXLsWGCJQ7U7KG/Yq5I9qYQTAQBVQY8m1fT48NayFemz3zInTcubnGvJHNvmyjX/3ThWBwAAgFiiuQIAAMql+Ztz9PyP1tEi1dwOPXFKnNZZMU15frhHzvXTLHE4raHyTnlXcqbGvgYAQLk3oHVN3T2oZVR+5uoTledpbMmSf3tatuz1caoMAAAAsURzBQAAlDvbc/y65csVCkXMwsyQ9MjJmWpQzR2XGtyzX5Jr8WhLFnFVU96p78lMqROXGgAAFcNpXerq2mObWLK8iFNX5lxiyYyQT54pt0qmdR0xAAAAVDw0VwAAQLlSEAjrxnHLtSc/aMkvO7qR+rSoHpcanEs/U/Jvz1gy0+5U3vC3FanRKi41AAAqlot7NdTIHvUt2S+hNhqtQZYsacssuRZ+GM/SAAAAEAM0VwAAQLlhmqbum7hay3fkW/KjmmXo330al3BW2XJs+EmeqXdY65Kh/EHPK9ygR1xqAABUPIZh6KbjmmlYh9qW/CHf2doq64jH5F8fl23fpniWBwAAgDJGcwUAAJQbb8zYrO9X7LFkTWu49cQprWUvulpwDNh3LlbqhP/IiIQsecGx9yqYOSTm9wcAVGw2w9B9Q1qqb4uMwswrt24JXGY5zgh65Zl6u2SaAgAAQMVEcwUAAJQLU1bs0Wu/WL/Fm+qy67kR7ZTmdsT8/racTUr96mIZQeuoGV/3K+TvenHM7w8AqByS7DY9eWobdWmYVpjNiHTUx6EB1uM2/Srnkk/iXR4AAADKCM0VAACQcCt25OueCassmc2QnjyljZrVTI75/Q1ftlK/vEg27y5LHmh9sgr63h7z+wMAKpfkJLueP72tWtba/3fYY6GR2mrWsBzn+fkRGblb410eAAAAygDNFQAAkFA7cwO6Yewy+YIRS37TgGY6qnlG7AsI+ZQ6/jLZs9ZY4mDDXso/4WnJ4HUJAFB61ZKT9MpZ7VU/3SVJypVHdwaLTA8WyFPK1DuZHgwAAKAC4rcFAAAgYXJ9IV3z2VJtzw1Y8lM61dF5PerHvoBISCmTr5Nj2xxLHK7ZWvknvyE5XLGvAQBQadVJc+nVs9srI/nP6S1/jHTV5+FjLMckbfhRzmVjE1EeAAAADgPNFQAAkBCBUEQ3fbFcq3Z5LXnXhmm688QWMowYL2BvmvL8cI+ca76zxJHUeso9ZZRMV7XY3h8AUCU0rZGsl85sL4/zz4/fDwbP1w4zw3JM8vQHZeTtSEB1AAAAOFQ0VwAAQNxFTFP3TFilORtzLHmT6m49M6KtnI7Yv6K4Zz4r1+LRlsx0pilv+Lsy0xrE/P4AgKqjQ/1U/e+0tkqyG8pRqu4KXmrZb/PnyPPDXUwPBgAAUIHQXAEAAHFlmqaenrpe3y3fY8lrpvw5N30NT1LMa3Au/EDJs16w1mV3Ku/kNxWu3S7m9wcAVD29mmXokZMyZUiaEjlCX4WPtux3rp2ipJXjE1McAAAASo3mCgAAiKv3Zm3V6D+2WTKP06aXzmynhhnumN8/adUkeX6415KZhk35g19QqFHvmN8fAFB1ndC2lu44sYUk6f7gBdplplv2e368j+nBAAAAKgiaKwAAIG6+WrhDz/+4wZI5bIaeObWt2tZNjfn9HZt/U8q318uQddoVb/8HFWw1OOb3BwDgzG71dFXfxspSuu4NXmzZZ/NlK2XKbUwPBgAAUAHQXAEAAHExaekuPTBpTVT+wNBW6t08I+b3t+9aqtSvr5ARDljygl7XK9D5/JjfHwCAv1x+dCOd3b2eJkV66ZuwddRk0oYf5SyyJhgAAADKH5orAAAg5r5fvlv3fLNKRb+He2P/phraoXbM72/L2aTULy+UEci15P6O58rX64aY3x8AgL8zDEO3Ht9cg9rV0t3Bi7XTzLDsT57+sGzZG4o/GQAAAOUCzRUAABBTP67aqzu/XqVwkc7KRb0a6l89G8T8/oZ3j1K/uFA27y5LHmg5SN4BD0uGEfMaAAAoymYYemhYK7Vr1li3Bq+w7gt55Zp8kxQJJ6g6AAAA/BOaKwAAIGZ+XZulW79aoVDE2lkZ2aO+rju2iYxYNzYC+Uodf4ns2WstcbBBT+UPfl6y2WN7fwAADiDJbtPTp7XR7rp99VFooGWfe8cfss9+PUGVAQAA4J/QXAEAADHx+/ps3fzFCgWLDFk5s1td3Xxcs9g3VsJBpU68So4dC6xxzTbKH/6m5HDH9v4AABwEj9OuF85opw/TLtWGSB3rvpn/U2THkgRVBgAAgAOhuQIAAMrcb+uydf3Y5fKHIpb81M51dPsJLWLfWDEj8ky5VUkbplvicFpD5Z76nkxXtdjeHwCAUqjuSdIz5xyhh5OuU8Tc/3ekQyEVjLtWkaAvgdUBAACgODRXAABAmZq+eq+uH7ssqrEyrENt3T2opWxxWOMk+ZfH5Vr+hSWLuKsr79T3ZKbWi/n9AQAorfrpLl15zgiNMoZb8kaBtVo05kGZplnCmQAAAEgEmisAAKDMTFu5p9ipwE5oU1P3D20luy32jRXX3DflnvuGJTMdyco75R1FarSK+f0BADhULWp5lDniXi03m1jyfrtGa/J3kxJUFQAAAIpDcwUAAJSJb5ft1q1fRi9eP6R9LT06vLUccWisOJd/Ic/Pj1gy07Arb9grCtfrFvP7AwBwuDo2rqmd/Z9SwLQXZnbDVJ+l9+urP9YmsDIAAAD8Hc0VAABw2L5evFN3fr1SRQasaHjH2npoWGZcGiuODT/J8/1/o3Lv8U8o1GxAzO8PAEBZ6dS1l5ZkXmXJmtp2yvPTg5qyYk+CqgIAAMDf0VwBAACH5dO523TfhNUqMmBFp3epq/viNBWYffsCpU64SkYkZMm9fW5XoP0ZMb8/AABlrdmQG7UtrZMlO8v+o379ZpRmbdiXmKIAAABQiOYKAAA4JKZp6tWfN+rx79ep6BK75xxRT3cNahGXxettWWuVOv5iGUGvJfd1vUT+I/4d8/sDABATNrs8I16S35ZsiR+yv6Vnxv2opdvzElQYAAAAJJorAADgEIQjph77fq3emLE5at8FPRvo1oHNZcShsWLk71TqlxfIVrDXkgdaD1fBMXdLcagBAIBYiWQ0VfD4Ry1ZmlGgJ/W8bhizUBv2FiSoMgAAANBcAQAApRIIRXTH+JX6bN6OqH1X9W2sG/o3jUtjRf4cpX55oew51gZPsEk/5Z/4tGTwmgMAqPiC7U6Tr+3plqyrba0uDX6sq8cs1e68QIIqAwAAqNr4rQMAADho+f6wrvt8mb4vspiuIenOE1voij6N49NYCfmV+s0VcuxeZo3rdFLesFcluzP2NQAAECcFAx5UKKO5JbvS8Y1a5s7StZ8vU54/VMKZAAAAiBWaKwAA4KDs9QZ1xSeL9XuRRXST7IaeOKW1zuxWLz6FREJKmXytkjbPtMThas2Ud8q7kjM1PnUAABAvzhR5h7wo05ZkiZ9JelV7dmzRzV+sUCAUSVBxAAAAVRPNFQAA8I+27vPp0o8Wa+n2fEvucdr04hntdELbWvEpxIzIM+U2Odd8Z4kjnlrKO+19mZ441QEAQJyF63RUQb87LVltI0fPJL2q2RuydO/E1YqYZoKqAwAAqHporgAAgANas8uriz9crPVFFs3NSHbojXM6qlezjPgUYppKnv6QXMvGWmNnqvJOGaVItSbxqQMAgATxd7lIgebHW7Jj7It0hX2Cvl22W/+btl4mDRYAAIC4oLkCAABKtGBLri75eLF2Flkst366S6PO76QO9eM3BZf79+flnv+uJTPtLuWd/JbCdTrGrQ4AABLGMOQ94UlFUupa4lscY9TVWK2P5mzTB7O2Jqg4AACAqoXmCgAAKNYva7J05adLlOOzLpLbslayRp3fUU1rJMetFte8d5T8+3OWzLQ5lDfsVYUa9Y5bHQAAJJqZXEP5g5+TKaMwSzLCeiHpRaUrX8/+uEHfLN6ZwAoBAACqBporAAAgyvhFO3XD2GXyBa2L43ZpmKa3z+uoOmmuuNXiXPqZPNMftGSmDOWf+IxCzY+LWx0AAJQXoUZHydfzWkvWxLZLzyS9KkMRPTBpjWaszUpQdQAAAFUDzRUAAFDINE298esm3TdxtcJFpmzv2yJDr57dXtWSk+JWT9LqyfJMuS0q9w54SME2p8StDgAAyhtfr+sUbHCkJTvBPldX2r9RKGLqli9XaMm2vARVBwAAUPk5El1AWTnuuOO0ZcuWQzr3u+++U9OmTcu4IgAAKpZQxNSj367RFwujpxIZ1qG27hvSUkn2+H0vw7HxF6VMvk6GaR09U3D0fxXofH7c6gAAoFyyOZQ/+AWljx4mW8HewvgWx6daYLbQjGBHXfv5Uo06v5OaVI/fVJ4AAABVBSNXAACAvIGwbhy7rNjGykW9GujBYa3i2lixb5ur1G+ukBEOWHLfEf+Wr8d/4lYHAADlmZlWX/mDX5Rp7P872m6YeiHpJdXTHmV5Q7p6zFLtyQ8c4CoAAAA4FJWyuWIYhux2+0H/YxjGP18UAIBKak9+QJeNXqxf1mZbckPSbcc31/X9m8kWx78rbbuXK/Wri2UEvZbc3/FcFfS5XeLvbQAACoWa9JGv982WrJaRo5edLyhJIW3O9uvaz5Yp3x9OUIUAAACVU6WZFuzvTj31VD3++OOJLgMAgHJvw94CXT1mqbbs81tyl8OmR0/O1HGta8a1HlvWWqV98S/Z/PsseSBzmLwDHqaxAgBAMXxHXiX79nlyrptSmB1hW6U7HR/pgdCFWrYjXzd/sVwvntkuriNRAQAAKjPeqgAAqKLmb87RRR8uimqsVHM79NrZ7ePfWMneoLRx58nm3WXJg02PVf6gZyWbPa71AABQYRg2eU98RuFqTSzxxY5vNdw2Q5L0+4Z9um/iakVMMxEVAgAAVDo0VwAAqIKmrdyjKz9dquyCkCVvWM2lUed3UtdG6XGtx5azSanjzpMtb7slDzY4UnnDXpPszrjWAwBARWO6qyl/2Ksy7S5L/njSm8o0NkuSJi3dred+2JCI8gAAACodmisAAFQxn/yxTbd8sUL+UMSSt6uXolHnd1KzmslxrcfI3arUsefJnrvFkofqdFb+8LekpPjWAwBARRWu3UHeAQ9ZMo/h12tJzypVf65l9sHsrXp/1pbiTgcAAEAp0FwBAKCKiJimnv9xvZ6Ysk5FJwTp0yJDb53bUbVS4ztCxMjbobSx58mes8mSh2q3V95p78t0VYtrPQAAVHSBDmfJ3+EcS9bStk1PJb0uQ39+seLZHzZo4pJdxZ0OAACAg0RzBQCAKiAYjujeCas16vetUftO7VxHz45oK48zvmuaGPm7lDbuPNn3rbfk4ZptlHfahzLdGXGtBwCAysLb/36F6nS0ZEPss3Wd/YvC7fsmrtZv67LjXBkAAEDlQXMFAIBKLt8f1vWfL9eEYr6hemXfxrp3cEsl2eP7SmDk71LaFyNlz1pjycM1Wil3xEcyk2vEtR4AACoVh1v5Q19VpMgI0BuTxmqI7XdJUihi6pYvl2vp9rxEVAgAAFDhORJdQCwsX75cN954o5YuXardu3dLkjIyMtSoUSMdeeSROv7449W2bdsEVwkAQOztyQ/o2s+Xadn2fEtuN6S7B7fUqZ3rxr0mI3/nnyNW9q625OGM5sod8bFMT6241wQAQGUTqdZY+UNeVOpXF8kw96+z9r+kV7UxUFdLzGbyBiK69rNlGnV+JzWu7k5gtQAAABWPYZpm0WnXK6TjjjtOW7Yc/KJ8xxxzjO6++241bdr0kO+ZlZV1yOcClZlhGMrIyJAkZWdnq5I8ZoAKZ1OWT1ePWapN2T5L7k6y6clTWqtfy/iPDjHydiht3LmyZ6215OFqTZR7+qcy0+rHvabygOcmAJQez86D45r3jjzTH7RkW8yaOsX/sHbrz5EtjTPcevf8jqqZEt+11wDEF89NAFVd9erVy/R6Vba5IklpaWl6+umn1b9//0O6Z3Z29iGdB1R2hmGoWrU/P6jt27ePFzYgAZZuz9M1Y5ZqrzdoyTOSHXrxzPbq1CAt7jUZeduV+vk5smevs+Thak2Ud/onMtMbxr2m8oLnJgCUHs/Og2SaSp5ym1xLPrXEf0QydW7gbgWUJElqXSdFb53XUenuSjnBBQDx3ASAvxrMZaVSNVdCoZAGDhyoo48+Wm3atFHNmjXldDqVnZ2tZcuWacqUKfriiy8UCAQKz3O5XPrggw/UpUuXBFYPAEDZmb5yl6788A95A2FL3qh6st6/pKda1E6Nf1H7NkujTpKyrI0VVW8uXfSNVK1R/GsCAKCqCAWk90+RNs6wxJ+Hj9EtwX9LMiRJ3Ztk6INLeynFRYMFAADgn1Sa5spvv/2mI488Ug7HgV8CN2zYoGuuuUYrV64szBo2bKjJkyfL6WQINACgYvti3mb997OFCkWsf723r5+uURcfqTrpCZhPPXuT9N5JUtZ6a16j5Z+NlfQG8a8JAICqJn+39MYAad9GS/xo8Fy9ET65cLtPq5p6+8Ij5U6yx7tCAACACqXSNFdKY8+ePTrjjDO0devWwuzee+/VyJEjS3UdpgUDisdQYyD+TNPUe7O26LkfNkTt69W0mp4Z0VapCfgWqi1rrVLHjZQtd6slD1dvqbwzRstMqRv3msojnpsAUHo8O0vPtmuZ0saMkBH0WvL/BK7TxEjvwu3+mTX01KltlGS3xbtEADHEcxNAVce0YGVkwoQJuummmwq3e/TooY8++qhU12BBe6B4LJIHxFfENPW/aev10ZxtUfsGt6ulB4e1SsgvR+y7lij1iwtlK9htycM1Wil3xMcyU+rEvabyiucmAJQez85Dk7TmO6V8828Z2v+/l19JGum/Q3PMtoXZ0Pa19NBJmbIZRiLKBBADPDcBVHVlvaB9lf0ayqBBg5Saun/O+fnz56ugoCCBFQEAUHqBUER3jF9ZbGNlZI/6euTkzMQ0Vrb+odTPzymmsZKp3BGjaawAAJAgwZYnqqDv7ZbMpaDecv5PLYz9I00nLt2tR79byy9fAQAASlBlmysOh0OdOnUq3A6FQtq5c2cCKwIAoHTy/CFd+/kyfbd8T9S+Gwc01S0Dmyfk26aO9T8q7YvzZQvkWvJQnc7KPeNTmSm1414TAADYz9/9Cvk6nW/JMow8ved8UrW0rzAbO3+HnpiyjgYLAABAMapsc0WSatasadlmmi8AQEWxKy+gSz9erFkb9llyh83QIydl6oKeDRNSl3PJGKWOv1RGyDoaNNiwl3JHfCQzuUZC6gIAAH9jGCrof78CzQda4sbGTr3tfFrJ8hVmn87drqenrqfBAgAAUESVbq4UnQbM5XIlqBIAAA7e5myfLvlokVbutC5G63Ha9MIZ7TS0QwJGhpim3L8/r5Qpt8oww5ZdgeYDlXfqe5IrLf51AQCA4tkcyh/yokJ1OlniLrY1eiHpZdkUKcw+/mOb/vcDDRYAAIC/q9LNlU2bNlm2a9Tg27QAgPJt9a58XfzRIm3O9lvyGp4kvXVuRx3VPCP+RUVC8ky7U8kzn43a5W9zivKHvSY53PGvCwAAHFiSR3nD31Y4vZElPsH+hx5Jelv626L3H87epud/3ECDBQAA4P9V2ebKtm3btGrVqsLtmjVrqk4dFtcFAJRfC7fk6tKPl2h3XtCSN85wa9T5ndSuXmr8iwp6lfL1FXItHh21y3fElfIOelayJ8W/LgAAcFDMlDrKO2WUIq5qlvxc+w+6zfGpJXtv1la98NNGGiwAAACqws2VV155xfJC2KdPHxkJWPQXAICDMXNdtv796RLl+EKWvHUdj949v6MaV4//yBDDu1tpn58j5/ppltyUIW//B1XQ93bJqLKvGgAAVBiRGq2Uf/IbMu1OS36VY7yutH9tyUb9vkXPMYIFAACg4jdXAoGA1q5dW6pzxo4dqzFjxhRuG4ahCy64oKxLAwCgTHy/fLeu/XyZfMGIJe/aME1vndtRNVOcJZwZO7asdUobM0KOnQstuWl3KX/Yq/J34e9VAAAqklDDXsof/ILMIl+MuD1ptM61W79I8f6srXr8+3WK0GABAABVWIVvrvh8Pp100km66aab9MsvvygUCpV47K5du/TAAw/ozjvvtOSnnnqqOnXqVMJZAAAkzrj5O3T7+JUKRay/vOjTIkOvnN1eaW5H3GtybJ6ptM9Ol33fRksecWcod8THCrYaHPeaAADA4Qu2GizvwMej8keT3tYw20xLNmbedj0wcbXCERosAACgaor/b2RiIBwOa8KECZowYYJSU1PVrl07tWjRQtWqVVNSUpJycnK0fPlyzZ8/X8GgdZ76Hj166MEHH0xQ5QAAlOzdmZv1wk8bo/LB7WrpwWGtlGSP83ckTFOuhR8qefoDMiLWLzOE0xsp79T3FKneMr41AQCAMhXocJYMf448Pz9cmBky9YLrFeX5k/VTpEthPn7xLvlCET18Umb830sAAAASrFI0V/4uLy9Ps2fP1uzZs//x2HPPPVe33367nM74T6cCAEBJTNPUCz9t0Kjft0btO6tbPd12QnPZ4r1OWMgvz4/3ybXkk+hddToqb/g7MlPqxLcmAAAQE/7ul8nw71PyrBcLM7sZ0tvJz+t8322aGW5TmH+3fI8CYVNPDG8tp4MGCwAAqDoq/JuP2+3WlVdeqW7duh1Uk8Tj8Wj48OH6/PPPdf/998vtjv8CwAAAlCQcMfXQ5DXFNlYuO6qRbk9AY8XI2660cecV21gJNB+o3NM/obECAEAl4+t9k3yd/2XJHGGfPnA/pZ6OVZb8x1V7de3ny5TnL3mabgAAgMrGMM3KswJdKBTSunXrtHHjRm3fvl35+fkKhUJKS0tTenq6MjMz1aZNG9nt9jK5X1ZWVplcB6hsDMNQRkaGJCk7O1uV6DEDxFQgFNFd36zSlBV7ovbdclwzjTyyQdxrcmyaoZRJ18pWEF1TwZHXyHfUTZJR4b+rkXA8NwGg9Hh2xoEZkefbG+Va8ZUlDjpSdZ7vds0OtbDkbeum6MUz2qlWKrNDAOURz00AVV316tXL9HqVqrkSbzRXgOLxwgaUnjcQ1s1fLNfM9fssuc2Q7hvSSsM7xXlkiBmRe86rcv/2jAwzYt3lSFb+iU8rmDksvjVVYjw3AaD0eHbGSTiolElXy7nmO0scTErTuf47NSfQ1JI3rObSy2e1V9MayfGsEsBB4LkJoKor6+YKXzUFACDB9hUEdeUnS6IaK0l2Q0+f2ibujRXDu0cp4y9T8oynohor4fRGyj1rLI0VAACqCnuS8ge/qECz4yxxUjBXo92Pq1fyZku+ZZ9fF324SEu25cazSgAAgLijuQIAQALtzA3o0o8Xa9G2PEvucdr00pntNaB1zbjW49gwXekfDZZz/bSofYHmA5V77gSFa7ePa00AACDBHC7lD3tFwabHWOKkwD595HxMfdN2WPLsgpAuG71Ev65ltgcAAFB50VwBACBBNmYV6OKPFmnN7gJLnpHs0BvndFDPptXiV0zIr+TpDyvtywtk8+6y7DINmwqO+q/yT35TpjuONQEAgPLD4VbeSW8o2Ohoa+zP0ij7QxpSy/r+4AtGdP3ny/TZvO3xrBIAACBuaK4AAJAAK3fm65KPFmvrPr8lr5Pq1NvndVSH+mlxq8W2d7XSxpwm97y3ovZFPLWUd+oH8vW8moXrAQCo6hxu5Q1/S8GGPa2xb69eDt6r8xpYGylhU3r0u7V6YspahSKs7QAAACoXfksCAECczd+co0s/Xqw9+UFL3qS6W++e31EtanniU4gZkWvB+0offZIcu5ZG7Q42G6CckZMVatInPvUAAIDyL8mjvOHvKlS/hyW2+ffp4dx7dW3zrVGnfPLHdl332TLl+kLxqhIAACDmaK4AABBHv67N0lWfLlWeP2zJ29RJ0bsjO6pBNXdc6rBlrVPq5+fI8+O9MkI+yz7T7pT32PuVN/wdmZ5acakHAABUIM4U5Z7ybtQIFlswTzftuluPdNgSdcpv67N14QeLtDGrIGofAABARURzBQCAOJm8dLduGLtcvlDEkndrlK43z+ugGinO2BcRCcv1xxtK/2iwkrbOitodrtlaOeeMl7/rRZJhxL4eAABQMbnSlHfKewo26WeJjZBP5627Ux/0WKcku/VdYt3eAl3w/iLN2rAvnpUCAADEBM0VAADi4NO523Tn1yuj5hs/pmV1vXJWO6W5HDGvwbZnpdLGjJDnl0dlhP1R+32dL1DOOeMVqdU25rUAAIBKIClZeSe/pUDLEy2xEQmq7+K7NfHIharhSbLs2+cL6apPl+idmZsVMVmHBQAAVFw0VwAAiCHTNPX6L5v0+PfrVPTXB0Pb19LTp7WRO8ke2yLCQbl/f0HpHw+TY8eC6N3pjZV72kcqGPCg5IjPtGQAAKCScLiUP+Rl+ducYokNmcqc/5gmd/pBmbWSLfsipvTiTxt107jlrMMCAAAqLJorAADESMQ09cSUdXrt101R+87uXk8PnZSpJHts/yq2b5urtE+GK3nm/2REgpZ9pgz5ul6snPO/ZdF6AABw6OxJ8g56Vr4uF0btqrPgFX3RZIz6t0yP2vfT6iyd994CrdiRH48qAQAAyhTNFQAAYiAYjuiur1fp07nbo/Zd2bexbju+uWwxXNPEKNgrz5TblT5mhBy7l0XtD2e0UO6Zn6ng2PukJE/M6gAAAFWEYVPBsfer4Kibo3alLh2t190v6fq+9WQr8vqzOduvCz9cpC8X7pDJNGEAAKACobkCAEAZKwiEdcPY5Zq8bLclNyTdcUJz/btPYxmxaqyYETkXj1b6+8fJteST6N2GTb4jrlTOyIkKN+gRmxoAAEDVZBjy9bxW+cc9ItOw/rrBtWayrtl2u944taEykq1rzflDET0waY1u/Wql9hVYR9oCAACUVzRXAAAoQ/sKgrry06WasS7bkjtshh49ubXO6l4/Zve271ystDEjlDL1Dtl82VH7wzXbKPfsL1XQ93bWVgEAADET6DRS+UNelml3WvKkLbM0YObF+vz0GurUIDXqvCkr9uisdxZo1oZ98SoVAADgkNFcAQCgjOzMDeiyj5do4dZcS+5Osun509tqcPtaMbmvkbtVnu9uUtrok+XYPj9qv5nkkbfvnco59xuF63aOSQ0AAAB/F8wcorxTRsl0Wpso9qy1ajHhbL13XFBnd68Xdd7OvICu/GSJnvthvQKhSLzKBQAAKDWaKwAAlIGNWQW6+KNFWr3ba8nT3Q69fnYHHd2ietnf1J8j969PqNp7A+RaNk6GoucpD2QO075/TZX/iCske1LZ1wAAAFCCUOOjlXvGp4qk1LXktoI9qv7Febqn2Qo9fWobVXNbpwkzJb03a6su+GCRVu5ksXsAAFA+0VwBAOAwLd+Rp4s/XKyt+/yWvHaqU++c11GdG6aV7Q3DAbnmj1K19/orec6rMsL+6EMymiv31PeVP/RlmWmxm4oMAADgQMK1Oyjn7C8VqtXWkhthv1Im/kdD88ZqzMWd1atptahzV+zM18j3Fur1XzYpGGYUCwAAKF8M0zSjv+aKg5KVlZXoEoByyTAMZWRkSJKys7PFYwaV2awN+3TzuOXKC4QteZPqbr16dns1qFaGa5uYppJWT1byr0/Ivm998Yc4U+XrcZV83S6THK6yuzdiiucmAJQez84Kxp+r1ElXK2nD9Ohd7c5Q3oCH9dG8vXpx+gYFw9H/X2bW9uj+oa3Uvl70Wi0ADg7PTQBVXfXqZTurCM2Vw0BzBSgeL2yoKiYs2aX7J65WKGL9b7xt3RS9fGY71UhxlnBm6Tk2zVDyjKfk2D6v2P2mYZe/00j5el0n0xObtV0QOzw3AaD0eHZWQOGgPD/cI9eST6J2hep0Ut6w17Tcl6G7vl6pNbsLoo6xG9KFvRrqij6N5XIwEQdQWjw3AVR1NFfKEZorQPF4YUNlZ5qm3v5ti17+eWPUviMap+u509sq1eUo5szSs2+fr+QZTytp0y8lHhNoOUgFfW5VpHrLMrkn4o/nJgCUHs/OCso05ZrzqjwznozaFUmuofwhLym/fm+9OWOTRs3comIGsahxdbduP755bNa0AyoxnpsAqjqaK+UIzRWgeLywoTILRUw99t1ajVuwI2rfca1r6NGTW5fJNyltu1coeeYzcq75ruRa6nWVt+9dCjc88rDvh8TiuQkApcezs2JLWjVJKd/fLCPoteSmYVNB3zvl73aplu3I130TV2vVLm+x1xjYuoZuGdhc9dKZChU4GDw3AVR1NFfKEZorQPF4YUNl5Q2EdetXK/Tr2uyofSN71NeNA5rJbjMO6x62fRvlnvmcnMu/kKHi/+yEqzVRwdG3Kpg5TDIO734oH3huAkDp8eys+Gx7Vir1m3/Lnr0ual+g9cnKP/4JBW1uvTtzi96csTlqKlZJcifZdMXRjXT+kQ2UZGeqMOBAeG4CqOporpQjNFeA4vHChspoe45fN4xdrhU78y25Ienm45pp5JENDuv6Rt4OuWe9KNeST2REQsUeE0mpq4Je1ynQ/izJnnRY90P5wnMTAEqPZ2flYPj3yfPtTXKumxq1L1SzrfJPel2RjKZatStfD09eq4Vbc4u9TvMaybrpuGbq25KpwoCS8NwEUNXRXClHaK4AxeOFDZXNwi25uumL5dqTH7TkLodND5+UqePb1DzkaxsFWXL/8Zpc80fJCPuLPSbiri7fkf+Rv/O/JIf7kO+F8ovnJgCUHs/OSsSMyP37C0r+/bmoXRFnmrwnPKVgq8GKmKbGL9qp53/coOyC4r+McnTzDN00oJla1vbEuGig4uG5CaCqo7lSjtBcAYrHCxsqk4lLdumBSasVKLKaakayQ8+OaKuujdIP7cKBPLnnvSP33DdlBIr/BqaZlCJf98vk63aZ5Eo7tPugQuC5CQClx7Oz8klaO1Up395Q7LuRr/O/VNDvLsnh1r6CoF6cvlHj5u8odhJVuyGd3rWeruzbWNU9jPYF/sJzE0BVR3OlHKG5AhSPFzZUBhHT1Cs/b9Tbv22J2tesRrKeO72tmtZILv2FwwG5Fo+W+/cXZCvYU+whpt0pf5cL5etxlczkGqW/ByocnpsAUHo8OysnW9Y6pX5zhex7V0XtC9Vqp/yhLylSvaUkacm2XD363Vot3Z4fdawkpbrsuqR3Q51zRH0lJ9ljWjdQEfDcBFDV0VwpR2iuAMXjhQ0VXZ4/pPsmrta0lXuj9vVuVk1PntJGaW5H6S5qmkpaPUnJvz4p+771xR9icyjQ/iwV9LxWZlr9Q6gcFRXPTQAoPZ6dlVggXylT75Bz5fioXWaSR94BDynQ7nRJf34h5pvFu/Ti9A3anReMOl6Saqc69e8+jTS8Ux0WvUeVxnMTQFVHc6UcobkCFI8XNlRka3Z5dcuXK7R+b0HUvrO719MtA5vLYTNKdU3HlllK/uVRObbPL3a/KUOBNqfI1/sGRTKaHULVqOh4bgJA6fHsrORMU84lY+T56T4ZIV/Ubn+7EfL2f0hypkiSvIGw3p25RR/M3ip/KFLsJRtXd+vqfk10Qtuashmle58DKgOemwCqOpor5QjNFaB4vLChopq8dLcemLxavqD1A7ndkG47oYXO7FavVNez7V2t5F+fkHPt9yUeE2h+vHxH3axw7XaHVDMqB56bAFB6PDurBtuelUqddI3se1ZG7QtXb6H8wS8oXKdjYbYtx68Xftygyct2l3jNtnVTdO0xTXRU8wwZNFlQhfDcBFDV0VwpR2iuAMXjhQ0VTTAc0bM/bNDoP7ZF7Ut3O/TkKa3Vq1nGQV/P8O5R8sz/ybn4ExlmuNhjQvW6ydv3ToUbHnmoZaMS4bkJAKXHs7MKCRbIM/1BuRaPjtpl2hzyHXmNfEdeLdn3L16/dHueXvppo35bn13iZXs0SdfV/Zqoa6P0WFQNlDs8NwFUdTRXyhGaK0DxeGFDRbIjx6/bxq/Ugi25Ufva1UvR06e2UYNq7oO7WDgg14L35f79edkC0deTpHC1Ziroc5uCrQZLfFMS/4/nJgCUHs/OqidpxXilTLtTRiAval+odgd5T3g6ajTwrA379OJPG7R4W/Q5fzmqWYau7NtYnRumlXnNQHnCcxNAVUdzpRyhuQIUjxc2VBTfL9+thyavUa4/enTJaZ3r6LYTWsjlOLhFTx3rfpBn+kOyZ68tdn8kuaZ8va6Xv+O5lm9VAhLPTQA4FDw7qyZb9nqlTLpWjp2LovaZtiT5el4rX4+rLO9bpmnqh1V79dJPG7WumHX1/nJ08wxd1bexOjagyYLKiecmgKqO5ko5QnMFKB4vbCjv8v1hPTllrcYv3hW1z2k3dMeJLXRq57oHdS3b3tXyTH9ISRt+Kna/6XDL1+0y+Y74t+TigzqKx3MTAEqPZ2cVFg7I/fsLcs95tdgpWEN1Osp7/JMK125vzSOmJizeqdd+2aTtuYESL9+3RYau7NtEHeqnlnnpQCLx3ARQ1dFcKUdorgDF44UN5dnCLbm665uV2pztj9rXoJpLT5/aRu3q/fMHacO3T+7fn5Nrwfslrqvib3OqCvrcJjOt/mHXjcqN5yYAlB7PTth3LFTK97cUu9i9adjl7365CnrfIDmsU7z6QxGNnb9d787cot35wRKvf0yr6rqyT+ODejcEKgKemwCqOpor5QjNFaB4vLChPAqGI3r7t816a8ZmhYv5T3JQu1q668QWSnM7DnyhSEiuRaPlnvk/2XzF/z0QqttF3mPvVbj+EWVQOaoCnpsAUHo8OyFJCvnl/v15uf94TYYZidodrtZU3uMeUahJ36h9BcGwxs7foXdnbtFeb8lNlv6ZNXRln8ZqUzelTEsH4o3nJoCqjuZKOUJzBSgeL2wob5Zsy9X9E9do9W5v1L4Up113nNhCQ9vXkvEPC8zbdyyUZ+odcuxaUuz+SEodFfS5TYG2p0nGwa3VAkg8NwHgUPDsxN/Zt8//cxTL3tXF7ve3G6GCfnfLTK4Rta8gENZn87Zr1KwtyvKGSrzHgMwauvzoRoxkQYXFcxNAVUdzpRyhuQIUjxc2lBcFwbBe/XmTPpqzVZFi/jPs2jBND5+UqYYZ7uidfxfIV/Jvz8i1YFSx34g07U75ul8uX4//SE6+0YjS47kJAKXHsxNRQn65Z7/851oskeiRKJHkGio45h4F2pwqFfOlGm8grDHztuu937cou6DkJssxLavr8qMbsfA9KhyemwCqOpor5QjNFaB4vLChPJizcZ8enLRGm7J9UfvshnRFn8a65KhGctgOPFolae1UJf94r+y5W4rdH2g1RAV971SkWuMyqRtVE89NACg9np0oiW3PKqVMvUOObXOK3R9s3FfeY+9TpGZmsfvz/WF9MnebPpi1Vft8JTdZjm6eoSv6NFaXhjRZUDHw3ARQ1dFcKUdorgDF44UNibQrL6Dnf9ygCUt2Fbu/TZ0U3T+0pdrWPfB0Dkb+Tnl+ekDOVROK3R+ukSnvgAcVanTUYdcM8NwEgNLj2YkDMiNyLh4tzy+PywjkRu827PJ3/pd8vW+Q6c4o9hJ5/pA++WO7Ppi9VTkHaLL0alpNV/RprO6N08uqeiAmeG4CqOporpQjNFeA4vHChkQIhiP6dO52vfbLJuUHwlH7nXZDV/RprAt6NlCS/QDrofz/B/HkXx6XrbgP4nanfD2vk++IKyS7syx/BFRhPDcBoPR4duJgGHk7/vzCzOqJxe6PuKrJ1/tG+TuNlOxJxR6T5w9pzLzt+mDW1gNOF9ajSbquOLqxejRJ/8e1/IBE4LkJoKqjuVKO0FwBiscLG+JtzsZ9evz7tVqzu6DY/V0apum+IS3VvKbngNex7VmplKl3ljyFRKOj5D3uUUWqNz/smoG/47kJAKXHsxOlkbT2e3l+uFe2vG3F7g/XaCXvMfco1PTYEq/hDYT1+bztem/WVu31Rq/p8pdujdJ0xdGN1atZNZosKFd4bgKo6miulCM0V4Di8cKGeNmU5dMLP23QlBV7it2f6rTr6mOa6Kzu9WQ70AfbcFDuP16T+/cXil/81J2hgn53KdDujGIXPwUOF89NACg9np0otUC+3HNelXvuGzLCgWIPCTYbIG+/uxSp0arEyxQEwxo3f4dG/b5Fu/NLbrJ0apCqK45urD4tMmiyoFzguQmgqqO5Uo7QXAGKxwsbYi27IKi3ZmzWp3O3KxQp/r+v4R1r67r+TVUz5cBTd9n2rFTKdzfLsXNRsfv9bUeooN9dMj01D7tuoCQ8NwGg9Hh24lDZcjYr+ZfHSlxbzzTsCrQ/UwW9rpeZVr/E6/iCYX25cKfenblFO/OKb9ZIUvt6Kbr86MY6tlV1mixIKJ6bAKo6mivlCM0VoHi8sCFWAqGIPpm7TW/N2Kxcf/S6KtKfC9bffkJzdf2/9u47Pq7qzv//+05X75KL5N4LxriAsbMU00KWDUn2h5dkCRCCTUkh2d3UhUCSTbKpBEhgIZQsLKHky8IDQiBZjE0wBhsbcMe4S7YsyVZv0+79/THSWCPPSBppbM1oXs/HYx4z595z7z3jh/3xufO555zyfhYUNYNyb35QGW//KuqTi8G8cWq/4D8UGP+xRDQd6BNxEwDiR+zEUDkOb1DGG9+Xo3Zb1P2W3SXvvGvVufAWWRmxf4zxBUy9sLVWj7xdpaPNsZMs00uzdOO55bpgWmHfo6qBU4S4CSDdkVxJIiRXgOjosCHR/EFTL26t0+/WV6m62Ru1Tq7HoVs/VqHPnDlKdlvfN6u25kplvvp1OY9sPGmfZdjkPetGdZx9m+TMSETzgX4RNwEgfsROJIRlyrXjj8p462eytddFr+LKUedZN6pz/g2SKyvmqfxBUy9tq9PD66t0uCl6n1WSphRn6sZzy7V8elG//VYgkYibANIdyZUkQnIFiI4OGxLFHzT1p+11euitKh2JcYPqtBu6esFo3bCkXLkeR98ntCy5dv2vMtfcIcPXetLuYMFktV3yCwVHnZmA1gMDR9wEgPgRO5FQvlZ53n1AnvcelhHoiFrFzChW5+IvyTvnasnhjnkqf9DUn3cc0+/WV6myoTNmvYlFGbrx3HJdMqOYJAtOC+ImgHRHciWJkFwBoqPDhqEKmJZe3l6nh96qVFVj7Kf+Lp1ZrC//3TiNzff0e06js1GZq78bdW5tS0ZotMqSr0uO/s8FJBpxEwDiR+zEqWC01cqz4T65tz0pwwxErWNmj1Lnwpvlnb2iz75jwLT0l53H9Lu3qrS/PnrCRpLGF3p0w5JyfXxWiRwkWXAKETcBpDuSK0mE5AoQHR02DFbQtPTnHaGRKof6eMpvfnmuvnbBeM0dkzOg8zoq31LWX74uW+vRk6+ZW662S36l4NhFg243MFTETQCIH7ETp5Kt6ZA8b/9Krl3Py1D0v1tmVqk6F9wk79zP9plkCZqW/u/D43rorUrtPRY7yTImz61rFo3RJ88oVYbTPuTvAPRG3ASQ7kiuJBGSK0B0dNgQr6Bp6S+7jum/1lXqYH3spMoZY3J087IKnT0hT8ZAFgENeJWx/ufybH4o6m7vzM+o/bw7JffAkjTAqULcBID4ETtxOtjrdsqz/udy7X8tZh0zs1idC1bJO/dzkjMzdj3L0urd9XpwXaU+qmuPWS8/w6F/Omu0ViwYpfwM55DaD/RE3ASQ7kiuJBGSK0B0dNgwUKZl6S87j+vBtyq1/3jsp/jmjs7WTcsqtGRi/sCSKpJsxz5U1qtflePYrpOv685T+/IfyT/1E4NuO5BIxE0AiB+xE6eT/fBGZbz9Czmr3o5Zx8woVOdZN8p7xuf7XPjetCyt3dOgh9ZVamdNW8x6HqdNV55RqmsWjdGYPKauxdARNwGkO5IrSYTkChAdHTb0x7Qsvfbhcf3Xur6nRpg1Kks3LRunZZMGnlSRZcr9/qPKWPefMoK+k3b7K5ap7ZKfy8oeNdjmAwlH3ASA+BE7MRwch9+R55175KxcF7OO6SmQd/4N8p5xjSxPXsx6lmXpzX0NemhdlbZWt8asZzekS2YW69qzx2p6aeykDdAf4iaAdEdyJYmQXAGio8OGWEzL0uu76/Vf/UyFMLMsSzctq9DHJhcMPKkiyWitUdZf/1XOQ387aZ9ld6lj6TflPfN6ybANqv3AqULcBID4ETsxnOxH3lXGhnvkPPhGzDqWM0veOf+kzjO/ICt3bOx6lqVNlc167J3DWrevsc/rnjsxX9eePVaLxuXG1U8GJOImAJBcSSIkV4Do6LChN8uytOajej2wrlK7a2MnVaaVZuqmZeN0/pT4kiqS5Pzoz8pc/W3ZOhtP2hcomqG2y+6WWTwj3qYDpwVxEwDiR+xEMrAffU+ed+6V68DqmHUsm0O+aVfIe9ZKBUtm9nm+3bVt+u8NR/TKjjoF+/grPb00S1cvGKVLZxbL47QPtvlIM8RNAOmO5EoSIbkCREeHDd0sy9Ibexv0X2/2PZ/01JJMrVpaoQumFcoW7xN43hZlrr1L7p1/jLq7c/4X1XHuv0oO5qlG8iJuAkD8iJ1IJvaarfJsuEeufX/ts55//N+pc8FNCpQvkfro9x5p6tT/bKzWc1tq1Ok3Y9bLz3Do0/PK9P/NH6VRue5Btx/pgbgJIN2RXEkiJFeA6OiwoXv+6AferNSOo7GTKpOLM7RqaYWWTy+KP6kiyX5kk7JevU325sqT9pnZo9R28S8UGLc07vMCpxtxEwDiR+xEMrLXbZfn3Qfk/OhPMqzYSZFAyWx5598g37S/l+yumPUaO/x6ZvNR/WFTtRo7ArGva0gXTCvS1QtGa355DlOGISriJoB0R3IliZBcAaKjw5a+LMvSW/sb9cCbldrWx6KcE4tCSZWLZwwuqaKgX54N98qz8b6oN62+qZ9Q+4X/IcuTH/+5gWFA3ASA+BE7kcxsTZVyv/ew3NufkhHojFnPzCyRd97n5Z37OVkZhTHrdfiDenFrrR7feERVjd4+rz2tNFNXzQ9NGZbtdgz6O2DkIW4CSHckV5IIyRUgOjps6ceyLK3f36j/WlelLUdaYtabUJihlUvLdcmMYtltg3uaztZ4QFmv3ibH0fdPbocrW+3nf1++GZ/qc5oFINkQNwEgfsROpAKjo0HuLY/L/cFjsnXUx6xn2d3yzfiUOud/QWbRtJj1gmZohPhTm6r19oGmPq/tcdp08fQiXXlGGaNZIIm4CQAkV5IIyRUgOjps6SM0/VejHlpXqa19jFQZV+DRyqUVumzm4JMqsiy5tj+jzDfukuFvP2m3f8witV/6S5m5FYM7PzCMiJsAED9iJ1JKoFOuHX+UZ/NDsjcd7LOqf9zH5J13nfwTzpdssRer33usXU9vrtZL2+rU0ce6LJI0vtCjK88o09/PLlFxduxpyDCyETcBpDuSK0mE5AoQHR22kc+yLP1tb4MefKtK2/tIqlTke3Tj0nJ9fFaJHINNqij0xF/ma9+Wa+8rJ7fF5lDn2V9T58Kb+rz5BJIZcRMA4kfsREoyg3Luf03u9x6W8/A7fVYN5oyVd+7n5Ju9QlZmUcx6LZ0BvbC1Vk9vru53yjC7IX1sSqGumFOipZMK5HbYBvU1kJqImwDSHcmVJEJyBYiODtvIZVmW1uxp0EPrKrWzJvZC9WPz3Lrx3HJdPrtETvvQbtgcB/+mrL/+q2xtNSftC+ZPVNuldys4at6QrgEMN+ImAMSP2IlUZ6/dJvf7j8j14YsyTH/MepbdJd+Uy+Wdd42Co86KOf2taVlat69B//tBrf62t0EBs+9/E9luuy6cWqjLZpVo0fi8IT0MhdRA3ASQ7kiuJBGSK0B0dNhGHtOy9Pruej34VqV21548JVe3sXlu3bCkXH8/Z+hJFfnalPHWT+X54PdRd3vnXK32v7tdcmYO7TpAEiBuAkD8iJ0YKYy2Wrm3PCH31if6XJdFkgIls+Q94xr5pn+yz37wsVafXtpep+e31OhgfWe/bSjIdOji6cW6cFqhzqrIHXpfHkmJuAkg3ZFcSSIkV4Do6LCNHKZl6bUPj+uht6r0UV3spEpFvkdfPLdcH59VnJAbMUfV28r867/J3lx5cps8BWq/6D/ln3zJkK8DJAviJgDEj9iJESfQKdeuF+Te+rgctdv6rGq5cuSd+Rn5Zq9QsGRm7HqWpfcPt+j5D2r0lw+Pq7OftVkkKdfj0HlTCnTBtCItmZAnj5Opd0cK4iaAdEdyJYmQXAGio8OW+oKmpf/78LgeeqtSe491xKw3vtCjLy4p12VDXFMlzN+ujHX/GXO0in/836nt4p/Lyiod+rWAJELcBID4ETsxYlmW7DXvy73lcbl2vyQj6OuzeqBsnryzr5Jv2hWSOzdmvVZvQK/uPKaXdxzTe5XNGsi/GI/TpsXj87R0UoGWTcrXmDxPnF8GyYS4CSDdkVxJIiRXgOjosKUuf9DUn3cc02NvH9b++thJlYmFGfriueW6dGax7Amam9lR9bYy/+8bsjcdOmmf5fCoY+m35J33eclgigKMPMRNAIgfsRPpwOiol2vHs3JveSLqqO6eLIdHvqmXyzd7hQJjFsdcm0WSapq9+suu43plZ512HI29lmJvEwoztHRSvpZMzNf88lxluhjVkkqImwDSHcmVJEJyBYiODlvq6fAF9b9bavT4hiM62hL7ybhJRRm68dwKXTyjKGFJldBolZ/K88Fj0XePWaT2i34qs2BiYq4HJCHiJgDEj9iJtGKZchxcK/eWJ+Tcv1pGP+NOgvkTQ6NZZn6m31Hfhxo69Nddx7V69/G4Ei12Q5o1OluLxuVp0bg8zRubowySLUmNuAkg3ZFcSSIkV4Do6LCljubOgJ7aVK0/bKpWY0cgZr0pxZm68dxyXTSjSLY+noCLl+PgWmW+fnvs0Srn/pu8866TbNykYWQjbgJA/IidSFe2pkq5tj8l944/ytZW02ddy7DLP/EC+WavkH/CBZLN0Wf96mavXt9dr9c/Oq7Nlc0y4/hn5bAZmjM6WwvH5WlBRa7mjMlWtrvv6+H0Im4CSHckV5IIyRUgOjpsya+2xaf/efeI/vj+UbX7Yi9qObUkUyuXVujCaYUJTaoYbbXKfOP7cu1+Ker+wOiFarv4Z4xWQdogbgJA/IidSHtmQI6Db8i9/Wk5978mw4z9sJQkmZkl8s38jLyz/lFm4ZR+T9/Q7tfbBxq1bl+j3trfoIb2vs/fmyFpSkmm5o3N0RljczRvbI4q8j0yEnhfgfgQNwGkO5IrSYTkChAdHbbk9WFNm55494he2XFMgT4eQztzbI6+sGSslk0qSOzNjxmUe+sTynjr5zJ8LSfttuzu0GiVM69ntArSCnETAOJH7AROMNrq5Nr1nNzbn5a9YV+/9QOlc+SbfqV8066QlV3Wb33TsrTzaKvW7WvU+v2N2lbd2uf9RCwFmQ6dMSaUaJk3NlezRmXJ46Tff7oQNwGkO5IrSYTkChAdHbbkYlqW3tzboCc2HtHGQ8191l02KV9fWFKu+eW5CW+HvWaLMlf/uxy1W6LuD41W+anMgkkJvzaQ7IibABA/YicQhWXJXr1J7u1Py7X7JRmBjr6ry1Cg4lz5pn9SvimXSe6B3Qd0+IL64HCLNh5q0ruHmrXj6OCSLQ6boWmlmZo7Jkdzx+RozuhsjStgdMupQtwEkO5IriQRkitAdHTYkkOHL6gXt9fpyXeP6GB9Z8x6NkO6eEaxrj9nrKaXZiW8HUZLtTLe+pncu56Lut9056lj2bflm32VZNgSfn0gFRA3ASB+xE6gH75WuXa/JPf2p+U4+l6/1S27S/6JF8k345Pyjz9fcrgHfKl2X1DvVTXr3UNN2nSoWTtr2gaVbJGk/AyHZo/ODiVcRmdrzpgc5XpYuyURiJsA0h3JlSRCcgWIjg7b8DrS1Kk/vl+j596vUVNn7HmRXXZDV8wp1efPHqNxBRmJb4ivTZ5ND8iz+SEZgejJHe/Mz6hj2XdkZRYl/vpACiFuAkD8iJ3AwNmO75Z7+zNyffiCbO11/dY33bnyT7pEvqmfUGDcUsnuiut6nf6gdtW06YPDLdpypEUfHG7R8Tb/YJuvCYUZmjsmlGiZOzpbU0oy5bTzYFa8iJsA0h3JlSRCcgWIjg7b6Rc0Lb25r0F/fO+o1u1rVF9/4oWZTq04a5T+cf4oFWY6E98YMyjXjj8qY/3PY964BQsmq/3CHypQviTx1wdSEHETAOJH7AQGwQzKUfmWXB8+L9feV2X4Wvs/xJUj/+SL5Z9yufzjPhbXiJZulmXpSJNXHxxuCSdcdte2aZCDW+Rx2DRzVFZ4OrEzx+aoODu+BFA6Im4CSHckV5IIyRUgOjpsp09ti1f/u6VWz39Qo6Mtvj7rTi3J1D8vGqPLZhbL5TgFT3mZQbl2vyjPhntiLqJpubLVsfAWec/6YtxPvwEjGXETAOJH7ASGKNAp577/k+vD5+U8sFaG2f/IEsuVLf+E8+WbdIn8Ey6Q3DmDvny7L6jt1a3aWt2irUdatfXI0Ea3VOR7NK88R/PH5mpeeY4mFmXIxtotEYibANIdyZUkQnIFiI4O26kVNC29c6BR/++DGq39qF7Bfv54l03K1+cWjdHZ4/NOzcKQZqArqXJv7KSKYZN3zmfVec5tsjKLE98GIMURNwEgfsROIHGMjgY597ws164X5DyyYUDHWDanAhXnyjf5UvknXSQrq3RIbbAsS9XNXm070qotR1q0rbpVO4+2ytffDU8MeR6H5o3N0ZnlOTqzPFezRmXLfSoeMkshxE0A6Y7kShIhuQJER4ft1Nh3rF0vbqvTy9vrVNva9yiVbJddn5hToqvmj9Kk4sxT06Cgvyupcp/sjdGTKpLkn3CB2pd9R2bR1FPTDmAEIG4CQPyIncCpYTQflmvPn+Xa82c5qjcN+LhAyWz5J1wg/4QLFBx1pmSzD7kt/qCp3bXt2nqkJfSqblVlQ/T1HPvjtBuaPSpbZ1XkakFFruaNzVWWe+htTCXETQDpjuRKEiG5AkRHhy1xGjv8enXnMb24rU7bq/ufD3n26Gz945llunRGsTJcp+ZGwWg/Lve2P8i95XHZ2mpi1guUzFLH0m8rMP5jp6QdwEhC3ASA+BE7gVPPaKmWa+8rcn70shxH3pXR5+qOJ5iefPnHn6fAhAvkH/93sjIKE9amhna/tlW3nki4HGlVmy8Y93nshjRjVLYWVOTqrIpczS/PVa7HkbB2JiPiJoB0R3IliZBcAaKjwzY0voCpdfsb9dK2Wr2xp0GBflZ59DhtunxWiT5zZplmjco+Ze2y122X+/3H5PrwBRnB2CNnAiWz1XnObfJPvEhijmNgQIibABA/YidwehlttaE1Wva+KkflWwNao0WSLBkKls6Vf9xSBSqWKTBmgeTwJKxdQdPSnrp2vVfVrPcPt+j9qmbV9LMeZTSGpKmlmVpQkaezuhIuhZnOhLUzGRA3AaQ7kitJhOQKEB0dtvj5g6Y2HGzSX3Ye0+qP6tXq7f/Jq+mlWfr0vFJ9fHaJctyn5gkro7NJzo/+JPfO5+SofrfPuoHSOeo8+zb5Jy4nqQLEibgJAPEjdgLDyNsi58E1cu39i5wH1sjwtQz4UMvuUmDMIvkrliowbpmCJbMTMoVYT9XNXr1f1az3q1r0XlWz9tS1D3DMTaSJRRnhkS0LKvJUmuNKaDtPN+ImgHRHciWJkFwBoqPDNjBB09K7h5r0l13HtXr3cTV2BPo9pijLqctnlejv55RoWmnWKWmX4W2S4+Abcu1+Sc4Dr/c5SkWSAqMXqHPhLfJPvJCkCjBIxE0AiB+xE0gSQb8c1ZvkPPC6nAfWyH78w7gON925CoxeqMCYhQqMWaRg2RmSw53QJrZ4A/qgqkWbq5q1ubJZ26tb+50hIJqKfE94VMvCcbkaneuWkUL3QMRNAOmO5EoSIbkCREeHLTZ/0NR7VS1avfu4/u/D4zre1v9Qepfd0PlTC3XFnFKdMzFfDluCO++WJVvjPjn3r5Zz/2tyHN4ow+p75Ixld8k37Qp5512nYNncxLYHSEPETQCIH7ETSE5G82E5D64JJVsOrZMR6IjreMvuUqBs3olky+izZHnyE9rGDn9QW4+0atOhJm2uatbWI63yBsy4zzMqx6UF4/J0VnmuFozL1bgCT1InW4ibANIdyZUkQnIFiI4OW6QOX1Bv7W/U6x/V6297G9Tc2f8IFUmaX56jv59dqotnFCknkQsrWpZsLVVyHHlXjsMb5ah8S/amAwM61MwskfeMa+Sdc7WsrJLEtQlIc8RNAIgfsRNIAYFOOao3y1G5Ts7KdbLXbJFhxZ/ECOZWKFg6V4GyuQqWhl6WJy9hzfQFTG0/2qpNh0IjW94/3KwOf/ztLM5yhke2LKjI1aTiTNmSKNlC3ASQ7kiuJBGSK0B0dNik+na//ranXq9/VK+3DzQN+CmouaOzdcnMYl08vUhluQkYCm8GZGs5IvuxnbLX7ZC9bocctdtka60e8Cksu0v+icvlm3Gl/BMukOypPc8wkIyImwAQP2InkHoMb5McVW/Lcagr2dKwd9DnCuaNCyVaimcoWDhVwcIpMvPGS/ahL0LvD5r6sKZNmypDyZbNVc0DWhezt/wMh+aX5+rMsTmaNTpbM8uyleVO7Poy8SBuAkh3JFeSCMkVILp07LCZlqWdR9u0bl+D1u1r1LbqFg10Ct8ZZVm6dGaxLplRpDF5nr4r+1plBDolMyAj6JcCHbJ1Nsroetlaj8rWXBl6NVXK1nq03ym+orHsLgXKz5VvymXyT/24LHfingoDcLJ0jJsAMFTETiD1GS3VchzZGBpVf2Sj7Md2yRjU0vMhls0ps2BiONkSLJgsM2+czNwKWRmFg14jMmha2lPXrk2VTeGEy0DWzOzNkDSxKENzRmdrdtdrakmWXA7boNoV9/WJmwDSHMmVAWpsbNTmzZt19OhRtba2qrS0VOXl5Zo/f77s9sQ8JUByBYguXTpsjR1+rd/fqHX7GrV+f6Pq2/tfP6XbzFFZumBqoS6ZUazxhRn91jfajyn7pVVyVG8aSpP7ZGaVyj9xufwTL5S/YqnkzDxl1wIQKV3iJgAkErETGIG8zaFpxLqSLY6j78sIehNyasuZKTO3XMHcCpm55TJzK2TmjJaVUSQzo0hWZlFobRej/0SHZVnad7xDmyubtamyWZsqm3SsdeD3gz057YamlWZp9qhQsmV6WZYmFmackoQLcRNAuiO50o/9+/frF7/4hdasWSO//+T/2EpKSrRixQqtWrVKLtfQprYhuQJEN1I7bJ1dix5uPNSktw80ant164BHp9gNacG4PF0wtVDnTS3U6Din/MpYc6c8HzwWf6P7YHryuxaJXKxA+RIFS+cM+kkuAEMzUuMmAJxKxE4gDQT9std/JHvtNtlrtshRu1X2YztlBH2n5HKWYZPlKZSVWRhKuLhzZTmzZLmyJGemLFe2LGemLGe2LGeGZHNKNpssw6669qA+OubVrjqvdtV2qKbNlCmbTBkyZKn7Tiv0+US86v7cXceQJbvN0Khcp8rzPCrPd6s8z62x+W4VZjq7zmNJ4Zhndb3Utc06sbn7s80hy5Ehw5WhnIIyyZmhpg6/TLtHcrgHlFACgJGA5EofXnjhBd15551qb2/vt+6sWbN07733qry8fNDXI7kCRDdSbnR9AVNbq1v07sFmbTzUpK1HWuQLDvy7eJw2LZ2YrwumFWnZpHzlZQx+7t+M1f8uz9YnBn286c5TsGS2giWzFCyZpUDpXJmFk+lEA0lipMRNADidiJ1Amgr6Za/fLXvN1tC6kvV7ZK//SLb2uuFuWcqyXNmyXDmy3DmyXLld7zky3bmhBFNGoayMQpkZBbIyiro+F0nO/mdhAIBkQnIlhrVr1+qmm26SaZ5YNHrChAk6++yzlZ+fr0OHDun1119XZ2dneP+UKVP09NNPKzs7e1DXJLkCRJeqN7r17X5tr27V9uoWvVfVog8Otwx4Ifpu4ws9WjqxQEsn5WvBuDy5EzSU22itUfbz18pxfNdJ+yxXjkxPnixPgayMwtAw97weQ91zK7qGtzMqBUhWqRo3AWA4ETsB9GR0NsrWlWixH/8olHBpPCBby5FBrUOJ/lmODJldiZfuhIuV2T3NWrHMzCJZmSUyM4tDa97YhzaDDAAMFcmVKGpra3XZZZepra1NUqiT/c1vflPXXnutbLYTP2zW19frq1/9qjZs2BDe9olPfEK//OUvB3VdkitAdKlwo9vhD2pXTZu2HWnVtuoWba9u1eGm+Ofy9ThsWjQ+T0sn5WvppAKV5/ezIP0QGe3HJVmSzSnL7gx1Tm2OU3pNAKdeKsRNAEg2xE4AA2IGZGs9KltzlWzNlSfem6pka6+T0X5MNl/LcLcyLZjuvMikSzgJUxxKymQWh7fLlTXczQUwApFcieKuu+7Sk08+GS5/5Stf0a233hq1rtfr1ac+9Snt3btXUqhD/txzz2nWrFlxX5fkChBdMt3ompal6iavPqpr1566du051q49dW06cLxDcczwFWYzpBllWVo0Lk9nT8jXWRW5CRudAiB9JVPcBIBUQewEkDABr4zOBtk6jstoPx5+N3ytMvztMnytkr9dhr9Vhq9dhr9Nhr9dMoOSFZTMgAzLlMyA1PUeUTZCq6mcmE0g8nM4ehmhlVdMSwqaloKWFDBDn82TVmo5UbZ6rOpidZXV492pgDLkk0deuYzUGMVjOTK6kjBdyZeM4tAoGU9eaKoyd25oCrOIco5kH/x03ABGPpIrvRw7dkznn39+ePH6cePG6eWXX5bTGTuYrl+/Xtddd124fMkll+jee++N+9okV4DoTveNbsC0dKzVp+pmrw7Vd+hQQ2fXq0OVDZ3q8Mc3tVdPhqTpZVlaOC5Xi8blaX5FrnLcjBQBkFj8QAgA8SN2AkgXlmWppsWnPXXtOljfoQNd970HjneottUX17kcCsgjXyjZYniVKa9y1K4co0M5aleu0a4cdSjXaFOO2pVntKlQLSo0WlRoNKtQLXImcYLGcmaGXo4MyeGR5ciQ5fSc+OzwhGZ/sDkkwy7LZpdsdlkZxfJNu0Jm/vjh/goATqFEJ1dS/hfC1157LZxYkaSrrrqqz8SKJC1ZskSTJk3Svn37JIXWa2lvb1dmZuYpbSuA+PgCpho7Amrq9KupI6DjbX7VtHhV2+JTTYtPNc1e1bT4dKzNJzNB99Iep02zRmVr9qhszS/P0VkVuUNaiB4AAAAAgKEwDEOjct0alevWssmRPwy2+4I61NChg/WdOlDfoeomr440depIk1dHm70nzdgQkEOtcqhVmVLPfQO+p7aUq3YVGC0qUnNE0qXQaFGR0aQSNanIaFax0aQiNcthDP6Bx3gZ/vbQqKJBcL73iGquelnuvDLZbaxZCqB/KZ9cWb16dUT5sssuG9Bxl156qe6//35JoanC1q1bp4svvjjh7QPSkWlZaun0q80bVPXxdrV5A2rzmWrzBdXuC55490aWW7wBNXUE1NgRUGOHf0gjTgbCbkiTSzI1Z3SOZo/O1pzR2ZpUnCkHnSgAAAAAQArIdNk1oyxbM8qyT9oXMC3Vtnh1pOnEq9kv1TR7daShTXWtPtW3+QeeV5EkGWpWlpqtLB3UqH6TMoZM5alNxUaTSrqSLcVGUzjxEvrcrGKFtmUY8Y3ESSRHZ72++7v/pzXmfLkdNmU4bcpw2kPvLrsyu8oep02ZLnt4X+izTR6nXZlOuzJcoXrd9bvLGU6b3A6bDIPfHICRIuWTK5s2bQp/Li4uVkVFxYCOmz9/fkR548aNJFeQtvxBM5zk6OhOgviDPbZ1J0BC9Xrui7at8xQnRQYjz+PQlJLME6/iTE0vzVKGyz7cTQMAAAAAIOEcNkNj8jwak+eRFH06RX/QVEO7X3WtPtW2+NTQHlBjp1+N7aGHHps6Amroem/sCKi5MxBXGyzZ1KgcNVo52mOV91s7U95QwqUr2VJsNKuo63OB0arcrqnKctWmXKNduWqT24ivTbE0WZn60BwnSfIGTHm7ZtNIJJuhEwmbXomX7oSNx2kLJWl6JHU8ver0TOqEzmPnQVFgGKR0cqWmpkYtLS3h8syZMwd8bO8F7LsXuAeSnWlZ8vrNrmSGGU5qtPv6TnicqNMjkeIPvfsHs7J7EnLZDY3N92h8YYbGFXi6XhkaX5ihkmwnT4cAAAAAANCD025TaY5bpTluzR7df/2Aaam5M6DGdr9avbF/d2jr9TuFN2DKFzDVGTDlC5rh5IUvYMkbMBUwLUmG2uXRIcujQyob4FRlltzyh5MteWpTpuHtWlfGK4/hO/FZfmUYXtlkyiFTdgVl73pvVraeDy5VtYqG+CfaN9OS2rr+TCR/v/Xj4bQbESNmPK4TSRpPz4ROj3dP731dyR6PI5TY6d7ushv8pgJEkdLJle41U7qNGTNmwMcWFxfL6XSG12vZv39/QtuGkceyLJlWKLkRNEOfg5Yl07QUtBTaZloKWpb8wVDnwB805Q1Y8vXoPHTv8wVDnYjQe6iD0e4LqsNvqqOrc9Lh797W83PyjQo5HXI9DuVnOFSW41JpjltlOS6V5Xa9d20ryHDwnz0AAAAAAKeIw2aoMNOpwszErk0aNEO/nXh7/EbSnXzp/j3FF+iVlAme2HaijhWu0xY0VR8+zuqV1Ok+LlR/JPAHLfmDATV3Jv7c3SNuPM4T06V5er33Tt70rBvzGJdNHodNDhvJG6SmlE6u1NTURJRHjRo14GMNw1BZWZmqqqqingvx21vXrrV769XhC/2nZFqWLEmWJUmhZIRlSZasrm2hjH1k2eqqI6nrvXubFEpwBHslOLo/hxMephXaZimc7Oje3r3PNLsSI5aloNnjHL32hT93JVAwOG6HTZldT0xkuuzKckV/z3bblZ/hUF6Gs+vdofwMp3I9DhaTAwAAAABghLLbjNBICZ3+qbsty5IvaEU86NrZNVtI74ddQ+XQlOod/qDau7Z1Rnk4ttMfShKNBJEjbk4Nh82Qw26E3rs+O222iG1OuyFH1za7Efp915BkGJIhI/RuSLau7erxOVQn8pjT7XQnkMYVePSPZ5apNMd9Wq+bTlI6udLe3h5RzszMjOv4rKys8OdAICCv1yu3e+B/2cionrDraKv++b+3dA3jRKrzOG2hhEePZEiGy64sV2hOz54JkfBnp12Z7tB7ltuuUcUFynY55O9sZd5PAOhHzz4F/QsAGBhiJwDEh7gZnWEY8tgkj9Ougvh+WuyXaVlREy/hRE2UGUw6eiV2Onoe2+OYkfYbXMC0Rtx3SgZv7m3QE9fO46HlU2REJVfiSYxEq9/W1hbXOboXAYO0cVMdAXCYGIaU7XIo021XltuhbLejaxSIQ5kuR9c2uzJdoX1Zboey3HZldR0T3uYKbc90JXiUSGZB4s4FAGkgLy9vuJsAACmH2AkA8SFupj5fIJR4afcH1OYNJV3afYEea98Ewkmddl9QHd1lX/BEsqfr+IjtvqB8wZEx4gbSzpo2ZeXkyuM8/aPC0kFKJ1e8Xm9E2emMb75Hl8vV5/kwcGeOyx/uJiQdw5BcdpvcDpvcTnvos9Mmt8Mul6Nre/hlD02d1Z30cIUSJJnu7tEhoeRHhsseToxkdI0ayXDaeeIEAAAAAAAgjbgcNrkcNuUpsevfSFIgeGJkTXs4GRNQh89Uuy8QTth0J21OJHB61w/2SvCEkj48n336fGxqsdwO23A3Y8RK6eRK71Em3YvTD5TP5+vzfP1pbGyMq/5INrfEqbs/M0OvfVgvbyAoW9dEhr3nMgzPf6jQYljqsc/WlSAIz4HYY67Enuex2ULzKtpshmzGic+OrrLNCM3VaTMM2W3qqmOEttkku2F0naN33RPnCtVReLvNUPgc3eWIfb3O4Tqli3GZknxSQPIFJF+/9U8/wzDCT8E0NTXJsvhfEwD6QtwEgPgROwEgPsRNxMslyeWQ8h2SZOt6De3nZMuy5O9a46Z7fZuAaSkQtOTvmhos9NlUIGiFpwvzByPLpml1rdWs8N/lnms7Wz3WcpZ1Ym1os2uB6NP9t384/rVV5Hu0fHqRmpqahuHqySnRM1GldHKl9xor8Y486V2/5xosA8F/QpHOm1Ko86YUDnczkgp/R0J/Bvw5AMDAETcBIH7ETgCID3ETw8lpN+S0O5TrGe6WpAf+rZ86KT0mqHdypa2tLa7je9Z3OBxxj1wBAAAAAAAAAADpJ6WTK2VlZRHlmpqaAR9rWVZE/d7nAgAAAAAAAAAAiCalkyuTJ0+OKB8+fHjAxx47dixijZZJkyYlrF0AAAAAAAAAAGDkSunkSmlpqXJycsLlnTt3DvjYHTt2RJRJrgAAAAAAAAAAgIFI6eSKJC1YsCD8+fjx4zp06NCAjtu8eXNEedGiRQltFwAAAAAAAAAAGJlSPrmyfPnyiPIrr7wyoONeffXV8Ge3262lS5cmtF0AAAAAAAAAAGBkSvnkyoUXXiin0xkuP/vssxFrqUSzfv167d+/P1w+77zzlJmZecraCAAAAAAAAAAARo6UT64UFxfrqquuCpcPHTqkBx98MGZ9r9erH/7wh+GyYRi6+eabT2kbAQAAAAAAAADAyJHyyRVJWrVqlbKyssLle++9V48++qhM04yoV19fry9+8Yvas2dPeNvll1+uWbNmnba2AgAAAAAAAACA1GZYlmUNdyMSYc2aNbr55psjEioTJkzQOeeco/z8fB08eFCvv/66Ojs7w/unTJmip59+WtnZ2YO6ZkNDw5DbDYxEhmEoPz9fktTY2KgREmYA4JQhbgJA/IidABAf4iaAdFdQUJDQ8zkSerZhdP755+vHP/6x7rzzTnV0dEiSDhw4oAMHDkStP3PmTN13332DTqwAAAAAAAAAAID0NCKmBet25ZVX6rnnntNFF10Usch9TyUlJbr11lv1zDPPqLy8/DS3EAAAAAAAAAAApLoRM3Kl26RJk/Sb3/xGDQ0N2rx5s44ePaq2tjYVFxeroqJCZ511lux2+3A3EwAAAAAAAAAApKgRl1zpVlBQoOXLlw93MwAAAAAAAAAAwAgzoqYFAwAAAAAAAAAAONVIrgAAAAAAAAAAAMTBsCzLGu5GAAAAAAAAAAAApApGrgAAAAAAAAAAAMSB5AoAAAAAAAAAAEAcSK4AAAAAAAAAAADEgeQKAAAAAAAAAABAHEiuAAAAAAAAAAAAxIHkCgAAAAAAAAAAQBxIrgAAAAAAAAAAAMSB5AoAAAAAAAAAAEAcSK4AAAAAAAAAAADEwTHcDQCQeI2Njdq8ebOOHj2q1tZWlZaWqry8XPPnz5fdbh/u5gFAUkrH2FlTU6MtW7aopqZGHR0dKisr08SJEzV37tzhbhqAFJCOcRMAhipZY+fx48f1wQcfqLKyUm1tbXK5XCosLNS4ceM0c+ZMZWVlDfrc9DkBjFQkV4ARZP/+/frFL36hNWvWyO/3n7S/pKREK1as0KpVq+RyuYahhSGPPvqofvKTn0RsW7x4sR5//PEBHT99+vRBX3v79u1yOAh9AE5Ihth5zTXXaMOGDYM69tFHH9W5554b1zFbtmzR3XffrfXr18s0zZP2jxs3Ttdcc42uueYaGYYxqHYBGLnSJW7S5wSQSMkQO6N57bXX9Oijj+rdd9+VZVlR69hsNs2ePVvXXHONPvnJTw743PQ5AYx0TAsGjBAvvPCCPv3pT+uvf/1r1I6aJNXV1em+++7TihUrVFVVdZpbGFJVVaV77rlnWK4NAL2lSuxMpIceekhXX3211q1bF/UmV5IOHTqk//iP/9D111+vxsbG09tAAEktHeMmAAxVMsbOhoYGrVq1Srfccos2btwYM7EiSaZpauvWrVqzZs2Az0+fE0A64FEaYARYu3atvvWtb0V0WCZMmKCzzz5b+fn5OnTokF5//XV1dnZKknbs2KFVq1bp6aefVnZ29mlt6/e+9z21t7cn7HyGYchmG3iemKdhAHRL5tgZz5QQ8cS1p556Sj//+c8jts2cOVMLFixQRkaG9u7dqzfeeEOBQECStH79en3lK1/Rww8/LKfTOeDrABiZ0jFu9jyGPieAwUjG2FlTU6Nrr71W+/fvj9g+bdo0nXHGGSouLlYwGFRtba22bdumvXv3xnV++pwA0gXJFSDF1dbW6mtf+1q4o2YYhr75zW/q2muvjbgBrK+v11e/+tXw9Al79uzRHXfcoV/+8penra3PP/+83nzzTUmhIc91dXVDPuett96qL3/5y0M+D4D0ksyxM55pEuOxc+dO/eAHPwiXXS6XfvSjH+mKK66IqFdZWalbbrlFu3fvliS98847uueee/Qv//IvCW8TgNSRjnGzJ/qcAAYjGWOn1+vVypUrIxIrCxcu1B133BFzOsTKykq98MILAxpdQp8TQDphWjAgxd1///1qa2sLl7/85S/r+uuvP+nJusLCQv3ud7/T5MmTw9tefvll7dix47S0s76+PrzOimEY+va3v31argsA0aRK7EykX/3qV+GnAyXpBz/4wUk3uZJUUVGh3//+9yoqKgpv++///m/V1taelnYCSE7pGDcBYKiSMXb+9re/1a5du8Llf/iHf9ATTzzR5zpTFRUV+tKXvqR///d/7/f89DkBpBOSK0AKO3bsmJ599tlwedy4cVq5cmXM+m63W7fffnu4bFmW7r///lPaxm4/+tGP1NDQIElasWKF5s2bd1quCwC9pVLsTJQdO3Zo7dq14fKiRYt05ZVXxqxfWFior3/96+FyZ2enHnnkkVPZRABJLB3jJgAMVTLGzj179ujhhx8Ol2fPnq0f//jHCZvKkD4ngHRDcgVIYa+99lrEYnhXXXVVv/OTLlmyRJMmTQqX165dm9A1UKL529/+phdffFFSaDowhvkCGE6pEjsT6ZVXXokof/azn+33mCuuuEK5ubkxzwEgfaRj3ASAoUrG2Pnoo49GtOm73/2uHI7ErRhAnxNAuiG5AqSw1atXR5Qvu+yyAR136aWXhj97vV6tW7cuoe3qqb29Xd/73vfC5W9/+9sRHScAON1SIXYmWs/v7HQ6tXz58n6PcbvdOv/888Pl6upqpvUB0lQ6xk0AGKpki51tbW16+eWXw+XuBeYTiT4ngHRDcgVIYZs2bQp/Li4uVkVFxYCOmz9/fkR548aNCW1XT3fffbcOHz4sSVq2bJk+8YlPnLJrAcBApELsTKSmpiZ99NFH4fKsWbPkdrsHdGyqfmcAiZVucRMAEiHZYufrr78eMQom0ffm9DkBpCOSK0CKqqmpUUtLS7g8c+bMAR87a9asiPLevXsT1q6etmzZoieeeEJS6GmUniNYAGA4pELsTLTe7UyH7wwgcdIxbgLAUCVj7Hz//fcjygsXLkzIebvR5wSQjhI3sSKA02rfvn0R5TFjxgz42OLiYjmdzvBcq/v3709o2yQpEAjo9ttvVzAYlCTdfPPNGjduXMKv884772jXrl3atWuX6uvr5XA4VFBQoPHjx2vRokW67LLLTsl1AaSmZI+dknTkyBF961vf0tatW1VXVye/36+CggKVlZVp4cKFOv/88+OawmEo33n06NER5VP1nQEkr3SMm9HQ5wQQj2SMndu2bQt/djgc4eRHTU2NXnjhBa1evVpVVVVqbW1VQUGBysvLtWTJEl1xxRUDGnVDnxNAOiK5AqSompqaiPKoUaMGfKxhGCorK1NVVVXUcyXC7373O+3atUuSNHnyZN1www0Jv4YUfbhwc3OzDh48qDfeeEN33323Pv7xj+s73/mOioqKTkkbAKSOZI+dklRVVRW+Rrf29nYdPnxYmzdv1oMPPqj58+fru9/9rubOndvv+YbynUtKSuRwOBQIBCRJR48eHfCxAEaGdIyb0dDnBBCPZIydPUeDlJSUyOPx6Mknn9TPfvaziOnCJKmjo0NHjhzRhg0b9Nvf/lb/9E//pG984xtyuVwxz0+fE0A6YlowIEX17vxkZmbGdXxWVlb4cyAQkNfrTUi7JOnAgQP67W9/KynUMbzrrrv67ISdSsFgUC+99JKuvPJKbdmyZVjaACB5JHPsjMd7772nq6++Ws8++2y/dXt/557foT82m00ejyfmuQCMfOkYNweDPieAnpItdpqmGTFNWUlJie6++27ddddd/fbv/H6/Hn/8cV177bVqbW2NWY8+J4B0xMgVIEX17mwMdKG4WPXb2triPkc0lmXp9ttvD3f+Pv3pT2vRokVDPm9v48eP1/Lly3XOOedoypQpKiwslN1uV319vbZt26aXX35Zr7zySnhastraWq1cuVLPPPMMUzYAaSxZY6ck5efn68ILL9THPvYxTZ8+XWVlZfJ4PGpubtZHH32kNWvW6Jlnngnf1Pr9ft1xxx3Kz8/XxRdfHPO8vb9zvMlut9sdviY3ukD6Sce42RN9TgCDkWyxs6WlRZZlhcv79+8PJ4IdDodWrFihK6+8UpMnT5ZhGNq3b5+ef/55/eEPfwiPJtm8ebO++93v6te//nXUa9DnBJCOSK4AKar3kytOpzOu43t3dBL1FOEf//hHbdiwQZJUUFCgf/u3f0vIeXt6+OGHtXTpUhmGcdK+UaNGadSoUbrooot03XXX6Stf+Yqqq6slSQ0NDfrGN76hp556KuFtApAakjV2fvnLX9a8efOi3jQXFhbq7LPP1tlnn60bbrhBX/va18Jx1jRNfetb39LChQtVUFAQ9dyJ/M6dnZ1xHQsg9aVj3OxGnxPAYCVb7OydrOgexeJ2u3X//fdr6dKlEfvnzJmjOXPmaPny5brpppvCfcBXXnlFq1ev1oUXXnjSNehzAkhHTAsGpKjeN5Ldi90NlM/n6/N8g1FXV6ef/vSn4fI3v/nNfm9aB2PZsmVRb3J7O+OMM/TII48oJycnvO29997T2rVrE94mAKkhGWOnJC1evHhA5youLtaDDz6oWbNmhbe1trbqoYceinlMIr9zz+kaAKSHdIyb3ehzAhisZIudsY6/7bbbTkqs9LRkyRJ9/etfj9j28MMPD+ga9DkBpAOSK0CK6j1na7xPsvSuH898qLH84Ac/UHNzs6TQDe+nPvWpIZ9zqCZNmqSVK1dGbPvTn/40TK0BMNySMXbGKyMjQ9/73vcitr388ssx6/f+zr1v1vvT8zvHO184gNSXjnFzMOhzAugp2WJntD5cXl6ePve5z/V77NVXX63CwsJwedOmTWpsbOz3GvQ5AaQDkitAiurd2Whra4vr+J71HQ7HkJ+Eee211/Tqq69KCg3/veuuu4Z0vkT6zGc+E/HU4fr164exNQCGU7LFzsE688wzNWXKlHC5urpaBw4ciFq393fuayHS3kzTVEdHR8xzARj50jFuDhZ9TgDdki12ejweORyRKwOce+65Azqvy+XSsmXLwmXLsvTee++dVI8+J4B0RHIFSFFlZWUR5ZqamgEfa1lWRP3e5xqMn/zkJ+HPK1eu1KRJk4Z8zkQpKipSRUVFuFxbWxv3EGUAI0Oyxc6hOPPMMyPKR44ciVpvKN+5rq4uvEizFFpjAEB6Sce4OVj0OQF0S8bY2fs8U6dOHfCx06ZNiyhH+z70OQGkIxa0B1LU5MmTI8qHDx8e8LHHjh2LuNFLRCKkoaEh/PmBBx7QAw88ENfxGzZsiJgLe9GiRfr9738/5HZ1Kyoq0qFDh8LlxsZGlZSUJOz8AFJDssXOoSgqKooo94zDPQ3lO3cvztxtuL8zgNMvHePmUK9BnxNAMsbOyZMnR7QjLy9vwMf2rtvU1BT1/D3R5wSQDhi5AqSo0tLSiEUzd+7cOeBjd+zYEVFOdMclGAwO6NXXcaZpJrRNPYcYS4lbTBVAaknm2Bmvgca13je68Xzn7du3R5SH+zsDOP3SMW4m+zUAJL9kjJ09p0aU4lsTpXfdaLGNPieAdERyBUhhCxYsCH8+fvx4xFNyfdm8eXNEedGiRQltV7IxTTNi2gen06nc3NxhbBGA4TRSYmdlZWVEuedCoz3l5uZGTPuwc+dOdXZ2DugavefTHu7vDGB4pFvcHCz6nAB6SrbYuXjx4ohyPNN2HT16NKJcUFBwUh36nADSEckVIIUtX748ovzKK68M6Ljuheel0BMnS5cuHXJb3n33XX344YcDfr322msRxy9evDhi/+OPPz7kNnXbvHmzmpubw+UZM2Yk7NwAUk8yxc7B6ujo0MaNG8Nlh8PR57zZPb+z3+/X6tWr+72G1+vV2rVrw+XRo0dHTN8IIH2kY9wcDPqcAHpKtti5dOnSiIXieydx+tI7+RGrT0ifE0C6IbkCpLALL7xQTqczXH722Wf7XTRz/fr12r9/f7h83nnnRXSwRqL7778/orxs2bJhagmAZDASYufvf/97tba2hsvz5s2LmHqit0svvTSi/OSTT/Z7jRdffDHiR8LLLrtsEC0FMBKkY9wcDPqcAHpKttjpcrl00UUXhctbtmzR7t27+z1u79692rRpU7hcWloaMzlNnxNAuiG5AqSw4uJiXXXVVeHyoUOH9OCDD8as7/V69cMf/jBcNgxDN998c8z6VVVVmj59evh14YUXJqbhg9TY2BjX0GVJuueee/Tmm2+Gy263W1dffXWimwYghSRb7Pzwww/jaL305ptv6r777ovYdt111/V5zKxZs3T++eeHyxs3btTzzz8fs359fb1++ctfhssej0df+MIX4mongJEj3eImfU4AiZBssVOSbrnlFjkcjnD5zjvv7DPhEwgEdOedd8qyrPC2a665JmZ9+pwA0g3JFSDFrVq1SllZWeHyvffeq0cfffSkBeHr6+v1xS9+UXv27Alvu/zyy1NquG11dbUuuugi3XHHHXr33XcjOni9HTp0SF/96lf1m9/8JmL7jTfeqLKyslPdVABJLpli5z//8z9r5cqV+utf/yqv1xuzXnNzs+655x6tWrUq4iZ48eLFuuSSS/q9zm233RZxM3377bfrpZdeOqleZWWlrr32Wh0/fjy87fOf/7xKS0sH+pUAjEDpFDfpcwJIlGSKnZI0ceJErVixIlzetGmTbr75ZtXW1p5Ut66uTrfeeqs2bNgQ3jZ27Fh99rOf7fMa9DkBpBPD6qunCCAlrFmzRjfffHNEB23ChAk655xzlJ+fr4MHD+r111+PWExuypQpevrpp5WdnR3zvFVVVRFzpo4dO3ZAc6YORO9zL168uN91Vnbu3Kkrr7wyXM7Pz9esWbM0YcIE5ebmymazqaGhQdu3b9e2bdtO6rB+/OMf169+9SsZhpGQ7wAgtSVL7Fy4cKFaWlokSRkZGZo+fbqmTJmi/Px8eTwetbS0aM+ePdq8ebM6Ojoijp04caKeeuop5efnD+g7/+EPf9Cdd94ZsW3mzJlauHChPB6P9u7dqzfeeEOBQCC8f/HixXrkkUciprUAkJ7SJW7S5wSQSMkSO7v5fD5dd911EVN9eTweLV26VJMnT5Yk7du3T+vWrYuIoRkZGfqf//kfzZ49u99r0OcEkC5IrgAjxPPPP68777zzpBvIaGbOnKn77rtP5eXlfdZL9uTKQNntdt1yyy26+eabZbfb4z4ewMiVDLGz54+E8bj00kv1/e9/f8CJlW4PPvigfv3rX0fczMZyzjnn6Ne//nXc1wAwcqVD3KTPCSDRkiF29tTY2Kivf/3rWrdu3YDql5SU6P7779fcuXMHVF+izwkgPTAtGDBCXHnllXruued00UUXxXzSo6SkRLfeequeeeaZfjtqyWjUqFG6/vrrNXv27IhhxrHk5eXps5/9rF566SV96Utf4iYXwEmSIXauWrVKZ5999oAWK3W5XFq+fLkee+wx3XPPPYO6AV25cqWefPJJnXvuubLZoncFKyoq9J3vfEePPfYYN7kAIqRD3KTPCSDRkiF29pSfn6+HH35Yd911l6ZMmdJnvVWrVulPf/pTXIkViT4ngPTAyBVgBGpoaNDmzZt19OhRtbW1qbi4WBUVFTrrrLNGzM2ez+fTnj17VFVVpdraWrW1tck0TeXm5io/P1/Tp0/X5MmTmY4BwIANd+w0TVMHDx7UwYMHdfToUbW0tMjv9yszM1N5eXmaOHGiZs2aJZfLlbBr1tTU6IMPPlBNTY06OztVWlqqiRMn6owzzkjYNQCMXOkQN+lzAki04Y6d0ezatUt79+5VTU2NgsGgCgoKNHXqVM2dOzdmYiQe9DkBjFQkVwAAAAAAAAAAAOLAtGAAAAAAAAAAAABxILkCAAAAAAAAAAAQB5IrAAAAAAAAAAAAcSC5AgAAAAAAAAAAEAeSKwAAAAAAAAAAAHEguQIAAAAAAAAAABAHkisAAAAAAAAAAABxILkCAAAAAAAAAAAQB5IrAAAAAAAAAAAAcSC5AgAAAAAAAAAAEAeSKwAAAAAAAAAAAHEguQIAAAAAAAAAABAHkisAAAAAAAAAAABxILkCAAAAAAAAAAAQB5IrAAAAAAAAAAAAcSC5AgAAAAAAAAAAEAeSKwAAAAAAAAAAAHEguQIAAAAAAAAAABAHkisAAAAAAAAAAABxILkCAAAAAAAAAAAQB5IrAAAAAAAAAAAAcSC5AgAAAAAAAAAAEAeSKwAAAAAAAAAAAHEguQIAAAAAAAAAABAHkisAAAAAAAAAAABxILkCAAAAAAAAAAAQh/8f/tDLxQn6RNYAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 811, + "height": 811 + } + }, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 9 + }, + { + "cell_type": "markdown", + "id": "853f8ee0-5730-47c8-ba6b-d2fed86677b4", + "metadata": {}, + "source": [ + "We can see that the posteriors don't align perfectly. DADVI does a pretty good job matching the means, but underestimates the variance somewhat. However, often DADVI is much faster than MCMC, and so this is a tradeoff that can make sense.\n", + "\n", + "Note that DADVI as explained in the [paper](https://jmlr.org/papers/volume25/23-1015/23-1015.pdf) has further tools to make variances more accurate, which we plan to add to PyMC later on. For now, its key advantage is that it converges automatically and reliably, removing one headache from ADVI." + ] + }, + { + "cell_type": "code", + "id": "78df242e-a266-4dda-8ca4-43b85bc92327", + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-19T00:21:04.751950Z", + "start_time": "2025-09-19T00:21:04.750487Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { From b8d4048a23a890802265633c2b016c0e27d7dd59 Mon Sep 17 00:00:00 2001 From: jessegrabowski Date: Thu, 18 Sep 2025 19:33:24 -0500 Subject: [PATCH 4/5] Allow basinhopping when fitting DADVI --- pymc_extras/inference/dadvi/dadvi.py | 73 ++++++++++++++++++++++------ tests/inference/dadvi/test_dadvi.py | 39 +++++++++++++++ 2 files changed, 96 insertions(+), 16 deletions(-) diff --git a/pymc_extras/inference/dadvi/dadvi.py b/pymc_extras/inference/dadvi/dadvi.py index 4df01148b..bc81ce1f2 100644 --- a/pymc_extras/inference/dadvi/dadvi.py +++ b/pymc_extras/inference/dadvi/dadvi.py @@ -5,7 +5,7 @@ import pytensor.tensor as pt import xarray -from better_optimize import minimize +from better_optimize import basinhopping, minimize from better_optimize.constants import minimize_method from pymc import DictToArrayBijection, Model, join_nonshared_inputs from pymc.backends.arviz import ( @@ -31,7 +31,6 @@ def fit_dadvi( model: Model | None = None, n_fixed_draws: int = 30, - random_seed: RandomSeed = None, n_draws: int = 1000, include_transformed: bool = False, optimizer_method: minimize_method = "trust-ncg", @@ -40,7 +39,9 @@ def fit_dadvi( use_hess: bool | None = None, gradient_backend: str = "pytensor", compile_kwargs: dict | None = None, - **minimize_kwargs, + random_seed: RandomSeed = None, + progressbar: bool = True, + **optimizer_kwargs, ) -> az.InferenceData: """ Does inference using Deterministic ADVI (Automatic Differentiation Variational Inference), DADVI for short. @@ -79,10 +80,6 @@ def fit_dadvi( compile_kwargs: dict, optional Additional keyword arguments to pass to `pytensor.function` - minimize_kwargs: - Additional keyword arguments to pass to the ``scipy.optimize.minimize`` function. See the documentation of - that function for details. - use_grad: bool, optional If True, pass the gradient function to `scipy.optimize.minimize` (where it is referred to as `jac`). @@ -93,6 +90,13 @@ def fit_dadvi( If True, pass the hessian to `scipy.optimize.minimize`. Note that this is generally not recommended since its computation can be slow and memory-intensive if there are many parameters. + progressbar: bool + Whether or not to show a progress bar during optimization. Default is True. + + optimizer_kwargs: + Additional keyword arguments to pass to the ``scipy.optimize.minimize`` function. See the documentation of + that function for details. + Returns ------- :class:`~arviz.InferenceData` @@ -105,6 +109,16 @@ def fit_dadvi( """ model = pymc.modelcontext(model) if model is None else model + do_basinhopping = optimizer_method == "basinhopping" + minimizer_kwargs = optimizer_kwargs.pop("minimizer_kwargs", {}) + + if do_basinhopping: + # For a nice API, we let the user set method="basinhopping", but if we're doing basinhopping we still need + # another method for the inner optimizer. This will be set in the minimizer_kwargs, but also needs a default + # if one isn't provided. + + optimizer_method = minimizer_kwargs.pop("method", "L-BFGS-B") + minimizer_kwargs["method"] = optimizer_method initial_point_dict = model.initial_point() initial_point = DictToArrayBijection.map(initial_point_dict) @@ -145,14 +159,34 @@ def fit_dadvi( ) dadvi_initial_point = DictToArrayBijection.map(dadvi_initial_point) - - result = minimize( - f=f_fused, - x0=dadvi_initial_point.data, - method=optimizer_method, - hessp=f_hessp, - **minimize_kwargs, - ) + args = optimizer_kwargs.pop("args", ()) + + if do_basinhopping: + if "args" not in minimizer_kwargs: + minimizer_kwargs["args"] = args + if "hessp" not in minimizer_kwargs: + minimizer_kwargs["hessp"] = f_hessp + if "method" not in minimizer_kwargs: + minimizer_kwargs["method"] = optimizer_method + + result = basinhopping( + func=f_fused, + x0=dadvi_initial_point.data, + progressbar=progressbar, + minimizer_kwargs=minimizer_kwargs, + **optimizer_kwargs, + ) + + else: + result = minimize( + f=f_fused, + x0=dadvi_initial_point.data, + args=args, + method=optimizer_method, + hessp=f_hessp, + progressbar=progressbar, + **optimizer_kwargs, + ) raveled_optimized = RaveledVars(result.x, dadvi_initial_point.point_map_info) @@ -166,7 +200,9 @@ def fit_dadvi( draws = opt_means + draws_raw * np.exp(opt_log_sds) draws_arviz = unstack_laplace_draws(draws, model, chains=1, draws=n_draws) - idata = dadvi_result_to_idata(draws_arviz, model, include_transformed=include_transformed) + idata = dadvi_result_to_idata( + draws_arviz, model, include_transformed=include_transformed, progressbar=progressbar + ) var_name_to_model_var = {f"{var_name}_mu": var_name for var_name in initial_point_dict.keys()} var_name_to_model_var.update( @@ -253,6 +289,7 @@ def dadvi_result_to_idata( unstacked_draws: xarray.Dataset, model: Model, include_transformed: bool = False, + progressbar: bool = True, ): """ Transforms the unconstrained draws back into the constrained space. @@ -271,6 +308,9 @@ def dadvi_result_to_idata( include_transformed: bool Whether or not to keep the unconstrained variables in the output. + progressbar: bool + Whether or not to show a progress bar during the transformation. Default is True. + Returns ------- :class:`~arviz.InferenceData` @@ -292,6 +332,7 @@ def dadvi_result_to_idata( output_var_names=[x.name for x in vars_to_sample], coords=coords, dims=dims, + progressbar=progressbar, ) constrained_names = [ diff --git a/tests/inference/dadvi/test_dadvi.py b/tests/inference/dadvi/test_dadvi.py index 5b202c9f9..1463db519 100644 --- a/tests/inference/dadvi/test_dadvi.py +++ b/tests/inference/dadvi/test_dadvi.py @@ -140,3 +140,42 @@ def test_fit_dadvi_ragged_coords(rng): # strictly positive assert (idata["posterior"].beta.sel(feature=0).to_numpy() < 0).all() assert (idata["posterior"].beta.sel(feature=1).to_numpy() > 0).all() + + +@pytest.mark.parametrize( + "method, use_grad, use_hess, use_hessp", + [ + ("Newton-CG", True, True, False), + ("Newton-CG", True, False, True), + ], +) +def test_dadvi_basinhopping(method, use_grad, use_hess, use_hessp, rng): + pytest.importorskip("jax") + + with pm.Model() as m: + mu = pm.Normal("mu") + sigma = pm.Exponential("sigma", 1) + pm.Normal("y_hat", mu=mu, sigma=sigma, observed=rng.normal(loc=3, scale=1.5, size=10)) + + idata = fit_dadvi( + optimizer_method="basinhopping", + use_grad=use_grad, + use_hess=use_hess, + use_hessp=use_hessp, + progressbar=False, + include_transformed=True, + minimizer_kwargs=dict(method=method), + niter=1, + n_draws=100, + ) + + assert hasattr(idata, "posterior") + assert hasattr(idata, "unconstrained_posterior") + + posterior = idata.posterior + unconstrained_posterior = idata.unconstrained_posterior + assert "mu" in posterior + assert posterior["mu"].shape == (1, 100) + + assert "sigma_log__" in unconstrained_posterior + assert unconstrained_posterior["sigma_log__"].shape == (1, 100) From 427dfb85b938559b8d4cd2e541b8903f5fe1857a Mon Sep 17 00:00:00 2001 From: jessegrabowski Date: Tue, 23 Sep 2025 07:51:37 -0500 Subject: [PATCH 5/5] Respond to feedback --- pymc_extras/inference/dadvi/dadvi.py | 2 +- pymc_extras/inference/laplace_approx/idata.py | 2 +- tests/inference/dadvi/test_dadvi.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/pymc_extras/inference/dadvi/dadvi.py b/pymc_extras/inference/dadvi/dadvi.py index bc81ce1f2..04c3a24d9 100644 --- a/pymc_extras/inference/dadvi/dadvi.py +++ b/pymc_extras/inference/dadvi/dadvi.py @@ -341,7 +341,7 @@ def dadvi_result_to_idata( all_varnames = [ x.name for x in get_default_varnames(model.unobserved_value_vars, include_transformed=True) ] - unconstrained_names = set(all_varnames) - set(constrained_names) + unconstrained_names = sorted(set(all_varnames) - set(constrained_names)) idata = az.InferenceData(posterior=transformed_result[constrained_names]) diff --git a/pymc_extras/inference/laplace_approx/idata.py b/pymc_extras/inference/laplace_approx/idata.py index 66f3a2bed..086177cda 100644 --- a/pymc_extras/inference/laplace_approx/idata.py +++ b/pymc_extras/inference/laplace_approx/idata.py @@ -115,7 +115,7 @@ def map_results_to_inference_data( x.name for x in get_default_varnames(model.unobserved_value_vars, include_transformed=True) ] - unconstrained_names = set(all_varnames) - set(constrained_names) + unconstrained_names = sorted(set(all_varnames) - set(constrained_names)) idata = az.from_dict( posterior={ diff --git a/tests/inference/dadvi/test_dadvi.py b/tests/inference/dadvi/test_dadvi.py index 1463db519..93a54132d 100644 --- a/tests/inference/dadvi/test_dadvi.py +++ b/tests/inference/dadvi/test_dadvi.py @@ -15,7 +15,7 @@ def rng(): @pytest.mark.parametrize( "mode, gradient_backend", - [(None, "pytensor"), ("NUMBA", "pytensor"), ("JAX", "jax"), ("JAX", "pytensor")], + [(None, "pytensor")], ) def test_fit_dadvi_basic(mode, gradient_backend): # Example from BDA3, section 4.1 (same as Laplace test)