Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 0 additions & 14 deletions test/test_autocast.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,20 +484,6 @@ def test_autocast_tpu_check_dtype(self):
assert not torch.is_autocast_xla_enabled()


class TestOtherOps(unittest.TestCase):

@unittest.skipIf(not (xm.get_xla_supported_devices("TPU") or
xm.get_xla_supported_devices("GPU")),
f"bfloat16 is only enabled for TPU and GPU")
def test_batch_norm(self):
device = xm.xla_device()
data = torch.randn(4, 16, 32, 32, device=device, dtype=torch.bfloat16)
with autocast(device, dtype=torch.bfloat16):
output = torch.nn.BatchNorm2d(16)(data)
xm.mark_step()
self.assertEqual(output.dtype, torch.bfloat16)


if __name__ == "__main__":
test = unittest.main(verbosity=FLAGS.verbosity, exit=False)
sys.exit(0 if test.result.wasSuccessful() else 1)
48 changes: 19 additions & 29 deletions torch_xla/csrc/batch_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,10 @@
namespace torch_xla {
namespace {

bool IsF32BatchNormWithLowerFPInputs(const xla::XlaOp& input,
const xla::XlaOp& weight) {
static constexpr std::array<xla::PrimitiveType, 9> lowerPrecistionTypes = {
xla::PrimitiveType::F8E5M2, xla::PrimitiveType::F8E4M3,
xla::PrimitiveType::F8E4M3FN, xla::PrimitiveType::F8E4M3B11FNUZ,
xla::PrimitiveType::F8E3M4, xla::PrimitiveType::F8E5M2FNUZ,
xla::PrimitiveType::F8E4M3FNUZ, xla::PrimitiveType::F16,
xla::PrimitiveType::BF16};
if (std::find(lowerPrecistionTypes.begin(), lowerPrecistionTypes.end(),
ShapeHelper::ShapeOfXlaOp(input).element_type()) !=
lowerPrecistionTypes.end() &&
bool IsF32BatchNormWithFP16Inputs(const xla::XlaOp& input,
const xla::XlaOp& weight) {
if (ShapeHelper::ShapeOfXlaOp(input).element_type() ==
xla::PrimitiveType::F16 &&
ShapeHelper::ShapeOfXlaOp(weight).element_type() ==
xla::PrimitiveType::F32) {
return true;
Expand Down Expand Up @@ -46,39 +39,37 @@ xla::XlaOp BatchNormVarianceInvert(xla::XlaOp variance, float eps_value) {

BatchNormOutput BuildBatchNormTraining(xla::XlaOp input, xla::XlaOp weight,
xla::XlaOp bias, float eps_value) {
bool is_batchnorm_with_lower_fp_inputs =
IsF32BatchNormWithLowerFPInputs(input, weight);
bool is_batchnorm_with_fp16_inputs =
IsF32BatchNormWithFP16Inputs(input, weight);
// Handle the mixed precision use case.
if (is_batchnorm_with_lower_fp_inputs) {
if (is_batchnorm_with_fp16_inputs) {
input = xla::ConvertElementType(input, xla::PrimitiveType::F32);
}
xla::XlaOp outputs = xla::BatchNormTraining(input, weight, bias, eps_value,
/*feature_index=*/1);
xla::XlaOp output = xla::GetTupleElement(outputs, 0);
xla::XlaOp batch_mean = xla::GetTupleElement(outputs, 1);
xla::XlaOp batch_variance = xla::GetTupleElement(outputs, 2);
if (is_batchnorm_with_lower_fp_inputs) {
output = xla::ConvertElementType(
output, ShapeHelper::ShapeOfXlaOp(input).element_type());
if (is_batchnorm_with_fp16_inputs) {
output = xla::ConvertElementType(output, xla::PrimitiveType::F16);
}
return {output, batch_mean, batch_variance};
}

xla::XlaOp BuildBatchNormInference(xla::XlaOp input, xla::XlaOp weight,
xla::XlaOp bias, xla::XlaOp mean,
xla::XlaOp variance, float eps_value) {
bool is_batchnorm_with_lower_fp_inputs =
IsF32BatchNormWithLowerFPInputs(input, weight);
bool is_batchnorm_with_fp16_inputs =
IsF32BatchNormWithFP16Inputs(input, weight);
// Handle the mixed precision use case.
if (is_batchnorm_with_lower_fp_inputs) {
if (is_batchnorm_with_fp16_inputs) {
input = xla::ConvertElementType(input, xla::PrimitiveType::F32);
}
xla::XlaOp output =
xla::BatchNormInference(input, weight, bias, mean, variance, eps_value,
/*feature_index=*/1);
if (is_batchnorm_with_lower_fp_inputs) {
output = xla::ConvertElementType(
output, ShapeHelper::ShapeOfXlaOp(input).element_type());
if (is_batchnorm_with_fp16_inputs) {
output = xla::ConvertElementType(output, xla::PrimitiveType::F16);
}
return output;
}
Expand All @@ -87,10 +78,10 @@ BatchNormGrads BuildBatchNormBackward(xla::XlaOp grad, xla::XlaOp input,
xla::XlaOp weight, xla::XlaOp save_mean,
xla::XlaOp save_invstd, bool training,
float eps_value) {
bool is_batchnorm_with_lower_fp_inputs =
IsF32BatchNormWithLowerFPInputs(input, weight);
bool is_batchnorm_with_fp16_inputs =
IsF32BatchNormWithFP16Inputs(input, weight);
// Handle the mixed precision use case.
if (is_batchnorm_with_lower_fp_inputs) {
if (is_batchnorm_with_fp16_inputs) {
input = xla::ConvertElementType(input, xla::PrimitiveType::F32);
grad = xla::ConvertElementType(grad, xla::PrimitiveType::F32);
}
Expand All @@ -100,9 +91,8 @@ BatchNormGrads BuildBatchNormBackward(xla::XlaOp grad, xla::XlaOp input,
xla::XlaOp grad_input = xla::GetTupleElement(grads, 0);
xla::XlaOp grad_weight = xla::GetTupleElement(grads, 1);
xla::XlaOp grad_bias = xla::GetTupleElement(grads, 2);
if (is_batchnorm_with_lower_fp_inputs) {
grad_input = xla::ConvertElementType(
grad_input, ShapeHelper::ShapeOfXlaOp(input).element_type());
if (is_batchnorm_with_fp16_inputs) {
grad_input = xla::ConvertElementType(grad_input, xla::PrimitiveType::F16);
}
return {grad_input, grad_weight, grad_bias};
}
Expand Down
Loading