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Abstract Recently, Ord and Getis (Ann Reg Sci 48:529–539, 2012) developed a local
statistic Hi , called local spatial heteroscedasticity statistic, to identify boundaries of
clusters and to describe the nature of heteroscedasticity within clusters. Furthermore,
in order to implement the hypothesis testing, Ord and Getis suggested a chi-square
approximation method to approximate the null distribution of Hi , but they said that
the validity of the chi-square approximation remains to be investigated and some
other approximation methods are still worthy of being developed. Motivated by this
suggestion, we propose in this paper a bootstrap procedure to approximate the null
distribution of Hi and conduct some simulation to empirically assess the validity of the
bootstrap and chi-square methods. The results demonstrate that the bootstrap method
can provide a more accurate approximation than the chi-square method at the cost
of more computation time. Moreover, the power of Hi in identifying boundaries of
clusters is empirically examined using the proposed bootstrap method to compute
p values of the tests, and the multiple comparison issue is also discussed.
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1 Introduction

With the increasing availability of spatially extensive geo-referenced data and due to
the geological and geographical diversity of different regions, it is in general unrealistic
to assume that the values of a variable are of spatial homogeneity (Fotheringham 1977;
Unwin and Unwin 1998). Therefore, much attention has been paid to exploring local
patterns in spatial data using local forms of statistics among which Anselin’s LISAs
(Anselin 1995) and Getis and Ord’s Gi or G∗

i statistic (Getis and Ord 1992; Ord and
Getis 1995) are perhaps the most popular local statistics for identifying local patterns
of spatial association.

In order to implement the confirmatory inference on the significance of local spatial
patterns, it is essential to find out the null distribution of a local statistic. Currently,
there are mainly two methodologies on this topic. One methodology uses random
permutation technique to derive the moments of the local statistic and then to approx-
imate the null distribution of the standardized local statistic using the standard normal
distribution (see, for example, Getis and Ord 1992; Anselin 1995). However, many
studies have found that the normal approximation is sometimes problematic (see, for
example, Anselin 1995; Bao and Henry 1996; Boots and Tiefelsdorf 2000; Bivand
et al. 2009). The other methodology assumes that the observations are independently
drawn from a normal distribution. Then, the local statistic is re-expressed as a ratio
of quadratic forms and the exact or the approximate null distribution is derived using
the distributional results about a quadratic form in normal variables (see, for exam-
ple, Tiefelsdorf and Boots 1997; Tiefelsdorf 1998, 2002; Boots and Tiefelsdorf 2000;
Leung et al. 2003). Although the latter methodology generally performs better than the
normal approximation does, it largely depends on the assumption that the observations
are normally distributed. This assumption might be invalid in some real-world data
sets.

Most of the existing local statistics focus on identifying spatial association at the
mean level of the observations. Recently, Ord and Getis (2012) developed a new local
statistic Hi , called local spatial heteroscedasticity (LOSH), to uncover the nature of
LOSH, which is also one of the important issues in spatial data analysis. As pointed
out by Ord and Getis (2012), the usefulness of LOSH includes exploring differential
rates, such as disease rates, within a disease cluster; finding the degree of homogeneity
or heterogeneity within an already delimited cluster; identifying trends in the homo-
geneity or heterogeneity surrounding a given observation; and identifying and testing
for the existence of boundaries between districts.

For the local statistic Hi , its null distribution is also essential to the significance test
for LOSH. Based on the mean and variance of Hi derived by the random permutation
technique, Ord and Getis (2012) suggested a chi-square method to approximate the
null distribution of Hi . That is, the null distribution of Hi is approximated by a properly
scaled chi-square distribution. Ord and Getis (2012) pointed out that “following Box
(1953), the use of the permutations moments will better account for non-normality in
the data so that a chi-square approximation might provide a satisfactory approximation
to the distribution of Hi ,” but they said that “this is clearly an area for further research.”
That is to say, the validity of the chi-square approximation remains to be investigated
and some other approximation methods are still worthy of being developed.
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A note on the null distribution 699

Motivated by the suggestion made by Ord and Getis (2012), we propose in this paper
a bootstrap procedure as an alternative to approximate the null distribution of Hi and
perform an empirical evaluation on the validity of both the bootstrap and the chi-square
methods. The simulation results demonstrate that, at the cost of more computation
time, the bootstrap method performs much better than the chi-square approximation.
Moreover, the power of Hi in detecting the boundary of two homogeneous clusters is
investigated by simulation, and the multiple comparison issue is also discussed.

2 The local spatial heteroscedasticity (LOSH) statistic and a bootstrap
approximation to its null distribution

In this section, we first give a brief description on the LOSH statistic developed by
Ord and Getis (2012). Then, a bootstrap procedure is suggested to approximate the
null distribution of the statistic.

Let x1, x2, . . . , xn be the observations of a random variable X at the given n geo-
graphical units or locations and W(d) = (wi j (d))n×n be a symmetric spatial link
matrix, where d is a pre-specified distance threshold value. For each i = 1, 2, . . . , n,
as defined by Ord and Getis (2012), wi j (d)( j = 1, 2, . . . , n) are positive for all j
within distance d of the location i and are zero for other j’s. Based on the obser-
vations x1, x2, . . . , xn of X and the spatial link matrix W(d), Ord and Getis (2012)
developed a LOSH statistic to study the nature of the homogeneity of the observation
groups. Given a reference location i , the construction of the local statistic Hi can be
described in what follows. Without loss of generality, we drop the distance threshold
d in the weights wi j (d)( j = 1, 2, . . . , n) for notational simplicity.

Firstly, the local mean of the observations at the reference location i is defined as

x̄i =
∑n

j=1 wi j x j
∑n

j=1 wi j
. (1)

In fact, x̄i is the weighted mean of the observations of X in the neighborhood of the
location i . The neighborhood is determined by the positive weights among wi j ( j =
1, 2, . . . , n) and is denoted by N (i). Then, the local residuals are

e j = x j − x̄i , j ∈ N (i), (2)

and the LOSH statistic at the location i is defined as

H̃i =
∑n

j=1 wi j |e j |a
∑n

j=1 wi j
, (3)

where a is a given positive constant. In particular, when a = 1, H̃i is an absolute
deviation measure; when a = 2, H̃i is a variance measure. If the local residuals
e j ( j ∈ N (i)) are extended to be defined at all of the locations, that is,

e j = x j − x̄i , j = 1, 2, . . . , n (4)
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and the average of the absolute errors is defined by

h1 = 1

n

n∑

j=1

|e j |a, (5)

a scaled version of the LOSH statistic is

Hi =
∑n

j=1 wi j |e j |a
h1

∑n
j=1 wi j

. (6)

In order to carry out the confirmatory inference on the basis of the scaled LOSH
statistic Hi , it is essential to derive the distribution of Hi under the null hypothesis
that the observations of X are spatially homoscedastic over the region. Ord and Getis
(2012) suggested a chi-square approximation to the null distribution of Hi on the basis
of the permutations moments. We briefly introduce this approximation approach in
what follows.

Assuming the set of n! possible permutations of |e1|a, |e2|a, . . . , |en|a as equally
likely, Ord and Getis (2012) computed the permutation mean and variance of Hi as

Ep(Hi ) = 1 (7)

and

vi = Varp(Hi ) = 1

n − 1

(
1

h1Wi1

)2

(h2 − h2
1)(nWi2 − W 2

i1), (8)

respectively, where h1 = 1
n

∑n
j=1 |e j |a, h2 = 1

n

∑n
j=1(|e j |a)2, Wi1 = ∑n

j=1 wi j and

Wi2 = ∑n
j=1 w2

i j . Let the distribution of Hi be approximated by that of bχ2
r , where χ2

r
is the random variable following the chi-square distribution with r degrees of freedom
and b is a constant. The probability density function of bχ2

r , which we denote by
f (c)
Hi

(x), shows

f (c)
Hi

(x) =
⎧
⎨

⎩

x
r
2 −1

(2b)
r
2 Γ ( r

2 )
e− x

2b , if x > 0;
0, if x ≤ 0.

(9)

In the chi-square approximation, b and r are determined in such a way that the permuta-
tion mean and variance are made to match the mean and variance of bχ2

r , respectively,
which results in b = vi

2 and r = 2
vi

.
Considering the fact that Ord and Getis (2012) said that the validity of chi-square

approximation remains to be investigated, we conducted some simulation to evaluate
the performance of the chi-square approximation (see the next section) and found that,
although the approach can basically approximate the null distribution of Hi , there is
obviously much room for improvement.

It has been well known in statistics that the bootstrap method, originally proposed
by Efron (1979), is a powerful tool to approximate the distribution of a statistic and
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A note on the null distribution 701

is in general free of the assumption that the observations are drawn from a normal
population. We thus propose in this paper a bootstrap procedure to approximate the
null distribution of Hi and expect that this method can achieve a more accurate approx-
imation.

Given a reference location i and the observations x1, x2, . . . , xn of X with the
spatial link matrix W = (wi j )n×n , the bootstrap procedure for approximating the null
distribution of Hi can be summarized in the following steps:

Step 1. Draw with replacement a bootstrap sample x∗
1 , x∗

2 , . . . , x∗
n from the obser-

vations x1, x2, . . . , xn and compute the bootstrap value H∗
i of Hi according to

H∗
i =

∑n
j=1 wi j |e∗

j |a
h∗

1

∑n
j=1 wi j

, (10)

where e∗
j = x∗

j −
∑n

j=1 wi j x∗
j∑n

j=1 wi j
( j = 1, 2, . . . , n) and h∗

1 = 1
n

∑n
j=1 |e∗

j |a .

Step 2. Repeat step 1 for m times and obtain m bootstrap values of Hi which are
denoted by H∗

i (1), H∗
i (2), . . . , H∗

i (m).
Step 3. Compute the empirical distribution function of H∗

i (1), H∗
i (2), . . . , H∗

i (m)

as

F∗
Hi

(x) = 1

m

m∑

k=1

I (H∗
i (k) ≤ x), (11)

where I (·) is the indicator function. F∗
Hi

(x), called the bootstrap distribution function
of Hi , is then used as an estimator of the null distribution of Hi at the reference
location i .

Based on the bootstrap values H∗
i (1), H∗

i (2), . . . , H∗
i (m), we can also estimate

the bootstrap density function by, for example, the kernel smoothing method (Parzen
1962). The bootstrap kernel density estimator is

f ∗
Hi

(x) = 1

mh

m∑

k=1

K

(
H∗

i (k) − x

h

)

, (12)

where K (·) is a kernel function and h is a bandwidth. K (·) is generally taken to be
the probability density function of the standard normal distribution (i.e., the Gaussian
kernel), and h is determined by a few of methods such as the cross-validation method
(Bowman 1984) and the plug-in method (Wand and Jones 1995). In this paper, the
bandwidth is chosen by a rule-of-thumb method (Silverman 1986) where the opti-

mal value is h = 1.059s∗m− 1
5 with s∗ being the standardized sample variance of

H∗
i (1), H∗

i (2), . . . , H∗
i (m). The bootstrap density function in Eq. (12), as an approx-

imation of the true probability density function of Hi , will be used in the next section
for evaluating the validity of the bootstrap procedure.

In the Hi -based hypothesis test, since a large value of Hi tends to reject the null
hypothesis that the observations are spatially homoscedastic over the region, the
p value is
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702 M. Xu et al.

p = P0(Hi > h(0)
i ), (13)

where h(0)
i is the observed value of Hi computed from Eq. (6), and P0 means that the

probability is computed with the null distribution of Hi . Particularly, if the chi-square
approximation is used, the p value is

p = P0(Hi > h(0)
i ) =

+∞∫

h(0)
i

f (c)
Hi

(x)dx (14)

with f (c)
Hi

(x) shown in Eq. (9); if the bootstrap method is used, the p value can be
computed by

p = P0(Hi > h(0)
i ) = 1

m
�{H∗

i (k) > h(0)
i , k = 1, 2, . . . , m}, (15)

where �A stands for the number of the elements in set A.

3 Simulation studies

In this section, we will conduct some simulation to assess the performance of the
bootstrap and the chi-square methods in approximating the null distribution of Hi .
Moreover, the power of Hi in identifying the boundary between two homogenous
clusters is also examined.

3.1 Spatial layout for the simulation experiments

The spatial region for the simulation experiments is chosen as a square with 20 units in
each side. The observations of the variable X are collected on the 20 ×20 regular grid
cells by equally dividing the whole region into 20 × 20 small squares. These 20 × 20
square cells are labelled by 1–400 with the order from left to right and from bottom to
top. Each observation of X is located at the center of the corresponding small square,
and the sample size of the observations is n = 400.

The following two types of spatial link matrix W = (wi j )n×n are considered:

(1) the rook scheme. That is, cells i and j are neighbors if they share a common edge.
(2) the queen scheme. That is, cells i and j are neighbors if they have a common edge

or vertex.

The binary coding scheme is assumed for the spatial link matrix W = (wi j )n×n .
That is, wi j = 1 if cell i is a neighbor of cell j or vice versa; wi j = 0 in other
situations. Since the local mean defined by Eq. (1) includes the observation of X at
the reference location, we define wi i = 1 for i = 1, 2, . . . , n.
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A note on the null distribution 703

3.2 Validity of the bootstrap approximation and the chi-square approximation
for the null distribution of Hi

In order to assess the performance of the bootstrap and the chi-square methods for
the data from a normal distribution and those from a non-normal distribution, we,
respectively, consider the following two populations from which the observations of
X are drawn:1

(1) standard normal distribution N (0, 1);
(2) uniform distribution U (−√

3,
√

3).

The observations of X are independently drawn from one of the two populations and
are randomly allocated to the n cells so that the null hypothesis is guaranteed.

We mainly consider three typical reference locations at i = 1, 2, and 190, which
represent the corner cells, the boundary cells, and the inner cells of the square region,
respectively. For these three reference locations, the numbers of their neighbors are,
respectively, 2, 3, and 4 under the rook scheme and are 3, 5, and 8 under the queen
scheme. In the following simulation, we set a = 2.

For each combination of the two populations, the two spatial linkage schemes and
the three reference locations, the true probability density function of Hi is also esti-
mated by the kernel method in order to achieve the task of comparison. Specifically,
draw independently a sample x1, x2, . . . , xn of size n = 400 from the given popu-
lation and compute the value of Hi by Eq. (6). Repeat this process for N = 5,000
times and obtain N values Hi (1), Hi (2), . . . , Hi (N ) of Hi on which the estimator of
the probability density function of Hi , which we denote by fHi (x), is computed by
the same formula as that in Eq. (12) with m and H∗

i (k) replaced by N and Hi (k),
respectively. Since the sample size N = 5,000 for estimating fHi (x) is large enough,
we can take fHi (x), called the empirical density function of Hi hereinafter, as the
true probability density function of Hi and use it as a benchmark for evaluating the
accuracy of the bootstrap and the chi-square approximations. In the simulation, the
kernel function K (t) in density estimation is always taken as the Gaussian kernel,

i.e., K (t) = 1√
2π

e− t2
2 .

It is noted that each sample x1, x2, . . . , xn drawn from the given population can
generate a bootstrap density function f ∗

Hi
(x) in Eq. (12) and a chi-square density

function f (c)
Hi

(x) in Eq. (9). In order to make a comprehensive comparison among

fHi (x), f ∗
Hi

(x) and f (c)
Hi

(x), we randomly choose 100 samples from those used for
estimating the empirical density function fHi (x) and obtain 100 bootstrap density
functions and 100 chi-square density functions, respectively, where each bootstrap
density function is estimated with m = 5,000 bootstrap replications. For the con-
sidered two populations and three reference locations, we depict these 100 bootstrap
density functions with the empirical density function fHi (x) in Fig. 1 for the rook
scheme and in Fig. 2 for the queen scheme. Similarly, we depict the 100 chi-square

1 According to one of the reviewer’s suggestion, we further considered the heavy-tailed distribution t (3)

and the skew distribution lognormal(1,1) when we revised the manuscript. It was found that the results are
all similar to those for the normal and the uniform distributions.
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Fig. 1 The 100 bootstrap density functions and the empirical density function for the rook spatial linkage
scheme

density functions with the empirical density function fHi (x) in Fig. 3 for the rook
scheme and in Fig. 4 for the queen scheme.

It can be observed from Figs. 1 and 2 that the bootstrap method works quite well in
approximating the null distribution of Hi for all the combinations of the two popula-
tions, the two spatial linkage schemes and the three reference locations. In particular,
very accurate approximation is observed around the right tail of the empirical density
function in various settings, which is important to derive the valid p values of the
hypothesis tests. For the fixed sample size, although the bootstrap method seems to
perform better for the normal observations, it still results in a satisfactory approxi-
mation to the null distribution of Hi for non-normal observations. Furthermore, with
the increase of the neighbors of the reference locations, the approximation accuracy
improves obviously especially for the non-normal observations.
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A note on the null distribution 705

Fig. 2 The 100 bootstrap density functions and the empirical density function for the queen spatial linkage
scheme

In contrast, it can be seen from Figs. 3 and 4 that the chi-square method can only
provide a rough approximation to the null distribution of Hi . Although this approxima-
tion indeed shows non-sensitivity to the non-normal observations and the accuracy of
the approximation improves as the number of the neighbors of the reference locations
increases, there is a systematic deviation from the empirical density function in all of
the settings. In particular, the chi-square density functions show a heavier right tail
than the empirical density function, which would lead to a larger p value for rejecting
the null hypothesis and consequently a conservative test result.

The simulation results demonstrate that the bootstrap method provides a much
better approximation to the null distribution of Hi than the chi-square approximation.
In this sense, the proposed bootstrap method is a promising alternative to the chi-square
approximation. However, it should be noted that the bootstrap method requires more
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Fig. 3 The 100 chi-square density functions and the empirical density function for the rook spatial linkage
scheme

computation time in comparison with the relatively simple chi-square approximation.
In practice, the choice between the two methods should depend upon the computational
cost or the approximation accuracy being of more concerns.

3.3 Power of Hi in detecting the boundary of homogeneous clusters

In this subsection, we empirically examine the power of Hi in identifying the boundary
between two homogenous clusters, where the bootstrap method is used to compute
the p values of the tests.

The same spatial layout as that in Sect. 3.1 is used to conduct the simulation. Here,
only the queen spatial linkage scheme is considered. Let I be the set of the central
10 × 10 cells of the whole region and S be the set of the surrounding cells. The
observations of X are generated by the following way:
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Fig. 4 The 100 chi-square density functions and the empirical density function for the queen spatial linkage
scheme

(1) when j ∈ I, x j = 1 + c + ε j ;
(2) when j ∈ S, x j = 1 + ε j ,

where the noises ε j ( j = 1, 2, . . . , n) are independently drawn from U (−
√

3
4 ,

√
3

4 ),
and c is a constant taking the values of 1, 3, 5, and 7, respectively. With the value of c
increasing, the difference between the two clusters of the observations becomes larger
and more significant boundary between the two clusters would be expected.

Given a value of c, a set of the observations x1, x2, . . . , xn of X is generated
according to the above experiment design. Then, take each of the 20 × 20 cells as
a reference location and compute the p value at this location according to Eq. (15),
where the bootstrap replications are m = 1,000. The results are shown in Fig. 5 by
the maps of the p values.
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Fig. 5 Maps of the p values for a c = 1; b c = 3; c c = 5; d c = 7

It can be observed from Fig. 5 that the p values on the boundary of the two homo-
geneous clusters are relatively smaller than those in the inside and the outside areas.
As the difference between the two clusters of the observations becomes larger (that
is, with the increase of the value of c), a more significant boundary is identified. This
result demonstrates that the statistic Hi with its bootstrap procedure for computing
the p values is of reasonable power in identifying the boundaries of homogeneous
clusters of observations.

We further conduct the above simulations for a = 1. The results are similar to those
of a = 2 except that some p values on the boundary become somewhat larger. This
might be reasonable since the statistic Hi is more robust when a = 1. To save the
space, the results are omitted here, but are available from the authors.

4 Some discussion on the multiple comparison issue

In order to explore the LOSH in the observations of a variable, the test is gener-
ally conducted at all of the locations where the observations are collected, which
leads to multiple tests. Therefore, it is reasonable to make an adjustment for the
overall significance level. Although a Bonferroni adjustment could readily be applied
by adjusting the overall significance level to be compared with the p values, such
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procedure tends to be very conservative (Ord and Getis 2012). In the literature of
nonparametric regression, Chaudhuri and Marron (1999) proposed a concept, so-
called effective sample size, to locally measure the effective number of the data
inside a kernel window and to determine the number of independent blocks for
the adjustment of the overall significance level in the simultaneous inferences. For
the present case, the effective sample size is in fact the number of observations in
the neighborhood of a reference location if the binary coding scheme is used in
the spatial link matrix W. Therefore, according to the method for determining the
number of independent blocks in Chaudhuri and Marron (1999), if we denote by d0
the average number of observations in the neighborhoods of all the reference loca-
tions, the adjusted significance level is d0

n0
α, where n0 is the number of the total

tests performed and α is the overall significance level. For example, for the spa-
tial layout with the queen spatial linkage scheme in the foregoing simulation, there
are totally 324, 72, and 4 reference locations having 9, 6, and 4 neighbors, respec-
tively. Therefore, d0 = (324 × 9 + 72 × 6 + 4 × 4)/400 = 8.41. Given an over-
all significance level α, the adjusted level is 8.41

400 α = 0.021α. In fact, the similar
idea has been proposed by Getis and Ord (2000) to address the problem of multiple
tests in spatial data analysis. McLaughlin and Boscoe (2007) have used the similar
adjustment to deal with the multiple comparison issue in the local Moran’s Ii -based
test.

The aforementioned adjustment can overcome, to some extent, the conservativeness
of the Bonferroni method in the sense that d0

n0
α is generally larger than the Bonferroni’s

adjusted significance level α
n0

. Nevertheless, the above adjustment method seems to
be still too conservative for the simulation experiment in Sect. 3.3, as the designed
significant boundary of the two observation clusters is ignored even if the overall
significance level α is set to be 0.1. Given its less conservativeness than the Bonferroni
method, the above adjustment might be useful in other situations.

5 Concluding remarks

In this paper, a bootstrap procedure is proposed as an alternative method to approximate
the null distribution of Hi . The simulation results have demonstrated that the bootstrap
method performs better than the chi-square approximation. Although the bootstrap
procedure is more time-consuming, it can still easily be implemented with the help of
modern computers.

The LOSH statistic is in fact a local estimator of the deviation of observations. This
statistic, as shown by the foregoing simulation, is of reasonable power in detecting the
boundary of homogeneous clusters of the observations. Furthermore, as demonstrated
in Ord and Getis (2012), the LOSH statistic Hi , accompanied with the mean level
local statistic G∗

i (Ord and Getis 1995), offers deep understanding and comprehensive
explanation of spatial patterns of the observations. This inspires us to explore in the
future the possibility that a combination of the LOSH statistic with other mean level
local statistics such as the Anselin’s LISAs and Ord and Getis’ G∗

i might generate
more powerful statistics for detecting LOSH and some spatial patterns of interest in
the observations.
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