diff --git a/beginner_source/basics/data_tutorial.py b/beginner_source/basics/data_tutorial.py index 0ef1fb6b777..ecaad60ef82 100644 --- a/beginner_source/basics/data_tutorial.py +++ b/beginner_source/basics/data_tutorial.py @@ -98,8 +98,8 @@ plt.show() ################################################################# -# .. -# .. figure:: /_static/img/basics/fashion_mnist.png +# +# .. image:: ../../_static/img/basics/fashion_mnist.png # :alt: fashion_mnist diff --git a/beginner_source/blitz/autograd_tutorial.py b/beginner_source/blitz/autograd_tutorial.py index 5d468d387f6..0b232d11a51 100644 --- a/beginner_source/blitz/autograd_tutorial.py +++ b/beginner_source/blitz/autograd_tutorial.py @@ -239,7 +239,7 @@ # the arrows are in the direction of the forward pass. The nodes represent the backward functions # of each operation in the forward pass. The leaf nodes in blue represent our leaf tensors ``a`` and ``b``. # -# .. figure:: /_static/img/dag_autograd.png +# .. image:: ../../_static/img/dag_autograd.png # # .. note:: # **DAGs are dynamic in PyTorch** diff --git a/beginner_source/blitz/cifar10_tutorial.py b/beginner_source/blitz/cifar10_tutorial.py index 5a9cde3f105..33cc010be90 100644 --- a/beginner_source/blitz/cifar10_tutorial.py +++ b/beginner_source/blitz/cifar10_tutorial.py @@ -32,7 +32,7 @@ ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size. -.. figure:: /_static/img/cifar10.png +.. image:: ../../_static/img/cifar10.png :alt: cifar10 cifar10 diff --git a/beginner_source/blitz/neural_networks_tutorial.py b/beginner_source/blitz/neural_networks_tutorial.py index 3b3c95fd229..d4407f193a3 100644 --- a/beginner_source/blitz/neural_networks_tutorial.py +++ b/beginner_source/blitz/neural_networks_tutorial.py @@ -12,10 +12,10 @@ For example, look at this network that classifies digit images: -.. figure:: /_static/img/mnist.png +.. image:: ../../_static/img/mnist.png :alt: convnet - convnet +*convnet* It is a simple feed-forward network. It takes the input, feeds it through several layers one after the other, and then finally gives the diff --git a/beginner_source/introyt/introyt1_tutorial.py b/beginner_source/introyt/introyt1_tutorial.py index f52c3902c03..7db2e45f9ce 100644 --- a/beginner_source/introyt/introyt1_tutorial.py +++ b/beginner_source/introyt/introyt1_tutorial.py @@ -145,8 +145,8 @@ ######################################################################### -# .. figure:: /_static/img/mnist.png -# :alt: le-net-5 diagram +# .. image:: ../../_static/img/mnist.png +# :alt: le-net-5 diagram2 # # *Figure: LeNet-5* # diff --git a/conf.py b/conf.py index 11ac4459d38..1ef952733b5 100644 --- a/conf.py +++ b/conf.py @@ -90,7 +90,8 @@ 'filename_pattern': '.py', 'ignore_pattern': re.compile(f"({'|'.join(NOT_RUN)}).py$"), 'promote_jupyter_magic': True, - 'backreferences_dir': None + 'backreferences_dir': None, + 'notebook_images': 'https://pytorch.org/tutorials/' } if os.getenv('GALLERY_PATTERN'):