diff --git a/docs/source/backends-qualcomm.md b/docs/source/backends-qualcomm.md index f427c7c7cea..45f932da491 100644 --- a/docs/source/backends-qualcomm.md +++ b/docs/source/backends-qualcomm.md @@ -385,7 +385,7 @@ example_inputs = (torch.randn(1, 3, 224, 224),) # Example input tensor Choose between quantization approaches, post training quantization (PTQ) or quantization aware training (QAT): ```python from executorch.backends.qualcomm.quantizer.quantizer import QnnQuantizer -from torch.ao.quantization.quantize_pt2e import prepare_pt2e, prepare_qat_pt2e, convert_pt2e +from torchao.quantization.pt2e.quantize_pt2e import prepare_pt2e, prepare_qat_pt2e, convert_pt2e quantizer = QnnQuantizer() m = torch.export.export(model, example_inputs, strict=True).module()