
pygls_test.py

1: from typing import List
2: import logging as log
3: log.basicConfig(level=log.DEBUG)
4:
5:
6:
7: class Position:
8: def __init__(self, line, character):
9: self.line = line

10: self.character = character
11:
12: def __repr__(self):
13: return f"({self.line}:{self.character})"
14:
15: def is_char_beyond_multilingual_plane(char: str) -> bool:
16: return ord(char) > 0xFFFF
17:
18:
19: def utf16_unit_offset(chars: str):
20: """Calculate the number of characters which need two utf-16 code units.
21: Arguments:
22: chars (str): The string to count occurrences of utf-16 code units for.
23: """
24: return sum(is_char_beyond_multilingual_plane(ch) for ch in chars)
25:
26:
27: def utf16_num_units(chars: str):
28: """Calculate the length of `str` in utf-16 code units.
29: Arguments:
30: chars (str): The string to return the length in utf-16 code units for.
31: """
32: return len(chars) + utf16_unit_offset(chars)
33:
34: def position_from_utf16(lines: List[str], position: Position) -> Position:
35: """Convert the position.character from utf-16 code units to utf-32.
36: A python application can't use the character member of `Position`
37: directly. As per specification it is represented as a zero-based line and
38: character offset based on a UTF-16 string representation.
39: All characters whose code point exceeds the Basic Multilingual Plane are
40: represented by 2 UTF-16 code units.
41: The offset of the closing quotation mark in x="ѦѧѨѩ" is
42: - 5 in UTF-16 representation
43: - 4 in UTF-32 representation
44: see: https://github.com/microsoft/language-server-protocol/issues/376
45: Arguments:
46: lines (list):
47: The content of the document which the position refers to.
48: position (Position):
49: The line and character offset in utf-16 code units.
50: Returns:
51: The position with `character` being converted to utf-32 code units.
52: """
53: if position.line >= len(lines):
54: # start of the line after last
55: return Position(len(lines), 0) # or return position
56:
57: line = lines[position.line]
58:
59: _utf32_len = len(line)
60: _utf32_index = 0
61: _utf16_index = 0
62: while (_utf16_index < position.character) and (_utf32_index < _utf32_len):
63: _current_char = line[_utf32_index]
64: is_double_width = is_char_beyond_multilingual_plane(_current_char)

1/2

pygls_test.py

65: if (is_double_width):
66: _utf16_index += 2
67: else:
68: _utf16_index += 1
69: _utf32_index += 1
70:
71: position = Position(
72: line=position.line,
73: character=_utf32_index
74:)
75: return position
76:
77:
78: source = """
79: ѦѧѨѩѦѧѨѩ
80: """
81:
82: lines = source.split("\n")
83: print(lines)
84: pos = Position(4,0)
85:
86: pos = position_from_utf16(lines, pos)
87: print(pos)
88:

2/2

