Permalink
145 lines (125 sloc)
5.51 KB
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
examples/mnist/main.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add mps device * Add --mps to run_python_examples.sh * Update imagenet with mps device * Use curl in run_python_examples.sh to accommodate macOS devices * Fix for https://github.com/pytorchq/examples/issues/1060
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
from torch.optim.lr_scheduler import StepLR | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 32, 3, 1) | |
self.conv2 = nn.Conv2d(32, 64, 3, 1) | |
self.dropout1 = nn.Dropout(0.25) | |
self.dropout2 = nn.Dropout(0.5) | |
self.fc1 = nn.Linear(9216, 128) | |
self.fc2 = nn.Linear(128, 10) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = F.relu(x) | |
x = F.max_pool2d(x, 2) | |
x = self.dropout1(x) | |
x = torch.flatten(x, 1) | |
x = self.fc1(x) | |
x = F.relu(x) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
output = F.log_softmax(x, dim=1) | |
return output | |
def train(args, model, device, train_loader, optimizer, epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
if args.dry_run: | |
break | |
def test(model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=14, metavar='N', | |
help='number of epochs to train (default: 14)') | |
parser.add_argument('--lr', type=float, default=1.0, metavar='LR', | |
help='learning rate (default: 1.0)') | |
parser.add_argument('--gamma', type=float, default=0.7, metavar='M', | |
help='Learning rate step gamma (default: 0.7)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
parser.add_argument('--no-mps', action='store_true', default=False, | |
help='disables macOS GPU training') | |
parser.add_argument('--dry-run', action='store_true', default=False, | |
help='quickly check a single pass') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
parser.add_argument('--save-model', action='store_true', default=False, | |
help='For Saving the current Model') | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
use_mps = not args.no_mps and torch.backends.mps.is_available() | |
torch.manual_seed(args.seed) | |
if use_cuda: | |
device = torch.device("cuda") | |
elif use_mps: | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
train_kwargs = {'batch_size': args.batch_size} | |
test_kwargs = {'batch_size': args.test_batch_size} | |
if use_cuda: | |
cuda_kwargs = {'num_workers': 1, | |
'pin_memory': True, | |
'shuffle': True} | |
train_kwargs.update(cuda_kwargs) | |
test_kwargs.update(cuda_kwargs) | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
]) | |
dataset1 = datasets.MNIST('../data', train=True, download=True, | |
transform=transform) | |
dataset2 = datasets.MNIST('../data', train=False, | |
transform=transform) | |
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) | |
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | |
model = Net().to(device) | |
optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | |
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | |
for epoch in range(1, args.epochs + 1): | |
train(args, model, device, train_loader, optimizer, epoch) | |
test(model, device, test_loader) | |
scheduler.step() | |
if args.save_model: | |
torch.save(model.state_dict(), "mnist_cnn.pt") | |
if __name__ == '__main__': | |
main() |