diff --git a/test/expect/AlexnetTester.test_alexnet_expect.pkl b/test/expect/AlexnetTester.test_alexnet_expect.pkl deleted file mode 100644 index 217eed006da..00000000000 Binary files a/test/expect/AlexnetTester.test_alexnet_expect.pkl and /dev/null differ diff --git a/test/expect/DensenetTester.test_densenet121_expect.pkl b/test/expect/DensenetTester.test_densenet121_expect.pkl deleted file mode 100644 index 32127953ee8..00000000000 Binary files a/test/expect/DensenetTester.test_densenet121_expect.pkl and /dev/null differ diff --git a/test/expect/DensenetTester.test_densenet161_expect.pkl b/test/expect/DensenetTester.test_densenet161_expect.pkl deleted file mode 100644 index 7746061cd2c..00000000000 Binary files a/test/expect/DensenetTester.test_densenet161_expect.pkl and /dev/null differ diff --git a/test/expect/DensenetTester.test_densenet169_expect.pkl b/test/expect/DensenetTester.test_densenet169_expect.pkl deleted file mode 100644 index fe377f88b05..00000000000 Binary files a/test/expect/DensenetTester.test_densenet169_expect.pkl and /dev/null differ diff --git a/test/expect/DensenetTester.test_densenet201_expect.pkl b/test/expect/DensenetTester.test_densenet201_expect.pkl deleted file mode 100644 index 2185d458666..00000000000 Binary files a/test/expect/DensenetTester.test_densenet201_expect.pkl and /dev/null differ diff --git a/test/expect/GooglenetTester.test_googlenet_expect.pkl b/test/expect/GooglenetTester.test_googlenet_expect.pkl deleted file mode 100644 index f4966407f43..00000000000 Binary files a/test/expect/GooglenetTester.test_googlenet_expect.pkl and /dev/null differ diff --git a/test/expect/InceptionV3Tester.test_inception_v3_expect.pkl b/test/expect/InceptionV3Tester.test_inception_v3_expect.pkl deleted file mode 100644 index ba98d92343c..00000000000 Binary files a/test/expect/InceptionV3Tester.test_inception_v3_expect.pkl and /dev/null differ diff --git a/test/expect/MNASNetTester.test_mnasnet0_5_expect.pkl b/test/expect/MNASNetTester.test_mnasnet0_5_expect.pkl deleted file mode 100644 index 596513fcb06..00000000000 Binary files a/test/expect/MNASNetTester.test_mnasnet0_5_expect.pkl and /dev/null differ diff --git a/test/expect/MNASNetTester.test_mnasnet0_75_expect.pkl b/test/expect/MNASNetTester.test_mnasnet0_75_expect.pkl deleted file mode 100644 index 530c8eeafc6..00000000000 Binary files a/test/expect/MNASNetTester.test_mnasnet0_75_expect.pkl and /dev/null differ diff --git a/test/expect/MNASNetTester.test_mnasnet1_0_expect.pkl b/test/expect/MNASNetTester.test_mnasnet1_0_expect.pkl deleted file mode 100644 index 842575007d1..00000000000 Binary files a/test/expect/MNASNetTester.test_mnasnet1_0_expect.pkl and /dev/null differ diff --git a/test/expect/MNASNetTester.test_mnasnet1_3_expect.pkl b/test/expect/MNASNetTester.test_mnasnet1_3_expect.pkl deleted file mode 100644 index a79038ce3eb..00000000000 Binary files a/test/expect/MNASNetTester.test_mnasnet1_3_expect.pkl and /dev/null differ diff --git a/test/expect/MobilenetTester.test_mobilenet_v2_expect.pkl b/test/expect/MobilenetTester.test_mobilenet_v2_expect.pkl deleted file mode 100644 index 54ee307c01b..00000000000 Binary files a/test/expect/MobilenetTester.test_mobilenet_v2_expect.pkl and /dev/null differ diff --git a/test/expect/MobilenetTester.test_mobilenetv2_residual_setting_expect.pkl b/test/expect/MobilenetTester.test_mobilenetv2_residual_setting_expect.pkl deleted file mode 100644 index c7733885caf..00000000000 Binary files a/test/expect/MobilenetTester.test_mobilenetv2_residual_setting_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnet101_expect.pkl b/test/expect/ResnetTester.test_resnet101_expect.pkl deleted file mode 100644 index ba62eb8e625..00000000000 Binary files a/test/expect/ResnetTester.test_resnet101_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnet152_expect.pkl b/test/expect/ResnetTester.test_resnet152_expect.pkl deleted file mode 100644 index 2d10165f546..00000000000 Binary files a/test/expect/ResnetTester.test_resnet152_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnet18_expect.pkl b/test/expect/ResnetTester.test_resnet18_expect.pkl deleted file mode 100644 index e764184eff5..00000000000 Binary files a/test/expect/ResnetTester.test_resnet18_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnet34_expect.pkl b/test/expect/ResnetTester.test_resnet34_expect.pkl deleted file mode 100644 index 0a174e5d6ea..00000000000 Binary files a/test/expect/ResnetTester.test_resnet34_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnet50_expect.pkl b/test/expect/ResnetTester.test_resnet50_expect.pkl deleted file mode 100644 index 1a94550e336..00000000000 Binary files a/test/expect/ResnetTester.test_resnet50_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnext101_32x8d_expect.pkl b/test/expect/ResnetTester.test_resnext101_32x8d_expect.pkl deleted file mode 100644 index b2dd8c42da4..00000000000 Binary files a/test/expect/ResnetTester.test_resnext101_32x8d_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_resnext50_32x4d_expect.pkl b/test/expect/ResnetTester.test_resnext50_32x4d_expect.pkl deleted file mode 100644 index fd4b9d49c49..00000000000 Binary files a/test/expect/ResnetTester.test_resnext50_32x4d_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_wide_resnet101_2_expect.pkl b/test/expect/ResnetTester.test_wide_resnet101_2_expect.pkl deleted file mode 100644 index 8aef5fb2909..00000000000 Binary files a/test/expect/ResnetTester.test_wide_resnet101_2_expect.pkl and /dev/null differ diff --git a/test/expect/ResnetTester.test_wide_resnet50_2_expect.pkl b/test/expect/ResnetTester.test_wide_resnet50_2_expect.pkl deleted file mode 100644 index 4a7c8d2a9d6..00000000000 Binary files a/test/expect/ResnetTester.test_wide_resnet50_2_expect.pkl and /dev/null differ diff --git a/test/expect/ShufflenetTester.test_shufflenet_v2_x0_5_expect.pkl b/test/expect/ShufflenetTester.test_shufflenet_v2_x0_5_expect.pkl deleted file mode 100644 index 313c3722093..00000000000 Binary files a/test/expect/ShufflenetTester.test_shufflenet_v2_x0_5_expect.pkl and /dev/null differ diff --git a/test/expect/ShufflenetTester.test_shufflenet_v2_x1_0_expect.pkl b/test/expect/ShufflenetTester.test_shufflenet_v2_x1_0_expect.pkl deleted file mode 100644 index ff3d93dfc6c..00000000000 Binary files a/test/expect/ShufflenetTester.test_shufflenet_v2_x1_0_expect.pkl and /dev/null differ diff --git a/test/expect/ShufflenetTester.test_shufflenet_v2_x1_5_expect.pkl b/test/expect/ShufflenetTester.test_shufflenet_v2_x1_5_expect.pkl deleted file mode 100644 index a4f1426e95a..00000000000 Binary files a/test/expect/ShufflenetTester.test_shufflenet_v2_x1_5_expect.pkl and /dev/null differ diff --git a/test/expect/ShufflenetTester.test_shufflenet_v2_x2_0_expect.pkl b/test/expect/ShufflenetTester.test_shufflenet_v2_x2_0_expect.pkl deleted file mode 100644 index 208449cd38f..00000000000 Binary files a/test/expect/ShufflenetTester.test_shufflenet_v2_x2_0_expect.pkl and /dev/null differ diff --git a/test/expect/SqueezenetTester.test_squeezenet1_0_expect.pkl b/test/expect/SqueezenetTester.test_squeezenet1_0_expect.pkl deleted file mode 100644 index 9cc5f9a1e18..00000000000 Binary files a/test/expect/SqueezenetTester.test_squeezenet1_0_expect.pkl and /dev/null differ diff --git a/test/expect/SqueezenetTester.test_squeezenet1_1_expect.pkl b/test/expect/SqueezenetTester.test_squeezenet1_1_expect.pkl deleted file mode 100644 index 0f5fe9c8e77..00000000000 Binary files a/test/expect/SqueezenetTester.test_squeezenet1_1_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg11_bn_expect.pkl b/test/expect/VGGNetTester.test_vgg11_bn_expect.pkl deleted file mode 100644 index d48fc986c9e..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg11_bn_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg11_expect.pkl b/test/expect/VGGNetTester.test_vgg11_expect.pkl deleted file mode 100644 index ef0eecbfb3a..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg11_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg13_bn_expect.pkl b/test/expect/VGGNetTester.test_vgg13_bn_expect.pkl deleted file mode 100644 index a948f33ba97..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg13_bn_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg13_expect.pkl b/test/expect/VGGNetTester.test_vgg13_expect.pkl deleted file mode 100644 index 044e160ca44..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg13_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg16_bn_expect.pkl b/test/expect/VGGNetTester.test_vgg16_bn_expect.pkl deleted file mode 100644 index 7c5f83594f9..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg16_bn_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg16_expect.pkl b/test/expect/VGGNetTester.test_vgg16_expect.pkl deleted file mode 100644 index 82803be0e23..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg16_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg19_bn_expect.pkl b/test/expect/VGGNetTester.test_vgg19_bn_expect.pkl deleted file mode 100644 index 260f506eb3e..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg19_bn_expect.pkl and /dev/null differ diff --git a/test/expect/VGGNetTester.test_vgg19_expect.pkl b/test/expect/VGGNetTester.test_vgg19_expect.pkl deleted file mode 100644 index 04c1e9aa37b..00000000000 Binary files a/test/expect/VGGNetTester.test_vgg19_expect.pkl and /dev/null differ diff --git a/test/test_models.py b/test/test_models.py index a563c35a0d4..1864d233772 100644 --- a/test/test_models.py +++ b/test/test_models.py @@ -7,28 +7,17 @@ import unittest import traceback import random -import inspect -STANDARD_NUM_CLASSES = 50 -STANDARD_INPUT_SHAPE = (1, 3, 224, 224) -STANDARD_SEED = 1729 - - -def set_rng_seed(seed=STANDARD_SEED): +def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) -def subsample_tensor(tensor, num_samples=20): - num_elems = tensor.numel() - if num_elems <= num_samples: - return tensor - - flat_tensor = tensor.flatten() - ith_index = num_elems // num_samples - return flat_tensor[ith_index - 1::ith_index] +def get_available_classification_models(): + # TODO add a registration mechanism to torchvision.models + return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] def get_available_segmentation_models(): @@ -51,32 +40,22 @@ def get_available_video_models(): # they are not yet supported in JIT. script_test_models = [ "deeplabv3_resnet101", + "mobilenet_v2", + "resnext50_32x4d", "fcn_resnet101", + "googlenet", + "densenet121", + "resnet18", + "alexnet", + "shufflenet_v2_x1_0", + "squeezenet1_0", + "vgg11", + "inception_v3", 'r3d_18', ] class ModelTester(TestCase): - - # create random tensor with given shape using synced RNG state - # caching because these tests take pretty long already (instantiating models and all) - TEST_INPUTS = {} - - def _get_test_input(self, shape=STANDARD_INPUT_SHAPE): - # NOTE not thread-safe, but should give same results even if multi-threaded testing gave a race condition - # giving consistent results is kind of the point of this helper method - if shape not in self.TEST_INPUTS: - set_rng_seed(STANDARD_SEED) - self.TEST_INPUTS[shape] = torch.rand(shape) - return self.TEST_INPUTS[shape] - - # create a randomly-weighted model w/ synced RNG state - def _get_test_model(self, callable, **kwargs): - set_rng_seed(STANDARD_SEED) - model = callable(**kwargs) - model.eval() - return model - def check_script(self, model, name): if name not in script_test_models: return @@ -90,256 +69,16 @@ def check_script(self, model, name): msg = str(e) + str(tb) self.assertTrue(scriptable, msg) - def _check_scriptable(self, model, expected): - if expected is None: # we don't check scriptability for all models - return - - actual = True - msg = '' - try: - torch.jit.script(model) - except Exception as e: - tb = traceback.format_exc() - actual = False - msg = str(e) + str(tb) - self.assertEqual(actual, expected, msg) - - -class ClassificationCoverageTester(TestCase): - - # Find all models exposed by torchvision.models factory methods (with assumptions) - def get_available_classification_models(self): - # TODO add a registration mechanism to torchvision.models - return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] - - # Recursively gather test methods from all classification testers - def get_test_methods_for_class(self, klass): - all_methods = inspect.getmembers(klass, predicate=inspect.isfunction) - test_methods = {method[0] for method in all_methods if method[0].startswith('test_')} - for child in klass.__subclasses__(): - test_methods = test_methods.union(self.get_test_methods_for_class(child)) - return test_methods - - # Verify that all models exposed by torchvision.models factory methods - # have corresponding test methods - # NOTE This does not include some of the extra tests (such as Resnet - # dilation) and says nothing about the correctness of the test, nor - # of the model. It just enforces a naming scheme on the tests, and - # verifies that all models have a corresponding test name. - def test_classification_model_coverage(self): - model_names = self.get_available_classification_models() - test_names = self.get_test_methods_for_class(ClassificationModelTester) - - for model_name in model_names: - test_name = 'test_' + model_name - self.assertTrue(test_name in test_names) - - -class ClassificationModelTester(ModelTester): - def _infer_for_test_with(self, model, test_input): - return model(test_input) - - def _check_classification_output_shape(self, test_output, num_classes): - self.assertEqual(test_output.shape, (1, num_classes)) - - # NOTE Depends on presence of test data fixture. See common_utils.py for - # details on creating fixtures. - def _check_model_correctness(self, model, test_input, num_classes=STANDARD_NUM_CLASSES): - test_output = self._infer_for_test_with(model, test_input) - self._check_classification_output_shape(test_output, num_classes) - self.assertExpected(test_output, rtol=1e-5, atol=1e-5) - return test_output - - # NOTE override this in a child class - def _get_input_shape(self): - return STANDARD_INPUT_SHAPE - - def _test_classification_model(self, model_callable, num_classes=STANDARD_NUM_CLASSES, **kwargs): - model = self._get_test_model(model_callable, num_classes=num_classes, **kwargs) - self._check_scriptable(model, True) # currently, all expected to be scriptable - test_input = self._get_test_input(shape=self._get_input_shape()) - test_output = self._check_model_correctness(model, test_input) - return model, test_input, test_output - - -class AlexnetTester(ClassificationModelTester): - def test_alexnet(self): - self._test_classification_model(models.alexnet) - - -# TODO add test for aux_logits arg to factory method -# TODO add test for transform_input arg to factory method -class InceptionV3Tester(ClassificationModelTester): - def _get_input_shape(self): - return (1, 3, 299, 299) - - def test_inception_v3(self): - self._test_classification_model(models.inception_v3) - - -class SqueezenetTester(ClassificationModelTester): - def test_squeezenet1_0(self): - self._test_classification_model(models.squeezenet1_0) - - def test_squeezenet1_1(self): - self._test_classification_model(models.squeezenet1_1) - - -# TODO add test for width_mult arg to factory method -class MobilenetTester(ClassificationModelTester): - def test_mobilenet_v2(self): - self._test_classification_model(models.mobilenet_v2) - - def test_mobilenetv2_residual_setting(self): - self._test_classification_model(models.mobilenet_v2, inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]]) - - -# TODO add test for aux_logits arg to factory method -# TODO add test for transform_input arg to factory method -class GooglenetTester(ClassificationModelTester): - def test_googlenet(self): - self._test_classification_model(models.googlenet) - - -class VGGNetTester(ClassificationModelTester): - def test_vgg11(self): - self._test_classification_model(models.vgg11) - - def test_vgg11_bn(self): - self._test_classification_model(models.vgg11_bn) - - def test_vgg13(self): - self._test_classification_model(models.vgg13) - - def test_vgg13_bn(self): - self._test_classification_model(models.vgg13_bn) - - def test_vgg16(self): - self._test_classification_model(models.vgg16) - - def test_vgg16_bn(self): - self._test_classification_model(models.vgg16_bn) - - def test_vgg19(self): - self._test_classification_model(models.vgg19) - - def test_vgg19_bn(self): - self._test_classification_model(models.vgg19_bn) - - -# TODO add test for dropout arg to factory method -class MNASNetTester(ClassificationModelTester): - def test_mnasnet0_5(self): - self._test_classification_model(models.mnasnet0_5) - - def test_mnasnet0_75(self): - self._test_classification_model(models.mnasnet0_75) - - def test_mnasnet1_0(self): - self._test_classification_model(models.mnasnet1_0) - - def test_mnasnet1_3(self): - self._test_classification_model(models.mnasnet1_3) - - -# TODO add test for bn_size arg to factory method -# TODO add test for drop_rate arg to factory method -class DensenetTester(ClassificationModelTester): - def _test_densenet_plus_mem_eff(self, model_callable): - model, test_input, test_output = self._test_classification_model(model_callable) - - # above, we perform the standard correctness test against the test fixture, and capture key test params - # below, we check that memory efficient/time inefficient DenseNet implementation behaves like the "standard" one - me_model = self._get_test_model(model_callable, num_classes=STANDARD_NUM_CLASSES, memory_efficient=True) - me_model.load_state_dict(model.state_dict()) # xfer weights over - me_output = self._infer_for_test_with(me_model, test_input) - test_output.squeeze(0) - me_output.squeeze(0) - # NOTE testing against same memory fixtures as the non-mem-efficient version - self.assertExpected(test_output, rtol=1e-5, atol=1e-5) - - def test_densenet121(self): - self._test_densenet_plus_mem_eff(models.densenet121) - - def test_densenet161(self): - self._test_densenet_plus_mem_eff(models.densenet161) - - def test_densenet169(self): - self._test_densenet_plus_mem_eff(models.densenet169) - - def test_densenet201(self): - self._test_densenet_plus_mem_eff(models.densenet201) - - -class ShufflenetTester(ClassificationModelTester): - def test_shufflenet_v2_x0_5(self): - self._test_classification_model(models.shufflenet_v2_x0_5) - - def test_shufflenet_v2_x1_0(self): - self._test_classification_model(models.shufflenet_v2_x1_0) - - def test_shufflenet_v2_x1_5(self): - self._test_classification_model(models.shufflenet_v2_x1_5) - - def test_shufflenet_v2_x2_0(self): - self._test_classification_model(models.shufflenet_v2_x2_0) - - -# TODO add test for zero_init_residual arg to factory method -# TODO add test for norm_layer arg to factory method -class ResnetTester(ClassificationModelTester): - def _get_scriptability_value(self): - return True - - def test_resnet18(self): - self._test_classification_model(models.resnet18) - - def test_resnet34(self): - self._test_classification_model(models.resnet34) - - def test_resnet50(self): - self._test_classification_model(models.resnet50) - - def test_resnet101(self): - self._test_classification_model(models.resnet101) - - def test_resnet152(self): - self._test_classification_model(models.resnet152) - - def test_resnext50_32x4d(self): - self._test_classification_model(models.resnext50_32x4d) - - def test_resnext101_32x8d(self): - self._test_classification_model(models.resnext101_32x8d) - - def test_wide_resnet50_2(self): - self._test_classification_model(models.wide_resnet50_2) - - def test_wide_resnet101_2(self): - self._test_classification_model(models.wide_resnet101_2) - - def _make_sliced_model(self, model, stop_layer): - layers = OrderedDict() - for name, layer in model.named_children(): - layers[name] = layer - if name == stop_layer: - break - new_model = torch.nn.Sequential(layers) - return new_model - - def test_resnet_dilation(self): - # TODO improve tests to also check that each layer has the right dimensionality - for i in product([False, True], [False, True], [False, True]): - model = models.__dict__["resnet50"](replace_stride_with_dilation=i) - model = self._make_sliced_model(model, stop_layer="layer4") - model.eval() - x = self._get_test_input(STANDARD_INPUT_SHAPE) - out = model(x) - f = 2 ** sum(i) - self.assertEqual(out.shape, (1, 2048, 7 * f, 7 * f)) - + def _test_classification_model(self, name, input_shape): + # passing num_class equal to a number other than 1000 helps in making the test + # more enforcing in nature + model = models.__dict__[name](num_classes=50) + self.check_script(model, name) + model.eval() + x = torch.rand(input_shape) + out = model(x) + self.assertEqual(out.shape[-1], 50) -class SegmentationModelTester(ModelTester): def _test_segmentation_model(self, name): # passing num_class equal to a number other than 1000 helps in making the test # more enforcing in nature @@ -351,8 +90,6 @@ def _test_segmentation_model(self, name): out = model(x) self.assertEqual(tuple(out["out"].shape), (1, 50, 300, 300)) - -class DetectionModelTester(ModelTester): def _test_detection_model(self, name): set_rng_seed(0) model = models.detection.__dict__[name](num_classes=50, pretrained_backbone=False) @@ -365,6 +102,16 @@ def _test_detection_model(self, name): self.assertIs(model_input[0], x) self.assertEqual(len(out), 1) + def subsample_tensor(tensor): + num_elems = tensor.numel() + num_samples = 20 + if num_elems <= num_samples: + return tensor + + flat_tensor = tensor.flatten() + ith_index = num_elems // num_samples + return flat_tensor[ith_index - 1::ith_index] + def compute_mean_std(tensor): # can't compute mean of integral tensor tensor = tensor.to(torch.double) @@ -385,6 +132,64 @@ def compute_mean_std(tensor): self.assertTrue("scores" in out[0]) self.assertTrue("labels" in out[0]) + def _test_video_model(self, name): + # the default input shape is + # bs * num_channels * clip_len * h *w + input_shape = (1, 3, 4, 112, 112) + # test both basicblock and Bottleneck + model = models.video.__dict__[name](num_classes=50) + self.check_script(model, name) + x = torch.rand(input_shape) + out = model(x) + self.assertEqual(out.shape[-1], 50) + + def _make_sliced_model(self, model, stop_layer): + layers = OrderedDict() + for name, layer in model.named_children(): + layers[name] = layer + if name == stop_layer: + break + new_model = torch.nn.Sequential(layers) + return new_model + + def test_memory_efficient_densenet(self): + input_shape = (1, 3, 300, 300) + x = torch.rand(input_shape) + + for name in ['densenet121', 'densenet169', 'densenet201', 'densenet161']: + model1 = models.__dict__[name](num_classes=50, memory_efficient=True) + params = model1.state_dict() + model1.eval() + out1 = model1(x) + out1.sum().backward() + + model2 = models.__dict__[name](num_classes=50, memory_efficient=False) + model2.load_state_dict(params) + model2.eval() + out2 = model2(x) + + max_diff = (out1 - out2).abs().max() + + self.assertTrue(max_diff < 1e-5) + + def test_resnet_dilation(self): + # TODO improve tests to also check that each layer has the right dimensionality + for i in product([False, True], [False, True], [False, True]): + model = models.__dict__["resnet50"](replace_stride_with_dilation=i) + model = self._make_sliced_model(model, stop_layer="layer4") + model.eval() + x = torch.rand(1, 3, 224, 224) + out = model(x) + f = 2 ** sum(i) + self.assertEqual(out.shape, (1, 2048, 7 * f, 7 * f)) + + def test_mobilenetv2_residual_setting(self): + model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]]) + model.eval() + x = torch.rand(1, 3, 224, 224) + out = model(x) + self.assertEqual(out.shape[-1], 1000) + def test_fasterrcnn_double(self): model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False) model.double() @@ -400,17 +205,16 @@ def test_fasterrcnn_double(self): self.assertTrue("labels" in out[0]) -class VideoModelTester(ModelTester): - def _test_video_model(self, name): - # the default input shape is - # bs * num_channels * clip_len * h *w - input_shape = (1, 3, 4, 112, 112) - # test both basicblock and Bottleneck - model = models.video.__dict__[name](num_classes=50) - self.check_script(model, name) - x = torch.rand(input_shape) - out = model(x) - self.assertEqual(out.shape[-1], 50) +for model_name in get_available_classification_models(): + # for-loop bodies don't define scopes, so we have to save the variables + # we want to close over in some way + def do_test(self, model_name=model_name): + input_shape = (1, 3, 224, 224) + if model_name in ['inception_v3']: + input_shape = (1, 3, 299, 299) + self._test_classification_model(model_name, input_shape) + + setattr(ModelTester, "test_" + model_name, do_test) for model_name in get_available_segmentation_models(): @@ -419,7 +223,7 @@ def _test_video_model(self, name): def do_test(self, model_name=model_name): self._test_segmentation_model(model_name) - setattr(SegmentationModelTester, "test_" + model_name, do_test) + setattr(ModelTester, "test_" + model_name, do_test) for model_name in get_available_detection_models(): @@ -428,7 +232,7 @@ def do_test(self, model_name=model_name): def do_test(self, model_name=model_name): self._test_detection_model(model_name) - setattr(DetectionModelTester, "test_" + model_name, do_test) + setattr(ModelTester, "test_" + model_name, do_test) for model_name in get_available_video_models(): @@ -436,7 +240,7 @@ def do_test(self, model_name=model_name): def do_test(self, model_name=model_name): self._test_video_model(model_name) - setattr(VideoModelTester, "test_" + model_name, do_test) + setattr(ModelTester, "test_" + model_name, do_test) if __name__ == '__main__': unittest.main()