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1 LTI Dynamics

Consider a deterministic, discrete-time, LTI system with state z; € R™ and
dynamics
Trp+1 = Az + Buy

where u;, € R™ is the control input at time k, and A € R"*" and B € R"*™,
Assume that the pair (A, B) is controllable.

From a given initial state value xg then the state at time k+1 can be written
as

Tht1 = Axy, + Buy,
= A(Al‘k,_l + Buk_l) + Bug
= Azl‘k,1 + ABup_1 + Buy

= AMao + A" Bug + -+ + ABuj—1 + Buy,
k
= A2+ > A Buy_ .
=0

Alternatively the state at some time k+ ¢ from an initial state at time k can

be written as '
Thpep = Alwp+ Y j =07 A Buyy. (1)

Let us define the finite horizon state prediction of length N from time k& and
the accompanying control sequence as

Tp41|k Uk|k
k= and U, = s
Tk+N|k Uk+N—1|k

then using (1) we can write the prediction conveniently as

T = Az + Oy (2)
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2 Cost Function
Let us consider a quadratic stage cost of
L(z,u) = (x — 2*)TQ(x — 2*) + u" Ru

where @@ € R"*™ and R € R™*™ are the state and control action penalties, and
x* is the state reference (or desired state). Let us consider a terminal cost of

Lp(x) = 2T Qpx

where Qr € R™ ™ is the terminal state penalty.
Consider the finite horizon cost function

N-1
J(@hyiin) = Y (L(@prop ko)) + Le (@ ne)
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(($k+z|k — ) Q(Tppe — ) + ug+é|kRuk+£\k) (3)
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+ (@ npk — )T Qr (Thy g — )
= (T — i’*)TQ(fk — ") + ﬁ;Rﬁk + (z — z*)TQ(a:k —x*)

where we define ) and R as block diagonal matrices

9 g . R 0 0
_ 0 R 0
Q=1 - oo : and R = . .
0 0 ... @ O - o
00 ... 0 OQr 0 0 ... R
Utilising (2) then
J(xy, i) = (T — ) TQ(&y — T%) + i), Rily + (zr — %) Q (), — z¥)

k
= (Azy, + @iy, — )" Q(Axy, + @iy, — T*) + iy Rily, + (x — %) " Q(zh, — %)
= (Azy, — 7*)TQ(Axy — T*) + 2u} @ Q(Axy, — ) + 1) DT QD)
+ i} Ry, + (x5, — %) " Q(xp — x¥)
(



In the context of minimizing J(x, @) with respect to the control sequence
i}, we note that the first line

(Azy — )T Q(Azy — F) + (z — %) Q(z — 2¥)

is constant with respect to u; and could be discarded in the minimization pro-
cess.
We can write a simplified cost function of

J(zp, iy) = 2 ®TQ(Axy, — &%) + i} (PTQP + R)iiy,

which has a first and second order component. Writing in the form of MAT-
LAB’s quadprog or mpcActiveSetSolver we find

. 1 +.. . .
J(dy) = iu—er'UJk + flidk (4)

where H = 2(®TQ® + R) and f = 2®TQ(Ax, — #*). Observe that H can
be pre-computed but f must be computed each time step as a function of the
current state xy.
3 Constraints
Consider the following constraints

Tmin < Tk < Tmax

which apply to the state at all times. We let Z i, and Zyax denote the vector
of constraints that match the prediction Zy.
Consider the lower bound constraints and apply the prediction dynamics (2)

fmin S fk
fmin § Axk + (I)'Jk
_‘I)ﬁk < A.]?k - fmirr

Similar can be done for the upper bound to find

fk S fmax
A:Ek + (I)ﬁk < JE’max

Dy, < TPrax — Axp.
Consider the following control action constraints
Umin < U < Umax

which apply to the control action at all times. Let i, and @yax denote the
vector of constraints that match the prediction wy.



The constraints can be conveniently written as

*INﬁk S *ﬁmin
INﬁk < ﬁmax
where Iy is the identity of size INV.

Let us combine the four sets of constraints together to give linear inequality
constraints

—d Aﬁk — fmin
o ﬁk < fmax_’_ A:Ek:

_IN —Umin
IN ﬁmax



