
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4352910

Design and implementation of parallel hierarchical finite state machines

Conference Paper · July 2008

DOI: 10.1109/CCE.2008.4578929 · Source: IEEE Xplore

CITATIONS

20
READS

776

2 authors, including:

Iouliia Skliarova

University of Aveiro

165 PUBLICATIONS 1,096 CITATIONS

SEE PROFILE

All content following this page was uploaded by Iouliia Skliarova on 19 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4352910_Design_and_implementation_of_parallel_hierarchical_finite_state_machines?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4352910_Design_and_implementation_of_parallel_hierarchical_finite_state_machines?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iouliia-Skliarova?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iouliia-Skliarova?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Aveiro?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iouliia-Skliarova?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iouliia-Skliarova?enrichId=rgreq-bf06a174fe96d4b1083ef633c8d6108e-XXX&enrichSource=Y292ZXJQYWdlOzQzNTI5MTA7QVM6OTg1MDcwNzU2MjA4NjRAMTQwMDQ5NzMyNTA1Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Design and Implementation of Parallel Hierarchical
Finite State Machines

Valery Sklyarov, Iouliia Skliarova
Department of Electronics, Telecommunications and Informatics/IEETA,

University of Aveiro
3810-193 Aveiro, Portugal
skl@ua.pt, iouliia@ua.pt

Abstract—This paper presents a novel model and method for
synthesis of parallel hierarchical finite state machines (PHFSM)
that permit to implement algorithms composed of modules in
such a way that 1) the modules can be activated from other
modules, and 2) more than one module can be activated in
parallel. The model combines multiple stack memories
interacting with a combinational circuit. The synthesis involves
three basic steps: 1) conversion of a given specification to special
state transition diagrams; 2) use of the proposed hardware
description language templates; 3) synthesis of the circuit from
the templates. A number of PHFSMs have been designed,
implemented in low-cost commercially available FPGAs, tested,
and evaluated. The results of experiments have proven the
effectiveness and practicability of the proposed technique for
solving real-world problems.

Keywords-parallel and hierarchical algorithms; parallel
hierarchical finite state machine; VHDL specification; synthesis;
FPGA

I. INTRODUCTION
Finite state machines (FSM) can be seen as fundamental

building blocks for vast varieties of digital systems and they
are frequently used in computers, embedded controllers,
application specific integrated circuits, industrial electronic
devices, etc. That is why it is very important to explore
common models of FSMs and formal methods of their
synthesis. Basically, we can distinguish three types of models,
which are simple sequential, hierarchical, and parallel. In turn,
they can be further divided (for example, we can consider
recursive and iterative hierarchical models), but for the
purposes of this paper the presented above types are sufficient
and we will examine them with a bit more detail.

Models and methods of synthesis for simple sequential
FSMs are very well studied [1,2] and they are considered just
as a basis for more complicated hierarchical and parallel FSMs.

A hierarchical FSM is composed of other hierarchical and
simple sequential FSMs (let us call them modules), which can
be activated much like procedures in software programs. Thus,
any module can be triggered from either another or the same
module, which permits to implement the well-known strategy
of “divide and conquer”. Models and methods of synthesis for
hierarchical FSMs are considered in [3].

 A parallel FSM enables different modules to be executed
in parallel. Note that generally any electronic device deals with
simultaneous processing of analog/digital signals. Thus, it is
parallel by definition. That is why exploring models and
methods of synthesis for parallel FSMs is very important and
greatly demanded. Some results in this scope are reported in
[4,5].

The most interesting approach is combination of parallel
and hierarchical capabilities within the same FSM. Let us call
such FSMs parallel hierarchical FSMs (PHFSM). They were
examined briefly in [5] but the conclusion drawn was that it
would be very difficult to combine hierarchy and parallelism
within the same machine. The presented in this paper model
and method demonstrate that such a combination is achievable.

The subsequent sections introduce a novel model of
PHFSM and a novel method for synthesis of PHFSM. Their
applicability is demonstrated on an example of a simple
embedded controller. All the relevant experiments have been
done with circuits of PHFSM tested in commercially available
FPGAs (Field-Programmable Gate Arrays).

The remainder of the paper is organized in five sections.
Section II suggests a novel model of PHFSM, which permits to
implement parallel hierarchical specification. Section III
presents an example of a simple embedded controller, which
will be used to demonstrate applicability of the model. Section
IV describes a novel method of PHFSM synthesis based on
hardware description language templates. Section V discusses
experiments and practicability of the proposed model and
method and summarizes the contribution of the paper. The
conclusion is given in Section VI.

II. A MODEL OF PARALLEL HIERARCHICAL FINITE STATE
MACHINES

Models and behavioral specifications of parallel and
hierarchical FSMs are closely related to each other. Although a
model might be considered, in a certain sense, as specification
independent, it is better to establish first a “model-
specification” relationship, which makes it easier to understand
which processes are going to be modeled and how it has to be
done. Thus, at the beginning, a specification method for
parallel hierarchical algorithms is going to be introduced.

It is known that parallel hierarchical algorithms can be
described by hierarchical graph-schemes (HGS) [3] with more
than one macro-operation to be activated in the same
rectangular node (actually in the same FSM state). Since, the
latter is the only difference with traditional HGS, their formal
definition is skipped (it is the same as in [3]). We will call such
HGS parallel hierarchical graph-schemes (PHGS). Fig. 1
depicts an example of PHGS, which describes functionality of
a simplified embedded controller (this controller will be
introduced in the following section).

Begin

left sensor

move left

right sensor

(Z3) take

0

1

Z1

move right

0

End

wait

FULL

LEFT SENSOR
1

0

(Z4) deliver

1

0

1

Begin

Z0

(Z6) test

Z1, Z2

OFF

End

0

1

Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

LEFT SENSOR

MOVE LEFT

0

1

WAIT

FULL
1

0

End

Begin

X1
0

1

y1,y2

Z3

X2
0

y1,y2 End

1

Begin

End

Z4 Begin

End

Z6

ONa01

a03

a04

a11

a12 a13

a14

a15

a16

a17

a21

a22 a23

a24 a25

a26
a31

a32 a33
a34

a41

a44

a61

a63

a02

Begin

End

Z5 a51

a53

Figure 1. An example of parallel hierarchical algorithms for an embedded

controller

The algorithm is composed of 7 modules Z0,…,Z6. Some of
these modules, namely Z1,…,Z6, are activated hierarchically
and some of them, namely Z1,Z2, are called in parallel. Labels
like a0

1 and a0
2 represent states and we will introduce them a bit

later. Rhomboidal nodes contain logical conditions that are
formed by sensors of the embedded controller and enable the
sequence of execution of the algorithm to be properly selected.
For example, while OFF=0 the execution of the rectangular
node a0

3 is repeated. If OFF=1 the module Z0 is terminated.
Rectangular nodes contain micro-operations, which affect
actuators of the embedded controller forcing the required
operations. For example, the operation move left forces some
movable element(s) to be in motion to the left.

One module Za might activate another module Zb in such a
way that: a) the module Za has to be suspended; b) the module
Zb has to be executed; c) as soon as the module Zb is
terminated, the control has to be returned back to the module
Za, i.e. the module Za has to continue its execution starting
from a node following the node which called Zb. For example,
the node a0

2 of the module Z0 (a=0) activates the module Z6
(b=6). After the Z6 is terminated, the control has to be returned
back to Z0 and the node a0

3 has to be activated.

If two or more modules are activated in the same node they
have to be executed in parallel. For example, the modules Z1
and Z2 have to be activated in parallel from the module Z0. If
two or more modules are called in parallel from the module Za,
the module Za is allowed to continue its execution if and only if
all called parallel modules have been terminated. In other

words, if any of parallel modules is still functioning, the
module Za has to remain suspended.

Fig. 2 presents the proposed model of PHFSM which is
based on the known model of HFSM [3] and is capable to
execute PHGSs (such that is shown in Fig. 1).

process(clock,reset)
begin

if reset = '1' then stack_counter <= 0;
FSM_stack(stack_counter) <= a1;
M_stack(stack_counter) <= z0; error <= '0';

elsif rising_edge(clock) then
if push = '1' then
if stack_counter = stack_size then error <= '1';
else stack_counter <= stack_counter + 1;

FSM_stack(stack_counter+1) <= a1;
FSM_stack(stack_counter) <= NS;
M_stack(stack_counter+1) <= NM;

end if;
elsif pop = '1' then stack_counter <= stack_counter ‐ 1;
else FSM_stack(stack_counter) <= NS;
end if;

end if;
end process;

Stack 1 Stack K

Combinational
Circuit (CC)

pu
sh

1
po

p1

pu
sh

K
po

pK

reset

clockx1

xL

y1

yN

Figure 2. The model of Parallel Hierarchical Finite State Machine

 There are K stacks in Fig. 2 connected to a common
combinational circuit (CC). Each stack has associated inputs
push and pop and all the stacks have shared reset and clock
inputs. The number K is equal to the maximum number of
modules running in parallel. Each stack can be constructed
using a common template for memory of HFSM considered in
detail in [6]. The right-hand side of Fig. 2 depicts such template
coded in VHDL.

Let us consider a graph Γ, which has the same number of
nodes N that the number of modules in PHGS. Each node i
(i=0,…,N) of the graph is associated with the module i, and the
node a is connected by a directed edge with the node b if and
only if the module Zb has to be activated from the module Za.

Fig. 3 depicts the graph Γ constructed for the PHGS in Fig.
1. The maximum number of parallel branches in the graph Γ
gives the maximum number of modules running in parallel.
Note, that for an arbitrary activation of different modules,
discovering the maximum number is a very complicated task,
which is unsolvable for some cases. Thus, let us introduce the
following constraints:

• The activation of the parent module in branches
running in parallel is prohibited;

• Parallel calls in any recursive module are not allowed.

Z0 Z6

Z1 Z3

Z2 Z5

Z4

Figure 3. The graph Γ for the modules in Fig. 1

Taking into account the considered above constraints the
maximum number of modules running in parallel can be

calculated through examination of the graph Γ. Finally, it gives
the value of K and for our example K=2.

The next step has to associate modules with the stacks and
to determine the size of stack words. The following rules are
proposed:

• Examining a parallel set with the maximum number K
of modules running in parallel and building K stacks.
The size of words for each stackk (k=1,…,K) is
assigned either intlog2Mk (Mk is the number of states
for the module k) for binary state encoding [2] or Mk
for one-hot state encoding [2];

• Examining the remaining parallel sets and constructing
their memories from the stacks that have already been
constructed in such a way that:

a) Any previously constructed stack can be entirely
reused;

b) Any new stack can be build from more than one
constructed stacks;

c) Any new stack can be build from a previously
constructed stack through increasing the size of the words. In
this case the size of words will also be increased for the
constructed stack.

After applying the considered above rules all stacks will be
constructed. To minimize their size it is necessary to solve an
optimization task for the second rule, which can be converted
to the matrix covering problem [7]. The result of the covering
can undoubtedly be found taking into account the possibility of
increasing the size of stack words.

Section IV shows how to use the model in Fig 2 for
synthesis of PHFSM that implements the algorithm in Fig.1 for
a simple embedded controller.

III. AN EXAMPLE
Figure 4 depicts two interacting objects of a self-controlled

transport section: a robot on the left hand side; and a container
on the right-hand side. Both the robot and the container can
move from left to right and vice versa. A similar example was
considered in [5], but comparing with [5] it is extended by
additional macro-operations Z3,…,Z6 making it possible a
number of relatively complicated processes to be executed.
Functionalities of both the robot and the container have to be
controlled in parallel. The relevant algorithms (Z1 for the robot
and Z2 for the container) are shown in Fig. 1.

Container (Z2)

LEFT SENSOR RIGHT SENSOR

FULL

MOVE RIGHT
MOVE LEFT

Robot
(Z1)

left sensor right sensor

deliver (Z4)

move right
move left

take (Z3)

UNLOAD (Z5)

test (Z6)

Figure 4. An example of a self-controlled transport section

The following macro-operations have to be executed:

• Z1 – controlling functionality of the robot;

• Z2 – controlling functionality of the container;

• Z3 – controlling the robot when it takes something (on
the left-hand side);

• Z4 – controlling the robot when it delivers something
to the container;

• Z5 – controlling unloading of the container;

• Z6 – verifying functionality of the entire system.

The following micro-operations have to be executed:

• move right/MOVE RIGHT – the robot/the container
has to be moved right;

• move left/MOVE LEFT – the robot/the container has
to be moved left;

• wait/WAIT – the robot/the container has to wait;

The following sensors (logical conditions) are used:

• left sensor/LEFT SENSOR – left sensor for the robot/
container transport section;

• right sensor/RIGHT SENSOR – right sensor for the
robot/ container transport section;

• FULL – the container is full.

In accordance with the algorithm in Fig. 1, the robot is
controlled by two actuators move left and move right, which
force the respective motions. The track, where the robot is
moving, is bounded by the sensors left sensor and right sensor
in such a way that if left sensor=1/right sensor =1, the robot is
at the left/right edge.

The container has exactly the same behavior, except capital
letters are used instead of lower-case letters in the description.
The transfer is also controlled by three macro-operations Z3-Z5
in such a way that Z3 forces the robot to take something at the
left-hand side of the transfer line; Z4 delivers the object carried
by the robot to the container; and Z5 unloads the container at
the right-hand side. Macro-operation Z6 tests the entire system
before initiating the working stage. The algorithm in Fig. 1
assumes that several iterations are needed for the robot to load
the container.

Taking into account all the considered above details we can
conclude that Fig. 1 describes the functionality of a real-world
system. To simplify the problem we will not give details of the
modules Z3-Z6 (in particular, in the module Z3 all micro-
operations/logical conditions are abstract and that is why they
were not characterized above). Any of the modules Z3-Z6
describes functionality of a simple sequential FSM, i.e. they are
not hierarchical.

Let us apply the introduced in the previous section model to
the system shown in Fig. 4. The next section presents a method
of synthesis of the relevant PHFSM.

IV. SYNTHESIS OF PARALLEL HIERARCHICAL FINITE STATE
MACHINES

The problem of synthesis is formulated in the same way as
in [3], i.e. for a given control algorithm Λ, described by a set of
PHGSs, construct the PHFSM that implements Λ.

The synthesis includes the following steps:

• Marking the given PHGSs with labels corresponding to
the PHFSM states;

• Describing the required functionality of the CC (see
Fig. 2) with the aid of reusable hardware description
language (HDL) code, which we will call HDL
template for the CC;

• Describing the stacks with the aid of HDL templates
discussed in [6];

• Providing predefined (see Fig. 2) connections between
the stacks and the CC;

• Synthesis of PHFSM using any available computer-
aided design system for the chosen HDL.

In order to mark given PHGSs, it is necessary to do the
following (see Fig. 1):

• The first label (let us call it ai
1) is assigned to the node

Begin of all modules Zi (i=1,…,N);

• The last label (let us call it ai
Mi) is assigned to the node

End of all modules Zi (i=1,…,N) and Mi is the number
of states in the module i (i=1,…,N);

• The labels ai
2,…,ai

Mi-1 are assigned to unmarked
rectangular nodes in all modules Zi (i=1,…,N).

Now the labels are considered to be PHFSM states. The
states for modules associated with the same stack are not
distinguished by their superscripts. In other words, as soon as
we code them in HDL we have to use the same name like a2 for
the states a2 with different superscripts such as a0

2, a1
2, a2

2, etc.
This can be done thanks to the name of module, which has also
to be provided. Thus, the pair iam (i.e. the module name i and
the state name am) allows knowing both the module and the
state and additional information about superscript is not
required. This permits, in particular, using the same codes for
states of different modules with the same subscript.

The proposed template for the CC has the following VHDL
code (any other HDL can be used in a similar way):
process («listing all inputs of the CC»)
begin
-- all push and pop signals are assigned '0';
 case M_stack1(stack_counter1) is
 when Z0 => -- the code of this module is

 -- given for Z0 in Fig. 1
 case FSM_stack1(stack_counter1) is

 when a1 => -- assigning outputs and
 -- executing state transitions
 NS1<=a2; -- NS is the next state
 when a2 =>
 -- hierarchical calls if required
 NS1<=a3; push1 <= '1';

 NM1 <= Z6; -- NM is the next module
 -- here and below avoiding iterative
 -- module invocations with the aid of
 -- methods [6, pp. 200-201]

 when a3 =>
 -- parallel calls if required

 if OFF='1' then NS1 <= a4;

 else NS1 <= a3;
 end if;
 push1 <= '1'; push2 <= '1';
 NM1 <= Z1; NM2 <= Z2;

 when a4 => NS1 <= a4;
 -- terminating node

 when others => null;
 end case;
 when Z1 => -- the code of this module is
 -- given just for hierarchical
 -- calls/returns in Z1 (Fig. 1)
 case FSM_stack1(stack_counter1) is
 when a3 =>
 if right_sensor='1' then
 NS1 <= a5;
 else NS1 <= a4;
 end if;
 push1 <= '1'; NM1 <= Z3;
 --
 when a6 => NS1 <= a7;
 push1 <= '1'; NM1 <= Z4;
 when a7 => NS1 <= a7;
 if ((stack_counter1 > 0) and
 (FSM_stack2(stack_counter2) = a6))
 then pop1 <= '1';
 else pop1 <= '0';
 end if;
 when others => null;
 end case;
 when Z3 => -- repeat for all modules
 -– associated with the first stack
 when others => null;
 end case;
 when others => null;
end case;

case M_stack2(stack_counter2) is
 when Z2 => -- repeat for all modules
 -- associated with the second stack
 when others => null;
end case;
when others => null;

 end case;
 -- repeat for all modules associated
 -- with the remaining stacks
end process;

In the template above output signals are skipped for the
simplicity. Assuming that we deal with Moore FSM model [1]
the outputs can be generated in the relevant states, for example,
in the state a1

2: move_left <= '1'. The complete
synthesizable VHDL code of the CC for all modules shown in
Fig. 1 is available online at [8]. Note that the code [8] contains
all necessary additional lines allowing to avoid repeated
module invocations in accordance with the suggestions [6, pp.
200-201].

A simplified template for stacks is given in Fig. 2. The
complete synthesizable VHDL code of stacks for PHGS in Fig.
1 is available online at [8]. Each stackk contains two parts
(memories) that are a stack of modules (M_stackk) and a stack
of states (FSM_stackk). They are addressed by a shared
stack_counterk incremented by the signal pushk and
decremented by the signal popk. The stack M_stackk keeps the

codes of modules and the stack FSM_stackk stores the codes of
states. The signals NMk (NSk) supply the code of the next
module (the code of the next state) formed by the template for
the CC. All the details about stack memories for HFSM can be
found in [6]. The only difference for PHFSM is a necessity for
multiple stacks. However, each individual stack is exactly the
same as in [6] and thus, it will not be described once again.

There are totally 5 different types of state transitions:

1) Simple sequential state transitions between states within
the same module. They are provided in the same way as in an
ordinary FSM, for example the transition from a1

5 will be done
like the following:

when a5 =>

if ((FULL='0') and (L_SENSOR='1')) then
 NS1 <= a6;
else
 NS1 <= a5;
end if;

2) Simple (non parallel) hierarchical transitions, for
example, a hierarchical transition from the state a0

2 (the signal
return_flag is needed to avoid the second invocation of
the same module Z6 during the return step, which is done in
accordance with the method [6, pp. 200-201]):

when a2 =>
 NS1 <= a3;
 if return_flag1 = '0' then

 push1 <= '1'; NM1 <= Z6;
 else
 push1 <= '0';
 end if;

3) Simple (non parallel) hierarchical returns, for example,
a hierarchical return from the state a3

4:

when a4 =>
 NS1 <= a4;
 if (stack_counter1 > 0) then

 pop1 <= '1';
 else
 pop1 <= '0';
 end if;

4) Parallel hierarchical calls, for example, a parallel
hierarchical call from the state a0

3:

 when a3 =>
 if OFF='1' then NS1 <= a4;
 else NS1 <= a3;
 end if;
 if return_flag1 = '0' then
 push1 <= '1'; push2 <= '1';
 NM1 <= Z1; NM2 <= Z2;
 else push1 <= '0'; push2 <= '0';
 end if;

5) Hierarchical returns from parallel branches, for
example, the return from the state a2

6:

when a6 =>
 NS2 <= a6;
 if ((stack_counter2 > 0) and

 (FSM_stack1(stack_counter1) = a7)) then
 pop2 <= '1';
 else pop2 <= '0';
 end if;

Fig. 5 demonstrates the functionality of PHFSM for PHGS
in Fig. 1 for state transitions indicated by different directed
curves. Note, that one-hot state encoding is considered just for
simplicity. Obviously binary state encoding can also be used.

Now the predefined connections have to be provided
between the CC and the stacks in accordance with Fig. 2.
Finalizing the synthesis can be done in any appropriate design
environment. In our particular case it was done in ISE 9.2 of
Xilinx [9].

V. EXPERIMENTS
The primary goal of the experiments was to prove on

arbitrarily selected working examples that the model and the
method presented in the paper are correct. Different types of
parallel control algorithms with up to 5 parallel branches and
up to 14 hierarchical calls were analyzed. Various PHFSM
implementing these algorithms on the basis of recent
commercially available low-cost FPGAs were synthesized,
implemented, and tested.

We have used the stand-alone boards DETIUA-S3 [10] and
TE-XC2Se [11]. Note that the first board supports both wired
(USB) and wireless (Bluetooth) interfaces for configuring the
onboard FPGA and interacting with the implemented circuits.
This permits to construct remotely modifiable parallel control
systems, which are very useful for numerous experiments in
such areas as embedded controllers, industrial electronic
devices, etc.

The implemented PHFSMs require reasonable FPGA
resources. For example, the complete circuit functioning in
accordance with the specification in Fig. 1 occupies just 8% of
slices of a very cheap xc2s400e FPGA [9] and other resources,
such as embedded memory blocks, have not been used. Thus,
very complicated PHFSM can be implemented on the basis of
low-cost FPGAs. The results of experiments have shown that
the proposed model and methods are indeed very practical and
enable the designers to implement real-world hierarchical
and/or parallel algorithms. This, in particular, permits to
modify the conclusion given in [5], which says that “although
hierarchical and parallel algorithms can be implemented within
the same system, using hierarchical parallel algorithms is very
resource consuming and many constraints have to be taken into
account. In many cases, autonomous HFSMs working in
parallel are better”. This paper presents new results making it
possible to conclude that hierarchical parallel algorithms are, in
fact, not so resource consuming and those constraints, that have
to be taken into account, are not so important for many of real-
world problems.

The complete project for Xilinx ISE 9.2 [9] and stand-alone
prototyping board TE-XC2Se (that is ready for evaluation and
test) is available online at [8].

Begin

(Z6) test

Z1, Z2

OFF

End

0

1

a03

a04

Begin

left sensor

move left

right sensor

(Z3) take

0

1

move right

0

End

wait

FULL

LEFT SENSOR
1

0

(Z4) deliver

1

0

1

a11

a12 a13

a14

a15

a16

a17

Z1Z0 Begin

RIGHT SENSOR

MOVE RIGHT

0

1

Z2

(Z5) UNLOAD

LEFT SENSOR

MOVE LEFT

0

1

WAIT

FULL
1

0

End

a21

a22 a23

a24 a25

a26Begin

X1
0

1

y1,y2 X2
0

y1,y2 End

1

a31

a32 a33
a34

Z3

a01

a02

Z1,Z2
Z1,Z2
Z3,Z2
Z3,Z5a1 a2 a3 a4 a5 a6 a7 a1 a2 a3 a4 a5 a65)2‐2
Z3,Z5a1 a2 a3 a4 a5 a6 a7 execution of Z56)2‐2
Z1,Z5a1 a2 a3 a4 a5 a6 a7 end of Z57)1‐2
Z1,Z2a1 a2 a3 a4 a5 a6 a7 a1 a2 a3 a4 a5 a68)1‐1
Z1,Z2a1 a2 a3 a5 a5 a6a7 a1 a2 a3 a4 a5 a69)1‐1

a1 a2 a3 a4 a5 a6 a7 a1 a2 a3 a4 a5 a62)1‐1
a1 a2 a3 a4 a5 a6 a7 a1 a2 a3 a4 a5 a63)1‐1
a1 a2 a3 a4 a5 a6 a7 a1 a2 a3 a4 a5 a64)2‐1

stack 1 and 2 are combined

stack 1 and 2 are separated
Z0a1 a3 a3 a4 a5 a6 a7 a8 a91)0‐0

Z1,Z2a1 a2 a3 a5 a5 a6 a7 a1 a2 a3 a4 a5 a610)1‐1
Z1,Z2wait for end of Z2 a1 a2 a3 a4 a5 a611)1‐1

Z012)0‐0
stack 1 and 2 are combined

next state of Z0 (after the node with Z1,Z2

Figure 5. An example demonstrating different types of state transitions

VI. CONCLUSION
The paper presents a novel model and method of synthesis

of parallel hierarchical finite state machines. The latter allow
both hierarchical and parallel calls of algorithmic modules to
be implemented. Any module is considered to be either a
simple finite state machine (FSM), a hierarchical FSM or a
parallel (hierarchical) FSM. Although there are some
constraints, they are not so important for the majority of real-
world problems. The primary contribution is that
implementation of hierarchical parallel algorithms on the basis
of the proposed model is very practical and consumes very
reasonable hardware resources.

REFERENCES
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, Inc., 1994.
[2] T.Villa, T.Kam, R.K.Brayton, A.Sangiovanni-Vincentelli, Synthesis of

Finite State Machines: Logic Optimization, Kluwer Academic
Publishers, 1997.

[3] V. Sklyarov, “Hierarchical Finite-State Machines and their use for
digital control”, IEEE Transactions on VLSI Systems, 1999, vol. 7, no.
2, pp. 222-228.

[4] A. Zakrevskij, Parallel Algorithms of Logical Control, Minsk, Academy
of Science, 1999.

[5] V. Sklyarov, I. Skliarova, "Hierarchical specification and design of
control systems in robotics", Proceedings of the 3rd Int. Conf. on
Autonomous Robots and Agents - ICARA'2006, Palmerston North, New
Zealand, December 2006, pp. 623-628.

[6] V. Sklyarov, “FPGA-based implementation of recursive algorithms”,
Microprocessors and Microsystems, Special Issue on FPGAs:
Applications and Designs, vol. 28/5-6, 2004, pp. 197-211.

[7] I. Skliarova, Reconfigurable Architectures for Problems of
Combinatorial Optimization, Ph.D. Thesis, University of Aveiro,
Portugal, 2004.

[8] Synthesizable VHDL code for PHFSM, Online:
http://www.ieeta.pt/~skl/Research/Projects/ISE_Projects/ParallelHFSM.
rar.

[9] Xilinx, Inc., products and services, Online: http://www.xilinx.com.
[10] M. Almeida, B. Pimentel, V. Sklyarov, I. Skliarova, "Design tools for

rapid prototyping of embedded controllers", Proceedings of the 3rd
International Conference on Autonomous Robots and Agents -
ICARA'2006, Palmerston North, New Zealand, December 2006, pp.
683-688.

[11] Spartan-IIE Development Platform, Online: http://www.trenz-
electronic.de. .

View publication statsView publication stats

https://www.researchgate.net/publication/4352910

