VWoOJOUNEWNPRE

pygls_test.py

: from typing import List

import logging as log

log.

basicConfig(level=1log.DEBUG)

class Position:

def

def

def

def

def __init__(self, line, character):
self.line = line
self.character = character

def __repr__(self):

return f"({self.line}:{self.character})"

is_char_beyond_multilingual_plane(char: str) — bool:
return ord(char) > OxFFFF

utfl6_unit_offset(chars: str):
"""Calculate the number of characters which need two utf-16 code units.
Arguments:

chars (str): The string to count occurrences of utf-16 code units for.

return sum(is_char_beyond_multilingual_plane(ch) for ch in chars)

utf16_num_units(chars: str):
"nncalculate the length of ‘str' in utf-16 code units.
Arguments:
chars (str): The string to return the length in utf-16 code units for.

return len(chars) + utfl6_unit_offset(chars)

position_from_utfl6(lines: List[str], position: Position) — Position:
"""Convert the position.character from utf-16 code units to utf-32.
A python application can't use the character member of ‘Position’
directly. As per specification it is represented as a zero-based line and
character offset based on a UTF-16 string representation.
All characters whose code point exceeds the Basic Multilingual Plane are
represented by 2 UTF-16 code units.
The offset of the closing quotation mark in x="@" is
- 5 in UTF-16 representation
- 4 in UTF-32 representation
see: https:// github.com/microsoft/language-server—-protocol/issues/376
Arguments:

lines (list):

The content of the document which the position refers to.
position (Position):
The line and character offset in utf-16 code units.

Returns:

The position with ‘character' being converted to utf-32 code units.
if position.line = len(lines):

start of the line after last

return Position(len(lines), 0) # or return position

line = lines[position.line]

_utf32_1len = len(line)

_utf32_index = 0

_utfl6_index 0

while (_utfl6_index < position.character) and (_utf32_index < _utf32_len):
_current_char = line[_utf32_index]
is_double_width = is_char_beyond_multilingual_plane(_current_char)

1/2

65:
66:
67:
68:
69:
70:
71:
72:
73:
T4
75:
76:
77 :
78:
79
80:
81:
82:
83:
8y :
85:
86:
87:
88:

pygls_test.py

if (is_double_width):
_utflée_index += 2
else:
_utfl6é_index += 1
_utf32_index += 1

position = Position(
line=position.line,
character=_utf32_index
)

return position

source = """

©0

lines = source.split("\n")
print(lines)
pos = Position(4,0)

pos = position_from_utfl6(lines, pos)
print(pos)

2/2

