diff --git a/torchvision/datasets/__init__.py b/torchvision/datasets/__init__.py index 1edbc49d88f..9fab55190cc 100644 --- a/torchvision/datasets/__init__.py +++ b/torchvision/datasets/__init__.py @@ -7,9 +7,10 @@ from .svhn import SVHN from .phototour import PhotoTour from .fakedata import FakeData +from .semeion import SEMEION __all__ = ('LSUN', 'LSUNClass', 'ImageFolder', 'FakeData', 'CocoCaptions', 'CocoDetection', 'CIFAR10', 'CIFAR100', 'FashionMNIST', - 'MNIST', 'STL10', 'SVHN', 'PhotoTour') + 'MNIST', 'STL10', 'SVHN', 'PhotoTour', 'SEMEION') diff --git a/torchvision/datasets/semeion.py b/torchvision/datasets/semeion.py new file mode 100644 index 00000000000..07592b64bae --- /dev/null +++ b/torchvision/datasets/semeion.py @@ -0,0 +1,123 @@ +from __future__ import print_function +from PIL import Image +import os +import os.path +import errno +import numpy as np +import sys +if sys.version_info[0] == 2: + import cPickle as pickle +else: + import pickle + +import torch.utils.data as data +from .utils import download_url, check_integrity + + +class SEMEION(data.Dataset): + """`SEMEION `_ Dataset. + Args: + root (string): Root directory of dataset where directory + ``semeion.py`` exists. + transform (callable, optional): A function/transform that takes in an PIL image + and returns a transformed version. E.g, ``transforms.RandomCrop`` + target_transform (callable, optional): A function/transform that takes in the + target and transforms it. + download (bool, optional): If true, downloads the dataset from the internet and + puts it in root directory. If dataset is already downloaded, it is not + downloaded again. + """ + url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" + filename = "semeion.data" + md5_checksum = 'cb545d371d2ce14ec121470795a77432' + + def __init__(self, root, transform=None, target_transform=None, download=True): + self.root = os.path.expanduser(root) + self.transform = transform + self.target_transform = target_transform + + if download: + self.download() + + if not self._check_integrity(): + raise RuntimeError('Dataset not found or corrupted.' + + ' You can use download=True to download it') + + self.data = [] + self.labels = [] + fp = os.path.join(root, self.filename) + file = open(fp, 'r') + data = file.read() + file.close() + dataSplitted = data.split("\n")[:-1] + datasetLength = len(dataSplitted) + i = 0 + while i < datasetLength: + # Get the 'i-th' row + strings = dataSplitted[i] + + # Split row into numbers(string), and avoid blank at the end + stringsSplitted = (strings[:-1]).split(" ") + + # Get data (which ends at column 256th), then in a numpy array. + rawData = stringsSplitted[:256] + dataFloat = [float(j) for j in rawData] + img = np.array(dataFloat[:16]) + j = 16 + k = 0 + while j < len(dataFloat): + temp = np.array(dataFloat[k:j]) + img = np.vstack((img, temp)) + + k = j + j += 16 + + self.data.append(img) + + # Get label and convert it into numbers, then in a numpy array. + labelString = stringsSplitted[256:] + labelInt = [int(index) for index in labelString] + self.labels.append(np.array(labelInt)) + i += 1 + + def __getitem__(self, index): + """ + Args: + index (int): Index + Returns: + tuple: (image, target) where target is index of the target class. + """ + img, target = self.data[index], self.labels[index] + + # doing this so that it is consistent with all other datasets + # to return a PIL Image + # convert value to 8 bit unsigned integer + # color (white #255) the pixels + img = img.astype('uint8') * 255 + img = Image.fromarray(img, mode='L') + + if self.transform is not None: + img = self.transform(img) + + if self.target_transform is not None: + target = self.target_transform(target) + + return img, target + + def __len__(self): + return len(self.data) + + def _check_integrity(self): + root = self.root + fpath = os.path.join(root, self.filename) + if not check_integrity(fpath, self.md5_checksum): + return False + return True + + def download(self): + if self._check_integrity(): + print('Files already downloaded and verified') + return + + root = self.root + download_url(self.url, root, self.filename, self.md5_checksum)