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Abstract—This paper presents a novel model and method for 
synthesis of parallel hierarchical finite state machines (PHFSM) 
that permit to implement algorithms composed of modules in 
such a way that 1) the modules can be activated from other 
modules, and 2) more than one module can be activated in 
parallel. The model combines multiple stack memories 
interacting with a combinational circuit. The synthesis involves 
three basic steps: 1) conversion of a given specification to special 
state transition diagrams; 2) use of the proposed hardware 
description language templates; 3) synthesis of the circuit from 
the templates. A number of PHFSMs have been designed, 
implemented in low-cost commercially available FPGAs, tested, 
and evaluated. The results of experiments have proven the 
effectiveness and practicability of the proposed technique for 
solving real-world problems. 

Keywords-parallel and hierarchical algorithms; parallel 
hierarchical finite state machine; VHDL specification; synthesis; 
FPGA 

I.  INTRODUCTION 
Finite state machines (FSM) can be seen as fundamental 

building blocks for vast varieties of digital systems and they 
are frequently used in computers, embedded controllers, 
application specific integrated circuits, industrial electronic 
devices, etc. That is why it is very important to explore 
common models of FSMs and formal methods of their 
synthesis. Basically, we can distinguish three types of models, 
which are simple sequential, hierarchical, and parallel. In turn, 
they can be further divided (for example, we can consider 
recursive and iterative hierarchical models), but for the 
purposes of this paper the presented above types are sufficient 
and we will examine them with a bit more detail. 

Models and methods of synthesis for simple sequential 
FSMs are very well studied [1,2] and they are considered just 
as a basis for more complicated hierarchical and parallel FSMs. 

A hierarchical FSM is composed of other hierarchical and 
simple sequential FSMs (let us call them modules), which can 
be activated much like procedures in software programs. Thus, 
any module can be triggered from either another or the same 
module, which permits to implement the well-known strategy 
of “divide and conquer”. Models and methods of synthesis for 
hierarchical FSMs are considered in [3]. 

 A parallel FSM enables different modules to be executed 
in parallel. Note that generally any electronic device deals with 
simultaneous processing of analog/digital signals. Thus, it is 
parallel by definition. That is why exploring models and 
methods of synthesis for parallel FSMs is very important and 
greatly demanded. Some results in this scope are reported in 
[4,5]. 

The most interesting approach is combination of parallel 
and hierarchical capabilities within the same FSM. Let us call 
such FSMs parallel hierarchical FSMs (PHFSM). They were 
examined briefly in [5] but the conclusion drawn was that it 
would be very difficult to combine hierarchy and parallelism 
within the same machine. The presented in this paper model 
and method demonstrate that such a combination is achievable. 

The subsequent sections introduce a novel model of 
PHFSM and a novel method for synthesis of PHFSM. Their 
applicability is demonstrated on an example of a simple 
embedded controller. All the relevant experiments have been 
done with circuits of PHFSM tested in commercially available 
FPGAs (Field-Programmable Gate Arrays).   

The remainder of the paper is organized in five sections. 
Section II suggests a novel model of PHFSM, which permits to 
implement parallel hierarchical specification. Section III 
presents an example of a simple embedded controller, which 
will be used to demonstrate applicability of the model. Section 
IV describes a novel method of PHFSM synthesis based on 
hardware description language templates. Section V discusses 
experiments and practicability of the proposed model and 
method and summarizes the contribution of the paper. The 
conclusion is given in Section VI. 

II. A MODEL OF PARALLEL HIERARCHICAL FINITE STATE 
MACHINES 

Models and behavioral specifications of parallel and 
hierarchical FSMs are closely related to each other. Although a 
model might be considered, in a certain sense, as specification 
independent, it is better to establish first a “model-
specification” relationship, which makes it easier to understand 
which processes are going to be modeled and how it has to be 
done. Thus, at the beginning, a specification method for 
parallel hierarchical algorithms is going to be introduced. 



It is known that parallel hierarchical algorithms can be 
described by hierarchical graph-schemes (HGS) [3] with more 
than one macro-operation to be activated in the same 
rectangular node (actually in the same FSM state). Since, the 
latter is the only difference with traditional HGS, their formal 
definition is skipped (it is the same as in [3]). We will call such 
HGS parallel hierarchical graph-schemes (PHGS). Fig. 1 
depicts an example of PHGS, which describes functionality of 
a simplified embedded controller (this controller will be 
introduced in the following section). 
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Figure 1.  An example of parallel hierarchical algorithms for an embedded 

controller 

The algorithm is composed of 7 modules Z0,…,Z6. Some of 
these modules, namely Z1,…,Z6, are activated hierarchically 
and some of them, namely Z1,Z2,  are called  in parallel. Labels 
like a0

1 and a0
2 represent states and we will introduce them a bit 

later. Rhomboidal nodes contain logical conditions that are 
formed by sensors of the embedded controller and enable the 
sequence of execution of the algorithm to be properly selected. 
For example, while OFF=0 the execution of the rectangular 
node a0

3 is repeated. If OFF=1 the module Z0 is terminated. 
Rectangular nodes contain micro-operations, which affect 
actuators of the embedded controller forcing the required 
operations. For example, the operation move left forces some 
movable element(s) to be in motion to the left. 

One module Za might activate another module Zb in such a 
way that: a) the module Za has to be suspended; b) the module 
Zb has to be executed; c) as soon as the module Zb is 
terminated, the control has to be returned back to the module 
Za, i.e. the module Za has to continue its execution starting 
from a node following the node which called Zb. For example, 
the node a0

2 of the module Z0 (a=0) activates the module Z6 
(b=6). After the Z6 is terminated, the control has to be returned 
back to Z0 and the node a0

3 has to be activated. 

If two or more modules are activated in the same node they 
have to be executed in parallel. For example, the modules Z1 
and Z2 have to be activated in parallel from the module Z0. If 
two or more modules are called in parallel from the module Za, 
the module Za is allowed to continue its execution if and only if 
all called parallel modules have been terminated. In other 

words, if any of parallel modules is still functioning, the 
module Za has to remain suspended.  

Fig. 2 presents the proposed model of PHFSM which is 
based on the known model of HFSM [3] and is capable to 
execute PHGSs (such that is shown in Fig. 1). 

process(clock,reset)
begin

if reset = '1' then  stack_counter <= 0;
FSM_stack(stack_counter) <= a1;
M_stack(stack_counter) <= z0; error <= '0';

elsif rising_edge(clock) then 
if push = '1' then 
if stack_counter = stack_size then error <= '1';
else stack_counter <= stack_counter + 1;

FSM_stack(stack_counter+1) <= a1;
FSM_stack(stack_counter) <= NS;
M_stack(stack_counter+1) <= NM;

end if;
elsif pop = '1' then stack_counter <= stack_counter ‐ 1;
else      FSM_stack(stack_counter) <= NS;
end if;

end if;
end process;
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Figure 2.  The model of Parallel Hierarchical Finite State Machine 

 There are K stacks in Fig. 2 connected to a common 
combinational circuit (CC). Each stack has associated inputs 
push and pop and all the stacks have shared reset and clock 
inputs. The number K is equal to the maximum number of 
modules running in parallel. Each stack can be constructed 
using a common template for memory of HFSM considered in 
detail in [6]. The right-hand side of Fig. 2 depicts such template 
coded in VHDL. 

Let us consider a graph Γ, which has the same number of 
nodes N that the number of modules in PHGS. Each node i 
(i=0,…,N) of the graph is associated with the module i, and the 
node a is connected by a directed edge with the node b if and 
only if the module Zb has to be activated from the module Za.  

Fig. 3 depicts the graph Γ constructed for the PHGS in Fig. 
1. The maximum number of parallel branches in the graph Γ 
gives the maximum number of modules running in parallel. 
Note, that for an arbitrary activation of different modules, 
discovering the maximum number is a very complicated task, 
which is unsolvable for some cases. Thus, let us introduce the 
following constraints:  

• The activation of the parent module in branches 
running in parallel is prohibited; 

• Parallel calls in any recursive module are not allowed.  

Z0 Z6

Z1 Z3

Z2 Z5

Z4

 

Figure 3.  The graph Γ for the modules in Fig. 1 

Taking into account the considered above constraints the 
maximum number of modules running in parallel can be 



calculated through examination of the graph Γ. Finally, it gives 
the value of K and for our example K=2. 

The next step has to associate modules with the stacks and 
to determine the size of stack words. The following rules are 
proposed: 

• Examining a parallel set with the maximum number K 
of modules running in parallel and building K stacks. 
The size of words for each stackk (k=1,…,K) is 
assigned either intlog2Mk (Mk is the number of states 
for the module k) for binary state encoding [2] or Mk 
for one-hot state encoding [2]; 

• Examining the remaining parallel sets and constructing 
their memories from the stacks that have already been 
constructed in such a way that: 

a) Any previously constructed stack can be entirely 
reused; 

b) Any new stack can be build from more than one 
constructed stacks; 

c) Any new stack can be build from a previously 
constructed stack through increasing the size of the words. In 
this case the size of words will also be increased for the 
constructed stack.      

After applying the considered above rules all stacks will be 
constructed. To minimize their size it is necessary to solve an 
optimization task for the second rule, which can be converted 
to the matrix covering problem [7]. The result of the covering 
can undoubtedly be found taking into account the possibility of 
increasing the size of stack words.  

Section IV shows how to use the model in Fig 2 for 
synthesis of PHFSM that implements the algorithm in Fig.1 for 
a simple embedded controller. 

III. AN EXAMPLE 
Figure 4 depicts two interacting objects of a self-controlled 

transport section: a robot on the left hand side; and a container 
on the right-hand side. Both the robot and the container can 
move from left to right and vice versa. A similar example was 
considered in [5], but comparing with [5] it is extended by 
additional macro-operations Z3,…,Z6 making it possible a 
number of relatively complicated processes to be executed. 
Functionalities of both the robot and the container have to be 
controlled in parallel. The relevant algorithms (Z1 for the robot 
and Z2 for the container) are shown in Fig. 1. 
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Figure 4.  An example of a self-controlled transport section 

The following macro-operations have to be executed: 

• Z1 – controlling functionality of the robot; 

• Z2 – controlling functionality of the container; 

• Z3 – controlling the robot when it takes something (on 
the left-hand side); 

• Z4 –  controlling the robot when it delivers something 
to the container; 

• Z5 – controlling unloading of the container; 

• Z6 – verifying functionality of the entire system. 

The following micro-operations have to be executed: 

• move right/MOVE RIGHT – the robot/the container 
has to be moved right; 

• move left/MOVE LEFT – the robot/the container has 
to be moved left; 

• wait/WAIT – the robot/the container has to wait; 

The following sensors (logical conditions) are used: 

• left sensor/LEFT SENSOR – left sensor for the robot/ 
container transport section; 

• right sensor/RIGHT SENSOR – right sensor for the 
robot/ container transport section; 

• FULL – the container is full. 

In accordance with the algorithm in Fig. 1, the robot is 
controlled by two actuators move left and move right, which 
force the respective motions. The track, where the robot is 
moving, is bounded by the sensors left sensor and right sensor 
in such a way that if left sensor=1/right sensor =1, the robot is 
at the left/right edge.  

The container has exactly the same behavior, except capital 
letters are used instead of lower-case letters in the description. 
The transfer is also controlled by three macro-operations Z3-Z5 
in such a way that Z3 forces the robot to take something at the 
left-hand side of the transfer line; Z4 delivers the object carried 
by the robot to the container; and Z5 unloads the container at 
the right-hand side. Macro-operation Z6 tests the entire system 
before initiating the working stage. The algorithm in Fig. 1 
assumes that several iterations are needed for the robot to load 
the container. 

Taking into account all the considered above details we can 
conclude that Fig. 1 describes the functionality of a real-world 
system. To simplify the problem we will not give details of the 
modules Z3-Z6 (in particular, in the module Z3 all micro-
operations/logical conditions are abstract and that is why they 
were not characterized above). Any of the modules Z3-Z6 
describes functionality of a simple sequential FSM, i.e. they are 
not hierarchical. 

Let us apply the introduced in the previous section model to 
the system shown in Fig. 4. The next section presents a method 
of synthesis of the relevant PHFSM. 

IV. SYNTHESIS OF PARALLEL HIERARCHICAL FINITE STATE 
MACHINES 

The problem of synthesis is formulated in the same way as 
in [3], i.e. for a given control algorithm Λ, described by a set of 
PHGSs, construct the PHFSM that implements Λ. 



The synthesis includes the following steps: 

• Marking the given PHGSs with labels corresponding to 
the PHFSM states; 

• Describing the required functionality of the CC (see 
Fig. 2) with the aid of reusable hardware description 
language (HDL) code, which we will call HDL 
template for the CC; 

• Describing the stacks with the aid of HDL templates 
discussed in [6]; 

• Providing predefined (see Fig. 2) connections between 
the stacks and the CC; 

• Synthesis of PHFSM using any available computer-
aided design system for the chosen HDL. 

In order to mark given PHGSs, it is necessary to do the 
following (see Fig. 1): 

• The first label (let us call it ai
1) is assigned to the node 

Begin of all modules Zi (i=1,…,N); 

• The last label (let us call it ai
Mi) is assigned to the node 

End of all modules Zi (i=1,…,N) and Mi is the number 
of states in the module i (i=1,…,N); 

• The labels ai
2,…,ai

Mi-1 are assigned to unmarked 
rectangular nodes in all modules Zi (i=1,…,N). 

Now the labels are considered to be PHFSM states. The 
states for modules associated with the same stack are not 
distinguished by their superscripts. In other words, as soon as 
we code them in HDL we have to use the same name like a2 for 
the states a2 with different superscripts such as a0

2, a1
2, a2

2, etc. 
This can be done thanks to the name of module, which has also 
to be provided. Thus, the pair iam (i.e. the module name i and 
the state name am) allows knowing both the module and the 
state and additional information about superscript is not 
required. This permits, in particular, using the same codes for 
states of different modules with the same subscript. 

The proposed template for the CC has the following VHDL 
code (any other HDL can be used in a similar way): 
process («listing all inputs of the CC») 
begin 
-- all push and pop signals are assigned '0';  
  case M_stack1(stack_counter1) is 
    when Z0 =>  -- the code of this module is  

         -- given for Z0 in Fig. 1 
      case FSM_stack1(stack_counter1) is 

   when a1 => -- assigning outputs and  
              -- executing state transitions 
          NS1<=a2;    -- NS is the next state 
        when a2 =>  
          -- hierarchical calls if required 
          NS1<=a3;  push1 <= '1'; 

     NM1 <= Z6; -- NM is the next module 
 -- here and below avoiding iterative   
 -- module invocations with the aid of  
 -- methods [6, pp. 200-201] 

        when a3 =>  
          -- parallel calls if required  

     if OFF='1' then NS1 <= a4; 

     else NS1 <= a3; 
      end if; 
      push1 <= '1'; push2 <= '1'; 
      NM1 <= Z1; NM2 <= Z2; 

        when a4 => NS1 <= a4;  
   -- terminating node 

        when others => null; 
 end case; 
 when Z1 => -- the code of this module is  
 -- given just for hierarchical  
 -- calls/returns in Z1 (Fig. 1) 
   case FSM_stack1(stack_counter1) is 
     when a3 => 
       if right_sensor='1' then  
         NS1 <= a5;   
       else NS1 <= a4; 
        end if; 
        push1 <= '1'; NM1 <= Z3; 
     -- . .. . . . . . . . . . . 
     when a6 => NS1 <= a7; 
       push1 <= '1'; NM1 <= Z4; 
     when a7 => NS1 <= a7; 
       if ((stack_counter1 > 0) and  
      (FSM_stack2(stack_counter2) = a6)) 
        then pop1 <= '1'; 
        else pop1 <= '0';  
        end if; 
      when others => null; 
    end case; 
    when Z3 =>  -- repeat for all modules  
       -– associated with the first stack 
    when others => null; 
  end case; 
  when others => null; 
end case; 
 
case M_stack2(stack_counter2) is 
  when Z2 => -- repeat for all modules  
    -- associated with the second stack 
  when others => null; 
end case; 
when others => null; 

   end case; 
    -- repeat for all modules associated 
    -- with the remaining stacks 
end process;  
  

In the template above output signals are skipped for the 
simplicity. Assuming that we deal with Moore FSM model [1] 
the outputs can be generated in the relevant states, for example, 
in the state a1

2: move_left <= '1'. The complete 
synthesizable VHDL code of the CC for all modules shown in 
Fig. 1 is available online at [8]. Note that the code [8] contains 
all necessary additional lines allowing to avoid repeated 
module invocations in accordance with the suggestions [6, pp. 
200-201]. 

A simplified template for stacks is given in Fig. 2. The 
complete synthesizable VHDL code of stacks for PHGS in Fig. 
1 is available online at [8]. Each stackk contains two parts 
(memories) that are a stack of modules (M_stackk) and a stack 
of states (FSM_stackk). They are addressed by a shared 
stack_counterk incremented by the signal pushk and 
decremented by the signal popk. The stack M_stackk keeps the 



codes of modules and the stack FSM_stackk stores the codes of 
states. The signals NMk (NSk) supply the code of the next 
module (the code of the next state) formed by the template for 
the CC. All the details about stack memories for HFSM can be 
found in [6]. The only difference for PHFSM is a necessity for 
multiple stacks. However, each individual stack is exactly the 
same as in [6] and thus, it will not be described once again. 

There are totally 5 different types of state transitions: 

1) Simple sequential state transitions between states within 
the same module. They are provided in the same way as in an 
ordinary FSM, for example the transition from a1

5 will be done 
like the following: 
 
when a5 =>  

if ((FULL='0') and (L_SENSOR='1')) then  
  NS1 <= a6; 
else  
  NS1 <= a5; 
end if; 
 

2) Simple (non parallel) hierarchical transitions, for 
example, a hierarchical transition from the state a0

2 (the signal 
return_flag is needed to avoid the second invocation of 
the same module Z6 during the return step, which is done in 
accordance with the method [6, pp. 200-201]): 

 
when a2 =>  
  NS1 <= a3;  
  if return_flag1 = '0' then 

 push1 <= '1'; NM1 <= Z6; 
      else  
        push1 <= '0'; 
      end if; 
 

3) Simple (non parallel) hierarchical returns, for example, 
a hierarchical return from the state a3

4: 
 
when a4 =>  
  NS1 <= a4;   
  if (stack_counter1 > 0) then    

      pop1 <= '1'; 
    else  
      pop1 <= '0'; 
    end if; 
 

4) Parallel hierarchical calls, for example, a parallel 
hierarchical call from the state a0

3:  
 
  when a3 =>    
    if OFF='1' then NS1 <= a4; 
    else NS1 <= a3; 
    end if; 
    if return_flag1 = '0' then 
      push1 <= '1'; push2 <= '1'; 
      NM1 <= Z1; NM2 <= Z2; 
    else push1 <= '0'; push2 <= '0'; 
    end if; 
 

5) Hierarchical returns from parallel branches, for 
example, the return from the state a2

6: 

when a6 =>  
  NS2 <= a6; 
  if ( (stack_counter2 > 0) and 

       (FSM_stack1(stack_counter1) = a7)) then 
      pop2 <= '1'; 
    else pop2 <= '0'; 
    end if; 
 

Fig. 5 demonstrates the functionality of PHFSM for PHGS 
in Fig. 1 for state transitions indicated by different directed 
curves. Note, that one-hot state encoding is considered just for 
simplicity. Obviously binary state encoding can also be used.  

Now the predefined connections have to be provided 
between the CC and the stacks in accordance with Fig. 2. 
Finalizing the synthesis can be done in any appropriate design 
environment. In our particular case it was done in ISE 9.2 of 
Xilinx [9]. 

V. EXPERIMENTS 
The primary goal of the experiments was to prove on 

arbitrarily selected working examples that the model and the 
method presented in the paper are correct. Different types of 
parallel control algorithms with up to 5 parallel branches and 
up to 14 hierarchical calls were analyzed. Various PHFSM 
implementing these algorithms on the basis of recent 
commercially available low-cost FPGAs were synthesized, 
implemented, and tested.  

We have used the stand-alone boards DETIUA-S3 [10] and 
TE-XC2Se [11]. Note that the first board supports both wired 
(USB) and wireless (Bluetooth) interfaces for configuring the 
onboard FPGA and interacting with the implemented circuits. 
This permits to construct remotely modifiable parallel control 
systems, which are very useful for numerous experiments in 
such areas as embedded controllers, industrial electronic 
devices, etc. 

The implemented PHFSMs require reasonable FPGA 
resources. For example, the complete circuit functioning in 
accordance with the specification in Fig. 1 occupies just 8% of 
slices of a very cheap xc2s400e FPGA [9] and other resources, 
such as embedded memory blocks, have not been used. Thus, 
very complicated PHFSM can be implemented on the basis of 
low-cost FPGAs.  The results of experiments have shown that 
the proposed model and methods are indeed very practical and 
enable the designers to implement real-world hierarchical 
and/or parallel algorithms. This, in particular, permits to 
modify the conclusion given in [5], which says that “although 
hierarchical and parallel algorithms can be implemented within 
the same system, using hierarchical parallel algorithms is very 
resource consuming and many constraints have to be taken into 
account. In many cases, autonomous HFSMs working in 
parallel are better”. This paper presents new results making it 
possible to conclude that hierarchical parallel algorithms are, in 
fact, not so resource consuming and those constraints, that have 
to be taken into account, are not so important for many of real-
world problems. 

The complete project for Xilinx ISE 9.2 [9] and stand-alone 
prototyping board TE-XC2Se (that is ready for evaluation and 
test) is available online at [8]. 
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Figure 5.  An example demonstrating different types of state transitions 

 

VI. CONCLUSION 
The paper presents a novel model and method of synthesis 

of parallel hierarchical finite state machines. The latter allow 
both hierarchical and parallel calls of algorithmic modules to 
be implemented. Any module is considered to be either a 
simple finite state machine (FSM), a hierarchical FSM or a 
parallel (hierarchical) FSM. Although there are some 
constraints, they are not so important for the majority of real-
world problems. The primary contribution is that 
implementation of hierarchical parallel algorithms on the basis 
of the proposed model is very practical and consumes very 
reasonable hardware resources. 
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