Chris Fonnesbeck edited this page Apr 12, 2016 · 3 revisions

To learn more about PyMC, please refer to the online user's guide.

PyMC in Scientific Research

PyMC is used for Bayesian modeling in a variety of fields. Here is a partial list of publications that cite PyMC in their work.

Examples

Basic examples

Intermediate and advanced models

For users familiar with BUGS, here are a few examples that are translated directly from BUGS models; the original code is included in each file as a docstring:

  • Koala Koala sighting model (from Link & Barker 2009)

  • Mt Conditional multinomial mark-recapture model (from Link & Barker 2009)

  • Mt2 Unconditional multinomial mark-recapture model (apparently not possible in BUGS)

  • BayesFactor Simple example of Bayes factor calculation

Gaussian process examples

  • Covariance: Creates a covariance function.

  • Realizations: Draws several realizations.

  • Observations: Observes a mean and covariance, then draws several realizations.

  • BasisCov: Creates a covariance from a basis with normally-distributed coefficients.

  • GPMCMC: Creates a PyMC model containing a Gaussian process, and fits it with MCMC.

  • Non-parametric regression: iPython Notebook of NP regression using GP

Links to external examples

Example-bearing threads on mailing list:

You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.
Press h to open a hovercard with more details.