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ARTICLE

A statistical test on the local effects of spatially structured
variance
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aGIScience Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany;
bDepartment of Geoinformatics – Z_GIS, University of Salzburg, Salzburg, Austria; cCenter for Geographic
Analysis, Harvard University, Cambridge, MA, USA; dInstitute of Geography, University of Cologne, Cologne,
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ABSTRACT
Spatial variance is an important characteristic of spatial random
variables. It describes local deviations from average global con-
ditions and is thus a proxy for spatial heterogeneity.
Investigating instability in spatial variance is a useful way of
detecting spatial boundaries, analysing the internal structure of
spatial clusters and revealing simultaneously acting geographic
phenomena. Recently, a corresponding test statistic called ‘Local
Spatial Heteroscedasticity’ (LOSH) has been proposed. This test
allows locally heterogeneous regions to be mapped and inves-
tigated by comparing them with the global average mean
deviation in a data set. While this test is useful in stationary
conditions, its value is limited in a global heterogeneous state.
There is a risk that local structures might be overlooked and
wrong inferences drawn. In this paper, we introduce a test that
takes account of global spatial heterogeneity in assessing local
spatial effects. The proposed measure, which we call ‘Local
Spatial Dispersion’ (LSD), adapts LOSH to local conditions by
omitting global information beyond the range of the local
neighbourhood and by keeping the related inferential proce-
dure at a local level. Thereby, the local neighbourhoods might
be small and cause small-sample issues. In the view of this, we
recommend an empirical Bayesian technique to increase the
data that is available for resampling by employing empirical
prior knowledge. The usefulness of this approach is demon-
strated by applying it to a Light Detection and Ranging-derived
data set with height differences and by making a comparison
with LOSH. Our results show that LSD is uncorrelated with non-
spatial variance as well as local spatial autocorrelation. It thus
discloses patterns that would be missed by LOSH or indicators
of spatial autocorrelation. Furthermore, the empirical outcomes
suggest that interpreting LOSH and LSD together is of greater
value than interpreting each of the measures individually. In the
given example, local interactions can be statistically detected
between variance and spatial patterns in the presence of global
structuring, and thus reveal details that might otherwise be
overlooked.
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1. Introduction

Geographic instability in statistical parameters (called ‘spatial heterogeneity’, see
Dutilleul and Legendre 1993) has long been of scientific interest. Alexander von
Humboldt noted a distinctive geographic patchiness in the nineteenth century
(Sparrow 1999), and Darwin’s theory of evolution was largely driven by his recognition
of a geographic distribution of phenotypic variants (Jacquez 2010). Currently, scholars
from empirical research subjects such as ecology, epidemiology or sociology leverage
knowledge out of spatial heterogeneity to either detect or specify zones of transition
(e.g. transitions from terrestrial to aquatic habitats (Turner 1989)), to link local to global
processes (Berkes et al. 2006), or to acquire a better understanding of the ecological
complexity of urban areas (Cadenasso et al. 2007).

Despite its useful properties, spatial heterogeneity plays a relatively minor role in
spatial analysis techniques, which are mostly designed for clustering. Measures of spatial
autocorrelation and hot spot techniques are prevalent, and these are used to assess
associations within spatial random variables (Getis 2010). In contrast, spatial heteroge-
neity is often deemed to be a technical nuisance and seldom regarded as a source of
valuable information. It either requires a methodological approach (Anselin 1988, Páez
and Scott 2004, Graif and Sampson 2009), or is considered to be reminiscent of large-
scale structures that influence local patterns (e.g. Ord and Getis 2001). Spatial hetero-
geneity indeed undermines the stationarity assumptions that form the basis of many
spatial techniques (Gaetan and Guyon 2010, p. 166 ff.). Thus, regarding it from the
standpoint of a nuisance is partly justified.

Nonetheless, spatial heterogeneity often contains useful information. A good illustration
of this is the recent investigation of the domiciles of newly arrived migrants from rural areas
to Accra, Ghana (Getis 2015). The use of spatial variance as a proxy for spatial heterogeneity
allows transitional zones to be detected between the underdeveloped and wealthy districts
of the city. Incomingmigrants from rural parts of Ghana first settle in these transitional areas
after they first arrive in the city. This recent example shows that spatial heterogeneity can
supply important information to investigations of complex geographic situations, and lead
to useful conclusions of both a theoretical and practical value.

Spatial heterogeneity is also important for the analysis of intrinsically heterogeneous
and novel data sources. Social media data, for instance, are sometimes called the ‘big
noise’ (Lovelace et al. 2016), because they are characterised by unstable ‘wild variance’
(Jiang 2015). The latter is characterised by an interaction between spatial patterns and
variance, which influences analysis results. Westerholt et al. (2015, 2016) recently found
that spatial heterogeneity causes Type I errors, topological outliers and some further
problems that are relevant to the spatial analysis of Twitter data. As a result, many
researchers are now investigating social media data in an attempt to mitigate its noisy
features (e.g. Sengstock et al. 2013, Lovelace et al. 2016, Steiger et al. 2016). The
investigation of heterogeneity, however, might provide a clue about the spatial percep-
tions of people and help to characterise the users’ everyday behaviours more accurately.
Similar arguments hold true for the data obtained from multi-temporal analysis. The
differences between multi-temporal data acquired by ‘Light Detection and Ranging’
(LiDAR) (Fang and Huang 2004, Tian et al. 2014), for example, are a means of detecting
heterogeneous changes in surface phenomena. When investigating the LiDAR
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recordings of landslides (Jaboyedoff et al. 2012), it was found that spatial heterogeneity
can provide a wealth of information about significant morphological features like
differently shaped earth deposits (Hungr et al. 2014). These two rather different exam-
ples demonstrate the potential value of investigating spatial heterogeneity in a number
of application scenarios.

Recently, a statistical measure of spatial variance called ‘Local Spatial
Heteroscedasticity’ (LOSH; Ord and Getis 2012) was put forward as a means of investi-
gating spatial heterogeneity. LOSH assesses the effects of spatial patterns on the
variance of an attribute. It identifies regions in which the local spatial variance deviates
from the global average variability. The measure thus reveals and maps structures of the
variance that are at least partially global in nature, whereas the weaker structures that
are entirely local remain hidden. The latter only feature prominently in local circum-
stances but remain undetected by the global reference framework of LOSH.

We set out a technique that extends LOSH by making it a measure for the influence of
local spatial patterns on local variance. The test, which we call ‘Local Spatial Dispersion’
(LSD), makes it possible to detect whether the local geographic arrangement of random
variables increases or reduces the variance. This is carried out in an entirely local manner
and takes no account of global characteristics. In addition, we propose an entirely local
bootstrapping approach for drawing inferences. Drawing inferences that are only local,
however, entails limited amounts of data from small local neighbourhoods. As a means
of circumventing the problem of small-size samples within these local subsets (which
particularly arises when adjusting small analytical scales), the inference technique
includes an empirical Bayesian prediction of additional synthetic local data. The useful-
ness of the proposed technique can be demonstrated by applying it to a high-resolution
3D change detection data set. The data is derived from a long-term ‘automatic terrestrial
laser scanning station’ (ATLS) that covers a slow-moving landslide in Gresten, Austria,
and provides a useful scenario because it contains both a distinct global structure and
additional local patterns.

The paper starts with a detailed review of spatial heterogeneity and spatial heterosce-
dasticity, and includes a brief discussion of related statistical methodologies (Section 2).
Following this outline, LOSH and our proposed measure are introduced (Sections 3 and 4).
Then, there is a Bayesian prediction of residuals as well as the bootstrap method for
developing predictive models (Section 5), before the empirical results are discussed
(Section 6) and the final conclusions are drawn (Section 7).

2. Related work: spatial heterogeneity and spatial heteroscedasticity

Spatial heterogeneity refers to non-uniformity and instability in geographic random
variables (Dutilleul and Legendre 1993). Their corresponding zones ‘where variables
change rapidly’ (Jacquez 2010, p. 210) are of scientific and practical interest. They can
(i) represent regions of habitat use and ecological interactions (Fagan et al. 1999, Lohrer
et al. 2013), (ii) assist in testing ethno-racial diversity (Abascal and Baldassarri 2015,
Legewie and Schaeffer 2016) or (iii) touch on the question of disease transmission
(Grillet et al. 2010, Perkins et al. 2013). Spatial heterogeneity is also important for
urban studies. Metaphorically speaking, just as prices in economic markets do not
‘glide’ but often ‘leap’ (Mandelbrot and Hudson 2004), urban regions tend to be
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heterogeneous and disruptive in nature (Cadenasso et al. 2007). Analysing heterogeneity
is thus of crucial importance for understanding urban social processes, while an analysis
of boundaries can assist in distinguishing subpopulations. Furthermore, spatial hetero-
geneity provides guidance in testing assumptions and theories about the relationships
between variables (Jacquez 2010), as well as assisting in data aggregation and dynamic
modelling (Anselin 1990).

Different structural types of spatial heterogeneity are distinguishable. These are char-
acterised by their causal origins, maintenance mechanisms, spatial structures, and func-
tional and temporal dynamics (Strayer et al. 2003). Other more technical distinguishing
factors include the types of investigated variables (Wagner and Fortin 2005), the under-
lying spatial indexes (spatially discrete vs. continuous; Anselin 2010) and even the meth-
odological perspectives that researchers adopt (dynamic modelling vs. hypothesis testing;
Fagan et al. 2003). In structural terms, heterogeneous zones sometimes condense to thin
and crisp boundaries, while they can also appear fuzzy (Jacquez et al. 2000).

For functional purposes, heterogeneous zones can act as semipermeable filters or
conduits and as devices from which spatial processes either originate or where they are
impeded (Forman 1995). Steep gradients or threshold conditions, at which variable
states change suddenly, can also be found in heterogeneous areas (Fagan et al. 2003).
These characteristics allow the spatial heterogeneity to exert a short or long-range
influence on dynamic processes (Fagan et al. 2003). Sometimes these influences get
strengthened by the interrelations between the effects mentioned earlier, especially by
the interplay between the structural and functional characteristics (Laurance et al. 2001).
Hence, the various features, together with the number of functional influences, show the
importance of investigating spatially heterogeneous zones.

Techniques to detect heterogeneous zones (especially crisp boundaries) first appeared
in image processing. Some corresponding methods have been designed for segmenting
synthetic images, although they are not capable of depicting dynamic real-world systems
in their entirety (Goovaerts 2010). A range of more suitable methods has thus evolved,
including techniques based on moving split-windows (Fortin 1994, 1999, Kent et al. 1997,
2006), first-order derivatives (‘Wombling’, Womble 1951, Barbujani et al. 1989, Gelfand and
Banerjee 2015), second-order derivatives (Fagan et al. 2003, Lillesand et al. 2015), spatially
constrained clustering (Jacquez et al. 2000, Patil et al. 2006, Bravo and Weber 2011), fuzzy
set modelling (Arnot and Fisher 2007, Fisher and Robinson 2014), wavelets (Csillag and
Sándor 2002, Keitt and Urban 2005, Ye et al. 2015) and several further parametric as well
as non-parametric techniques (Jacquez et al. 2008, Wang et al. 2016). Another closely
related research field is concerned with integrating spatial heterogeneity with quantitative
models. The respective approaches include the following: hierarchical and Bayesian con-
cepts (Lee and Mitchell 2012, Anderson et al. 2014, Hanson et al. 2015), geostatistical
techniques (Garrigues et al. 2006, Goovaerts 2008, Hu et al. 2015), extensions to global
spatial regression methods (Anselin 2001) and the local geographically weighted regres-
sion approach (Fotheringham et al. 1996, 2002, Brunsdon et al. 1998).

In statistics, heterogeneity either refers to single parameters (e.g. mean or variance) or
to complete distributions (Kolasa and Rollo 1991, Dutilleul and Legendre 1993). Spatial
heterogeneity can be decomposed into a deterministic, random and chaotic part
(Dutilleul 2011). The deterministic part reflects the varying average component (‘large-
scale trend’), while the latter two together reflect variations caused by variance
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instability (‘unstable mean deviations’) and spatial autocorrelation (‘variation through
interaction’). It is necessary to differentiate between heterogeneities in different para-
meters and also between the three parts outlined above, to achieve a thorough under-
standing of the behaviour of random variables and related phenomena.

In spatial analysis, varying means are analysed by hot spot techniques like the G- and
the O-statistic (Getis and Ord 1992, Ord and Getis 1995, 2001). By analogy, variations
caused by autocorrelation are analysed through local measures of spatial autocorrelation
like the ‘Local Indicators of Spatial Association’ (LISA, Anselin 1995). While these cases have
been widely investigated, there has been comparatively little research on variability in the
variance (called ‘spatial heteroscedasticity’; Dutilleul and Legendre 1993). Roughly speak-
ing, spatial heteroscedasticity refers to ‘wild variance’ (Jiang 2015). Ord and Getis (2012)
recently put forward a local measure called ‘Local Spatial Heteroscedasticity’ (LOSH), which
assesses spatial structure in variance and is akin to a spatial χ2 test. Xu et al. (2014)
investigated the distributional properties of LOSH and found that the χ2 approximation
proposed by Ord and Getis (2012) is not always suitable, and that a Monte Carlo bootstrap
should be used instead.

LOSH is ideally suited to detecting boundary-like subregions lying between homo-
geneous regimes. However, it cannot describe in detail how local spatial arrangements
of random variables in place affect the heterogeneity within the individual subregions.
This is where our study is able to make a contribution to the field because it supple-
ments LOSH by conducting a test involving the local spatial microstructure of the
variance of georeferenced random variables.

3. Local Spatial Heteroscedasticity

The LOSH measure (Ord and Getis 2012) calculates local deviations from the global
average variance. It is derived from the hot spot technique called ‘G-statistic’ (Getis and
Ord 1992, Ord and Getis 1995) and allows boundaries and hot spots of high variability to
be detected. LOSH tests the following hypotheses:

HLOSH
0 : The variance in a region does not deviate markedly from its global average.

HLOSH
1 : The variance in a region deviates from overall variance homogeneity.

LOSH proceeds as follows: In the first stage, residuals that describe the difference
between an attribute value and its local spatially weighted mean value are estimated. In
each location, the spatially weighted averages of these residuals are then compared with
their global counterpart. The latter is estimated with data from all locations by randomising
the spatial pattern at the same time. The calculated ratio of these two averages then forms
a test statistic from which inferences can be drawn. Let X be a set of n real-valued random
variables Xi referenced in an index set N ¼ 1; . . . ; nf g that indicates discrete spatial units.
By analogy, let N i ¼ j 2 N j 9i 2 N : wij�0

� �
be the local neighbourhood of spatial

unit i that can be defined by suitable spatial weights, whereby the choice of the latter
depends on the application scenario. These weights, which are given by W, a symmetric
matrix of elements wij that map pairs of spatial units to positive real weights, are a
mathematical representation of the geographical layout of the investigated region (Dray
2011). The weight matrix thereby limits the entire geographic layout to those geographic
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features that are relevant to a particular phenomenon under study. These weights can be
of an arbitrary shape (see Bavaud 2014 for an overview) and no specific form is required for
the remainder. LOSH (Hi is the notation for LOSH chosen by Ord and Getis (2012)) then
reads as

Hi ¼
P

j2Nwij ej
�� ��a

h1
P

j2Nwij
; ej ¼ xj � �xj; �xj ¼

P
k2N j

wjkxkP
k2N j

wjk
and h1 ¼

P
j2N ej
�� ��a

n
(1)

where ej is a residual about a local spatially weighted mean x̅j and h1 is the overall
average residual estimated from all the spatial units in the region. Note that N j is
the neighbourhood around unit j, that is defined analogously to N i. Exponent a
allows different types of mean deviations to be investigated. For the remainder of
this paper, we adjust a = 2 and confine the discussion to a measure of variance.

An inference about LOSH assumes random permutations of the residuals. When an
average residual h1 is employed, it thus makes clear that LOSH assumes weak stationar-
ity in the null hypothesis. The successful detection of a local pattern thus depends on
the global reasonability of h1. Through a random permutation of the residuals, the
statistic obtains an expected value of E Hi½ � ¼ 1 and has a variance of

Vi Hi½ � ¼ 1
n� 1

1
h1
P

j2Nwij

 !2
1
n

X
j2N ej
�� ��2a � X

j2N ej
�� ��ah i2� �� �

n
X

j2N w2
ij �

X
j2N wij

h i2� �
: (2)

Ord and Getis (2012) propose an adjusted χ2 approximation to the null distribution as a
parametric solution to statistical inference. The χ2 distribution stems from the design
of the statistic as a spatialised variant of the classic χ2 test for testing deviations from a
hypothesised variance. This is seen by writing out the individual terms of the sum from
Equation (1):

Hi ¼ wi1P
j2Nwij

e1j j2
h1

þ . . .þ wijP
j2Nwij

ej
�� ��2
h1

þ . . .þ winP
j2Nwij

enj j2
h1

: (3)

Variable h1 is the hypothesised variance and the summands are (spatially weighted)
squared standardised residuals. Under normality constraints, these are χ2 with one
degree of freedom. Their sum is then χ2 with additive degrees of freedom (Cochran
1934). On the basis of the findings from Box (1953), Ord and Getis (2012) adjust LOSH
to take better account of non-normality by including the empirical variance Vi. This
matches the χ2 approximation to the observed outcomes and controls the shape of
the reference distribution. The skew and the excess kurtosis of the reference dis-
tribution are given by γ1 ¼ 2

ffiffiffiffi
Vi

p
and γ2 ¼ 6Vi, and the test statistic is Zi ¼ 2Hi=Vi with

2=Vi degrees of freedom. However, Xu et al. (2014) found deviations between
empirical distributions obtained from data and the adjusted approximation outlined
above. These even occur with normal variables, which is why Xu et al. (2014) suggest
adopting a non-parametric bootstrap procedure instead.
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4. Local Spatial Dispersion

Instead of comparing local regions with a global average like LOSH, the proposed
measure LSD is concerned with the effect of the local spatial pattern on local variances.
The underlying assumption is that the way random variables are arranged geographi-
cally increases or reduces the variance, or else is unrelated to its characterisation. The
measure is only defined in a local context and does not take account of global
information. The same principle also applies for the related inference procedure,
which is conducted locally.

The proposed LSD is useful when a data set comprises statistically differing subre-
gions or when spatially coexisting phenomena are observed. However, global informa-
tion such as the average residual h1 is not meaningful in these circumstances. This
means the LOSH approach causes problems because it is unrealistic to assume there is
weak stationarity in these cases. Instead, the variance patterns might be strongly
interacting with the geographic layout locally, although they might not be recognised
when a global comparison is made with subregions that show a stronger dispersal. Thus
LOSH cannot be employed to assess entirely local effects and an entirely local measure
of spatial variance, such as LSD, can prove to be useful.

4.1 Hypotheses

The proposed test determines whether the local spatial arrangement of random vari-
ables increases or reduces the local variance. The following two hypotheses for LSD are
formulated:

HLSD
0 : The local geographic layout has no systematic effect on the variance.

HLSD
1 : The local geographic layout causes local over- or underdispersion.

The null model assumes that the local variance is unrelated to the geographic arrange-
ment. If the null is accepted, it means that the investigated data gives no indication that
geographical factors are responsible for the variance effects. Note that variability can still
be related to its particular location. The average level of variability is still treated as a
function of location. This is achieved through a local average residual hi (see Equation (5)).
However, LSD tests the local spatial influence on the dispersal behaviour above the
general local variability level. In conceptual terms, the hypothesis testing scheme of HLSD

0

and HLSD
1 derives from a linear autoregressive framework. Let Ei ¼ ej

�� ��a
 �
j with j ∈ Ni be a

vector of exponentiated residuals from a local neighbourhood i with ej as defined in

Equation (1). Let αi ¼ E ej
�� ��a� 


be the expected (non-geographic) exponentiated residual
within a local neighbourhood i. The two presented hypotheses can be derived from a
linear regression model:

ei ¼ αi þ ρiW
T
i Ei þ εi; (4)

where ei denotes the mean deviation influenced by geographical factors, εi captures the
regression residuals and Wi is the vector of spatial weights for spatial unit i. The null
model occurs when the coefficient ρi is close to zero. Hence, LSD tests to what degree
this coefficient deviates from zero. If a left-side test is conducted, the alternative model
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represents a significantly negative ρi. Its acceptance thus means that the geographic
arrangement, as defined through W, reduces the variance more than it would be the
case when geographical factors have no effect. By analogy, acceptance of the alternative
in a test on the right-side indicates a significantly positive magnitude of ρi, which means
that the local geography increases the variability within the random variables. The
hypotheses outlined here are thus useful devices to test the role of geographic layout
in the local dispersal behaviour of the spatial random variables.

4.2 Mathematical definition

The LSD measure is formulated mathematically as a ratio of the spatially weighted local
residuals and their own spatially randomised local average. Therefore, LSD is given by

LSDi ¼
P

j2Nwij ej
�� ��a

hi
P

j2Nwij
; hi ¼

P
j2N i

ej
�� ��a

ni
; (5)

where ni denotes the cardinality of N i and hi is the local mean residual. Residuals ej are
as defined in Equation (1). The term hi is a replacement of h1 and allows a strictly local
analysis to be conducted. The data sets can thus be heterogeneous with regard to mean
and variance. This important difference from LOSH is further illustrated through the
relationship between LOSH and LSD (Appendix A):

LSDi ¼ Hi � h1
hi

: (6)

Equation (6) shows that LSD is a rescaled version of LOSH. Whenever hi = h1, LOSH and
LSD are equivalent. This is the case when the local variability equals the global average
dispersal behaviour. LSD is particularly valuable when hi < h1, because LOSH tends to
overlook these kinds of weak local structures. In contrast, LSD adapts to specific local
conditions and enables truly local variance patterns to be investigated. On the contrary,
local deviations detected by LOSH are, at least in part, caused by global instability in the
first two moments.

An intrinsically local perspective of LSD is useful in a wide range of situations: (i) it can
be adopted to describe variegated geographic phenomena occurring at the same time;
(ii) it allows regions with similar spatial dispersal mechanisms to be revealed beyond the
variance magnitudes; (iii) it can support in constructing hypotheses regarding the causal
mechanisms of phenomena that are spatially coincident; and (iv) it is a diagnostic tool
for investigating local non-stationarities. Interpreting LSD and LOSH together should
provide a clearer insight into spatial variance patterns: LOSH discloses and maps the
overall global variance volatility including distinctive boundaries, whereas LSD is able to
discover the local patterning mechanisms that influence heterogeneity in a given place.
Section 6 demonstrates some of these possible uses.

5. Inference procedure

Two issues complicate the task of making inferences about LSD: potential deviations
from normality and the constraint of having to keep the inference local. In the case of
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normal attributes, LSD can technically be evaluated as a χ2 test, even though the mean
and variance might vary (Walck 2007, p. 38). However, in the light of the results of Xu
et al. (2014), we do not want to restrict the test to normal populations that seldom occur
in real geographic conditions. Furthermore, the intended local nature of an inference
approach might cause problems by the small-size local samples. This is particularly the
case when the analytical scale is small. In such cases, there is a serious lack of data
available for local resampling and bootstrap distributions are unreliable. The χ2 approach
is thus not applicable and a different inferential strategy is required.

A two-step approach is put forward as a means of overcoming this difficulty:

(1) A Bayesian prediction of synthetic data to increase the size of the local database
through
(a) determining suitable prior distributions and
(b) a Bayesian updating for adjusting priors to local conditions.

(2) Arranging of local bootstrap distributions using the data from step 1.

The Bayesian approach in the first stage is used to boost the amount of available data.
The purpose of this is to predict additional local mean values, from which auxiliary
residuals can be generated. These can then be plugged into LSD during the Monte Carlo
iterations in the bootstrap. The second stage describes the final estimation of a refer-
ence distribution that is used for inference purposes. The following subsections outline
these two stages in more detail.

5.1 Bayesian mean prediction

The first part in the inferential approach is to supply the available local subsets with
additional information. This is carried out by predicting the synthetic mean values that
are used for drawing additional local residuals. The mean estimation is subject to the
central limit theorem. This allows us to exploit the advantage of well-known a priori
knowledge about the underlying distributional characteristics of mean estimations.
Arithmetic means converge to normal distributions. Predicting the means is thus con-
ceptually simpler than drawing the residuals, and for this reason, we have chosen to
follow this path rather than predicting residuals directly.

The synthetic means are constructed through a semi-global empirical Bayesian pro-
cedure that takes advantage of two sources of information: global information from the
overall data set and local information from the neighbourhoods under consideration.
Our proposed approach utilises the observed sampling variability of all the observed
mean estimations as prior belief. This global prior reflects strongly averaged information.
Hence, the prior belief is further adapted to local conditions by taking account of the
local features. The latter step mitigates the global averaging and fits the distribution
better to the local conditions in a particular location. In other words, the outlined two-
step approach reduces the risk of adapting to local situations too far by taking into
account the global setting (note that observed data might represent outlier situations).
At the same time, the approach does not entirely rely on global average information.

The partial inclusion of global information contradicts the stated objectives of LSD.
However, the use of global data in the auxiliary Bayesian stage, which precedes the
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arranging of bootstrap distributions, is a pragmatic compromise and its influence should
be kept to a minimum. Apart from predicting means, the global information is not
transferred to other parts of the inference procedure such as the bootstrap. The alter-
native to using global information would be an objective Bayesian approach with an
uninformed prior. However, this could result in an excessively overfitted predictive
posterior distribution as such approach implies only using local information. In other
words, the problems of uninformed objective priors parallel those of local bootstrapping
without generating any additional information. An objective Bayesian approach would
thus not address the two major issues outlined earlier. The following two subsections
describe the design of the prior distribution and of the updating step.

5.2 An informed prior

The first stage of the Bayesian predictive approach is to construct a prior that models
previous knowledge about the sampling variability of local spatial mean values. The prior
must maintain realism, but, at the same time, it should not interfere with the likelihood of
the local data that is used in the posterior. That latter likelihood will be obtained from
information from the neighbourhood of interest, which must thus then be kept for the
updating step. The dual use of data might otherwise lead to a dominant prior that drives
the posterior too far, especially with small data sets (Berger 2006, Darnieder 2011, Gelman
et al. 2013). The data set is therefore subsetted. In addition to N and N i, we define

N iþ ¼ k 2 N j 9 j 2 N i : wjk�0
� �

; N i � N iþ � N ; (7a)

Ai ¼ NnN iþ: (7b)

Subset N i+ (Equation (7a)) includes the neighbours of the neighbours of unit i. Set Ai

(Equation (7b)) contains all the units outside the extended neighbourhood N i+. Figure 1
illustrates these subsets.

Constructing an informed prior requires a priori distributional knowledge. While making
the allowance for global non-stationarity, it is not guaranteed that the underlying random
variables Xj will be distributed in an identical manner. However, through the central limit
theorem and assuming the sample size to be reasonably large, it can be assumed that the
spatially weighted mean values Yj ¼

P
k2N j

wjkxk=
P

k2N j
wjk are approximately normal.

We thus have Yj ~ N μXj ; ajσ
2
Xj

� �
, where μXj and σ2XjXN j

are the unknown expectation and

variance of the variates (i.e. the variates from N j). The factor aj ¼
P

k2N j
w2

jk=W
2
j (see

Appendix B) reflects the geographic constraints from the spatial weights matrix W. We
can ignore this latter constant for the moment but will need it later in the bootstrap.

We seek to predict the parameters μXj and σ2Xj
. It must be remembered that the prior

should be backed up by a sufficient amount of data. Instead of estimating the parameters
multiple times from small neighbourhoods, our aim is to combine all the information from
Ai. Since Ai varies across locations, individual priors must be obtained for each neighbour-
hood. The combined mean and variance estimators are given by (see Appendix C)
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�xc ¼
P

j2Ai
nj � �xjP

j2Ai
nj

and s2c ¼
P

j2Ai
nj � 1

 �

s2j þ �x2j
� �

P
j2Ai

nj
� �

� nAi

� �x2c (8)

These estimators account for mutually overlapping spatial neighbourhoods. Variable nAi

is the cardinality of Ai and subscript c illustrates the combinatorial nature of the
proposed estimators from Equation (8).

The prior is the product of the two marginal densities of mean and variance outlined
above. The mean of Gaussian random variables Yj is itself a normal random variable
centred on μ0 ¼ �xc and depends on knowledge of the variance:

μXj j σ2Xj,N μ0; σ0 ¼
σ2Xj
ni

 !
: (9)

Technical, but non-substantive parameters (i.e. hyperparameters) are indicated by sub-
script 0. Variable ni gives the measurement scale of the neighbourhood i of interest. We
use ni rather than the scale that is actually associated with x̅c to increase the realism of
the prior. The much larger cardinality of Ai would otherwise cause the prior to be
underdispersed. The influence of the prior on predictions could then become overly
dominant. Employing ni instead, is a means of matching the prior scale to that of the
neighbourhood of interest and is thus more appropriate.

The variance σ2Xj follows a normal scaled inverse-chi-squared distribution (Gelman
et al. 2013, p. 67f.). This results from the χ2-distributed scaled ratio of the sample
variance to the variance of the population:

Figure 1. Schematic illustration of region N separated into N i, N iþ and Ai.
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ni � 1ð Þ � s2c
σ2Xj

,χ2ni�1 ) σ2Xj,χ�2
scaled υ0; τ

2
0


 �
: (10)

As in the case of the mean, the degrees of freedom υ0 is adjusted to ni − 1 instead ofPn
i¼1 ni


 �� n, as it is necessary for the prior to be informative about predicting data for

N i rather than Ai. The scale parameter τ20 is equal to the variance estimate s2c .
A combination of the two marginal densities from Equations (8) and (9) yields the

prior (see Appendix D):

π μ; σ2

 � / 1

σ3þυ0
� exp � ni μ� μ0ð Þ2 � υ0τ

2
0

2σ2

 !
: (11)

This prior represents the non-spatial global a priori belief about mean values esti-
mated from samples of size ni. It thus represents information about the variability of
mean estimations from across the entire study area beyond location i of interest.
Figure 2 provides a parameterised illustration of the constructed prior density.

5.3 Posterior distribution

The posterior combines the prior with the likelihood of the observed local spatial mean
value Yi,N μXi ; aiσ

2
Xi

� �
. Our aim is to predict suitable values for μXi and σ2Xi . These

parameters specify the final Gaussian from which the additional means are drawn.
Constant ai is, again, fixed because it is a non-random property of the neighbourhood
of interest. The respective posterior follows a normal scaled inverse-chi-squared distri-
bution and yields (see Appendix E)

f μXi ; σ
2
Xi j Yi

� �
/ 1

σ4þυ0
Xi

� exp � ni μXi � μ0

 �2 þ Yi � μXi


 �2 þ υ0τ20
2σ2Xi

 !
: (12)

Figure 2. Illustration of the prior density for ni ¼ 10; μ0 ¼ 11; υ0 ¼ 5 and τ20 ¼ 16.
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Drawing values for μXi and σ2Xi requires deriving the conditional posterior μXi jσ2Xi ; Yi and,
since this in turn requires a known σ2Xi , the corresponding marginal posterior σ2Xi jYi. By
building on the results obtained from Gelman et al. (2013), we derive

μXi j σ2Xi ; Yi , N
μ0 þ Yi

2
;
σ2Xi
2ni

� �
; (13a)

σ2Xi j Yi , χ�2
scaled υ0 þ ni;~τ

2
 �
and ~τ2 ¼ υ0τ

2
0 þ ni � 1ð Þs2 þ ni

2 Yi � μ0ð Þ2
υ0 þ ni

(13b)

where s2 is the sample variance from neighbourhood N i. The conditional mean poster-
ior in Equation (13a) is a trade-off between prior belief and observed local information.
Its mean averages the combined means, while its scale shows that the posterior is
supported by twice the amount of information, as it is based on two separate mean
estimations. The marginal variance posterior in Equation (13b) has additive degrees of
freedom, whereas the updated scale parameter ~τ2 combines the prior and observed sum
of squares. The latter are dilated by extra uncertainty from the deviation between the
combined means. While the two individual sums of squares in the numerator represent
the variability within the individual distributions, the additional uncertainty stems from
the likelihood of both occurring together.

Equations (13a) and (13b) demonstrate that the prior and the local information each
supply half of the posterior information. The benefit of this is that the posterior is robust
against inflation, which might be caused by local boundary conditions or by extreme
global imbalance.

5.4 Bootstrapping

The final methodological stage is to generate a bootstrap distribution for LSD that
involves the Bayesian procedure outlined above. In each bootstrap iteration, the follow-
ing steps must be repeated:

(1) random resampling with replacement within the local neighbourhoods,
(2) drawing of new synthetic means and recalculation of the residuals,
(3) recalculation of LSD for each drawn pseudo-sample with substituted means,
(4) estimation of an empirical distribution of LSD and assessment of pseudo p-values p*.

These four stages resemble the Monte Carlo approach outlined in Hope (1968). A
concise description of the stages that are usually involved in this kind of approach is also
found in Dray (2011, p.129f.). What differentiates our approach from these two studies is
that the proposed bootstrap is locally constrained. The drawing of additional means in
Stage 2 involves the Bayesian approach from Sections 5.2 and 5.3 and is achieved in
three phases:

(5) drawing of a posterior variance σ2Xi from Equation (13b),
(6) substitution of σ2Xi into Equation (13a) and drawing of a posterior mean μXi ,
(7) drawing of new mean values from N μXi ; aiσ2Xi

� �
.
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The pseudo p-values p* that are needed for inference can then be calculated in
different ways, depending on the desired hypothesis testing scheme (Table 1).

6. Empirical results from a LiDAR-derived data set

Both LSD and LOSH are applied to a subset of 4436 height differences calculated from two
co-registered and filtered LiDAR data sets between 20 and 24 August 2016. These are
taken from an ‘ATLS’ monitoring project of daily scans, which involves surveying a slow-
moving landslide in Gresten, Austria (Figure 3, c.f. Canli et al. 2015, Höfle et al. 2016). The
height differences were obtained from the ‘Multiscale Model to Model Cloud Comparison’

Figure 3. Height differences between two ATLS data sets.

Table 1. Overview of estimators of pseudo p-values p* for different types of hypotheses.
Testing scheme Pseudo p-value estimator Interpretation of p* < α

Right-tailed p� ¼ 1
m# k j LSDik>LSDi0f g Geographic arrangement increases the variance

Left-tailed p� ¼ 1
m# k j LSDik<LSDi0f g Geographic arrangement reduces the variance

Two-tailed p� ¼ 1
m# k j LSD�

ik>LSDi0

n o
,

where LSD�
ik ¼ LSDik � LSDik

�� ��
Geographic arrangement affects the variance

LSDi0 denotes an observed LSD value, LSDik is the LSD value obtained from the kth bootstrap, m is the overall number
of iterations and α is the adjusted significance level. We use # to denote the cardinality of a set to avoid notational
ambiguity.
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(Barnhart and Crosby 2013, Lague et al. 2013), a point-based comparison method that
recognises the existence of sampling variability and measurement error. The eastern part
of the scanned area got mown in between the two dates (a figure showing the study area
before and after the mowing is provided in the online supplementary material). The data
set thus comprises a distinctive global structure (mown vs. unmown; diagonal dividing
line) and, in addition, weaker local structures within the subregions. This two-stage
structure makes the data a suitable test case for LSD and LOSH. These techniques are
applied with inverse-distance weighting and a cut-off at a distance of 1 m. This scheme is
useful because the observed process has a positive spatial autocorrelation and does not
show abrupt changes within the regimes. Note that the obtained results should not be
understood as outcomes of an empirical investigation, but rather as a scenario for
demonstrating differences between LSD and LOSH.

6.1 Interpretation of LSD and LOSH

The results from LSD and LOSH reveal different features of variance patterns. Thus, when
they are interpreted together, it is easier to make a direct comparison. Figure 4 maps
statistically significant LOSH and LSD outcomes. We randomise locally, but omit the
Bayesian approach for the moment, as all the involved neighbourhoods are sufficiently
large. The smallest available neighbourhood size is ni = 8, which allows 8! = 40,320
permutations. The average of ni = 54, however, allows ca. 2.31 × 1071 permutations,
which is enough for virtually all the application scenarios. Despite this, ni = 8 is still a
small number of observations and hence contains little information. The Bayesian
technique thus proves to be useful, as will be discussed in Section 6.5.

Figure 4. Significant scores from (a) LOSH and (b) LSD (two-sided test; α = 0.05; 1000 iterations).
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The global dividing line cutting across the centre of the region is a feature where
significant LOSH values from the right tail of the reference distribution accumulate
(Figure 4a). Thereby, the southern part dominates, while the northern part of the line
is influenced by a spatial gap (a gentle slope in the terrain) which is an obstacle to high
LOSH scores. Further high values are found in the mown regime, in particular in the
northernmost part (disturbances from artefacts) and in the South (these vanish when the
false discovery rate (FDR) is controlled by following Benjamini and Hochberg (1995)). In
contrast, the western unmown part is dominated by significantly low LOSH values. These
are caused by the global resampling scheme of LOSH, which shifts statistically differing
values from the mown part into the unmown region. This biases the p-values towards
the left tail of the bootstrap distribution and makes it impossible to disclose local
variance patterns. The eastern mown regime is not as homogeneous as expected.
Grass cuttings produced from the lawn mower were being left on the meadow. This
increases the global average residual h1 and in turn leads to a more homogeneous
appearance of the unmown regime, as explained earlier. Nevertheless, LOSH reveals and
maps the global variance structure in the locality by identifying the most (the dividing
line) and least dispersed areas (the unmown part).

The LSD values (Figure 4b) are more evenly distributed than the LOSH values.
Unexpectedly and in stark contrast with LOSH, the dividing line no longer appears on the
map except for a small part in the centre. The local spatial arrangement is thus not leading to
the variability of the features and it can be concluded that the dividing line is a truly global
feature that is only caused by the existence of two different regimes. Apart from this, the
western part is no longer as homogeneous as it appeared with LOSH. LSD reveals certain
significant local features that are interspersed and like small spots of high variability within the
unmown part. The overall distribution of the LSD values is, however, rather homogeneous
across the two regimes (Table 2). The structures in themown and unmown parts therefore do
not seem to differ noticeably and behave in a relatively similar way. A different significance
evaluation will be seen when the Bayesian mean prediction is incorporated in Section 6.5.

In summary it can be stated that an evaluation of LOSH and LSD scores in combination
reveals both global and local variance patterns. The observed LSD values further confirm
that, at least for the adjusted analytical scale, the dividing line is a global feature. It is also
clear that local structures that remain hidden with LOSH are present in the map when LSD
is considered. The LSD scores thus provide an additional insight into the data set.

6.2 A map of global and local spatial variance patterns

It is worth flagging the significance of the LSD and LOSH values, but they are not
exhaustive in terms of their interpretation. The maps in Figure 5 thus provide a
classification scheme for LOSH-LSD tuples. Four standard gradients can be derived
from these, each characterising different subregions in the map.

Table 2. Descriptive statistics for LSD scores within the mown and unmown regimes.
Regime Min Max Mean Median Standard deviation Interquartile range

Mown 0.146 3.185 0.907 0.823 0.363 0.446
Unmown 0.249 4.426 0.904 0.782 0.453 0.501
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Figure 5 shows a way to classify LOSH and LSD outcomes together. A prominent
feature in Figure 5a is, again, the dividing line (see also Type II gradient in Figure 5b).
The figure, however, shows the line in more detail: The centre of the line appears to be
narrow and elongated and reflects the thin crisp edge of the boundary where the two
regimes meet. The spatial pattern strongly increases the variance in this from both a
global and local standpoint. Adjoining this is a fuzzy region where local spatial effects
are negligible, while the spatial variance is generally high in a global comparison. In
other words, while the global variance gradient features prominently, the local spatial
variance pattern is closer to randomness and regularity. The local geographic arrange-
ment is thus not related to the increased variance in these regions.

When one moves farther away from the dividing line, the effects prevail at a local level.
The variance structures turn into insular regions of small areas where the local pattern
increases the variance, which are surrounded by a homogenising geographic arrangement
(Type I). The northern part, which is affected by artefacts, is further characterised by two
volatile variance patterns (Types III and IV). The Type III pattern, which is featured in the
north-eastern part, is caused by a larger haystack. This appears to be regular in local terms
(its internal structure), but is disruptive globally as it is a prominent feature (above the global
mean variance). In contrast, the Type IV pattern reflects taller bunch grass that is charac-
terised by abrupt fluctuations between regular and heterogeneous conditions caused by
the related clumps of culms. An interpretation that combined LOSH and LSD made it
possible to distinguish these rather different features in the data.

Figure 5. Variance patterns within LiDAR-derived height differences. (a) A detailed characterisation
of local and global effects: the variance can be above the global mean and increased at a local level
by the geographic pattern (blue) or below the global mean and reduced further at a local level at
the same time (yellow). The locations can also be homogeneous from a global standpoint while the
local pattern increases the variance (dark green) or vice versa (red), with all sorts of possible
transitional effects (intermediate colours); (b) A schematic sketch of LOSH-LSD configurations: the
prevailingly local structures (I), the prevailingly global structures (II), locally homogeneous, and
globally dispersed (III), global and local variance fluctuations (IV).
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The detailed interpretations given above demonstrate the additional value that LSD
provides. Global structures are detected and mapped locally by LOSH where these dom-
inate, but local details aremissed out. In contrast, LSD assesses local structures and describes
in greater detail the internal structure of global features (e.g. the nature of the central
boundary or of the homogeneous subregions). Themeasure thus not only assesses different
structures, but also reveals additional information about features obtained from LOSH.

6.3 Interplay with variance

Since both LSD and LOSH are measures of variance, it is worth investigating how they
relate to the magnitude of the non-spatial local variance. This illustrates the ability of
LOSH and LSD to separate effects of spatial patterning from other influences of general
variability.

The design of LOSH implies there is a strong dependence on general local variability
through its constant denominator. When a subregion is generally diverse, the prospect of
assessing high LOSH scores is also high, regardless of the local spatial patterning. Figure 6a
illustrates this link, and Kendall’s Tau-b, an ordinal correlation measure that accounts for
non-normality and ties, gives further support through a strongly significant test score of
τ = 0.679 (p < 0.001). However, this relationship is not uniform since LOSH is more dispersed
when the local variability is stronger. Regressing LOSH on variance and conducting a non-
parametric Koenker–Bassett test (Koenker and Bassett 1982, Godfrey 1996) on the residuals
confirms the heteroscedasticity that is visible in Figure 6a. The two diverging quartile trend
lines in the biquantile regressogram (Figure 6b) underpin this outcome, while the median
trace shows that variance is a good predictor of LOSH. The measure is thus dominated by
non-spatial variability. This result is in accordance with the intended purpose of LOSH to
detect both themost and least dispersed regions in geographic data. However, it also shows
that LOSHs power to detect solely spatial effects in local circumstances is limited.

In contrast, Figure 7a shows that LSD is only weakly related to variance (τ = 0.023,
p < 0.001), and the median trend line in the regressogram (Figure 7b) represents a
relationship that varies with the strength of LSD. Variance is a sufficient predictor of LSD
when it is strong and when, at the same time, the influence of the spatial patterning is

Figure 6. Relationship between LOSH and local variance. (a) A scatter plot of variance and LOSH;
and (b) A biquantile regressogram (Tukey 1977) illustrating heteroscedasticity in LOSH.
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weak (i.e. the right part of the scatter plot in Figure 7a). However, the ascending slopes
of the median, as well as the quartile trend lines (Figure 7b) show that variance system-
atically overestimates high LSD scores. The spatial pattern thus dominates the (more
interesting) high LSD values. These characteristics are desirable properties: LSD only has
a negligible link with local variance, while extremal outcomes are controlled by the
spatial effects that they are supposed to quantify.

6.4 Relationship with spatial autocorrelation

The two measures quantify different aspects of ‘dissimilarity’ within random variables. As
mentioned in Section 2, spatial autocorrelation represents an additional, covariance-
based dimension of heterogeneity. Local estimators like local Moran’s I (Anselin 1995)

Figure 7. Relationship between LSD and local variance. (a) A scatter plot of variance with regard to
LSD; and (b) a biquantile regressogram (Tukey 1977) illustrating heteroscedasticity within LSD.

Figure 8. The relationship of LOSH and LSD with local Moran’s I. The logarithms of the two measures
were chosen to improve interpretability. The red line represents a first-order LOESS trend. (a) LOSH;
and (b) LSD.
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can be used to quantify spatial autocorrelation, and Figure 8a shows its relation to LOSH.
The Moran interval [0.0, 1.4] shows a significant negative relationship (τ = −0.27). LOSH is
high when the association between neighbours is random and low when observations
occur in a clustered form. Both measures therefore, to some extent, highlight similar
structures from different perspectives (variance vs. covariance). Observations showing
autocorrelations higher than 1.4 belong to the northern artefacts and thus can reason-
ably be regarded as outliers, that do not conform to the general observations made
above. Overall, LOSH reveals roughly similar structures to those of Moran’s I, as is evident
from their antipodal behavioural pattern.

In contrast, LSD is almost unrelated to Moran’s I, when the latter is on the interval [0.0, 1.4].
Most of the data points accumulate on the left side of the scatter plot in Figure 8b without
showing any notable trend (τ = −0.09). This strengthens the likelihood indicated above that
LSD is able to reveal patterns that cannot be detected by LOSH andMoran’s I. These detected
patterns are not linked to the clustering tendency of the attribute values. Rather, they are
features in their own right, which makes them of value for empirical investigations since they
might supply important details about the disclosure of the mechanisms in spatial random
variables.

6.5 Influence of the Bayesian prediction of mean values

The Bayesian procedure from Section 5 extends local resampling by the use of synthetic
data generated from empirical prior knowledge combined with local information. This
approach differs from conventional bootstrapping that only relies on observed information.
There is a need to investigate how the Bayesian approach influences drawn inferences.

Figure 9. The relationship between the Bayesian and the non-Bayesian p-values.
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Figure 9 shows a sigmoidal relationship between conventional p-values (i.e. those
that were used in the previous paragraphs) and those involving synthetic means. They
show a strong monotonic association of τ = 0.77 at medium ranges. There is a significant
fall in this association in both tails (τ = 0.23), which is an important observation as the
tails possess values which are important for drawing inferences. In the Bayesian
approach, the p-values tend to concentrate around the extremes of 0 and 1. In contrast,
conventional p-values show a higher level of dispersion in the tails. This is caused by the
number of available observations, which have limited explanatory power because they
only represent a small fraction of all possible values. In contrast, the Bayesian approach
extends this spectrum, which increases its ability to detect spatial effects because the
comparative values are not biased towards a certain range.

The increased ability to detect effects with the Bayesian approach is further evident after
the p-values have been corrected for multiple hypothesis testing. Note that LSD tests n
hypotheses with one data set. This repeated use of the data leads to an increase in the
Type I error rate and requires correction.When the FDR is controlled at α= 0.05 (Benjamini and
Hochberg 1995) and the p-values are corrected accordingly, it is seen that the non-Bayesian
approach is very conservative. Only 0.5% of all the null hypotheses are rejected, which is way
below the significance level that was envisaged. In other words, many actual effects might be
missed out. In contrast, when the Bayesian-generated p-values are adjusted, they yield a ratio
of 5.2%, which is close to the desired α level.

Figure 10 illustrates the FDR-corrected p-values of significant observations by incorporat-
ing the Bayesian-generated means. The significant features in the eastern part (the ‘mown’)
show a general north–south bearing (Figure 10a) and resemble the direction of the mowing
process, which is illustrated in the background of Figure 10b through a hill-shading raster. The
blue features, where the geographic layout reduces the variance, either accumulate alongside

Figure 10. Significant LSD scores involving Bayesian-predicted means (two-sided test; α = 0.05;
1,000 iterations). (a) Map of significant features. (b) Schematic sketch of significant accumulated
features, against the background of the hill-shading of the surface after the mowing.
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the small piles of hay that were left on the meadow or in the furrows in-between. In contrast,
thewestern part (the ‘unmown’) is not affected by the after-mowing topography. The patterns
of significant features observed in this part are mostly unrelated to the hill-shading. This
makes sense given that the height differences that were analysed are affected by physical,
biological and other factors that do not necessarily correspond to the topography shown in
Figure 10b, especially in the unmown area.

A comparison of Figure 10 with Figure 4b shows that the conventional p-values
generated from the local bootstrapping do not show the features described above. In
fact, there is no noticeable difference between the mown and unmown parts in this
case. The p-values generated by the inclusion of predicted means are closer to the
phenomenon (especially in the mown part) and can thus be considered to be of greater
value. Hence, this comparison implies that the proposed Bayesian approach is a reason-
able alternative to more conventional forms of pseudo p-value estimation.

7. Discussion and conclusions

This paper introduces a test called ‘LSD’, which is able to determine the local influence of
geographic arrangements on variance. It does not incorporate global information and
allows local patterns to be detected in the presence of a global structure. The strictly
local nature of the test, however, increases the risk of problems arising from small-size
samples within local neighbourhoods. To mitigate this risk, a stratified bootstrapping
procedure is introduced that combines traditional resampling with a Bayesian prediction
of synthetic data. The proposed LSD supplements LOSH, which is a recently devised
technique to map global variance structures locally. The measure adapts LOSH to strictly
local circumstances. Conceptually, LSD forms a part of a series of localised techniques
like the hot spot method called ‘O-statistic’ (Ord and Getis 2001), or locally adaptive
geometric clustering techniques such as the inhomogeneous marked and unmarked
K-functions (Cuzick and Edwards 1990, Baddeley et al. 2000).

Its application to a data set for height differences derived from LiDAR data demon-
strates the ability of LSD to detect local patterns within a distinct global structure. An
interpretation combined with LOSH reveals further characteristic variance patterns,
which would not have been detected by using either measure alone. Furthermore, the
obtained results show that LOSH is closely correlated with general non-spatial variability,
which hampers the separation of genuinely spatial from other effects. In contrast, LSD is
uncorrelated with non-spatial variation and is capable of exposing entirely spatial
variance effects. Notably, LSD is also unrelated to positive spatial autocorrelation. This
allows the measure to assess other complex patterns apart from general attribute
clustering, such as the internal structures of clusters and the detailed contours of
geographic boundaries. The proposed inference mechanism further facilitates the detec-
tion of local structures. While conventional stratified bootstrapping turns out to be
overly conservative, the synthetic expansion of the available local data keeps the α-
rate in compliance with the adjusted significance level, which increases its ability to
detect meaningful patterns. Overall, LSD has been shown to be a useful extension to the
spatial analysis toolbox. In the given example, it is possible, in statistical terms, to detect
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local interaction between variance and spatial patterns within global structures and thus
to disclose details that would otherwise have been overlooked.

The anonymous reviewers pointed out that therewas a relationship between the proposed
LSD technique and local variograms. Variograms quantify the variance of the spatial increment
between two locations separatedby a certain distance (Bachmaier andBackes 2008, Cuba et al.
2012). Both, LSD and variograms are thus concerned with variance estimation. What differ-
entiates them is that LSD is (i) a hypothesis test designed to determine the influence of a
specific spatial arrangement on variance and (ii) that it is concerned with in-place variance
rather than with the variance of the incremental process. In contrast, variograms estimate
variance within certain distance bands by relying on the validity of the employed spatial
weights (instead of testing their influence). The estimates of the variograms are then used for
modelling (e.g. in Kriging), which means that our proposed test can be used as a diagnostic
tool for geostatistics. For instance, LSD can be used to fully investigate the possible sources of
local non-stationarities, which might lead to a lack of stationarity in the difference processes
between locations. Thus, LSD might also be a useful device in the area of geostatistics.

However, there are some shortcomings in this paper that could not be addressed. One of
these is that our data only have a positive spatial autocorrelation. A negative spatial auto-
correlation is different in nature, since it involves a certain degree of heterogeneity, which in
turn is related to variance. An interesting relation between LSD and negative spatial auto-
correlation might thus exist, which would be worth exploring in a systematic way in a future
research project. In terms of inference, the forms adopted for the prior and likelihood are
strongly supported by the central limit theorem and leave little room for variation. However,
the way that the prior and likelihood enter the posterior distribution needs to be analysed
with regard to suitable combinations other than the applied ‘half-and-half scheme’. For
instance, an adaptive solution could be useful, in which the likelihood is given more weight
in larger neighbourhoods that are backed up by a more solid database. In terms of LOSH, our
empirical results show a strong heteroscedasticity with regard to local variance. Future
research should therefore seek to achieve a variance stabilisation in order to make the
outcomes of LOSH more robust for inhomogeneous populations and assist its interpretation.
From a technological standpoint, the proposed solution is computationally expensive as it
includes bootstrapping. The application of LSD to large data sets would hence clearly benefit
from an efficient implementation strategy. All in all, LSD provides the means of obtaining a
valuable and detailed insight into variance mechanisms of geographic random variables and
offers the prospect of achieving significant new empirical results in various fields.
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Appendix A. Relationship between LOSH and LSD

The ratio between LOSH and LSD is given by

Hi

LSDi
¼

1
ni

P
j2N i

ej
�� ��2 �Pj2Nwij ej

�� ��2 �Pj2Nwij

1
n

P
j2N ej
�� ��2 �Pj2Nwij ej

�� ��2 �Pj2Nwij

¼ n � hiP
j2N ej
�� ��2 ¼ hi � h�1

1 :

From this, LOSH and LSD can be inferred as follows:

Hi ¼ LSDi � hi
h1

and LSDi ¼ Hi � h1
hi

:

The ratio above shows that LSD can be turned into LOSH and vice versa, demonstrating that both
measures represent a scaled version of the respective other.

Appendix B. Expectation and variance of spatially weighted mean

estimates

The mean and the variance of the spatially weighted mean estimates Yj are affected by the spatial
weighting structure. Let {Xk} be independent real random variables indexed over the neighbour-
hood set of spatial units N j. Let further {wjk} denote the set of spatial weights upon N j that sums
up to Wj ¼

P
k2N j

wjk , and Yj ¼ 1=Wj

 �P

k2N j
wjkxk be a local spatial average as defined in

Equation (1). Under local randomisation the expectation E[Yj] is given by

E
1
Wj

X
k2N j

wjkXk

2
4

3
5 ¼ 1

Wj

X
k2N j

wjkE Xk½ � ¼ 1
Wj

X
k2N j

wjkμXj ¼ μXj :

The location of the mean is thus not affected by the spatial weights. Note that the weighted sample
mean is a linear combination wj1=Wj


 �
X1 þ . . .þ wjnj=Wj


 �
Xnj of independent random variables (i.e.

local independent under the randomisation assumption of H0 of LSD). The variance of Yj is therefore
obtained by applying the rule for the variance of linear combinations of independent random
variables, which is given by Var

P
k akXk

� 
 ¼Pk a
2
kVar Xk½ �, and thus for Yj yields

Var Yj
� 
 ¼ X

k2N j

wjk

Wj

� �2
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¼ σ2N j

�
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w2
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:
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Unlike the mean value, the variance is scaled by the weighting scheme. The above relationship for
the variance is demonstrated for the ordinary unweighted case through substituting 1 for each
weight wjk. Their sum then yields nj and the above equation reduces to the variance of the

unweighted sample mean σ2N j

Pnj
k¼1 12=n2j
� �

¼ σ2N j
=nj.

Appendix C. Averaging of several local variances

The variance of a random variable X is generally given by the shift rule Var X½ � ¼ E X2½ � � E X½ �2. We

already determined the estimator of E X½ �2 in Equation (8), which is �x2c . The estimator of E X2½ � takes
the form

Pn
i¼1 x

2
i =n, though it must take into account the grouping in the data (i.e. the spatially

overlapping neighbourhoods). To simplify the following steps, the Bessel correction of the
unbiased sample variance s2n�1 is reversed first:

_s2 ¼ n� 1
n

� �
s2n�1 ¼

1
n

Xn

i¼1
xi � �xð Þ2 ¼ 1

n

Xn

i¼1
x2i

� �
� �x2:

From this, the corresponding sum of squares is obtained:

n _s2 þ �x2

 � ¼Xn

i¼1
x2i :

This sum of squares can be split up into a series of partial sums. For the case of partly overlapping
spatial neighbourhoods, this gives

P
i2N 1

x2i þ . . .þPi2N n
x2i . Each of these summations can be

represented through their respective local sample variance and local mean value. We get that

X
i2Ai

X
j2N i

x2j ¼
X
i2Ai

ni _s2i þ �x2i

 �

;

and the substitution of this back into Var X½ � ¼ E X2½ � � E X½ �2 yields

_s2c ¼
P

j2Ai
nj _s2j þ �x2j
� �

P
j2Ai

nj
� �x2c :

In order to obtain an unbiased result, we reverse the previous elimination of the Bessel correction.
The rescaled version of _s2c is

s2c ¼
P

j2Ai
njP

j2Ai
nj

� �
� nAi

� _s2c ¼
P

j2Ai
nj � 1

 �

s2j þ �x2j
� �

P
j2Ai

nj
� �

� nAi

� �x2c :

Appendix D. Derivation of the prior

The prior combines the two marginal densities

f μXj jσ2Xj ; μ0; σ20 ¼ σ2Xj=ni
� �

¼
ffiffiffiffi
ni

pffiffiffiffiffiffi
2π

p
σXj

exp �
ni μXj � μ0

� �2
2σ2Xj

0
B@

1
CA

and
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f σ2Xj ; υ0; τ
2
0

� �
¼

τ20υ0
2

� �υ0=2
Γ υ0

2


 �
σ2þυ0
Xj

exp � υ0τ20
2σ2Xj

 !

into their joint product

π μXj ; σ
2
Xj

� �
¼

τ20υ0
2

� �υ0=2
ffiffiffiffiffiffi
2π

p
σXj

ffiffiffiffi
ni

p � Γ v0
2


 �
σ2þυ0
Xj

� exp �
ni μXj � μ0

� �2
þ υ0τ

2
0

2σ2Xj

0
B@

1
CA;

where Γ is the gamma function. If all normalising constants are omitted, the prior is obtained as
follows:

π μXj ; σ
2
Xj

� �
/ 1

σ3þυ0
Xj

� exp �
ni μXj � μ0

� �2
þ υ0τ20

2σ2Xj

0
B@

1
CA:

Appendix E. Derivation of the posterior

The observed data Yi,N μXi ; σ
2
Xi

� �
are described by the normal likelihood function:

f Yi j μXi ; σ2Xi
� �

¼ 1ffiffiffiffiffiffi
2π

p
σXi

� exp � Yi � μXi

 �2

2σ2Xi

 !
/ σ�1 � exp � Yi � μXi


 �2
2σ2Xi

 !
:

The multiplication of this likelihood by the prior from Appendix D yields the following posterior
density:

f μXi ; σ
2
Xi j Yi

� �
/

τ20υ0
2

� �υ0=2
2π

ffiffiffiffi
ni

p � Γ υ0
2


 �
σ4þυ0
Xi

� exp � ni μXi � μ0

 �2 þ Yi � μXi


 �2 þ υ0τ
2
0

2σ2Xi

 !
:

After again omitting all normalising constants, we arrive at

f μXi ; σ
2
Xi j Yi

� �
/ 1

σ4þυ0
Xi

� exp � ni μXi � μ0

 �2 þ Yi � μXi


 �2 þ υ0τ
2
0

2σ2Xi

 !
;

which is the non-normalised posterior density.
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