Permalink
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
23 lines (22 sloc) 1.59 KB
{
"copyright_text": "Creative Commons Attribution license (reuse allowed)",
"description": "Edward - Probabilistic Modeling Made Easy\n-------------------------------------------------------\n\nEdward is a python library for probabilistic modeling and inference. It is based on tensorflow and leverages the computational graph and tools such as automatic differentiation to automate inference in probabilistic models. This means that users can skip the difficult step of deriving a custom inference algorithm and can use Edward to fit more complex probabilistic models to their data.\nAll they have to do is specify the probabilistic model.\n\nOutline of the talk\n~~~~~~~~~~~~~~~~~~~~~~~~\n\nFirst, I will introduce the tensorflow and Edward basics that are necessary to look at a few modeling examples.\nThe examples we will cover include how to fit a Bayesian neural network and an embedding model to real data.\n\nGoals\n~~~~~\n\nBy introducing probabilistic modeling in Edward and giving an overview of how it can be used, I hope to encourage people to use Edward for their data science projects an/or to start contributing to the library.",
"duration": 1500,
"language": "eng",
"recorded": "2017-10-07",
"related_urls": [
"https://2017.pygotham.org/talks/edward-probabilistic-modeling-made-easy/"
],
"speakers": [
"Maja Rudolph"
],
"tags": [],
"thumbnail_url": "https://i.ytimg.com/vi/ph5Z1sDKTZg/maxresdefault.jpg",
"title": "Edward - Probabilistic Modeling Made Easy",
"videos": [
{
"type": "youtube",
"url": "https://www.youtube.com/watch?v=ph5Z1sDKTZg"
}
]
}