Permalink
Cannot retrieve contributors at this time
1149 lines (992 sloc)
27.1 KB
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
cpython/Python/pytime.c
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "Python.h" | |
#ifdef MS_WINDOWS | |
#include <winsock2.h> /* struct timeval */ | |
#endif | |
#if defined(__APPLE__) | |
#include <mach/mach_time.h> /* mach_absolute_time(), mach_timebase_info() */ | |
#if defined(__APPLE__) && defined(__has_builtin) | |
# if __has_builtin(__builtin_available) | |
# define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *) | |
# endif | |
#endif | |
#endif | |
#define _PyTime_check_mul_overflow(a, b) \ | |
(assert(b > 0), \ | |
(_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \ | |
|| _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a)) | |
/* To millisecond (10^-3) */ | |
#define SEC_TO_MS 1000 | |
/* To microseconds (10^-6) */ | |
#define MS_TO_US 1000 | |
#define SEC_TO_US (SEC_TO_MS * MS_TO_US) | |
/* To nanoseconds (10^-9) */ | |
#define US_TO_NS 1000 | |
#define MS_TO_NS (MS_TO_US * US_TO_NS) | |
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) | |
/* Conversion from nanoseconds */ | |
#define NS_TO_MS (1000 * 1000) | |
#define NS_TO_US (1000) | |
static void | |
error_time_t_overflow(void) | |
{ | |
PyErr_SetString(PyExc_OverflowError, | |
"timestamp out of range for platform time_t"); | |
} | |
static void | |
_PyTime_overflow(void) | |
{ | |
PyErr_SetString(PyExc_OverflowError, | |
"timestamp too large to convert to C _PyTime_t"); | |
} | |
_PyTime_t | |
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div) | |
{ | |
_PyTime_t intpart, remaining; | |
/* Compute (ticks * mul / div) in two parts to prevent integer overflow: | |
compute integer part, and then the remaining part. | |
(ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div | |
The caller must ensure that "(div - 1) * mul" cannot overflow. */ | |
intpart = ticks / div; | |
ticks %= div; | |
remaining = ticks * mul; | |
remaining /= div; | |
return intpart * mul + remaining; | |
} | |
time_t | |
_PyLong_AsTime_t(PyObject *obj) | |
{ | |
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG | |
long long val; | |
val = PyLong_AsLongLong(obj); | |
#else | |
long val; | |
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); | |
val = PyLong_AsLong(obj); | |
#endif | |
if (val == -1 && PyErr_Occurred()) { | |
if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
error_time_t_overflow(); | |
} | |
return -1; | |
} | |
return (time_t)val; | |
} | |
PyObject * | |
_PyLong_FromTime_t(time_t t) | |
{ | |
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG | |
return PyLong_FromLongLong((long long)t); | |
#else | |
Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); | |
return PyLong_FromLong((long)t); | |
#endif | |
} | |
/* Round to nearest with ties going to nearest even integer | |
(_PyTime_ROUND_HALF_EVEN) */ | |
static double | |
_PyTime_RoundHalfEven(double x) | |
{ | |
double rounded = round(x); | |
if (fabs(x-rounded) == 0.5) { | |
/* halfway case: round to even */ | |
rounded = 2.0*round(x/2.0); | |
} | |
return rounded; | |
} | |
static double | |
_PyTime_Round(double x, _PyTime_round_t round) | |
{ | |
/* volatile avoids optimization changing how numbers are rounded */ | |
volatile double d; | |
d = x; | |
if (round == _PyTime_ROUND_HALF_EVEN) { | |
d = _PyTime_RoundHalfEven(d); | |
} | |
else if (round == _PyTime_ROUND_CEILING) { | |
d = ceil(d); | |
} | |
else if (round == _PyTime_ROUND_FLOOR) { | |
d = floor(d); | |
} | |
else { | |
assert(round == _PyTime_ROUND_UP); | |
d = (d >= 0.0) ? ceil(d) : floor(d); | |
} | |
return d; | |
} | |
static int | |
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator, | |
long idenominator, _PyTime_round_t round) | |
{ | |
double denominator = (double)idenominator; | |
double intpart; | |
/* volatile avoids optimization changing how numbers are rounded */ | |
volatile double floatpart; | |
floatpart = modf(d, &intpart); | |
floatpart *= denominator; | |
floatpart = _PyTime_Round(floatpart, round); | |
if (floatpart >= denominator) { | |
floatpart -= denominator; | |
intpart += 1.0; | |
} | |
else if (floatpart < 0) { | |
floatpart += denominator; | |
intpart -= 1.0; | |
} | |
assert(0.0 <= floatpart && floatpart < denominator); | |
if (!_Py_InIntegralTypeRange(time_t, intpart)) { | |
error_time_t_overflow(); | |
return -1; | |
} | |
*sec = (time_t)intpart; | |
*numerator = (long)floatpart; | |
assert(0 <= *numerator && *numerator < idenominator); | |
return 0; | |
} | |
static int | |
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, | |
long denominator, _PyTime_round_t round) | |
{ | |
assert(denominator >= 1); | |
if (PyFloat_Check(obj)) { | |
double d = PyFloat_AsDouble(obj); | |
if (Py_IS_NAN(d)) { | |
*numerator = 0; | |
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
return -1; | |
} | |
return _PyTime_DoubleToDenominator(d, sec, numerator, | |
denominator, round); | |
} | |
else { | |
*sec = _PyLong_AsTime_t(obj); | |
*numerator = 0; | |
if (*sec == (time_t)-1 && PyErr_Occurred()) { | |
return -1; | |
} | |
return 0; | |
} | |
} | |
int | |
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) | |
{ | |
if (PyFloat_Check(obj)) { | |
double intpart; | |
/* volatile avoids optimization changing how numbers are rounded */ | |
volatile double d; | |
d = PyFloat_AsDouble(obj); | |
if (Py_IS_NAN(d)) { | |
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
return -1; | |
} | |
d = _PyTime_Round(d, round); | |
(void)modf(d, &intpart); | |
if (!_Py_InIntegralTypeRange(time_t, intpart)) { | |
error_time_t_overflow(); | |
return -1; | |
} | |
*sec = (time_t)intpart; | |
return 0; | |
} | |
else { | |
*sec = _PyLong_AsTime_t(obj); | |
if (*sec == (time_t)-1 && PyErr_Occurred()) { | |
return -1; | |
} | |
return 0; | |
} | |
} | |
int | |
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, | |
_PyTime_round_t round) | |
{ | |
return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round); | |
} | |
int | |
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, | |
_PyTime_round_t round) | |
{ | |
return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round); | |
} | |
_PyTime_t | |
_PyTime_FromSeconds(int seconds) | |
{ | |
_PyTime_t t; | |
/* ensure that integer overflow cannot happen, int type should have 32 | |
bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30 | |
bits). */ | |
Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS); | |
Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS); | |
t = (_PyTime_t)seconds; | |
assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS) | |
|| (t < 0 && t >= _PyTime_MIN / SEC_TO_NS)); | |
t *= SEC_TO_NS; | |
return t; | |
} | |
_PyTime_t | |
_PyTime_FromNanoseconds(_PyTime_t ns) | |
{ | |
/* _PyTime_t already uses nanosecond resolution, no conversion needed */ | |
return ns; | |
} | |
int | |
_PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj) | |
{ | |
long long nsec; | |
_PyTime_t t; | |
if (!PyLong_Check(obj)) { | |
PyErr_Format(PyExc_TypeError, "expect int, got %s", | |
Py_TYPE(obj)->tp_name); | |
return -1; | |
} | |
Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t)); | |
nsec = PyLong_AsLongLong(obj); | |
if (nsec == -1 && PyErr_Occurred()) { | |
if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
_PyTime_overflow(); | |
} | |
return -1; | |
} | |
/* _PyTime_t already uses nanosecond resolution, no conversion needed */ | |
t = (_PyTime_t)nsec; | |
*tp = t; | |
return 0; | |
} | |
#ifdef HAVE_CLOCK_GETTIME | |
static int | |
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise) | |
{ | |
_PyTime_t t, nsec; | |
int res = 0; | |
Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t)); | |
t = (_PyTime_t)ts->tv_sec; | |
if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { | |
if (raise) { | |
_PyTime_overflow(); | |
res = -1; | |
} | |
t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; | |
} | |
else { | |
t = t * SEC_TO_NS; | |
} | |
nsec = ts->tv_nsec; | |
/* The following test is written for positive only nsec */ | |
assert(nsec >= 0); | |
if (t > _PyTime_MAX - nsec) { | |
if (raise) { | |
_PyTime_overflow(); | |
res = -1; | |
} | |
t = _PyTime_MAX; | |
} | |
else { | |
t += nsec; | |
} | |
*tp = t; | |
return res; | |
} | |
int | |
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) | |
{ | |
return pytime_fromtimespec(tp, ts, 1); | |
} | |
#endif | |
#if !defined(MS_WINDOWS) | |
static int | |
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise) | |
{ | |
_PyTime_t t, usec; | |
int res = 0; | |
Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t)); | |
t = (_PyTime_t)tv->tv_sec; | |
if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { | |
if (raise) { | |
_PyTime_overflow(); | |
res = -1; | |
} | |
t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; | |
} | |
else { | |
t = t * SEC_TO_NS; | |
} | |
usec = (_PyTime_t)tv->tv_usec * US_TO_NS; | |
/* The following test is written for positive only usec */ | |
assert(usec >= 0); | |
if (t > _PyTime_MAX - usec) { | |
if (raise) { | |
_PyTime_overflow(); | |
res = -1; | |
} | |
t = _PyTime_MAX; | |
} | |
else { | |
t += usec; | |
} | |
*tp = t; | |
return res; | |
} | |
int | |
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv) | |
{ | |
return pytime_fromtimeval(tp, tv, 1); | |
} | |
#endif | |
static int | |
_PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round, | |
long unit_to_ns) | |
{ | |
/* volatile avoids optimization changing how numbers are rounded */ | |
volatile double d; | |
/* convert to a number of nanoseconds */ | |
d = value; | |
d *= (double)unit_to_ns; | |
d = _PyTime_Round(d, round); | |
if (!_Py_InIntegralTypeRange(_PyTime_t, d)) { | |
_PyTime_overflow(); | |
return -1; | |
} | |
*t = (_PyTime_t)d; | |
return 0; | |
} | |
static int | |
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round, | |
long unit_to_ns) | |
{ | |
if (PyFloat_Check(obj)) { | |
double d; | |
d = PyFloat_AsDouble(obj); | |
if (Py_IS_NAN(d)) { | |
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); | |
return -1; | |
} | |
return _PyTime_FromDouble(t, d, round, unit_to_ns); | |
} | |
else { | |
long long sec; | |
Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t)); | |
sec = PyLong_AsLongLong(obj); | |
if (sec == -1 && PyErr_Occurred()) { | |
if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | |
_PyTime_overflow(); | |
} | |
return -1; | |
} | |
if (_PyTime_check_mul_overflow(sec, unit_to_ns)) { | |
_PyTime_overflow(); | |
return -1; | |
} | |
*t = sec * unit_to_ns; | |
return 0; | |
} | |
} | |
int | |
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) | |
{ | |
return _PyTime_FromObject(t, obj, round, SEC_TO_NS); | |
} | |
int | |
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) | |
{ | |
return _PyTime_FromObject(t, obj, round, MS_TO_NS); | |
} | |
double | |
_PyTime_AsSecondsDouble(_PyTime_t t) | |
{ | |
/* volatile avoids optimization changing how numbers are rounded */ | |
volatile double d; | |
if (t % SEC_TO_NS == 0) { | |
_PyTime_t secs; | |
/* Divide using integers to avoid rounding issues on the integer part. | |
1e-9 cannot be stored exactly in IEEE 64-bit. */ | |
secs = t / SEC_TO_NS; | |
d = (double)secs; | |
} | |
else { | |
d = (double)t; | |
d /= 1e9; | |
} | |
return d; | |
} | |
PyObject * | |
_PyTime_AsNanosecondsObject(_PyTime_t t) | |
{ | |
Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t)); | |
return PyLong_FromLongLong((long long)t); | |
} | |
static _PyTime_t | |
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k, | |
const _PyTime_round_t round) | |
{ | |
assert(k > 1); | |
if (round == _PyTime_ROUND_HALF_EVEN) { | |
_PyTime_t x, r, abs_r; | |
x = t / k; | |
r = t % k; | |
abs_r = Py_ABS(r); | |
if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { | |
if (t >= 0) { | |
x++; | |
} | |
else { | |
x--; | |
} | |
} | |
return x; | |
} | |
else if (round == _PyTime_ROUND_CEILING) { | |
if (t >= 0) { | |
return (t + k - 1) / k; | |
} | |
else { | |
return t / k; | |
} | |
} | |
else if (round == _PyTime_ROUND_FLOOR){ | |
if (t >= 0) { | |
return t / k; | |
} | |
else { | |
return (t - (k - 1)) / k; | |
} | |
} | |
else { | |
assert(round == _PyTime_ROUND_UP); | |
if (t >= 0) { | |
return (t + k - 1) / k; | |
} | |
else { | |
return (t - (k - 1)) / k; | |
} | |
} | |
} | |
_PyTime_t | |
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) | |
{ | |
return _PyTime_Divide(t, NS_TO_MS, round); | |
} | |
_PyTime_t | |
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) | |
{ | |
return _PyTime_Divide(t, NS_TO_US, round); | |
} | |
static int | |
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us, | |
_PyTime_round_t round) | |
{ | |
_PyTime_t secs, ns; | |
int usec; | |
int res = 0; | |
secs = t / SEC_TO_NS; | |
ns = t % SEC_TO_NS; | |
usec = (int)_PyTime_Divide(ns, US_TO_NS, round); | |
if (usec < 0) { | |
usec += SEC_TO_US; | |
if (secs != _PyTime_MIN) { | |
secs -= 1; | |
} | |
else { | |
res = -1; | |
} | |
} | |
else if (usec >= SEC_TO_US) { | |
usec -= SEC_TO_US; | |
if (secs != _PyTime_MAX) { | |
secs += 1; | |
} | |
else { | |
res = -1; | |
} | |
} | |
assert(0 <= usec && usec < SEC_TO_US); | |
*p_secs = secs; | |
*p_us = usec; | |
return res; | |
} | |
static int | |
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv, | |
_PyTime_round_t round, int raise) | |
{ | |
_PyTime_t secs, secs2; | |
int us; | |
int res; | |
res = _PyTime_AsTimeval_impl(t, &secs, &us, round); | |
#ifdef MS_WINDOWS | |
tv->tv_sec = (long)secs; | |
#else | |
tv->tv_sec = secs; | |
#endif | |
tv->tv_usec = us; | |
secs2 = (_PyTime_t)tv->tv_sec; | |
if (res < 0 || secs2 != secs) { | |
if (raise) { | |
error_time_t_overflow(); | |
} | |
return -1; | |
} | |
return 0; | |
} | |
int | |
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | |
{ | |
return _PyTime_AsTimevalStruct_impl(t, tv, round, 1); | |
} | |
int | |
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) | |
{ | |
return _PyTime_AsTimevalStruct_impl(t, tv, round, 0); | |
} | |
int | |
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, | |
_PyTime_round_t round) | |
{ | |
_PyTime_t secs; | |
int res; | |
res = _PyTime_AsTimeval_impl(t, &secs, us, round); | |
*p_secs = secs; | |
if (res < 0 || (_PyTime_t)*p_secs != secs) { | |
error_time_t_overflow(); | |
return -1; | |
} | |
return 0; | |
} | |
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) | |
int | |
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) | |
{ | |
_PyTime_t secs, nsec; | |
secs = t / SEC_TO_NS; | |
nsec = t % SEC_TO_NS; | |
if (nsec < 0) { | |
nsec += SEC_TO_NS; | |
secs -= 1; | |
} | |
ts->tv_sec = (time_t)secs; | |
assert(0 <= nsec && nsec < SEC_TO_NS); | |
ts->tv_nsec = nsec; | |
if ((_PyTime_t)ts->tv_sec != secs) { | |
error_time_t_overflow(); | |
return -1; | |
} | |
return 0; | |
} | |
#endif | |
static int | |
py_get_system_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise) | |
{ | |
#ifdef MS_WINDOWS | |
FILETIME system_time; | |
ULARGE_INTEGER large; | |
assert(info == NULL || raise); | |
GetSystemTimeAsFileTime(&system_time); | |
large.u.LowPart = system_time.dwLowDateTime; | |
large.u.HighPart = system_time.dwHighDateTime; | |
/* 11,644,473,600,000,000,000: number of nanoseconds between | |
the 1st january 1601 and the 1st january 1970 (369 years + 89 leap | |
days). */ | |
*tp = large.QuadPart * 100 - 11644473600000000000; | |
if (info) { | |
DWORD timeAdjustment, timeIncrement; | |
BOOL isTimeAdjustmentDisabled, ok; | |
info->implementation = "GetSystemTimeAsFileTime()"; | |
info->monotonic = 0; | |
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | |
&isTimeAdjustmentDisabled); | |
if (!ok) { | |
PyErr_SetFromWindowsErr(0); | |
return -1; | |
} | |
info->resolution = timeIncrement * 1e-7; | |
info->adjustable = 1; | |
} | |
#else /* MS_WINDOWS */ | |
int err; | |
#if defined(HAVE_CLOCK_GETTIME) | |
struct timespec ts; | |
#endif | |
#if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__) | |
struct timeval tv; | |
#endif | |
assert(info == NULL || raise); | |
#ifdef HAVE_CLOCK_GETTIME | |
#ifdef HAVE_CLOCK_GETTIME_RUNTIME | |
if (HAVE_CLOCK_GETTIME_RUNTIME) { | |
#endif | |
err = clock_gettime(CLOCK_REALTIME, &ts); | |
if (err) { | |
if (raise) { | |
PyErr_SetFromErrno(PyExc_OSError); | |
} | |
return -1; | |
} | |
if (pytime_fromtimespec(tp, &ts, raise) < 0) { | |
return -1; | |
} | |
if (info) { | |
struct timespec res; | |
info->implementation = "clock_gettime(CLOCK_REALTIME)"; | |
info->monotonic = 0; | |
info->adjustable = 1; | |
if (clock_getres(CLOCK_REALTIME, &res) == 0) { | |
info->resolution = res.tv_sec + res.tv_nsec * 1e-9; | |
} | |
else { | |
info->resolution = 1e-9; | |
} | |
} | |
#ifdef HAVE_CLOCK_GETTIME_RUNTIME | |
} else { | |
#endif | |
#endif | |
#if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME) | |
/* test gettimeofday() */ | |
err = gettimeofday(&tv, (struct timezone *)NULL); | |
if (err) { | |
if (raise) { | |
PyErr_SetFromErrno(PyExc_OSError); | |
} | |
return -1; | |
} | |
if (pytime_fromtimeval(tp, &tv, raise) < 0) { | |
return -1; | |
} | |
if (info) { | |
info->implementation = "gettimeofday()"; | |
info->resolution = 1e-6; | |
info->monotonic = 0; | |
info->adjustable = 1; | |
} | |
#if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME) | |
} /* end of availibity block */ | |
#endif | |
#endif /* !HAVE_CLOCK_GETTIME */ | |
#endif /* !MS_WINDOWS */ | |
return 0; | |
} | |
_PyTime_t | |
_PyTime_GetSystemClock(void) | |
{ | |
_PyTime_t t; | |
if (py_get_system_clock(&t, NULL, 0) < 0) { | |
// If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails: | |
// silently ignore the failure and return 0. | |
t = 0; | |
} | |
return t; | |
} | |
int | |
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | |
{ | |
return py_get_system_clock(t, info, 1); | |
} | |
#if __APPLE__ | |
static int | |
py_mach_timebase_info(_PyTime_t *pnumer, _PyTime_t *pdenom, int raise) | |
{ | |
static mach_timebase_info_data_t timebase; | |
/* According to the Technical Q&A QA1398, mach_timebase_info() cannot | |
fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ | |
(void)mach_timebase_info(&timebase); | |
/* Sanity check: should never occur in practice */ | |
if (timebase.numer < 1 || timebase.denom < 1) { | |
if (raise) { | |
PyErr_SetString(PyExc_RuntimeError, | |
"invalid mach_timebase_info"); | |
} | |
return -1; | |
} | |
/* Check that timebase.numer and timebase.denom can be casted to | |
_PyTime_t. In practice, timebase uses uint32_t, so casting cannot | |
overflow. At the end, only make sure that the type is uint32_t | |
(_PyTime_t is 64-bit long). */ | |
Py_BUILD_ASSERT(sizeof(timebase.numer) < sizeof(_PyTime_t)); | |
Py_BUILD_ASSERT(sizeof(timebase.denom) < sizeof(_PyTime_t)); | |
/* Make sure that (ticks * timebase.numer) cannot overflow in | |
_PyTime_MulDiv(), with ticks < timebase.denom. | |
Known time bases: | |
* always (1, 1) on Intel | |
* (1000000000, 33333335) or (1000000000, 25000000) on PowerPC | |
None of these time bases can overflow with 64-bit _PyTime_t, but | |
check for overflow, just in case. */ | |
if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) { | |
if (raise) { | |
PyErr_SetString(PyExc_OverflowError, | |
"mach_timebase_info is too large"); | |
} | |
return -1; | |
} | |
*pnumer = (_PyTime_t)timebase.numer; | |
*pdenom = (_PyTime_t)timebase.denom; | |
return 0; | |
} | |
#endif | |
static int | |
py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise) | |
{ | |
#if defined(MS_WINDOWS) | |
ULONGLONG ticks; | |
_PyTime_t t; | |
assert(info == NULL || raise); | |
ticks = GetTickCount64(); | |
Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t)); | |
t = (_PyTime_t)ticks; | |
if (_PyTime_check_mul_overflow(t, MS_TO_NS)) { | |
if (raise) { | |
_PyTime_overflow(); | |
return -1; | |
} | |
// Truncate to _PyTime_MAX silently. | |
*tp = _PyTime_MAX; | |
} | |
else { | |
*tp = t * MS_TO_NS; | |
} | |
if (info) { | |
DWORD timeAdjustment, timeIncrement; | |
BOOL isTimeAdjustmentDisabled, ok; | |
info->implementation = "GetTickCount64()"; | |
info->monotonic = 1; | |
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, | |
&isTimeAdjustmentDisabled); | |
if (!ok) { | |
PyErr_SetFromWindowsErr(0); | |
return -1; | |
} | |
info->resolution = timeIncrement * 1e-7; | |
info->adjustable = 0; | |
} | |
#elif defined(__APPLE__) | |
static _PyTime_t timebase_numer = 0; | |
static _PyTime_t timebase_denom = 0; | |
if (timebase_denom == 0) { | |
if (py_mach_timebase_info(&timebase_numer, &timebase_denom, raise) < 0) { | |
return -1; | |
} | |
} | |
if (info) { | |
info->implementation = "mach_absolute_time()"; | |
info->resolution = (double)timebase_numer / (double)timebase_denom * 1e-9; | |
info->monotonic = 1; | |
info->adjustable = 0; | |
} | |
uint64_t ticks = mach_absolute_time(); | |
*tp = _PyTime_MulDiv((_PyTime_t)ticks, timebase_numer, timebase_denom); | |
#elif defined(__hpux) | |
hrtime_t time; | |
time = gethrtime(); | |
if (time == -1) { | |
if (raise) { | |
PyErr_SetFromErrno(PyExc_OSError); | |
} | |
return -1; | |
} | |
*tp = time; | |
if (info) { | |
info->implementation = "gethrtime()"; | |
info->resolution = 1e-9; | |
info->monotonic = 1; | |
info->adjustable = 0; | |
} | |
#else | |
struct timespec ts; | |
#ifdef CLOCK_HIGHRES | |
const clockid_t clk_id = CLOCK_HIGHRES; | |
const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; | |
#else | |
const clockid_t clk_id = CLOCK_MONOTONIC; | |
const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; | |
#endif | |
assert(info == NULL || raise); | |
if (clock_gettime(clk_id, &ts) != 0) { | |
if (raise) { | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
return -1; | |
} | |
if (info) { | |
struct timespec res; | |
info->monotonic = 1; | |
info->implementation = implementation; | |
info->adjustable = 0; | |
if (clock_getres(clk_id, &res) != 0) { | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
info->resolution = res.tv_sec + res.tv_nsec * 1e-9; | |
} | |
if (pytime_fromtimespec(tp, &ts, raise) < 0) { | |
return -1; | |
} | |
#endif | |
return 0; | |
} | |
_PyTime_t | |
_PyTime_GetMonotonicClock(void) | |
{ | |
_PyTime_t t; | |
if (py_get_monotonic_clock(&t, NULL, 0) < 0) { | |
// If mach_timebase_info(), clock_gettime() or gethrtime() fails: | |
// silently ignore the failure and return 0. | |
t = 0; | |
} | |
return t; | |
} | |
int | |
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) | |
{ | |
return py_get_monotonic_clock(tp, info, 1); | |
} | |
#ifdef MS_WINDOWS | |
static int | |
win_perf_counter_frequency(LONGLONG *pfrequency, int raise) | |
{ | |
LONGLONG frequency; | |
LARGE_INTEGER freq; | |
if (!QueryPerformanceFrequency(&freq)) { | |
if (raise) { | |
PyErr_SetFromWindowsErr(0); | |
} | |
return -1; | |
} | |
frequency = freq.QuadPart; | |
/* Sanity check: should never occur in practice */ | |
if (frequency < 1) { | |
if (raise) { | |
PyErr_SetString(PyExc_RuntimeError, | |
"invalid QueryPerformanceFrequency"); | |
} | |
return -1; | |
} | |
/* Check that frequency can be casted to _PyTime_t. | |
Make also sure that (ticks * SEC_TO_NS) cannot overflow in | |
_PyTime_MulDiv(), with ticks < frequency. | |
Known QueryPerformanceFrequency() values: | |
* 10,000,000 (10 MHz): 100 ns resolution | |
* 3,579,545 Hz (3.6 MHz): 279 ns resolution | |
None of these frequencies can overflow with 64-bit _PyTime_t, but | |
check for overflow, just in case. */ | |
if (frequency > _PyTime_MAX | |
|| frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) | |
{ | |
if (raise) { | |
PyErr_SetString(PyExc_OverflowError, | |
"QueryPerformanceFrequency is too large"); | |
} | |
return -1; | |
} | |
*pfrequency = frequency; | |
return 0; | |
} | |
static int | |
py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise) | |
{ | |
static LONGLONG frequency = 0; | |
if (frequency == 0) { | |
if (win_perf_counter_frequency(&frequency, raise) < 0) { | |
return -1; | |
} | |
} | |
if (info) { | |
info->implementation = "QueryPerformanceCounter()"; | |
info->resolution = 1.0 / (double)frequency; | |
info->monotonic = 1; | |
info->adjustable = 0; | |
} | |
LARGE_INTEGER now; | |
QueryPerformanceCounter(&now); | |
LONGLONG ticksll = now.QuadPart; | |
/* Make sure that casting LONGLONG to _PyTime_t cannot overflow, | |
both types are signed */ | |
_PyTime_t ticks; | |
Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks)); | |
ticks = (_PyTime_t)ticksll; | |
*tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency); | |
return 0; | |
} | |
#endif | |
int | |
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info) | |
{ | |
#ifdef MS_WINDOWS | |
return py_get_win_perf_counter(t, info, 1); | |
#else | |
return _PyTime_GetMonotonicClockWithInfo(t, info); | |
#endif | |
} | |
_PyTime_t | |
_PyTime_GetPerfCounter(void) | |
{ | |
_PyTime_t t; | |
int res; | |
#ifdef MS_WINDOWS | |
res = py_get_win_perf_counter(&t, NULL, 0); | |
#else | |
res = py_get_monotonic_clock(&t, NULL, 0); | |
#endif | |
if (res < 0) { | |
// If win_perf_counter_frequency() or py_get_monotonic_clock() fails: | |
// silently ignore the failure and return 0. | |
t = 0; | |
} | |
return t; | |
} | |
int | |
_PyTime_localtime(time_t t, struct tm *tm) | |
{ | |
#ifdef MS_WINDOWS | |
int error; | |
error = localtime_s(tm, &t); | |
if (error != 0) { | |
errno = error; | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
return 0; | |
#else /* !MS_WINDOWS */ | |
#if defined(_AIX) && (SIZEOF_TIME_T < 8) | |
/* bpo-34373: AIX does not return NULL if t is too small or too large */ | |
if (t < -2145916800 /* 1902-01-01 */ | |
|| t > 2145916800 /* 2038-01-01 */) { | |
errno = EINVAL; | |
PyErr_SetString(PyExc_OverflowError, | |
"localtime argument out of range"); | |
return -1; | |
} | |
#endif | |
errno = 0; | |
if (localtime_r(&t, tm) == NULL) { | |
if (errno == 0) { | |
errno = EINVAL; | |
} | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
return 0; | |
#endif /* MS_WINDOWS */ | |
} | |
int | |
_PyTime_gmtime(time_t t, struct tm *tm) | |
{ | |
#ifdef MS_WINDOWS | |
int error; | |
error = gmtime_s(tm, &t); | |
if (error != 0) { | |
errno = error; | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
return 0; | |
#else /* !MS_WINDOWS */ | |
if (gmtime_r(&t, tm) == NULL) { | |
#ifdef EINVAL | |
if (errno == 0) { | |
errno = EINVAL; | |
} | |
#endif | |
PyErr_SetFromErrno(PyExc_OSError); | |
return -1; | |
} | |
return 0; | |
#endif /* MS_WINDOWS */ | |
} |