diff --git a/README.md b/README.md index 190cc19d..b1023628 100644 --- a/README.md +++ b/README.md @@ -80,7 +80,7 @@ For complete Documentation with tutorials visit [ReadTheDocs](https://pytorch-ta **Semi-Supervised Learning** -- [Denoising AutoEncoder](https://www.kaggle.com/code/faisalalsrheed/denoising-autoencoders-dae-for-tabular-data) is an autoencoder which learns robust feature representation, to compensate any noise in the dataset. +- [Denoising AutoEncoder](https://www.kaggle.com/code/springmanndaniel/1st-place-turn-your-data-into-daeta) is an autoencoder which learns robust feature representation, to compensate any noise in the dataset. ## Implement Custom Models To implement new models, see the [How to implement new models tutorial](https://github.com/manujosephv/pytorch_tabular/blob/main/docs/tutorials/04-Implementing%20New%20Architectures.ipynb). It covers basic as well as advanced architectures.