
MGWR Python Package Update - Overall
Description

Update MGWR support version from Python version 3.6 to version 3.10 or higher.

Reason: The current MGWR codebase is on top of Python version 3.5 or 3.6, I will utilize the
advantages of new released versions to improve code readability and efficiency.

Table of Content

Updated MGWR Minimum Supported Version To
Python 3.10

Reasons for Updating Python Version

Python is part of one of the fastest-growing and most active communities in the programming
world. With each new version release, there comes a wave of updates and enhancements.
Comparing Python 3.6 to Python 3.10, (Python 3.11 boasts a remarkable 64% improvement:
Python is About to Become 64% Faster) , there are compelling reasons to consider upgrading our
supported Python version. This transition not only aligns us with the dynamic Python community
but also delivers substantial performance gains, ensuring our code runs efficiently and effectively
in this evolving landscape.

Official Support for Python Versions

As Python version 3.7 or early versions have reached their end-of-life (figure below), it's essential
to prioritize a supported and stable version. Python 3.8 is the earliest version currently maintained
by the Python Software Foundation (PSF) and offers both security and stability. Making the
transition to Python 3.10 ensures that we benefit from ongoing support and maintenance,
reducing vulnerabilities and enhancing the reliability of our Python environment.

Rationale

The existing MGWR codebase is primarily built on Python version 3.5 or 3.6. By transitioning to a
new version, we intend to leverage the advanced features of the newer releases to improve code
readability and overall functionality.

Python Release Cycle

 As Python version 3.7 and earlier have reached their end-of-life (figure below), it becomes crucial
to shift our focus to a supported and stable version to maintain the integrity and security of our
project.

af://n0
af://n40
af://n42
https://www.youtube.com/watch?v=1aevauFG_-Q&pp=ygUXcHl0aG9uIDMuMTAgdnMgMy42IHNwZWQ%3D
af://n44
af://n46
af://n48

Code Size Reduction and Performance Enhancement
To enhance the performance and improve the readability of our project, I have optimized the code
by utilizing the advanced syntax available in the newer Python versions.

For instance:

(a) Efficient List Generation

Python 3.10 allows for more efficient list generation, exemplified by the more concise expression
[i for i in range(10)] . This enhancement not only streamlines the code but also augments

readability.

(b) Improved Dictionary Iteration

The enhanced dictionary iteration capabilities in Python 3.9 are illustrated by {key: value for
key, value in zip([1, 2, 3], ["val", "val", "val"])} . Such updates significantly declutter

loop functions and elevate code readability, thereby facilitating more user-friendly interactions
with dictionaries.

af://n50
af://n53
af://n55

(c) String Formatting

 Old String Assignment (will be deprecated in the future):
 The existing codebase may have expressions like

 Updated String Assignment (f-strings), a more pythonic string formatting:
 Python 3.8 introduces more intuitive string formatting, exemplified by:

These refinements ensure that our code is not only more efficient and readable but also adheres
to modern programming practices.

Add type hints, function and class document string
explanation to clearly defined and designed
functions and classes

One of the most notable updates in Python 3.10 is the significant enhancement of typing. This
feature enables precise argument type annotations in function definitions, greatly improving code
readability and reliability. In the past, we often relied on docstrings to document expected types,
which could be error-prone. However, with Python 3.10, we can explicitly declare the types of
function arguments and return values, making the code self-documenting and reducing the risk of
type-related errors. This enhanced typing support not only aids in understanding the code but also
provides valuable information for static analyzers and development tools. An illustrative example
of this improvement is shown below:

Function Definition (Old Versions) (Also in Current MGWR,
many functions have no docstrings explanations)

Function Definition (New Versions)

print("Hi %s, this is old string assignment with number %d assigned" % ("Roy",

5))

1

print(f"Hi {'Roy'}, this is the new string assignment with number {5}

assigned")

1

def add_two(num_1, num_2):

 """Add two numbers

 num_1: int or float

 first input number

 num_2: int or float

 second input number

 """

 return num_1 + num_2

1

2

3

4

5

6

7

8

9

10

def add_two(num_1: int, num_2: int = 2) -> int:

 """Add two numbers

 Parameters:

1

2

3

4

af://n57
af://n63
af://n65
af://n67

Code Refactoring
In addition to the language-specific improvements mentioned above, upgrading to Python 3.10
provides an opportunity for code refactoring. This process involves revisiting and restructuring the
existing codebase to align with the latest language features and best practices. Code refactoring
can enhance maintainability, reduce technical debt, and improve overall code quality. By
refactoring our current code, we ensure that it remains efficient, readable, and maintainable in the
evolving Python ecosystem, making it easier to adapt to future changes and requirements. It's an
essential step in keeping our codebase robust and up-to-date.

 num_1: int, the first input number

 num_2: int, the second input number. default 2

 Raises:

 ValueError: Please correctly prepare your input data type.

 if exist raise error inside function add_two, else will not show Raises

section in Docstring

 Warnning:

 if exist Warnning inside function add_two, else will not show Warnning

section in Docstring

 Returns:

 int: the addition result of two integer numbers

 Examples:

 >>>add_two(1,2)

 3

 """

 return num_1 + num_2

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

af://n69

	MGWR Python Package Update - Overall Description
	Updated MGWR Minimum Supported Version To Python 3.10
	Reasons for Updating Python Version
	Official Support for Python Versions
	Rationale
	Python Release Cycle

	Code Size Reduction and Performance Enhancement
	(a) Efficient List Generation
	(b) Improved Dictionary Iteration
	(c) String Formatting

	Add type hints, function and class document string explanation to clearly defined and designed functions and classes
	Function Definition (Old Versions) (Also in Current MGWR, many functions have no docstrings explanations)
	Function Definition (New Versions)

	Code Refactoring

