diff --git a/docs/source/datasets.rst b/docs/source/datasets.rst index ddc566bd272..040962edc6a 100644 --- a/docs/source/datasets.rst +++ b/docs/source/datasets.rst @@ -203,8 +203,24 @@ USPS Kinetics-400 -~~~~~ +~~~~~~~~~~~~ .. autoclass:: Kinetics400 :members: __getitem__ :special-members: + + +HMDB51 +~~~~~~~ + +.. autoclass:: HMDB51 + :members: __getitem__ + :special-members: + + +UCF101 +~~~~~~~ + +.. autoclass:: UCF101 + :members: __getitem__ + :special-members: diff --git a/torchvision/datasets/hmdb51.py b/torchvision/datasets/hmdb51.py index 7089b110631..0541d9bdf4d 100644 --- a/torchvision/datasets/hmdb51.py +++ b/torchvision/datasets/hmdb51.py @@ -8,6 +8,40 @@ class HMDB51(VisionDataset): + """ + HMDB51 `_ + dataset. + + HMDB51 is an action recognition video dataset. + This dataset consider every video as a collection of video clips of fixed size, specified + by ``frames_per_clip``, where the step in frames between each clip is given by + ``step_between_clips``. + + To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5`` + and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two + elements will come from video 1, and the next three elements from video 2. + Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all + frames in a video might be present. + + Internally, it uses a VideoClips object to handle clip creation. + + Args: + root (string): Root directory of the HMDB51 Dataset. + annotation_path (str): path to the folder containing the split files + frames_per_clip (int): number of frames in a clip. + step_between_clips (int): number of frames between each clip. + fold (int, optional): which fold to use. Should be between 1 and 3. + train (bool, optional): if ``True``, creates a dataset from the train split, + otherwise from the ``test`` split. + transform (callable, optional): A function/transform that takes in a TxHxWxC video + and returns a transformed version. + + Returns: + video (Tensor[T, H, W, C]): the `T` video frames + audio(Tensor[K, L]): the audio frames, where `K` is the number of channels + and `L` is the number of points + label (int): class of the video clip + """ data_url = "http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar" splits = { @@ -16,8 +50,11 @@ class HMDB51(VisionDataset): } def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1, - fold=1, train=True): + fold=1, train=True, transform=None): super(HMDB51, self).__init__(root) + if not 1 <= fold <= 3: + raise ValueError("fold should be between 1 and 3, got {}".format(fold)) + extensions = ('avi',) self.fold = fold self.train = train @@ -30,6 +67,7 @@ def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1, video_clips = VideoClips(video_list, frames_per_clip, step_between_clips) indices = self._select_fold(video_list, annotation_path, fold, train) self.video_clips = video_clips.subset(indices) + self.transform = transform def _select_fold(self, video_list, annotation_path, fold, train): target_tag = 1 if train else 2 @@ -53,4 +91,7 @@ def __getitem__(self, idx): video, audio, info, video_idx = self.video_clips.get_clip(idx) label = self.samples[video_idx][1] + if self.transform is not None: + video = self.transform(video) + return video, audio, label diff --git a/torchvision/datasets/ucf101.py b/torchvision/datasets/ucf101.py index 68ee49b420a..eb6f0897076 100644 --- a/torchvision/datasets/ucf101.py +++ b/torchvision/datasets/ucf101.py @@ -8,10 +8,46 @@ class UCF101(VisionDataset): + """ + UCF101 `_ dataset. + + UCF101 is an action recognition video dataset. + This dataset consider every video as a collection of video clips of fixed size, specified + by ``frames_per_clip``, where the step in frames between each clip is given by + ``step_between_clips``. + + To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5`` + and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two + elements will come from video 1, and the next three elements from video 2. + Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all + frames in a video might be present. + + Internally, it uses a VideoClips object to handle clip creation. + + Args: + root (string): Root directory of the UCF101 Dataset. + annotation_path (str): path to the folder containing the split files + frames_per_clip (int): number of frames in a clip. + step_between_clips (int, optional): number of frames between each clip. + fold (int, optional): which fold to use. Should be between 1 and 3. + train (bool, optional): if ``True``, creates a dataset from the train split, + otherwise from the ``test`` split. + transform (callable, optional): A function/transform that takes in a TxHxWxC video + and returns a transformed version. + + Returns: + video (Tensor[T, H, W, C]): the `T` video frames + audio(Tensor[K, L]): the audio frames, where `K` is the number of channels + and `L` is the number of points + label (int): class of the video clip + """ def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1, - fold=1, train=True): + fold=1, train=True, transform=None): super(UCF101, self).__init__(root) + if not 1 <= fold <= 3: + raise ValueError("fold should be between 1 and 3, got {}".format(fold)) + extensions = ('avi',) self.fold = fold self.train = train @@ -24,6 +60,7 @@ def __init__(self, root, annotation_path, frames_per_clip, step_between_clips=1, video_clips = VideoClips(video_list, frames_per_clip, step_between_clips) indices = self._select_fold(video_list, annotation_path, fold, train) self.video_clips = video_clips.subset(indices) + self.transform = transform def _select_fold(self, video_list, annotation_path, fold, train): name = "train" if train else "test" @@ -46,4 +83,7 @@ def __getitem__(self, idx): video, audio, info, video_idx = self.video_clips.get_clip(idx) label = self.samples[video_idx][1] + if self.transform is not None: + video = self.transform(video) + return video, audio, label