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Measuring Segregation When Units are Small:
A Parametric Approach

Roland RATHELOT
CREST, Bâtiment MK2 Bureau 2020, Timbre J310, 15 Boulevard Gabriel Péri, 92245 Malakoff Cedex, France
(roland.rathelot@ensae.fr)

This article considers the issue of measuring segregation in a population of units that contain few individuals
(e.g., establishments, classrooms). When units are small, the usual segregation indices, which are based
on sample proportions, are biased. We propose a parametric solution: the probability that an individual
within a given unit belongs to the minority is assumed to be distributed as a mixture of Beta distributions.
The model can be estimated and indices deduced. Simulations show that this new method performs well
compared to existing ones, even in the case of misspecification. An application to residential segregation
in France according to parents’ nationalities is then undertaken. This article has online supplementary
materials.

KEY WORDS: Beta-binomial model; Dissimilarity index; Ethnic concentration; Mixture of Beta
distributions.

1. INTRODUCTION

Standard segregation indices measure the distance between
the distribution of a minority population across units and a
counterfactual situation of evenness in which the proportion
of minority individuals would be exactly the same in each unit.
When units are small, past research has stressed that random-
ness, a counterfactual situation in which the minority individuals
are distributed randomly across units, would be a more sensi-
ble benchmark than evenness (Cortese, Falk, and Cohen 1976;
Boisso et al. 1994; Ransom 2000). The discrepancy arises be-
cause segregation indices use the observed proportion πa of the
minority group in unit a to estimate the true unobserved proba-
bility pa that an individual of this unit belongs to the minority.
When units are small, πa is a noisy estimate of pa and indices
are biased. This issue is of practical relevance: analyses that in-
vestigate the distribution of employees across firms (Carrington
and Troske 1995; Kramarz, Lollivier, and Pelé 1996; Kremer
and Maskin 1996; Carrington and Troske 1998b; Bayard et al.
1999; Hellerstein and Neumark 2008), pupils across schools or
classrooms (Allen, Burgess, and Windmeijer 2009; Söderström
and Uusitalo 2010), or inhabitants across districts or buildings
(Maurin 2004) may be directly affected by this small-unit bias.

Following Winship (1977), Carrington and Troske (1997)—
hereafter CT—introduced an adjusted index. Their approach is
the most frequently used in the applied literature (Carrington
and Troske 1998a; Hellerstein and Neumark 2003, 2008;
Persson and Sjögren Lindquist 2010; Söderström and Uusitalo
2010) and has been extended to account for the presence
of covariates (Aslund and Skans 2009). Allen, Burgess, and
Windmeijer (2009)—hereafter ABW—proposed to correct
indices by a bootstrap procedure and provide simulations to
show its performance. Both CT and ABW emphasized the issue
of inference and proposed statistical tests of segregation.

In this article, an alternative method based on parametric
assumptions is proposed to deal with the small-unit issue.
First, a statistical framework is introduced: the probability pa
is assumed to be a random variable with distribution F. The

distribution of the number of minority individuals in unit a is
then a binomial with parameterspa and the unit size. To compute
a distance to randomness, one would like to usepa instead of the
empirical proportions πa to compute the segregation index. The
index based on the unobserved probabilities pa is the quantity of
interest of this analysis. The main contribution of this article is
to propose a simple parametric approach to estimate this index
of interest: F is assumed to be a mixture of Beta distributions.
Under this assumption, the parameters of the distribution and
therefore the quantity of interest can be estimated. The model is
an extension of the Beta-binomial model and offers an apprecia-
ble trade-off between flexibility and parsimony. Both bootstrap
and the delta method may be used to provide for inference.

I compare to what extent the existing methods estimate the
quantity of interest of this article. In expectation, the CT-adjusted
index is shown to be below the quantity of interest when applied
to the dissimilarity index, except when the underlying distribu-
tion is discrete with three masspoints—on 0, 1, and the mean of
the distribution. Simulations are also run to compare the meth-
ods proposed by CT and ABW to the one that I propose here, for
the dissimilarity, the Gini, and the Theil indices. These simula-
tions show that the correction method relying on the estimation
of a Beta mixture performs well in various cases, including those
in which the parametric model is misspecified.

Finally, the Beta-mixture correction method is applied to mea-
sure the residential segregation of first- and second-generation
migrants, according to their country of origin, in France. This
case illustrates well the small-unit issue, as the only available
data is a survey in which the number of individuals by unit is
equal to 30 on average, while the minority groups represent
between 0.2% and 6% of the total population.

The next section details the statistical framework and presents
the existing methods that attempt to deal with the issue. Section 3
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presents the new method introduced in this article. Section 4
shows how the proposed approach performs on simulated data,
compared to existing methods. Section 5 presents an application
to ethnic residential segregation in the French case.

2. THE PROBLEM AND ITS EXISTING SOLUTIONS

Concentration indices are useful tools to capture the uneven-
ness of the distribution of different groups in different units
(Duncan and Duncan 1955; Cortese, Falk, and Cohen 1976,
1978; James and Taeuber 1985; Massey and Denton 1988;
Hutchens 2004). Evenness refers to actual equality across units:
if firms have 10 employees and if there are as many men as
women in the working population, evenness occurs if there are
exactly five men and five women in each firm. Random alloca-
tion implies that the probabilities for a given individual to be
a woman (or a man) are equal in all firms, even if strict equal-
ity in actual proportions is not reached. This article presents a
measure from randomness rather than evenness, as the former
benchmark is interesting to many practitioners.

2.1 Statistical Framework

The population is assumed to be split into two groups, a mi-
nority group and the rest of the population, and to be distributed
across A units, a = 1, . . . , A. In practice, groups may be de-
fined according to gender, nationality, ethnicity, or social status,
while units may be businesses, schools, or neighborhoods. In the
present analysis, the number of individuals in unit a, denoted as
Ma , is drawn from a given, unknown distribution. In the whole
analysis, A is assumed to be large, while Ma is assumed to be
small.

Let pa denote the probability for an individual of unit a to
be a member of the minority group. The random variables pa ,
that take values in [0, 1], are assumed iid in distribution F. The
numberNa of individuals in unit a that belong to the minority is
observed and distributed as a Binomial(Ma, pa). While Na and
Ma are perfectly observed, pa is not. The observed sample pro-
portion πa = Na/Ma of the minority group in unit a is usually
used to estimate pa . If the number Ma of individuals in unit a
goes to infinity, πa is a consistent estimator of pa; furthermore,
E[πa|pa] = pa , so that it is also an unbiased estimator.

2.2 Evenness, Randomness, and the Index of Interest

Segregation indices measuring distance from evenness can
be defined as functions of a vector of proportions {πa}{a=1,...,A}:
let Ĩ denote these “direct indices.” Let p̄ = ∑

a Na/
∑

a Ma

denote the sample mean; note that p̄ is an unbiased estima-
tor of E(p) whatever the unit size. Three indices are used in
this article—the Gini index, the dissimilarity (or Duncan) in-
dex, and the Theil index (see, for instance, Massey and Denton
1988, for a review of the properties of these indices)—but the
analysis can be generalized to any concentration index. Defining
wa = Ma/

∑
a′ Ma′ as the weight of unit a in the sample, the

direct versions of these indices, in the two-group case, can be

expressed as

G̃ = 1

2p̄(1 − p̄)

∑
a

∑
a′
wawa′πa(1 − πa′),

D̃ = 1

2p̄(1 − p̄)

∑
a

wa |πa − p̄| ,

H̃ = 1 −
∑
a

wa
πa logπa + (1 − πa) log(1 − πa)

p̄ log p̄ + (1 − p̄) log(1 − p̄)
.

The random-allocation value I ∗ is defined as the expectation
of Ĩ , conditional on all units being assigned the same probability
pa = µ. When the probabilities of all units are equal to µ (a
distribution denoted as Dµ), the unevenness is entirely due to
random allocation and E(Ĩ ) = I ∗. To measure the distance to
randomness, the index of interest should not be computed with
the proportions πa but with the unobserved probabilitiespa . The
expectation of the index based on the probabilities pa depends
on the distribution F and is therefore denoted as I (F ). For the
Gini, the dissimilarity, and the Theil indices, the expressions as
functionals of F are the following (see the online Appendix for
details):

G(F ) = 1 − E(p) − ∫ 1
0 F

2

E(p)(1 − E(p))
, (1)

D(F ) =
∫ 1

0 |p − E(p)|dF(p)

2E(p)(1 − E(p))
, (2)

H (F ) = 1 −
∫ 1

0 p logpdF (p) + ∫ 1
0 (1 − p) log(1 − p)dF(p)

E(p) log E(p) + (1 − E(p)) log(1 − E(p))
.

(3)

Ma being small, πa are going to be noisy estimates of pa and
direct indices Ĩ biased estimates of I (F ). The expected small-
unit bias is defined as the difference between E(Ĩ ) and I (F ).

How large is the bias in practice? Cortese, Falk, and Cohen
(1976) and CT ran simulations that showed how relevant the
issue is; I reproduce these simulations for the dissimilarity index
(the setting and the results are presented in the online Appendix).
Two conclusions can be drawn from this exercise. First, the
magnitude of the bias, around 0.5 for units of 15 people and a
minority proportion of 5%, makes it an issue one cannot neglect.
Second, the bias decreases with the unit size and with the total
share of the minority group.

2.3 Existing Methods

CT propose a measure of the departure from randomness,
based on the Euclidean distance between Ĩ and Î ∗, a simulation-
based estimate of I ∗:

ICT
.= Ĩ − Î ∗

1 − Î ∗ .

As CT do not make any assumption about the data-generating
process (dgp) of (Na,Ma), there is no reason why ICT would
converge to I (F ). Still, E(ICT) happens to coincide with I (F ) in
some cases. When the distribution ofpa isDµ, E(ICT) = I (F ) =
0. When, conversely, pa = 1 in some units while pa = 0 in all
the others (a distribution denoted as D0,1(µ), where µ is the
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weight on value 1), Ĩ = ICT = 1 = I (F ) for all samples. For
every concave mixture between the discrete distributions Dµ

and D0,1(µ) (denoted as D0,µ,1(w), where w is the weight on
the distribution Dµ), it can be proved that E(ICT) = I (F ).

More precisely, three conclusions can be established for the
Theil and the dissimilarity indices (see the online Appendix for
a formal proof). First, when the true distribution is one of the
family D0,µ,1(w), the CT adjustment leads to I (F ): E(ICT) =
I (F ). For the dissimilarity index, this implication turns out to
be an equivalence. For every other distribution, continuous or
discrete, the CT adjustment leads, on average, to a lower value
than D(F ): E(DCT) < D(F ). Finally, for the Theil index, there
is no such property. The difference betweenHCT andH (F ) may
be positive or negative, depending on the distribution.

ABW proposed to use bootstrap techniques to adjust the index
for the presence of a potential bias. Given the unit size Ma and
the observed proportions πa , they simulate B samples, drawing
Na(b), b = 1, . . . , B. For each simulated sample b, an index
Ĩ (b) is computed. The corrected index they proposed is then

IABW
.= 2Ĩ − 1

B

B∑
b=1

Ĩ (b).

Their idea is that Ĩ − 1
B

∑B
b=1 Ĩ (b) is an estimator for the small-

unit bias and that adding it to Ĩ provides an estimator for the
unbiased estimator. This strategy succeeds in reducing the order
of the bias from O(1/M) to O(1/M3/2) or even O(1/M2).

Section 4 proposes simulations to assess whether the adjusted
indices proposed by CT and ABW fall close to or far from I (F ).

3. A PARAMETRIC METHOD

Unlike existing methods, this article proposes a correction
method based on a parametric assumption: pa is distributed
as a mixture of Beta distributions. Since its formalization by
Skellam (1948), the Beta-binomial model has been used in
various fields (e.g., Lee and Sabavala 1987; Cox and Katz
1999; Cogley and Sargent 2009) and has three main virtues.
First, the Beta distribution is the conjugate prior of the
binomial distribution (Greenwood 1913). Second, the model
is parsimonious: 3c − 1 parameters are enough to describe
a c-component mixture of Beta distributions. Third, Beta
distributions encompass many different cases.

One may object that a parametric approach may lead to in-
valid results when the model is misspecified. Two arguments can
be used to support this approach. First, Diaconis and Ylvisaker
(1985, Theorem 1) pointed out that c-component mixtures of
Beta distributions are dense in the space of the continuous dis-
tributions on the unit interval. Second, in the present case, the
results of simulations with various dgp show that, using mix-
tures with at most two components, the segregation indices cor-
responding to both continuous and discrete distributions are
accurately proxied by the mixtures (see Section 4).

Let B(., .) denote the Beta function, v = {αj , βj , λj }j∈{1,...,c}
the vector of parameters with

∑
j λj = 1. The pdf of the rv pa ,

distributed as a c-component mixture of Beta distributions, is

fv(p)
.= f (p; {αj , βj , λj }j∈{1,...,c}) =

c∑
j=1

λj
pαj−1(1 − p)βj−1

B(αj , βj )
.

The probability that n individuals out of m belong to the
minority group can be written, after some algebra, as

P(Na = n|Ma = m) =
(
m

n

) c∑
j=1

λj
B(αj + n, βj +m− n)

B(αj , βj )
.

(4)

Conditional on the unit size Ma , the probability expressed
in Equation (4) is the likelihood that a unit a will contain Na
persons from the minority population out of a total ofMa . LetAnm
denote the number of units of size m with n minority individuals;
the log-likelihood may be written as

�m(v) =
m∑
n=0

Anm log
c∑
j=0

λj
B(αj + n, βj +m− n)

B(αj , βj )
. (5)

Assuming that the same model holds for a set of units of
size belonging to M = {m1, . . . , mr}, maximizing �M(v) =∑

m∈M �m(v) with respect to v provides the estimators v̂(M).
In other words, instead of stratifying the sample by unit size,
units of different sizes can be pooled in the same estimation.
The set M should be chosen by the practitioner, depending on
the situation, from singleton sets to the entire support of the
distribution of the unit size.

Once the parameters of the distribution are known, indices
could be retrieved by simulations. However, in the case of this
model, explicit expressions of the indices can be derived, to
save computational time. The Gini, the dissimilarity, and the
Theil indices admit the following expressions, as functions of
the vector of parameters v (see the online Appendix for details):

G(v) = 1 − 2

µ(v)(1 − µ(v))

×
∫ 1

0

⎛
⎝ c∑
j=1

λjβj

αj + βj
f (p;αj , βj + 1)

⎞
⎠

×
⎛
⎝ c∑
j=1

λjαj

αj + βj
I (p;αj + 1, βj )

⎞
⎠ dp, (6)

D(v) =
c∑
j=1

λj

αj + βj

[
βj

1 − µ(v)
I (µ(v);αj , βj + 1)

− αj

µ(v)
I (µ(v);αj + 1, βj )

]
, (7)

H (v) = 1 −
⎛
⎝ c∑
j=1

λj [αjψ(αj + 1) + βjψ(βj + 1)

− (αj + βj )ψ(αj + βj + 1)]

⎞
⎠

/⎛
⎝µ(v) log(µ(v))

+ (1 − µ(v)) log(1 − µ(v))

⎞
⎠, (8)

where ψ(.) is the digamma function, I (., α, β) the regularized
incomplete Beta function, and µ(v) = ∑

j λj
αj

αj+βj . Note that
the expressions of D(v) and H (v) are closed forms while G(v)
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involves an integral that must be approximated by numerical
methods.

Two methods may be used to provide inference on the in-
dices based on the estimated values v̂ of the parameters. The
delta method is easy to apply in this context as it only involves
an estimate of the variance matrix of v̂ and of the derivative of
the index with respect to v, evaluated at v̂. The former is com-
puted using the Hessian matrix, evaluated at v̂, and the latter can
be computed either analytically starting from Equations (6) to
(8) or numerically, at little computational cost. The bootstrap,
performed at the level of the units, can also be used. Both meth-
ods provide very similar results in the simulations exercise and
in the application; for the sake of readability, only the results of
the delta method are reported.

Finally, how should the number of components of the mixture
model be chosen? Given the estimation of the model for c − 1
and c components, a likelihood-ratio test can be used iteratively
to test whether the likelihood improvement is worth spending
three additional degrees of freedom and which model should be
preferred. Other methods of choosing c could also be used.

4. SIMULATIONS

As practitioners do not know a priori the distribution of pa ,
they expect bias-adjusting methods to work on the largest possi-
ble spectrum. In this section, simulations using several continu-
ous and discrete distributions are run to assess the performance
of the method presented in this article, and to compare it to the
solutions presented in CT and ABW. The unit size is fixed to
10 (in the online Appendix, simulations with a unit size of five
are also presented). For each unit size and each distribution, 100
draws in 1000 units are made. First pa is drawn iid in the given
distribution. Then,Na is drawn from a binomial with parameters
Ma, pa . Table 1 displays the average values of the estimates, as
well as 95% confidence intervals. Table 2 displays (100 times)
their mean-squared errors (MSE), computed as the mean of the
squared differences between the estimate and the value of the
index based on probabilities pa . Each panel of the tables is ded-
icated to a given index; the distributions of the dgp are in rows
and the methods in columns.

In both tables, the first column presents the result for the direct
estimates, computed with proportions πa . Columns 2–4 show
the values obtained with the Beta-parametric method, assuming
either a simple Beta model (column 2) or a mixture of two Beta
distributions (column 3). In the fourth column, the best model
(between Beta-1 and Beta-2) is chosen according to the result of
a LR test, using a threshold of 0.05 for the p-value. In columns
5 and 6, the values relating to indices adjusted using CT and
ABW methods are reported. In Table 1, the unfeasible estimate
is also reported, to make comparisons easier.

Seven dgps of expectation 0.1 are tested. For B1, the dgp
is a Beta distribution of parameters (1, 9). For B2, the dgp is
a mixture of two Beta distributions of parameters (1, 9) and
(0.1, 0.9) with weights (0.7, 0.3). For D1, the dgp is a discrete
distribution of support set (0, 0.1, 1) with associated weights
(0.45, 0.5, 0.05). For D2, the dgp is a discrete distribution of
support set (0.05, 0.1, 0.5) with associated weights (0.45, 0.5,
0.05). ForD3, the dgp is a discrete distribution of support set (0,
0.05, 0.1, 0.15, 0.2) with associated weights (0.2, 0.2, 0.2, 0.2,
0.2). For N, the dgp is a truncated normal distribution of mean

0.1 and standard deviation 0.05. For W, the dgp is a truncated
Weibull distribution of parameters 0.1 and 1.1. Note that in all
but the first two dgp, the Beta-binomial model is misspecified.

Consistently with earlier results, direct indices are found to
suffer from large biases. Despite their imperfections, adjusting
methods improve on the direct estimates in most cases. The
comparison of the last five columns underlines the advantages
and drawbacks of each method. As established in Section 2,
the CT-adjusted dissimilarity index is always lower than D(F ),
except when the true distribution is a D0,.1,1; interestingly, this
seems to be also true for the Gini index. In many cases, for
the Gini and the dissimilarity indices, the differences between
the CT-adjusted indices and I (F ) are of large magnitude, for
example, 0.07 versus 0.21 with a truncated normal. Conversely,
the CT adjustment almost coincides with I (F ) for the Theil
index. The indices corrected by the ABW method are upward
biased in most cases. Their method performs better when the
unfeasible index is high and when the distribution is continuous.
For the Theil index, the ABW method is relatively less efficient
than the other methods.

The Beta-1 correction, based on the assumption of a Beta
distribution, is obviously at its best when the data are drawn
from a Beta distribution. If the Normal, the Weibull, and even the
discrete distribution with 5 support points are also satisfactorily
dealt with, the discrete distributions with 3 support points lead
to substantially higher MSE for the Gini and the dissimilarity
indices. The Beta-2 correction improves on Beta-1 in the latter
cases. The largest MSE (0.0063) of this method is obtained
for the dissimilarity index with the D0,.1,1 distribution, a value
of the same magnitude as the MSEs experienced by the other
methods in many cases. The Beta correction lies between Beta-1
and Beta-2: it allows flexibility when necessary while avoiding
systematically overparameterizing the model.

Table 3 sums up the results of the simulations. For each dgp
and index, the table reports the method that leads to the estimator
with the lowest MSE. When another method leads to a MSE
lower than 0.001, it is reported in the second position. A rapid
glance at the table shows that the Beta-mixture method is the
one that gives, in most cases, the closest estimates to I (F ). The
only case in which the parametric method does not score best is
the dissimilarity index with the discrete distributions D0,.1,1.

5. APPLICATION

This section provides a first attempt to measure ethnic residen-
tial segregation in France. As it is forbidden by law to collect
race or ethnicity variables in France, the usual way to proxy
ethnicity is to use parents’ nationality at birth (see, e.g., Meurs,
Pailhé, and Simon 2006; Aeberhardt et al. 2010). Unfortunately,
while Censuses provide many variables (social and labor situa-
tions, education, etc.) at the scale of the neighborhood, parents’
nationalities remain absent from this file, for legal reasons. The
largest dataset in which parents’ nationalities are observed, since
2005, is the Labor Force Survey (LFS).

The sample design of the LFS defines ad hoc neighbor-
hoods. Households are selected through a three-fold geographi-
cal cluster sampling. The smallest clusters are the sampling units
(named “aires”) and have, on average, 20 contiguous house-
holds. Households of a given sampling unit enter and leave the
sample on the same quarter. The LFS dataset provides, for each
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Table 1. Simulations: estimates with units of 10 individuals

Unfeasible Direct Beta-1 Beta-2 Beta CT ABW

Gini
B1 0.53 0.70 0.53 0.52 0.52 0.33 0.61

(0.51–0.54) (0.68–0.72) (0.48–0.56) (0.47–0.56) (0.48–0.56) (0.29–0.38) (0.58–0.64)
B2 0.69 0.80 0.71 0.69 0.69 0.54 0.74

(0.67–0.71) (0.78–0.82) (0.67–0.74) (0.66–0.73) (0.66–0.73) (0.49–0.59) (0.72–0.77)
D1 0.75 0.89 0.87 0.77 0.77 0.75 0.85

(0.71–0.78) (0.87–0.91) (0.84–0.89) (0.72–0.81) (0.72–0.81) (0.70–0.80) (0.82–0.87)
D2 0.36 0.69 0.50 0.34 0.34 0.28 0.57

(0.33–0.39) (0.66–0.71) (0.45–0.54) (0.25–0.46) (0.25–0.46) (0.23–0.34) (0.54–0.61)
D3 0.44 0.67 0.45 0.43 0.43 0.25 0.56

(0.42–0.46) (0.65–0.70) (0.39–0.49) (0.38–0.50) (0.38–0.50) (0.20–0.29) (0.53–0.60)
N 0.29 0.60 0.28 0.26 0.28 0.11 0.46

(0.28–0.30) (0.58–0.62) (0.22–0.34) (0.17–0.33) (0.21–0.34) (0.06–0.16) (0.43–0.49)
W 0.51 0.70 0.52 0.50 0.52 0.32 0.61

(0.50–0.53) (0.68–0.73) (0.47–0.56) (0.45–0.56) (0.47–0.56) (0.27–0.37) (0.58–0.64)

Dissimilarity
B1 0.39 0.53 0.39 0.39 0.39 0.22 0.41

(0.37–0.40) (0.50–0.55) (0.35–0.42) (0.34–0.43) (0.35–0.42) (0.19–0.26) (0.37–0.44)
B2 0.51 0.64 0.54 0.52 0.52 0.37 0.54

(0.49–0.53) (0.61–0.66) (0.51–0.58) (0.49–0.55) (0.49–0.56) (0.34–0.42) (0.51–0.58)
D1 0.51 0.70 0.72 0.59 0.59 0.50 0.61

(0.47–0.56) (0.67–0.72) (0.69–0.75) (0.54–0.63) (0.54–0.63) (0.45–0.54) (0.57–0.65)
D2 0.25 0.49 0.36 0.27 0.27 0.15 0.35

(0.23–0.28) (0.47–0.52) (0.33–0.40) (0.21–0.33) (0.21–0.33) (0.12–0.19) (0.31–0.39)
D3 0.34 0.51 0.32 0.36 0.35 0.18 0.38

(0.32–0.35) (0.49–0.54) (0.28–0.36) (0.28–0.41) (0.28–0.41) (0.14–0.22) (0.35–0.42)
N 0.21 0.43 0.20 0.20 0.20 0.07 0.28

(0.20–0.22) (0.42–0.46) (0.16–0.24) (0.13–0.27) (0.14–0.25) (0.03–0.11) (0.25–0.32)
W 0.38 0.53 0.38 0.37 0.38 0.21 0.41

(0.36–0.39) (0.51–0.56) (0.34–0.42) (0.31–0.43) (0.34–0.42) (0.18–0.25) (0.37–0.45)

Theil
B1 0.13 0.28 0.13 0.13 0.13 0.12 0.19

(0.12–0.14) (0.26–0.30) (0.11–0.15) (0.11–0.15) (0.11–0.15) (0.10–0.14) (0.17–0.21)
B2 0.26 0.38 0.25 0.25 0.25 0.24 0.31

(0.23–0.29) (0.36–0.41) (0.22–0.29) (0.22–0.29) (0.22–0.29) (0.20–0.28) (0.27–0.34)
D1 0.50 0.59 0.47 0.47 0.47 0.50 0.53

(0.46–0.54) (0.55–0.63) (0.43–0.52) (0.42–0.52) (0.42–0.52) (0.45–0.55) (0.49–0.58)
D2 0.10 0.27 0.11 0.10 0.10 0.11 0.17

(0.09–0.12) (0.26–0.29) (0.09–0.14) (0.08–0.13) (0.08–0.13) (0.09–0.14) (0.15–0.20)
D3 0.11 0.25 0.09 0.11 0.10 0.08 0.15

(0.10–0.12) (0.24–0.27) (0.07–0.11) (0.09–0.13) (0.07–0.13) (0.06–0.10) (0.13–0.17)
N 0.04 0.21 0.04 0.04 0.04 0.04 0.10

(0.04–0.04) (0.19–0.22) (0.02–0.05) (0.02–0.06) (0.02–0.05) (0.02–0.05) (0.08–0.12)
W 0.12 0.28 0.12 0.12 0.12 0.12 0.18

(0.12–0.13) (0.26–0.30) (0.10–0.15) (0.10–0.15) (0.10–0.15) (0.09–0.14) (0.16–0.21)

NOTE: For each distribution, simulations are based on 100 draws of samples of 1000 areal units, each consisting of 10 individuals. 95% confidence interval are showed in parentheses.
For B1, the dgp is a Beta distribution of parameters (1, 9). For B2, the dgp is a mixture of 2 Beta distribution of parameters (1, 9) and (0.1, 0.9) with weights (0.7, 0.3). For D1, the dgp is
a discrete distribution of support set (0, 0.1, 1) with associated weights (0.45, 0.5, 0.05). For D2, the dgp is a discrete distribution of support set (0.05, 0.1, 0.5) with associated weights
(0.45, 0.5, 0.05). For D3, the dgp is a discrete distribution of support set (0, 0.05, 0.1, 0.15, 0.2) with associated weights (0.2, 0.2, 0.2, 0.2, 0.2). For N, the dgp is a truncated normal
distribution of mean 0.1 and standard deviation 0.05. For W, the dgp is a truncated Weibull distribution of parameters 0.1 and 1.1.
Source: Simulations by the author.

individual, an encrypted version of the ID of their sampling unit:
the researcher knows whether two individuals live in the same
unit, but not the unit’s location.

The mean size of a sampling unit is 30; the median is 31;
25% of the sampling units are smaller than 20 and 91% smaller
than 50 (see the online Appendix for the complete distribution).
Maurin (2004) used the LFS to obtain concentration measures

of social status and ethnicity but, because of the small-unit is-
sue, did not use the usual indices. Small-unit issues are likely to
be aggravated by the relative scarcity of ethnic minorities com-
pared to French individuals of French origin. A complementary
analysis conducted at an aggregated level shows that small-unit
issues are not negligible, even with unit sizes around 100, when
the minority share is below 5% (see Rathelot 2011, for details).
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Table 2. Simulations: mean-squared errors (× 100) with units of 10
individuals

Direct Beta-1 Beta-2 Beta CT ABW

Gini
B1 3.22 0.03 0.06 0.04 3.70 0.72
B2 1.31 0.04 0.02 0.02 2.32 0.30
D1 1.98 1.51 0.07 0.07 0.02 0.97
D2 10.85 2.00 0.37 0.37 0.61 4.63
D3 5.05 0.05 0.13 0.12 3.77 1.34
N 9.71 0.10 0.27 0.13 3.28 2.88
W 3.61 0.05 0.10 0.06 3.74 0.87

Dissimilarity
B1 2.06 0.02 0.05 0.03 2.74 0.08
B2 1.51 0.10 0.02 0.03 2.13 0.12
D1 3.53 4.40 0.63 0.63 0.04 1.05
D2 6.12 1.44 0.11 0.11 0.93 1.05
D3 2.93 0.04 0.15 0.12 2.39 0.25
N 5.18 0.05 0.15 0.06 1.88 0.58
W 2.37 0.04 0.08 0.04 2.72 0.12

Theil
B1 2.24 0.01 0.01 0.01 0.02 0.33
B2 1.66 0.01 0.01 0.01 0.04 0.26
D1 0.84 0.08 0.08 0.08 0.01 0.12
D2 2.92 0.02 0.01 0.01 0.02 0.51
D3 1.96 0.05 0.02 0.03 0.07 0.20
N 2.80 0.01 0.01 0.01 0.01 0.36
W 2.38 0.01 0.02 0.01 0.02 0.37

NOTE: For each distribution, simulations are based on 100 draws of samples of 1000 areal
units, each consisting of 10 individuals. For the sake of clarity, values in the table are
actually 100 times the MSE. For B1, the dgp is a Beta distribution of parameters (1, 9).
For B2, the dgp is a mixture of 2 Beta distribution of parameters (1, 9) and (0.1, 0.9) with
weights (0.7, 0.3). For D1, the dgp is a discrete distribution of support set (0, 0.1, 1) with
associated weights (0.45, 0.5, 0.05). For D2, the dgp is a discrete distribution of support
set (0.05, 0.1, 0.5) with associated weights (0.45, 0.5, 0.05). For D3, the dgp is a discrete
distribution of support set (0, 0.05, 0.1, 0.15, 0.2) with associated weights (0.2, 0.2, 0.2, 0.2,
0.2). For N, the dgp is a truncated normal distribution of mean 0.1 and standard deviation
0.05. For W, the dgp is a truncated Weibull distribution of parameters 0.1 and 1.1.
Source: Simulations by the author.

The Beta-binomial adjusting method is applied to the LFS
from 2005 to 2008 for the shares of ethnic minorities within
sampling units, on three populations. The first population are all
individuals with foreign parents, whether they are themselves
immigrants or not. The second population (“immigrants”) is a
subsample of the first one, with only the immigrants who arrived
in France after the age of 3. The third population (“French-
born”) is the complement of the second population: only those

Table 3. Simulations: which method should be preferred in which
case

Gini Dissimilarity Theil

B1 Beta Beta, ABW Beta, CT
B2 Beta Beta Beta, CT
D1 CT, Beta CT CT, Beta
D2 Beta Beta Beta, CT
D3 Beta Beta Beta, CT
N Beta Beta Beta, CT
W Beta Beta Beta, CT

NOTE: This table is a summary of Table 1. For each distribution and each index, the least-
biased method is reported. If other methods provide estimates with a 100 × MSE lower
that 0.10, they appear in second (and third if necessary) positions. For B1, the dgp is a
Beta distribution of parameters (1, 9). For B2, the dgp is a mixture of 2 Beta distribution
of parameters (1, 9) and (0.1, 0.9) with weights (0.3, 0.7). For D1, the dgp is a discrete
distribution of support set (0, 0.1, 1) with associated weights (0.45, 0.5, 0.05). For D2,
the dgp is a discrete distribution of support set (0.05, 0.1, 0.5) with associated weights
(0.45, 0.5, 0.05). ForD3, the dgp is a discrete distribution of support set (0, 0.05, 0.1, 0.15,
0.2) with associated weights (0.2, 0.2, 0.2, 0.2, 0.2). For N, the dgp is a truncated normal
distribution of mean 0.1 and standard deviation 0.05. For W, the dgp is a truncated Weibull
distribution of parameters 0.1 and 1.1.
Source: Simulations by the author.

individuals born in France or who arrived before the age of 3.
Minority groups (“Sub-Saharan Africa,” “North Africa,” “Mid-
dle East,” “Southern Europe,” “Northern Europe,” “Eastern
Europe,” and “Asia”) are defined according to parents’ national-
ities (at least one of them). Individuals from “Northern Europe,”
“Eastern Europe,” and “Asia” are required to have at least
one parent of the corresponding nationality. For each minority
group, the sample size and the proportion in the whole popula-
tion are reported in Table 4. Individuals with parents from North
Africa and Southern Europe are by far the most common. To-
gether, they represent more than 10% of the population living in
France; half of them are immigrant and half were born in France.

The results for the dissimilarity index are reported in Table 5
(see the online Appendix for the Gini and the Theil). Columns 1
and 2 present the results on the whole population, columns 3 and
4 on the immigrant sample, and columns 5 and 6 on the French-
born sample. For each population, the first column presents the
index computed with the Beta method and the second one the
index computed directly using sample proportions. As noted
above, direct indices differ dramatically from the Beta-adjusted
ones.

This application provides an interesting example of how use-
ful accounting for the small-unit issue is. For all ethnic groups

Table 4. Sample size and proportions of the main ethnic minorities in France

Whole sample Immigrant sample French-born sample

Parents’ nationalities Sample size Proportion Sample size Proportion Sample size Proportion

Sub-Saharan Africa 2474 0.8% 1765 0.6% 709 0.2%
North Africa 14826 4.8% 8528 2.7% 6298 2.0%
Middle East 4462 1.4% 3302 1.1% 1160 0.4%
Southern Europe 18335 5.9% 6841 2.2% 11494 3.7%
Northern Europe 5970 1.9% 2388 0.8% 3582 1.2%
Eastern Europe 4659 1.5% 1917 0.6% 2742 0.9%
Asia 1173 0.4% 692 0.2% 481 0.2%

NOTE: Columns 1, 3, and 5 report sample size; columns 2, 4, and 6 report proportions with respect to the total sample (representative of individuals of more than 16 living in France).
Source: Labor Force Survey 2005–2008 (Insee).
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Table 5. Segregation indices, by parents’ nationalities

Dissimilarity

Whole sample Immigrant sample French-born sample

Parents’ nationalities Beta Direct Beta Direct Beta Direct

Sub-Saharan Africa 0.75 0.87 0.83 0.91 0.73 0.94
(0.73–0.76) (0.87–0.88) (0.81–0.86) (0.90–0.91) (0.70–0.76) (0.94–0.95)

North Africa 0.59 0.65 0.66 0.73 0.53 0.68
(0.58–0.60) (0.65–0.66) (0.65–0.67) (0.72–0.74) (0.52–0.55) (0.68–0.69)

Middle East 0.68 0.81 0.73 0.85 0.72 0.92
(0.67–0.70) (0.80–0.82) (0.72–0.74) (0.84–0.86) (0.70–0.75) (0.91–0.92)

Southern Europe 0.38 0.47 0.50 0.65 0.35 0.49
(0.37–0.38) (0.46–0.48) (0.49–0.51) (0.64–0.66) (0.34–0.36) (0.48–0.50)

Northern Europe 0.40 0.63 0.59 0.84 0.35 0.71
(0.38–0.42) (0.62–0.63) (0.56–0.62) (0.83–0.85) (0.31–0.38) (0.70–0.72)

Eastern Europe 0.46 0.69 0.64 0.87 0.43 0.77
(0.45–0.48) (0.68–0.70) (0.62–0.67) (0.86–0.88) (0.41–0.45) (0.76–0.78)

Asia 0.80 0.92 0.85 0.95 0.69 0.96
(0.77–0.83) (0.91–0.93) (0.83–0.87) (0.95–0.96) (0.65–0.74) (0.95–0.96)

NOTE: Segregation is measured at the level of the sampling unit of the LFS. The first three columns present the indices computed after the estimation of the Beta model. The last three
columns present the indices directly computed with the observed proportions. Confidence intervals at the level of 5% are displayed in parentheses.
Source: Labor Force Survey 2005–2008 (Insee).

but Europeans, the proportion of immigrants is higher than the
proportion of French-born individuals. In the case of Africa and
Asia, for instance, the direct index that measures the distance
to evenness is higher in the French-born group than in the im-
migrant one while the Beta index gives the opposite ranking.
Accounting for small units also enables one to compare ethnic
groups with each other, even when some groups are more fre-
quent than others. According to direct indices, immigrants from
Northern Europe are more segregated than those from North
Africa; the Beta indices lead to the opposite result.

Finally, two groups may be distinguished in the whole
sample: those with European parents are the least segregated,
while those with African or Middle Eastern parents are the
most segregated. For the French-born group, this ranking is not
much different; the values are smaller but are more contrasted.
The least segregated individuals are those with parents from
Southern and Northern Europe, while individuals with parents
from Asia, the Middle East, and Sub-Saharan Africa are the
most segregated group. Focusing on immigrants, indices are
substantially higher and closer to each other and the ranking
changes marginally. Immigrants from Southern Europe are the
least segregated while those from Sub-Saharan Africa and Asia
are the most segregated.

6. CONCLUSION

When units (neighborhoods, businesses, classrooms) have
few observations, the standard indices, which measure a dis-
tance to evenness, are not relevant: the desirable benchmark is
randomness. The small-unit issue occurs because standard in-
dices use minority shares to proxy the true probabilities that an
individual of the unit belongs to the minority group. This arti-
cle presents a statistical framework that provides a natural way
to define the index of interest: the unfeasible one that would
be based on these true unobserved probabilities instead of esti-

mated shares. A new method is proposed to estimate this index
of interest. Assuming that the distribution of the probabilities is
a mixture of Beta distributions, the parameters of the distribution
can be estimated, and segregation indices deduced.

This new method is compared to the two main existing meth-
ods, introduced by Carrington and Troske (1997) and Allen,
Burgess, and Windmeijer (2009), using simulations. In most
cases, which are not restricted to data-generating processes
distributed as Beta mixtures, the new method is shown to fall
closer to the quantity of interest. One should stress, however,
that Carrington and Troske (1997) did not claim to estimate the
same quantity of interest, so that the differences between their
adjusted index and our quantity of interest cannot be interpreted
as bias. An application provides the first available figures about
ethnic residential segregation in France, using the LFS and
its unique sampling scheme to define neighborhoods. French
individuals whose parents are immigrants experience levels of
residential segregation that vary much across countries of origin.
Individuals with parents from Sub-Saharan Africa, the Middle
East, and North Africa experience higher levels of residential
concentration than those with parents coming from Europe.

Several extensions of the present method would be useful for
practitioners. First, when covariates X are observed for individ-
uals (and units), the practitioner might wish to measure to what
extent segregation can be attributed by differences in covariates
between the minority and majority groups (e.g., Hellerstein and
Neumark 2008; Aslund and Skans 2009). This extension could
be done nonparametrically, by stratifying the analysis between
the different values of the observables, or parametrically, to
avoid the curse of dimensionality. Second, in some analyses, it
is useful to account for the presence of more than two groups,
and to compute multigroup segregation indices. The approach
proposed in this article could, in principle, be extended to the
case of multigroup indices by assuming a Dirichlet-multinomial
model instead of a Beta-binomial one.
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