From 623286f1d95a1fcea5d4b920e67d094f45bc5584 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 12:31:06 +0100 Subject: [PATCH 1/4] Add jobflow test --- .github/workflows/jobflow.yml | 28 ++++++++ .../src/python_workflow_definition/jobflow.py | 30 ++++++++- universal_qe_to_jobflow.ipynb | 66 +++++++++++++++++++ 3 files changed, 121 insertions(+), 3 deletions(-) create mode 100644 .github/workflows/jobflow.yml create mode 100644 universal_qe_to_jobflow.ipynb diff --git a/.github/workflows/jobflow.yml b/.github/workflows/jobflow.yml new file mode 100644 index 0000000..feb7cd8 --- /dev/null +++ b/.github/workflows/jobflow.yml @@ -0,0 +1,28 @@ +name: jobflow + +on: + push: + branches: [ main ] + pull_request: + +jobs: + build: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + - uses: conda-incubator/setup-miniconda@v3 + with: + auto-update-conda: true + python-version: "3.12" + environment-file: environment.yml + auto-activate-base: false + - name: Tests + shell: bash -l {0} + run: | + pip install -e aiida_qe_basic + pip install -e adis_tools + conda install -c conda-forge jupyter papermill + export ESPRESSO_PSEUDO=$(pwd)/espresso/pseudo + papermill universal_qe_to_jobflow.ipynb universal_qe_to_jobflow_out.ipynb -k "python3" \ No newline at end of file diff --git a/python_workflow_definition/src/python_workflow_definition/jobflow.py b/python_workflow_definition/src/python_workflow_definition/jobflow.py index a7080e0..481cf8d 100644 --- a/python_workflow_definition/src/python_workflow_definition/jobflow.py +++ b/python_workflow_definition/src/python_workflow_definition/jobflow.py @@ -1,3 +1,5 @@ +import json +from importlib import import_module from inspect import isfunction from jobflow import job, Flow @@ -186,6 +188,28 @@ def get_source_handles(edges_lst): } -def find_root_node(nodes_dict, edges_lst): - source_count_dict = {k: sum([ed["source"] == k for ed in edges_lst]) for k in nodes_dict.keys()} - return min(source_count_dict, key=source_count_dict.get) +def load_workflow_json(file_name): + with open(file_name, "r") as f: + content = json.load(f) + + edges_new_lst = content["edges"] + nodes_new_dict = {} + for k, v in content["nodes"].items(): + if isinstance(v, str) and "." in v: + p, m = v.rsplit('.', 1) + mod = import_module(p) + nodes_new_dict[int(k)] = getattr(mod, m) + else: + nodes_new_dict[int(k)] = v + + source_handles_dict = get_source_handles(edges_lst=edges_new_lst) + total_dict = group_edges(edges_lst=edges_new_lst) + input_dict = get_input_dict(nodes_dict=nodes_new_dict) + new_total_dict = resort_total_lst(total_dict=total_dict, nodes_dict=nodes_new_dict) + task_lst = get_workflow( + nodes_dict=nodes_new_dict, + input_dict=input_dict, + total_dict=new_total_dict, + source_handles_dict=source_handles_dict, + ) + return Flow(task_lst) diff --git a/universal_qe_to_jobflow.ipynb b/universal_qe_to_jobflow.ipynb new file mode 100644 index 0000000..fd4afcd --- /dev/null +++ b/universal_qe_to_jobflow.ipynb @@ -0,0 +1,66 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "eab942d5-f3c5-47e9-8b3b-a7a5a8481aed", + "metadata": {}, + "outputs": [], + "source": [ + "from jobflow.managers.local import run_locally" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6f83a43-4d91-4028-9661-a4700509be1b", + "metadata": {}, + "outputs": [], + "source": [ + "from python_workflow_definition.jobflow import load_workflow_json" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "285ca46b-19e3-4870-9fd1-0c8ddbcf819c", + "metadata": {}, + "outputs": [], + "source": [ + "flow = load_workflow_json(file_name=\"workflow_qe.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "663ac4b3-dee8-474f-a9bc-089a89bde011", + "metadata": {}, + "outputs": [], + "source": [ + "result = run_locally(flow)\n", + "result" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 534358c44da0cfb0dc1f1cdf2af81f83952b8416 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 12:33:48 +0100 Subject: [PATCH 2/4] fixes --- .github/workflows/jobflow.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/jobflow.yml b/.github/workflows/jobflow.yml index feb7cd8..7f95e02 100644 --- a/.github/workflows/jobflow.yml +++ b/.github/workflows/jobflow.yml @@ -21,8 +21,8 @@ jobs: - name: Tests shell: bash -l {0} run: | - pip install -e aiida_qe_basic pip install -e adis_tools + pip install -e python_workflow_definition conda install -c conda-forge jupyter papermill export ESPRESSO_PSEUDO=$(pwd)/espresso/pseudo papermill universal_qe_to_jobflow.ipynb universal_qe_to_jobflow_out.ipynb -k "python3" \ No newline at end of file From 8c1b4780557492f6dc5985d9fd8b849eb7b4f1be Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 13:04:00 +0100 Subject: [PATCH 3/4] fix import --- .../src/python_workflow_definition/jobflow.py | 2 ++ .../src/python_workflow_definition/pyiron_base.py | 2 ++ 2 files changed, 4 insertions(+) diff --git a/python_workflow_definition/src/python_workflow_definition/jobflow.py b/python_workflow_definition/src/python_workflow_definition/jobflow.py index 481cf8d..063281a 100644 --- a/python_workflow_definition/src/python_workflow_definition/jobflow.py +++ b/python_workflow_definition/src/python_workflow_definition/jobflow.py @@ -197,6 +197,8 @@ def load_workflow_json(file_name): for k, v in content["nodes"].items(): if isinstance(v, str) and "." in v: p, m = v.rsplit('.', 1) + if p == "python_workflow_definition.pyiron_base": + p = "python_workflow_definition.jobflow" mod = import_module(p) nodes_new_dict[int(k)] = getattr(mod, m) else: diff --git a/python_workflow_definition/src/python_workflow_definition/pyiron_base.py b/python_workflow_definition/src/python_workflow_definition/pyiron_base.py index 299f265..5ab11e5 100644 --- a/python_workflow_definition/src/python_workflow_definition/pyiron_base.py +++ b/python_workflow_definition/src/python_workflow_definition/pyiron_base.py @@ -199,6 +199,8 @@ def load_workflow_json(project, file_name): for k, v in content["nodes"].items(): if isinstance(v, str) and "." in v: p, m = v.rsplit('.', 1) + if p == "python_workflow_definition.jobflow": + p = "python_workflow_definition.pyiron_base" mod = import_module(p) nodes_new_dict[int(k)] = getattr(mod, m) else: From 03aabe72c116a46f9b351b93c9e81965eb21f57a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jan=20Jan=C3=9Fen?= Date: Mon, 10 Mar 2025 13:07:39 +0100 Subject: [PATCH 4/4] update jupyter notebook --- universal_qe_to_jobflow.ipynb | 67 +---------------------------------- 1 file changed, 1 insertion(+), 66 deletions(-) diff --git a/universal_qe_to_jobflow.ipynb b/universal_qe_to_jobflow.ipynb index fd4afcd..f237018 100644 --- a/universal_qe_to_jobflow.ipynb +++ b/universal_qe_to_jobflow.ipynb @@ -1,66 +1 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "eab942d5-f3c5-47e9-8b3b-a7a5a8481aed", - "metadata": {}, - "outputs": [], - "source": [ - "from jobflow.managers.local import run_locally" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f6f83a43-4d91-4028-9661-a4700509be1b", - "metadata": {}, - "outputs": [], - "source": [ - "from python_workflow_definition.jobflow import load_workflow_json" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "285ca46b-19e3-4870-9fd1-0c8ddbcf819c", - "metadata": {}, - "outputs": [], - "source": [ - "flow = load_workflow_json(file_name=\"workflow_qe.json\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "663ac4b3-dee8-474f-a9bc-089a89bde011", - "metadata": {}, - "outputs": [], - "source": [ - "result = run_locally(flow)\n", - "result" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.5" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} +{"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"name":"python","version":"3.12.8","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":5,"nbformat":4,"cells":[{"id":"eab942d5-f3c5-47e9-8b3b-a7a5a8481aed","cell_type":"code","source":"from jobflow.managers.local import run_locally","metadata":{"trusted":true},"outputs":[],"execution_count":1},{"id":"f6f83a43-4d91-4028-9661-a4700509be1b","cell_type":"code","source":"from python_workflow_definition.jobflow import load_workflow_json","metadata":{"trusted":true},"outputs":[],"execution_count":2},{"id":"285ca46b-19e3-4870-9fd1-0c8ddbcf819c","cell_type":"code","source":"flow = load_workflow_json(file_name=\"workflow_qe.json\")","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"0 {'name': 'Al', 'a': 4.05, 'cubic': True}\n13 {'structure': OutputReference(ace8829d-55a4-495b-8eda-3f198fdd3065), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}\n1 {'working_directory': 'mini', 'input_dict': OutputReference(a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)}\n2 {'structure': OutputReference(ce43667c-2190-4ffb-95f1-c59851f79410, .structure), 'strain_lst': [0.9, 0.95, 1.0, 1.05, 1.1]}\n20 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .0), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n23 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .1), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n25 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .2), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n27 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .3), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n29 {'structure': OutputReference(eed8f93d-3d87-41ee-891e-5c172d77fc95, .4), 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}\n3 {'working_directory': 'strain_0', 'input_dict': OutputReference(c0965326-daff-49de-b646-b02feb004e20)}\n4 {'working_directory': 'strain_1', 'input_dict': OutputReference(21fcb964-3358-49af-bf2e-2abc8ad96ad7)}\n5 {'working_directory': 'strain_2', 'input_dict': OutputReference(2b1ecec3-49ef-407b-9efd-0b24c6ee380c)}\n6 {'working_directory': 'strain_3', 'input_dict': OutputReference(999770bf-41dd-4993-ae26-c191f53d1af3)}\n7 {'working_directory': 'strain_4', 'input_dict': OutputReference(d3251d67-1ca2-4435-bdc6-3f8c52c26c71)}\n30 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .volume), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .volume), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .volume), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .volume), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .volume)}\n31 {'0': OutputReference(ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a, .energy), '1': OutputReference(4864e20e-c3a7-4999-98d4-548194964fa0, .energy), '2': OutputReference(5d5a43ea-9a17-4164-84c7-9d8d53f404a0, .energy), '3': OutputReference(d162726f-a5f1-4788-bdca-acd1cb35f01e, .energy), '4': OutputReference(87fa0240-178e-4cdc-b034-118d305096c6, .energy)}\n8 {'volume_lst': OutputReference(e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1), 'energy_lst': OutputReference(6e68cba7-a495-4c97-8f12-966e12082acc)}\n"}],"execution_count":3},{"id":"663ac4b3-dee8-474f-a9bc-089a89bde011","cell_type":"code","source":"result = run_locally(flow)\nresult","metadata":{"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":"2025-03-10 12:05:03,677 INFO Started executing jobs locally\n2025-03-10 12:05:03,774 INFO Starting job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,776 INFO Finished job - get_bulk_structure (ace8829d-55a4-495b-8eda-3f198fdd3065)\n2025-03-10 12:05:03,777 INFO Starting job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Finished job - get_dict (a85d701c-f357-4cdc-a4b0-12dbd8d25a9e)\n2025-03-10 12:05:03,779 INFO Starting job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n"},{"name":"stderr","output_type":"stream","text":"[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00168] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:05:54,551 INFO Finished job - calculate_qe (ce43667c-2190-4ffb-95f1-c59851f79410)\n2025-03-10 12:05:54,553 INFO Starting job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,556 INFO Finished job - generate_structures (eed8f93d-3d87-41ee-891e-5c172d77fc95)\n2025-03-10 12:05:54,557 INFO Starting job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,559 INFO Finished job - get_dict (c0965326-daff-49de-b646-b02feb004e20)\n2025-03-10 12:05:54,560 INFO Starting job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Finished job - get_dict (21fcb964-3358-49af-bf2e-2abc8ad96ad7)\n2025-03-10 12:05:54,567 INFO Starting job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,569 INFO Finished job - get_dict (2b1ecec3-49ef-407b-9efd-0b24c6ee380c)\n2025-03-10 12:05:54,570 INFO Starting job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Finished job - get_dict (999770bf-41dd-4993-ae26-c191f53d1af3)\n2025-03-10 12:05:54,573 INFO Starting job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,576 INFO Finished job - get_dict (d3251d67-1ca2-4435-bdc6-3f8c52c26c71)\n2025-03-10 12:05:54,577 INFO Starting job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n"},{"name":"stderr","output_type":"stream","text":"[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00183] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:05,518 INFO Finished job - calculate_qe (ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a)\n2025-03-10 12:06:05,518 INFO Starting job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n"},{"name":"stderr","output_type":"stream","text":"[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00194] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\nNote: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:17,223 INFO Finished job - calculate_qe (4864e20e-c3a7-4999-98d4-548194964fa0)\n2025-03-10 12:06:17,224 INFO Starting job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n"},{"name":"stderr","output_type":"stream","text":"[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00205] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:30,082 INFO Finished job - calculate_qe (5d5a43ea-9a17-4164-84c7-9d8d53f404a0)\n2025-03-10 12:06:30,082 INFO Starting job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n"},{"name":"stderr","output_type":"stream","text":"Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00216] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:43,619 INFO Finished job - calculate_qe (d162726f-a5f1-4788-bdca-acd1cb35f01e)\n2025-03-10 12:06:43,621 INFO Starting job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n"},{"name":"stderr","output_type":"stream","text":"Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n[jupyter-jan-janssen-pyt-flow-definition-8nl98ovv:00228] mca_base_component_repository_open: unable to open mca_btl_openib: librdmacm.so.1: cannot open shared object file: No such file or directory (ignored)\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:57,039 INFO Finished job - calculate_qe (87fa0240-178e-4cdc-b034-118d305096c6)\n2025-03-10 12:06:57,040 INFO Starting job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,043 INFO Finished job - get_list (e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1)\n2025-03-10 12:06:57,044 INFO Starting job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,047 INFO Finished job - get_list (6e68cba7-a495-4c97-8f12-966e12082acc)\n2025-03-10 12:06:57,048 INFO Starting job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n"},{"name":"stderr","output_type":"stream","text":"Note: The following floating-point exceptions are signalling: IEEE_INVALID_FLAG\n"},{"name":"stdout","output_type":"stream","text":"2025-03-10 12:06:57,122 INFO Finished job - plot_energy_volume_curve (bbe7e050-8051-46c9-b930-ec6d82dabe76)\n2025-03-10 12:06:57,123 INFO Finished executing jobs locally\n"},{"execution_count":4,"output_type":"execute_result","data":{"text/plain":"{'ace8829d-55a4-495b-8eda-3f198fdd3065': {1: Response(output={'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.025, 2.025],\n [2.025, 0. , 2.025],\n [2.025, 2.025, 0. ]]), 'cell': array([[4.05, 0. , 0. ],\n [0. , 4.05, 0. ],\n [0. , 0. , 4.05]]), 'pbc': array([ True, True, True])}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'a85d701c-f357-4cdc-a4b0-12dbd8d25a9e': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.025, 2.025], [2.025, 0.0, 2.025], [2.025, 2.025, 0.0]], 'cell': [[4.05, 0.0, 0.0], [0.0, 4.05, 0.0], [0.0, 0.0, 4.05]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'vc-relax', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ce43667c-2190-4ffb-95f1-c59851f79410': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365262253611, 'volume': np.float64(66.21567448236429)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'eed8f93d-3d87-41ee-891e-5c172d77fc95': {1: Response(output={'0': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300989, 1.95300989],\n [1.95300989, 0. , 1.95300989],\n [1.95300989, 1.95300989, 0. ]]), 'cell': array([[3.90601979, 0. , 0. ],\n [0. , 3.90601979, 0. ],\n [0. , 0. , 3.90601979]]), 'pbc': array([ True, True, True])}, '1': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852692, 1.98852692],\n [1.98852692, 0. , 1.98852692],\n [1.98852692, 1.98852692, 0. ]]), 'cell': array([[3.97705384, 0. , 0. ],\n [0. , 3.97705384, 0. ],\n [0. , 0. , 3.97705384]]), 'pbc': array([ True, True, True])}, '2': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.02281861, 2.02281861],\n [2.02281861, 0. , 2.02281861],\n [2.02281861, 2.02281861, 0. ]]), 'cell': array([[4.04563722, 0. , 0. ],\n [0. , 4.04563722, 0. ],\n [0. , 0. , 4.04563722]]), 'pbc': array([ True, True, True])}, '3': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598546, 2.05598546],\n [2.05598546, 0. , 2.05598546],\n [2.05598546, 2.05598546, 0. ]]), 'cell': array([[4.11197093, 0. , 0. ],\n [0. , 4.11197093, 0. ],\n [0. , 0. , 4.11197093]]), 'pbc': array([ True, True, True])}, '4': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811543, 2.08811543],\n [2.08811543, 0. , 2.08811543],\n [2.08811543, 2.08811543, 0. ]]), 'cell': array([[4.17623085, 0. , 0. ],\n [0. , 4.17623085, 0. ],\n [0. , 0. , 4.17623085]]), 'pbc': array([ True, True, True])}}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'c0965326-daff-49de-b646-b02feb004e20': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.953009892981092, 1.953009892981092], [1.953009892981092, 0.0, 1.953009892981092], [1.953009892981092, 1.953009892981092, 0.0]], 'cell': [[3.906019785962185, 0.0, 0.0], [0.0, 3.906019785962185, 0.0], [0.0, 0.0, 3.906019785962185]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '21fcb964-3358-49af-bf2e-2abc8ad96ad7': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 1.9885269221590425, 1.9885269221590425], [1.9885269221590425, 0.0, 1.9885269221590425], [1.9885269221590425, 1.9885269221590425, 0.0]], 'cell': [[3.977053844318086, 0.0, 0.0], [0.0, 3.977053844318086, 0.0], [0.0, 0.0, 3.977053844318086]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '2b1ecec3-49ef-407b-9efd-0b24c6ee380c': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0228186079734387, 2.0228186079734387], [2.0228186079734387, 0.0, 2.0228186079734387], [2.0228186079734387, 2.0228186079734387, 0.0]], 'cell': [[4.045637215946878, 0.0, 0.0], [0.0, 4.045637215946878, 0.0], [0.0, 0.0, 4.045637215946878]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '999770bf-41dd-4993-ae26-c191f53d1af3': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0559854636414965, 2.0559854636414965], [2.0559854636414965, 0.0, 2.0559854636414965], [2.0559854636414965, 2.0559854636414965, 0.0]], 'cell': [[4.111970927282994, 0.0, 0.0], [0.0, 4.111970927282994, 0.0], [0.0, 0.0, 4.111970927282994]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd3251d67-1ca2-4435-bdc6-3f8c52c26c71': {1: Response(output={'structure': {'numbers': [13, 13, 13, 13], 'positions': [[0.0, 0.0, 0.0], [0.0, 2.0881154261861092, 2.0881154261861092], [2.0881154261861092, 0.0, 2.0881154261861092], [2.0881154261861092, 2.0881154261861092, 0.0]], 'cell': [[4.176230852372219, 0.0, 0.0], [0.0, 4.176230852372219, 0.0], [0.0, 0.0, 4.176230852372219]], 'pbc': [True, True, True]}, 'pseudopotentials': {'Al': 'Al.pbe-n-kjpaw_psl.1.0.0.UPF'}, 'kpts': [3, 3, 3], 'calculation': 'scf', 'smearing': 0.02}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'ef4b604e-9a4d-4cb4-ba7f-79dbcafafe9a': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.95300988, 1.95300988],\n [1.95300988, 0. , 1.95300988],\n [1.95300988, 1.95300988, 0. ]]), 'cell': array([[3.90601977, 0. , 0. ],\n [0. , 3.90601977, 0. ],\n [0. , 0. , 3.90601977]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8457446150655, 'volume': np.float64(59.594106252681506)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '4864e20e-c3a7-4999-98d4-548194964fa0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 1.98852691, 1.98852691],\n [1.98852691, 0. , 1.98852691],\n [1.98852691, 1.98852691, 0. ]]), 'cell': array([[3.97705383, 0. , 0. ],\n [0. , 3.97705383, 0. ],\n [0. , 0. , 3.97705383]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9161488594586, 'volume': np.float64(62.90488993338648)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '5d5a43ea-9a17-4164-84c7-9d8d53f404a0': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.0228186, 2.0228186],\n [2.0228186, 0. , 2.0228186],\n [2.0228186, 2.0228186, 0. ]]), 'cell': array([[4.0456372, 0. , 0. ],\n [0. , 4.0456372, 0. ],\n [0. , 0. , 4.0456372]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9365241668363, 'volume': np.float64(66.21567361409089)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'd162726f-a5f1-4788-bdca-acd1cb35f01e': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.05598545, 2.05598545],\n [2.05598545, 0. , 2.05598545],\n [2.05598545, 2.05598545, 0. ]]), 'cell': array([[4.11197091, 0. , 0. ],\n [0. , 4.11197091, 0. ],\n [0. , 0. , 4.11197091]]), 'pbc': array([ True, True, True])}, 'energy': -1074.9192860025807, 'volume': np.float64(69.52645729479514)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '87fa0240-178e-4cdc-b034-118d305096c6': {1: Response(output={'structure': {'numbers': array([13, 13, 13, 13]), 'positions': array([[0. , 0. , 0. ],\n [0. , 2.08811542, 2.08811542],\n [2.08811542, 0. , 2.08811542],\n [2.08811542, 2.08811542, 0. ]]), 'cell': array([[4.17623083, 0. , 0. ],\n [0. , 4.17623083, 0. ],\n [0. , 0. , 4.17623083]]), 'pbc': array([ True, True, True])}, 'energy': -1074.8737904693394, 'volume': np.float64(72.83724097549984)}, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'e287b6aa-1dc7-4c3f-9cbd-064f1693b8d1': {1: Response(output=[59.594106252681506, 62.90488993338648, 66.21567361409089, 69.52645729479514, 72.83724097549984], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n '6e68cba7-a495-4c97-8f12-966e12082acc': {1: Response(output=[-1074.8457446150655, -1074.9161488594586, -1074.9365241668363, -1074.9192860025807, -1074.8737904693394], detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))},\n 'bbe7e050-8051-46c9-b930-ec6d82dabe76': {1: Response(output=None, detour=None, addition=None, replace=None, stored_data=None, stop_children=False, stop_jobflow=False, job_dir=PosixPath('/home/jovyan'))}}"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAksAAAHACAYAAACyIiyEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/BJREFUeJzt3XlcVXXCx/HPZReUi8omgqC5AO5LKmZp5ZpLWpltmFZOzYwtVlb2tDht2t6UbdOUtttoWrZRmtrkgjuuCLjgwubKIsh6z/MHwkQiKsI9XPi+X6/7eh4u51y+98Rcvv5+5/yOxTAMAxERERGplJPZAURERETqMpUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgsmeT555+nX79+eHp64uPjc177GIbBjBkzCAoKolGjRgwcOJAdO3aUfz85ORmLxVLpY/78+We8XkFBAd26dcNisRAXF3dB+d999126dOmCt7c33t7eREVF8dNPP13Qa4iIiDgClSWTFBYWMm7cOP7617+e9z4vvfQSr732GrNnz2b9+vUEBgYyePBgcnJyAAgJCSEtLa3C4x//+AdeXl4MHz78jNd75JFHCAoKqlb+4OBgZs2axYYNG9iwYQNXXXUV1157bYXyJiIiUi8YYqo5c+YYVqv1nNvZbDYjMDDQmDVrVvlz+fn5htVqNd57772z7tetWzfjjjvuOOP5H3/80QgPDzd27NhhAMbmzZsrfH/Hjh3G8OHDDS8vL8Pf39+47bbbjCNHjlSZsWnTpsa///3vc74XERERR6KRJQexb98+0tPTGTJkSPlz7u7uDBgwgNWrV1e6z8aNG4mLi+POO++s8HxGRgaTJ0/m008/xdPT84z90tLSGDBgAN26dWPDhg3ExMSQkZHBjTfeWOnPKSkpYd68eeTm5hIVFXUR71JERKTucTE7gJyf9PR0AAICAio8HxAQwP79+yvd58MPPyQiIoJ+/fqVP2cYBhMnTuSee+6hV69eJCcnn7Hfu+++S48ePXjhhRfKn/voo48ICQkhMTGR9u3bA7Bt2zaioqLIz8+ncePGLFq0iMjIyIt9qyIiInWKRpZq0IwZM856gnXZY8OGDRf1MywWS4WvDcM44zmAU6dO8cUXX5wxqvTWW2+RnZ3N9OnTz/ozNm7cyPLly2ncuHH5Izw8HIA9e/aUb9ehQwfi4uKIjY3lr3/9K7fffjs7d+68mLcnIiJS52hkqQZNmTKFm266qcptwsLCqvXagYGBQOkIU4sWLcqfP3z48BmjTQALFiwgLy+PCRMmVHh+2bJlxMbG4u7uXuH5Xr16ceutt/Lxxx9js9kYNWoUL7744hmv+8ef7ebmRtu2bcv3X79+Pf/85z95//33q/UeRURE6iKVpRrk6+uLr69vrbx269atCQwMZMmSJXTv3h0ovaLut99+q7TUfPjhh4wePRo/P78Kz7/55ps899xz5V+npqYydOhQvvrqK/r06QNAjx49+PrrrwkLC8PF5fx/RQzDoKCgoDpvT0REpM5SWTLJgQMHOH78OAcOHKCkpKR8naO2bdvSuHFjAMLDw5k5cyZjx47FYrHwwAMP8MILL9CuXTvatWvHCy+8gKenJ7fcckuF1969ezf//e9/+fHHH8/4ua1atarwddnPuuSSSwgODgbg73//Ox988AE333wz06ZNw9fXl927dzNv3jw++OADnJ2defzxxxk+fDghISHk5OQwb948VqxYQUxMTE0fKhEREVOpLJnkqaee4uOPPy7/umy0aPny5QwcOBCAhIQEsrKyyrd55JFHOHXqFH/72984ceIEffr04ZdffqFJkyYVXvujjz6iZcuWFa6cuxBBQUGsWrWKRx99lKFDh1JQUEBoaCjDhg3Dyan0NLeMjAyio6NJS0vDarXSpUsXYmJiGDx4cLV+poiISF1lMQzDMDuEiIiISF2lq+FEREREqqCyJCIiIlIFnbNUA2w2G6mpqTRp0qTSNY9ERESk7jEMg5ycHIKCgsrPya2MylINSE1NJSQkxOwYIiIiUg0HDx4svyK8MipLNaDsarSDBw/i7e1tchoRERE5H9nZ2YSEhJxxVfmfqSzVgLKpN29vb5UlERERB3OuU2h0greIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKqgs1WGGYbBu33HyCovNjiIiItJgqSzVYX/9bBM3vr+GRZtTzI4iIiLSYKks1WG9wpoCMHdVMoZhmJxGRESkYVJZqsNuvDQELzdnkg6fZNXuY2bHERERaZBUluowbw9XbugZDMCcVftMTiMiItIwqSzVcbf3CwNgWcJhko/mmhtGRESkAVJZquPa+DVmYAc/DAPmrk42O46IiEiDo7LkACZd1hqABRsPkZNfZHIaERGRhkVlyQFc0c6XS/y8OFlQzIKNh8yOIyIi0qCoLDkAi8XCxNPnLn28OhmbTcsIiIiI2IvKkoO4rkcwTTxcSD6Wx/KEw2bHERERaTBUlhyEl7sLN10aAuhEbxEREXtSWXIgE6LCcLLA70lHScrIMTuOiIhIg6Cy5EBCmnkyKCIAgDkaXRIREbELlSUHU7aMwMJNh8jMKzQ5jYiISP2nsuRg+rZpRnhgE/KLbHy1/qDZcUREROo9lSUHY7FYuOP06NIna/ZTXGIzOZGIiEj9prLkgEZ3C6KppyspmadYsjPD7DgiIiL1msqSA/JwdeaWPq0AmLMq2dwwIiIi9ZzKkoOK7huGi5OFdcnH2Z6SZXYcERGRektlyUEFWj0Y3rkFoEUqRUREapPKkgMru1/c4rhUjp4sMDeMiIhIPaWy5MB6tPKha7CVwhIbX6w9YHYcERGRekllyYFZLJbyRSo/i91PYbGWERAREalpKksO7prOLfBr4s7hnAJ+2p5mdhwREZF6R2XJwbm5OHFbn1AAPtIyAiIiIjVOZakeuKVPK9ycndhyMJPNB06YHUdERKReUVmqB/yauDOqaxCgRSpFRERqmspSPTHpsjAAftyWRnpWvrlhRERE6hGVpXqiU0srl4Y1pdhm8FnsfrPjiIiI1BsqS/VI2TICX6w7QH5RiclpRERE6geVpXpkSGQALX0acTy3kMVbUs2OIyIiUi+oLNUjLs5OREeVLiMwZ1UyhmGYnEhERMTxqSzVMzddGoKHqxPxadms3Xfc7DgiIiIOT2WpnvHxdGNs92AA5moZARERkYumslQPlS0j8MvOdA4ezzM3jIiIiINTWaqH2gc0oX9bX2wGfKplBERERC6KylI9NbFfGADz1h0gr7DY3DAiIiIOTGWpnroq3J/Q5p5k5xezcFOK2XFEREQclspSPeXkZOH2qDAA5q7WMgIiIiLVpbJUj43rFYyXmzO7D5/k96SjZscRERFxSCpL9VgTD1fG9QoBYM6qfSanERERcUwqS/Xc7f3CsFhgecIR9h3NNTuOiIiIw1FZquda+3pxZQd/AD5enWxuGBEREQekstQAlC0jMH/DQbLzi8wNIyIi4mBUlhqAy9v50ta/MbmFJczfcMjsOCIiIg5FZakBsFgs5aNLH69OpsSmZQRERETOl8pSA3Fdj5Z4e7hw4Hgey3cdNjuOiIiIw1BZaiA83Vy4qXcrAOas1jICIiIi50tlqQGZEBWKkwVW7T5GYkaO2XFEREQcgsOUpRMnThAdHY3VasVqtRIdHU1mZmaV+5w8eZIpU6YQHBxMo0aNiIiI4N133z1juzVr1nDVVVfh5eWFj48PAwcO5NSpU7X0TswT3NSTIZGBAMxZlWxuGBEREQfhMGXplltuIS4ujpiYGGJiYoiLiyM6OrrKfaZOnUpMTAyfffYZ8fHxTJ06lXvvvZdvv/22fJs1a9YwbNgwhgwZwrp161i/fj1TpkzByclhDs0FmXRZGACLNh8iM6/Q3DAiIiIOwGI4wB1W4+PjiYyMJDY2lj59+gAQGxtLVFQUu3btokOHDpXu16lTJ8aPH8+TTz5Z/lzPnj255pprePbZZwHo27cvgwcPLv+6OrKzs7FarWRlZeHt7V3t17EHwzC45s2VxKdl8+iwcP468BKzI4mIiJjifP9+O8TwyZo1a7BareVFCUpLjtVqZfXq1Wfdr3///ixevJiUlBQMw2D58uUkJiYydOhQAA4fPszatWvx9/enX79+BAQEMGDAAFauXFnr78ksFoulfHTp0zXJFJfYzA0kIiJSxzlEWUpPT8ff3/+M5/39/UlPTz/rfm+++SaRkZEEBwfj5ubGsGHDeOedd+jfvz8Ae/fuBWDGjBlMnjyZmJgYevTowdVXX01SUtJZX7egoIDs7OwKD0cyumsQzb3cSM3K55edGWbHERERqdNMLUszZszAYrFU+diwYQNQOiLyZ4ZhVPp8mTfffJPY2FgWL17Mxo0befXVV/nb3/7G0qVLAbDZSkdV7r77biZNmkT37t15/fXX6dChAx999NFZX3fmzJnlJ5pbrVZCQkIu5jDYnYerM7f0Ob2MwCotIyAiIlIVFzN/+JQpU7jpppuq3CYsLIytW7eSkXHmCMiRI0cICAiodL9Tp07x+OOPs2jRIkaMGAFAly5diIuL45VXXmHQoEG0aNECgMjIyAr7RkREcODAgbNmmj59Og8++GD519nZ2Q5XmG7rG8q7K/awPvkE21Oy6NTSanYkERGROsnUsuTr64uvr+85t4uKiiIrK4t169bRu3dvANauXUtWVhb9+vWrdJ+ioiKKiorOuKrN2dm5fEQpLCyMoKAgEhISKmyTmJjI8OHDz5rH3d0dd3f3c+auywK8PbimcwsWb0llzqpkXr2xq9mRRERE6iSHOGcpIiKCYcOGMXnyZGJjY4mNjWXy5MmMHDmywpVw4eHhLFq0CABvb28GDBjAtGnTWLFiBfv27WPu3Ll88sknjB07Fiid2ps2bRpvvvkmCxYsYPfu3Tz55JPs2rWLO++805T3ak9lJ3p/tyWVIzkF5oYRERGpo0wdWboQn3/+Offddx9DhgwBYPTo0cyePbvCNgkJCWRlZZV/PW/ePKZPn86tt97K8ePHCQ0N5fnnn+eee+4p3+aBBx4gPz+fqVOncvz4cbp27cqSJUu45JL6f0l991ZN6RbiQ9zBTL5Ye4D7B7UzO5KIiEid4xDrLNV1jrTO0p99G5fC/fPi8GvizqpHr8LNxSEGG0VERC5avVpnSWrP8E4t8G/izpGcAn7clmZ2HBERkTpHZamBc3NxIrpvKFC6jIAGGkVERCpSWRJu6dMKNxcnthzKYtOBTLPjiIiI1CkqS0Lzxu6M7hoEaJFKERGRP1NZEuB/ywj8tD2dtKxT5oYRERGpQ1SWBICOQVZ6t25Gic3gs9j9ZscRERGpM1SWpNwdp0eXvlh7gPyiEnPDiIiI1BEqS1JuUEQALX0acSKviG/jUsyOIyIiUieoLEk5F2cnJkSVLSOQrGUEREREUFmSP7np0lY0cnVmV3oOsXuPmx1HRETEdCpLUoHV05XrerQEtIyAiIgIqCxJJSb2CwNgaXwGB4/nmRtGRETEZCpLcoZ2AU24vJ0vNgM+WZNsdhwRERFTqSxJpcoWqZy3/iC5BcXmhhERETGRypJUamB7f8Kae5KTX8zCTYfMjiMiImIalSWplJOThdtPn7s0d3UyNpuWERARkYZJZUnO6oaewTR2d2HPkVx+333U7DgiIiKmUFmSs2ri4cq4XsGAlhEQEZGGS2VJqnR7VBgWC6xIOMKeIyfNjiMiImJ3KktSpTBfL67q4A/AJ6uTzQ0jIiJiApUlOadJl7UGYMHGQ2TnF5mcRkRExL5UluScLmvbnHb+jcktLOE/6w+aHUdERMSuVJbknCwWCxNPL1L58ZpkSrSMgIiINCAqS3JerusejLWRKwePn2LZrsNmxxEREbEblSU5L43cnLmpdwigZQRERKRhUVmS8zYhKgwnC6zec4xd6dlmxxEREbELlSU5by19GjG0YyAAc1clmxtGRETETlSW5IKULSOwaHMKJ3ILTU4jIiJS+1SW5IJcGtaUjkHeFBTb+HL9AbPjiIiI1DqVJbkgFoulfHTp0zX7KSqxmZxIRESkdqksyQUb2aUFzb3cSMvK5+cd6WbHERERqVUqS3LBPFydubVPK0AneouISP2nsiTVclvfUFydLWzYf4Jth7LMjiMiIlJrVJakWvy9PRjRuQWgRSpFRKR+U1mSapt4+kTv77amcjgn3+Q0IiIitUNlSaqtW4gP3Vv5UFRi8MVaLSMgIiL1k8qSXJSyZQQ+iz1AQXGJyWlERERqnsqSXJThnQIJ8Hbn6MkCftiaZnYcERGRGqeyJBfF1dmJ6L6hAMxZlYxhGCYnEhERqVkqS3LRbu7dCjcXJ7alZLHpwAmz44iIiNQolSW5aM0buzOmWxAAH2mRShERqWdUlqRGTOxXeqJ3zPZ0UjNPmZxGRESk5qgsSY2IDPKmT+tmlNgMPovdb3YcERGRGqOyJDWmbBmBL9cdIL9IywiIiMjFO3g8jzmr9mGzmXcBkcqS1JjBkQEEN23EibwivtmcYnYcERFxcDabwbQFW/jHdzt54cd403KoLEmNcXaycHtUGKBlBERE5OJ9tnY/sXuP08jVmeioUNNyqCxJjbqxVwiNXJ1JyMhhzd5jZscREREHdeBYHjN/3AXAY8PDCW3uZVoWlSWpUVZPV67v2RIoHV0SERG5UDabwcMLtnCqqIS+bZqVL35sFpUlqXFlywgsjc/gwLE8k9OIiIij+WRNMuv2HcfTzZmXru+Kk5PF1DwqS1Lj2vo35or2fhgGfLwm2ew4IiLiQJKP5jIrpnT6bfrwcFo19zQ5kcqS1JJJ/cIA+M/6g+QWFJsbRkREHILNZvDIgq3kF9mIatOcW/uYO/1WRmVJasWA9n608fUip6CYrzcdMjuOiIg4gLmrk1mXfBwvN2deuqGL6dNvZVSWpFY4OVm4/fTo0txVyaYuJiYiInXfvqO5vPTz6em3ayIIaWb+9FsZlSWpNdf3DKaJuwt7j+byW9IRs+OIiEgdVWIzmDZ/C/lFNvq39eXWPq3MjlSBypLUmsbuLozrFQKUji6JiIhUZs6qfWzYf4LG7i7Mur4zFkvdmH4ro7IktWpivzAsFvgt8Qi7D580O46IiNQxe46c5OWfEwB4/JoIgpvWnem3MipLUqtaNffk6vAAAD5enWxuGBERqVPKpt8Kim1c3s6Xm3uHmB2pUipLUusmXRYGwNebDpF1qsjcMCIiUmd8tHIfmw5knp5+61Lnpt/KqCxJret3SXM6BDQhr7CE+RsOmh1HRETqgN2HT/LyL6XTb0+MiKClTyOTE52dypLUOovFwsTTo0tzVydTomUEREQatBKbwcPzt1BYbOOK9n6Mv7RuTr+VUVkSuxjTrSU+nq4cOnGKpfEZZscRERETffD7XuIOZtLE3YUX6+DVb3+msiR20cjNmZsuLV03Q8sIiIg0XLsP5/DakkQAnhwVSQtr3Z1+K6OyJHYzISoUZycLa/YeIz4t2+w4IiJiZ8UlNh6av5XCYhtXdvBjXM9gsyOdF4cpSydOnCA6Ohqr1YrVaiU6OprMzMwq9zl58iRTpkwhODiYRo0aERERwbvvvlthm/T0dKKjowkMDMTLy4sePXqwYMGCWnwnDVeQTyOGdQwENLokItIQ/ev3vWw5mEkTDxdmXld3r377M4cpS7fccgtxcXHExMQQExNDXFwc0dHRVe4zdepUYmJi+Oyzz4iPj2fq1Knce++9fPvtt+XbREdHk5CQwOLFi9m2bRvXXXcd48ePZ/PmzbX9lhqksmUEvolL4XhuoblhRETEbhIzcnhjSRIAT4/qSKDVw+RE588hylJ8fDwxMTH8+9//JioqiqioKD744AO+//57EhISzrrfmjVruP322xk4cCBhYWH85S9/oWvXrmzYsKHCNvfeey+9e/emTZs2PPHEE/j4+LBp0yZ7vLUGp2doUzq19Kag2MaX6w6YHUdEROyguMRWevVbiY2rwv25vkdLsyNdEIcoS2vWrMFqtdKnT5/y5/r27YvVamX16tVn3a9///4sXryYlJQUDMNg+fLlJCYmMnTo0ArbfPXVVxw/fhybzca8efMoKChg4MCBtfmWGiyLxcKkfq0B+HTNfopKbCYnEhGR2vb+f/ey9VAW3h4uzLyu7l/99mcOUZbS09Px9/c/43l/f3/S09PPut+bb75JZGQkwcHBuLm5MWzYMN555x369+9fvs1XX31FcXExzZs3x93dnbvvvptFixZxySWXnPV1CwoKyM7OrvCQ8zeyawt8G7uTnp1PzPaz//cTERHHtys9mzeWll79NmN0RwK8HWf6rYypZWnGjBlYLJYqH2VTZpW1UMMwqmynb775JrGxsSxevJiNGzfy6quv8re//Y2lS5eWb/PEE09w4sQJli5dyoYNG3jwwQcZN24c27ZtO+vrzpw5s/xEc6vVSkhI3V5Mq65xd3Hm1j6lywjMWbXP5DQiIlJbik5PvxWVGAyK8Gdsd8eafitjMQzDtOWUjx49ytGjR6vcJiwsjC+++IIHH3zwjKvffHx8eP3115k0adIZ+506dQqr1cqiRYsYMWJE+fN33XUXhw4dIiYmhj179tC2bVu2b99Ox44dy7cZNGgQbdu25b333qs0U0FBAQUFBeVfZ2dnExISQlZWFt7e3ufz1hu8wzn5XDZrGUUlBt/+/TK6hviYHUlERGrYW78m8eqSRKyNXFky9Qr869ioUnZ2Nlar9Zx/v13smOkMvr6++Pr6nnO7qKgosrKyWLduHb179wZg7dq1ZGVl0a9fv0r3KSoqoqioCCenioNnzs7O2Gyl58nk5eUBVLlNZdzd3XF3dz9nbjk7/yYejOwSxKLNKcxdnczr47uZHUlERGpQfFo2by4rvfrtH6M71rmidCEc4pyliIgIhg0bxuTJk4mNjSU2NpbJkyczcuRIOnToUL5deHg4ixYtAsDb25sBAwYwbdo0VqxYwb59+5g7dy6ffPIJY8eOLd++bdu23H333axbt449e/bw6quvsmTJEsaMGWPGW21QypYR+H5rKoez880NIyIiNeaP02+DIwO4tluQ2ZEuikOUJYDPP/+czp07M2TIEIYMGUKXLl349NNPK2yTkJBAVlZW+dfz5s3j0ksv5dZbbyUyMpJZs2bx/PPPc8899wDg6urKjz/+iJ+fH6NGjaJLly588sknfPzxx1xzzTV2fX8NUZdgH3qGNqWoxOCztVpGQESkvnhn+R52pGbj4+nK82M7OdzVb39m6jlL9cX5znnKmb7bksq9X27Gt7Ebqx67CncXZ7MjiYjIRdiRmsW1s1dRbDP4503duLZb3T2p+3z/fjvMyJLUT8M6BRLo7cHRk4V8vyXN7DgiInIRCottPDx/K8U2g6EdAxjd1bGn38qoLImpXJ2diI4KBWDO6n1ooFNExHG9vXw38WnZNPV05bkxjrf45NmoLInpbu7dCncXJ7anZLNh/wmz44iISDVsT8ni7eW7AXjm2k74Nak/V42rLInpmnm5Meb0nPbcVcnmhhERkQtWOv22hWKbwfBOgYzs0sLsSDVKZUnqhEn9wwCI2ZFOauYpc8OIiMgFmb0siV3pOTTzcuPZMY5/9dufqSxJnRAe6E1Um+aU2Aw+WbPf7DgiInKeth3K4u0VewB49tpO+DauP9NvZVSWpM4oW6Tyy3UHOFVYYm4YERE5p4LiEh6ev4USm8GILi0YUc+m38qoLEmdcXVEACHNGpF1qohv4lLMjiMiIufw1q+7ScjIobmXG8+M7njuHRyUypLUGc5OFm6PCgNgziotIyAiUpdtPZTJu7+VTr89N6YTzevh9FsZlSWpU8b1CsHTzZnEjJOs3nPM7DgiIlKJP06/jeoaxPDO9XP6rYzKktQp1kau3NAzGIA5WkZARKRO+ufSJBIzTuLb2I1/1OPptzIqS1Ln3N4vDIBfd2Ww/1iuuWFERKSCuIOZvFc+/daZZl5uJieqfSpLUudc4teYAe39MAz4eLWWERARqSvyi0qn32wGXNstiGGdAs2OZBfVKku5ufrXvtSusmUE5m84yMmCYnPDiIgIAK8vTWT34ZP4NnZnxqj6P/1WplplKSAggDvuuIOVK1fWdB4RAK5o50cbXy9yCor5euMhs+OIiDR4mw6c4IP/7gXghbGdaNoApt/KVKssffnll2RlZXH11VfTvn17Zs2aRWpqak1nkwbMycnCxNOjS3NXJ2OzaRkBERGz5BeVMO309NvY7i0Z0rFhTL+VqVZZGjVqFF9//TWpqan89a9/5csvvyQ0NJSRI0eycOFCios1bSIX7/oewTTxcGHf0Vx+SzxidhwRkQbrtSWJ7DmSi18Td54eFWl2HLu7qBO8mzdvztSpU9myZQuvvfYaS5cu5YYbbiAoKIinnnqKvLy8msopDZCXuwvje4UA8NGqfSanERFpmDbuP8EHv5dOv80c2xkfz4Yz/VbmospSeno6L730EhERETz22GPccMMN/Prrr7z++ussWrSIMWPG1FBMaagmRIVhscDvSUfZfTjH7DgiIg1K2fSbYcB1PVoyKDLA7EimcKnOTgsXLmTOnDn8/PPPREZG8ve//53bbrsNHx+f8m26detG9+7dayqnNFCtmnsyKCKAJTszmLs6mefGdDY7kohIg/HKzwnsPZpLgLc7T49sOFe//Vm1RpYmTZpEUFAQq1atIi4ujilTplQoSgBt2rTh//7v/2oiozRwZcsIfL0xhay8InPDiIg0EBuSj/Ph6VMgZl7XGaunq8mJzFOtkaW0tDQ8PT2r3KZRo0Y8/fTT1Qol8kdRbZoTHtiEXek5fLXhAH+54hKzI4mI1GunCksXnzQMuKFnMFeFN8zptzLVGlkqLi4mOzv7jEdOTg6FhYU1nVEaOIvFwsTTt0D5ePV+SrSMgIhIrXr55wSSj+UR6O3BkyMb3tVvf1atsuTj40PTpk3PePj4+NCoUSNCQ0N5+umnsdlsNZ1XGqgx3VvS1NOVlMxTLNmZYXYcEZF6a92+48xZfXr67frOWBs13Om3MtUqS3PnziUoKIjHH3+cb775hkWLFvH444/TsmVL3n33Xf7yl7/w5ptvMmvWrJrOKw2Uh6szN/duBcAcLSMgIlIr8gqLmbagdPrtxl7BXNnB3+xIdUK1zln6+OOPefXVV7nxxhvLnxs9ejSdO3fm/fff59dff6VVq1Y8//zzPP744zUWVhq26KhQ3v/vXtbuO86O1Cw6BlnNjiQiUq+8FJPA/mN5tLB68ISm38pVa2RpzZo1lS4L0L17d9asWQNA//79OXDgwMWlE/mDFtZG5Xe4/nh1srlhRETqmdi9x5h7+rN11vVd8PbQ9FuZapWl4OBgPvzwwzOe//DDDwkJKV1x+dixYzRt2vTi0on8yR2nlxH4Ji6VYycLzA0jIlJP5BUW88iCrQDcdGkIA9r7mZyobqnWNNwrr7zCuHHj+Omnn7j00kuxWCysX7+eXbt2sWDBAgDWr1/P+PHjazSsSI9WTekSbGXroSy+XHeAKVe1MzuSiIjDe/GnXRw4nkeQ1YP/GxFhdpw6x2IYRrWuw96/fz/vvfceCQkJGIZBeHg4d999N2FhYTUcse7Lzs7GarWSlZWFt7e32XHqvUWbDzH1qy0EeLuz8tGrcHW+qLv2iIg0aKv3HOWWD9YC8Omdvbm8XcMZVTrfv98XPLJUVFTEkCFDeP/995k5c+ZFhRSpjms6t+D5H3aRkV3AT9vTGd01yOxIIiIOKbfgf9Nvt/Rp1aCK0oW44H+Su7q6sn37diwWS23kETkndxdnbuurZQRERC7WrJ92cejEKVr6NOLxazT9djbVmr+YMGFCpSd4i9jLrX1CcXN2YvOBTOIOZpodR0TE4azefZRPY/cD8NINXWjsXq3TmBuEah2ZwsJC/v3vf7NkyRJ69eqFl5dXhe+/9tprNRJO5Gz8mrgzsmsLFm5KYe6qfbxx05lLWYiISOVOFhQz7fT02219W3FZW1+TE9Vt1SpL27dvp0ePHgAkJiZW+J6m58ReJvVrzcJNKfywLY3Hr4nA39vD7EgiIg5h5o/xpGSeIrhpI6YP1/TbuVSrLC1fvrymc4hcsM7BVnqFNmXD/hN8FrufB4d0MDuSiEidtzLpKJ+vLV00+qUbuuCl6bdzuqhrrnfv3s3PP//MqVOnAKjmKgQi1TbpstYAfL72APlFJSanERGp23Lyi3j069LptwlRofS7RNNv56NaZenYsWNcffXVtG/fnmuuuYa0tDQA7rrrLh566KEaDShSlaEdA2hh9eBYbiHfb00zO46ISJ32wunpt5BmjXh0WLjZcRxGtcrS1KlTcXV15cCBA3h6epY/P378eGJiYmosnMi5uDg7ER0VCpQuI6DRTRGRyv038QhfrjsIwMs3dNX02wWoVln65ZdfePHFFwkODq7wfLt27di/f3+NBBM5Xzdf2goPVyd2pGazPvmE2XFEROqc7PwiHjs9/TaxXxh92zQ3OZFjqVZZys3NrTCiVObo0aO4u7tfdCiRC9HUy42x3VsCWqRSRKQyz38fT2pWPqHNPXlkmC6GuVDVKktXXHEFn3zySfnXFosFm83Gyy+/zJVXXllj4UTO18R+pSd6/7wjnZTMUyanERGpO1YkHOarDQexWEqn3zzdNP12oap1xF5++WUGDhzIhg0bKCws5JFHHmHHjh0cP36cVatW1XRGkXPqENiEfpc0Z/WeY3yyJlnrhoiIAFmninjs621A6fRb79bNTE7kmKo1shQZGcnWrVvp3bs3gwcPJjc3l+uuu47NmzdzySWX1HRGkfNStozAvHUHySssNjmNiIj5nvt+J+nZ+YQ19+SRobr6rbqqPRYXGBjIP/7xj5rMInJRrgr3p1UzTw4cz2PR5hRu7RNqdiQREdMs33WY+RsPlU6/jetKIzdnsyM5rGqXpczMTNatW8fhw4ex2WwVvjdhwoSLDiZyoZydLEyICuW5H+KZuyqZW3q30u13RKRBysor4rGFpVe/3XFZay4N0/TbxahWWfruu++49dZbyc3NpUmTJhX+IFksFpUlMc2Nl4bw+pJEkg6fZNXuY/Rvp9VpRaTheeb7nWRkF9Da14uHdSuoi1atc5Yeeugh7rjjDnJycsjMzOTEiRPlj+PHj9d0RpHz5u3hyg09S9f/0jICItIQ/RqfwdebSqffXhnXRdNvNaBaZSklJYX77ruv0rWWRMx2e78wAJYlHCb5aK65YURE7Cgrr4jpC0uvfrurf2t6hmr6rSZUqywNHTqUDRs21HQWkRrRxq8xAzv4YRjw8Zpks+OIiNjNP77bweGcAtr4efGQpt9qTLXOWRoxYgTTpk1j586ddO7cGVdX1wrfHz16dI2EE6muSZe1ZkXCEeZvOMSDg9vTxMP13DuJiDiwJTszWLg5BScLvDKuKx6umn6rKdUqS5MnTwbgmWeeOeN7FouFkpKSi0slcpGuaOfLJX5e7DmSy4KNh8rXYBIRqY8y8wp5fFHp9Nvky9vQo1VTkxPVL9WahrPZbGd9qChJXWCxWJh4uiB9vDoZm80wOZGISO2ZsXgHR3IKuMTPi6mD25sdp965oLJ0zTXXkJWVVf71888/T2ZmZvnXx44dIzIyssbCiVyM67q3pImHC8nH8liReNjsOCIiteLnHel8E5eKkwVevbGbpt9qwQWVpZ9//pmCgoLyr1988cUKSwUUFxeTkJBQc+lELoKXuws3XRoCwJxVyeaGERGpBSdyC/m/RdsB+MsVl9AtxMfcQPXUBZUlwzCq/FqkrpkQFYaTBX5POkpSRo7ZcUREatTTi3dw9GQB7fwb88CgdmbHqbeqdc6SiKMIaebJ4MgAAOauTjY3jIhIDYrZnsbiLak4O1l09Vstu6CyZLFYzrjXlu69JXXdxH6lJ3ov3JRCVl6RyWlERC7e8dxCnvimdPrtngFt6Krpt1p1QUsHGIbBxIkTcXd3ByA/P5977rkHLy8vgArnM4nUFX3bNCM8sAm70nOYt/4Adw+4xOxIIiIX5alvt3P0ZCEdAppw39WafqttFzSydPvtt+Pv74/VasVqtXLbbbcRFBRU/rW/v79uoit1jsVi4Y7Tywh8smY/xSU2kxOJiFTfj9vS+H5rWvn0m7uLpt9q2wWNLM2ZM6e2cojUqtHdgpgVs4uUzFMsjc9gWKcWZkcSEblgx04W8OTp6be/DbyEzsFWkxM1DDrBWxoED1dnbu5duozAR1pGQEQc1FPf7uBYbiHhgU249ypNv9mLypI0GNF9w3BxsrBu33F2pGadewcRkTrk+62p/LDtf9Nvbi76E24vDnOkT5w4QXR0dPn5UdHR0RVWD69MRkYGEydOJCgoCE9PT4YNG0ZSUlKFbQoKCrj33nvx9fXFy8uL0aNHc+jQoVp8J2KWQKsHwzuXTr9pkUoRcSRHcv43/fb3K9vSqaWm3+zJYcrSLbfcQlxcHDExMcTExBAXF0d0dPRZtzcMgzFjxrB3716+/fZbNm/eTGhoKIMGDSI3N7d8uwceeIBFixYxb948Vq5cycmTJxk5cqTucVdPTbosDIDFcakcPamrN0Wk7jMMgye/2c6JvCIiWngz5cq2ZkdqcCyGAyzDHR8fT2RkJLGxsfTp0weA2NhYoqKi2LVrFx06dDhjn8TERDp06MD27dvp2LEjACUlJfj7+/Piiy9y1113kZWVhZ+fH59++injx48HIDU1lZCQEH788UeGDh16Xvmys7OxWq1kZWXh7e1dQ+9aaoNhGIx5exVbDmXx0OD23KtLbkWkjlu8JZX7vtyMi5OFb6dcRscgjSrVlPP9++0QI0tr1qzBarWWFyWAvn37YrVaWb16daX7lK355OHhUf6cs7Mzbm5urFy5EoCNGzdSVFTEkCFDyrcJCgqiU6dOZ31dcWwWi4VJp5cR+DR2P4XFWkZAROquwzn5PPVt6fTblKvaqiiZxCHKUnp6Ov7+/mc87+/vT3p6eqX7hIeHExoayvTp0zlx4gSFhYXMmjWL9PR00tLSyl/Xzc2Npk2bVtg3ICDgrK8LpUUsOzu7wkMcxzWdW+DfxJ3DOQX8tD3N7DgiIpUyDIMnFm0nM6+IyBbe/F3Tb6YxtSzNmDGj/BYqZ3ts2LABqPy2KoZhnPV2K66urnz99dckJibSrFkzPD09WbFiBcOHD8fZueoFvKp6XYCZM2eWn2hutVoJCQm5gHctZnNzceK2vqGATvQWkbpr8ZZUftmZgatz6dVvrs4OMb5RL13QopQ1bcqUKdx0001VbhMWFsbWrVvJyMg443tHjhwhICDgrPv27NmTuLg4srKyKCwsxM/Pjz59+tCrVy8AAgMDKSws5MSJExVGlw4fPky/fv3O+rrTp0/nwQcfLP86OztbhcnB3Ny7FbOX7SbuYCabD5yge6um595JRMRODmfn89S3OwC496p2RAbpfFgzmVqWfH198fX1Ped2UVFRZGVlsW7dOnr37g3A2rVrycrKqrLUlLFaS+d4k5KS2LBhA88++yxQWqZcXV1ZsmQJN954IwBpaWls376dl1566ayv5+7uXn5/PHFMfk3cGdU1iK83HWLOqmSVJRGpMwzD4PFF28k6VUSnlt78daDuZ2k2hxjTi4iIYNiwYUyePJnY2FhiY2OZPHkyI0eOrHAlXHh4OIsWLSr/ev78+axYsaJ8+YDBgwczZsyY8hO6rVYrd955Jw899BC//vormzdv5rbbbqNz584MGjTI7u9T7KtsGYEft6WRnpVvbhgRkdO+iUthabym3+oSh/kv8Pnnn9O5c2eGDBnCkCFD6NKlC59++mmFbRISEsjK+t/KzGlpaURHRxMeHs59991HdHQ0X375ZYV9Xn/9dcaMGcONN97IZZddhqenJ9999905z2sSx9eppZXeYc0othl8vna/2XFERMjIzmfG4p0A3H91O8IDNf1WFzjEOkt1ndZZclw/bkvjb59vormXG6seuwoPV5VkETGHYRjc9fEGft11mM4trSz6Wz9cNKpUq+rVOksitWVIZAAtfRpxLLeQxVtSzY4jIg3Ywk0p/LrrMG7OTrx6Y1cVpTpE/yWkQXNxdiI66n/LCGigVUTMkJ6Vz4zvSq9+u39QO9oHNDE5kfyRypI0eDddGoKHqxPxadms23fc7Dgi0sAYhsH0hVvJyS+ma7CVu69oY3Yk+ROVJWnwfDzdGNs9GNAilSJifws2HmJ5whHcnJ14ZZym3+oi/RcR4X/LCPyyM52Dx/PMDSMiDUZa1ime+a706repg9vTTtNvdZLKkgjQPqAJ/dv6YjNKb7ArIlLbDMPgsa+3kVNQTLcQHyZf3trsSHIWKksip03sFwbAvHUHyCssNjeMiNR78zcc4rfEI7i5aPqtrtN/GZHTrgr3J7S5J9n5xSzclGJ2HBGpx1IzT/Hs96XTbw8Nbk9b/8YmJ5KqqCyJnObkZOH2qDAA5q7WMgIiUjsMw+DRr7eSU1BM91Y+3HW5rn6r61SWRP5gXK9gvNyc2X34JCt3HzU7jojUQ/PWH+T3pKO4n55+c3aymB1JzkFlSeQPmni4Mq5XCKBlBESk5qVknuL5H+IBmDa0A5f4afrNEagsifzJ7f3CsFhg2a7D7Duaa3YcEaknDMPg0QVbOVlQTK/Qpky6TFe/OQqVJZE/ae3rxZUd/AH4eHWyuWFEpN74Yt0BVu4unX576YYumn5zICpLIpUoW6Ry/oaD5OQXmRtGRBzeweN5vHB6+u2RYeG00fSbQ1FZEqlE/7a+tPVvTG5hCfM3HDI7jog4MJut9Oq33MISLg1ryqTTa7qJ41BZEqmExWIpX6Ty4zXJlNi0jICIVM/n6w6wes8xPFydePmGrjhp+s3hqCyJnMV1PVri7eHC/mN5LN912Ow4IuKADh7PY+aPpdNvjw4LJ8zXy+REUh0qSyJn4enmws29WwGli1SKiFwIm81g2oIt5BWW0Lt1s/JFb8XxqCyJVCE6KhQnC6zcfZTEjByz44iIA/ls7X5i9x6nkaszL9/QRdNvDkxlSaQKwU09GRIZCGiRShE5fweO5THzx10APDY8nNDmmn5zZCpLIudQtozAos2HyMwrNDeMiNR5NpvBwwu2cKqohL5tmhHdN9TsSHKRVJZEzqF362ZEtvAmv8jGvPUHzY4jInXcJ2uSWbfvOJ5uzrx0va5+qw9UlkTOwWKxMPH06NInq5MpLrGZG0hE6qzko7m8GJMAwPTh4bRq7mlyIqkJKksi52F01yCae7mRmpXPLzszzI4jInWQzWbwyIKtnCoqIapNc27to+m3+kJlSeQ8eLg6c0uf0mUE5qzaZ3IaEamL5q5OZl3ycbzcnHlJV7/VKypLIufptr6huDhZWJ98gu0pWWbHEZE6ZN/RXF76ufTqt+nXRBDSTNNv9YnKksh5CvD24JrOLQAtIyAi/1NiM5g2fwv5RTb6t/Xl1tOj0FJ/qCyJXICyZQS+25LKkZwCc8OISJ0wZ9U+Nuw/QWN3F2Zd3xmLRdNv9Y3KksgF6N6qKd1CfCgssfHF2gNmxxERk+05cpKXfy69+u3xayIIbqrpt/pIZUnkApWNLn22dj+FxVpGQKShKpt+Kyi2cXk7X27uHWJ2JKklKksiF2h4pxb4N3HnSE4BP25LMzuOiJjko5X72HQg8/T0WxdNv9VjKksiF8jNxan89gVzVu3DMAyTE4mIve0+fJKXfymdfntiRAQtfRqZnEhqk8qSSDXc0qcVbi5ObDmUxeaDmWbHERE7KrEZTFuwhcJiG1e092P8pZp+q+9UlkSqoXljd67tGgRoGQGRhubfv+9l84FMmri78KKufmsQVJZEqqnsfnE/bUsjPSvf3DAiYhe7D+fw6pJEAJ4cFUkLq6bfGgKVJZFq6hhkpXfrZhTbDD6NTTY7jojUsuISGw/N30phsY0rO/gxrmew2ZHETlSWRC7CHadHl75Ye4D8ohJzw4hIrfrX73vZcjCTJh4uzLxOV781JCpLIhdhUEQALX0acSKviMVxqWbHEZFakpiRwxtLkgB4elRHAq0eJicSe1JZErkILs5OTIgqXUbgIy0jIFIvFZfYeHj+FgpLbFwV7s/1PVqaHUnsTGVJ5CLddGkrGrk6sys9h9i9x82OIyI17P3/7mXroSy8PVyYeZ2ufmuIVJZELpLV05XrTv9Lc+7qfSanEZGalJCewxtLS69+mzG6IwHemn5riFSWRGrAxH5hACzZmcHB43nmhhGRGlF0evqtqMRgUIQ/Y7tr+q2hUlkSqQHtAppweTtfbAZ8sibZ7DgiUgPeW7GHbSlZWBu58sJYTb81ZCpLIjVk0ullBOatP0huQbG5YUTkosSnZfPmstKr3/4xuiP+mn5r0FSWRGrIwPb+hDX3JCe/mIWbU8yOIyLV9Mfpt8GRAVzbLcjsSGIylSWRGuLkZOH20+cuzV21D5tNywiIOKJ3lu9hR2o2Pp6uPD+2k6bfRGVJpCbd0DOYxu4u7DmSy++7j5odR0Qu0I7ULN764/RbE02/icqSSI1q4uHKuF6l94uas0rLCIg4ksJiGw/P30qxzWBoxwBGd9X0m5RSWRKpYbdHhWGxwIqEI+w9ctLsOCJynt5evpv4tGyaerry3Bhd/Sb/o7IkUsPCfL24qoM/AB+vTjY3jIicl+0pWby9fDcAz1zbCb8m7iYnkrpEZUmkFky6rDUACzYeIju/yOQ0IlKV0um3LRTbDIZ3CmRklxZmR5I6RmVJpBZc1rY57QMak1tYwn/WHzQ7johUYfayJHal59DMy41nx+jqNzmTypJILbBYLEzsVzq69PGaZPKLSkxOJCKV2Z6Sxdsr9gDw7LWd8G2s6Tc5k8qSSC0Z270lPp6uHDx+ilFvrWTLwUyzI4nIHxQUl/DQf7ZQYjMY0aUFIzT9JmehsiRSSxq5OTP75h74NnYn6fBJrnt3NS/F7KKgWKNMInXBW7/uJiEjh+ZebjwzuqPZcaQOU1kSqUX92/myZOoVjO4aRInN4J0Vexj11kq2Hso0O5pIg7b1UCbv/lY6/fbcmE401/SbVEFlSaSWNfVy482bu/PebT3wbexGYsZJxr6zmld+TtAok4gJCopLeHh+6fTbqK5BDO+s6TepmsqSiJ0M69SCX6YOYGSXFpTYDGYv383ot1axPSXL7GgiDco/lyaRmHES38Zu/EPTb3IeVJZE7KiZlxuzb+nBu7f2oLmXGwkZOVz79ipe+yWBwmKb2fFE6r24g5m8Vz791plmXm4mJxJHoLIkYoLhnVvwy9QrGNG5dJTpzWW7GT17pUaZRGpRflHp9JvNgGu7BTGsU6DZkcRBqCyJmKR5Y3fevrUHb9/Sg2ZebuxKz2HM26t4bUmiRplEasEbS5PYffgkvo3dmTFK029y/lSWREw2okvpKNPwToEU2wze/DWJa99exc7UbLOjidQbmw6c4F//LZ1+e2FsJ5pq+k0ugMqSSB3g29idd27twVs3d6eppyvxadmMnr2SN5YmUlSiUSaRi5FfVMK009NvY7u3ZEhHTb/JhXGYsnTixAmio6OxWq1YrVaio6PJzMyscp+MjAwmTpxIUFAQnp6eDBs2jKSkpPLvHz9+nHvvvZcOHTrg6elJq1atuO+++8jK0nkjYn8Wi4VRXYP4ZeoAhnUsHWV6Y2kSY95eRXyaRplEquu1JYnsOZKLXxN3nh4VaXYccUAOU5ZuueUW4uLiiImJISYmhri4OKKjo8+6vWEYjBkzhr179/Ltt9+yefNmQkNDGTRoELm5uQCkpqaSmprKK6+8wrZt25g7dy4xMTHceeed9npbImfwa+LOu7f14M2bu+Pj6cqO1NJRpjd/TdIok8gFKCy28e/f9/Lv3/cCMHNsZ3w8Nf0mF85iGIZhdohziY+PJzIyktjYWPr06QNAbGwsUVFR7Nq1iw4dOpyxT2JiIh06dGD79u107Fh6Il9JSQn+/v68+OKL3HXXXZX+rPnz53PbbbeRm5uLi4vLeeXLzs7GarWSlZWFt7d3Nd+lyJkO5+TzxKLt/LIzA4BOLb15ZVxXwgP1eyZyNoZhsGRnBjN/2sW+o6X/OL6xVzAv3dDV5GRS15zv32+HGFlas2YNVqu1vCgB9O3bF6vVyurVqyvdp6CgAAAPD4/y55ydnXFzc2PlypVn/VllB+x8i5JIbfJv4sH70T35503dsDZyZXtKNqPeWsnsZUkUa5RJ5Aw7UrO45YO1/OXTjew7motvY3dmXdeZmdd1MTuaODCHaATp6en4+/uf8by/vz/p6emV7hMeHk5oaCjTp0/n/fffx8vLi9dee4309HTS0tIq3efYsWM8++yz3H333VXmKSgoKC9jUNpMRWqLxWLh2m4tiWrTnMcXbWdpfAav/JLIzzsyeGVcVzoENjE7oojpDmfn8+ovifxn40EMA9xcnLirf2v+dmVbGrs7xJ86qcNMHVmaMWMGFoulyseGDRuA0j8Yf2YYRqXPA7i6uvL111+TmJhIs2bN8PT0ZMWKFQwfPhxnZ+czts/OzmbEiBFERkby9NNPV5l75syZ5SeaW61WQkJCqvHuRS6Mv7cHH0zoyevju2Jt5Mq2lCxGvbWSt5fv1iiTNFj5RSXMXpbEwFdW8NWG0qI0sksLfn1wAI8MC1dRkhph6jlLR48e5ejRo1VuExYWxhdffMGDDz54xtVvPj4+vP7660yaNKnK18jKyqKwsBA/Pz/69OlDr169ePvtt8u/n5OTw9ChQ/H09OT777+vMHVXmcpGlkJCQnTOktjN4ex8Hl+0jaXxhwHoGmzllXFdaRegUSZpGAzDYPGWVF6KSSAl8xQAXUN8eGpkBD1Dm5mcThzF+Z6z5FAneK9du5bevXsDsHbtWvr27XvWE7wrk5SURHh4OD/99BNDhgwBSg/U0KFDcXd358cff8TT0/OC8+kEbzGDYRgs3JTCP77bQXZ+MW7OTkwd3J7Jl7fGxdkhTkcUqZZNB07w7Pc72XwgE4AgqwePDg9nVJcgnJwqn20QqUy9KksAw4cPJzU1lffffx+Av/zlL4SGhvLdd9+VbxMeHs7MmTMZO3YsUHplm5+fH61atWLbtm3cf//99OzZk6+//hooHVEaPHgweXl5LFq0CC8vr/LX8vPzq3S6rjIqS2Km9KzSUaZlu06PMoX48Oq4LrT11yiT1C8pmad48addLN6SCoCnmzN/HXAJd13ehkZu5/d5LfJH5/v322Emcz///HPuu+++8hGh0aNHM3v27ArbJCQkVFhQMi0tjQcffJCMjAxatGjBhAkTePLJJ8u/v3HjRtauXQtA27ZtK7zWvn37CAsLq6V3I1JzAq0efHh7LxZsPMQz3+9ky8FMrnlzJQ8Obs/ky9vgrH9pi4PLLSjm3RV7+OD3vRQU27BY4IYewTw8tAMB3lWfNiFSExxmZKku08iS1BXpWfk8tnArKxKOANC9lQ8v39CVtv6NTU4mcuFKbAYLNh7klV8SOZJTep5on9bNeHJkJJ1aWk1OJ/VBvZuGq8tUlqQuMQyD+RsO8ez3O8kpKMbNxYmHh7Tnzv4aZRLHsXrPUZ77Pp6dp2/1E9rck8eviWBIZMBZr4IWuVAqS3aksiR1UWrmKR5buI3/JpaOMvVo5cPL47pyiZ9GmaTu2nc0lxd+jGfJ6VXrm3i4cP/V7ZgQFYabiy5ckJqlsmRHKktSVxmGwX82HOTZ7+M5WVCMu4sT04Z2YNJlrTXKJHVKVl4Rby5L4pM1yRSVGDg7Wbi1TyseGNSeZl66n5vUDpUlO1JZkrouJfMUj329ld+TStc16xXalJdu6EIbjTKJyYpKbHweu583fk0iM68IgIEd/Pi/ayK0bpjUOpUlO1JZEkdgGAbz1h/k+R80yiTmMwyD5QmHef6HePYcKb3ZbTv/xjwxMpIB7f1MTicNhcqSHaksiSNJyTzFowu2snJ36SjTpWFNefmGroT5ep1jT5GakZCew3M/7Cwf6Wzm5caDg9tz06UhWlBV7EplyY5UlsTRGIbBF+sO8MIP8eQWluDh6sQjQ8OZ2C9MKyBLrTl6soDXliQyb90BbAa4OTsx6bIw/n5VW7w9XM2OJw2QypIdqSyJozp4PI/HFm5l1e5jAPRu3YyXb+hCaHONMknNKSguYc6qZN5etpucgmIAhncK5LHh4fpdE1OpLNmRypI4MsMw+HztAV74MZ68whIauTrz6LAOTIjSKJNcHMMw+Gl7OjN/iufg8dKb3XZuaeWJERH0adPc5HQiKkt2pbIk9cHB43k8smAra/aWjjL1ad2Ml2/oSqvmF35zaZGthzJ59vudrE8+AUCAtzvThoZzXfeWKuFSZ6gs2ZHKktQXNpvB52v388KPuzhVVIKnmzOPDQ/ntj6h+gMn5yUt6xQvxySwcHMKAB6uTvzliku4Z0AbPN0c5nak0kCoLNmRypLUNweO5TFtwRbW7jsOQN82paNMIc00yiSVyyss5v3f9vL+f/eQX2QD4LruLZk2rAMtrI1MTidSOZUlO1JZkvrIZjP4NHY/s3763yjT9GsiuLV3K40ySTmbzWDR5hRe/jmB9Ox8oHTR0ydHRtI1xMfccCLnoLJkRypLUp/tP5bLtPlbWZdcOsrU75LmvHh9F40yCev2Hee5H3ay9VAWAMFNGzF9eATXdA7UzW7FIags2ZHKktR3NpvBx2uSeTFmF/lFNrzcnHl8RAS39G6lP4oN0IFjecyKiefHbekANHZ34e9XtmXSZWF4uDqbnE7k/Kks2ZHKkjQUyUdzmbZgS/kVTv3b+jLr+s4EN9UoU0OQnV/E28t2M2dVMoUlNpwscFPvVjw4uD2+jd3NjidywVSW7EhlSRoSm81gzupkXv65dJSpsbsLj18Twc29QzTKVE8Vl9iYt/4gry9J5FhuIQCXt/Pl/0ZEEB6ozzxxXCpLdqSyJA3RvqO5TJu/hQ37S0eZLm/ny6zru9DSR1c+1Sf/TTzCcz/sJDHjJABt/Lx4YkQEV3bwVzkWh6eyZEcqS9JQldgM5qzax8s/J1BQXDrK9MSICMZfqlEmR7f7cA7P/xDP8oQjAPh4uvLA1e24tW8orrrZrdQTKkt2pLIkDd2eIyeZNn8Lmw5kAnBFez9mXdeZII0yOZzjuYW8sTSRz9ceoMRm4OJkYUJUGPdf3Q6rp252K/WLypIdqSyJlI4yfbhyL6/8kkhhsY0m7i48OTKScb2CNcrkAAqLbXyyJpk3f00iO7/0ZreDIwOYPjycNn6NTU4nUjtUluxIZUnkf3YfPsm0BVvYfHqUaWAHP2Ze11mrONdRhmHwy84MZv4YT/KxPAAiWnjz5IgI+rX1NTmdSO1SWbIjlSWRikpsBv/+fS+vLjk9yuRxepSpp0aZ6pIdqVk8+/1OYveWLjjq29idaUPbc0PPEJy1Srs0ACpLdqSyJFK53YdzeGj+VrYczATgyg5+zLyuC4FWD3ODNXCHs/N55ZcE5m88hGGAm4sTky9vzV8HtqWxu252Kw2HypIdqSyJnF1xiY0Pft/H60sSKSyx4e3hwlOjOnJ9j5YaZbKz/KIS/v37Xt5ZsYe8whIARnUN4tFhHbSwqDRIKkt2pLIkcm5JGTk8PH8LW07fR+zqcH9euK4zAd4aZapthmGweEsqL/60i9Ss0pvddgvx4cmRkfQMbWpyOhHzqCzZkcqSyPkpLrHx/n/38s+lSeWjTDNGd2Rsd40y1ZaN+0/w7Pc7iTs9FRpk9eDR4eGM7hqkYy4NnsqSHaksiVyYhPTSUaZtKaWjTIMiAnhhbCf8NcpUYw6dyOPFmAS+25IKgKebM38beAl3Xd5GN7sVOU1lyY5UlkQuXNko0xtLEykqMbA2cuUfoztybTeNeFyMkwXFvLtiN//+fR8FxTYsFhjXM5iHh3RQGRX5E5UlO1JZEqm+XenZPDx/C9tTsoHShRCfH9sJ/yb6w34hSmwG8zcc5JVfEjl6sgCAvm2a8cSISDq1tJqcTqRuUlmyI5UlkYtTVGLjvRV7eHNZEkUlBj6epaNMOq/m/KzefZRnf4gnPq20cIY19+TxayIYHBmg4ydSBZUlO1JZEqkZ8WnZPPSfLew8/Ud/aMcAnhvTGb8m7iYnq5v2HjnJCz/uYml8BgDeHi7cd3U7JkSF4eaim92KnIvKkh2pLInUnKISG+8s38Nby5Iothk09XTlH9d2YlSXFholOS0rr4h//prEJ2uSKbYZODtZuK1PK+4f1J5mXm5mxxNxGCpLdqSyJFLzdqaWnstUNso0vFMgz47phG/jhjvKVFRi4/PY/bzxaxKZeUVA6aro/zcigrb+TUxOJ+J4VJbsSGVJpHYUFtt4e/lu3l6+m2KbQTMvN565tiMjuwSZHc2uDMNgecJhnv8hnj1HcgFoH9CYJ0ZEckV7P5PTiTgulSU7UlkSqV3bU7J4eP4WdqXnAHBN50CevbYTzRvAKNOu9Gye+z6elbuPAtDcy40Hh7RnfK8QXJx1XpLIxVBZsiOVJZHaV1hsY/ayJN5esYcSm0FzLzeeHdOJazq3MDtarTh6soBXf0nkq/UHsBng5uzEpP5h/P3Ktnh7uJodT6ReUFmyI5UlEfv58yjTiC4tePbaTvXmxOb8ohLmrErm7eW7OVlQDJSOpD02LIJWzXWzW5GapLJkRypLIvZVUFzCW7/u5t3f/jfK9NyYTgx34FEmwzD4cVs6M3+K59CJUwB0CbbyxIhIerduZnI6kfpJZcmOVJZEzLH1UCYPz99CYsZJAEZ1DeKZ0R1p6mCjTFsOZvLcDztZn3wCgEBvDx4Z1oEx3Vri5KTlEkRqi8qSHaksiZinoLiEN39N4t0Ve7AZ4NvYjefGdGZYp0Czo51TWtYpXo5JYOHmFAAauTpz94A2/OWKNni6uZicTqT+U1myI5UlEfNtOVg6ypR0uHSU6dpuQcwYVTdHmfIKi3nvt7386797yC+yAXBdj5Y8MjScQKvuiSdiLypLdqSyJFI35BeV8M9fk3j/t7JRJndeGNuJIR3rxiiTzWawcHMKL/+8i4zs0pvdXhrWlCdHRtIl2MfccCINkMqSHaksidQtcQczeeg/ceULOI7t3pKnR0Xi42neKNO6fcd59vudbEvJAiCkWSOmD49geKdA3cZFxCQqS3aksiRS9+QXlfD60kQ++O9ebAb4NXFn5tjODIoMsGuOA8fymPlTPD9tTwegibsLU65qy+39wvBwdbZrFhGpSGXJjlSWROquTQdOMG3+lvJRpuu6t+TpUR2xetbuwo7Z+UXMXrabuauSKSyx4WSBm3u3Yurg9g36/nYidYnKkh2pLInUbflFJby+JJF//b4Xw4AAb3dmXteZq8JrfpSpuMTGl+sP8vqSRI7nFgJweTtfnhgRSYdA3exWpC5RWbIjlSURx7Bxf+ko096jpaNM1/cI5qlRkVgb1cwo02+JR3j+h53l6z5d4ufFEyMiGdjBT+clidRBKkt2pLIk4jjyi0p49ZcE/r1yX/ko06zrunBluH+1X3P34Rye+yGeFQlHAPDxdGXqoPbc0qcVrrrZrUidpbJkRypLIo5nQ/Jxpi3Yyr7To0zjegbzxMgLG2U6nlvIG0sT+XztAUpsBq7OFiZEhXHfVe1q/ZwoEbl4Kkt2pLIk4phOFZbwyi8JfLSqdJQp0NuDWdd3ZmCHqkeZCottfLImmX/+mkROfunNbodEBjD9mgha+3rZI7qI1ACVJTtSWRJxbOuTjzNt/haSj+UBML5XCP83MgJvj4qjQ4Zh8POODGb+FM/+09tGtvDmiZER9LvE1+65ReTiqCzZkcqSiOM7VVjCSz/vYu7qZAwDWlg9ePH6LlzR3g+A7SlZPPfDTmL3HgdK122aNqQD1/cMxlk3uxVxSCpLdqSyJFJ/rN17jGkLtnLgeOnI0U2XhlBiM1iw6RCGAe4uTky+vA33DLyExu662a2II1NZsiOVJZH6Ja+wmJdiEpi7OrnC89d2C+KRYeG09GlkTjARqVHn+/db/ywSEfkTTzcXZozuyLBOgTz97Q6snq48NjycHq2amh1NREygkaUaoJElERERx3O+f7+1WpqIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoOU5ZOnDhBdHQ0VqsVq9VKdHQ0mZmZVe6TkZHBxIkTCQoKwtPTk2HDhpGUlFTptoZhMHz4cCwWC998803NvwERERFxSA5Tlm655Rbi4uKIiYkhJiaGuLg4oqOjz7q9YRiMGTOGvXv38u2337J582ZCQ0MZNGgQubm5Z2z/xhtvYLHo/k4iIiJSkUOs4B0fH09MTAyxsbH06dMHgA8++ICoqCgSEhLo0KHDGfskJSURGxvL9u3b6dixIwDvvPMO/v7+fPnll9x1113l227ZsoXXXnuN9evX06JFC/u8KREREXEIDjGytGbNGqxWa3lRAujbty9Wq5XVq1dXuk9BQQEAHh4e5c85Ozvj5ubGypUry5/Ly8vj5ptvZvbs2QQGBtbSOxARERFH5RBlKT09HX9//zOe9/f3Jz09vdJ9wsPDCQ0NZfr06Zw4cYLCwkJmzZpFeno6aWlp5dtNnTqVfv36ce211553noKCArKzsys8REREpH4ytSzNmDEDi8VS5WPDhg0AlZ5PZBjGWc8zcnV15euvvyYxMZFmzZrh6enJihUrGD58OM7OzgAsXryYZcuW8cYbb1xQ7pkzZ5afaG61WgkJCbmwNy4iIiIOw9RzlqZMmcJNN91U5TZhYWFs3bqVjIyMM7535MgRAgICzrpvz549iYuLIysri8LCQvz8/OjTpw+9evUCYNmyZezZswcfH58K+11//fVcfvnlrFixotLXnT59Og8++GD519nZ2SpMIiIi9ZTFMAzD7BDnEh8fT2RkJGvXrqV3794ArF27lr59+7Jr165KT/CuTFJSEuHh4fz0008MGTKE9PR0jh49WmGbzp07889//pNRo0bRunXr83rd871rsYiIiNQd5/v32yGuhouIiGDYsGFMnjyZ999/H4C//OUvjBw5skJRCg8PZ+bMmYwdOxaA+fPn4+fnR6tWrdi2bRv3338/Y8aMYciQIQAEBgZWelJ3q1atzrsoQel0IKBzl0RERBxI2d/tc40bOURZAvj888+57777yovO6NGjmT17doVtEhISyMrKKv86LS2NBx98kIyMDFq0aMGECRN48sknazxbTk4OgKbiREREHFBOTg5Wq/Ws33eIabi6zmazkZqaSpMmTerEwpZl51AdPHhQ04LoePyZjseZdEwq0vGoSMejovp0PAzDICcnh6CgIJyczn7Nm8OMLNVlTk5OBAcHmx3jDN7e3g7/i1yTdDwq0vE4k45JRToeFel4VFRfjkdVI0plHGKdJRERERGzqCyJiIiIVEFlqR5yd3fn6aefxt3d3ewodYKOR0U6HmfSMalIx6MiHY+KGuLx0AneIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlB5aSksJtt91G8+bN8fT0pFu3bmzcuLH8+4ZhMGPGDIKCgmjUqBEDBw5kx44dJiauXVUdj6KiIh599FE6d+6Ml5cXQUFBTJgwgdTUVJNT165z/Y780d13343FYuGNN96wb0g7Op/jER8fz+jRo7FarTRp0oS+ffty4MABkxLXrnMdj5MnTzJlyhSCg4Np1KgRERERvPvuuyYmrj1hYWFYLJYzHn//+9+Bhvd5WtXxaIifpypLDurEiRNcdtlluLq68tNPP7Fz505effVVfHx8yrd56aWXeO2115g9ezbr168nMDCQwYMHl9+epT451/HIy8tj06ZNPPnkk2zatImFCxeSmJjI6NGjzQ1ei87nd6TMN998w9q1awkKCrJ/UDs5n+OxZ88e+vfvT3h4OCtWrGDLli08+eSTeHh4mBe8lpzP8Zg6dSoxMTF89tlnxMfHM3XqVO69916+/fZb84LXkvXr15OWllb+WLJkCQDjxo0DGtbnKVR9PBri5ymGOKRHH33U6N+//1m/b7PZjMDAQGPWrFnlz+Xn5xtWq9V477337BHRrs51PCqzbt06AzD2799fS6nMdb7H5NChQ0bLli2N7du3G6Ghocbrr79e++FMcD7HY/z48cZtt91mp0TmOp/j0bFjR+OZZ56p8FyPHj2MJ554ojaj1Qn333+/cckllxg2m63BfZ5W5o/HozL1/fNUI0sOavHixfTq1Ytx48bh7+9P9+7d+eCDD8q/v2/fPtLT08tvPAyla2MMGDCA1atXmxG5Vp3reFQmKysLi8VS6UhLfXA+x8RmsxEdHc20adPo2LGjSUnt41zHw2az8cMPP9C+fXuGDh2Kv78/ffr04ZtvvjEvdC06n9+P/v37s3jxYlJSUjAMg+XLl5OYmMjQoUNNSm0fhYWFfPbZZ9xxxx1YLJYG93n6Z38+HpWp75+nGllyUO7u7oa7u7sxffp0Y9OmTcZ7771neHh4GB9//LFhGIaxatUqAzBSUlIq7Dd58mRjyJAhZkSuVec6Hn926tQpo2fPnsatt95q56T2cz7H5IUXXjAGDx5c/q/F+jyydK7jkZaWZgCGp6en8dprrxmbN282Zs6caVgsFmPFihUmp6955/P7UVBQYEyYMMEADBcXF8PNzc345JNPTExtH1999ZXh7Oxc/vnZ0D5P/+zPx+PPGsLnqcqSg3J1dTWioqIqPHfvvfcaffv2NQzjf//jTk1NrbDNXXfdZQwdOtRuOe3lXMfjjwoLC41rr73W6N69u5GVlWWviHZ3rmOyYcMGIyAgoMIHYH0uS+c6HikpKQZg3HzzzRW2GTVqlHHTTTfZLae9nM//Zl5++WWjffv2xuLFi40tW7YYb731ltG4cWNjyZIl9o5rV0OGDDFGjhxZ/nVD+zz9sz8fjz9qKJ+nmoZzUC1atCAyMrLCcxEREeVX7QQGBgKQnp5eYZvDhw8TEBBgn5B2dK7jUaaoqIgbb7yRffv2sWTJknpxx+yzOdcx+f333zl8+DCtWrXCxcUFFxcX9u/fz0MPPURYWJgJiWvXuY6Hr68vLi4u5/V7VB+c63icOnWKxx9/nNdee41Ro0bRpUsXpkyZwvjx43nllVfMiGwX+/fvZ+nSpdx1113lzzW0z9M/qux4lGlIn6cqSw7qsssuIyEhocJziYmJhIaGAtC6dWsCAwPLr2CA0nnn3377jX79+tk1qz2c63jA//6HnZSUxNKlS2nevLm9Y9rVuY5JdHQ0W7duJS4urvwRFBTEtGnT+Pnnn82IXKvOdTzc3Ny49NJLz/l7VF+c63gUFRVRVFSEk1PFPxPOzs7YbDa75bS3OXPm4O/vz4gRI8qfa2ifp39U2fGAhvd5qmk4B7Vu3TrDxcXFeP75542kpCTj888/Nzw9PY3PPvusfJtZs2YZVqvVWLhwobFt2zbj5ptvNlq0aGFkZ2ebmLx2nOt4FBUVGaNHjzaCg4ONuLg4Iy0trfxRUFBgcvracT6/I39Wn6fhzud4LFy40HB1dTX+9a9/GUlJScZbb71lODs7G7///ruJyWvH+RyPAQMGGB07djSWL19u7N2715gzZ47h4eFhvPPOOyYmrz0lJSVGq1atjEcfffSM7zWkz9MyZzseDfHzVGXJgX333XdGp06dDHd3dyM8PNz417/+VeH7NpvNePrpp43AwEDD3d3duOKKK4xt27aZlLb2VXU89u3bZwCVPpYvX25e6Fp2rt+RP6vPZckwzu94fPjhh0bbtm0NDw8Po2vXrsY333xjQlL7ONfxSEtLMyZOnGgEBQUZHh4eRocOHYxXX331rJePO7qff/7ZAIyEhIQzvtfQPk8N4+zHoyF+nloMwzDMGNESERERcQQ6Z0lERESkCipLIiIiIlVQWRIRERGpgsqSiIiISBVUlkRERESqoLIkIiIiUgWVJREREZEqqCyJiIiIVEFlSUQatLCwMN544w2zY4hIHaayJCIOa9SoUQwaNKjS761ZswaLxcKmTZvsnEpE6huVJRFxWHfeeSfLli1j//79Z3zvo48+olu3bvTo0cOEZCJSn6gsiYjDGjlyJP7+/sydO7fC83l5eXz11VfceeedfP3113Ts2BF3d3fCwsJ49dVXz/p6ycnJWCwW4uLiyp/LzMzEYrGwYsUKAFasWIHFYuHnn3+me/fuNGrUiKuuuorDhw/z008/ERERgbe3NzfffDN5eXnlr2MYBi+99BJt2rShUaNGdO3alQULFtTk4RCRWqKyJCIOy8XFhQkTJjB37lz+eE/w+fPnU1hYSFRUFDfeeCM33XQT27ZtY8aMGTz55JNnlKvqmDFjBrNnz2b16tUcPHiQG2+8kTfeeIMvvviCH374gSVLlvDWW2+Vb//EE08wZ84c3n33XXbs2MHUqVO57bbb+O233y46i4jULovxx08YEREHs2vXLiIiIli2bBlXXnklAAMGDKBly5ZYLBaOHDnCL7/8Ur79I488wg8//MCOHTuA0hO8H3jgAR544AGSk5Np3bo1mzdvplu3bkDpyFLTpk1Zvnw5AwcOZMWKFVx55ZUsXbqUq6++GoBZs2Yxffp09uzZQ5s2bQC45557SE5OJiYmhtzcXHx9fVm2bBlRUVHlWe666y7y8vL44osv7HGoRKSaNLIkIg4tPDycfv368dFHHwGwZ88efv/9d+644w7i4+O57LLLKmx/2WWXkZSURElJyUX93C5dupT//wEBAXh6epYXpbLnDh8+DMDOnTvJz89n8ODBNG7cuPzxySefsGfPnovKISK1z8XsACIiF+vOO+9kypQpvP3228yZM4fQ0FCuvvpqDMPAYrFU2LaqwXQnJ6cztikqKqp0W1dX1/L/32KxVPi67DmbzQZQ/n9/+OEHWrZsWWE7d3f3c709ETGZRpZExOHdeOONODs788UXX/Dxxx8zadIkLBYLkZGRrFy5ssK2q1evpn379jg7O5/xOn5+fgCkpaWVP/fHk72rKzIyEnd3dw4cOEDbtm0rPEJCQi769UWkdmlkSUQcXuPGjRk/fjyPP/44WVlZTJw4EYCHHnqISy+9lGeffZbx48ezZs0aZs+ezTvvvFPp6zRq1Ii+ffsya9YswsLCOHr0KE888cRF52vSpAkPP/wwU6dOxWaz0b9/f7Kzs1m9ejWNGzfm9ttvv+ifISK1RyNLIlIv3HnnnZw4cYJBgwbRqlUrAHr06MF//vMf5s2bR6dOnXjqqad45plnystUZT766COKioro1asX999/P88991yN5Hv22Wd56qmnmDlzJhEREQwdOpTvvvuO1q1b18jri0jt0dVwIiIiIlXQyJKIiIhIFVSWRERERKqgsiQiIiJSBZUlERERkSqoLImIiIhUQWVJREREpAoqSyIiIiJVUFkSERERqYLKkoiIiEgVVJZEREREqqCyJCIiIlIFlSURERGRKvw/FsCLm/9axZsAAAAASUVORK5CYII="},"metadata":{}}],"execution_count":4}]} \ No newline at end of file