Permalink
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up| /* Dictionary object implementation using a hash table */ | |
| /* The distribution includes a separate file, Objects/dictnotes.txt, | |
| describing explorations into dictionary design and optimization. | |
| It covers typical dictionary use patterns, the parameters for | |
| tuning dictionaries, and several ideas for possible optimizations. | |
| */ | |
| /* PyDictKeysObject | |
| This implements the dictionary's hashtable. | |
| As of Python 3.6, this is compact and ordered. Basic idea is described here: | |
| * https://mail.python.org/pipermail/python-dev/2012-December/123028.html | |
| * https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html | |
| layout: | |
| +---------------+ | |
| | dk_refcnt | | |
| | dk_size | | |
| | dk_lookup | | |
| | dk_usable | | |
| | dk_nentries | | |
| +---------------+ | |
| | dk_indices | | |
| | | | |
| +---------------+ | |
| | dk_entries | | |
| | | | |
| +---------------+ | |
| dk_indices is actual hashtable. It holds index in entries, or DKIX_EMPTY(-1) | |
| or DKIX_DUMMY(-2). | |
| Size of indices is dk_size. Type of each index in indices is vary on dk_size: | |
| * int8 for dk_size <= 128 | |
| * int16 for 256 <= dk_size <= 2**15 | |
| * int32 for 2**16 <= dk_size <= 2**31 | |
| * int64 for 2**32 <= dk_size | |
| dk_entries is array of PyDictKeyEntry. It's size is USABLE_FRACTION(dk_size). | |
| DK_ENTRIES(dk) can be used to get pointer to entries. | |
| NOTE: Since negative value is used for DKIX_EMPTY and DKIX_DUMMY, type of | |
| dk_indices entry is signed integer and int16 is used for table which | |
| dk_size == 256. | |
| */ | |
| /* | |
| The DictObject can be in one of two forms. | |
| Either: | |
| A combined table: | |
| ma_values == NULL, dk_refcnt == 1. | |
| Values are stored in the me_value field of the PyDictKeysObject. | |
| Or: | |
| A split table: | |
| ma_values != NULL, dk_refcnt >= 1 | |
| Values are stored in the ma_values array. | |
| Only string (unicode) keys are allowed. | |
| All dicts sharing same key must have same insertion order. | |
| There are four kinds of slots in the table (slot is index, and | |
| DK_ENTRIES(keys)[index] if index >= 0): | |
| 1. Unused. index == DKIX_EMPTY | |
| Does not hold an active (key, value) pair now and never did. Unused can | |
| transition to Active upon key insertion. This is each slot's initial state. | |
| 2. Active. index >= 0, me_key != NULL and me_value != NULL | |
| Holds an active (key, value) pair. Active can transition to Dummy or | |
| Pending upon key deletion (for combined and split tables respectively). | |
| This is the only case in which me_value != NULL. | |
| 3. Dummy. index == DKIX_DUMMY (combined only) | |
| Previously held an active (key, value) pair, but that was deleted and an | |
| active pair has not yet overwritten the slot. Dummy can transition to | |
| Active upon key insertion. Dummy slots cannot be made Unused again | |
| else the probe sequence in case of collision would have no way to know | |
| they were once active. | |
| 4. Pending. index >= 0, key != NULL, and value == NULL (split only) | |
| Not yet inserted in split-table. | |
| */ | |
| /* | |
| Preserving insertion order | |
| It's simple for combined table. Since dk_entries is mostly append only, we can | |
| get insertion order by just iterating dk_entries. | |
| One exception is .popitem(). It removes last item in dk_entries and decrement | |
| dk_nentries to achieve amortized O(1). Since there are DKIX_DUMMY remains in | |
| dk_indices, we can't increment dk_usable even though dk_nentries is | |
| decremented. | |
| In split table, inserting into pending entry is allowed only for dk_entries[ix] | |
| where ix == mp->ma_used. Inserting into other index and deleting item cause | |
| converting the dict to the combined table. | |
| */ | |
| /* PyDict_MINSIZE is the starting size for any new dict. | |
| * 8 allows dicts with no more than 5 active entries; experiments suggested | |
| * this suffices for the majority of dicts (consisting mostly of usually-small | |
| * dicts created to pass keyword arguments). | |
| * Making this 8, rather than 4 reduces the number of resizes for most | |
| * dictionaries, without any significant extra memory use. | |
| */ | |
| #define PyDict_MINSIZE 8 | |
| #include "Python.h" | |
| #include "pycore_object.h" | |
| #include "pycore_pystate.h" | |
| #include "dict-common.h" | |
| #include "stringlib/eq.h" /* to get unicode_eq() */ | |
| /*[clinic input] | |
| class dict "PyDictObject *" "&PyDict_Type" | |
| [clinic start generated code]*/ | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f157a5a0ce9589d6]*/ | |
| /* | |
| To ensure the lookup algorithm terminates, there must be at least one Unused | |
| slot (NULL key) in the table. | |
| To avoid slowing down lookups on a near-full table, we resize the table when | |
| it's USABLE_FRACTION (currently two-thirds) full. | |
| */ | |
| #define PERTURB_SHIFT 5 | |
| /* | |
| Major subtleties ahead: Most hash schemes depend on having a "good" hash | |
| function, in the sense of simulating randomness. Python doesn't: its most | |
| important hash functions (for ints) are very regular in common | |
| cases: | |
| >>>[hash(i) for i in range(4)] | |
| [0, 1, 2, 3] | |
| This isn't necessarily bad! To the contrary, in a table of size 2**i, taking | |
| the low-order i bits as the initial table index is extremely fast, and there | |
| are no collisions at all for dicts indexed by a contiguous range of ints. So | |
| this gives better-than-random behavior in common cases, and that's very | |
| desirable. | |
| OTOH, when collisions occur, the tendency to fill contiguous slices of the | |
| hash table makes a good collision resolution strategy crucial. Taking only | |
| the last i bits of the hash code is also vulnerable: for example, consider | |
| the list [i << 16 for i in range(20000)] as a set of keys. Since ints are | |
| their own hash codes, and this fits in a dict of size 2**15, the last 15 bits | |
| of every hash code are all 0: they *all* map to the same table index. | |
| But catering to unusual cases should not slow the usual ones, so we just take | |
| the last i bits anyway. It's up to collision resolution to do the rest. If | |
| we *usually* find the key we're looking for on the first try (and, it turns | |
| out, we usually do -- the table load factor is kept under 2/3, so the odds | |
| are solidly in our favor), then it makes best sense to keep the initial index | |
| computation dirt cheap. | |
| The first half of collision resolution is to visit table indices via this | |
| recurrence: | |
| j = ((5*j) + 1) mod 2**i | |
| For any initial j in range(2**i), repeating that 2**i times generates each | |
| int in range(2**i) exactly once (see any text on random-number generation for | |
| proof). By itself, this doesn't help much: like linear probing (setting | |
| j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed | |
| order. This would be bad, except that's not the only thing we do, and it's | |
| actually *good* in the common cases where hash keys are consecutive. In an | |
| example that's really too small to make this entirely clear, for a table of | |
| size 2**3 the order of indices is: | |
| 0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating] | |
| If two things come in at index 5, the first place we look after is index 2, | |
| not 6, so if another comes in at index 6 the collision at 5 didn't hurt it. | |
| Linear probing is deadly in this case because there the fixed probe order | |
| is the *same* as the order consecutive keys are likely to arrive. But it's | |
| extremely unlikely hash codes will follow a 5*j+1 recurrence by accident, | |
| and certain that consecutive hash codes do not. | |
| The other half of the strategy is to get the other bits of the hash code | |
| into play. This is done by initializing a (unsigned) vrbl "perturb" to the | |
| full hash code, and changing the recurrence to: | |
| perturb >>= PERTURB_SHIFT; | |
| j = (5*j) + 1 + perturb; | |
| use j % 2**i as the next table index; | |
| Now the probe sequence depends (eventually) on every bit in the hash code, | |
| and the pseudo-scrambling property of recurring on 5*j+1 is more valuable, | |
| because it quickly magnifies small differences in the bits that didn't affect | |
| the initial index. Note that because perturb is unsigned, if the recurrence | |
| is executed often enough perturb eventually becomes and remains 0. At that | |
| point (very rarely reached) the recurrence is on (just) 5*j+1 again, and | |
| that's certain to find an empty slot eventually (since it generates every int | |
| in range(2**i), and we make sure there's always at least one empty slot). | |
| Selecting a good value for PERTURB_SHIFT is a balancing act. You want it | |
| small so that the high bits of the hash code continue to affect the probe | |
| sequence across iterations; but you want it large so that in really bad cases | |
| the high-order hash bits have an effect on early iterations. 5 was "the | |
| best" in minimizing total collisions across experiments Tim Peters ran (on | |
| both normal and pathological cases), but 4 and 6 weren't significantly worse. | |
| Historical: Reimer Behrends contributed the idea of using a polynomial-based | |
| approach, using repeated multiplication by x in GF(2**n) where an irreducible | |
| polynomial for each table size was chosen such that x was a primitive root. | |
| Christian Tismer later extended that to use division by x instead, as an | |
| efficient way to get the high bits of the hash code into play. This scheme | |
| also gave excellent collision statistics, but was more expensive: two | |
| if-tests were required inside the loop; computing "the next" index took about | |
| the same number of operations but without as much potential parallelism | |
| (e.g., computing 5*j can go on at the same time as computing 1+perturb in the | |
| above, and then shifting perturb can be done while the table index is being | |
| masked); and the PyDictObject struct required a member to hold the table's | |
| polynomial. In Tim's experiments the current scheme ran faster, produced | |
| equally good collision statistics, needed less code & used less memory. | |
| */ | |
| /* forward declarations */ | |
| static Py_ssize_t lookdict(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr); | |
| static Py_ssize_t lookdict_unicode(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr); | |
| static Py_ssize_t | |
| lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr); | |
| static Py_ssize_t lookdict_split(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr); | |
| static int dictresize(PyDictObject *mp, Py_ssize_t minused); | |
| static PyObject* dict_iter(PyDictObject *dict); | |
| /*Global counter used to set ma_version_tag field of dictionary. | |
| * It is incremented each time that a dictionary is created and each | |
| * time that a dictionary is modified. */ | |
| static uint64_t pydict_global_version = 0; | |
| #define DICT_NEXT_VERSION() (++pydict_global_version) | |
| /* Dictionary reuse scheme to save calls to malloc and free */ | |
| #ifndef PyDict_MAXFREELIST | |
| #define PyDict_MAXFREELIST 80 | |
| #endif | |
| static PyDictObject *free_list[PyDict_MAXFREELIST]; | |
| static int numfree = 0; | |
| static PyDictKeysObject *keys_free_list[PyDict_MAXFREELIST]; | |
| static int numfreekeys = 0; | |
| #include "clinic/dictobject.c.h" | |
| int | |
| PyDict_ClearFreeList(void) | |
| { | |
| PyDictObject *op; | |
| int ret = numfree + numfreekeys; | |
| while (numfree) { | |
| op = free_list[--numfree]; | |
| assert(PyDict_CheckExact(op)); | |
| PyObject_GC_Del(op); | |
| } | |
| while (numfreekeys) { | |
| PyObject_FREE(keys_free_list[--numfreekeys]); | |
| } | |
| return ret; | |
| } | |
| /* Print summary info about the state of the optimized allocator */ | |
| void | |
| _PyDict_DebugMallocStats(FILE *out) | |
| { | |
| _PyDebugAllocatorStats(out, | |
| "free PyDictObject", numfree, sizeof(PyDictObject)); | |
| } | |
| void | |
| PyDict_Fini(void) | |
| { | |
| PyDict_ClearFreeList(); | |
| } | |
| #define DK_SIZE(dk) ((dk)->dk_size) | |
| #if SIZEOF_VOID_P > 4 | |
| #define DK_IXSIZE(dk) \ | |
| (DK_SIZE(dk) <= 0xff ? \ | |
| 1 : DK_SIZE(dk) <= 0xffff ? \ | |
| 2 : DK_SIZE(dk) <= 0xffffffff ? \ | |
| 4 : sizeof(int64_t)) | |
| #else | |
| #define DK_IXSIZE(dk) \ | |
| (DK_SIZE(dk) <= 0xff ? \ | |
| 1 : DK_SIZE(dk) <= 0xffff ? \ | |
| 2 : sizeof(int32_t)) | |
| #endif | |
| #define DK_ENTRIES(dk) \ | |
| ((PyDictKeyEntry*)(&((int8_t*)((dk)->dk_indices))[DK_SIZE(dk) * DK_IXSIZE(dk)])) | |
| #define DK_MASK(dk) (((dk)->dk_size)-1) | |
| #define IS_POWER_OF_2(x) (((x) & (x-1)) == 0) | |
| static void free_keys_object(PyDictKeysObject *keys); | |
| static inline void | |
| dictkeys_incref(PyDictKeysObject *dk) | |
| { | |
| _Py_INC_REFTOTAL; | |
| dk->dk_refcnt++; | |
| } | |
| static inline void | |
| dictkeys_decref(PyDictKeysObject *dk) | |
| { | |
| assert(dk->dk_refcnt > 0); | |
| _Py_DEC_REFTOTAL; | |
| if (--dk->dk_refcnt == 0) { | |
| free_keys_object(dk); | |
| } | |
| } | |
| /* lookup indices. returns DKIX_EMPTY, DKIX_DUMMY, or ix >=0 */ | |
| static inline Py_ssize_t | |
| dictkeys_get_index(PyDictKeysObject *keys, Py_ssize_t i) | |
| { | |
| Py_ssize_t s = DK_SIZE(keys); | |
| Py_ssize_t ix; | |
| if (s <= 0xff) { | |
| int8_t *indices = (int8_t*)(keys->dk_indices); | |
| ix = indices[i]; | |
| } | |
| else if (s <= 0xffff) { | |
| int16_t *indices = (int16_t*)(keys->dk_indices); | |
| ix = indices[i]; | |
| } | |
| #if SIZEOF_VOID_P > 4 | |
| else if (s > 0xffffffff) { | |
| int64_t *indices = (int64_t*)(keys->dk_indices); | |
| ix = indices[i]; | |
| } | |
| #endif | |
| else { | |
| int32_t *indices = (int32_t*)(keys->dk_indices); | |
| ix = indices[i]; | |
| } | |
| assert(ix >= DKIX_DUMMY); | |
| return ix; | |
| } | |
| /* write to indices. */ | |
| static inline void | |
| dictkeys_set_index(PyDictKeysObject *keys, Py_ssize_t i, Py_ssize_t ix) | |
| { | |
| Py_ssize_t s = DK_SIZE(keys); | |
| assert(ix >= DKIX_DUMMY); | |
| if (s <= 0xff) { | |
| int8_t *indices = (int8_t*)(keys->dk_indices); | |
| assert(ix <= 0x7f); | |
| indices[i] = (char)ix; | |
| } | |
| else if (s <= 0xffff) { | |
| int16_t *indices = (int16_t*)(keys->dk_indices); | |
| assert(ix <= 0x7fff); | |
| indices[i] = (int16_t)ix; | |
| } | |
| #if SIZEOF_VOID_P > 4 | |
| else if (s > 0xffffffff) { | |
| int64_t *indices = (int64_t*)(keys->dk_indices); | |
| indices[i] = ix; | |
| } | |
| #endif | |
| else { | |
| int32_t *indices = (int32_t*)(keys->dk_indices); | |
| assert(ix <= 0x7fffffff); | |
| indices[i] = (int32_t)ix; | |
| } | |
| } | |
| /* USABLE_FRACTION is the maximum dictionary load. | |
| * Increasing this ratio makes dictionaries more dense resulting in more | |
| * collisions. Decreasing it improves sparseness at the expense of spreading | |
| * indices over more cache lines and at the cost of total memory consumed. | |
| * | |
| * USABLE_FRACTION must obey the following: | |
| * (0 < USABLE_FRACTION(n) < n) for all n >= 2 | |
| * | |
| * USABLE_FRACTION should be quick to calculate. | |
| * Fractions around 1/2 to 2/3 seem to work well in practice. | |
| */ | |
| #define USABLE_FRACTION(n) (((n) << 1)/3) | |
| /* ESTIMATE_SIZE is reverse function of USABLE_FRACTION. | |
| * This can be used to reserve enough size to insert n entries without | |
| * resizing. | |
| */ | |
| #define ESTIMATE_SIZE(n) (((n)*3+1) >> 1) | |
| /* Alternative fraction that is otherwise close enough to 2n/3 to make | |
| * little difference. 8 * 2/3 == 8 * 5/8 == 5. 16 * 2/3 == 16 * 5/8 == 10. | |
| * 32 * 2/3 = 21, 32 * 5/8 = 20. | |
| * Its advantage is that it is faster to compute on machines with slow division. | |
| * #define USABLE_FRACTION(n) (((n) >> 1) + ((n) >> 2) - ((n) >> 3)) | |
| */ | |
| /* GROWTH_RATE. Growth rate upon hitting maximum load. | |
| * Currently set to used*3. | |
| * This means that dicts double in size when growing without deletions, | |
| * but have more head room when the number of deletions is on a par with the | |
| * number of insertions. See also bpo-17563 and bpo-33205. | |
| * | |
| * GROWTH_RATE was set to used*4 up to version 3.2. | |
| * GROWTH_RATE was set to used*2 in version 3.3.0 | |
| * GROWTH_RATE was set to used*2 + capacity/2 in 3.4.0-3.6.0. | |
| */ | |
| #define GROWTH_RATE(d) ((d)->ma_used*3) | |
| #define ENSURE_ALLOWS_DELETIONS(d) \ | |
| if ((d)->ma_keys->dk_lookup == lookdict_unicode_nodummy) { \ | |
| (d)->ma_keys->dk_lookup = lookdict_unicode; \ | |
| } | |
| /* This immutable, empty PyDictKeysObject is used for PyDict_Clear() | |
| * (which cannot fail and thus can do no allocation). | |
| */ | |
| static PyDictKeysObject empty_keys_struct = { | |
| 1, /* dk_refcnt */ | |
| 1, /* dk_size */ | |
| lookdict_split, /* dk_lookup */ | |
| 0, /* dk_usable (immutable) */ | |
| 0, /* dk_nentries */ | |
| {DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, | |
| DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY}, /* dk_indices */ | |
| }; | |
| static PyObject *empty_values[1] = { NULL }; | |
| #define Py_EMPTY_KEYS &empty_keys_struct | |
| /* Uncomment to check the dict content in _PyDict_CheckConsistency() */ | |
| /* #define DEBUG_PYDICT */ | |
| #ifndef NDEBUG | |
| static int | |
| _PyDict_CheckConsistency(PyDictObject *mp) | |
| { | |
| #define ASSERT(expr) _PyObject_ASSERT((PyObject *)mp, (expr)) | |
| PyDictKeysObject *keys = mp->ma_keys; | |
| int splitted = _PyDict_HasSplitTable(mp); | |
| Py_ssize_t usable = USABLE_FRACTION(keys->dk_size); | |
| #ifdef DEBUG_PYDICT | |
| PyDictKeyEntry *entries = DK_ENTRIES(keys); | |
| Py_ssize_t i; | |
| #endif | |
| ASSERT(0 <= mp->ma_used && mp->ma_used <= usable); | |
| ASSERT(IS_POWER_OF_2(keys->dk_size)); | |
| ASSERT(0 <= keys->dk_usable | |
| && keys->dk_usable <= usable); | |
| ASSERT(0 <= keys->dk_nentries | |
| && keys->dk_nentries <= usable); | |
| ASSERT(keys->dk_usable + keys->dk_nentries <= usable); | |
| if (!splitted) { | |
| /* combined table */ | |
| ASSERT(keys->dk_refcnt == 1); | |
| } | |
| #ifdef DEBUG_PYDICT | |
| for (i=0; i < keys->dk_size; i++) { | |
| Py_ssize_t ix = dictkeys_get_index(keys, i); | |
| ASSERT(DKIX_DUMMY <= ix && ix <= usable); | |
| } | |
| for (i=0; i < usable; i++) { | |
| PyDictKeyEntry *entry = &entries[i]; | |
| PyObject *key = entry->me_key; | |
| if (key != NULL) { | |
| if (PyUnicode_CheckExact(key)) { | |
| Py_hash_t hash = ((PyASCIIObject *)key)->hash; | |
| ASSERT(hash != -1); | |
| ASSERT(entry->me_hash == hash); | |
| } | |
| else { | |
| /* test_dict fails if PyObject_Hash() is called again */ | |
| ASSERT(entry->me_hash != -1); | |
| } | |
| if (!splitted) { | |
| ASSERT(entry->me_value != NULL); | |
| } | |
| } | |
| if (splitted) { | |
| ASSERT(entry->me_value == NULL); | |
| } | |
| } | |
| if (splitted) { | |
| /* splitted table */ | |
| for (i=0; i < mp->ma_used; i++) { | |
| ASSERT(mp->ma_values[i] != NULL); | |
| } | |
| } | |
| #endif | |
| return 1; | |
| #undef ASSERT | |
| } | |
| #endif | |
| static PyDictKeysObject *new_keys_object(Py_ssize_t size) | |
| { | |
| PyDictKeysObject *dk; | |
| Py_ssize_t es, usable; | |
| assert(size >= PyDict_MINSIZE); | |
| assert(IS_POWER_OF_2(size)); | |
| usable = USABLE_FRACTION(size); | |
| if (size <= 0xff) { | |
| es = 1; | |
| } | |
| else if (size <= 0xffff) { | |
| es = 2; | |
| } | |
| #if SIZEOF_VOID_P > 4 | |
| else if (size <= 0xffffffff) { | |
| es = 4; | |
| } | |
| #endif | |
| else { | |
| es = sizeof(Py_ssize_t); | |
| } | |
| if (size == PyDict_MINSIZE && numfreekeys > 0) { | |
| dk = keys_free_list[--numfreekeys]; | |
| } | |
| else { | |
| dk = PyObject_MALLOC(sizeof(PyDictKeysObject) | |
| + es * size | |
| + sizeof(PyDictKeyEntry) * usable); | |
| if (dk == NULL) { | |
| PyErr_NoMemory(); | |
| return NULL; | |
| } | |
| } | |
| _Py_INC_REFTOTAL; | |
| dk->dk_refcnt = 1; | |
| dk->dk_size = size; | |
| dk->dk_usable = usable; | |
| dk->dk_lookup = lookdict_unicode_nodummy; | |
| dk->dk_nentries = 0; | |
| memset(&dk->dk_indices[0], 0xff, es * size); | |
| memset(DK_ENTRIES(dk), 0, sizeof(PyDictKeyEntry) * usable); | |
| return dk; | |
| } | |
| static void | |
| free_keys_object(PyDictKeysObject *keys) | |
| { | |
| PyDictKeyEntry *entries = DK_ENTRIES(keys); | |
| Py_ssize_t i, n; | |
| for (i = 0, n = keys->dk_nentries; i < n; i++) { | |
| Py_XDECREF(entries[i].me_key); | |
| Py_XDECREF(entries[i].me_value); | |
| } | |
| if (keys->dk_size == PyDict_MINSIZE && numfreekeys < PyDict_MAXFREELIST) { | |
| keys_free_list[numfreekeys++] = keys; | |
| return; | |
| } | |
| PyObject_FREE(keys); | |
| } | |
| #define new_values(size) PyMem_NEW(PyObject *, size) | |
| #define free_values(values) PyMem_FREE(values) | |
| /* Consumes a reference to the keys object */ | |
| static PyObject * | |
| new_dict(PyDictKeysObject *keys, PyObject **values) | |
| { | |
| PyDictObject *mp; | |
| assert(keys != NULL); | |
| if (numfree) { | |
| mp = free_list[--numfree]; | |
| assert (mp != NULL); | |
| assert (Py_TYPE(mp) == &PyDict_Type); | |
| _Py_NewReference((PyObject *)mp); | |
| } | |
| else { | |
| mp = PyObject_GC_New(PyDictObject, &PyDict_Type); | |
| if (mp == NULL) { | |
| dictkeys_decref(keys); | |
| if (values != empty_values) { | |
| free_values(values); | |
| } | |
| return NULL; | |
| } | |
| } | |
| mp->ma_keys = keys; | |
| mp->ma_values = values; | |
| mp->ma_used = 0; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return (PyObject *)mp; | |
| } | |
| /* Consumes a reference to the keys object */ | |
| static PyObject * | |
| new_dict_with_shared_keys(PyDictKeysObject *keys) | |
| { | |
| PyObject **values; | |
| Py_ssize_t i, size; | |
| size = USABLE_FRACTION(DK_SIZE(keys)); | |
| values = new_values(size); | |
| if (values == NULL) { | |
| dictkeys_decref(keys); | |
| return PyErr_NoMemory(); | |
| } | |
| for (i = 0; i < size; i++) { | |
| values[i] = NULL; | |
| } | |
| return new_dict(keys, values); | |
| } | |
| static PyObject * | |
| clone_combined_dict(PyDictObject *orig) | |
| { | |
| assert(PyDict_CheckExact(orig)); | |
| assert(orig->ma_values == NULL); | |
| assert(orig->ma_keys->dk_refcnt == 1); | |
| Py_ssize_t keys_size = _PyDict_KeysSize(orig->ma_keys); | |
| PyDictKeysObject *keys = PyObject_Malloc(keys_size); | |
| if (keys == NULL) { | |
| PyErr_NoMemory(); | |
| return NULL; | |
| } | |
| memcpy(keys, orig->ma_keys, keys_size); | |
| /* After copying key/value pairs, we need to incref all | |
| keys and values and they are about to be co-owned by a | |
| new dict object. */ | |
| PyDictKeyEntry *ep0 = DK_ENTRIES(keys); | |
| Py_ssize_t n = keys->dk_nentries; | |
| for (Py_ssize_t i = 0; i < n; i++) { | |
| PyDictKeyEntry *entry = &ep0[i]; | |
| PyObject *value = entry->me_value; | |
| if (value != NULL) { | |
| Py_INCREF(value); | |
| Py_INCREF(entry->me_key); | |
| } | |
| } | |
| PyDictObject *new = (PyDictObject *)new_dict(keys, NULL); | |
| if (new == NULL) { | |
| /* In case of an error, `new_dict()` takes care of | |
| cleaning up `keys`. */ | |
| return NULL; | |
| } | |
| new->ma_used = orig->ma_used; | |
| assert(_PyDict_CheckConsistency(new)); | |
| if (_PyObject_GC_IS_TRACKED(orig)) { | |
| /* Maintain tracking. */ | |
| _PyObject_GC_TRACK(new); | |
| } | |
| /* Since we copied the keys table we now have an extra reference | |
| in the system. Manually call _Py_INC_REFTOTAL to signal that | |
| we have it now; calling dictkeys_incref would be an error as | |
| keys->dk_refcnt is already set to 1 (after memcpy). */ | |
| _Py_INC_REFTOTAL; | |
| return (PyObject *)new; | |
| } | |
| PyObject * | |
| PyDict_New(void) | |
| { | |
| dictkeys_incref(Py_EMPTY_KEYS); | |
| return new_dict(Py_EMPTY_KEYS, empty_values); | |
| } | |
| /* Search index of hash table from offset of entry table */ | |
| static Py_ssize_t | |
| lookdict_index(PyDictKeysObject *k, Py_hash_t hash, Py_ssize_t index) | |
| { | |
| size_t mask = DK_MASK(k); | |
| size_t perturb = (size_t)hash; | |
| size_t i = (size_t)hash & mask; | |
| for (;;) { | |
| Py_ssize_t ix = dictkeys_get_index(k, i); | |
| if (ix == index) { | |
| return i; | |
| } | |
| if (ix == DKIX_EMPTY) { | |
| return DKIX_EMPTY; | |
| } | |
| perturb >>= PERTURB_SHIFT; | |
| i = mask & (i*5 + perturb + 1); | |
| } | |
| Py_UNREACHABLE(); | |
| } | |
| /* | |
| The basic lookup function used by all operations. | |
| This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4. | |
| Open addressing is preferred over chaining since the link overhead for | |
| chaining would be substantial (100% with typical malloc overhead). | |
| The initial probe index is computed as hash mod the table size. Subsequent | |
| probe indices are computed as explained earlier. | |
| All arithmetic on hash should ignore overflow. | |
| The details in this version are due to Tim Peters, building on many past | |
| contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and | |
| Christian Tismer. | |
| lookdict() is general-purpose, and may return DKIX_ERROR if (and only if) a | |
| comparison raises an exception. | |
| lookdict_unicode() below is specialized to string keys, comparison of which can | |
| never raise an exception; that function can never return DKIX_ERROR when key | |
| is string. Otherwise, it falls back to lookdict(). | |
| lookdict_unicode_nodummy is further specialized for string keys that cannot be | |
| the <dummy> value. | |
| For both, when the key isn't found a DKIX_EMPTY is returned. | |
| */ | |
| static Py_ssize_t _Py_HOT_FUNCTION | |
| lookdict(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr) | |
| { | |
| size_t i, mask, perturb; | |
| PyDictKeysObject *dk; | |
| PyDictKeyEntry *ep0; | |
| top: | |
| dk = mp->ma_keys; | |
| ep0 = DK_ENTRIES(dk); | |
| mask = DK_MASK(dk); | |
| perturb = hash; | |
| i = (size_t)hash & mask; | |
| for (;;) { | |
| Py_ssize_t ix = dictkeys_get_index(dk, i); | |
| if (ix == DKIX_EMPTY) { | |
| *value_addr = NULL; | |
| return ix; | |
| } | |
| if (ix >= 0) { | |
| PyDictKeyEntry *ep = &ep0[ix]; | |
| assert(ep->me_key != NULL); | |
| if (ep->me_key == key) { | |
| *value_addr = ep->me_value; | |
| return ix; | |
| } | |
| if (ep->me_hash == hash) { | |
| PyObject *startkey = ep->me_key; | |
| Py_INCREF(startkey); | |
| int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ); | |
| Py_DECREF(startkey); | |
| if (cmp < 0) { | |
| *value_addr = NULL; | |
| return DKIX_ERROR; | |
| } | |
| if (dk == mp->ma_keys && ep->me_key == startkey) { | |
| if (cmp > 0) { | |
| *value_addr = ep->me_value; | |
| return ix; | |
| } | |
| } | |
| else { | |
| /* The dict was mutated, restart */ | |
| goto top; | |
| } | |
| } | |
| } | |
| perturb >>= PERTURB_SHIFT; | |
| i = (i*5 + perturb + 1) & mask; | |
| } | |
| Py_UNREACHABLE(); | |
| } | |
| /* Specialized version for string-only keys */ | |
| static Py_ssize_t _Py_HOT_FUNCTION | |
| lookdict_unicode(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr) | |
| { | |
| assert(mp->ma_values == NULL); | |
| /* Make sure this function doesn't have to handle non-unicode keys, | |
| including subclasses of str; e.g., one reason to subclass | |
| unicodes is to override __eq__, and for speed we don't cater to | |
| that here. */ | |
| if (!PyUnicode_CheckExact(key)) { | |
| mp->ma_keys->dk_lookup = lookdict; | |
| return lookdict(mp, key, hash, value_addr); | |
| } | |
| PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys); | |
| size_t mask = DK_MASK(mp->ma_keys); | |
| size_t perturb = (size_t)hash; | |
| size_t i = (size_t)hash & mask; | |
| for (;;) { | |
| Py_ssize_t ix = dictkeys_get_index(mp->ma_keys, i); | |
| if (ix == DKIX_EMPTY) { | |
| *value_addr = NULL; | |
| return DKIX_EMPTY; | |
| } | |
| if (ix >= 0) { | |
| PyDictKeyEntry *ep = &ep0[ix]; | |
| assert(ep->me_key != NULL); | |
| assert(PyUnicode_CheckExact(ep->me_key)); | |
| if (ep->me_key == key || | |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { | |
| *value_addr = ep->me_value; | |
| return ix; | |
| } | |
| } | |
| perturb >>= PERTURB_SHIFT; | |
| i = mask & (i*5 + perturb + 1); | |
| } | |
| Py_UNREACHABLE(); | |
| } | |
| /* Faster version of lookdict_unicode when it is known that no <dummy> keys | |
| * will be present. */ | |
| static Py_ssize_t _Py_HOT_FUNCTION | |
| lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr) | |
| { | |
| assert(mp->ma_values == NULL); | |
| /* Make sure this function doesn't have to handle non-unicode keys, | |
| including subclasses of str; e.g., one reason to subclass | |
| unicodes is to override __eq__, and for speed we don't cater to | |
| that here. */ | |
| if (!PyUnicode_CheckExact(key)) { | |
| mp->ma_keys->dk_lookup = lookdict; | |
| return lookdict(mp, key, hash, value_addr); | |
| } | |
| PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys); | |
| size_t mask = DK_MASK(mp->ma_keys); | |
| size_t perturb = (size_t)hash; | |
| size_t i = (size_t)hash & mask; | |
| for (;;) { | |
| Py_ssize_t ix = dictkeys_get_index(mp->ma_keys, i); | |
| assert (ix != DKIX_DUMMY); | |
| if (ix == DKIX_EMPTY) { | |
| *value_addr = NULL; | |
| return DKIX_EMPTY; | |
| } | |
| PyDictKeyEntry *ep = &ep0[ix]; | |
| assert(ep->me_key != NULL); | |
| assert(PyUnicode_CheckExact(ep->me_key)); | |
| if (ep->me_key == key || | |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { | |
| *value_addr = ep->me_value; | |
| return ix; | |
| } | |
| perturb >>= PERTURB_SHIFT; | |
| i = mask & (i*5 + perturb + 1); | |
| } | |
| Py_UNREACHABLE(); | |
| } | |
| /* Version of lookdict for split tables. | |
| * All split tables and only split tables use this lookup function. | |
| * Split tables only contain unicode keys and no dummy keys, | |
| * so algorithm is the same as lookdict_unicode_nodummy. | |
| */ | |
| static Py_ssize_t _Py_HOT_FUNCTION | |
| lookdict_split(PyDictObject *mp, PyObject *key, | |
| Py_hash_t hash, PyObject **value_addr) | |
| { | |
| /* mp must split table */ | |
| assert(mp->ma_values != NULL); | |
| if (!PyUnicode_CheckExact(key)) { | |
| Py_ssize_t ix = lookdict(mp, key, hash, value_addr); | |
| if (ix >= 0) { | |
| *value_addr = mp->ma_values[ix]; | |
| } | |
| return ix; | |
| } | |
| PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys); | |
| size_t mask = DK_MASK(mp->ma_keys); | |
| size_t perturb = (size_t)hash; | |
| size_t i = (size_t)hash & mask; | |
| for (;;) { | |
| Py_ssize_t ix = dictkeys_get_index(mp->ma_keys, i); | |
| assert (ix != DKIX_DUMMY); | |
| if (ix == DKIX_EMPTY) { | |
| *value_addr = NULL; | |
| return DKIX_EMPTY; | |
| } | |
| PyDictKeyEntry *ep = &ep0[ix]; | |
| assert(ep->me_key != NULL); | |
| assert(PyUnicode_CheckExact(ep->me_key)); | |
| if (ep->me_key == key || | |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { | |
| *value_addr = mp->ma_values[ix]; | |
| return ix; | |
| } | |
| perturb >>= PERTURB_SHIFT; | |
| i = mask & (i*5 + perturb + 1); | |
| } | |
| Py_UNREACHABLE(); | |
| } | |
| int | |
| _PyDict_HasOnlyStringKeys(PyObject *dict) | |
| { | |
| Py_ssize_t pos = 0; | |
| PyObject *key, *value; | |
| assert(PyDict_Check(dict)); | |
| /* Shortcut */ | |
| if (((PyDictObject *)dict)->ma_keys->dk_lookup != lookdict) | |
| return 1; | |
| while (PyDict_Next(dict, &pos, &key, &value)) | |
| if (!PyUnicode_Check(key)) | |
| return 0; | |
| return 1; | |
| } | |
| #define MAINTAIN_TRACKING(mp, key, value) \ | |
| do { \ | |
| if (!_PyObject_GC_IS_TRACKED(mp)) { \ | |
| if (_PyObject_GC_MAY_BE_TRACKED(key) || \ | |
| _PyObject_GC_MAY_BE_TRACKED(value)) { \ | |
| _PyObject_GC_TRACK(mp); \ | |
| } \ | |
| } \ | |
| } while(0) | |
| void | |
| _PyDict_MaybeUntrack(PyObject *op) | |
| { | |
| PyDictObject *mp; | |
| PyObject *value; | |
| Py_ssize_t i, numentries; | |
| PyDictKeyEntry *ep0; | |
| if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) | |
| return; | |
| mp = (PyDictObject *) op; | |
| ep0 = DK_ENTRIES(mp->ma_keys); | |
| numentries = mp->ma_keys->dk_nentries; | |
| if (_PyDict_HasSplitTable(mp)) { | |
| for (i = 0; i < numentries; i++) { | |
| if ((value = mp->ma_values[i]) == NULL) | |
| continue; | |
| if (_PyObject_GC_MAY_BE_TRACKED(value)) { | |
| assert(!_PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key)); | |
| return; | |
| } | |
| } | |
| } | |
| else { | |
| for (i = 0; i < numentries; i++) { | |
| if ((value = ep0[i].me_value) == NULL) | |
| continue; | |
| if (_PyObject_GC_MAY_BE_TRACKED(value) || | |
| _PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key)) | |
| return; | |
| } | |
| } | |
| _PyObject_GC_UNTRACK(op); | |
| } | |
| /* Internal function to find slot for an item from its hash | |
| when it is known that the key is not present in the dict. | |
| The dict must be combined. */ | |
| static Py_ssize_t | |
| find_empty_slot(PyDictKeysObject *keys, Py_hash_t hash) | |
| { | |
| assert(keys != NULL); | |
| const size_t mask = DK_MASK(keys); | |
| size_t i = hash & mask; | |
| Py_ssize_t ix = dictkeys_get_index(keys, i); | |
| for (size_t perturb = hash; ix >= 0;) { | |
| perturb >>= PERTURB_SHIFT; | |
| i = (i*5 + perturb + 1) & mask; | |
| ix = dictkeys_get_index(keys, i); | |
| } | |
| return i; | |
| } | |
| static int | |
| insertion_resize(PyDictObject *mp) | |
| { | |
| return dictresize(mp, GROWTH_RATE(mp)); | |
| } | |
| /* | |
| Internal routine to insert a new item into the table. | |
| Used both by the internal resize routine and by the public insert routine. | |
| Returns -1 if an error occurred, or 0 on success. | |
| */ | |
| static int | |
| insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value) | |
| { | |
| PyObject *old_value; | |
| PyDictKeyEntry *ep; | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) { | |
| if (insertion_resize(mp) < 0) | |
| goto Fail; | |
| } | |
| Py_ssize_t ix = mp->ma_keys->dk_lookup(mp, key, hash, &old_value); | |
| if (ix == DKIX_ERROR) | |
| goto Fail; | |
| assert(PyUnicode_CheckExact(key) || mp->ma_keys->dk_lookup == lookdict); | |
| MAINTAIN_TRACKING(mp, key, value); | |
| /* When insertion order is different from shared key, we can't share | |
| * the key anymore. Convert this instance to combine table. | |
| */ | |
| if (_PyDict_HasSplitTable(mp) && | |
| ((ix >= 0 && old_value == NULL && mp->ma_used != ix) || | |
| (ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) { | |
| if (insertion_resize(mp) < 0) | |
| goto Fail; | |
| ix = DKIX_EMPTY; | |
| } | |
| if (ix == DKIX_EMPTY) { | |
| /* Insert into new slot. */ | |
| assert(old_value == NULL); | |
| if (mp->ma_keys->dk_usable <= 0) { | |
| /* Need to resize. */ | |
| if (insertion_resize(mp) < 0) | |
| goto Fail; | |
| } | |
| Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash); | |
| ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries]; | |
| dictkeys_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries); | |
| ep->me_key = key; | |
| ep->me_hash = hash; | |
| if (mp->ma_values) { | |
| assert (mp->ma_values[mp->ma_keys->dk_nentries] == NULL); | |
| mp->ma_values[mp->ma_keys->dk_nentries] = value; | |
| } | |
| else { | |
| ep->me_value = value; | |
| } | |
| mp->ma_used++; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| mp->ma_keys->dk_usable--; | |
| mp->ma_keys->dk_nentries++; | |
| assert(mp->ma_keys->dk_usable >= 0); | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return 0; | |
| } | |
| if (_PyDict_HasSplitTable(mp)) { | |
| mp->ma_values[ix] = value; | |
| if (old_value == NULL) { | |
| /* pending state */ | |
| assert(ix == mp->ma_used); | |
| mp->ma_used++; | |
| } | |
| } | |
| else { | |
| assert(old_value != NULL); | |
| DK_ENTRIES(mp->ma_keys)[ix].me_value = value; | |
| } | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| Py_XDECREF(old_value); /* which **CAN** re-enter (see issue #22653) */ | |
| assert(_PyDict_CheckConsistency(mp)); | |
| Py_DECREF(key); | |
| return 0; | |
| Fail: | |
| Py_DECREF(value); | |
| Py_DECREF(key); | |
| return -1; | |
| } | |
| // Same to insertdict but specialized for ma_keys = Py_EMPTY_KEYS. | |
| static int | |
| insert_to_emptydict(PyDictObject *mp, PyObject *key, Py_hash_t hash, | |
| PyObject *value) | |
| { | |
| assert(mp->ma_keys == Py_EMPTY_KEYS); | |
| PyDictKeysObject *newkeys = new_keys_object(PyDict_MINSIZE); | |
| if (newkeys == NULL) { | |
| return -1; | |
| } | |
| if (!PyUnicode_CheckExact(key)) { | |
| newkeys->dk_lookup = lookdict; | |
| } | |
| dictkeys_decref(Py_EMPTY_KEYS); | |
| mp->ma_keys = newkeys; | |
| mp->ma_values = NULL; | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| MAINTAIN_TRACKING(mp, key, value); | |
| size_t hashpos = (size_t)hash & (PyDict_MINSIZE-1); | |
| PyDictKeyEntry *ep = &DK_ENTRIES(mp->ma_keys)[0]; | |
| dictkeys_set_index(mp->ma_keys, hashpos, 0); | |
| ep->me_key = key; | |
| ep->me_hash = hash; | |
| ep->me_value = value; | |
| mp->ma_used++; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| mp->ma_keys->dk_usable--; | |
| mp->ma_keys->dk_nentries++; | |
| return 0; | |
| } | |
| /* | |
| Internal routine used by dictresize() to build a hashtable of entries. | |
| */ | |
| static void | |
| build_indices(PyDictKeysObject *keys, PyDictKeyEntry *ep, Py_ssize_t n) | |
| { | |
| size_t mask = (size_t)DK_SIZE(keys) - 1; | |
| for (Py_ssize_t ix = 0; ix != n; ix++, ep++) { | |
| Py_hash_t hash = ep->me_hash; | |
| size_t i = hash & mask; | |
| for (size_t perturb = hash; dictkeys_get_index(keys, i) != DKIX_EMPTY;) { | |
| perturb >>= PERTURB_SHIFT; | |
| i = mask & (i*5 + perturb + 1); | |
| } | |
| dictkeys_set_index(keys, i, ix); | |
| } | |
| } | |
| /* | |
| Restructure the table by allocating a new table and reinserting all | |
| items again. When entries have been deleted, the new table may | |
| actually be smaller than the old one. | |
| If a table is split (its keys and hashes are shared, its values are not), | |
| then the values are temporarily copied into the table, it is resized as | |
| a combined table, then the me_value slots in the old table are NULLed out. | |
| After resizing a table is always combined, | |
| but can be resplit by make_keys_shared(). | |
| */ | |
| static int | |
| dictresize(PyDictObject *mp, Py_ssize_t minsize) | |
| { | |
| Py_ssize_t newsize, numentries; | |
| PyDictKeysObject *oldkeys; | |
| PyObject **oldvalues; | |
| PyDictKeyEntry *oldentries, *newentries; | |
| /* Find the smallest table size > minused. */ | |
| for (newsize = PyDict_MINSIZE; | |
| newsize < minsize && newsize > 0; | |
| newsize <<= 1) | |
| ; | |
| if (newsize <= 0) { | |
| PyErr_NoMemory(); | |
| return -1; | |
| } | |
| oldkeys = mp->ma_keys; | |
| /* NOTE: Current odict checks mp->ma_keys to detect resize happen. | |
| * So we can't reuse oldkeys even if oldkeys->dk_size == newsize. | |
| * TODO: Try reusing oldkeys when reimplement odict. | |
| */ | |
| /* Allocate a new table. */ | |
| mp->ma_keys = new_keys_object(newsize); | |
| if (mp->ma_keys == NULL) { | |
| mp->ma_keys = oldkeys; | |
| return -1; | |
| } | |
| // New table must be large enough. | |
| assert(mp->ma_keys->dk_usable >= mp->ma_used); | |
| if (oldkeys->dk_lookup == lookdict) | |
| mp->ma_keys->dk_lookup = lookdict; | |
| numentries = mp->ma_used; | |
| oldentries = DK_ENTRIES(oldkeys); | |
| newentries = DK_ENTRIES(mp->ma_keys); | |
| oldvalues = mp->ma_values; | |
| if (oldvalues != NULL) { | |
| /* Convert split table into new combined table. | |
| * We must incref keys; we can transfer values. | |
| * Note that values of split table is always dense. | |
| */ | |
| for (Py_ssize_t i = 0; i < numentries; i++) { | |
| assert(oldvalues[i] != NULL); | |
| PyDictKeyEntry *ep = &oldentries[i]; | |
| PyObject *key = ep->me_key; | |
| Py_INCREF(key); | |
| newentries[i].me_key = key; | |
| newentries[i].me_hash = ep->me_hash; | |
| newentries[i].me_value = oldvalues[i]; | |
| } | |
| dictkeys_decref(oldkeys); | |
| mp->ma_values = NULL; | |
| if (oldvalues != empty_values) { | |
| free_values(oldvalues); | |
| } | |
| } | |
| else { // combined table. | |
| if (oldkeys->dk_nentries == numentries) { | |
| memcpy(newentries, oldentries, numentries * sizeof(PyDictKeyEntry)); | |
| } | |
| else { | |
| PyDictKeyEntry *ep = oldentries; | |
| for (Py_ssize_t i = 0; i < numentries; i++) { | |
| while (ep->me_value == NULL) | |
| ep++; | |
| newentries[i] = *ep++; | |
| } | |
| } | |
| assert(oldkeys->dk_lookup != lookdict_split); | |
| assert(oldkeys->dk_refcnt == 1); | |
| if (oldkeys->dk_size == PyDict_MINSIZE && | |
| numfreekeys < PyDict_MAXFREELIST) { | |
| _Py_DEC_REFTOTAL; | |
| keys_free_list[numfreekeys++] = oldkeys; | |
| } | |
| else { | |
| _Py_DEC_REFTOTAL; | |
| PyObject_FREE(oldkeys); | |
| } | |
| } | |
| build_indices(mp->ma_keys, newentries, numentries); | |
| mp->ma_keys->dk_usable -= numentries; | |
| mp->ma_keys->dk_nentries = numentries; | |
| return 0; | |
| } | |
| /* Returns NULL if unable to split table. | |
| * A NULL return does not necessarily indicate an error */ | |
| static PyDictKeysObject * | |
| make_keys_shared(PyObject *op) | |
| { | |
| Py_ssize_t i; | |
| Py_ssize_t size; | |
| PyDictObject *mp = (PyDictObject *)op; | |
| if (!PyDict_CheckExact(op)) | |
| return NULL; | |
| if (!_PyDict_HasSplitTable(mp)) { | |
| PyDictKeyEntry *ep0; | |
| PyObject **values; | |
| assert(mp->ma_keys->dk_refcnt == 1); | |
| if (mp->ma_keys->dk_lookup == lookdict) { | |
| return NULL; | |
| } | |
| else if (mp->ma_keys->dk_lookup == lookdict_unicode) { | |
| /* Remove dummy keys */ | |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) | |
| return NULL; | |
| } | |
| assert(mp->ma_keys->dk_lookup == lookdict_unicode_nodummy); | |
| /* Copy values into a new array */ | |
| ep0 = DK_ENTRIES(mp->ma_keys); | |
| size = USABLE_FRACTION(DK_SIZE(mp->ma_keys)); | |
| values = new_values(size); | |
| if (values == NULL) { | |
| PyErr_SetString(PyExc_MemoryError, | |
| "Not enough memory to allocate new values array"); | |
| return NULL; | |
| } | |
| for (i = 0; i < size; i++) { | |
| values[i] = ep0[i].me_value; | |
| ep0[i].me_value = NULL; | |
| } | |
| mp->ma_keys->dk_lookup = lookdict_split; | |
| mp->ma_values = values; | |
| } | |
| dictkeys_incref(mp->ma_keys); | |
| return mp->ma_keys; | |
| } | |
| PyObject * | |
| _PyDict_NewPresized(Py_ssize_t minused) | |
| { | |
| const Py_ssize_t max_presize = 128 * 1024; | |
| Py_ssize_t newsize; | |
| PyDictKeysObject *new_keys; | |
| if (minused <= USABLE_FRACTION(PyDict_MINSIZE)) { | |
| return PyDict_New(); | |
| } | |
| /* There are no strict guarantee that returned dict can contain minused | |
| * items without resize. So we create medium size dict instead of very | |
| * large dict or MemoryError. | |
| */ | |
| if (minused > USABLE_FRACTION(max_presize)) { | |
| newsize = max_presize; | |
| } | |
| else { | |
| Py_ssize_t minsize = ESTIMATE_SIZE(minused); | |
| newsize = PyDict_MINSIZE*2; | |
| while (newsize < minsize) { | |
| newsize <<= 1; | |
| } | |
| } | |
| assert(IS_POWER_OF_2(newsize)); | |
| new_keys = new_keys_object(newsize); | |
| if (new_keys == NULL) | |
| return NULL; | |
| return new_dict(new_keys, NULL); | |
| } | |
| /* Note that, for historical reasons, PyDict_GetItem() suppresses all errors | |
| * that may occur (originally dicts supported only string keys, and exceptions | |
| * weren't possible). So, while the original intent was that a NULL return | |
| * meant the key wasn't present, in reality it can mean that, or that an error | |
| * (suppressed) occurred while computing the key's hash, or that some error | |
| * (suppressed) occurred when comparing keys in the dict's internal probe | |
| * sequence. A nasty example of the latter is when a Python-coded comparison | |
| * function hits a stack-depth error, which can cause this to return NULL | |
| * even if the key is present. | |
| */ | |
| PyObject * | |
| PyDict_GetItem(PyObject *op, PyObject *key) | |
| { | |
| Py_hash_t hash; | |
| Py_ssize_t ix; | |
| PyDictObject *mp = (PyDictObject *)op; | |
| PyThreadState *tstate; | |
| PyObject *value; | |
| if (!PyDict_Check(op)) | |
| return NULL; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) | |
| { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) { | |
| PyErr_Clear(); | |
| return NULL; | |
| } | |
| } | |
| /* We can arrive here with a NULL tstate during initialization: try | |
| running "python -Wi" for an example related to string interning. | |
| Let's just hope that no exception occurs then... This must be | |
| _PyThreadState_GET() and not PyThreadState_Get() because the latter | |
| abort Python if tstate is NULL. */ | |
| tstate = _PyThreadState_GET(); | |
| if (tstate != NULL && tstate->curexc_type != NULL) { | |
| /* preserve the existing exception */ | |
| PyObject *err_type, *err_value, *err_tb; | |
| PyErr_Fetch(&err_type, &err_value, &err_tb); | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| /* ignore errors */ | |
| PyErr_Restore(err_type, err_value, err_tb); | |
| if (ix < 0) | |
| return NULL; | |
| } | |
| else { | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix < 0) { | |
| PyErr_Clear(); | |
| return NULL; | |
| } | |
| } | |
| return value; | |
| } | |
| /* Same as PyDict_GetItemWithError() but with hash supplied by caller. | |
| This returns NULL *with* an exception set if an exception occurred. | |
| It returns NULL *without* an exception set if the key wasn't present. | |
| */ | |
| PyObject * | |
| _PyDict_GetItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash) | |
| { | |
| Py_ssize_t ix; | |
| PyDictObject *mp = (PyDictObject *)op; | |
| PyObject *value; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix < 0) { | |
| return NULL; | |
| } | |
| return value; | |
| } | |
| /* Variant of PyDict_GetItem() that doesn't suppress exceptions. | |
| This returns NULL *with* an exception set if an exception occurred. | |
| It returns NULL *without* an exception set if the key wasn't present. | |
| */ | |
| PyObject * | |
| PyDict_GetItemWithError(PyObject *op, PyObject *key) | |
| { | |
| Py_ssize_t ix; | |
| Py_hash_t hash; | |
| PyDictObject*mp = (PyDictObject *)op; | |
| PyObject *value; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) | |
| { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) { | |
| return NULL; | |
| } | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix < 0) | |
| return NULL; | |
| return value; | |
| } | |
| PyObject * | |
| _PyDict_GetItemIdWithError(PyObject *dp, struct _Py_Identifier *key) | |
| { | |
| PyObject *kv; | |
| kv = _PyUnicode_FromId(key); /* borrowed */ | |
| if (kv == NULL) | |
| return NULL; | |
| return PyDict_GetItemWithError(dp, kv); | |
| } | |
| PyObject * | |
| _PyDict_GetItemStringWithError(PyObject *v, const char *key) | |
| { | |
| PyObject *kv, *rv; | |
| kv = PyUnicode_FromString(key); | |
| if (kv == NULL) { | |
| return NULL; | |
| } | |
| rv = PyDict_GetItemWithError(v, kv); | |
| Py_DECREF(kv); | |
| return rv; | |
| } | |
| /* Fast version of global value lookup (LOAD_GLOBAL). | |
| * Lookup in globals, then builtins. | |
| * | |
| * Raise an exception and return NULL if an error occurred (ex: computing the | |
| * key hash failed, key comparison failed, ...). Return NULL if the key doesn't | |
| * exist. Return the value if the key exists. | |
| */ | |
| PyObject * | |
| _PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key) | |
| { | |
| Py_ssize_t ix; | |
| Py_hash_t hash; | |
| PyObject *value; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) | |
| { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| /* namespace 1: globals */ | |
| ix = globals->ma_keys->dk_lookup(globals, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (ix != DKIX_EMPTY && value != NULL) | |
| return value; | |
| /* namespace 2: builtins */ | |
| ix = builtins->ma_keys->dk_lookup(builtins, key, hash, &value); | |
| if (ix < 0) | |
| return NULL; | |
| return value; | |
| } | |
| /* CAUTION: PyDict_SetItem() must guarantee that it won't resize the | |
| * dictionary if it's merely replacing the value for an existing key. | |
| * This means that it's safe to loop over a dictionary with PyDict_Next() | |
| * and occasionally replace a value -- but you can't insert new keys or | |
| * remove them. | |
| */ | |
| int | |
| PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value) | |
| { | |
| PyDictObject *mp; | |
| Py_hash_t hash; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| assert(key); | |
| assert(value); | |
| mp = (PyDictObject *)op; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) | |
| { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return -1; | |
| } | |
| if (mp->ma_keys == Py_EMPTY_KEYS) { | |
| return insert_to_emptydict(mp, key, hash, value); | |
| } | |
| /* insertdict() handles any resizing that might be necessary */ | |
| return insertdict(mp, key, hash, value); | |
| } | |
| int | |
| _PyDict_SetItem_KnownHash(PyObject *op, PyObject *key, PyObject *value, | |
| Py_hash_t hash) | |
| { | |
| PyDictObject *mp; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| assert(key); | |
| assert(value); | |
| assert(hash != -1); | |
| mp = (PyDictObject *)op; | |
| if (mp->ma_keys == Py_EMPTY_KEYS) { | |
| return insert_to_emptydict(mp, key, hash, value); | |
| } | |
| /* insertdict() handles any resizing that might be necessary */ | |
| return insertdict(mp, key, hash, value); | |
| } | |
| static int | |
| delitem_common(PyDictObject *mp, Py_hash_t hash, Py_ssize_t ix, | |
| PyObject *old_value) | |
| { | |
| PyObject *old_key; | |
| PyDictKeyEntry *ep; | |
| Py_ssize_t hashpos = lookdict_index(mp->ma_keys, hash, ix); | |
| assert(hashpos >= 0); | |
| mp->ma_used--; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| ep = &DK_ENTRIES(mp->ma_keys)[ix]; | |
| dictkeys_set_index(mp->ma_keys, hashpos, DKIX_DUMMY); | |
| ENSURE_ALLOWS_DELETIONS(mp); | |
| old_key = ep->me_key; | |
| ep->me_key = NULL; | |
| ep->me_value = NULL; | |
| Py_DECREF(old_key); | |
| Py_DECREF(old_value); | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return 0; | |
| } | |
| int | |
| PyDict_DelItem(PyObject *op, PyObject *key) | |
| { | |
| Py_hash_t hash; | |
| assert(key); | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return -1; | |
| } | |
| return _PyDict_DelItem_KnownHash(op, key, hash); | |
| } | |
| int | |
| _PyDict_DelItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash) | |
| { | |
| Py_ssize_t ix; | |
| PyDictObject *mp; | |
| PyObject *old_value; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| assert(key); | |
| assert(hash != -1); | |
| mp = (PyDictObject *)op; | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| if (ix == DKIX_ERROR) | |
| return -1; | |
| if (ix == DKIX_EMPTY || old_value == NULL) { | |
| _PyErr_SetKeyError(key); | |
| return -1; | |
| } | |
| // Split table doesn't allow deletion. Combine it. | |
| if (_PyDict_HasSplitTable(mp)) { | |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) { | |
| return -1; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| assert(ix >= 0); | |
| } | |
| return delitem_common(mp, hash, ix, old_value); | |
| } | |
| /* This function promises that the predicate -> deletion sequence is atomic | |
| * (i.e. protected by the GIL), assuming the predicate itself doesn't | |
| * release the GIL. | |
| */ | |
| int | |
| _PyDict_DelItemIf(PyObject *op, PyObject *key, | |
| int (*predicate)(PyObject *value)) | |
| { | |
| Py_ssize_t hashpos, ix; | |
| PyDictObject *mp; | |
| Py_hash_t hash; | |
| PyObject *old_value; | |
| int res; | |
| if (!PyDict_Check(op)) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| assert(key); | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return -1; | |
| mp = (PyDictObject *)op; | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| if (ix == DKIX_ERROR) | |
| return -1; | |
| if (ix == DKIX_EMPTY || old_value == NULL) { | |
| _PyErr_SetKeyError(key); | |
| return -1; | |
| } | |
| // Split table doesn't allow deletion. Combine it. | |
| if (_PyDict_HasSplitTable(mp)) { | |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) { | |
| return -1; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| assert(ix >= 0); | |
| } | |
| res = predicate(old_value); | |
| if (res == -1) | |
| return -1; | |
| hashpos = lookdict_index(mp->ma_keys, hash, ix); | |
| assert(hashpos >= 0); | |
| if (res > 0) | |
| return delitem_common(mp, hashpos, ix, old_value); | |
| else | |
| return 0; | |
| } | |
| void | |
| PyDict_Clear(PyObject *op) | |
| { | |
| PyDictObject *mp; | |
| PyDictKeysObject *oldkeys; | |
| PyObject **oldvalues; | |
| Py_ssize_t i, n; | |
| if (!PyDict_Check(op)) | |
| return; | |
| mp = ((PyDictObject *)op); | |
| oldkeys = mp->ma_keys; | |
| oldvalues = mp->ma_values; | |
| if (oldvalues == empty_values) | |
| return; | |
| /* Empty the dict... */ | |
| dictkeys_incref(Py_EMPTY_KEYS); | |
| mp->ma_keys = Py_EMPTY_KEYS; | |
| mp->ma_values = empty_values; | |
| mp->ma_used = 0; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| /* ...then clear the keys and values */ | |
| if (oldvalues != NULL) { | |
| n = oldkeys->dk_nentries; | |
| for (i = 0; i < n; i++) | |
| Py_CLEAR(oldvalues[i]); | |
| free_values(oldvalues); | |
| dictkeys_decref(oldkeys); | |
| } | |
| else { | |
| assert(oldkeys->dk_refcnt == 1); | |
| dictkeys_decref(oldkeys); | |
| } | |
| assert(_PyDict_CheckConsistency(mp)); | |
| } | |
| /* Internal version of PyDict_Next that returns a hash value in addition | |
| * to the key and value. | |
| * Return 1 on success, return 0 when the reached the end of the dictionary | |
| * (or if op is not a dictionary) | |
| */ | |
| int | |
| _PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, | |
| PyObject **pvalue, Py_hash_t *phash) | |
| { | |
| Py_ssize_t i; | |
| PyDictObject *mp; | |
| PyDictKeyEntry *entry_ptr; | |
| PyObject *value; | |
| if (!PyDict_Check(op)) | |
| return 0; | |
| mp = (PyDictObject *)op; | |
| i = *ppos; | |
| if (mp->ma_values) { | |
| if (i < 0 || i >= mp->ma_used) | |
| return 0; | |
| /* values of split table is always dense */ | |
| entry_ptr = &DK_ENTRIES(mp->ma_keys)[i]; | |
| value = mp->ma_values[i]; | |
| assert(value != NULL); | |
| } | |
| else { | |
| Py_ssize_t n = mp->ma_keys->dk_nentries; | |
| if (i < 0 || i >= n) | |
| return 0; | |
| entry_ptr = &DK_ENTRIES(mp->ma_keys)[i]; | |
| while (i < n && entry_ptr->me_value == NULL) { | |
| entry_ptr++; | |
| i++; | |
| } | |
| if (i >= n) | |
| return 0; | |
| value = entry_ptr->me_value; | |
| } | |
| *ppos = i+1; | |
| if (pkey) | |
| *pkey = entry_ptr->me_key; | |
| if (phash) | |
| *phash = entry_ptr->me_hash; | |
| if (pvalue) | |
| *pvalue = value; | |
| return 1; | |
| } | |
| /* | |
| * Iterate over a dict. Use like so: | |
| * | |
| * Py_ssize_t i; | |
| * PyObject *key, *value; | |
| * i = 0; # important! i should not otherwise be changed by you | |
| * while (PyDict_Next(yourdict, &i, &key, &value)) { | |
| * Refer to borrowed references in key and value. | |
| * } | |
| * | |
| * Return 1 on success, return 0 when the reached the end of the dictionary | |
| * (or if op is not a dictionary) | |
| * | |
| * CAUTION: In general, it isn't safe to use PyDict_Next in a loop that | |
| * mutates the dict. One exception: it is safe if the loop merely changes | |
| * the values associated with the keys (but doesn't insert new keys or | |
| * delete keys), via PyDict_SetItem(). | |
| */ | |
| int | |
| PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue) | |
| { | |
| return _PyDict_Next(op, ppos, pkey, pvalue, NULL); | |
| } | |
| /* Internal version of dict.pop(). */ | |
| PyObject * | |
| _PyDict_Pop_KnownHash(PyObject *dict, PyObject *key, Py_hash_t hash, PyObject *deflt) | |
| { | |
| Py_ssize_t ix, hashpos; | |
| PyObject *old_value, *old_key; | |
| PyDictKeyEntry *ep; | |
| PyDictObject *mp; | |
| assert(PyDict_Check(dict)); | |
| mp = (PyDictObject *)dict; | |
| if (mp->ma_used == 0) { | |
| if (deflt) { | |
| Py_INCREF(deflt); | |
| return deflt; | |
| } | |
| _PyErr_SetKeyError(key); | |
| return NULL; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (ix == DKIX_EMPTY || old_value == NULL) { | |
| if (deflt) { | |
| Py_INCREF(deflt); | |
| return deflt; | |
| } | |
| _PyErr_SetKeyError(key); | |
| return NULL; | |
| } | |
| // Split table doesn't allow deletion. Combine it. | |
| if (_PyDict_HasSplitTable(mp)) { | |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) { | |
| return NULL; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value); | |
| assert(ix >= 0); | |
| } | |
| hashpos = lookdict_index(mp->ma_keys, hash, ix); | |
| assert(hashpos >= 0); | |
| assert(old_value != NULL); | |
| mp->ma_used--; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| dictkeys_set_index(mp->ma_keys, hashpos, DKIX_DUMMY); | |
| ep = &DK_ENTRIES(mp->ma_keys)[ix]; | |
| ENSURE_ALLOWS_DELETIONS(mp); | |
| old_key = ep->me_key; | |
| ep->me_key = NULL; | |
| ep->me_value = NULL; | |
| Py_DECREF(old_key); | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return old_value; | |
| } | |
| PyObject * | |
| _PyDict_Pop(PyObject *dict, PyObject *key, PyObject *deflt) | |
| { | |
| Py_hash_t hash; | |
| if (((PyDictObject *)dict)->ma_used == 0) { | |
| if (deflt) { | |
| Py_INCREF(deflt); | |
| return deflt; | |
| } | |
| _PyErr_SetKeyError(key); | |
| return NULL; | |
| } | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| return _PyDict_Pop_KnownHash(dict, key, hash, deflt); | |
| } | |
| /* Internal version of dict.from_keys(). It is subclass-friendly. */ | |
| PyObject * | |
| _PyDict_FromKeys(PyObject *cls, PyObject *iterable, PyObject *value) | |
| { | |
| PyObject *it; /* iter(iterable) */ | |
| PyObject *key; | |
| PyObject *d; | |
| int status; | |
| d = _PyObject_CallNoArg(cls); | |
| if (d == NULL) | |
| return NULL; | |
| if (PyDict_CheckExact(d) && ((PyDictObject *)d)->ma_used == 0) { | |
| if (PyDict_CheckExact(iterable)) { | |
| PyDictObject *mp = (PyDictObject *)d; | |
| PyObject *oldvalue; | |
| Py_ssize_t pos = 0; | |
| PyObject *key; | |
| Py_hash_t hash; | |
| if (dictresize(mp, ESTIMATE_SIZE(PyDict_GET_SIZE(iterable)))) { | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| while (_PyDict_Next(iterable, &pos, &key, &oldvalue, &hash)) { | |
| if (insertdict(mp, key, hash, value)) { | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| } | |
| return d; | |
| } | |
| if (PyAnySet_CheckExact(iterable)) { | |
| PyDictObject *mp = (PyDictObject *)d; | |
| Py_ssize_t pos = 0; | |
| PyObject *key; | |
| Py_hash_t hash; | |
| if (dictresize(mp, ESTIMATE_SIZE(PySet_GET_SIZE(iterable)))) { | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| while (_PySet_NextEntry(iterable, &pos, &key, &hash)) { | |
| if (insertdict(mp, key, hash, value)) { | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| } | |
| return d; | |
| } | |
| } | |
| it = PyObject_GetIter(iterable); | |
| if (it == NULL){ | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| if (PyDict_CheckExact(d)) { | |
| while ((key = PyIter_Next(it)) != NULL) { | |
| status = PyDict_SetItem(d, key, value); | |
| Py_DECREF(key); | |
| if (status < 0) | |
| goto Fail; | |
| } | |
| } else { | |
| while ((key = PyIter_Next(it)) != NULL) { | |
| status = PyObject_SetItem(d, key, value); | |
| Py_DECREF(key); | |
| if (status < 0) | |
| goto Fail; | |
| } | |
| } | |
| if (PyErr_Occurred()) | |
| goto Fail; | |
| Py_DECREF(it); | |
| return d; | |
| Fail: | |
| Py_DECREF(it); | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| /* Methods */ | |
| static void | |
| dict_dealloc(PyDictObject *mp) | |
| { | |
| PyObject **values = mp->ma_values; | |
| PyDictKeysObject *keys = mp->ma_keys; | |
| Py_ssize_t i, n; | |
| /* bpo-31095: UnTrack is needed before calling any callbacks */ | |
| PyObject_GC_UnTrack(mp); | |
| Py_TRASHCAN_SAFE_BEGIN(mp) | |
| if (values != NULL) { | |
| if (values != empty_values) { | |
| for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) { | |
| Py_XDECREF(values[i]); | |
| } | |
| free_values(values); | |
| } | |
| dictkeys_decref(keys); | |
| } | |
| else if (keys != NULL) { | |
| assert(keys->dk_refcnt == 1); | |
| dictkeys_decref(keys); | |
| } | |
| if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type) | |
| free_list[numfree++] = mp; | |
| else | |
| Py_TYPE(mp)->tp_free((PyObject *)mp); | |
| Py_TRASHCAN_SAFE_END(mp) | |
| } | |
| static PyObject * | |
| dict_repr(PyDictObject *mp) | |
| { | |
| Py_ssize_t i; | |
| PyObject *key = NULL, *value = NULL; | |
| _PyUnicodeWriter writer; | |
| int first; | |
| i = Py_ReprEnter((PyObject *)mp); | |
| if (i != 0) { | |
| return i > 0 ? PyUnicode_FromString("{...}") : NULL; | |
| } | |
| if (mp->ma_used == 0) { | |
| Py_ReprLeave((PyObject *)mp); | |
| return PyUnicode_FromString("{}"); | |
| } | |
| _PyUnicodeWriter_Init(&writer); | |
| writer.overallocate = 1; | |
| /* "{" + "1: 2" + ", 3: 4" * (len - 1) + "}" */ | |
| writer.min_length = 1 + 4 + (2 + 4) * (mp->ma_used - 1) + 1; | |
| if (_PyUnicodeWriter_WriteChar(&writer, '{') < 0) | |
| goto error; | |
| /* Do repr() on each key+value pair, and insert ": " between them. | |
| Note that repr may mutate the dict. */ | |
| i = 0; | |
| first = 1; | |
| while (PyDict_Next((PyObject *)mp, &i, &key, &value)) { | |
| PyObject *s; | |
| int res; | |
| /* Prevent repr from deleting key or value during key format. */ | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| if (!first) { | |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) | |
| goto error; | |
| } | |
| first = 0; | |
| s = PyObject_Repr(key); | |
| if (s == NULL) | |
| goto error; | |
| res = _PyUnicodeWriter_WriteStr(&writer, s); | |
| Py_DECREF(s); | |
| if (res < 0) | |
| goto error; | |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ": ", 2) < 0) | |
| goto error; | |
| s = PyObject_Repr(value); | |
| if (s == NULL) | |
| goto error; | |
| res = _PyUnicodeWriter_WriteStr(&writer, s); | |
| Py_DECREF(s); | |
| if (res < 0) | |
| goto error; | |
| Py_CLEAR(key); | |
| Py_CLEAR(value); | |
| } | |
| writer.overallocate = 0; | |
| if (_PyUnicodeWriter_WriteChar(&writer, '}') < 0) | |
| goto error; | |
| Py_ReprLeave((PyObject *)mp); | |
| return _PyUnicodeWriter_Finish(&writer); | |
| error: | |
| Py_ReprLeave((PyObject *)mp); | |
| _PyUnicodeWriter_Dealloc(&writer); | |
| Py_XDECREF(key); | |
| Py_XDECREF(value); | |
| return NULL; | |
| } | |
| static Py_ssize_t | |
| dict_length(PyDictObject *mp) | |
| { | |
| return mp->ma_used; | |
| } | |
| static PyObject * | |
| dict_subscript(PyDictObject *mp, PyObject *key) | |
| { | |
| Py_ssize_t ix; | |
| Py_hash_t hash; | |
| PyObject *value; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (ix == DKIX_EMPTY || value == NULL) { | |
| if (!PyDict_CheckExact(mp)) { | |
| /* Look up __missing__ method if we're a subclass. */ | |
| PyObject *missing, *res; | |
| _Py_IDENTIFIER(__missing__); | |
| missing = _PyObject_LookupSpecial((PyObject *)mp, &PyId___missing__); | |
| if (missing != NULL) { | |
| res = PyObject_CallFunctionObjArgs(missing, | |
| key, NULL); | |
| Py_DECREF(missing); | |
| return res; | |
| } | |
| else if (PyErr_Occurred()) | |
| return NULL; | |
| } | |
| _PyErr_SetKeyError(key); | |
| return NULL; | |
| } | |
| Py_INCREF(value); | |
| return value; | |
| } | |
| static int | |
| dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w) | |
| { | |
| if (w == NULL) | |
| return PyDict_DelItem((PyObject *)mp, v); | |
| else | |
| return PyDict_SetItem((PyObject *)mp, v, w); | |
| } | |
| static PyMappingMethods dict_as_mapping = { | |
| (lenfunc)dict_length, /*mp_length*/ | |
| (binaryfunc)dict_subscript, /*mp_subscript*/ | |
| (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/ | |
| }; | |
| static PyObject * | |
| dict_keys(PyDictObject *mp) | |
| { | |
| PyObject *v; | |
| Py_ssize_t i, j; | |
| PyDictKeyEntry *ep; | |
| Py_ssize_t size, n, offset; | |
| PyObject **value_ptr; | |
| again: | |
| n = mp->ma_used; | |
| v = PyList_New(n); | |
| if (v == NULL) | |
| return NULL; | |
| if (n != mp->ma_used) { | |
| /* Durnit. The allocations caused the dict to resize. | |
| * Just start over, this shouldn't normally happen. | |
| */ | |
| Py_DECREF(v); | |
| goto again; | |
| } | |
| ep = DK_ENTRIES(mp->ma_keys); | |
| size = mp->ma_keys->dk_nentries; | |
| if (mp->ma_values) { | |
| value_ptr = mp->ma_values; | |
| offset = sizeof(PyObject *); | |
| } | |
| else { | |
| value_ptr = &ep[0].me_value; | |
| offset = sizeof(PyDictKeyEntry); | |
| } | |
| for (i = 0, j = 0; i < size; i++) { | |
| if (*value_ptr != NULL) { | |
| PyObject *key = ep[i].me_key; | |
| Py_INCREF(key); | |
| PyList_SET_ITEM(v, j, key); | |
| j++; | |
| } | |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); | |
| } | |
| assert(j == n); | |
| return v; | |
| } | |
| static PyObject * | |
| dict_values(PyDictObject *mp) | |
| { | |
| PyObject *v; | |
| Py_ssize_t i, j; | |
| PyDictKeyEntry *ep; | |
| Py_ssize_t size, n, offset; | |
| PyObject **value_ptr; | |
| again: | |
| n = mp->ma_used; | |
| v = PyList_New(n); | |
| if (v == NULL) | |
| return NULL; | |
| if (n != mp->ma_used) { | |
| /* Durnit. The allocations caused the dict to resize. | |
| * Just start over, this shouldn't normally happen. | |
| */ | |
| Py_DECREF(v); | |
| goto again; | |
| } | |
| ep = DK_ENTRIES(mp->ma_keys); | |
| size = mp->ma_keys->dk_nentries; | |
| if (mp->ma_values) { | |
| value_ptr = mp->ma_values; | |
| offset = sizeof(PyObject *); | |
| } | |
| else { | |
| value_ptr = &ep[0].me_value; | |
| offset = sizeof(PyDictKeyEntry); | |
| } | |
| for (i = 0, j = 0; i < size; i++) { | |
| PyObject *value = *value_ptr; | |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); | |
| if (value != NULL) { | |
| Py_INCREF(value); | |
| PyList_SET_ITEM(v, j, value); | |
| j++; | |
| } | |
| } | |
| assert(j == n); | |
| return v; | |
| } | |
| static PyObject * | |
| dict_items(PyDictObject *mp) | |
| { | |
| PyObject *v; | |
| Py_ssize_t i, j, n; | |
| Py_ssize_t size, offset; | |
| PyObject *item, *key; | |
| PyDictKeyEntry *ep; | |
| PyObject **value_ptr; | |
| /* Preallocate the list of tuples, to avoid allocations during | |
| * the loop over the items, which could trigger GC, which | |
| * could resize the dict. :-( | |
| */ | |
| again: | |
| n = mp->ma_used; | |
| v = PyList_New(n); | |
| if (v == NULL) | |
| return NULL; | |
| for (i = 0; i < n; i++) { | |
| item = PyTuple_New(2); | |
| if (item == NULL) { | |
| Py_DECREF(v); | |
| return NULL; | |
| } | |
| PyList_SET_ITEM(v, i, item); | |
| } | |
| if (n != mp->ma_used) { | |
| /* Durnit. The allocations caused the dict to resize. | |
| * Just start over, this shouldn't normally happen. | |
| */ | |
| Py_DECREF(v); | |
| goto again; | |
| } | |
| /* Nothing we do below makes any function calls. */ | |
| ep = DK_ENTRIES(mp->ma_keys); | |
| size = mp->ma_keys->dk_nentries; | |
| if (mp->ma_values) { | |
| value_ptr = mp->ma_values; | |
| offset = sizeof(PyObject *); | |
| } | |
| else { | |
| value_ptr = &ep[0].me_value; | |
| offset = sizeof(PyDictKeyEntry); | |
| } | |
| for (i = 0, j = 0; i < size; i++) { | |
| PyObject *value = *value_ptr; | |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); | |
| if (value != NULL) { | |
| key = ep[i].me_key; | |
| item = PyList_GET_ITEM(v, j); | |
| Py_INCREF(key); | |
| PyTuple_SET_ITEM(item, 0, key); | |
| Py_INCREF(value); | |
| PyTuple_SET_ITEM(item, 1, value); | |
| j++; | |
| } | |
| } | |
| assert(j == n); | |
| return v; | |
| } | |
| /*[clinic input] | |
| @classmethod | |
| dict.fromkeys | |
| iterable: object | |
| value: object=None | |
| / | |
| Create a new dictionary with keys from iterable and values set to value. | |
| [clinic start generated code]*/ | |
| static PyObject * | |
| dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value) | |
| /*[clinic end generated code: output=8fb98e4b10384999 input=382ba4855d0f74c3]*/ | |
| { | |
| return _PyDict_FromKeys((PyObject *)type, iterable, value); | |
| } | |
| static int | |
| dict_update_common(PyObject *self, PyObject *args, PyObject *kwds, | |
| const char *methname) | |
| { | |
| PyObject *arg = NULL; | |
| int result = 0; | |
| if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg)) { | |
| result = -1; | |
| } | |
| else if (arg != NULL) { | |
| _Py_IDENTIFIER(keys); | |
| PyObject *func; | |
| if (_PyObject_LookupAttrId(arg, &PyId_keys, &func) < 0) { | |
| result = -1; | |
| } | |
| else if (func != NULL) { | |
| Py_DECREF(func); | |
| result = PyDict_Merge(self, arg, 1); | |
| } | |
| else { | |
| result = PyDict_MergeFromSeq2(self, arg, 1); | |
| } | |
| } | |
| if (result == 0 && kwds != NULL) { | |
| if (PyArg_ValidateKeywordArguments(kwds)) | |
| result = PyDict_Merge(self, kwds, 1); | |
| else | |
| result = -1; | |
| } | |
| return result; | |
| } | |
| /* Note: dict.update() uses the METH_VARARGS|METH_KEYWORDS calling convention. | |
| Using METH_FASTCALL|METH_KEYWORDS would make dict.update(**dict2) calls | |
| slower, see the issue #29312. */ | |
| static PyObject * | |
| dict_update(PyObject *self, PyObject *args, PyObject *kwds) | |
| { | |
| if (dict_update_common(self, args, kwds, "update") != -1) | |
| Py_RETURN_NONE; | |
| return NULL; | |
| } | |
| /* Update unconditionally replaces existing items. | |
| Merge has a 3rd argument 'override'; if set, it acts like Update, | |
| otherwise it leaves existing items unchanged. | |
| PyDict_{Update,Merge} update/merge from a mapping object. | |
| PyDict_MergeFromSeq2 updates/merges from any iterable object | |
| producing iterable objects of length 2. | |
| */ | |
| int | |
| PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override) | |
| { | |
| PyObject *it; /* iter(seq2) */ | |
| Py_ssize_t i; /* index into seq2 of current element */ | |
| PyObject *item; /* seq2[i] */ | |
| PyObject *fast; /* item as a 2-tuple or 2-list */ | |
| assert(d != NULL); | |
| assert(PyDict_Check(d)); | |
| assert(seq2 != NULL); | |
| it = PyObject_GetIter(seq2); | |
| if (it == NULL) | |
| return -1; | |
| for (i = 0; ; ++i) { | |
| PyObject *key, *value; | |
| Py_ssize_t n; | |
| fast = NULL; | |
| item = PyIter_Next(it); | |
| if (item == NULL) { | |
| if (PyErr_Occurred()) | |
| goto Fail; | |
| break; | |
| } | |
| /* Convert item to sequence, and verify length 2. */ | |
| fast = PySequence_Fast(item, ""); | |
| if (fast == NULL) { | |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) | |
| PyErr_Format(PyExc_TypeError, | |
| "cannot convert dictionary update " | |
| "sequence element #%zd to a sequence", | |
| i); | |
| goto Fail; | |
| } | |
| n = PySequence_Fast_GET_SIZE(fast); | |
| if (n != 2) { | |
| PyErr_Format(PyExc_ValueError, | |
| "dictionary update sequence element #%zd " | |
| "has length %zd; 2 is required", | |
| i, n); | |
| goto Fail; | |
| } | |
| /* Update/merge with this (key, value) pair. */ | |
| key = PySequence_Fast_GET_ITEM(fast, 0); | |
| value = PySequence_Fast_GET_ITEM(fast, 1); | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| if (override) { | |
| if (PyDict_SetItem(d, key, value) < 0) { | |
| Py_DECREF(key); | |
| Py_DECREF(value); | |
| goto Fail; | |
| } | |
| } | |
| else if (PyDict_GetItemWithError(d, key) == NULL) { | |
| if (PyErr_Occurred() || PyDict_SetItem(d, key, value) < 0) { | |
| Py_DECREF(key); | |
| Py_DECREF(value); | |
| goto Fail; | |
| } | |
| } | |
| Py_DECREF(key); | |
| Py_DECREF(value); | |
| Py_DECREF(fast); | |
| Py_DECREF(item); | |
| } | |
| i = 0; | |
| assert(_PyDict_CheckConsistency((PyDictObject *)d)); | |
| goto Return; | |
| Fail: | |
| Py_XDECREF(item); | |
| Py_XDECREF(fast); | |
| i = -1; | |
| Return: | |
| Py_DECREF(it); | |
| return Py_SAFE_DOWNCAST(i, Py_ssize_t, int); | |
| } | |
| static int | |
| dict_merge(PyObject *a, PyObject *b, int override) | |
| { | |
| PyDictObject *mp, *other; | |
| Py_ssize_t i, n; | |
| PyDictKeyEntry *entry, *ep0; | |
| assert(0 <= override && override <= 2); | |
| /* We accept for the argument either a concrete dictionary object, | |
| * or an abstract "mapping" object. For the former, we can do | |
| * things quite efficiently. For the latter, we only require that | |
| * PyMapping_Keys() and PyObject_GetItem() be supported. | |
| */ | |
| if (a == NULL || !PyDict_Check(a) || b == NULL) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| mp = (PyDictObject*)a; | |
| if (PyDict_Check(b) && (Py_TYPE(b)->tp_iter == (getiterfunc)dict_iter)) { | |
| other = (PyDictObject*)b; | |
| if (other == mp || other->ma_used == 0) | |
| /* a.update(a) or a.update({}); nothing to do */ | |
| return 0; | |
| if (mp->ma_used == 0) | |
| /* Since the target dict is empty, PyDict_GetItem() | |
| * always returns NULL. Setting override to 1 | |
| * skips the unnecessary test. | |
| */ | |
| override = 1; | |
| /* Do one big resize at the start, rather than | |
| * incrementally resizing as we insert new items. Expect | |
| * that there will be no (or few) overlapping keys. | |
| */ | |
| if (USABLE_FRACTION(mp->ma_keys->dk_size) < other->ma_used) { | |
| if (dictresize(mp, ESTIMATE_SIZE(mp->ma_used + other->ma_used))) { | |
| return -1; | |
| } | |
| } | |
| ep0 = DK_ENTRIES(other->ma_keys); | |
| for (i = 0, n = other->ma_keys->dk_nentries; i < n; i++) { | |
| PyObject *key, *value; | |
| Py_hash_t hash; | |
| entry = &ep0[i]; | |
| key = entry->me_key; | |
| hash = entry->me_hash; | |
| if (other->ma_values) | |
| value = other->ma_values[i]; | |
| else | |
| value = entry->me_value; | |
| if (value != NULL) { | |
| int err = 0; | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| if (override == 1) | |
| err = insertdict(mp, key, hash, value); | |
| else if (_PyDict_GetItem_KnownHash(a, key, hash) == NULL) { | |
| if (PyErr_Occurred()) { | |
| Py_DECREF(value); | |
| Py_DECREF(key); | |
| return -1; | |
| } | |
| err = insertdict(mp, key, hash, value); | |
| } | |
| else if (override != 0) { | |
| _PyErr_SetKeyError(key); | |
| Py_DECREF(value); | |
| Py_DECREF(key); | |
| return -1; | |
| } | |
| Py_DECREF(value); | |
| Py_DECREF(key); | |
| if (err != 0) | |
| return -1; | |
| if (n != other->ma_keys->dk_nentries) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dict mutated during update"); | |
| return -1; | |
| } | |
| } | |
| } | |
| } | |
| else { | |
| /* Do it the generic, slower way */ | |
| PyObject *keys = PyMapping_Keys(b); | |
| PyObject *iter; | |
| PyObject *key, *value; | |
| int status; | |
| if (keys == NULL) | |
| /* Docstring says this is equivalent to E.keys() so | |
| * if E doesn't have a .keys() method we want | |
| * AttributeError to percolate up. Might as well | |
| * do the same for any other error. | |
| */ | |
| return -1; | |
| iter = PyObject_GetIter(keys); | |
| Py_DECREF(keys); | |
| if (iter == NULL) | |
| return -1; | |
| for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) { | |
| if (override != 1) { | |
| if (PyDict_GetItemWithError(a, key) != NULL) { | |
| if (override != 0) { | |
| _PyErr_SetKeyError(key); | |
| Py_DECREF(key); | |
| Py_DECREF(iter); | |
| return -1; | |
| } | |
| Py_DECREF(key); | |
| continue; | |
| } | |
| else if (PyErr_Occurred()) { | |
| Py_DECREF(key); | |
| Py_DECREF(iter); | |
| return -1; | |
| } | |
| } | |
| value = PyObject_GetItem(b, key); | |
| if (value == NULL) { | |
| Py_DECREF(iter); | |
| Py_DECREF(key); | |
| return -1; | |
| } | |
| status = PyDict_SetItem(a, key, value); | |
| Py_DECREF(key); | |
| Py_DECREF(value); | |
| if (status < 0) { | |
| Py_DECREF(iter); | |
| return -1; | |
| } | |
| } | |
| Py_DECREF(iter); | |
| if (PyErr_Occurred()) | |
| /* Iterator completed, via error */ | |
| return -1; | |
| } | |
| assert(_PyDict_CheckConsistency((PyDictObject *)a)); | |
| return 0; | |
| } | |
| int | |
| PyDict_Update(PyObject *a, PyObject *b) | |
| { | |
| return dict_merge(a, b, 1); | |
| } | |
| int | |
| PyDict_Merge(PyObject *a, PyObject *b, int override) | |
| { | |
| /* XXX Deprecate override not in (0, 1). */ | |
| return dict_merge(a, b, override != 0); | |
| } | |
| int | |
| _PyDict_MergeEx(PyObject *a, PyObject *b, int override) | |
| { | |
| return dict_merge(a, b, override); | |
| } | |
| static PyObject * | |
| dict_copy(PyDictObject *mp, PyObject *Py_UNUSED(ignored)) | |
| { | |
| return PyDict_Copy((PyObject*)mp); | |
| } | |
| PyObject * | |
| PyDict_Copy(PyObject *o) | |
| { | |
| PyObject *copy; | |
| PyDictObject *mp; | |
| Py_ssize_t i, n; | |
| if (o == NULL || !PyDict_Check(o)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| mp = (PyDictObject *)o; | |
| if (mp->ma_used == 0) { | |
| /* The dict is empty; just return a new dict. */ | |
| return PyDict_New(); | |
| } | |
| if (_PyDict_HasSplitTable(mp)) { | |
| PyDictObject *split_copy; | |
| Py_ssize_t size = USABLE_FRACTION(DK_SIZE(mp->ma_keys)); | |
| PyObject **newvalues; | |
| newvalues = new_values(size); | |
| if (newvalues == NULL) | |
| return PyErr_NoMemory(); | |
| split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type); | |
| if (split_copy == NULL) { | |
| free_values(newvalues); | |
| return NULL; | |
| } | |
| split_copy->ma_values = newvalues; | |
| split_copy->ma_keys = mp->ma_keys; | |
| split_copy->ma_used = mp->ma_used; | |
| split_copy->ma_version_tag = DICT_NEXT_VERSION(); | |
| dictkeys_incref(mp->ma_keys); | |
| for (i = 0, n = size; i < n; i++) { | |
| PyObject *value = mp->ma_values[i]; | |
| Py_XINCREF(value); | |
| split_copy->ma_values[i] = value; | |
| } | |
| if (_PyObject_GC_IS_TRACKED(mp)) | |
| _PyObject_GC_TRACK(split_copy); | |
| return (PyObject *)split_copy; | |
| } | |
| if (PyDict_CheckExact(mp) && mp->ma_values == NULL && | |
| (mp->ma_used >= (mp->ma_keys->dk_nentries * 2) / 3)) | |
| { | |
| /* Use fast-copy if: | |
| (1) 'mp' is an instance of a subclassed dict; and | |
| (2) 'mp' is not a split-dict; and | |
| (3) if 'mp' is non-compact ('del' operation does not resize dicts), | |
| do fast-copy only if it has at most 1/3 non-used keys. | |
| The last condition (3) is important to guard against a pathological | |
| case when a large dict is almost emptied with multiple del/pop | |
| operations and copied after that. In cases like this, we defer to | |
| PyDict_Merge, which produces a compacted copy. | |
| */ | |
| return clone_combined_dict(mp); | |
| } | |
| copy = PyDict_New(); | |
| if (copy == NULL) | |
| return NULL; | |
| if (PyDict_Merge(copy, o, 1) == 0) | |
| return copy; | |
| Py_DECREF(copy); | |
| return NULL; | |
| } | |
| Py_ssize_t | |
| PyDict_Size(PyObject *mp) | |
| { | |
| if (mp == NULL || !PyDict_Check(mp)) { | |
| PyErr_BadInternalCall(); | |
| return -1; | |
| } | |
| return ((PyDictObject *)mp)->ma_used; | |
| } | |
| PyObject * | |
| PyDict_Keys(PyObject *mp) | |
| { | |
| if (mp == NULL || !PyDict_Check(mp)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| return dict_keys((PyDictObject *)mp); | |
| } | |
| PyObject * | |
| PyDict_Values(PyObject *mp) | |
| { | |
| if (mp == NULL || !PyDict_Check(mp)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| return dict_values((PyDictObject *)mp); | |
| } | |
| PyObject * | |
| PyDict_Items(PyObject *mp) | |
| { | |
| if (mp == NULL || !PyDict_Check(mp)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| return dict_items((PyDictObject *)mp); | |
| } | |
| /* Return 1 if dicts equal, 0 if not, -1 if error. | |
| * Gets out as soon as any difference is detected. | |
| * Uses only Py_EQ comparison. | |
| */ | |
| static int | |
| dict_equal(PyDictObject *a, PyDictObject *b) | |
| { | |
| Py_ssize_t i; | |
| if (a->ma_used != b->ma_used) | |
| /* can't be equal if # of entries differ */ | |
| return 0; | |
| /* Same # of entries -- check all of 'em. Exit early on any diff. */ | |
| for (i = 0; i < a->ma_keys->dk_nentries; i++) { | |
| PyDictKeyEntry *ep = &DK_ENTRIES(a->ma_keys)[i]; | |
| PyObject *aval; | |
| if (a->ma_values) | |
| aval = a->ma_values[i]; | |
| else | |
| aval = ep->me_value; | |
| if (aval != NULL) { | |
| int cmp; | |
| PyObject *bval; | |
| PyObject *key = ep->me_key; | |
| /* temporarily bump aval's refcount to ensure it stays | |
| alive until we're done with it */ | |
| Py_INCREF(aval); | |
| /* ditto for key */ | |
| Py_INCREF(key); | |
| /* reuse the known hash value */ | |
| b->ma_keys->dk_lookup(b, key, ep->me_hash, &bval); | |
| if (bval == NULL) { | |
| Py_DECREF(key); | |
| Py_DECREF(aval); | |
| if (PyErr_Occurred()) | |
| return -1; | |
| return 0; | |
| } | |
| cmp = PyObject_RichCompareBool(aval, bval, Py_EQ); | |
| Py_DECREF(key); | |
| Py_DECREF(aval); | |
| if (cmp <= 0) /* error or not equal */ | |
| return cmp; | |
| } | |
| } | |
| return 1; | |
| } | |
| static PyObject * | |
| dict_richcompare(PyObject *v, PyObject *w, int op) | |
| { | |
| int cmp; | |
| PyObject *res; | |
| if (!PyDict_Check(v) || !PyDict_Check(w)) { | |
| res = Py_NotImplemented; | |
| } | |
| else if (op == Py_EQ || op == Py_NE) { | |
| cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w); | |
| if (cmp < 0) | |
| return NULL; | |
| res = (cmp == (op == Py_EQ)) ? Py_True : Py_False; | |
| } | |
| else | |
| res = Py_NotImplemented; | |
| Py_INCREF(res); | |
| return res; | |
| } | |
| /*[clinic input] | |
| @coexist | |
| dict.__contains__ | |
| key: object | |
| / | |
| True if the dictionary has the specified key, else False. | |
| [clinic start generated code]*/ | |
| static PyObject * | |
| dict___contains__(PyDictObject *self, PyObject *key) | |
| /*[clinic end generated code: output=a3d03db709ed6e6b input=fe1cb42ad831e820]*/ | |
| { | |
| register PyDictObject *mp = self; | |
| Py_hash_t hash; | |
| Py_ssize_t ix; | |
| PyObject *value; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (ix == DKIX_EMPTY || value == NULL) | |
| Py_RETURN_FALSE; | |
| Py_RETURN_TRUE; | |
| } | |
| /*[clinic input] | |
| dict.get | |
| key: object | |
| default: object = None | |
| / | |
| Return the value for key if key is in the dictionary, else default. | |
| [clinic start generated code]*/ | |
| static PyObject * | |
| dict_get_impl(PyDictObject *self, PyObject *key, PyObject *default_value) | |
| /*[clinic end generated code: output=bba707729dee05bf input=279ddb5790b6b107]*/ | |
| { | |
| PyObject *val = NULL; | |
| Py_hash_t hash; | |
| Py_ssize_t ix; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| ix = (self->ma_keys->dk_lookup) (self, key, hash, &val); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (ix == DKIX_EMPTY || val == NULL) { | |
| val = default_value; | |
| } | |
| Py_INCREF(val); | |
| return val; | |
| } | |
| PyObject * | |
| PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj) | |
| { | |
| PyDictObject *mp = (PyDictObject *)d; | |
| PyObject *value; | |
| Py_hash_t hash; | |
| if (!PyDict_Check(d)) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return NULL; | |
| } | |
| if (mp->ma_keys == Py_EMPTY_KEYS) { | |
| if (insert_to_emptydict(mp, key, hash, defaultobj) < 0) { | |
| return NULL; | |
| } | |
| return defaultobj; | |
| } | |
| if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) { | |
| if (insertion_resize(mp) < 0) | |
| return NULL; | |
| } | |
| Py_ssize_t ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return NULL; | |
| if (_PyDict_HasSplitTable(mp) && | |
| ((ix >= 0 && value == NULL && mp->ma_used != ix) || | |
| (ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) { | |
| if (insertion_resize(mp) < 0) { | |
| return NULL; | |
| } | |
| ix = DKIX_EMPTY; | |
| } | |
| if (ix == DKIX_EMPTY) { | |
| PyDictKeyEntry *ep, *ep0; | |
| value = defaultobj; | |
| if (mp->ma_keys->dk_usable <= 0) { | |
| if (insertion_resize(mp) < 0) { | |
| return NULL; | |
| } | |
| } | |
| Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash); | |
| ep0 = DK_ENTRIES(mp->ma_keys); | |
| ep = &ep0[mp->ma_keys->dk_nentries]; | |
| dictkeys_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries); | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| MAINTAIN_TRACKING(mp, key, value); | |
| ep->me_key = key; | |
| ep->me_hash = hash; | |
| if (_PyDict_HasSplitTable(mp)) { | |
| assert(mp->ma_values[mp->ma_keys->dk_nentries] == NULL); | |
| mp->ma_values[mp->ma_keys->dk_nentries] = value; | |
| } | |
| else { | |
| ep->me_value = value; | |
| } | |
| mp->ma_used++; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| mp->ma_keys->dk_usable--; | |
| mp->ma_keys->dk_nentries++; | |
| assert(mp->ma_keys->dk_usable >= 0); | |
| } | |
| else if (value == NULL) { | |
| value = defaultobj; | |
| assert(_PyDict_HasSplitTable(mp)); | |
| assert(ix == mp->ma_used); | |
| Py_INCREF(value); | |
| MAINTAIN_TRACKING(mp, key, value); | |
| mp->ma_values[ix] = value; | |
| mp->ma_used++; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| } | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return value; | |
| } | |
| /*[clinic input] | |
| dict.setdefault | |
| key: object | |
| default: object = None | |
| / | |
| Insert key with a value of default if key is not in the dictionary. | |
| Return the value for key if key is in the dictionary, else default. | |
| [clinic start generated code]*/ | |
| static PyObject * | |
| dict_setdefault_impl(PyDictObject *self, PyObject *key, | |
| PyObject *default_value) | |
| /*[clinic end generated code: output=f8c1101ebf69e220 input=0f063756e815fd9d]*/ | |
| { | |
| PyObject *val; | |
| val = PyDict_SetDefault((PyObject *)self, key, default_value); | |
| Py_XINCREF(val); | |
| return val; | |
| } | |
| static PyObject * | |
| dict_clear(PyDictObject *mp, PyObject *Py_UNUSED(ignored)) | |
| { | |
| PyDict_Clear((PyObject *)mp); | |
| Py_RETURN_NONE; | |
| } | |
| static PyObject * | |
| dict_pop(PyDictObject *mp, PyObject *args) | |
| { | |
| PyObject *key, *deflt = NULL; | |
| if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt)) | |
| return NULL; | |
| return _PyDict_Pop((PyObject*)mp, key, deflt); | |
| } | |
| static PyObject * | |
| dict_popitem(PyDictObject *mp, PyObject *Py_UNUSED(ignored)) | |
| { | |
| Py_ssize_t i, j; | |
| PyDictKeyEntry *ep0, *ep; | |
| PyObject *res; | |
| /* Allocate the result tuple before checking the size. Believe it | |
| * or not, this allocation could trigger a garbage collection which | |
| * could empty the dict, so if we checked the size first and that | |
| * happened, the result would be an infinite loop (searching for an | |
| * entry that no longer exists). Note that the usual popitem() | |
| * idiom is "while d: k, v = d.popitem()". so needing to throw the | |
| * tuple away if the dict *is* empty isn't a significant | |
| * inefficiency -- possible, but unlikely in practice. | |
| */ | |
| res = PyTuple_New(2); | |
| if (res == NULL) | |
| return NULL; | |
| if (mp->ma_used == 0) { | |
| Py_DECREF(res); | |
| PyErr_SetString(PyExc_KeyError, | |
| "popitem(): dictionary is empty"); | |
| return NULL; | |
| } | |
| /* Convert split table to combined table */ | |
| if (mp->ma_keys->dk_lookup == lookdict_split) { | |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) { | |
| Py_DECREF(res); | |
| return NULL; | |
| } | |
| } | |
| ENSURE_ALLOWS_DELETIONS(mp); | |
| /* Pop last item */ | |
| ep0 = DK_ENTRIES(mp->ma_keys); | |
| i = mp->ma_keys->dk_nentries - 1; | |
| while (i >= 0 && ep0[i].me_value == NULL) { | |
| i--; | |
| } | |
| assert(i >= 0); | |
| ep = &ep0[i]; | |
| j = lookdict_index(mp->ma_keys, ep->me_hash, i); | |
| assert(j >= 0); | |
| assert(dictkeys_get_index(mp->ma_keys, j) == i); | |
| dictkeys_set_index(mp->ma_keys, j, DKIX_DUMMY); | |
| PyTuple_SET_ITEM(res, 0, ep->me_key); | |
| PyTuple_SET_ITEM(res, 1, ep->me_value); | |
| ep->me_key = NULL; | |
| ep->me_value = NULL; | |
| /* We can't dk_usable++ since there is DKIX_DUMMY in indices */ | |
| mp->ma_keys->dk_nentries = i; | |
| mp->ma_used--; | |
| mp->ma_version_tag = DICT_NEXT_VERSION(); | |
| assert(_PyDict_CheckConsistency(mp)); | |
| return res; | |
| } | |
| static int | |
| dict_traverse(PyObject *op, visitproc visit, void *arg) | |
| { | |
| PyDictObject *mp = (PyDictObject *)op; | |
| PyDictKeysObject *keys = mp->ma_keys; | |
| PyDictKeyEntry *entries = DK_ENTRIES(keys); | |
| Py_ssize_t i, n = keys->dk_nentries; | |
| if (keys->dk_lookup == lookdict) { | |
| for (i = 0; i < n; i++) { | |
| if (entries[i].me_value != NULL) { | |
| Py_VISIT(entries[i].me_value); | |
| Py_VISIT(entries[i].me_key); | |
| } | |
| } | |
| } | |
| else { | |
| if (mp->ma_values != NULL) { | |
| for (i = 0; i < n; i++) { | |
| Py_VISIT(mp->ma_values[i]); | |
| } | |
| } | |
| else { | |
| for (i = 0; i < n; i++) { | |
| Py_VISIT(entries[i].me_value); | |
| } | |
| } | |
| } | |
| return 0; | |
| } | |
| static int | |
| dict_tp_clear(PyObject *op) | |
| { | |
| PyDict_Clear(op); | |
| return 0; | |
| } | |
| static PyObject *dictiter_new(PyDictObject *, PyTypeObject *); | |
| Py_ssize_t | |
| _PyDict_SizeOf(PyDictObject *mp) | |
| { | |
| Py_ssize_t size, usable, res; | |
| size = DK_SIZE(mp->ma_keys); | |
| usable = USABLE_FRACTION(size); | |
| res = _PyObject_SIZE(Py_TYPE(mp)); | |
| if (mp->ma_values) | |
| res += usable * sizeof(PyObject*); | |
| /* If the dictionary is split, the keys portion is accounted-for | |
| in the type object. */ | |
| if (mp->ma_keys->dk_refcnt == 1) | |
| res += (sizeof(PyDictKeysObject) | |
| + DK_IXSIZE(mp->ma_keys) * size | |
| + sizeof(PyDictKeyEntry) * usable); | |
| return res; | |
| } | |
| Py_ssize_t | |
| _PyDict_KeysSize(PyDictKeysObject *keys) | |
| { | |
| return (sizeof(PyDictKeysObject) | |
| + DK_IXSIZE(keys) * DK_SIZE(keys) | |
| + USABLE_FRACTION(DK_SIZE(keys)) * sizeof(PyDictKeyEntry)); | |
| } | |
| static PyObject * | |
| dict_sizeof(PyDictObject *mp, PyObject *Py_UNUSED(ignored)) | |
| { | |
| return PyLong_FromSsize_t(_PyDict_SizeOf(mp)); | |
| } | |
| PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]"); | |
| PyDoc_STRVAR(sizeof__doc__, | |
| "D.__sizeof__() -> size of D in memory, in bytes"); | |
| PyDoc_STRVAR(pop__doc__, | |
| "D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n\ | |
| If key is not found, d is returned if given, otherwise KeyError is raised"); | |
| PyDoc_STRVAR(popitem__doc__, | |
| "D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\ | |
| 2-tuple; but raise KeyError if D is empty."); | |
| PyDoc_STRVAR(update__doc__, | |
| "D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n\ | |
| If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\n\ | |
| If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\n\ | |
| In either case, this is followed by: for k in F: D[k] = F[k]"); | |
| PyDoc_STRVAR(clear__doc__, | |
| "D.clear() -> None. Remove all items from D."); | |
| PyDoc_STRVAR(copy__doc__, | |
| "D.copy() -> a shallow copy of D"); | |
| /* Forward */ | |
| static PyObject *dictkeys_new(PyObject *, PyObject *); | |
| static PyObject *dictitems_new(PyObject *, PyObject *); | |
| static PyObject *dictvalues_new(PyObject *, PyObject *); | |
| PyDoc_STRVAR(keys__doc__, | |
| "D.keys() -> a set-like object providing a view on D's keys"); | |
| PyDoc_STRVAR(items__doc__, | |
| "D.items() -> a set-like object providing a view on D's items"); | |
| PyDoc_STRVAR(values__doc__, | |
| "D.values() -> an object providing a view on D's values"); | |
| static PyMethodDef mapp_methods[] = { | |
| DICT___CONTAINS___METHODDEF | |
| {"__getitem__", (PyCFunction)(void(*)(void))dict_subscript, METH_O | METH_COEXIST, | |
| getitem__doc__}, | |
| {"__sizeof__", (PyCFunction)(void(*)(void))dict_sizeof, METH_NOARGS, | |
| sizeof__doc__}, | |
| DICT_GET_METHODDEF | |
| DICT_SETDEFAULT_METHODDEF | |
| {"pop", (PyCFunction)dict_pop, METH_VARARGS, | |
| pop__doc__}, | |
| {"popitem", (PyCFunction)(void(*)(void))dict_popitem, METH_NOARGS, | |
| popitem__doc__}, | |
| {"keys", dictkeys_new, METH_NOARGS, | |
| keys__doc__}, | |
| {"items", dictitems_new, METH_NOARGS, | |
| items__doc__}, | |
| {"values", dictvalues_new, METH_NOARGS, | |
| values__doc__}, | |
| {"update", (PyCFunction)(void(*)(void))dict_update, METH_VARARGS | METH_KEYWORDS, | |
| update__doc__}, | |
| DICT_FROMKEYS_METHODDEF | |
| {"clear", (PyCFunction)dict_clear, METH_NOARGS, | |
| clear__doc__}, | |
| {"copy", (PyCFunction)dict_copy, METH_NOARGS, | |
| copy__doc__}, | |
| DICT___REVERSED___METHODDEF | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| /* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */ | |
| int | |
| PyDict_Contains(PyObject *op, PyObject *key) | |
| { | |
| Py_hash_t hash; | |
| Py_ssize_t ix; | |
| PyDictObject *mp = (PyDictObject *)op; | |
| PyObject *value; | |
| if (!PyUnicode_CheckExact(key) || | |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { | |
| hash = PyObject_Hash(key); | |
| if (hash == -1) | |
| return -1; | |
| } | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return -1; | |
| return (ix != DKIX_EMPTY && value != NULL); | |
| } | |
| /* Internal version of PyDict_Contains used when the hash value is already known */ | |
| int | |
| _PyDict_Contains(PyObject *op, PyObject *key, Py_hash_t hash) | |
| { | |
| PyDictObject *mp = (PyDictObject *)op; | |
| PyObject *value; | |
| Py_ssize_t ix; | |
| ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value); | |
| if (ix == DKIX_ERROR) | |
| return -1; | |
| return (ix != DKIX_EMPTY && value != NULL); | |
| } | |
| /* Hack to implement "key in dict" */ | |
| static PySequenceMethods dict_as_sequence = { | |
| 0, /* sq_length */ | |
| 0, /* sq_concat */ | |
| 0, /* sq_repeat */ | |
| 0, /* sq_item */ | |
| 0, /* sq_slice */ | |
| 0, /* sq_ass_item */ | |
| 0, /* sq_ass_slice */ | |
| PyDict_Contains, /* sq_contains */ | |
| 0, /* sq_inplace_concat */ | |
| 0, /* sq_inplace_repeat */ | |
| }; | |
| static PyObject * | |
| dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds) | |
| { | |
| PyObject *self; | |
| PyDictObject *d; | |
| assert(type != NULL && type->tp_alloc != NULL); | |
| self = type->tp_alloc(type, 0); | |
| if (self == NULL) | |
| return NULL; | |
| d = (PyDictObject *)self; | |
| /* The object has been implicitly tracked by tp_alloc */ | |
| if (type == &PyDict_Type) | |
| _PyObject_GC_UNTRACK(d); | |
| d->ma_used = 0; | |
| d->ma_version_tag = DICT_NEXT_VERSION(); | |
| d->ma_keys = new_keys_object(PyDict_MINSIZE); | |
| if (d->ma_keys == NULL) { | |
| Py_DECREF(self); | |
| return NULL; | |
| } | |
| assert(_PyDict_CheckConsistency(d)); | |
| return self; | |
| } | |
| static int | |
| dict_init(PyObject *self, PyObject *args, PyObject *kwds) | |
| { | |
| return dict_update_common(self, args, kwds, "dict"); | |
| } | |
| static PyObject * | |
| dict_iter(PyDictObject *dict) | |
| { | |
| return dictiter_new(dict, &PyDictIterKey_Type); | |
| } | |
| PyDoc_STRVAR(dictionary_doc, | |
| "dict() -> new empty dictionary\n" | |
| "dict(mapping) -> new dictionary initialized from a mapping object's\n" | |
| " (key, value) pairs\n" | |
| "dict(iterable) -> new dictionary initialized as if via:\n" | |
| " d = {}\n" | |
| " for k, v in iterable:\n" | |
| " d[k] = v\n" | |
| "dict(**kwargs) -> new dictionary initialized with the name=value pairs\n" | |
| " in the keyword argument list. For example: dict(one=1, two=2)"); | |
| PyTypeObject PyDict_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict", | |
| sizeof(PyDictObject), | |
| 0, | |
| (destructor)dict_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| (reprfunc)dict_repr, /* tp_repr */ | |
| 0, /* tp_as_number */ | |
| &dict_as_sequence, /* tp_as_sequence */ | |
| &dict_as_mapping, /* tp_as_mapping */ | |
| PyObject_HashNotImplemented, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS, /* tp_flags */ | |
| dictionary_doc, /* tp_doc */ | |
| dict_traverse, /* tp_traverse */ | |
| dict_tp_clear, /* tp_clear */ | |
| dict_richcompare, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| (getiterfunc)dict_iter, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| mapp_methods, /* tp_methods */ | |
| 0, /* tp_members */ | |
| 0, /* tp_getset */ | |
| 0, /* tp_base */ | |
| 0, /* tp_dict */ | |
| 0, /* tp_descr_get */ | |
| 0, /* tp_descr_set */ | |
| 0, /* tp_dictoffset */ | |
| dict_init, /* tp_init */ | |
| PyType_GenericAlloc, /* tp_alloc */ | |
| dict_new, /* tp_new */ | |
| PyObject_GC_Del, /* tp_free */ | |
| }; | |
| PyObject * | |
| _PyDict_GetItemId(PyObject *dp, struct _Py_Identifier *key) | |
| { | |
| PyObject *kv; | |
| kv = _PyUnicode_FromId(key); /* borrowed */ | |
| if (kv == NULL) { | |
| PyErr_Clear(); | |
| return NULL; | |
| } | |
| return PyDict_GetItem(dp, kv); | |
| } | |
| /* For backward compatibility with old dictionary interface */ | |
| PyObject * | |
| PyDict_GetItemString(PyObject *v, const char *key) | |
| { | |
| PyObject *kv, *rv; | |
| kv = PyUnicode_FromString(key); | |
| if (kv == NULL) { | |
| PyErr_Clear(); | |
| return NULL; | |
| } | |
| rv = PyDict_GetItem(v, kv); | |
| Py_DECREF(kv); | |
| return rv; | |
| } | |
| int | |
| _PyDict_SetItemId(PyObject *v, struct _Py_Identifier *key, PyObject *item) | |
| { | |
| PyObject *kv; | |
| kv = _PyUnicode_FromId(key); /* borrowed */ | |
| if (kv == NULL) | |
| return -1; | |
| return PyDict_SetItem(v, kv, item); | |
| } | |
| int | |
| PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) | |
| { | |
| PyObject *kv; | |
| int err; | |
| kv = PyUnicode_FromString(key); | |
| if (kv == NULL) | |
| return -1; | |
| PyUnicode_InternInPlace(&kv); /* XXX Should we really? */ | |
| err = PyDict_SetItem(v, kv, item); | |
| Py_DECREF(kv); | |
| return err; | |
| } | |
| int | |
| _PyDict_DelItemId(PyObject *v, _Py_Identifier *key) | |
| { | |
| PyObject *kv = _PyUnicode_FromId(key); /* borrowed */ | |
| if (kv == NULL) | |
| return -1; | |
| return PyDict_DelItem(v, kv); | |
| } | |
| int | |
| PyDict_DelItemString(PyObject *v, const char *key) | |
| { | |
| PyObject *kv; | |
| int err; | |
| kv = PyUnicode_FromString(key); | |
| if (kv == NULL) | |
| return -1; | |
| err = PyDict_DelItem(v, kv); | |
| Py_DECREF(kv); | |
| return err; | |
| } | |
| /* Dictionary iterator types */ | |
| typedef struct { | |
| PyObject_HEAD | |
| PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */ | |
| Py_ssize_t di_used; | |
| Py_ssize_t di_pos; | |
| PyObject* di_result; /* reusable result tuple for iteritems */ | |
| Py_ssize_t len; | |
| } dictiterobject; | |
| static PyObject * | |
| dictiter_new(PyDictObject *dict, PyTypeObject *itertype) | |
| { | |
| dictiterobject *di; | |
| di = PyObject_GC_New(dictiterobject, itertype); | |
| if (di == NULL) { | |
| return NULL; | |
| } | |
| Py_INCREF(dict); | |
| di->di_dict = dict; | |
| di->di_used = dict->ma_used; | |
| di->len = dict->ma_used; | |
| if ((itertype == &PyDictRevIterKey_Type || | |
| itertype == &PyDictRevIterItem_Type || | |
| itertype == &PyDictRevIterValue_Type) && dict->ma_used) { | |
| di->di_pos = dict->ma_keys->dk_nentries - 1; | |
| } | |
| else { | |
| di->di_pos = 0; | |
| } | |
| if (itertype == &PyDictIterItem_Type || | |
| itertype == &PyDictRevIterItem_Type) { | |
| di->di_result = PyTuple_Pack(2, Py_None, Py_None); | |
| if (di->di_result == NULL) { | |
| Py_DECREF(di); | |
| return NULL; | |
| } | |
| } | |
| else { | |
| di->di_result = NULL; | |
| } | |
| _PyObject_GC_TRACK(di); | |
| return (PyObject *)di; | |
| } | |
| static void | |
| dictiter_dealloc(dictiterobject *di) | |
| { | |
| /* bpo-31095: UnTrack is needed before calling any callbacks */ | |
| _PyObject_GC_UNTRACK(di); | |
| Py_XDECREF(di->di_dict); | |
| Py_XDECREF(di->di_result); | |
| PyObject_GC_Del(di); | |
| } | |
| static int | |
| dictiter_traverse(dictiterobject *di, visitproc visit, void *arg) | |
| { | |
| Py_VISIT(di->di_dict); | |
| Py_VISIT(di->di_result); | |
| return 0; | |
| } | |
| static PyObject * | |
| dictiter_len(dictiterobject *di, PyObject *Py_UNUSED(ignored)) | |
| { | |
| Py_ssize_t len = 0; | |
| if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used) | |
| len = di->len; | |
| return PyLong_FromSize_t(len); | |
| } | |
| PyDoc_STRVAR(length_hint_doc, | |
| "Private method returning an estimate of len(list(it))."); | |
| static PyObject * | |
| dictiter_reduce(dictiterobject *di, PyObject *Py_UNUSED(ignored)); | |
| PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); | |
| static PyMethodDef dictiter_methods[] = { | |
| {"__length_hint__", (PyCFunction)(void(*)(void))dictiter_len, METH_NOARGS, | |
| length_hint_doc}, | |
| {"__reduce__", (PyCFunction)(void(*)(void))dictiter_reduce, METH_NOARGS, | |
| reduce_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| static PyObject* | |
| dictiter_iternextkey(dictiterobject *di) | |
| { | |
| PyObject *key; | |
| Py_ssize_t i; | |
| PyDictKeysObject *k; | |
| PyDictObject *d = di->di_dict; | |
| if (d == NULL) | |
| return NULL; | |
| assert (PyDict_Check(d)); | |
| if (di->di_used != d->ma_used) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary changed size during iteration"); | |
| di->di_used = -1; /* Make this state sticky */ | |
| return NULL; | |
| } | |
| i = di->di_pos; | |
| k = d->ma_keys; | |
| assert(i >= 0); | |
| if (d->ma_values) { | |
| if (i >= d->ma_used) | |
| goto fail; | |
| key = DK_ENTRIES(k)[i].me_key; | |
| assert(d->ma_values[i] != NULL); | |
| } | |
| else { | |
| Py_ssize_t n = k->dk_nentries; | |
| PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i]; | |
| while (i < n && entry_ptr->me_value == NULL) { | |
| entry_ptr++; | |
| i++; | |
| } | |
| if (i >= n) | |
| goto fail; | |
| key = entry_ptr->me_key; | |
| } | |
| // We found an element (key), but did not expect it | |
| if (di->len == 0) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary keys changed during iteration"); | |
| goto fail; | |
| } | |
| di->di_pos = i+1; | |
| di->len--; | |
| Py_INCREF(key); | |
| return key; | |
| fail: | |
| di->di_dict = NULL; | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| PyTypeObject PyDictIterKey_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_keyiterator", /* tp_name */ | |
| sizeof(dictiterobject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictiter_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| 0, /* tp_repr */ | |
| 0, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictiter_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| PyObject_SelfIter, /* tp_iter */ | |
| (iternextfunc)dictiter_iternextkey, /* tp_iternext */ | |
| dictiter_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| static PyObject * | |
| dictiter_iternextvalue(dictiterobject *di) | |
| { | |
| PyObject *value; | |
| Py_ssize_t i; | |
| PyDictObject *d = di->di_dict; | |
| if (d == NULL) | |
| return NULL; | |
| assert (PyDict_Check(d)); | |
| if (di->di_used != d->ma_used) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary changed size during iteration"); | |
| di->di_used = -1; /* Make this state sticky */ | |
| return NULL; | |
| } | |
| i = di->di_pos; | |
| assert(i >= 0); | |
| if (d->ma_values) { | |
| if (i >= d->ma_used) | |
| goto fail; | |
| value = d->ma_values[i]; | |
| assert(value != NULL); | |
| } | |
| else { | |
| Py_ssize_t n = d->ma_keys->dk_nentries; | |
| PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i]; | |
| while (i < n && entry_ptr->me_value == NULL) { | |
| entry_ptr++; | |
| i++; | |
| } | |
| if (i >= n) | |
| goto fail; | |
| value = entry_ptr->me_value; | |
| } | |
| // We found an element, but did not expect it | |
| if (di->len == 0) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary keys changed during iteration"); | |
| goto fail; | |
| } | |
| di->di_pos = i+1; | |
| di->len--; | |
| Py_INCREF(value); | |
| return value; | |
| fail: | |
| di->di_dict = NULL; | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| PyTypeObject PyDictIterValue_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_valueiterator", /* tp_name */ | |
| sizeof(dictiterobject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictiter_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| 0, /* tp_repr */ | |
| 0, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictiter_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| PyObject_SelfIter, /* tp_iter */ | |
| (iternextfunc)dictiter_iternextvalue, /* tp_iternext */ | |
| dictiter_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| static PyObject * | |
| dictiter_iternextitem(dictiterobject *di) | |
| { | |
| PyObject *key, *value, *result; | |
| Py_ssize_t i; | |
| PyDictObject *d = di->di_dict; | |
| if (d == NULL) | |
| return NULL; | |
| assert (PyDict_Check(d)); | |
| if (di->di_used != d->ma_used) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary changed size during iteration"); | |
| di->di_used = -1; /* Make this state sticky */ | |
| return NULL; | |
| } | |
| i = di->di_pos; | |
| assert(i >= 0); | |
| if (d->ma_values) { | |
| if (i >= d->ma_used) | |
| goto fail; | |
| key = DK_ENTRIES(d->ma_keys)[i].me_key; | |
| value = d->ma_values[i]; | |
| assert(value != NULL); | |
| } | |
| else { | |
| Py_ssize_t n = d->ma_keys->dk_nentries; | |
| PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i]; | |
| while (i < n && entry_ptr->me_value == NULL) { | |
| entry_ptr++; | |
| i++; | |
| } | |
| if (i >= n) | |
| goto fail; | |
| key = entry_ptr->me_key; | |
| value = entry_ptr->me_value; | |
| } | |
| // We found an element, but did not expect it | |
| if (di->len == 0) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary keys changed during iteration"); | |
| goto fail; | |
| } | |
| di->di_pos = i+1; | |
| di->len--; | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| result = di->di_result; | |
| if (Py_REFCNT(result) == 1) { | |
| PyObject *oldkey = PyTuple_GET_ITEM(result, 0); | |
| PyObject *oldvalue = PyTuple_GET_ITEM(result, 1); | |
| PyTuple_SET_ITEM(result, 0, key); /* steals reference */ | |
| PyTuple_SET_ITEM(result, 1, value); /* steals reference */ | |
| Py_INCREF(result); | |
| Py_DECREF(oldkey); | |
| Py_DECREF(oldvalue); | |
| } | |
| else { | |
| result = PyTuple_New(2); | |
| if (result == NULL) | |
| return NULL; | |
| PyTuple_SET_ITEM(result, 0, key); /* steals reference */ | |
| PyTuple_SET_ITEM(result, 1, value); /* steals reference */ | |
| } | |
| return result; | |
| fail: | |
| di->di_dict = NULL; | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| PyTypeObject PyDictIterItem_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_itemiterator", /* tp_name */ | |
| sizeof(dictiterobject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictiter_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| 0, /* tp_repr */ | |
| 0, /* tp_as_number */ | |
| 0, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictiter_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| PyObject_SelfIter, /* tp_iter */ | |
| (iternextfunc)dictiter_iternextitem, /* tp_iternext */ | |
| dictiter_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| /* dictreviter */ | |
| static PyObject * | |
| dictreviter_iternext(dictiterobject *di) | |
| { | |
| PyDictObject *d = di->di_dict; | |
| if (d == NULL) { | |
| return NULL; | |
| } | |
| assert (PyDict_Check(d)); | |
| if (di->di_used != d->ma_used) { | |
| PyErr_SetString(PyExc_RuntimeError, | |
| "dictionary changed size during iteration"); | |
| di->di_used = -1; /* Make this state sticky */ | |
| return NULL; | |
| } | |
| Py_ssize_t i = di->di_pos; | |
| PyDictKeysObject *k = d->ma_keys; | |
| PyObject *key, *value, *result; | |
| if (d->ma_values) { | |
| if (i < 0) { | |
| goto fail; | |
| } | |
| key = DK_ENTRIES(k)[i].me_key; | |
| value = d->ma_values[i]; | |
| assert (value != NULL); | |
| } | |
| else { | |
| PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i]; | |
| while (i >= 0 && entry_ptr->me_value == NULL) { | |
| entry_ptr--; | |
| i--; | |
| } | |
| if (i < 0) { | |
| goto fail; | |
| } | |
| key = entry_ptr->me_key; | |
| value = entry_ptr->me_value; | |
| } | |
| di->di_pos = i-1; | |
| di->len--; | |
| if (Py_TYPE(di) == &PyDictRevIterKey_Type) { | |
| Py_INCREF(key); | |
| return key; | |
| } | |
| else if (Py_TYPE(di) == &PyDictRevIterValue_Type) { | |
| Py_INCREF(value); | |
| return value; | |
| } | |
| else if (Py_TYPE(di) == &PyDictRevIterItem_Type) { | |
| Py_INCREF(key); | |
| Py_INCREF(value); | |
| result = di->di_result; | |
| if (Py_REFCNT(result) == 1) { | |
| PyObject *oldkey = PyTuple_GET_ITEM(result, 0); | |
| PyObject *oldvalue = PyTuple_GET_ITEM(result, 1); | |
| PyTuple_SET_ITEM(result, 0, key); /* steals reference */ | |
| PyTuple_SET_ITEM(result, 1, value); /* steals reference */ | |
| Py_INCREF(result); | |
| Py_DECREF(oldkey); | |
| Py_DECREF(oldvalue); | |
| } | |
| else { | |
| result = PyTuple_New(2); | |
| if (result == NULL) { | |
| return NULL; | |
| } | |
| PyTuple_SET_ITEM(result, 0, key); /* steals reference */ | |
| PyTuple_SET_ITEM(result, 1, value); /* steals reference */ | |
| } | |
| return result; | |
| } | |
| else { | |
| Py_UNREACHABLE(); | |
| } | |
| fail: | |
| di->di_dict = NULL; | |
| Py_DECREF(d); | |
| return NULL; | |
| } | |
| PyTypeObject PyDictRevIterKey_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_reversekeyiterator", | |
| sizeof(dictiterobject), | |
| .tp_dealloc = (destructor)dictiter_dealloc, | |
| .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, | |
| .tp_traverse = (traverseproc)dictiter_traverse, | |
| .tp_iter = PyObject_SelfIter, | |
| .tp_iternext = (iternextfunc)dictreviter_iternext, | |
| .tp_methods = dictiter_methods | |
| }; | |
| /*[clinic input] | |
| dict.__reversed__ | |
| Return a reverse iterator over the dict keys. | |
| [clinic start generated code]*/ | |
| static PyObject * | |
| dict___reversed___impl(PyDictObject *self) | |
| /*[clinic end generated code: output=e674483336d1ed51 input=23210ef3477d8c4d]*/ | |
| { | |
| assert (PyDict_Check(self)); | |
| return dictiter_new(self, &PyDictRevIterKey_Type); | |
| } | |
| static PyObject * | |
| dictiter_reduce(dictiterobject *di, PyObject *Py_UNUSED(ignored)) | |
| { | |
| _Py_IDENTIFIER(iter); | |
| /* copy the iterator state */ | |
| dictiterobject tmp = *di; | |
| Py_XINCREF(tmp.di_dict); | |
| PyObject *list = PySequence_List((PyObject*)&tmp); | |
| Py_XDECREF(tmp.di_dict); | |
| if (list == NULL) { | |
| return NULL; | |
| } | |
| return Py_BuildValue("N(N)", _PyEval_GetBuiltinId(&PyId_iter), list); | |
| } | |
| PyTypeObject PyDictRevIterItem_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_reverseitemiterator", | |
| sizeof(dictiterobject), | |
| .tp_dealloc = (destructor)dictiter_dealloc, | |
| .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, | |
| .tp_traverse = (traverseproc)dictiter_traverse, | |
| .tp_iter = PyObject_SelfIter, | |
| .tp_iternext = (iternextfunc)dictreviter_iternext, | |
| .tp_methods = dictiter_methods | |
| }; | |
| PyTypeObject PyDictRevIterValue_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_reversevalueiterator", | |
| sizeof(dictiterobject), | |
| .tp_dealloc = (destructor)dictiter_dealloc, | |
| .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, | |
| .tp_traverse = (traverseproc)dictiter_traverse, | |
| .tp_iter = PyObject_SelfIter, | |
| .tp_iternext = (iternextfunc)dictreviter_iternext, | |
| .tp_methods = dictiter_methods | |
| }; | |
| /***********************************************/ | |
| /* View objects for keys(), items(), values(). */ | |
| /***********************************************/ | |
| /* The instance lay-out is the same for all three; but the type differs. */ | |
| static void | |
| dictview_dealloc(_PyDictViewObject *dv) | |
| { | |
| /* bpo-31095: UnTrack is needed before calling any callbacks */ | |
| _PyObject_GC_UNTRACK(dv); | |
| Py_XDECREF(dv->dv_dict); | |
| PyObject_GC_Del(dv); | |
| } | |
| static int | |
| dictview_traverse(_PyDictViewObject *dv, visitproc visit, void *arg) | |
| { | |
| Py_VISIT(dv->dv_dict); | |
| return 0; | |
| } | |
| static Py_ssize_t | |
| dictview_len(_PyDictViewObject *dv) | |
| { | |
| Py_ssize_t len = 0; | |
| if (dv->dv_dict != NULL) | |
| len = dv->dv_dict->ma_used; | |
| return len; | |
| } | |
| PyObject * | |
| _PyDictView_New(PyObject *dict, PyTypeObject *type) | |
| { | |
| _PyDictViewObject *dv; | |
| if (dict == NULL) { | |
| PyErr_BadInternalCall(); | |
| return NULL; | |
| } | |
| if (!PyDict_Check(dict)) { | |
| /* XXX Get rid of this restriction later */ | |
| PyErr_Format(PyExc_TypeError, | |
| "%s() requires a dict argument, not '%s'", | |
| type->tp_name, dict->ob_type->tp_name); | |
| return NULL; | |
| } | |
| dv = PyObject_GC_New(_PyDictViewObject, type); | |
| if (dv == NULL) | |
| return NULL; | |
| Py_INCREF(dict); | |
| dv->dv_dict = (PyDictObject *)dict; | |
| _PyObject_GC_TRACK(dv); | |
| return (PyObject *)dv; | |
| } | |
| /* TODO(guido): The views objects are not complete: | |
| * support more set operations | |
| * support arbitrary mappings? | |
| - either these should be static or exported in dictobject.h | |
| - if public then they should probably be in builtins | |
| */ | |
| /* Return 1 if self is a subset of other, iterating over self; | |
| 0 if not; -1 if an error occurred. */ | |
| static int | |
| all_contained_in(PyObject *self, PyObject *other) | |
| { | |
| PyObject *iter = PyObject_GetIter(self); | |
| int ok = 1; | |
| if (iter == NULL) | |
| return -1; | |
| for (;;) { | |
| PyObject *next = PyIter_Next(iter); | |
| if (next == NULL) { | |
| if (PyErr_Occurred()) | |
| ok = -1; | |
| break; | |
| } | |
| ok = PySequence_Contains(other, next); | |
| Py_DECREF(next); | |
| if (ok <= 0) | |
| break; | |
| } | |
| Py_DECREF(iter); | |
| return ok; | |
| } | |
| static PyObject * | |
| dictview_richcompare(PyObject *self, PyObject *other, int op) | |
| { | |
| Py_ssize_t len_self, len_other; | |
| int ok; | |
| PyObject *result; | |
| assert(self != NULL); | |
| assert(PyDictViewSet_Check(self)); | |
| assert(other != NULL); | |
| if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other)) | |
| Py_RETURN_NOTIMPLEMENTED; | |
| len_self = PyObject_Size(self); | |
| if (len_self < 0) | |
| return NULL; | |
| len_other = PyObject_Size(other); | |
| if (len_other < 0) | |
| return NULL; | |
| ok = 0; | |
| switch(op) { | |
| case Py_NE: | |
| case Py_EQ: | |
| if (len_self == len_other) | |
| ok = all_contained_in(self, other); | |
| if (op == Py_NE && ok >= 0) | |
| ok = !ok; | |
| break; | |
| case Py_LT: | |
| if (len_self < len_other) | |
| ok = all_contained_in(self, other); | |
| break; | |
| case Py_LE: | |
| if (len_self <= len_other) | |
| ok = all_contained_in(self, other); | |
| break; | |
| case Py_GT: | |
| if (len_self > len_other) | |
| ok = all_contained_in(other, self); | |
| break; | |
| case Py_GE: | |
| if (len_self >= len_other) | |
| ok = all_contained_in(other, self); | |
| break; | |
| } | |
| if (ok < 0) | |
| return NULL; | |
| result = ok ? Py_True : Py_False; | |
| Py_INCREF(result); | |
| return result; | |
| } | |
| static PyObject * | |
| dictview_repr(_PyDictViewObject *dv) | |
| { | |
| PyObject *seq; | |
| PyObject *result = NULL; | |
| Py_ssize_t rc; | |
| rc = Py_ReprEnter((PyObject *)dv); | |
| if (rc != 0) { | |
| return rc > 0 ? PyUnicode_FromString("...") : NULL; | |
| } | |
| seq = PySequence_List((PyObject *)dv); | |
| if (seq == NULL) { | |
| goto Done; | |
| } | |
| result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq); | |
| Py_DECREF(seq); | |
| Done: | |
| Py_ReprLeave((PyObject *)dv); | |
| return result; | |
| } | |
| /*** dict_keys ***/ | |
| static PyObject * | |
| dictkeys_iter(_PyDictViewObject *dv) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictIterKey_Type); | |
| } | |
| static int | |
| dictkeys_contains(_PyDictViewObject *dv, PyObject *obj) | |
| { | |
| if (dv->dv_dict == NULL) | |
| return 0; | |
| return PyDict_Contains((PyObject *)dv->dv_dict, obj); | |
| } | |
| static PySequenceMethods dictkeys_as_sequence = { | |
| (lenfunc)dictview_len, /* sq_length */ | |
| 0, /* sq_concat */ | |
| 0, /* sq_repeat */ | |
| 0, /* sq_item */ | |
| 0, /* sq_slice */ | |
| 0, /* sq_ass_item */ | |
| 0, /* sq_ass_slice */ | |
| (objobjproc)dictkeys_contains, /* sq_contains */ | |
| }; | |
| static PyObject* | |
| dictviews_sub(PyObject* self, PyObject *other) | |
| { | |
| PyObject *result = PySet_New(self); | |
| PyObject *tmp; | |
| _Py_IDENTIFIER(difference_update); | |
| if (result == NULL) | |
| return NULL; | |
| tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_difference_update, other, NULL); | |
| if (tmp == NULL) { | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| Py_DECREF(tmp); | |
| return result; | |
| } | |
| PyObject* | |
| _PyDictView_Intersect(PyObject* self, PyObject *other) | |
| { | |
| PyObject *result = PySet_New(self); | |
| PyObject *tmp; | |
| _Py_IDENTIFIER(intersection_update); | |
| if (result == NULL) | |
| return NULL; | |
| tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_intersection_update, other, NULL); | |
| if (tmp == NULL) { | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| Py_DECREF(tmp); | |
| return result; | |
| } | |
| static PyObject* | |
| dictviews_or(PyObject* self, PyObject *other) | |
| { | |
| PyObject *result = PySet_New(self); | |
| PyObject *tmp; | |
| _Py_IDENTIFIER(update); | |
| if (result == NULL) | |
| return NULL; | |
| tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_update, other, NULL); | |
| if (tmp == NULL) { | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| Py_DECREF(tmp); | |
| return result; | |
| } | |
| static PyObject* | |
| dictviews_xor(PyObject* self, PyObject *other) | |
| { | |
| PyObject *result = PySet_New(self); | |
| PyObject *tmp; | |
| _Py_IDENTIFIER(symmetric_difference_update); | |
| if (result == NULL) | |
| return NULL; | |
| tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_symmetric_difference_update, other, NULL); | |
| if (tmp == NULL) { | |
| Py_DECREF(result); | |
| return NULL; | |
| } | |
| Py_DECREF(tmp); | |
| return result; | |
| } | |
| static PyNumberMethods dictviews_as_number = { | |
| 0, /*nb_add*/ | |
| (binaryfunc)dictviews_sub, /*nb_subtract*/ | |
| 0, /*nb_multiply*/ | |
| 0, /*nb_remainder*/ | |
| 0, /*nb_divmod*/ | |
| 0, /*nb_power*/ | |
| 0, /*nb_negative*/ | |
| 0, /*nb_positive*/ | |
| 0, /*nb_absolute*/ | |
| 0, /*nb_bool*/ | |
| 0, /*nb_invert*/ | |
| 0, /*nb_lshift*/ | |
| 0, /*nb_rshift*/ | |
| (binaryfunc)_PyDictView_Intersect, /*nb_and*/ | |
| (binaryfunc)dictviews_xor, /*nb_xor*/ | |
| (binaryfunc)dictviews_or, /*nb_or*/ | |
| }; | |
| static PyObject* | |
| dictviews_isdisjoint(PyObject *self, PyObject *other) | |
| { | |
| PyObject *it; | |
| PyObject *item = NULL; | |
| if (self == other) { | |
| if (dictview_len((_PyDictViewObject *)self) == 0) | |
| Py_RETURN_TRUE; | |
| else | |
| Py_RETURN_FALSE; | |
| } | |
| /* Iterate over the shorter object (only if other is a set, | |
| * because PySequence_Contains may be expensive otherwise): */ | |
| if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) { | |
| Py_ssize_t len_self = dictview_len((_PyDictViewObject *)self); | |
| Py_ssize_t len_other = PyObject_Size(other); | |
| if (len_other == -1) | |
| return NULL; | |
| if ((len_other > len_self)) { | |
| PyObject *tmp = other; | |
| other = self; | |
| self = tmp; | |
| } | |
| } | |
| it = PyObject_GetIter(other); | |
| if (it == NULL) | |
| return NULL; | |
| while ((item = PyIter_Next(it)) != NULL) { | |
| int contains = PySequence_Contains(self, item); | |
| Py_DECREF(item); | |
| if (contains == -1) { | |
| Py_DECREF(it); | |
| return NULL; | |
| } | |
| if (contains) { | |
| Py_DECREF(it); | |
| Py_RETURN_FALSE; | |
| } | |
| } | |
| Py_DECREF(it); | |
| if (PyErr_Occurred()) | |
| return NULL; /* PyIter_Next raised an exception. */ | |
| Py_RETURN_TRUE; | |
| } | |
| PyDoc_STRVAR(isdisjoint_doc, | |
| "Return True if the view and the given iterable have a null intersection."); | |
| static PyObject* dictkeys_reversed(_PyDictViewObject *dv, PyObject *Py_UNUSED(ignored)); | |
| PyDoc_STRVAR(reversed_keys_doc, | |
| "Return a reverse iterator over the dict keys."); | |
| static PyMethodDef dictkeys_methods[] = { | |
| {"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O, | |
| isdisjoint_doc}, | |
| {"__reversed__", (PyCFunction)(void(*)(void))dictkeys_reversed, METH_NOARGS, | |
| reversed_keys_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| PyTypeObject PyDictKeys_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_keys", /* tp_name */ | |
| sizeof(_PyDictViewObject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictview_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| (reprfunc)dictview_repr, /* tp_repr */ | |
| &dictviews_as_number, /* tp_as_number */ | |
| &dictkeys_as_sequence, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictview_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| dictview_richcompare, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| (getiterfunc)dictkeys_iter, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| dictkeys_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| static PyObject * | |
| dictkeys_new(PyObject *dict, PyObject *Py_UNUSED(ignored)) | |
| { | |
| return _PyDictView_New(dict, &PyDictKeys_Type); | |
| } | |
| static PyObject * | |
| dictkeys_reversed(_PyDictViewObject *dv, PyObject *Py_UNUSED(ignored)) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictRevIterKey_Type); | |
| } | |
| /*** dict_items ***/ | |
| static PyObject * | |
| dictitems_iter(_PyDictViewObject *dv) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictIterItem_Type); | |
| } | |
| static int | |
| dictitems_contains(_PyDictViewObject *dv, PyObject *obj) | |
| { | |
| int result; | |
| PyObject *key, *value, *found; | |
| if (dv->dv_dict == NULL) | |
| return 0; | |
| if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2) | |
| return 0; | |
| key = PyTuple_GET_ITEM(obj, 0); | |
| value = PyTuple_GET_ITEM(obj, 1); | |
| found = PyDict_GetItemWithError((PyObject *)dv->dv_dict, key); | |
| if (found == NULL) { | |
| if (PyErr_Occurred()) | |
| return -1; | |
| return 0; | |
| } | |
| Py_INCREF(found); | |
| result = PyObject_RichCompareBool(value, found, Py_EQ); | |
| Py_DECREF(found); | |
| return result; | |
| } | |
| static PySequenceMethods dictitems_as_sequence = { | |
| (lenfunc)dictview_len, /* sq_length */ | |
| 0, /* sq_concat */ | |
| 0, /* sq_repeat */ | |
| 0, /* sq_item */ | |
| 0, /* sq_slice */ | |
| 0, /* sq_ass_item */ | |
| 0, /* sq_ass_slice */ | |
| (objobjproc)dictitems_contains, /* sq_contains */ | |
| }; | |
| static PyObject* dictitems_reversed(_PyDictViewObject *dv); | |
| PyDoc_STRVAR(reversed_items_doc, | |
| "Return a reverse iterator over the dict items."); | |
| static PyMethodDef dictitems_methods[] = { | |
| {"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O, | |
| isdisjoint_doc}, | |
| {"__reversed__", (PyCFunction)(void(*)(void))dictitems_reversed, METH_NOARGS, | |
| reversed_items_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| PyTypeObject PyDictItems_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_items", /* tp_name */ | |
| sizeof(_PyDictViewObject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictview_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| (reprfunc)dictview_repr, /* tp_repr */ | |
| &dictviews_as_number, /* tp_as_number */ | |
| &dictitems_as_sequence, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictview_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| dictview_richcompare, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| (getiterfunc)dictitems_iter, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| dictitems_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| static PyObject * | |
| dictitems_new(PyObject *dict, PyObject *Py_UNUSED(ignored)) | |
| { | |
| return _PyDictView_New(dict, &PyDictItems_Type); | |
| } | |
| static PyObject * | |
| dictitems_reversed(_PyDictViewObject *dv) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictRevIterItem_Type); | |
| } | |
| /*** dict_values ***/ | |
| static PyObject * | |
| dictvalues_iter(_PyDictViewObject *dv) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictIterValue_Type); | |
| } | |
| static PySequenceMethods dictvalues_as_sequence = { | |
| (lenfunc)dictview_len, /* sq_length */ | |
| 0, /* sq_concat */ | |
| 0, /* sq_repeat */ | |
| 0, /* sq_item */ | |
| 0, /* sq_slice */ | |
| 0, /* sq_ass_item */ | |
| 0, /* sq_ass_slice */ | |
| (objobjproc)0, /* sq_contains */ | |
| }; | |
| static PyObject* dictvalues_reversed(_PyDictViewObject *dv); | |
| PyDoc_STRVAR(reversed_values_doc, | |
| "Return a reverse iterator over the dict values."); | |
| static PyMethodDef dictvalues_methods[] = { | |
| {"__reversed__", (PyCFunction)(void(*)(void))dictvalues_reversed, METH_NOARGS, | |
| reversed_values_doc}, | |
| {NULL, NULL} /* sentinel */ | |
| }; | |
| PyTypeObject PyDictValues_Type = { | |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) | |
| "dict_values", /* tp_name */ | |
| sizeof(_PyDictViewObject), /* tp_basicsize */ | |
| 0, /* tp_itemsize */ | |
| /* methods */ | |
| (destructor)dictview_dealloc, /* tp_dealloc */ | |
| 0, /* tp_print */ | |
| 0, /* tp_getattr */ | |
| 0, /* tp_setattr */ | |
| 0, /* tp_reserved */ | |
| (reprfunc)dictview_repr, /* tp_repr */ | |
| 0, /* tp_as_number */ | |
| &dictvalues_as_sequence, /* tp_as_sequence */ | |
| 0, /* tp_as_mapping */ | |
| 0, /* tp_hash */ | |
| 0, /* tp_call */ | |
| 0, /* tp_str */ | |
| PyObject_GenericGetAttr, /* tp_getattro */ | |
| 0, /* tp_setattro */ | |
| 0, /* tp_as_buffer */ | |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ | |
| 0, /* tp_doc */ | |
| (traverseproc)dictview_traverse, /* tp_traverse */ | |
| 0, /* tp_clear */ | |
| 0, /* tp_richcompare */ | |
| 0, /* tp_weaklistoffset */ | |
| (getiterfunc)dictvalues_iter, /* tp_iter */ | |
| 0, /* tp_iternext */ | |
| dictvalues_methods, /* tp_methods */ | |
| 0, | |
| }; | |
| static PyObject * | |
| dictvalues_new(PyObject *dict, PyObject *Py_UNUSED(ignored)) | |
| { | |
| return _PyDictView_New(dict, &PyDictValues_Type); | |
| } | |
| static PyObject * | |
| dictvalues_reversed(_PyDictViewObject *dv) | |
| { | |
| if (dv->dv_dict == NULL) { | |
| Py_RETURN_NONE; | |
| } | |
| return dictiter_new(dv->dv_dict, &PyDictRevIterValue_Type); | |
| } | |
| /* Returns NULL if cannot allocate a new PyDictKeysObject, | |
| but does not set an error */ | |
| PyDictKeysObject * | |
| _PyDict_NewKeysForClass(void) | |
| { | |
| PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE); | |
| if (keys == NULL) | |
| PyErr_Clear(); | |
| else | |
| keys->dk_lookup = lookdict_split; | |
| return keys; | |
| } | |
| #define CACHED_KEYS(tp) (((PyHeapTypeObject*)tp)->ht_cached_keys) | |
| PyObject * | |
| PyObject_GenericGetDict(PyObject *obj, void *context) | |
| { | |
| PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj); | |
| if (dictptr == NULL) { | |
| PyErr_SetString(PyExc_AttributeError, | |
| "This object has no __dict__"); | |
| return NULL; | |
| } | |
| dict = *dictptr; | |
| if (dict == NULL) { | |
| PyTypeObject *tp = Py_TYPE(obj); | |
| if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && CACHED_KEYS(tp)) { | |
| dictkeys_incref(CACHED_KEYS(tp)); | |
| *dictptr = dict = new_dict_with_shared_keys(CACHED_KEYS(tp)); | |
| } | |
| else { | |
| *dictptr = dict = PyDict_New(); | |
| } | |
| } | |
| Py_XINCREF(dict); | |
| return dict; | |
| } | |
| int | |
| _PyObjectDict_SetItem(PyTypeObject *tp, PyObject **dictptr, | |
| PyObject *key, PyObject *value) | |
| { | |
| PyObject *dict; | |
| int res; | |
| PyDictKeysObject *cached; | |
| assert(dictptr != NULL); | |
| if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && (cached = CACHED_KEYS(tp))) { | |
| assert(dictptr != NULL); | |
| dict = *dictptr; | |
| if (dict == NULL) { | |
| dictkeys_incref(cached); | |
| dict = new_dict_with_shared_keys(cached); | |
| if (dict == NULL) | |
| return -1; | |
| *dictptr = dict; | |
| } | |
| if (value == NULL) { | |
| res = PyDict_DelItem(dict, key); | |
| // Since key sharing dict doesn't allow deletion, PyDict_DelItem() | |
| // always converts dict to combined form. | |
| if ((cached = CACHED_KEYS(tp)) != NULL) { | |
| CACHED_KEYS(tp) = NULL; | |
| dictkeys_decref(cached); | |
| } | |
| } | |
| else { | |
| int was_shared = (cached == ((PyDictObject *)dict)->ma_keys); | |
| res = PyDict_SetItem(dict, key, value); | |
| if (was_shared && | |
| (cached = CACHED_KEYS(tp)) != NULL && | |
| cached != ((PyDictObject *)dict)->ma_keys) { | |
| /* PyDict_SetItem() may call dictresize and convert split table | |
| * into combined table. In such case, convert it to split | |
| * table again and update type's shared key only when this is | |
| * the only dict sharing key with the type. | |
| * | |
| * This is to allow using shared key in class like this: | |
| * | |
| * class C: | |
| * def __init__(self): | |
| * # one dict resize happens | |
| * self.a, self.b, self.c = 1, 2, 3 | |
| * self.d, self.e, self.f = 4, 5, 6 | |
| * a = C() | |
| */ | |
| if (cached->dk_refcnt == 1) { | |
| CACHED_KEYS(tp) = make_keys_shared(dict); | |
| } | |
| else { | |
| CACHED_KEYS(tp) = NULL; | |
| } | |
| dictkeys_decref(cached); | |
| if (CACHED_KEYS(tp) == NULL && PyErr_Occurred()) | |
| return -1; | |
| } | |
| } | |
| } else { | |
| dict = *dictptr; | |
| if (dict == NULL) { | |
| dict = PyDict_New(); | |
| if (dict == NULL) | |
| return -1; | |
| *dictptr = dict; | |
| } | |
| if (value == NULL) { | |
| res = PyDict_DelItem(dict, key); | |
| } else { | |
| res = PyDict_SetItem(dict, key, value); | |
| } | |
| } | |
| return res; | |
| } | |
| void | |
| _PyDictKeys_DecRef(PyDictKeysObject *keys) | |
| { | |
| dictkeys_decref(keys); | |
| } |