diff --git a/backends/arm/test/ops/test_slice.py b/backends/arm/test/ops/test_slice.py index 7e71a51899a..bdf5ccda770 100644 --- a/backends/arm/test/ops/test_slice.py +++ b/backends/arm/test/ops/test_slice.py @@ -7,6 +7,7 @@ from typing import Tuple +import pytest import torch from executorch.backends.arm.quantizer.arm_quantizer import ( get_symmetric_a16w8_quantization_config, @@ -43,7 +44,6 @@ class Slice(torch.nn.Module): - def forward(self, x: torch.Tensor, s: list[tuple[int, int]]): slices = [slice(*i) for i in s] return x[slices] @@ -153,6 +153,9 @@ def get_symmetric_a16w8_slice_quantizer(per_channel_quantization=False): @common.parametrize("test_data", test_data_suite) +@pytest.mark.xfail( + reason="missing int16 slice ops support; fails at TOSA reference model with Unsupported operation type or rank. See: https://github.com/pytorch/executorch/issues/13976" +) def test_slice_tensor_16a8w_tosa_INT(test_data: torch.Tensor): """Test slice operation with 16A8W quantization (16-bit activations, 8-bit weights)""" per_channel_quantization = False @@ -178,6 +181,9 @@ def test_slice_tensor_16a8w_tosa_INT(test_data: torch.Tensor): @common.parametrize("test_data", test_data_suite) @common.XfailIfNoCorstone300 +@pytest.mark.xfail( + reason="Vela compilation fails with 'Invalid arguments' for int16 slice operations" +) def test_slice_tensor_16a8w_u55_INT16(test_data: torch.Tensor): """Test slice operation with 16A8W quantization on U55 (16-bit activations, 8-bit weights)""" per_channel_quantization = False @@ -202,6 +208,9 @@ def test_slice_tensor_16a8w_u55_INT16(test_data: torch.Tensor): @common.parametrize("test_data", test_data_suite) @common.XfailIfNoCorstone320 +@pytest.mark.xfail( + reason="Vela compilation fails with 'Invalid arguments' for int16 slice operations" +) def test_slice_tensor_16a8w_u85_INT16(test_data: torch.Tensor): """Test slice operation with 16A8W quantization on U85 (16-bit activations, 8-bit weights)""" per_channel_quantization = False