2
PATHS, TREES, AND CYCLES

I hate definitions.
—Benjamin Disraeli

Chapter Outline

2.1 Introduction

2.2 Notation and Definitions

2.3 Network Representations
2.4 Network Transformations
2.5 Summary

2.1 INTRODUCTION

Because graphs and networks arise everywhere and in a variety of alternative forms,
several professional disciplines have contributed important ideas to the evolution of
network flows. This diversity has yielded numerous benefits, including the infusion
of many rich and varied perspectives. It has also, however, imposed costs: For
example, the literature on networks and graph theory lacks unity and authors have
adopted a wide variety of conventions, customs, and notation. If we so desired, we
could formulate network flow problems in several different standard forms and could
use many alternative sets of definitions and terminology. We have chosen to adopt
a set of common, but not uniformly accepted, definitions: for example, arcs and
nodes instead of edges and vertices (or points). We have also chosen to use models
with capacitated arcs and with exogenous supplies and demands at the nodes. The
circulation problem we introduced in Chapter 1, without exogenous supplies and
demands, is an alternative model and so is the capacitated transportation problem.
Another special case is the uncapacitated network flow problem. In Chapter 1 we
viewed each of these models as special cases of the minimum cost network flow
problem. Perhaps somewhat surprisingly, we could have started with any of these
models and shown that all the others were special cases. In this sense, each of these
models offers another way to capture the mathematical essence of network flows.
In this chapter we have three objectives. First, we bring together many basic
definitions of network flows and graph theory, and in doing so, we set the notation
that we will be using throughout this book. Second, we introduce several different
data structures used to represent networks within a computer and discuss the relative
advantages and disadvantages of each of these structures. In a very real sense, data
structures are the life blood of most network flow algorithms, and choosing among
alternative data structures can greatly influence the efficiency of an algorithm, both

23

in practice and in theory. Consequently, it is important to have a good understanding
of the various available data structures and an idea of how and when to use them.
Third, we discuss a number of different ways to transform a network flow problem
and obtain an equivalent model. For example, we show how to eliminate flow bounds
and formulate any model as an uncapacitated problem. As another example, we
show how to formulate the minimum cost flow problem as a transportation problem
(i.e., how to define it over a bipartite graph). This discussion is of theoretical interest,
because it establishes the equivalence between several alternative models and there-
fore shows that by developing algorithms and theory for any particular model, we
will have at hand algorithms and theory for several other models. That is, our results
enjoy a certain universality. This development is also of practical value since on
various occasions throughout our discussion in this book we will find it more con-
venient to work with one modeling assumption rather than another—our discussion
of network transformations shows that there is no loss in generality in doing so.
Moreover, since algorithms developed for one set of modeling assumptions also
apply to models formulated in other ways, this discussion provides us with one very
reassuring fact: We need not develop separate computer implementations for every
alternative formulation, since by using the transformations, we can use an algorithm
developed for any one model to solve any problem formulated as one of the alter-
native models.

We might note that many of the definitions we introduce in this chapter are
quite intuitive, and much of our subsequent discussion does not require a complete
understanding of all the material in this chapter. Therefore, the reader might simply
wish to skim this chapter on first reading to develop a general overview of its content
and then return to the chapter on an ‘‘as needed’’ basis later as we draw on the
concepts introduced at this point.

2.2 NOTATION AND DEFINITIONS

In this section we give several basic definitions from graph theory and present some
basic notation. We also state some elementary properties of graphs. We begin by
defining directed and undirected graphs.

Directed Graphs and Networks: A directed graph G = (N, A) consists of a set N of nodes
and a set A of arcs whose elements are ordered pairs of distinct nodes. Figure 2.1 gives
an example of a directed graph. For this graph, N= {1, 2, 3,4, 5,6, 7}and A = {(1,
2),(1,3),(2,3),(2,4),(3,6),4,5), (4,7), (5,2), (5, 3), (5,7, (6, }. A directed network
is a directed graph whose nodes and/or arcs have associated numerical values (typically,

(B —)
(1) () €

e 0 Figure 2.1 Directed graph.

24 Paths, Trees, and Cycles Chap. 2

costs, capacities, and/or supplies and demands). In this book we often make no dis-
tinction between graphs and networks, so we use the terms ‘‘graph’’ and ‘‘network’
synonymously. As before, we let n denote the number of nodes and m denote the number
of arcs in G.

Undirected Graphs and Networks: We define an undirected graph in the same manner as we
define a directed graph except that arcs are unordered pairs of distinct nodes. Figure
2.2 gives an example of an undirected graph. In an undirected graph, we can refer to
an arc joining the node pair i and j as either (i, j) or (J, /). An undirected arc (i, j) can
be regarded as a two-way street with flow permitted in both directions: either from
node i to node j or from node j to node i. On the other hand, a directed arc (i, j) behaves
like a one-way street and permits flow only from node i to node j.

(2——(4)

o o Figure 2.2 Undirected graph.

In most of the material in this book, we assume that the underlying network
is directed. Therefore, we present our subsequent notation and definitions for di-
rected networks. The corresponding definitions for undirected networks should be
transparent to the reader; nevertheless, we comment briefly on some definitions for
undirected networks at the end of this section.

Tails and Heads: A directed arc (i, j) has two endpoints i and j. We refer to node i as the tail
of arc (i, j) and node j as its head. We say that the arc (i, j) emanates from node i and
terminates at node j. An arc (i, j) is incident to nodes i and j. The arc (i,) is an outgoing
arc of node i and an incoming arc of node j. Whenever an arc (i, j) € A, we say that
node j is adjacent to node i.

Degrees: The indegree of a node is the number of incoming arcs of that node and its outdegree
is the number of its outgoing arcs. The degree of a node is the sum of its indegree and
outdegree. For example, in Figure 2.1, node 3 has an indegree of 3, an outdegree of 1,
and a degree of 4. It is easy to see that the sum of indegrees of all nodes equals the
sum of outdegrees of all nodes and both are equal to the number of arcs m in the network.

Adjacency List: The arc adjacency list A(i) of a node { is the set of arcs emanating from that
node, that is, A(i) = {(i, /) € A: j € N}. The node adjacency list A(i) is the set of nodes
adjacent to that node; in this case, A(i) = {j € N: (i, j) € A}. Often, we shall omit the
terms “‘arc’’ and ‘“‘node’” and simply refer to the adjacency list; in all cases it will be
clear from context whether we mean arc adjacency list or node adjacency list. We
assume that arcs in the adjacency list A(i) are arranged so that the head nodes of arcs
are in increasing order. Notice that | A(i) | equals the outdegree of node i. Since the
sum of all node outdegrees equals m, we immediately obtain the following property:

Property2.1. 3, _,|AW)| = m.

Multiarcs and Loops: Multiarcs are two or more arcs with the same tail and head nodes. A
loop is an arc whose tail node is the same as its head node. In most of the chapters in
this book, we assume that graphs contain no multiarcs or loops.

Sec. 2.2 Notation and Definitions 25

Subgraph: A graph G' = (N’, A') is a subgraph of G = (N, A)if N C Nand A’ C A. We
say that G' = (N', A’) is the subgraph of G induced by N' if A’ contains each arc of
A with both endpoints in N'. A graph G' = (N', A') is a spanning subgraph of G =
(N,A)if N' = Nand A’ C A.

Walk: A walk in a directed graph G = (N, A) is a subgraph of G consisting of a sequence
of nodes and arcs i, — a, — i, — a — ** — i,y — a,-; — I, satisfying the property
that forall 1 =k <r — 1, either a; = (iy, ix+1) €E Aoray, = (ix+1, ix) € A. Alternatively,
we shall sometimes refer to a walk as a set of (sequence of) arcs (or of nodes) without
any explicit mention of the nodes (without explicit mention of arcs). We illustrate this
definition using the graph shown in Figure 2.1. Figure 2.3(a) and (b) illustrates two
walks in this graph: 1-2-5-7 and 1-2-4-5-2-3.

O —®
W ©
@ ©

(a) (b)

Figure 2.3 Examples of walks.

Directed Walk: A directed walk is an ‘‘oriented’’ version of a walk in the sense that for any
two consecutive nodes i, and ix+, on the walk, (ix, ix+1) € A. The walk shown in Figure
2.3(a) is not directed; the walk shown in Figure 2.3(b) is directed.

Path: A path is a walk without any repetition of nodes. The walk shown in Figure 2.3(a) is
also a path, but the walk shown in Figure 2.3(b) is not because it repeats node 2 twice.
We can partition the arcs of a path into two groups: forward arcs and backward arcs.
An arc (i, j) in the path is a forward arc if the path visits node i prior to visiting node
J» and is a backward arc otherwise. For example, in the path shown in Figure 2.3(a),
the arcs (1, 2) and (5, 7) are forward arcs and the arc (5, 2) is a backward arc.

Directed Path: A directed path is a directed walk without any repetition of nodes. In other
words, a directed path has no backward arcs. We can store a path (or a directed path)
easily within a computer by defining a predecessor index pred(j) for every node
J in the path. If / and j are two consecutive nodes on the path (along its orientation),
pred(j) = i. For the path 1-2-5-7 shown in Figure 2.3(a), pred(7) = 5, pred(5) = 2,
pred(2) = 1, and pred(1) = 0. (Frequently, we shall use the convention of setting the
predecessor index of the initial node of a path equal to zero to indicate the beginning
of the path.) Notice that we cannot use predecessor indices to store a walk since a
walk may visit a node more than once, and a single predecessor index of a node cannot
store the multiple predecessors of any node that a walk visits more than once.

Cycle: A cycle is a path iy — i, — - — i, together with the arc (i,, i;) or (i, i,). We shall
often refer to a cycle using the notation i; — i — --- — i, — i;. Just as we did for paths,
we can define forward and backward arcs in a cycle. In Figure 2.4(a) the arcs (5, 3)
and (3, 2) are forward arcs and the arc (5, 2) is a backward arc of the cycle 2-5-3.

26 Paths, Trees, and Cycles Chap. 2

Directed Cycle: A directed cycle is a directed path i, — i, — --- — i, together with the arc

(i,, i)). The graph shown in Figure 2.4(a) is a cycle, but not a directed cycle; the graph
shown in Figure 2.4(b) is a directed cycle.

©

(a) (b) 7 Figure 2.4 Examples of cycles.

Acyclic Graph: A graph is a acyclic if it contains no directed cycle.

Connectivity: We will say that two nodes i and j are connected if the graph contains at least
one path from node i to node j. A graph is connected if every pair of its nodes is
connected; otherwise, the graph is disconnected. We refer to the maximal connected
subgraphs of a disconnected network as its components. For instance, the graph shown
in Figure 2.5(a) is connected, and the graph shown in Figure 2.5(b) is disconnected.
The latter graph has two components consisting of the node sets {1, 2, 3, 4} and {5, 6}.
In Section 3.4 we describe a method for determining whether a graph is connected or
not, and in Exercise 3.41 we discuss a method for identifying all components of a graph.

(2)——(4) (BD—»)
@) © @
— & ©®
(a) (b)

Figure 2.5 (a) Connected and (b) disconnected graphs.

Strong Connectivity: A connected graph is strongly connected if it contains at least one directed
path from every node to every other node. In Figure 2.5(a) the component [see Figure
2.5(b)] defined on the node set {1, 2, 3, 4} is strongly connected; the component defined
by the node set {5, 6} is not strongly connected because it contains no directed path
from node 5 to node 6. In Section 3.4 we describe a method for determining whether
or not a graph is strongly connected.

Cut: A cut is a partition of the node set N into two parts, S and S = N — §. Each cut defines
a set of arcs consisting of those arcs that have one endpoint in § and another endpoint
in S. Therefore, we refer to this set of arcs as a cut and represent it by the notation
[S, 51. Figure 2.6 illustrates a cut with § = {1, 2, 3} and § = {4, 5, 6, 7}. The set of
arcs in this cut are {2, 4), (5, 2), (5, 3), (3, 6)}.

Sec. 2.2 Notation and Definitions 27

Figure 2.6 Cut.

s—t Cut: An s—¢ cut is defined with respect to two distinguished nodes s and ¢, and is a cut
[S, S] satisfying the property that s € S and ¢+ € S. For instance, if s = 1 and t = 6,
the cut depicted in Figure 2.6 is an s—¢ cut; but if s = 1 and r = 3, this cut is not an
s—t cut.

Figure 2.7 Example of two trees.

Tree. A tree is a connected graph that contains no cycle. Figure 2.7 shows two examples of
trees.

A tree is a very important graph theoretic concept that arises in a variety of
network flow algorithms studied in this book. In our subsequent discussion in later
chapters, we use some of the following elementary properties of trees.

Property 2.2
(a) A tree on n nodes contains exactly n — 1 arcs.
(b) A tree has at least two leaf nodes (i.e., nodes with degree 1).
(c) Every two nodes of a tree are connected by a unique path.

Proof. See Exercise 2.13.

Forest: A graph that contains no cycle is a forest. Alternatively, a forest is a collection of
trees. Figure 2.8 gives an example of a forest.

28 Paths, Trees, and Cycles Chap. 2

Figure 2.8 Forest.

Subtree: A connected subgraph of a tree is a subtree.

Rooted Tree: A rooted tree is a tree with a specially designated node, called its root; we
regard a rooted tree as though it were hanging from its root. Figure 2.9 gives an instance
of a rooted tree; in this instance, node 1 is the root node.

Figure 2.9 Rooted tree.

We often view the arcs in a rooted tree as defining predecessor—successor (or
parent—child) relationships. For example, in Figure 2.9, node 5 is the predecessor
of nodes 6 and 7, and node 1 is the predecessor of nodes 2, 4, and 5. Each node {
(except the root node) has a unique predecessor, which is the next node on the
unique path in the tree from that node to the root; we store the predecessor of node
i using a predecessor index pred(i). If j = pred(i), we say that node j is the pred-
ecessor of node i and node i is a successor of node j. These predecessor indices
uniquely define a rooted tree and also allow us to trace out the unique path from
any node back to the root. The descendants of a node i consist of the node itself,
its successors, successors of its successors, and so on. For example, in Figure 2.9
the node set {5, 6, 7, 8} is the set of descendants of node 5. We say that a node is
an ancestor of all of its descendants. For example, in the same figure, node 2 is an
ancestor of itself and node 3.

In this book we occasionally use two special type of rooted trees, called a
directed in-tree and a directed out-tree.

Directed-Out-Tree: A tree is a directed out-tree routed at node s if the unique path in the tree
from node s to every other node is a directed path. Figure 2.10(a) shows an instance
of a directed out-tree rooted at node 1. Observe that every node in the directed out-
tree (except node 1) has indegree 1.

Sec. 2.2 Notation and Definitions 29

(a) (b)

Figure 2.10 Instances of directed out-tree and directed in-tree.

Directed-In-Tree: A tree is a directed in-tree routed at node s if the unique path in the tree
from any node to node s is a directed path. Figure 2.10(b) shows an instance of a directed
in-tree rooted at node 1. Observe that every node in the directed in-tree (except node
1) has outdegree 1.

Spanning Tree: A tree T is a spanning tree of G if T is a spanning subgraph of G. Figure 2.11
shows two spanning trees of the graph shown in Figure 2.1. Every spanning tree of a
connected n-node graph G has (n — 1) arcs. We refer to the arcs belonging to a spanning
tree T as tree arcs and arcs not belonging to T as nontree arcs.

(D— ©, ®
@) ® ® @ O @

O—©) © ®

(a) {b)

Figure 2.11 Two spanning trees of the network in Figure 2.1.

Fundamental Cycles: Let T be a spanning tree of the graph G. The addition of any nontree
arc to the spanning tree T creates exactly one cycle. We refer to any such cycle as a
Jundamental cycle of G with respect to the tree T. Since the network contains m —
n 4+ 1 nontree arcs, it has m — n + 1 fundamental cycles. Observe that if we delete
any arc in a fundamental cycle, we again obtain a spanning tree.

Fundamental Cuts: Let T be a spanning tree of the graph G. The deletion of any tree arc of
the spanning tree T produces a disconnected graph containing two subtrees T; and T,.
Arcs whose endpoints belong to the different subtrees constitute a cut. We refer to any
such cut as a fundamental cut of G with respect to the tree 7. Since a spanning tree
contains n — 1 arcs, the network has n — 1 fundamental cuts with respect to any tree.
Observe that when we add any arc in the fundamental cut to the two subtrees T, and
T,, we again obtain a spanning tree.

30 Paths, Trees, and Cycles Chap. 2

Bipartite Graph: A graph G = (N, A) is a bipartite graph if we can partition its node set into
two subsets N, and N, so that for each arc (i, j) in A either (i) i € N, and j € N,, or
(i) i € N, and j € N,. Figure 2.12 gives two examples of bipartite graphs. Although it
might not be immediately evident whether or not the graph in Figure 2.12(b) is bipartite,
if we define N; = {1, 2, 3, 4} and N, = {5, 6, 7, 8}, we see that it is.

: »(5)
- &
(4)
@
Lo
(3 @7 Figure 2.12 Examples of bipartite

(a) (b) graphs.

€

Frequently, we wish to discover whether or not a given graph is bipartite.
Fortunately, there is a very simple method for resolving this issue. We discuss this
method in Exercise 3.42, which is based on the following well-known characteri-
zation of bipartite graphs.

Property 2.3. A graph G is a bipartite graph if and only if every cycle in G
contains an even number of arcs.

Proof. See Exercise 2.21.

Definitions for undirected networks. The definitions for directed net-
works easily translate into those for undirected networks. An undirected arc (i, j)
has two endpoints, i and j, but its tail and head nodes are undefined. If the network
contains the arc (i, j), node i is adjacent to node j, and node j is adjacent to node i.
The arc adjacency list (as well as the node adjacency list) is defined similarly except
that arc (i, j) appears in A(i) as well as A(j). Consequently, > _. | A() | = 2m.

The degree of a node is the number of nodes adjacent to node i. Each of the graph
theoretic concepts we have defined so far—walks, paths, cycles, cuts and trees—
has essentially the same definition for undirected networks except that we do not
distinguish between a path and a directed path, a cycle and a directed cycle, and so
on.

2.3 NETWORK REPRESENTATIONS

The performance of a network algorithm depends not only on the algorithm, but also
on the manner used to represent the network within a computer and the storage
scheme used for maintaining and updating the intermediate results. By representing

Sec. 2.3 Network Representations 31

a network more cleverly and by using improved data structures, we can often im-
prove the running time of an algorithm. In this section we discuss some popular
ways of representing a network. In representing a network, we typically need to
store two types of information: (1) the network topology, that is, the network’s node
and arc structure; and (2) data such as costs, capacities, and supplies/demands as-
sociated with the network’s nodes and arcs. As we will see, usually the scheme we
use to store the network’s topology will suggest a natural way for storing the as-
sociated node and arc information. In this section we describe in detail represen-
tations for directed graphs. The corresponding representations for undirected net-
works should be apparent to the reader. At the end of the section, however, we
briefly discuss representations for undirected networks.

Node-Arc Incidence Matrix

The node—arc incidence matrix representation, or simply the incidence matrix rep-
resentation, represents a network as the constraint matrix of the minimum cost flow
problem that we discussed in Section 1.2. This representation stores the network as
an n X m matrix N which contains one row for each node of the network and one
column for each arc. The column corresponding to arc (i, j) has only two nonzero
elements: It has a +1 in the row corresponding to node i and a —1 in the row
corresponding to node j. Figure 2.14 gives this representation for the network shown
in Figure 2.13.

' (¢, u,) .

(15,40)

(35,50)

(25,20) Figure 2.13 Network example.

L2 (1,3 @4 G2 43 45 63 6,9

1 1 0 0 0 0 0 0o |
2 |-1 0 1 -1 0 0 0 0
3l o -1 0 -1 0 -1 0
4| o o -1 0 I 1 0 -1
51 0 0 0 0 0o -1 1 -

Figure 2.14 Node-arc incidence matrix of the network example.

32 Paths, Trees, and Cycles Chap. 2

The node-arc incidence matrix has a very special structure: Only 2m out of
its nm entries are nonzero, all of its nonzero entries are + 1 or — 1, and each column
has exactly one +1 and one — 1. Furthermore, the number of + 1’s in a row equals
the outdegree of the corresponding node and the number of —1's in the row equals
the indegree of the node.

Because the node-arc incidence matrix N contains so few nonzero coefficients,
the incidence matrix representation of a network is not space efficient. More efficient
schemes, such as those that we consider later in this section would merely keep
track of the nonzero entries in the matrix. Because of its inefficiency in storing the
underlying network topology, use of the node—arc incidence matrix rarely produces
efficient algorithms. This representation is important, however, because it represents
the constraint matrix of the minimum cost flow problem and because the node-arc
incidence matrix possesses several interesting theoretical properties. We study some
of these properties in Sections 11.11 and 11.12.

Node-Node Adjacency Matrix

The node-node adjacency matrix representation, or simply the adjacency matrix
representation, stores the network as an n X a matrix # = {h;}. The matrix has a
row and a column corresponding to every node, and its ijth entry A; equals 1 if
(i, j) € A and equals 0 otherwise. Figure 2.15 specifies this representation for the
network shown in Figure 2.13. If we wish to store arc costs and capacities as well
as the network topology, we can store this information in two additional n X n
matrices, € and .

The adjacency matrix has n? elements, only m of which are nonzero. Conse-
quently, this representation is space efficient only if the network is sufficiently dense;
for sparse networks this representation wastes considerable space. Nevertheless,
the simplicity of the adjacency representation permits us to use it to implement most
network algorithms rather easily. We can determine the cost or capacity of any arc
(i, j) simply by looking up the ijth element in the matrix € or %. We can obtain the
arcs emanating from node i by scanning row i: If the jth element in this row has a
nonzero entry, (i, j) is an arc of the network. Similarly, we can obtain the arcs
entering node j by scanning column j: If the ith element of this column has a nonzero
entry, (i,) is an arc of the network. These steps permit us to identify all the outgoing
or incoming arcs of a node in time proportional to n. For dense networks we can
usually afford to spend this time to identify the incoming or outgoing arcs, but for

Figure 2.15 Node-node adjacency
510 0 1 1 0| matrix of the network example.

Sec. 2.3 Network Representations 3

sparse networks these steps might be the bottleneck operations for an algorithm.
The two representations we discuss next permit us to identify the set of outgoing
arcs A(i) of any node in time proportional to | A(i) |.

Adjacency Lists

Earlier we defined the arc adjacency list A(i) of a node i as the set of arcs emanating
from that node, that is, the set of arcs (i, j) € A obtained as j ranges over the nodes
of the network. Similarly, we defined the node adjacency list of a node i as the set
of nodes j for which (i, j) € A. The adjacency list representation stores the node
adjacency list of each node as a singly linked list (we refer the reader to Appendix
A for a description of singly linked lists). A linked list is a collection of cells each
containing one or more fields. The node adjacency list for node i will be a linked
list having | A (i) | cells and each cell will correspond to an arc (i, j) € A. The cell
corresponding to the arc (i, j) will have as many fields as the amount of information
we wish to store. One data field will store node j. We might use two other data fields
to store the arc cost c;; and the arc capacity u;. Each cell will contain one additional
field, called the link, which stores a pointer to the next cell in the adjacency list. If
a cell happens to be the last cell in the adjacency list, by convention we set its link
to value zero.

Since we need to be able to store and access n linked lists, one for each node,
we also need an array of pointers that point to the first cell in each linked list. We
accomplish this objective by defining an n-dimensional array, first, whose element
first(i) stores a pointer to the first cell in the adjacency list of node i. If the adjacency
list of node i is empty, we set first(i) = 0. Figure 2.16 specifies the adjacency list
representation of the network shown in Figure 2.13.

In this book we sometimes assume that whenever arc (i, j) belongs to a network,
so does the reverse arc (j, i). In these situations, while updating some information
about arc (i, j), we typically will also need to update information about arc (j, i).
Since we will store arc (i, j) in the adjacency list of node i and arc (j, i) in the
adjacency list of node j, we can carry out any operation on both arcs efficiently if
we know where to find the reversal (j, i) of each arc (i, j). We can access both arcs

e IT e

1| ——>[2]2[3] +—>{335[50] 0]
2| ——>{4]15[40[0]
3| ——>{2]ss]e[0]
4| ——>{315[30] 4—>[5]45]60] 0]

s| ——>[3]2s]20] +—>{4[35[50[0] Figure 2.16 Adjacency list

representation of the network example.

34 Paths, Trees, and Cycles Chap. 2

easily if we define an additional field, mate, that contains a pointer to the cell con-
taining data for the reversal of each arc. The mate of arc (i, j) points to the cell of
arc (j, i) and the mate of arc (j, i) points to the cell of arc (i, j).

Forward and Reverse Star Representations

The forward star representation of a network is similar to the adjacency list rep-
resentation in the sense that it also stores the node adjacency list of each node. But
instead of maintaining these lists as linked lists, it stores them in a single array. To
develop this representation, we first associate a unique sequence number with each
arc, thus defining an ordering of the arc list. We number the arcs in a specific order:
first those emanating from node 1, then those emanating from node 2, and so on.
We number the arcs emanating from the same node in an arbitrary fashion. We then
sequentially store information about each arc in the arc list. We store the tails, heads,
costs, and capacities of the arcs in four arrays: tail, head, cost, and capacity. So if
arc (i, j) is arc number 20, we store the tail, head, cost, and capacity data for this
arc in the array positions tail(20), head(20), cost(20), and capacity(20). We also main-
tain a pointer with each node i, denoted by point(i), that indicates the smallest-
numbered arc in the arc list that emanates from node i. [If node / has no outgoing
arcs, we set point(i) equal to point(i + 1).] Therefore, the forward star representation
will store the outgoing arcs of node i at positions point(i) to (point(i + 1) — 1) in
the arc list. If point(i) > point(i + 1) — 1, node i has no outgoing arc. For consistency,
we set point(1) = 1 and point(n + 1) = m + 1. Figure 2.17(a) specifies the forward
star representation of the network given in Figure 2.13.

The forward star representation provides us with an efficient means for de-
termining the set of outgoing arcs of any node. To determine, simultaneously, the
set of incoming arcs of any node efficiently, we need an additional data structure
known as the reverse star representation. Starting from a forward star representa-
tion, we can create a reverse star representation as follows. We examine the nodes
i = 1to n in order and sequentially store the heads, tails, costs, and capacities of
the incoming arcs at node i. We also maintain a reverse pointer with each node i,
denoted by rpoint(i), which denotes the first position in these arrays that contains
information about an incoming arc at node i. [If node i has no incoming arc, we set
rpoint(i) equal to rpoint(i + 1).] For sake of consistency, we set rpoint(l1) = 1
and rpoint(n + 1) = m + 1. As before, we store the incoming arcs at node i at posi-
tions rpoint(i) to (rpoint(i + 1) — 1). This data structure gives us the representation
shown in Figure 2.17(b).

Observe that by storing both the forward and reverse star representations, we
will maintain a significant amount of duplicate information. We can avoid this du-
plication by storing arc numbers in the reverse star instead of the tails, heads, costs,
and capacities of the arcs. As an illustration, for our example, arc (3, 2) has arc
number 4 in the forward star representation and arc (1, 2) has an arc number 1. So
instead of storing the tails, costs, and capacities of the arcs, we simply store arc
numbers; and once we know the arc numbers, we can always retrieve the associated
information from the forward star representation. We store arc numbers in an array
trace of size m. Figure 2.18 gives the complete trace array of our example.

In our discussion of the adjacency list representation, we noted that sometimes

Sec. 2.3 Nerwork Representations 35

point tail head cost capacity

1 1 1 1 2 25 30
2 3 2 1 3 35 50
3 4 3 2 4 15 40
4 5 4 3 2 45 10
5 7 5 4 3 15 30
6 9 6 4 5 45 60
7 5 3 25 20
8 5 4 35 50
(@)
cost capacity tail head rpoint

45 10 3 2 1 1 1

25 30 1 2 2 1 2

35 50 1 3 3 3 3

15 30 4 3 4 6 4

25 20 5 3 5 8 5

35 50 . 5 4 6 9 6

15 40 2 4 7

45 60 4 5 8 Figure 2.17 (a) Forward star and (b) re-

verse star representations of the network
(b) example.

while updating data for an arc (i, j), we also need to update data for its reversal
(J, i). Just as we did in the adjacency list representation, we can accomplish this
task by defining an array mate of size m, which stores the arc number of the reversal
of an arc. For example, the forward star representation shown in Figure 2.17(a)
assigns the arc number 6 to arc (4, 5) and assigns the arc number 8 to arc (5, 4).

36 Paths, Trees, and Cycles Chap. 2

point tail head cost capacity trace rpoint

1 1 1 1 2 25 30 4 1 1 1
2 3 2 1 3 35 50 1 2 1 2
3 4 3 2 4 15 40 2 3 3 3
4 5 4 3 2 45 10 5 4 6 4
5 7 5 4 3 15 30 7 5 8 5
6 9 6 4 5 45 60 8 6 9 6

7 5 3 25 20 3 7

8 5 4 35 50 6 8

Figure 2.18 Compact forward and reverse star representation of the network ex-
ample.

Therefore, if we were using the mate array, we would set mate(6) = 8 and mate(8)
= 6.

Comparison of Forward Star and Adjacency List
Representations

The major advantage of the forward star representation is its space efficiency. It
requires less storage than does the adjacency list representation. In addition, it is
much easier to implement in languages such as FORTRAN that have no natural
provisions for using linked lists. The major advantage of adjacency list representation
is its ease of implementation in languages such as Pascal or C that are able to ma-
nipulate linked lists efficiently. Further, using an adjacency list representation, we
can add or delete arcs (as well as nodes) in constant time. On the other hand, in the
forward star representation these steps require time proportional to m, which can
be too time consuming.

Storing Parallel Arcs

In this book we assume that the network does not contain parallel arcs; that is, no
two arcs have the same tail and head nodes. By allowing parallel arcs, we encounter
some notational difficulties, since (i, j) will not specify the arc uniquely. For networks
with parallel arcs, we need more complex notation to specify arcs, arc costs, and
capacities. This difficulty is merely notational, however, and poses no problems
computationally: both the adjacency list representation and the forward star rep-
resentation data structures are capable of handling parallel arcs. If a node i has two

Sec. 2.3 Network Representations 37

outgoing arcs with the same head node but (possibly) different costs and capacities,
the linked list of node i will contain two cells corresponding to these two arcs.
Similarly, the forward star representation allows several entries with the same tail
and head nodes but different costs and capacities.

Representing Undirected Networks

We can represent undirected networks using the same representations we have just
described for directed networks. However, we must remember one fact: Whenever
arc (i, j) belongs to an undirected network, we need to include both of the pairs
(i,j) and (J, i) in the representations we have discussed. Consequently, we will store
each arc (i, j) of an undirected network twice in the adjacency lists, once in the list
for node i and once in the list for node j. Some other obvious modifications are
needed. For example, in the node-arc incidence matrix representation, the column
corresponding to arc (i, j) will have +1 in both rows i and j. The node—node ad-
jacency matrix will have +1 in position h; and h; for every arc (i, j) € A. Since
this matrix will be symmetric, we might as well store half of the matrix. In the
adjacency list representation, the arc (i, j) will be present in the linked lists of both
nodes i/ and j. Consequently, whenever we update information for one arc, we must
update it for the other arc as well. We can accomplish this task by storing for each
arc the address of its other occurrence in an additional mate array. The forward star
representation requires this additional storage as well. Finally, observe that undi-
rected networks do not require the reverse star representation.

2.4 NETWORK TRANSFORMATIONS

Frequently, we require network transformations to simplify a network, to show
equivalences between different network problems, or to state a network problem in
a standard form required by a computer code. In this section, we describe some of
these important transformations. In describing these transformations, we assume
that the network problem is a minimum cost flow problem as formulated in Section
1.2. Needless to say, these transformations also apply to special cases of the min-
imum cost flow problem, such as the shortest path, maximum flow, and assignment
problems, wherever the transformations are appropriate. We first recall the for-
mulation of the minimum cost flow problem for convenience in discussing the net-
work transformations.

Minimize > cyxy (2.1a)
(i,))EA
subject to
xi — D xi= b(i) foralli € N, (2.1b)
{J: (i, HEA) {:(.DEA}
lii = Xij = Ui for all (i,j) EA. (2-1C)

a8 Paths, Trees, and Cycles Chap. 2

Undirected Arcs to Directed Arcs

Sometimes minimum cost flow problems contain undirected arcs. An undirected arc
(i, j) with cost ¢; = 0 and capacity u; permits flow from node i to node j and also
from node j to node i; a unit of flow in either direction costs c;, and the total flow
(i.e., from node i to node j plus from node j to node i) has an upper bound ;. That
is, the undirected model has the constraint x; + x; < u; and the term cyx; + cyx;
in the objective function. Since the cost ¢; = 0, in some optimal solution one of x;;
and x; will be zero. We refer to any such solution as non-overlapping.

For notational convenience, in this discussion we refer to the undirected arc
(i, j) as {i, j}. We assume (with some loss of generality) that the arc flow in either
direction on arc {i, j} has a lower bound of value 0; our transformation is not valid if
the arc flow has a nonzero lower bound or the arc cost c; is negative (why?). To
transform the undirected case to the directed case, we replace each undirected arc
{i, j} by two directed arcs, (i, j) and (j, i), both with cost c¢; and capacity u;. To
establish the correctness of this transformation, we show that every non-overlapping
flow in the original network has an associated flow in the transformed network with
the same cost, and vice versa. If the undirected arc {i, j} carries a units of flow from
node i to node j, in the transformed network x; = a and x; = 0. If the undirected
arc {i, j} carries «a units of flow from node j to node i, in the transformed network
x; = 0 and x; = a. Conversely, if x; and x; are the flows on arcs (i, j) and (J, i)
in the directed network, x; — x; or x; — x; is the associated flow on arc {i, j} in
the undirected network, whichever is positive. If x; — x;; is positive, the flow from
node i to node j on arc {i, j} equals this amount. If x; — x; is positive, the flow from
node j to node i on arc {i, j} equals x; — x;. In either case, the flow in the opposite
direction is zero. If x;, — x; is zero, the flow on arc {i, j} is 0.

Removing Nonzero Lower Bounds

If an arc (i, j) has a nonzero lower bound /; on the arc flow x;, we replace x; by
xj + ly in the problem formulation. The flow bound constraint then becomes /; <
xi + 1 = uy, or 0 < xj; < (uy — ;). Making this substitution in the mass balance
constraints decreases b(i) by /; units and increases b(j) by /; units [recall from
Section 1.2 that the flow variable x; appears in the mass balance constraint (2.1b)
of only nodes i and j]. This substitution changes the objective function value by a
constant that we can record separately and then ignore when solving the problem.
Figure 2.19 illustrates this transformation graphically. We can view this transfor-
mation as a two-step flow process: We begin by sending [; units of flow on
arc (i, j), which decreases b(i) by /; units and increases b(j) by /; units, and
then we measure (by the variable x;;) the incremental flow on the arc beyond the
flow value /;.

b b(j) bi)-1, e b(i) +1;
f i Cewr wi— by i Figure 2.19 Removing nonzero lower

Cl'ul') e
O— D> D
< x, . xij < bounds.

Sec. 24 Network Transformations 39

Arc Reversal

The arc reversal transformation is typically used to remove arcs with negative costs.
Let u; denote the capacity of the arc (i, j) or an upper bound on the arc’s flow if
the arc is uncapacitated. In this transformation we replace the variable x; by u; —
xj;. Doing so replaces the arc (i, j), which has an associated cost c;, by the arc
(J, i) with an associated cost —cy;. As shown in Figure 2.20, the transformation has
the following network interpretation. We first send u;; units of flow on the arc (which
decreases b(i) by u; units and increases b(j) by u; units) and then we replace arc
(i, j) by arc (J, i) with cost —cy. The new flow x; measures the amount of flow we
“‘remove’’ from the ‘‘full capacity” flow of u;.

Figure 2.20 Arc reversal
transformation.

Removing Arc Capacities

If an arc (i, j) has a positive capacity u;, we can remove the capacity, making the
arc uncapacitated, by using the following idea: We introduce an additional node so
that the capacity constraint on arc (i, j) becomes the mass balance constraint of the
new node. Suppose that we introduce a slack variable s; = 0, and write the capacity

constraint x; < u; in an equality form as x; + s; = u;. Multiplying both sides of
the equality by — 1, we obtain

—Xyg T S = — Uy (22)

We now treat constraint (2.2) as the mass balance constraint of an additional
node k. Observe that the flow variable x; now appears in three mass balance con-
straints and s; in only one. By subtracting (2.2) from the mass balance constraint
of node j (which contains the flow variable x; with a negative sign), we assure that
each of x; and s; appears in exactly two constraints—in one with a positive sign
and in the other with a negative sign. These algebraic manipulations correspond to
the network transformation shown in Figure 2.21.

i)

Figure 2.21 Transformation for removing an arc capacity.

To see the relationships between the flows in the original and transformed
networks, we make the following observations. If x; is the flow on arc (i, j) in the
original network, the corresponding flow in the transformed network is xjx = x; and
Xjx = uy — x;. Notice that both the flows x and x' have the same cost. Similarly,
a flow xix, x)x in the transformed network yields a flow x; = xj of the same cost in
the original network. Furthermore, since x/x + x} = u; and xj, and xj. are both
nonnegative, x; = xi < uy. Therefore, the flow x; satisfies the arc capacity, and
the transformation does correctly model arc capacities.

40 Paths, Trees, and Cycles Chap. 2

Suppose that every arc in a given network G = (N, A) is capacitated. If we
apply the preceding transformation to every arc, we obtain a bipartite uncapacitated
network G’ (see Figure 2.22 for an illustration). In this network (1) each node i on
the left corresponds to a node i € N of the original network and has a supply equal
to b(i) + E{k: k.iye A} Hkis and (2) each node i—j on the right corresponds to an arc
(i,J) € A in the original network and has a demand equal to u;; this node has exactly

two incoming arcs, originating at nodes i and j from the left. Consequently, the
transformed network has (n + m) nodes and 2m arcs.

0y b() b(i) b(j)

Figure 2.22 Transformation for
removing arc capacities: (a) original
network; (b) transformed network with
(b) uncapacitated arcs.

At first glance we might be tempted to believe that this technique for removing
arc capacities would be unattractive computationally since the transformation sub-
stantially increases the number of nodes in the network. However, on most occasions
the original and transformed networks have algorithms with the same complexity,
because the transformed network possesses a special structure that permits us to
design more efficient algorithms.

Node Splitting

The node splitting transformation splits each node i into two nodes i’ and i” cor-
responding to the node’s output and input functions. This transformation replaces
each original arc (i, j) by an arc (i’, j”) of the same cost and capacity. It also adds
an arc (", i') of zero cost and with infinite capacity for each i. The input side of

Sec. 24 Network Transformations 41

node i (i.e., node i") receives all the node’s inflow, the output side (i.e., node i’)
sends all the node’s outflow, and the additional arc (i", i') carries flow from the input
side to the output side. Figure 2.23 illustrates the resulting network when we carry
out the node splitting transformation for all the nodes of a network. We define the
supplies/demands of nodes in the transformed network in accordance with the fol-
lowing three cases:

1. If b(i) > 0, then b(i") = b(i) and b(i’) = 0
2. If b(i) < 0, then b(i") = 0 and b(i') = b(i).
3. If b(i) = 0, then b(i’) = b(i") = 0.

It is easy to show a one-to-one correspondence between a flow in the original
network and the corresponding flow in the transformed network; moreover, the flows
in both networks have the same cost.

The node splitting transformation permits us to model numerous applications
in a variety of practical problem domains, yet maintain the form of the network flow
model that we introduced in Section 1.2. For example, we can use the transformation
to handle situations in which nodes as well as arcs have associated capacities and
costs. In these situatior , each flow unit passing through a node i incurs a cost ¢;
and the maximum flow that can pass through the node is «;. We can reduce this
problem to the standard *‘arc flow’’ form of the network flow problem by performing
the node splitting transformation and letting ¢; and u; be the cost and capacity of arc

b() b()

O MEEENG

(b)

Figure 2.23 Node splitting transformation: (a) original network; (b) transformed net-
work.

42 Paths, Trees, and Cycles Chap. 2

(i", i'). We shall study more applications of the node splitting transformation in
Sections 6.6 and 12.7 and in several exercises.

Working with Reduced Costs

In many of the network flow algorithms discussed in this book, we measure the cost
of an arc relative to ‘‘imputed’ costs associated with its incident nodes. These
imputed costs typically are intermediate data that we compute within the context
of an algorithm. Suppose that we associate with each node i € N a number (i),
which we refer to as the potential of that node. With respect to the node potentials
w = (w(l), ®(2), . .., w(n)), we define the reduced cost cf of an arc (i, j) as

¢l = cy — w(i) + 7). 2.3)

In many algorithms discussed later, we often work with reduced costs c¢j
instead of the actual costs c¢;. Consequently, it is important to understand the
relationship between the objective functions z(m) = X, . cixy and z(0) =

> pea CuXy- Suppose, initially, that 7 = 0 and we then increase the node potential

of node k to m(k). The definition (2.3) of reduced costs implies that this change
reduces the reduced cost of each unit of flow leaving node k£ by m(k) and increases
the reduced cost of each flow unit entering node k by w(k). Thus the total decrease
in the objective function equals w(k) times the outflow of node k& minus the inflow
of node k. By definition (see Section 1.2), the outflow minus inflow equals the supply/
demand of the node. Consequently, increasing the potential of node k by m(k) de-
creases the objective function value by w(k)b(k) units. Repeating this argument
iteratively for each node establishes that
z(0) — z(m) = > w(i)b(i) = wb.
IEN

For a given node potential 7, wb is a constant. Therefore, a flow that minimizes

z(w) also minimizes z(0). We formalize this result for easy future reference.

Property 2.4. Minimum cost flow problems with arc costs cy or ¢} have the
same optimal solutions. Moreover, z(w) = z(0) — wb.

We next study the effect of working with reduced costs on the cost of cycles
and paths. Let W be a directed cycle in G. Then

> cf= X (cg— 7w+ wj)),

anNew (i, Hew
= > g+ X @) - w0,
G.new Gpew
= 2 Cij.
(i,))ew

The last equality follows from the fact that for any directed cycle W, the expres-
sion 2(ipew (M) — m(i)) sums to zero because for each node i in the cycle W,

m({) occurs once with a positive sign and once with a negative sign. Similarly, if P

Sec. 24 Network Transformations 43

is a directed path from node & to node /, then

2 ci= X (cg = m@) + 7)),

(i,Her apnperp
= X - X (@)= =,
(.jerp (i, HEP
= 2 ¢ — wk) + w0,
i, nerp

because all 7(-) corresponding to the nodes in the path, other than the terminal nodes
k and I, cancel each other in the expression Eu. pep (@) — 7(j)). We record these

results for future reference.

Property 2.5
(a) For any directed cycle W and for any node potentials , E(U)EW cf =

E(i,j)e w Cii-
(b) For any directed path P from node k to node | and for any node potentials =,
E(U)E‘, cf = Diper Ci — wk) + m(d).

Working with Residual Networks

In designing, developing, and implementing network flow algorithms, it is often
convenient to measure flow not in absolute terms, but rather in terms of incremental
flow about some given feasible solution—typically, the solution at some intermediate
point in an algorithm. Doing so leads us to define a new, ancillary network, known
as the residual network, that functions as a ‘‘remaining flow network’’ for carrying
the incremental flow. We show that formulations of the problem in the original
network and in the residual network are equivalent in the sense that they give a one-
to-one correspondence between feasible solutions to the two problems that preserves
the value of the cost of solutions.

The concept of residual network is based on the following intuitive idea. Sup-
pose that arc (i, j) carries x§; units of flow. Then we can send an additional u; —
xj; units of flow from node i to node j along arc (i, j). Also notice that we can send
up to x; units of flow from node j to node i over the arc (i, j), which amounts to
canceling the existing flow on the arc. Whereas sending a unit flow from node i to
node j on arc (I, j) increases the flow cost by c¢; units, sending flow from node j to
node i on the same arc decreases the flow cost by c; units (since we are saving the
cost that we used to incur in sending the flow from node i to node j).

Using these ideas, we define the residual network with respect to a given flow
x° as follows. We replace each arc (i, j) in the original network by two arcs, (i, j)
and (j, i): the arc (i, j) has cost ¢; and residual capacity r; = uy — xj;, and the arc
(J, i) has cost —c; and residual capacity r; = x§; (see Figure 2.24). The residual
network consists of only the arcs with a positive residual capacity. We use the
notation G(x°) to represent the residual network corresponding to the flow x°.

In general, the concept of residual network poses some notational difficulties.
If for some pair i and j of nodes, the network G contains both the arcs (i, j) and

4 Paths, Trees, and Cycles Chap. 2

(Cypo u—x5)

Wi (c» 1) ;
O———0 - ¢ D
Figure 2.24 Constructing the residual

(¢, x5) network G(x°).

(J, i), the residual network may contain two (parallel) arcs from node i to node j
with different costs and residual capacities, and/or two (parallel) arcs from node j
to node i with different costs and residual capacities. In these instances, any ref-
erence to arc (i, j) will be ambiguous and will not define a unique arc cost and
residual capacity. We can overcome this difficulty by assuming that for any pair of
nodes i and j, the graph G does not contain both arc (i, j) and arc (j, i); then the
residual network will contain no parallel arcs. We might note that this assumption
is merely a notational convenience; it does not impose any loss of generality, because
by suitable transformations we can always define a network that is equivalent to
any given network and that will satisfy this assumption (see Exercise 2.47). However,
we need not actually make this transformation in practice, since the network rep-
resentations described in Section 2.3 are capable of handling parallel arcs.

We note further that although the construction and use of the residual network
poses some notational difficulties for the general minimum cost flow problem, the
difficulties might not arise for some special cases. In particular, for the maximum
flow problem, the parallel arcs have the same cost (of zero), so we can merge both
of the parallel arcs into a single arc and set its residual capacity equal to the sum
of the residual capacities of the two arcs. For this reason, in our discussion of the
maximum flow problem, we will permit the underlying network to contain arcs join-
ing any two nodes in both directions.

We now show that every flow x in the network G corresponds to a flow x’ in
the residual network G(x°). We define the flow x’' = 0 as follows:

X§ — Xji = Xy — X, 2.9
and
xjx; = 0. (2.5)

The condition (2.5) implies that x;; and x}; cannot both be positive at the same
time. If x; = x§, we set x; = (x; — x§) and x;; = 0. Notice that if x; < uy, then
xy = uy; — xj = ry. Therefore, the flow xj; satisfies the flow bound constraints.
Similarly, if x; < x§;, we set x;; = 0 and x; = xj — xy. Observe that 0 = xj; = xj;
= r;i, so the flow xj; also satisfies the flow bound constraints. These observations
show that if x is a feasible flow in G, its corresponding flow x' is a feasible flow in
G(x°).

We next establish a relationship between the cost of a flow x in G and the cost
of the corresponding flow x’ in G(x°). Let ¢’ denote the arc costs in the residual

network. Then for every arc (i, j) € A, ¢j = ¢y and c;; = —cy. For a flow x; on
arc (i, j) in the original network G, the cost of flow on the pair of arcs (i, j) and
(4, i) in the residual network G(x°) is cjxy + cjixji = cy(xy — xj) = cyxy —

c;x5; the last equality follows from (2.4). We have thus shown that

! r

c'x" = cx — ex°

Sec. 24 Network Transformations 45

Similarly, we can show the converse result that if x' is a feasible flow in the
residual network G(x°), the solution given by x; = (x/; — xj;) + xis a feasible flow
in G. Moreover, the costs of these two flows is related by the equality cx =
c¢'x’ + cx°. We ask the reader to prove these results in Exercise 2.48. We summarize
the preceding discussion as the following property.

Property 2.6. A flow x is a feasible flow in the network G if and only if its
corresponding flow x', defined by xj; — xj; = x; — x§ and xjxj; = 0, is feasible in
the residual network G(x°). Furthermore, cx = ¢'x’' + cx°.

One important consequence of Property 2.6 is the flexibility it provides us.
Instead of working with the original network G, we can work with the residual
network G(x°) for some x°: Once we have determined an optimal solution in the
residual network, we can immediately convert it into an optimal solution in the
original network. Many of the maximum flow and minimum cost flow algorithms
discussed in the subsequent chapters use this result.

2.5 SUMMARY

In this chapter we brought together many basic definitions of network flows and
graph theory and presented basic notation that we will use throughout this book.
We defined several common graph theoretic terms, including adjacency lists, walks,
paths, cycles, cuts, and trees. We also defined acyclic and bipartite networks.

Although networks are often geometric entities, optimization algorithms re-
quire computer representations of them. The following four representations are the
most common: (1) the node-arc incidence matrix, (2) the node-node adjacency
matrix, (3) adjacency lists, and (4) forward and reverse star representations. Figure
2.25 summarizes the basic features of these representations.

Network
representations Storage space Features

Node-arc incidence nm . Space inefficient
matrix 2. Too expensive to manipulate
3, Important because it represents the constraint
matrix of the minimum cost flow problem

Node-node kn? for some constant k 1. Suited for dense networks
adjacency matrix 2. Easy to implement
Adjacency list kin + kym for some 1. Space efficient
constants k, and ., 2. Efficient to manipulate

3. Suited for dense as well as sparse networks

Forward and kin + kqm for some 1. Space efficient
reverse star constants k3 and ks 2. Efficient to manipulate
3. Suited for dense as well as sparse networks

Figure 2.25 Comparison of various network representations.

46 Paths, Trees, and Cycles Chap. 2

The field of network flows is replete with transformations that allow us to
transform one problem to another, often transforming a problem that appears to
include new complexities into a simplified ‘‘standard’’ format. In this chapter we
described some of the most common transformations: (1) transforming undirected
networks to directed networks, (2) removing nonzero lower flow bounds (which
permits us to assume, without any loss of generality, that flow problems have zero
lower bounds on arc flows), (3) performing arc reversals (which often permits us to
assume, without any loss of generality, that arcs have nonnegative arc costs), (4)
removing arc capacities (which allows us to transform capacitated networks to un-
capacitated networks), (5) splitting nodes (which permits us to transform networks
with constraints and/or cost associated with ‘‘node flows’’ into our formulation with
all data and constraints imposed upon arc flows), and (6) replacing costs with reduced
costs (which permits us to alter the cost coefficients, yet retain the same optimal
solutions).

The last transformation we studied in this chapter permits us to work with
residual networks, which is a concept of critical importance in the development of
maximum flow and minimum cost flow algorithms. With respect to an existing flow
x, the residual network G(x) represents the capacity and cost information in the
network for carrying incremental flows on the arcs. As our discussion has shown,
working with residual networks is equivalent to working with the original network.

REFERENCE NOTES

The applied mathematics, computer science, engineering, and operations research
communities have developed no standard notation of graph concepts; different re-
searchers and authors use different names to denote the same object (e.g., some
authors refer to nodes as vertices or points). The notation and definitions we have
discussed in Section 2.2 and adopted throughout this book are among the most
popular in the literature. The network representations and transformation that we
described in Sections 2.3 and 2.4 are part of the folklore; it is difficult to pinpoint
their origins. The books by Aho, Hopcroft, and Ullman [1974], Gondran and Minoux
[1984], and Cormen, Leiserson, and Rivest [1990] contain additional information on
network representations. The classic book by Ford and Fulkerson {1962] discusses
many transformations of network flow problems.

EXERCISES

Note: If any of the following exercises does not state whether a graph is undirected
or directed, assume either option, whichever is more convenient.
2.1 Consider the two graphs shown in Figure 2.26.
(a) List the indegree and outdegree of every node.
(b) Give the node adjacency list of each node. (Arrange each list in the increasing order
of node numbers.)
(c) Specify a directed walk containing six arcs. Also, specify a walk containing eight
arcs.
(d) Specify a cycle containing nine arcs and a directed cycle containing seven arcs.

Chap. 2 Exercises 47

(a) (b)

Figure 2.26 Example networks for Exercises 2.1 to 2.4.

2.2, Specify a spanning tree of the graph in Figure 2.26(a) with six leaves. Specify a cut of
the graph in Figure 2.26(a) containing six arcs.

2.3. For the graphs shown in Figure 2.26, answer the following questions.

(a)
(b)
(c)

Are the graphs acyclic?
Are the graphs bipartite?
Are the graphs strongly connected?

2.4. Consider the graphs shown in Figure 2.26.

(@)
(b)
()

d)
2.5. (a)

(b)
(0

Do the graphs contain a directed in-tree for some root node?

Do the graphs contain a directed out-tree for some root node?

In Figure 2.26(a), list all fundamental cycles with respect to the following spanning
tree T = {(1,5), (1, 3), (2, 5), 4, 1), (7, 5), (7,9, (5, 8), (6, 8)}.

For the spanning tree given in part (c), list all fundamental cuts. Which of these
are the s-¢ cuts whens = land ¢z = 9?

Construct a directed strongly connected graph with five nodes and five arcs.
Construct a directed bipartite graph with six nodes and nine arcs.

Construct an acyclic directed graph with five nodes and ten arcs.

2.6. Bridges of Konigsberg. The first paper on graph theory was written by Leonhard Euler
in 1736. In this paper, he started with the following mathematical puzzle: The city of
Konigsburg has seven bridges, arranged as shown in Figure 2.27. Is it possible to start
at some place in the city, cross every bridge exactly once, and return to the starting
place? Either specify such a tour or prove that it is impossible to do so.

Figure 2.27 Bridges of Konigsberg.

Paths, Trees, and Cycles Chap. 2

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2,13,

2.14,
2,15,
2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2,22,

2.23.

2.24.

Chap.

At the beginning of a dinner party, several participants shake hands with each other.
Show that the participants that shook hands an odd number of times must be even in
number.

Show that in a directed strongly connected graph containing more than one node, no
node can have a zero indegree or a zero outdegree.

Suppose that every node in a directed graph has a positive indegree. Show that the
graph must contain a directed cycle.

Show that a graph G remains connected even after deleting an arc (i, j) if and only if
arc (i, j) belongs to some cycle in G.

Show that an undirected graph G = (N, A) is connected if and only if for every partition
of N into subsets N, and N,, some arc has one endpoint in N, and the other endpoint
in Nz.

Let dpin denote the minimum degree of a node in an undirected graph. Show that the
graph contains a path containing at least dp,, arcs.

Prove the following properties of trees.

(a) A tree on n nodes contains exactly (n — 1) arcs.

(b) A tree has at least two leaf nodes (i.e., nodes with degree 1).

(¢) Every two nodes of a tree are connected by a unique path.

Show that every tree is a bipartite graph.

Show that a forest consisting of X components has m = n — k arcs.

Let d,..x denote the maximum degree of a node in a tree. Show that the tree contains
at least dn.x nodes of degree 1. (Hint: Use the fact that the sum of the degrees of all
nodes in a tree is 2m = 2n — 2.)

Let Q be any cut of a connected graph and T be any spanning tree. Show that 0 N T
is nonempty.

Show that a closed directed walk containing an odd number of arcs contains a directed
cycle having an odd number of arcs. Is it true that a closed directed walk containing
an even number of arcs also contains a directed cycle having an even number of arcs?
Show that any cycle of a graph G contains an even number of arcs (possibly zero) in
common with any cut of G.

Let dmin denote the minimum degree of a node in an undirected graph G. Show that if
dmin = 2, then G must contain a cycle.

(a) Show that in a bipartite graph every cycle contains an even number of arcs.

(b) Show that a (connected) graph, in which every cycle contains an even number of
arcs, must be bipartite. Conclude that a graph is bipartite if and only if every cycle
has an even number of arcs.

The k-color problem on an undirected graph G = (N, A) is defined as follows: Color
all the nodes in N using at most k colors so that for every arc (i, j) € A, nodes i and
J have a different color.

(a) Given a world map, we want to color countries using at most k colors so that the
countries having common boundaries have a different color. Show how to formulate
this problem as a k-color problem.

(b) Show that a graph is bipartite if and only if it is 2-colorable (i.e., can be colored
using at most two colors).

Two undirected graphs G = (N, A) and G’ = (N', A’) are said to be isomorphic if we

can number the nodes of the graph G so that G becomes identical to G'. Equivalently,

G is isomorphic to G' if some one-to-one function f maps N onto N’ so that (i, j) is

an arc in A if and only if (f(i), f(j)) is an arc in A’. Give several necessary conditions

for two undirected graphs to be isomorphic. (Hint: For example, they must have the
same number of nodes and arcs.)

(a) List all nonisomorphic trees having four nodes.

(b) List all nonisomorphic trees having five nodes. (Hint: There are three such trees.)

2 Exercises 49

2.25.

2.26.

2.27.

2.28.

2.29,

2.30.

2,31,

2.32.

2.33.

2.34.

50

For any undirected graph G = (N, A), we define its complement G¢ = (N, A€) as
follows: If (i, j) € A, then (i, j) € A®, and if (i, j) € A, then (i, j) € A°. Show that if
the graph G is disconnected, its complement G° is connected.

Let G = (N, A) be an undirected graph. We refer to a subset N, C N as independent
if no two nodes in N, are adjacent. Let B(G) denote the maximum cardinality of any
independent set of G. We refer to a subset N, C N as a node cover if each arc in A
has at least one of its endpoints in N,. Let n(G) denote the minimum cardinality of
any node cover G. Show that B(G) + n(G) = n. (Hint: Show that the complement of
an independent set is a node cover.)

Problem of queens. Consider the problem of determining the maximum number of queens
that can be placed on a chessboard so that none of the queens can be taken by another.
Show how to transform this problem into an independent set problem defined in Ex-
ercise 2.26.

Consider a directed graph G = (N, A). For any subset § C N, let neighbor(S) denote
the set of neighbors of S [i.e., neighbor(S) = {j € N:for some i € S, (i,j) € A and j
& S}]). Show that G is strongly connected if and only if for every proper nonempty
subset S C N, neighbor(S) # &.

A subset Ny C N of nodes in an undirected graph G = (N, A) is said to be a clique if
every pair of nodes in N, is connected by an arc. Show that the set N, is a clique in
G if and only if N, is independent in its complement G°,

Specify the node-arc incidence matrix and the node-node adjacency matrix for the
graph shown in Figure 2.28.

N
O——0
-15 -10

(=2, 10)

20(1) @)

5 0 Figure 2.28 Network example.

(a) Specify the forward star representation of the graph shown in Figure 2.28.

(b) Specify the forward and reverse star representations of the graph shown in Figure
2.28.

Let N denote the node-arc incidence matrix of an undirected graph and let N7 denote

its transpose. Let ‘‘-”* denote the operation of taking a product of two matrices. Show

how to interpret the diagonal elements of N - NT?

Let # denote the node—node adjacency matrix of a directed network, and let N denote

the node—arc incidence matrix of this network. Can # = N - NT?

Let % be the node-node adjacency matrix of a directed graph G = (N, A). Let #7 be

the transpose of %, and let GT be the graph corresponding to #T. How is the graph

G” related to G?

Paths, Trees, and Cycles Chap. 2

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

241,

2.42,

2.43.

2.4,

2.45.

2.46.

2.47.

2.48.

2.99.

Chap.

Let G be a bipartite graph. Show that we can always renumber the nodes of G so that
the node-node adjacency matrix ¥ of G has the following form:

Show that a directed graph G is acyclic if and only if we can renumber its nodes so
that its node—node adjacency matrix is a lower triangular matrix.

Let % denote the node—node adjacency matrix of a network G. Define %% = % - %*~!
for each k = 2, 3, ..., n. Show that the ijth entry of the matrix %2 is the number of
directed paths consisting of two arcs from node i to node j. Then using induction, show
that the ijth entry of matrix #* is the number of distinct walks from node i to node j
containing exactly k arcs. In making this assessment, assume that two walks are distinct
if their sequences of arcs are different (even if the unordered set of arcs are the same).

Let ¥ denote the node—node adjacency matrix of a network G. Show that G is strongly
connected if and only if the matrix R defined by & = ¥ + %2 + ¥#> + --- + %" has
no zero entry.

Write a pseudocode that takes as an input the node~node adjacency matrix represen-
tation of a network and produces as an output the forward and reverse star represen-
tations of the network. Your pseudocode should run in O(n?) time.

Write a pseudocode that accepts as an input the forward star representation of a network
and produces as an output the network’s node—node adjacency matrix representation.
Write a pseudocode that takes as an input the forward star representation of a network
and produces the reverse star representation. Your pseudocode should run in O(m)
time.

Consider the minimum cost flow problem shown in Figure 2.28. Suppose that arcs
(1, 2) and (3, 5) have lower bounds equal to /;; = /55 = 5. Transform this problem to
one where all arcs have zero lower bounds.

In the network shown in Figure 2.28, some arcs have finite capacities. Transform this
problem to one where all arcs are uncapacitated.

Consider the minimum cost flow problem shown in Figure 2.28 (note that some arcs
have negative arc costs). Modify the problem so that all arcs have nonnegative arc
costs.

Construct the residual network for the minimum cost flow problem shown in Figure
2.28 with respect to the following flow: X12 = X13 = X33 = 10 and X24 = X35 = Xs4 =
5.

For the minimum cost flow problem shown in Figure 2.28, specify a vector w of node
potentials so that ¢ = 0 for every arc (i, j) € A. Compute cx, c¢"x, and wb for the flow
given in Exercise 2.45 and verify that cx = ¢"x + wb.

Suppose that a minimum cost flow problem contains both arcs (i, j) and (j, i) for some
pair of nodes. Transform this problem to one in which the network contains either arc
(i, j) or arc (j, i), but not both.

Show that if x' is a feasible flow in the residual network G(x°), the solution given by
xy = (x; — x};) + x§ is a feasible flow in G and satisfies cx = ¢'x’ + cx®.

Suppose that you are given a minimum cost flow code that requires that its input data
be specified so that I; = u; for no arc (i, j). How would you eliminate such arcs?

2 Exercises 51

2.50. Show how to transform a minimum cost flow problem stated in (2.1) into a circulation
problem. Establish a one-to-one correspondence between the feasible solutions of these
two problems. (Hint: Introduce two new nodes and some arcs.)

2.51. Show that by adding an extra node and appropriate arcs, we can formulate any minimum
cost flow problem with one or more inequalities for supplies and demands (i.e., the
mass balance constraints are stated as ‘‘<b(i)’" for a supply node i, and/or ‘‘=b(j)"’
for a demand node j) into an equivalent problem with all equality constriants (i.e.,
‘““=p(k)"” for all nodes k).

52 Paths, Trees, and Cycles Chap. 2

