O PyTorch GetStarted ~ Ecosystem Mobile Blog Tutorials Docs v Resources v GitHub
.

Tutorias > Distributed JoinC

Shorccuts

19.0+cu102

Q serch ors DISTRIBUTED TRAINING WITH UNEVEN INPUTS USING Dicaed gt e s i

Context Manager
THE JOIN CONTEXT MANAGER Requirements
PyTorch Recipes [+] Whatis Join ?

Using Join with DistributedDataParal
Introduction to PyTorch [-] NOTE Using Join with DistributedDataParal

ZeroRedundancyOptimizer

Learn the Basics Join isintroduced in PyTorch 1. . This APIis subject to change. passing Keyword Arguments
EnEEE: +How Does Join Work?
Te i reci i

ensors I this recipe, you will see: Making a Toy Class Work with Join
Datasets & Dataloaders
Transforms « Anoverview of the Join context manager.
Build the Neural Network « An example of how to use the context manager with DistributedpataParallel .

Automatic Differentiation with torch. autograd

+ An example of how to use the context g both Distril 1lel and
EFIME L FIEE S + An example of passing in keyword arguments to the context manager.
SRSl « Adive into howthe Join context manager works.

« An example showing how to make a toy class compatible with the context manager.
Learning PyTorch [+]

Image and Video [+] Requirements

Audio [+]

« PyTorch 110+
W 1] « Getting Started with Distributed Data Parallel
Relnforcement Learning [+] « Shard Optimizer States with ZeroRedundancyOptimizer

Deploying PyTorch Models in Production [+]
Code Transforms with FX [+] What is Join?

Frontend APSAT+] In Getting Started with Distributed Data Parallel - Basic Use Case, you saw the general skeleton for using

Extending PyTorch [+] Distributeddataparallel to perform data parallel raining. This implicitly schedules all-reduces in each backward pass to
iz i ranks. i require participation from all ranks in the process group, so if
Model Optimization [+] arank has fewer inputs, then the other ranks will hang or error (depending thi i
forany P ot .

Parallel and Distributed Training [+]

Join is a context manager to be used around your per-rank training loop to facilitate training with uneven inputs. The context
manager allows the ranks that exhaust their inputs early (i.e. join early) to shadow the collective communications performed by
those that have not yet joined. The ways in which the communications are shadowed are specified by hooks.

Mobile [+]

Using Join with DistributedDataParallel

PyTorch's Distributeddataparallel works out-of-the-box with the Join context manager. Here is an example usage:

import os

import torch

mport torch.distributed as dist
import torch.multiprocessing as mp Passing Keyword Arguments

from torch.distributed.algorithns.join import Join +How Does Join Workt

from torch.nn.parallel import DistributedDataParallel as DDP Making a Toy Class Work with Join

ZeroRedundancyOptimizer

BACKEND =
WORLD_SIZE
NUM_INPUTS

nccl®
2
5

def worker(rank):
os.environ['MASTER_ADDR'] = ‘localhost’
os.environ[MASTER_PORT'] = '29500"
dist.init_process_group(BACKEND, rank=rank, world_size=WORLD_SIZE)

model = DDP(torch.nn.Linear(1, 1).to(zank), device_ids=[rank])
Rank 1 gets one more input than rank O
inputs = [torch.tensor([1]).float() for _ in range(NUM_INPUTS + rank)]

num_inputs = 0
with Join([model]):
for input in inputs:
nun_inputs 4= 1
1oss = model(input).sun()
1oss.backward()

print(f'Rank frank} has exhausted all {num_inputs} of its inputs!®)

def main():

_SIZE, join=

produces the following output (where the print() s from rank 0 and rank 1 may be arbitrarily ordered):

Rank © has exhausted all 5 of its inputs!
Rank 1 has exhausted all 6 of its inputs!

NOTE

Distributeddataparallel provided its own join() context manager prior to the introduction of this generic Join
context manager. In the above example, using with Join ([mode1]): is equivalent to using with model.join(): . One
limitation of the existing lel.join() isthati ipl ipating classes, eg.
le1 and together. ZexoRedundancy0ptimizex

Passing Keyword Arguments
+How Does Join Workz
Using Join with DistributedDataParallel and Making a Toy Class Work with Join

ZeroRedundancyOptimizer

The Join context manager works not only with a s but also with multiple ck her. PyTorchs
i the context manager, so here, we examine how to modify the previous example
to use both istri 1el and ini
from torch.distri optim import as ZeRO

£rom torch.optin import Adam

def worker(rank) :
os.environ['MASTER_ADDR'] = ‘localhost’
o0s.environ['MASTER_PORT'] = '29500"
dist.init_process_group(BACKEND, ran}

ank, world_size=WORLD_SIZE)

DDP(toxch.nn.Linear(1, 1).to(xank), device_ids=[rank])

optim = ZeRO(model.parameters(), Adam, 1r=.01)

Rank 1 gets one more input than rank 6

inputs = [torch.tensor([1]).float() for _ in range(NUM_INPUTS + rank)]

num_inputs = 0

Pass both 'model’ and ‘optim’ into 'Join()

with Join([model, optim]

for input in input

num_inputs += 1
1 model (input) .sum()
1oss.backward()
optin.step()

print(f'Rank {rank} has exhausted all {num_inputs} of its inputs

This will yeld as before. The notable chang tionally passing in the instance
into J0in() .

Passing Keyword Arguments

Classes may provide keyword arguments that modify their behavior in the context manager at run time. For example,
Distributeddataparallel provides an argument divide_by_initial world_size,which determines f gradients are divided by
the initial world size or by the effective world size (i.e. number of non-joined ranks). Such keyword arguments can be passed
directly into the context manager.
ZeroRedundancyOptimizer

Passing Keyword Arguments

with Join([model, optim], divide_by_initial world_siz
+How Does Join Worke

for input in inputs:
Making a Toy Class Work with Join

The keyword into the icipati This should not be a
limitation si expect cases iple Joinable s need differing settings of the same argument.
Nonetheless, this is something to keep in mind.

How Does Join Work?

Now that we have seen some preliminary examples of how to use the Join context manager, let us delve deeper into how it works.
This will provide a greater insight into the full capability that it Y own 1
compatible. Here, we will go over the Join class as well as the supporting classes Joinable and JoinHook.

Joinable

To begin, classes compatible with the Join context manager must inherit from the abstract base class Joinable.. In particular, a
Joinable must implement:

« join_hook(self, *kwargs) -> JoinHook

This returns the JoinHook instance for the Joinable, determi
collective communications performed by the Joinable.

ing how joined processes should shadow the per-iteration

o join_device(self) -> torch.device

“This returns a device to be used by the Join to perform collecti ications, e.g.
‘torch.device("cuda:@") or torch.device("cpu®).

« join_process_group(self) -> ProcessGroup

‘This returns the process group to be used by the Join context manager to perform collective communications.

istril lel and i i from Joinable and implement the above methods,
‘which is why we could directly use them in the previous examples.

Joinable classes should make sure to call the Joinable constructor since it initializes a JoinConfig instance, which is used
internally by the context manager to ensure correctness. This will be saved in each Joinable asafield _join_config.

JoinHook ZeroRedundancyOptimizex
Passing Keyword Arguments
Next, let us break down the Jointook class. A JoinHook provides two entry points into a context manager: + How Does Join Work?

Making a Toy Class Work with Join
o main_hook(self) -> None

This hook s called repeatedly joined rank while dsts a rank that has not yet joined. It is meant to shadow the
collective communications performed by the Joinable in each training iteration (e.g. in one forward pass, backward pass, and
optimizer step).

o post_hook(self, is_last_joiner: bool) -> None

‘This hook s called once all ranks have joined. It is passed an additional bool argument is_last_joiner, which indicates if the
rank was one of the last to join. The argument may be useful for synchronization.

To provide concrete examples of what these hooks may look like, the ZexoRedundancy0ptinizex main hook performs an optimizer
step per normal i joined rank i stil ible for updating izing its shard of the parameters, and the
istri 1e1 post final updated model from one of the last oi

g ranks to ensure that itis the
same across all ranks.

Join
Finally, let us examine how these fit into the Join class itself.

« __init__(self, joinables: List[Joinable], enable: bool = True, throw_on_early_termination: bool =
False)

As we saw in the previous examples, the constructor takes in a list of the Joinable s that participate in the training loop. These
should that perf llecti fations in each iteration.

enable isa bool that can be set to False if you know that there will not be uneven inputs, in which case the context manager
becomes vacuous similar to context1ib.nullcontext() . This also may disable join-related computation in the participating
Joinable 5.

throw_on_early_termination Isa bool that can be set to True to have each rank raise an exception the moment that uneven
inputs are detected. This s useful for cases that do not conform to the context manager's requirements, which is most typically
when there are i i classes that i 1ch as when using
Distributeddataparallel withamodel that has Syncatchiozn layers. In such cases, t
that the application logic can catch the exception and determine how to proceed.

argument should be set to Tzue so

« The core logic occurs inthe __exit__() method, which loops while there exists a non-joined rank, calling each Joinable ‘s
main hook, and then once all ranks have joined, calls th

post hooks. Both the main hooks and post-hooks are iterated over in
the order that the Joinable s are passed in.

. The joined processes. As such, each Joinable class should makea call to
Join.notify_join_context() before its per-iteration collective communications. The context manager will ensure that
only the first Joinable passed in actually sends the heartbeat. ZazoRedundancyOptintzer;
Passing Keyword Arguments

+ Howees T v
fwene

As mentioned above regarding throw_on_early_termination,the Join context manager is not compatible with certain
compositions of classes. The Joinable ‘s Jointook s must be serializable since each hook s fully executed before
proceeding to the next. In other words, two hooks cannot overlap. Moreover, currently, both the main hooks and post-
hooks are iterated over in the same deterministic order. If this appears to be a major limitation, we may modify the API to
permita customizable ordering.

Making a Toy Class Work with Join

Since the previous section introduced several concepts,let us see them in practice with a toy example. Here, we willimplement a
class that counts the number of inputs that are seen across all ranks before its rank joins. should provide a basi
You may make your own class compatible with the Join context manager.

fea of how

Specifically, the following code has each rank print out (1) the number of inputs across al ranks that seen before it oins and (2)
the total number of inputs across all ranks.

import os

mport torch

import torch.distributed as dist

mport torch.multiprocessing as mp

from torch.distributed.algorithns.join import Join, Joinable, JoinHook

BACKEND = “nccl”
WORLD_SIZE = 2
NUM_INPUTS = 5

class CounterJoinHook(JoinHook) :

ponn

Join hook for :class:'Counter'.

Argunents:
counter (Counter): the :class:Counter’ object using this hook
sync_max_count (bool): whether to sync the max count once all ranks
join.

sync_max_count

self.counter = counter

self.sync_max_count = sync_max_count ZexoRedundancyOptiatzar
Passing Keyword Arguments
def main_hook(self): +How Does Join Worki

Making a Toy Class Work with Join
shadows the counter's all-reduce by all-reducing a dim-1 zero tensor.

t = torch a ter.device)
dist.all_reduce(t)

def post_hook(self, is_last_joiner: bool):
T
synchronizes the max count across all :class:'Counter' s if
**sync_max_count=True' "

if not self.sync_max_count:
return
rank = dist.get_rank(self.counter.process_group)
common_rank = self.counter.find_common_rank (rank, is_last_joiner)
1f rank
elf

= self.count t.detach() . clone ()

dist.broadcast(self.counter.max_count, src=common_rank)

class Counter(Joinable):

aining iterations

Example :cla: nable’ that counts the number of t:
rt

that it
__init__(self, device, process_group):
super(Countex, self).__init__()
self.device = device
self.process_group = process_group
self.count = toxch.tensox([0], device=device).float()
self.max_count = torch.tensor([0], device=device).float()

def

def __call (self):
i

ed on this iteration by all ranks
own internal count

Counts the number of inputs process:
increments

by all-reducing a dim-1 one tensor;

Join.notify_join_context(self
t = torch.ones(1, device=self.device).float()
dist.all_reduce(t)

self.count += t

def _join_hook(self, sxkwargs) -> JoinHook:

x
Return a join hook that shadows the all-reduce in :meth:'__cal

ppoxts the following keyword arguments
optional): whether to synchronize t
join; default is '‘False

This join hook st
sync_max_count (bool,

aximum assing Keywo

count across all T

nks once all ranks

sync_max_count = kwargs.get("syn
Teturn CounterdoinHook(self, sync_max_count)

max_count*, False)

@property
def _join_device(self) -> torch.device:
return self.device

@property
def _join_process_group(self
Teturn self.process_group

def find_common_rank(self, rank, to_consider):

Returns the max rank of the ones to consider over the process group.

common_rank = toxch.tensor([rank if to_consider else

1, device=self.device)
e1f.process_group)

=dist.ReduceOp.MAX, grou

dist.all_ _rank,
conmon_zank = conmon_rank. item()
return common_rank

def workex(zank) :
assert torch.cuda.device_count() >
os.environ['MASTER_ADDR'] = ‘localhost
os.environ['MASTER_PORT'] = '29500"
dist.init_process_group(BACKEND, ranl

WORLD_SIZE

ank, world_size=WORLD_SIZE)

Countex (toxch.device(f"cuda: {rank}"), dist.group.WORLD)

counter =
[torch.tensor([1]).float() for _ in range(NUM_INPUTS + rank)]

inputs =

with Join([counter], sync_max_count=Tzue):
for _ in inputs:
counter()

print(£"{int(counter.count.item())} inputs processed before rank {rank} j
print(£"{int(counter.max_count.item())} inputs processed across all ranks

def main():
mp.spaun(workez, nprocs=WORLD_SIZE, join=True)

if __name

main()

Since rank 0 sees 5 inputs and rank 1 sees 6, this yields the output:

16 inputs processed before rank © joined!
11 inputs processed across all ranks!
11 inputs processed before rank 1 joined!
11 inputs processed across all ranks!

Some key points to highlight:
« A Counter instance performs a single al-reduce per iteration, so the main hook performs a single all-reduce as well to

shadow it.

« The Counter class makesa call to Join.notify_join_contex) method since that

at the beginning of its __call

is a place before its per- iteration collective communications (ie. its all-reduce).

« The is_last_joiner argumentis used to determine the broadcast source in the post-hooks.

« Wepassin the sync_max_count keyword argument to the context manager, which is then forwarded to Counter s join

hook.
+ How

Rate this Tutorial ~ ¥¥ ¥¥ Y% ¥ 1%

© Copyright 2021, PyTorch.
Built with Sphinx using a theme provided by

Tutorials Resources

Stay Connected

PyTorch Resources

arted

Ecosyst Discuss
Blog Github Iss

ontributing 3rand Guidelines

