Python-Control Testing Issue 929

JMK593

September 13, 2023

1 LTI Dynamics

Consider a deterministic, discrete-time, LTI system with state $x_{k} \in \mathbb{R}^{n}$ and dynamics

$$
x_{k+1}=A x_{k}+B u_{k}
$$

where $u_{k} \in \mathbb{R}^{m}$ is the control input at time k, and $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Assume that the pair (A, B) is controllable.

From a given initial state value x_{0} then the state at time $k+1$ can be written as

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k} \\
& =A\left(A x_{k-1}+B u_{k-1}\right)+B u_{k} \\
& =A^{2} x_{k-1}+A B u_{k-1}+B u_{k} \\
& \cdots \\
& =A^{k+1} x_{0}+A^{k} B u_{0}+\cdots+A B u_{k-1}+B u_{k} \\
& =A^{k+1} x_{0}+\sum_{j=0}^{k} A^{j} B u_{k-j} .
\end{aligned}
$$

Alternatively the state at some time $k+\ell$ from an initial state at time k can be written as

$$
\begin{equation*}
x_{k+\ell \mid k}=A^{\ell} x_{k}+\sum j=0^{\ell-1} A^{\ell-j} B u_{k+j} . \tag{1}
\end{equation*}
$$

Let us define the finite horizon state prediction of length N from time k and the accompanying control sequence as

$$
\vec{x}_{k}=\left[\begin{array}{c}
x_{k+1 \mid k} \\
\vdots \\
x_{k+N \mid k}
\end{array}\right] \quad \text { and } \quad \vec{u}_{k}=\left[\begin{array}{c}
u_{k \mid k} \\
\vdots \\
u_{k+N-1 \mid k}
\end{array}\right],
$$

then using (1) we can write the prediction conveniently as

$$
\begin{equation*}
\vec{x}_{k}=\Lambda x_{k}+\Phi \vec{u}_{k} \tag{2}
\end{equation*}
$$

where

$$
\Lambda=\left[\begin{array}{c}
A \\
A^{2} \\
\vdots \\
A^{N}
\end{array}\right] \quad \text { and } \quad \Phi=\left[\begin{array}{cccc}
B & 0 & \ldots & 0 \\
A B & B & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A^{N-1} B & A^{N-2} B & \ldots & B
\end{array}\right]
$$

2 Cost Function

Let us consider a quadratic stage cost of

$$
L(x, u)=\left(x-x^{\star}\right)^{T} Q\left(x-x^{\star}\right)+u^{T} R u
$$

where $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{m \times m}$ are the state and control action penalties, and x^{\star} is the state reference (or desired state). Let us consider a terminal cost of

$$
L_{F}(x)=x^{T} Q_{F} x
$$

where $Q_{F} \in \mathbb{R}^{n \times n}$ is the terminal state penalty.
Consider the finite horizon cost function

$$
\begin{align*}
J\left(x_{k}, \vec{u}_{k}\right)= & \sum_{\ell=0}^{N-1}\left(L\left(x_{k+\ell \mid k}, u_{k+\ell \mid k}\right)\right)+L_{F}\left(x_{k+N \mid k}\right) \\
= & \sum_{\ell=0}^{N-1}\left(\left(x_{k+\ell \mid k}-x^{\star}\right)^{T} Q\left(x_{k+\ell \mid k}-x^{\star}\right)+u_{k+\ell \mid k}^{T} R u_{k+\ell \mid k}\right) \tag{3}\\
& \quad+\left(x_{k+N \mid k}-x^{\star}\right)^{T} Q_{F}\left(x_{k+N \mid k}-x^{\star}\right) \\
= & \left(\vec{x}_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\vec{x}_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\top} \bar{R} \vec{u}_{k}+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right)
\end{align*}
$$

where we define \bar{Q} and \bar{R} as block diagonal matrices

$$
\bar{Q}=\left[\begin{array}{ccccc}
Q & 0 & \ldots & 0 & 0 \\
0 & Q & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & Q & 0 \\
0 & 0 & \ldots & 0 & Q_{F}
\end{array}\right] \quad \text { and } \quad \bar{R}=\left[\begin{array}{cccc}
R & 0 & \ldots & 0 \\
0 & R & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & R
\end{array}\right] .
$$

Utilising (2) then

$$
\begin{aligned}
J\left(x_{k}, \vec{u}_{k}\right)= & \left(\vec{x}_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\vec{x}_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\top} \bar{R} \vec{u}_{k}+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right) \\
= & \left(\Lambda x_{k}+\Phi \vec{u}_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\Lambda x_{k}+\Phi \vec{u}_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\top} \bar{R} \vec{u}_{k}+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right) \\
= & \left(\Lambda x_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+2 \vec{u}_{k}^{\top} \Phi^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\top} \Phi^{\top} \bar{Q} \Phi \vec{u}_{k} \\
& \quad+\vec{u}_{k}^{\top} \bar{R} \vec{u}_{k}+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right) \\
= & \left(\Lambda x_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right) \\
& \quad+2 \vec{u}_{k}^{\top} \Phi^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\top}\left(\Phi^{\top} \bar{Q} \Phi+\bar{R}\right) \vec{u}_{k} .
\end{aligned}
$$

In the context of minimizing $J\left(x_{k}, \vec{u}_{k}\right)$ with respect to the control sequence \vec{u}_{k}, we note that the first line

$$
\left(\Lambda x_{k}-\vec{x}^{\star}\right)^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+\left(x_{k}-x^{\star}\right)^{\top} Q\left(x_{k}-x^{\star}\right)
$$

is constant with respect to \vec{u}_{k} and could be discarded in the minimization process.

We can write a simplified cost function of

$$
J\left(x_{k}, \vec{u}_{k}\right)=2 \vec{u}_{k}^{\mathrm{\top}} \Phi^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)+\vec{u}_{k}^{\mathrm{\top}}\left(\Phi^{\top} \bar{Q} \Phi+\bar{R}\right) \vec{u}_{k}
$$

which has a first and second order component. Writing in the form of MATLAB's quadprog or mpcActiveSetSolver we find

$$
\begin{equation*}
J\left(\vec{u}_{k}\right)=\frac{1}{2} \vec{u}_{k}^{\top} H \vec{u}_{k}+f^{\top} \vec{u}_{k} \tag{4}
\end{equation*}
$$

where $H=2\left(\Phi^{\top} \bar{Q} \Phi+\bar{R}\right)$ and $f=2 \Phi^{\top} \bar{Q}\left(\Lambda x_{k}-\vec{x}^{\star}\right)$. Observe that H can be pre-computed but f must be computed each time step as a function of the current state x_{k}.

3 Constraints

Consider the following constraints

$$
x_{\min } \leq x_{k} \leq x_{\max }
$$

which apply to the state at all times. We let $\vec{x}_{\min }$ and $\vec{x}_{\text {max }}$ denote the vector of constraints that match the prediction \vec{x}_{k}.

Consider the lower bound constraints and apply the prediction dynamics (2)

$$
\begin{aligned}
\vec{x}_{\min } & \leq \vec{x}_{k} \\
\vec{x}_{\min } & \leq \Lambda x_{k}+\Phi \vec{u}_{k} \\
-\Phi \vec{u}_{k} & \leq \Lambda x_{k}-\vec{x}_{\min }
\end{aligned}
$$

Similar can be done for the upper bound to find

$$
\begin{aligned}
\vec{x}_{k} & \leq \vec{x}_{\max } \\
\Lambda x_{k}+\Phi \vec{u}_{k} & \leq \vec{x}_{\max } \\
\Phi \vec{u}_{k} & \leq \vec{x}_{\max }-\Lambda x_{k} .
\end{aligned}
$$

Consider the following control action constraints

$$
u_{\min } \leq u_{k} \leq u_{\max }
$$

which apply to the control action at all times. Let $\vec{u}_{\min }$ and $\vec{u}_{\max }$ denote the vector of constraints that match the prediction \vec{u}_{k}.

The constraints can be conveniently written as

$$
\begin{aligned}
-I_{N} \vec{u}_{k} & \leq-\vec{u}_{\min } \\
I_{N} \vec{u}_{k} & \leq \vec{u}_{\max }
\end{aligned}
$$

where I_{N} is the identity of size N.
Let us combine the four sets of constraints together to give linear inequality constraints

$$
\begin{align*}
& {\left[\begin{array}{c}
-\Phi \\
\Phi \\
-I_{N} \\
I_{N}
\end{array}\right] \vec{u}_{k} \leq\left[\begin{array}{c}
\Lambda x_{k}-\vec{x}_{\min } \\
\vec{x}_{\max }-\Lambda x_{k} \\
-\vec{u}_{\min } \\
\vec{u}_{\max }
\end{array}\right]} \\
& A_{\text {in }} \vec{u}_{k} \leq B_{\text {in }} . \tag{5}
\end{align*}
$$

