Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
12 contributors

Users who have contributed to this file

@fmassa @chsasank @TheCodez @Kaixhin @szagoruyko @cynthia @fadel @barrh @brianjo @abdokhaire @1e100 @hirune924
445 lines (334 sloc) 15.2 KB

torchvision.models

The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.

Classification

The models subpackage contains definitions for the following model architectures for image classification:

You can construct a model with random weights by calling its constructor:

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet = models.mobilenet_v2()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`. These can be constructed by passing pretrained=True:

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)

Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_MODEL_ZOO environment variable. See :func:`torch.utils.model_zoo.load_url` for details.

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See :meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example here

ImageNet 1-crop error rates (224x224)

Network Top-1 error Top-5 error
AlexNet 43.45 20.91
VGG-11 30.98 11.37
VGG-13 30.07 10.75
VGG-16 28.41 9.62
VGG-19 27.62 9.12
VGG-11 with batch normalization 29.62 10.19
VGG-13 with batch normalization 28.45 9.63
VGG-16 with batch normalization 26.63 8.50
VGG-19 with batch normalization 25.76 8.15
ResNet-18 30.24 10.92
ResNet-34 26.70 8.58
ResNet-50 23.85 7.13
ResNet-101 22.63 6.44
ResNet-152 21.69 5.94
SqueezeNet 1.0 41.90 19.58
SqueezeNet 1.1 41.81 19.38
Densenet-121 25.35 7.83
Densenet-169 24.00 7.00
Densenet-201 22.80 6.43
Densenet-161 22.35 6.20
Inception v3 22.55 6.44
GoogleNet 30.22 10.47
ShuffleNet V2 30.64 11.68
MobileNet V2 28.12 9.71
ResNeXt-50-32x4d 22.38 6.30
ResNeXt-101-32x8d 20.69 5.47
Wide ResNet-50-2 21.49 5.91
Wide ResNet-101-2 21.16 5.72
MNASNet 1.0 26.49 8.456
.. currentmodule:: torchvision.models

Alexnet

.. autofunction:: alexnet

VGG

.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn


ResNet

.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152

SqueezeNet

.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1

DenseNet

.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201

Inception v3

.. autofunction:: inception_v3

GoogLeNet

.. autofunction:: googlenet

ShuffleNet v2

.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0

MobileNet v2

.. autofunction:: mobilenet_v2

ResNext

.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d

Wide ResNet

.. autofunction:: wide_resnet50_2
.. autofunction:: wide_resnet101_2

MNASNet

.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3


Semantic Segmentation

The models subpackage contains definitions for the following model architectures for semantic segmentation:

As with image classification models, all pre-trained models expect input images normalized in the same way. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. They have been trained on images resized such that their minimum size is 520.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are present in the Pascal VOC dataset. You can see more information on how the subset has been selected in references/segmentation/coco_utils.py. The classes that the pre-trained model outputs are the following, in order:

['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

Network mean IoU global pixelwise acc
FCN ResNet101 63.7 91.9
DeepLabV3 ResNet101 67.4 92.4

Fully Convolutional Networks

.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101


DeepLabV3

.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101


Object Detection, Instance Segmentation and Person Keypoint Detection

The models subpackage contains definitions for the following model architectures for detection:

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision.

The models expect a list of Tensor[C, H, W], in the range 0-1. The models internally resize the images so that they have a minimum size of 800. This option can be changed by passing the option min_size to the constructor of the models.

For object detection and instance segmentation, the pre-trained models return the predictions of the following classes:

COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]

Here are the summary of the accuracies for the models trained on the instances set of COCO train2017 and evaluated on COCO val2017.

Network box AP mask AP keypoint AP
Faster R-CNN ResNet-50 FPN 37.0
Mask R-CNN ResNet-50 FPN 37.9 34.6

For person keypoint detection, the accuracies for the pre-trained models are as follows

Network box AP mask AP keypoint AP
Keypoint R-CNN ResNet-50 FPN 54.6
65.0

For person keypoint detection, the pre-trained model return the keypoints in the following order:

COCO_PERSON_KEYPOINT_NAMES = [
    'nose',
    'left_eye',
    'right_eye',
    'left_ear',
    'right_ear',
    'left_shoulder',
    'right_shoulder',
    'left_elbow',
    'right_elbow',
    'left_wrist',
    'right_wrist',
    'left_hip',
    'right_hip',
    'left_knee',
    'right_knee',
    'left_ankle',
    'right_ankle'
]

Runtime characteristics

The implementations of the models for object detection, instance segmentation and keypoint detection are efficient.

In the following table, we use 8 V100 GPUs, with CUDA 10.0 and CUDNN 7.4 to report the results. During training, we use a batch size of 2 per GPU, and during testing a batch size of 1 is used.

For test time, we report the time for the model evaluation and postprocessing (including mask pasting in image), but not the time for computing the precision-recall.

Network train time (s / it) test time (s / it) memory (GB)
Faster R-CNN ResNet-50 FPN 0.2288 0.0590 5.2
Mask R-CNN ResNet-50 FPN 0.2728 0.0903 5.4
Keypoint R-CNN ResNet-50 FPN 0.3789 0.1242 6.8

Faster R-CNN

.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn


Mask R-CNN

.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn


Keypoint R-CNN

.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn


Video classification

We provide models for action recognition pre-trained on Kinetics-400. They have all been trained with the scripts provided in references/video_classification.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989].

Note

The normalization parameters are different from the image classification ones, and correspond to the mean and std from Kinetics-400.

Note

For now, normalization code can be found in references/video_classification/transforms.py, see the Normalize function there. Note that it differs from standard normalization for images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

Network Clip acc@1 Clip acc@5
ResNet 3D 18 52.75 75.45
ResNet MC 18 53.90 76.29
ResNet (2+1)D 57.50 78.81

ResNet 3D

.. autofunction:: torchvision.models.video.r3d_18

ResNet Mixed Convolution

.. autofunction:: torchvision.models.video.mc3_18

ResNet (2+1)D

.. autofunction:: torchvision.models.video.r2plus1d_18
You can’t perform that action at this time.