diff --git a/torchvision/models/inception.py b/torchvision/models/inception.py index 9c49944a73a..e68afff5115 100644 --- a/torchvision/models/inception.py +++ b/torchvision/models/inception.py @@ -19,7 +19,7 @@ def inception_v3(pretrained=False, **kwargs): .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of - 299x299x3, so ensure your images are sized accordingly. + N x 3 x 299 x 299, so ensure your images are sized accordingly. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet @@ -78,55 +78,55 @@ def forward(self, x): x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) - # 299 x 299 x 3 + # N x 3 x 299 x 299 x = self.Conv2d_1a_3x3(x) - # 149 x 149 x 32 + # N x 32 x 149 x 149 x = self.Conv2d_2a_3x3(x) - # 147 x 147 x 32 + # N x 32 x 147 x 147 x = self.Conv2d_2b_3x3(x) - # 147 x 147 x 64 + # N x 64 x 147 x 147 x = F.max_pool2d(x, kernel_size=3, stride=2) - # 73 x 73 x 64 + # N x 64 x 73 x 73 x = self.Conv2d_3b_1x1(x) - # 73 x 73 x 80 + # N x 80 x 73 x 73 x = self.Conv2d_4a_3x3(x) - # 71 x 71 x 192 + # N x 192 x 71 x 71 x = F.max_pool2d(x, kernel_size=3, stride=2) - # 35 x 35 x 192 + # N x 192 x 35 x 35 x = self.Mixed_5b(x) - # 35 x 35 x 256 + # N x 256 x 35 x 35 x = self.Mixed_5c(x) - # 35 x 35 x 288 + # N x 288 x 35 x 35 x = self.Mixed_5d(x) - # 35 x 35 x 288 + # N x 288 x 35 x 35 x = self.Mixed_6a(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = self.Mixed_6b(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = self.Mixed_6c(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = self.Mixed_6d(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = self.Mixed_6e(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 if self.training and self.aux_logits: aux = self.AuxLogits(x) - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = self.Mixed_7a(x) - # 8 x 8 x 1280 + # N x 1280 x 8 x 8 x = self.Mixed_7b(x) - # 8 x 8 x 2048 + # N x 2048 x 8 x 8 x = self.Mixed_7c(x) - # 8 x 8 x 2048 + # N x 2048 x 8 x 8 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) - # 1 x 1 x 2048 + # N x 2048 x 1 x 1 x = F.dropout(x, training=self.training) - # 1 x 1 x 2048 + # N x 2048 x 1 x 1 x = x.view(x.size(0), -1) - # 2048 + # N x 2048 x = self.fc(x) - # 1000 (num_classes) + # N x 1000 (num_classes) if self.training and self.aux_logits: return x, aux return x @@ -305,20 +305,20 @@ def __init__(self, in_channels, num_classes): self.fc.stddev = 0.001 def forward(self, x): - # 17 x 17 x 768 + # N x 768 x 17 x 17 x = F.avg_pool2d(x, kernel_size=5, stride=3) - # 5 x 5 x 768 + # N x 768 x 5 x 5 x = self.conv0(x) - # 5 x 5 x 128 + # N x 128 x 5 x 5 x = self.conv1(x) - # 1 x 1 x 768 + # N x 768 x 1 x 1 # Adaptive average pooling x = F.adaptive_avg_pool2d(x, (1, 1)) - # 1 x 1 x 768 + # N x 768 x 1 x 1 x = x.view(x.size(0), -1) - # 768 + # N x 768 x = self.fc(x) - # 1000 + # N x 1000 return x