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Abstract 
Previous algorithms for interprocedural control Row analysis of 
higher-order and/or object-oriented languages have been described 
that perform propagation or constraint satisfaction and take O(N3) 
time (such as Shivers’s O-CFA and Heintze’s set-based analysis), or 
unification and take O(jVa(N,@) time [such &s Steensgaard’s 
pointer analysis), or optimistic reachability anaIysis and take O(N) 
time (such as Bacon and Sweeney’s Rapid Type Analysis). We 
describe a general parameterized analysis framework that 
integrates propagation-based and unification-based analysis 
primitives and optimistic reachaMity analysis, whose instance-s 
mimic these existing algorithms as welI as several new algorithms 
taking O(N), O(Na(N,iV)), O(N2), and O(N2a(N,N)) time; our O(N) 
and O(Ncr(N,N)) algorithms produce more precise resuiks.than the 
previous algorithms with these complexities. We implemented our 
algorithm framework in the Vortex optimizing compiler, and we 
measured the cost and benefit of these interprocedural analysis 
aIgorithms in practice on a collection of substantial Cecil and Java 
programs. 

1 Introduction 
Interprocedural class analysis computes a set of classes for each 
program variable, such that each run-time value bound to a variable 
is a direct instance of one of the classes computed for the variable. 
A program tail graph is constructed as a side-effect of this analysis, 
where the classes associated with the arguments to a dynamically 
dispatched message send caU site determine the set of callee 
mefhods that may be invoked by that call site. First-class functions 
and calI sites of computed functions can be analyzed using 
interprocedural class analysis by treating each definition of a first- 
class function (e.g., a lambda expression) as a class with a method 
named apply, each evaluation of a first-class function definition 
as a class instant&Lion operation, and each application of a first- 
class function as sending the apply message to the function 
object 

A number of algorithms have been described for performing 
interprocedural dass analysis {perhaps under different names) in 
object-oriented and higher-order languages. Most algorithms 
incrementally construct the program’s dataflow graph (either 
implicitly or explicitly) and propagate sets of classes forward 
through the dataflow graph, iterating anaIysis in the face of Ioops 
and recursion as new call edges are discovered and new edges are 
added to the dataflow graph. A classic example of such an 
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algorithm is Shivers’s 0-CFA control tlow analysis for Scheme 
[Shivers 88, Shivers 911, which in the worst case takes O($) time, 
whereNis the sizeof the program. Heintze’s set-based annlysfs hns 
a similar flavor (and complexity) to O-CFA [Heintze 941. Mnny 
more-expensive aIgorithms have been developed that include some 
degree of context-sensitivity or polyvariance to achieve greater 
precision [Oxh#j et al. 92, Agesen’et al. 93, Pfevyak & Chicn 94, 
Stefanescu & Zhou 94, Agesen 95, Jagannathan & Weeks 95, 
Nielson & Nielson 971, but less-expensive algorithms nre relatively 
rare. Stcensgaard describes an O(iVc@~) pointer nnnlysis 
algorithm that partitions the program’s dataflow graph using 
unification in place of propagation, as in type inference 
[Steensgaard 961; Steensgaard’s algorithm was inspired by 
Henglein’s non-standard type-inference algorithm for higher-order 
binding-time analysis [Henglein 911. Bacon and Sweeney describe 
Rapid Type AnaIysis @TA), an O(N) algorithm for optimlsticnlly 
removing unreachable code, which performs no propagation or 
unification at all [Sacon & Sweeney 961. Heintze nnd McAllcstcr 
describe a subtransitive version of 0-CFA that requires only O(N) 
time, but it appIies only to statically typed programs with boundcd- 
size types [Heintze & McAllester 971. 

We have developed a general framework for interprocedurn! class 
analysis of both staticalIy and dynamically typed programs that 
integrates propagation and unification. A particular dataflow 
anaIysis algorithm instantiates this general. framework by 
specifying when and how to apply unification in plncc of 
propagation, and by specifying how many edges arc used to 
connect call sites to cailees. Instantiations of our framework 
include O-CFA, Stkensgaard-style analysis, and RTA, as well as 
interesting new algorithms with complexities of O(N%(N,N)), 
O(N2), O(Na(N,N)) (which achieves better predsion than 
Steensgaard-style analysis with the same worst-case cost), nnd 
O(N) (which~achieves better precision than RTA with the same 
worst-case cost). Section 2 describes our general framework nnd 
defines and compares several algorithm instantlations. 

. 

We have implemented our algorithm framework and several 
instantiations in the Vortex optimizing compiler [Dean et al. 961. 
We analyzed several large Java [Gosling ef al. 961 and Cecil 
[Chambers 931 programs using &base instanljations. &Ye measured 
both the abstract precision and cost of the different algorithms as 
well as the bottom-line execution speedup and executable spncc 
savings. We found that the hypothetica improvements in precision 
of the new aIgorithms over RTA and Steensgaard-style analysis did 
occur in practice; resulting in improvements in bottom-Hnc 
application performance. Section 3 reports our experimental 
findings in detail. Section 4 identifies some areas of current and 
future work, section 5 discusses idditiona1 related work, and 
section 6 concludes. 
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Program ::= (Decl} {Stmt) Expr 
Decl ::= ClassDecl ] VarDecl ] MethodDecl 
ClassDecl ::= class ClassID ( CCnstVarDecll 1 
InstVarDecl ::= instvar InstVarID 
VarDecl ::= var VarID 
MethodDecl ::=methd~sgID ( (For& 1 I IVarDecl} CStmt1 Expr 5 
Formal ::= FormalID Q ClassID 
stmt ::= LValue := Expr 
Expr : := LValue ] FormalID ] NewExpr ] SendExpr 
NewExpr ::= n8w ClassID 
SendFxpr ::= send MsgID ( {Expr) 1 
LValue ::= VarID ] InstVarLValue 
InstVarLValue ::= Expr . InstVarID 

Figure 1: Abstract Syntax for Example Object-Oriented Language 

2 Analysis Framework 
This section describes the general interprocedural analysis 
algorithm that allows us to explore a range of fast interprocedural 
class analyses. The next subsection introduces the example 
language we use to illustrate our algorithm. Subsection 2.2 
describes our dataflow graph representation, subsection 2.3 
describes the parameterized analysis algorithm itself, and 
subsection 2.4 analyzes its complexity. Subsection 2.5 describes 
the analysis algorithms instantiable from our framework. 
Subsection 2.6 discusses extensions to make the analysis modular. 
Subsection 2.7 describes how clients can extract information from 
the analysis, and examines the complexity of extracting certain 
kinds of information. 

2.1 Source Language 

Figure 1 shows the abstract syntax of a simple, dynamically typed, 
object-oriented language that we will use to help explain our 
framework.* It includes declarations of global and local mutable 
variables, classes with mutable instance variables, and 
multimethods, assignments to global, local, and instance variables; 
and global, local, formal, and instance variable references, class 
instantiation operations, and dynamically dispatched message 
sends. 

A multimethod has a list of immutable formals. Each formal is 
specialized by a class, meaning that the method is only applicable 
to message sends whose actuals are instances of the corresponding 
specializing class or its subclasses. We assume the presence of a 
root class from which all other classes inherit, and specializing on 
this class allows a formal to apply to all arguments. Multimethods 
of the same name and number of arguments are related by a partial 
order, with one multimethod more specific than (i.e., ovenidiig) 
another if its tuple of specializing classes is more specific than the 
other (pointwise). When a message is sent, the set of multimethods 
with the same name and number of arguments is collected, and, of 
the subset that are applicable to the actuals of the message, the 
unique most-specific multimethod is selected and invoked (or an 
error is reported if there is no such method). 

Other realistic language features can be viewed as special versions 
of these basic features. For example, regular procedures and 
procedure calls can be modeled with methods none of whose 
formals are specialized, and literals of a particular class can be 
modeled with corresponding class instantiation operations (at least 
as far as class analysis is concerned). As described in the 
introduction, a first-class lexically nested function can be modeled 
with a class containing an apply method, assuming that some 
suitable renaming of identifiers has taken place and that local and 

* Terminals are in boldface, and braces enclose items that may be repeated 
mu or more times. sepamted by commas. 
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formal variables in the lexically enclosing method can be 
referenced from within the apply method. 

We assume that the number of arpments to a method or message 
is bounded by a constant independent of program size, and that the 
static number of alI other interesting program features (e.g., 
classes, methods, call sites, variables, statements, and expressions) 
is O(N). 

2.2 Dataflow Graph Representation 

Ail the algorithms stpported by our framework operate over a 
dataflow graph, declared in pseudocode in Figure 2. Figures 4 and 
5 contain the algorithm for constructing the initial dataflow graph 
from the program being analyzed. 

2.2.1 Nodes and Edges 

The heart of the dataflow graph representation is a set of nodes 
(instances of Node) linked by a set of directed edges (Edge). Each 
source variable declaration, method declaration, class instantiation 
operation, and message send in the program has an associated node 
in the dataflow graph. Interprocedural class analysis computes a set 
of classes for each node (the classes member of Node), 
indicating for the corresponding variable or expression what 
classes of objects may be stored in the variable or retumed by the 
expression at run time. 

‘Iivo nodes are connected by a directed edge whenever classes that 
reach the first node can Aow directly to the second node. For 
example, to model an assignment target : = source, an edge 
is added from the node corresponding to source to the node 
corresponding to target. An edge may have an associated filter 
class set (f ilter), which restricts propagation along that edge to 
only classes contained in the filter set. Filters are used to restrict 
propagation of classes to a formal argument node of a callee 
method to those that are subclasses of the argument’s specializing 
class (if given). Filters also can encode constraints ensured by 
static type declarations or inference, which (given the 
approximations that fast algorithms need to make) may make the 
information computed by interprocedural class analysis more 
precise. 

2.2.2 Node Merging and Supernodes 

A key feature of our framework is the ability to support merging 
nodes in the datafiow graph to achieve faster analysis. Our 
framework is parameter&d by P, the maximum number of times a 
node may be visited during propagation; P may be any integer 
value between 0 and N, inclusive.+ After a node has been visited P 
times during analysis, it is merged with each of its successor nodes. 

+ By Nhere we mean some value that is O(N) but bigger than the number 
of ctasses in the program. 
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class SuperNode t 
rep:SuperNode; 
live_nodes:set of Node; 
dead-nodes:set of Node; 
to-do:bag of ClassID; 
done :bag of ClassID; 

1 
class Node [ 

super:SuperNode; 
edges:set of Edge; 
classes:set of ClassID; 
counter:int; 

3 
class Ease I 

source, target:Node; 
filter:set of ClassID; 

equivalence-class representative, initiaZ[y itserf 
set of active nodes in supernode, initially a single node 
set of collapsed nbdes in supernode. iniiiulIy empty 

_ bag of cinsses remaining to be processed by supernode, ini!ia& empfy 
bag of c&sses that have been processed by supernode, initiully empty 

enclosing supernode 
set of outgoing edges 
set of clnsses processed by this node. iniiially empty 
number of rimes node can be processed before collapsing, initially P 

source and larger nodes 
filter of ciasses that can propagate across edge 

class BarrierEdge subclass of Edge ( 
barrier:Barrier; the barrier of which this edge is a member 
blocked:bag of ClassID; bag of classes blocked at this barrier edge. initially empIy 
is-arg:bool; whether this is an argument edge that can release the barrier 

3 
class Barrier { 

edges:list of BarrierEdge; the edges in the barrier 
num-blocked:int; the number of barrier edges that are St3 blocked 
method:MethodDecl; meihod that is guarded by the barrier 

1 

Figure 2: Dataflow Graph Representation 

Each node records the remaining number of times it may be visited 
during propagation (counter), initialized to I? if P=O, then a 
node cannot be examined at all during propagation, causing nodes 
to be merged eagerly as connecting edges are inserted. 

We introduce supemodes to represent the set of nodes that have 
been merged .together (SuperNode). Supemodes partition the 
nodes of the graph. Initially, each node has its own unique 
supemode. Merging a node with its successor nodes is 
implemented using supemodes by unifying the supemodes 
corresponding to the node and its successor nodes, pntting alI the 
nodes together as members of the new unified supemode, and then 
‘%ollapsing” the original node out of the dataflow graph by moving 
it to a separate inactive list in the uaified supemode; Figure 3 
illustrates merging nodes. Later, when a class is propagated to any 
member of the unified supemode, it is immediately forwarded to all 
of the active members of the supemode, skipping the inactive 
members, ensuring that inactive nodes never incur additional work. 
We use fast union-find data structures flhrjan 7Sj to support 

0 live node 

, 
\ - ‘1 dead node 

-/ 

quickly unifying two arbitrary supemodes and (lazily) updating all 
the member nodes to refer to the new unified supemode (in 
O(UaQY,u)+F) time for U unifications and F find-representative 
updates). To achieve unification and update in only O(U+fl time, 
our framework allows algorithms to choose to dwnys unify 
supemodes with a distinguished global supemode; our 
framework’s MergeWillGfobai parameter flag selects this 
asymptotically faster though Iess precise behavior.’ 

Each supemode data structure refers (perhaps indirectly) to the 
supemode representing the unified supemode (rep). Tho 
representative supemode records up-to-date lists of active 
(live-nodes) andmerged (dead-nodes) membcrnodes,nnd 
conversely each node refers to its containing supemode (super) 
{from which the representative supemode can be found). (The 

* We include the MergeWithGIobal option mostly to simulstc pt~vious 
algorithms such as RTA. 

After Merging x After Merging y 

I” of . supemode with two member nodes 

Figure 3: Example of Node Merging 
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P:int; parameter dpfiing maximum number of times a node can be visited 
MergeWithGlobal: bool; parameter defining whether nodes merge with the global supemode 
MergeCalls: bool; parameter defining whether all senders of a given message are merged 
nodes:set of Node; Ihe set of nodes in the graph 
supsmodas:set of SuperNode; the set of representatives of supemodes in ie graph 
global:SuperNode; a special supemode, usedfor Merge WiulGiobal 
ConstmctDataflo~O { 

make the global node and supernode: 
globalgode:Node := MakeNodeO; 
global := global-node.super; 
create nodes for global variables, instance variables, methodfonnals, and method results: 
foreach ast:(VarDecl u InstVarDecl u MethodDecl u Formal) in top-level decls do 

n:Node := MakeNodeO; 
ast.corresponding_node := n; 

create top-level statement and expression nodes and edges: 
CreateNodesAndEdges({), top-level stmts, top-level expr); 

1 
createNodesAndEdgss(vars:list of VarDecl, stmts:list of Stmt, expr:Expr) C I 

make the nodes: 
foreach ast:(VarDecl u NewExpr u SendExpr) in vars u stmts u expr do 

ast.corresponding_node := MakeNodeO; 
add assignment edges: 
foreach stmt:Stmt = I[lv := ell in stmts do 

source:Node := CorrespondingNode( 
target:Node := CorrespondingNode[lv); 
MakeEdge(source, target); 

conswuct call edges: 
foreach send:SendExpr = asend msgIel,...,s)ll in stmts u expr do 

foreach i in Il.-n] do 
actual+:Node := CorrespondingNode( 

node:Node -z= CorrespondingNode(send1; - 
LinkSend(msg, n, [actuall,...,actual,l, node); 

update worklist and reachable classesfiom class instantiation nodes: 
foreach new:NewExpr = anew cll in stmts U expr do . 

n:Node := CorrespondingNodeInew); 
AddToWorklist (n, c); 
MakeClassReachable(c1; 

1 
createWethodNodesAndBdgndgdges(method:MethodDecl = Kmethod msg(... ) <vars stmts expr)]) { 

if method has not been created yet then 
CreateNodesAndEdges(vars, stmts, exprl; 

1 
MakeNode ( ) +Node { 

n:Node := new Node; 
s:SuperNode := new SuperNode; 
n-super := s; n-edges := (1; n-classes := 0; n-counter := P; 
s-rep := s; s.live_nodes := {n); s-dead-nodes := 1); s-to-do := 0; s-done := 0; 
add n to nodes; add s to stipernodes; 
return n; 

1 
MakeEdge(source, target:Node) { 

e:Edge := new Edge; 
InitEdge(e, source, target); 
InstallEdge( 

1 . 
InitEdge(e:Edge, source, target:Node) 1 

e.source := source; e-target := target; 
e.filter := FilterFor(source) n FilterFor(target1; 

1 
InstallEdge(e:Edge) ( 

add e to e.source.edges; 
if e.source.counter = 0 then 

CollapseNode(e.sourcel; 
1 
MakeBarrierEdge(source,target:Node, is-arg:bool, b:Barrier)+BarrierEdge 

e:BarrierEdge := new BarrierEdge; 
InitEdge(e, source, target); 
e.is-arg := is-arg; e-barrier := b; e-blocked := I}; 
add e to b-edges; 
return e; 

1 
b!akeBarrier(n:int. m:MethodDecl)+Barrier C 

b:Barri& := new Barrier; 
b-edges := {); b.num_blocked := n; b-method := m; 
return b; 

I 

Figure 4: Data&w Graph Construction Algorithm, Part 1 
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FilterFor(n:Node)+set of ClassID ( 
if n created from f in Formal = ilv @ cl then 

return set of c and its subclasses; 
if n created from VarDecl or InstVarDecl or Method and 

decl has static type T then 
return set of all classes that conform to T; 

return set of all classes; 
1 
CorrespondingNodeIe:Expr)+Node { 

if e in VarID = KvarIDjJ then 
return CorrespondingVarDecl(varID).corresponding-node; 

if e in FormalID = BformalIDll then 
return CorrespondingFormal{formalID1.corresponding-node; 

if e in InstVarLValue = [[e' . instVarIDJ) then 
return CorrespondingInstVarDecl(instVarID).corresponding_node; 

return e.corresponding-node; 
1 
LinkSend[msg:MsgID, n:int, [actuall:Node,...,actual,:Nodel, result:Node) { 

if MeraeCalls then 
([isg-formall:Node,. ..,msg-formal,:Nodel,. msg-result:Node) := 

MakeSharedMessageNodesImsg, n); 
foreacb i in [1.-n) do 

MakeEdge(actuali, msg-formali); 
MakeEdgeImsg-result, node); 

else 

> 
RecordCallSite(msg. n. ~actuall....,actual,l, result): 

Table mapping message keys fo shared message formal and result nodes, om’yfor Merge&l/s: 
shared_message-nodes:(MsglD,n:int)--)(CNode~,...,Node,l, Node); 
MakeSharedMessageNodes(msg:MsgID, n:int)+([Noder,... ,Node,I, Node) ( 

if shared-message-nodes(msg,n) not defined then 
foreach i in [l..nl do 

formali:MsgNode := MakeRodeO; 
result:Node := HakeRodeO; 
RecordCallSite(msg, n, [fonnall,...,fonnal,l, result); 
shared-message-nodesImsg,n) := ([formall,...,formal,), result); 

return shared-message-nodes[msg,n); 
1 
RecordCallSite(msg:MsgID, n:int. [actuall:Node,...,actua$,zNodel, result:Node) { 

go through all the method a!xlarations tha: this could map IO, and create barner liti from call site to callee: 
foreach method:MethodDecl = Urn&hod msg'Ifl~cl,...,f,,Qc,.) [...)J 

where msg' = msg and n' = n do 
create a tuple of barrier edges linked together in a barrier: 
barrier :Barrier := MakeBarrierIn, method); 
foreach i in Il.-n) do 

formali:Node := CorrespondingNode( 
formal-edgei:BarrierEdge 

method_result:Node 
:= MakeBarrierEdgefactuali, formali, true, barrier); 

:= CorrespondingNode(method); 
result-edge:BarrierEdge 
link barrier edges into graph: 

:= MakeBarrierEdgeImethod-result, result, false, barrier); 

foreach i in [l..n) do 
if ci in live-classes then 

add to cd sire now: 
InstallEdge(formal-edgei); 

else 
recordfor laterprocessing: 
add fonttal-edgei to delayed-edges(q); 

InstallEdge(result-edge); 
1 
live-classes:bitset of ClassID; setofc~asses~iveinprugram 
delayed-edges:ClassID+bag of BarrierEdge; table mapping classes to lists of delayed edges 
MakeClassReachable(ctClassID) { 

if c E live-classes then 
add c to live-classes; 
foreach edge:BarrierEdge in delayed-edges(c) do 

InstallEdgefedge); 
foreach c':ClassID in superclasses of c do 

MakeClassReachable1c'); 
I 

Figure 5: Dataflow Graph Construction Algorithm, Part 2 

to-do and done fields of a supemode are temporary state 
maintained during analysis.) 

becomes reachable (and its body added to the dataflow graph) only 
when, for each class C on which one of the method’s formals are 

2.2.3 Optimistic Elimination of Unreachable Classes 
specialized, a class instantiation operation for C or a subclass of C 
has been seen in code already known to be reachable. Several 

and Procedures mechanisms are used in our dataflow graph representation to 
support optimistic pruning of nureachable code: 

Our framework optimistically prunes unreachable classes and 
procedures, in tbe style of RTA @3acon & Sweeney 961. A method 

l A global set of reachable classes (live-classes) 1s 
updated as class instantiation operations are processed 
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send msg{al, a21 * x send msg(bl, b2) 3 y 

method msg(fl@C1, f#C,l C.--l method msg (gl@D1, gZ@DZ ) C. . -3 

MergeCab = true 

me khod msg( : fl@C,# f,@C,) E.. -3 method msg (gl@Dl, g#D,) E - . - 3 

send msg ,(a,, a21 * x send msg(bl, b2) * y 

MeraeCalkr = false 

0 shared message node @X filter I-- ------~-. . _- -..--.: barrier 

Figure 6: ExampleofSharedandUnsharedMessageSend Linkages 

(MakeClassReachable). Whenever a class becomes simply are blocked by the emptiness of other edges (the result 
reachable, all of its superclasses are considered reachable. =@=4. 

l When connecting the node for an actual parameter at a call site 
to the corresponding formal parameter of a callee (in 
RecordCallSite), only if the formal parameter’s 
specializer class is reachable is the connection made. If not 
reachable, then the edge is saved on a separate list indexed by 
the specializer class (delayed-edges) to be entered into 
the datailow graph when the specializer class becomes 
reachable (MakeClassReachable). 

l A method specialized on reachable classes is reachable from 
a particular call site only if each of the actual-to-formal 
argument edges for that call site has a non-empty set of classes 
that pass through the edge’s filter. To block the flow of classes 
through any of a call site’s argument edges (and through the 
reverse result edge) until all the argument edges have non- 
empty sets of classes flowing successfully through them, we 
link the argument and result edges into a barrier (Barrier). 
A barrier records all the edges in the barrier (edges), the 
method that it guards (method), and a count of the number of 
members of the barrier that are still empty (num-blocked), 
initialized to the number of arguments of the method. Each 
time an argument edge in the barrier becomes non-empty, the 
barrier’s blocked count is decremented. When it reaches zero, 
the barrier is broken and classes freely pass through the edge. 
A special kind of edge (BarrierEdge) is used for edges in 
barriers. A barrier edgeknows which barrier it is a member of 
(barrier), and, until the barrier is broken, queues up each 
class that flows through the edge on a list (blocked) without 
forwarding it to the edge’s target node. A flag (is-erg) 
distinguishes barrier edges that may be waited upon to 
become non-empty (the argument edges) from those that 

2.2.4 Message Send Lib&age 

Our framework supports two approaches to connecting call sites to 
callee methods. If the parameter flag MergeCalZs is false, then each 
actual parameter at each call site is linked to the corresponding 
formals of all methods with the same name and number of 
arguments as the call site, aud the reverse for message results, 
leading to O(N2) edges in the dataflow graph. If MergeCalls is true, 
an intermediate tuple of nodes is created for each distinct message 
name arid number of arguments (shared-message-nodes), 
one node per argument aud remIt of the message. Actuals at cal1 
sites are linked to the corresponding intermediate message formals, 
which in turn are linked to the corresponding formals of the 
possible methods with matching name and number of arguments, 
and the reverse for message results, leading to only O(N) edges in 
the graph. Figure 6 illustrates these two situations. 

2.3 Parameterized Analysis Algorithm 

Pseudocode for our general algorithm for interprocedural class 
analysis appears in Figures 7 and 8. The core of the algorithm 
performs propagation of classes through the dataflow graph. 
During the propagation phase, each supernode maintains au 
associated bag of classes that have reached the supemode but have 
not yet been processed by the supernode (to-do), as well as a bag 
of classes that have been processed by the supemode (done); at 
the end of analysis, tbe processed classes are used to determine the 
final set of classes associated with all nodes in that supemode. 
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worklist:set of SuperNode; fhe set of super-nodes that hove non-empfy fa-do lis& 
PerformInterprocedu~alClassAnalysis() { 

worklist J= I>; 
ConstructDataflovGraphO; 
ProcessWorklistO; 

1 
ProcessHorklistO { 

while worklist non-empty do 
pop s:Superliode off worklist; 
ProcessSuperNodeIs); 

I 
ProcessSuperNode(s:SuperNode) ( 

while FindRep{s).to-do non-empty do 
remove c:ClassID from FindFLep(sl.to_do; 
add c to FindRep(sl.done; 
foreach n:Node in FindRep[s).live_nodes do 

ProcessNode{n, cl; 
foreach n:Node in FindRep(s).live-nodes.copy do 

if n.counter = D then 
CollapseNode<n); 

1 
ProcessNodeIn:Node, c:ClassID) I 

if c P n.classes then 
add c to n.classes; 
foreach e:Edge in n-edges do 

ProcessEdge(e, cl; 
decrement n-counter; 

1 
ProcessEdge(e:Edge, c:ClassID) I 

if c E e-filter then 
if e is a BarrierEdge then 

ProcessBarrierEdge[e, c) 
else 

AddToWorklist(e.target, c); 

ProcessBarrierEdge{e:BarrierEdge, c:ClassID) I 
if e-blocked is empty then 

UnblockBarrierEdge(e); 
if e.barrier.nmblocked = 0 then 

AddToWorklistIe.target, cl; 
else 

add c to e.blocked; 
1 
lJnblockBarrierEdge(e:BarrierEdge) { 

if e.barrier.nun-blocked z- 0 and e-is-arg then 
decrement e.barrier.num-blocked; 
if e.barrier.num-blocked = 0 then 

ReleaseBarrier[e.barrier); 
1 
ReleaseBarrier{b:Barrier) { 

CreateMethodNodesAndEdges(b.method); 
foreach e:BarrierEdge in b.edges do 

foreach c:ClassID in e-blocked do 
AddToWorklist(e.target, c); 

1 

Figure 7: InterproceduraI Class Analysis Algorithm, Part I 

Whenever a class instantiation node is created, the instantiated 
class is added to the to-do list of the node’s supemode. 

A globaI worklist is maintained hoIding all supemodes with non- 
empty to-do Iists [worklist). Our algorithm starts by 
constructing the nodes and edges of tbe top-level variable 
declarations, statements, and expressions in the program 
(ConstrnctDataf lowGraph), which adds supemodes to the 
worklist for all the top-level class instantiation expressions. The 
main loop of the propagation phase {Processhlorklist) 
removes a supernode from the worklist and processes it. The 
propagation phase ends when the worklist is empty (and hence ail 
supernodes have empty to-do lists). 

To process a supemode (ProcessSuperNode), each bf the 
clusses on its Co-do list are removed one-by-one, savedon the done 
list, and forwarded to each of the unmerged member nodes for 
processing. To process a cIass at a member node 
(ProcessNode), if the class has not been seen at that node 
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before, then it is propagated along to each outgoing edge of the 
node, and its counter of allowable future visits is decremented. To 
propagate a class along an edge (ProcessEdge), if the class 
passes the edge’s filter, then, if the edge is not a barrier edge, the 
propagated class is added to the to-do list of the target node’s 
supemode (AddToWorklist) which may cause the target 
supernode to be added to the worklist. 

If the edge is a barrier edge, then there are several steps to perform 
(ProcessBarrierEdge). First, if this edge is an argument 
edge that is part of a blocked barrier, and this is the first class to 
reach this edge, then the barrier’s blocked count is decremented 
(UnblockBarrierEdge). If this edge was the last edgo 
blocking the barrier, then the barrier is broken {crenting the 
guarded method’s dataflow graph if it hasn’t been created already), 
and aU suspended classes on al1 edges in the barrier are released 
and propagated to their target supemodes (ReleaseBarrier), 
After the effect on the barrier of a class passing the edge’s flltcr hns 



AddToWorkIist(n:Node,.c:ClassID) { 
if FindEep(n.super).to_do is empty then 

add FindEep(n.super) to worklist; 
add c to FindRep(n.super).to-do; 

1 
&ollapseNodo(n:Node) 1 

if MergeWithGlobal then 
MergeSuperNodes(globa1, FindEep(n.super)); 

foreach e:Edge in n-edges do 
CollapseEdge( 

remove n from FindBep(n.super).live_nodes; 
add n to FindEep(n.super).dead_nodes; 

1 
CollapseEdge(e:Edge) { 

if e is a BarrierEdue then 
CollapseBarrierEdge(e); 

MergeSuperNodes(FindEep(e.source.super), FindEep(e.target.super)); 
1 
Colla~ssBarrisrEd~a(e:BarrierEdsel [ 

if e.barrier.&&blocked z- 6 &d e.i.s-arg then 
decrement e.barrier.num-blocked; 
if e.barrier.nuu-blocked = 0 then 

EeleaseBarrier(e.barrier); 
else 

retnove this edne from barrier 
CreateWeth~dNodesAndEdges(e.barrier.method); 
foreach c:ClassID in e.blocked do 

AddToWorklist(e.target, c); 

I 
remove e from e-barrier-edges; 

MergsSuperNodes(s1, s2:SuperNode) { 
if sl # s2 then 

rep:SuperNode := Union(s1, ~2); 
rep.live_nodes := sl.live_nodes u s2.live-nodes; 
rep.dead_nodes := sl.dead_nodes u s2.dead-nodes; 

. rep.to-do := sl.to_do u s2.to-do; 
rep-done := sl.done u sl.done; 
sl.rep := rep; s2.rep := rep; 
if sl = rep then remove s2 from supernodes 

else remove sl from supernodes; 
1 
Fast anion-firrd data stmcture operations: 
PindEep(s:SuperNode) +SuperNode 1 

find and return the representarive of the union, caching resultsfor amortized O(a(N,N)) cost: 
if s.rep # s then s-rep = FindEep(s.rep); 
return s-rep; 

1 
Unionfsl, sZ:SuperNode)+SuperNode { 

pick and return one of sl or s2 to elect as the representative of the anion; ifeither is global then choose it 
1 

Figure & Interprocedural Class Analysis Algorithm, Part 2 

been computed, the cIass is either saved on the edge’s suspended 
classes list (if the barrier is still blocked), or propagated through the 
barrier to the target supernode (if the barrier is broken). 

be merged with its successor edges. After passing a class off the to- 
If ZWV, then a node’s counter may reach zero, at which point it will 

do list to a supemode’s unmergcd member nodes (in 
ProcessSuperNode),ifanode'scounterhas droppedtozero, 
the node is merged with its successors (CollapseNode). To do 
this, the node’s supemodeis merged with thesupemodes of each of 
thenode’ssuccessornodes (CollapseEdge),andthenthenode 
is moved from the supernode’s list of unmerged members to tbelist 
of merged members, ensuring that the node will never again be 
examined during propagation. Merging two supernodes 
(MergeSuperNodes) selects one supemode to be the 
representative of the union (using the fast union-find algorithm) 
and combines the two supemodes’ member node, todo, and done 
lists. Some algorithms perform a simpler, asymptotically faster 
merging of supemodes, where all merging supernodes are tirst 
merged with the global supemode; the parameter flag 
McrgeUWtGlobul selects this behavior. If a blocked barrier edge is 
collapsed, that edge becomes unblocked. 

2.4 Complexity Analysis 

graph, and merging supernodes. 

The main components of cost in our algorithm are constructing the 
dataflow graph (laxily), propagating classes through the dataflow 

2.4.1 Core Data Stnwtnres 

Before examining the complexity of the main components of the 
algorithm, we list our assumptions about the properties of its core 
data structures: 

l The sets of classes SuperNode. live-nodes and 
SuperNode -dead-nodes support constant-time 
initialization, set union, element addition, and element 
removal. To support these operations, our implementation 
exploits the invariant that at each step in the algorithm every 
instanceoftheSuperNodeclassisamemberofatmostone 
live-node or dead-node set. Thus,thesesets can be 
;$prnt&&l by linking SuperNodes together in doubly 

l The .bags of classes SuperNdde.to-do, 
SuperNode.done, and BarrierEdge.blocked 
support constant-time initialization, union (ignoring 
duplicates), and element addition. Similarly, the bags of edges 
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Node. edcres and Barrier _ edges support constant-time 
initializati& and element addition,Our ii$ementation uses 
singly linked, circular Iists to represent bags. 

l The set of classes Node. classes supports constant-time 
initialization, membership testing, and element addition. 
Depending on the value of P, our implementation uses one of 
two representations: if P is 0( 1) list sets are used, while if P 
is O(N) bit sets are used. A list set can be initialized in 
constant time, and it supports constant-time membership 
testing and eIement addition if the maximum size of the set is 
bounded by a constant. A bit set supports constant-time 
membership testing and element addition, but requires O(N) 
time to initialize. 

l The Hter Edge. filter car! be initialized in constant time 
and supports constant-time membership testing. The fiker can 
be represented as a procedure to perform the subclass testing, 
for which there are several constant-time algorithms [AK et 
ai. 891. 

2.4.2 Dataflow Graph Construction 

In the worst case, all classes and methods in the original program 
will be reachable, impiying that O(N) ASTs must be represented in 
the dataflow graph. Each kind of AST node contributes O(1) nodes 
to the dataflow graph. With the exception of SendExpr, each kind 
of AST also contributes O(I) edges. Let M {defined below) be an 
upper bound on the number of edges contributed by a single 
SendExpr AST. Then the dataflow graph contains O(N) nodes 
and O(N+AW) edges. Each edge in the dataffow graph can be 
initialized in constant time (each edge has one filter, participates in 
at most one barrier, and is added to one node’s bag of edges). 
Depending on the value of P, each node takes either O(1) or O(N) 
time to initialize. Thus the totai time to construct the dataflow 
graph is O(NMJ if P is O(I) and O(N2+N-M> if P is O(N). 

The value of, M is either O(1) or O(N) depending on the value of 
MergeCalls: 

l If Mer@alEsis true, then an intermediate tuple of nodes (one 
tuple per message name) is inserted between callers and 
callees. ExactIy one edge per actuaI parameter is added 
between a SendExpr and the corresponding node in the 
intermediate tnpIe. SimiIarIy, the return value of the call is 
represented by adding one edge from the tuple’s return value 
to the SendExpr. In addition, the intermediate tuples 
introduce edges connecting intermediate nodes to method 
forrnaI parameters and returns; each formal parameter and 
method return wiIl have exactIy one such edge. These 
additional O(N) edges are can be amortized over the O(N) 
SendExprs in the program, thus M is O(1). This results in a 
total of O(N) edges in the dataflow graph. 

8 If MergeCalls is false, then each SenaExpr may be directly 
connected to O(N) target methods, causing Mto be O(N), This 
resdts in a total of O(N2) edges in the dataflow graph. 

Figure 6 illustrated these two cases. 

To support lazy construction of the program dataffow graph, 
additional overhead is incurred to tick live-classes and 
delayed-edges. Since a ciass can only becomereachabIe once, 
this overhead takes O(N+flM) time. 

2.4.3 Propagation 

If there is no SuperNode merging, the core unit of work in the 
propagation phase can be viewed from the perspective of a class 

* We assume that the maximum number of actual parameters at a call site 
and the maximum number of formal parameters in a method declaxation 
is a constant independent of program size. 

flowing across an edge: start with a class that is new to the edge’s 
source node {at the call to ProcessEdge in ProcessNode), 
and attempt to propagate it through the edge’s fiIter. If it pnsses the 
filter, check if this is a bIocked barrier edge, and if so suspend the 
class at the barrier edge, later to be released when the bar&r is 
broken. FinaIIy, add the class to the target supernode’s to-do list, 
later removeit from the target supemode’s to-do Iist, and then test 
whether it is new to the supernode’s one target node (ending at the 
same loop of ca1I.s to ProcessEdge). Bach of these steps takes 
constant time. By ensuring that each class is processed across an 
edge at most once (by maintaining Node.classes), the total 
amount of time for this edge propagation is O(.?X’), where E is the 
number of edges and C is the number of classes. C is proportionnl 
to the program size (N), and E is O(N-M) as determined above 
(either O(N) or O(N2), depending on the value of MergeCaNs), 
leading to a total cost for edge propagation of O(I@+~) time. The 
time to visit each supernode on the worklist and start the edge 
propagation process is O(N), leading to an overall time for 
propagation of O(N2&J. 

2.4.4 Unification 

If P < N, then some nodes may be collapsed during propagation or 
graph construction. This affects the complexity of analysis in three 
ways: the number of times a node (and consequently its successor 
edges) may be visited is reduced from N to P, additional work to 
collapse nodes is incurred, and the 41s to FindRep may take 
more time due to collapsing. 

l Instead of using the Node. classes set to bound the 
number of times a node is visited by the number of classes 
(O(N)), node collapsing bounds the number of times a node Is 
visited by l? Under this modeI, the constant-time unit of work 
sequence is slightIy shifted, since now multipIe nodes may bc 
in a supernode: start with considering a member node of n 
supernode for a particuIar class at the call to ProcessNode 
inside ProcessSuperNode, then foIIow the class flowing 
through the node and an edge through to being added and then 
later removed from a supemode’s to-do list, ending at the 
same loop ofcalls to ProcessNode. Each of these constant- 
time units of work may only be done P times per edge. Using 
P in pIace of one N in the time for edge propagation gives a 
more general complexity assessment of O(PJV44). 

l Each call to MergeSuperNodes and CollapseEdge 
takes constant time, and each call to CollapseNode takes 
constant time ignoring the per-edge work subsumed by 
CollapseEdge, leading to an overall cost for node 
CoIIapsing of O(N-M) time. 

’ l ‘If MergeWithGlobal is false, then the calls to FindRep can 
now take more than constant time, but overall, given n fnst 
union-find data structure implementation of supemodes, the 
additional cost for all of the FindRep calls is O(NO~(N,~). If 
MergeWithGlobal is true, however, all of the supemodcs 
merge directly with the global supemode, preserving the 
constant-time behavior of FindRep. 

2.4.5 Summary 

Overall, the complexity of the entire graph construction and 
propagation phase is thus 0fP.N~M + NM), pIus O(SMa(N,N)) If 
Paand MergewithGlubalis false. By setting P to some constant, 
new algorithms with worst-case time complexities of O(AJ), O($>, 
O(Na(N,N)), and O(N2cr[N,N)) result, depending on the choices for 
Me~eWtJrGiobuZ and MergeCalls. 
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Table 1: Framework hstantiations 

2.5 Instantiations of the Framework 

Table 1 identifies several algorithms that are instantiations of our 
framework; boldface rows are new algorithms. 

Classic 00 0-CFA is the standard cubic-time, flow-sensitive but 
context-insensitive iuterprocedurat class analysis. Equivalence 
Class Analysis is Steensgaard-style near-linear-time division of the 
program’s dataflow graph into disjoint subgraphs, extended to 
work in the object-oriented context. RTA is Bacon and Sweeney’s 
Rapid Type Analysis algorithm. 

The five other algorithms represent new interesting points in the 
analysis design space. The three Linear-Edge algorithms bound the 
number of call edges, dropping a factor of O(N) from the 
complexity of the other (quadratic-edge) algorithms. The two 
Bounded algorithms use supemodes and merging to ensure only a 
constant number of visits per node, dropping another factor of 
O(N) from the complexity (but adding back in the near-constant 
O(a(N,N)) to pay for the overhead of merging). The two Simply 
Bounded aIgorithms avoid this extra O(a(W)) overhead by 
merging all supemodes with the distinguished global supemode. 
The Bounded Linear-Edge algorithm and the Steensgaard-style 
Equivalence Class Analysis have the same near-linear worst-case 
time complexities, but the Bounded Linear-Edge algorithm always 
provides solutions that are at least as precise and often more precise 
than Equivalence Class Analysis. Similarly, the Simply Bounded 
Linear-Edge algorithm incurs the same linear-time complexity but 
delivers precision at least as good and often better than RTA. 

2.6 Analyzing Program Components 

As described and implemented. our analysis framework assumes it 
has access to the entire program. Our framework could be extended 
to support more modular analyses by allowing components of 
programs to be modeled by summary dataflow graphs. 
Components whose source code is unavailable can then be 
analyzed as long as a summary dataftow graph is available. (The 
summary dataflow graph riced not be precise, merely a sound 
approximation of the %ue” datatlow graph.) Furthermore, 
components can be partially pre-analyzed, starting from known 
sources of class information within the component, with the 
resulting partially propagated and/or collapsed datatlow graph 
being used in the analysis of containing programs. This would lead 
to a kind of hierarchical, component-wise analysis of programs that 
may help the analyses scale to larger programs, along the lines of 
Flanagan and Felleisen’s componential set-based analysis 
[Flanagan & Felleisen 971. 

2.7 Clients of the Analysis 

Our analysis provides information to clients in two forms. The 
program call graph can be constructed in time proportional to the 
number of edges by recording when barriers along call edges are 
broken; each such broken barrier corresponds to an edge in the 
program call graph. Additionally, the done list of the supemode of 
each variable’s node records the bag of classes that may be stored 
in that variable. A number of interesting optimizations can exploit 
this information in only constant time per access, including: 

l checking whether only one method can be called from a given 
call site and if so replacing that dynamically dispatched 
message with a direct procedure or iulined code, 

l skipping compilation of any methods not called from any call 
site in the call graph (treeshaking). 

Some other uses of the information may require more work, 
however. For example, to support constant-time testing of whether 
a particular class is a member of a particular variable’s set of 
possible classes, to optimize run-time class tests for instance, the 
done bag for the variable’s supemode needs to be converted into a 
set, which requires quadratic time in the worst case for algorithms 
with MergewirhGZobal false and P&l. (Algorithms where 
Merg&WG~bal is true can simply use the set of live classes as 
the classes set for the distinguished global node, and uncollapsed 
nodes maintain the set of classes reaching them directly.) 
Consequently, the bounded linear-edge algorithm, with asymptotic 
complexity O(Na(NJv)), may not be appropriate for clients which 
require this per-variable set-of-classes information. 

Other authors of sub-quadratic algorithms have also encountered 
difficulties providing useful information to clients. For example, 
Steensgaard presents a near-linear-time algorithm for performing 
pointer analysis, but to completely query the resulting data 
structure to compute all points-to relationships among variables 
woutd require quadratic time [Steensgaard 961. But if only a subset 
of the possible points-to relationships are of interest, then less time 
may be incurred in a particular algorithm. Similarly, Heir&e and 
McAhester describe subtransitive control flow analysis which 
constructs an encoded representation of the 0-CFA datafiow graph 
in Iinear time (for a restricted language model with function types 
bounded in size by a constant), but performing the transitive 
closure to compute the full explicit datafiow graph requires 
quadratic time [Heintze & McAllcster 971. They offer other queries 
of their encoded representation, such as computing the call sites 
which have only one callee, which require only linear time. 
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Table 2: Benchmark AppIications 

1;: 1 instr sched r. I 2,400 f Global instruction scheduler I 

typechecker 20,000 Cecil typechecker 

compiler 5D)MO Old version of Vortex compiler 

toba 3,900 Java bytecode to C translator 

$ 
F 

espresso 13,800 Java source to bytecode translate? 

javac 25,550 Java source to bytecode tmnslatofi 

a. Excluding standard libraries. All Cecil programs are compiled with 
an 1 I,MMine standard library. Ali Javaprograms include a 
16,000-line standard Iibrary. 

b. The two Java transIators have no common code and were. 
developed by different people. - 

3 Experimental Assessment 

In addition to asymptotic compIexity results, we wish to 
understand how weIl the different algorithms perform in practice. 
Accordingly, we implemented our framework +n the Vortex 
optimizing compiler [Dean et ph 961 and applied all eight 
algorithms to the collection of large Cecil and Java programs 
described in Table 2. We assessed the algorithms according to the 
following three criteria: 

l What are the relative precisions of the sets of classes and the 
induced call graph produced by the.various aIgorithms? 

Y What are the relative costs of the various algorithms, 
measured in terms of analysis time and space costs? 

l How do the differences in precision translate.into differences 
in the bottom-line effectiveness of client optimizations, in 
terms of program execution speed and executable size? 

The results of our experiments are shown in Figures 9 and IO.* 
Each graph p1ots two pairs of two lines, one pair for bounded and 
simply bounded linear-edge 00 O-CFA and one pair for bounded 
and simply bounded (quadratic-edge) 00 D-CFA, with P varying 
from 0 to Nalong thex-axis. When P=N, the pairs of lines converge 
into linear-edge 00 0-CFA and classic 00 0-CFA, respectively. In 
the degenerate case when P=O, bounded linear-edge 00 0-CFA is 
equivalent to equivalence class analysis and simply bounded 
linear-edge 00 0-CFA is equivalent to RTA. Subsection 3.1 
discusses the measured time and space costs of analysis, 
Subsection 3.2 discusses the relative abstract precision of the 
different algorithms, ad Subsection 3.3 addresses the impact of 
the results of interprocedurat class analysis on nm-time speed and 
executable size. Ail experiments were performed on a Sun ultra-1 
mode1 170. 

3.1 Time and Space Costs 

The first column of graphs shows the analysis time> in seconds. 
Overall, asymptotic time complexity is a fairly good predictor of 
actual analysis time. As program size increases, the time required 
to perform instances of the two linear-time algorithmic families 

* A longer version of this paper is available that contains the complete set 
of numerical data in addition to the graphs [DeFouw et aL 971. 

also increases linearly. The gap between the linear-time and the 
quadratic-time algorithms widens as program size increases, The 
larger constant values for P incur small increases in analysis timo 
over P=O. For the four smallest programs, analysis time actually 
decreases as P grows from 50 to N; in these progmms, the 
additional precision of the P=Nconfigumtion significantly rcduccs 
the number of reachable methods (and thus the number of nodes 
and edges in the dataflow graph) which compensates for the 
additional propagation across non-unified edges. 

For the larger programs, the space cost of explicitly representing 
the entire dataflow graph, especially when MergeCalls is false, 
becomes prohibitive. The missing data points for the typechecker 
and -6ompiler programs are due to excessive memory 
consumption. Future work includes implementing a more spacc- 
efficient representation of the datafiow graph, and investigating 
mixing partially implicit representations of the dataflow graph with 
node unification. 

3.2 Abstract Precision 

A number of metrics can be used to measure the abstract precision 
of interprocedural class analysis. The second and third columns of 
graphs present data for two of these metrics that are closely related 
to the optimizations performed by Vortex using the results of 
interprocedural class analysis. 

l Perc’enfage ofsingIe!on ClassSets: Each node in the datatlow 
‘graph has an associated set of classes. What fraction of these 
nodes contain only a single class? This metric provides nn 
abstract measure of the precision of interprocedural class 
analysis and may be indicative of how useful the information 
will be when it is consulted during intraprocedural class 
analysis. 

l Percentage ofsingleton CaIlees: A call graph can be built as 
interprocedural antiysis proceeds. What fraction of nil 
message sends in the program can be proved to only invoke 
one target method? This metric is closely related to the 
effectiveness of static binding (and subsequent inlining) of 
message sends during intmprocedural compilation and 
optimization. 

Since it only maintains a singIe global set of classes, RTA does not 
have any singleton class sets. The Steensgaard-style Equivnlencc 
Class Analysis has the potential to do better than RTA, but only 
succeeds in doing so on a subset of the benchmark programs; in the 
l&ger Cecil programs it was unable to identify enough disjoint 
regions’ of the dataRow graph to impact the results. Howcvcr, 
modest increases in the value of P (up to about P=5) yield large 
increases in the fraction of singleton dass sets. We observed 
diminishing returns for larger constant vah~cs of P, but setling P=N 
results in a large increase in the percentage of singleton class sets, 
Increasing the number of edges from O(N) to O(N’) has a 
negligiMe impact on the percentage of singleton class sets, Similar 
trends also hold for the percentage of singleton callees metric, with 
the slight complication that due to treeshaking the total number of 
call sites actually decreases as P increases, and thus in a few casts 
the percentage of singleton callees actually slightIy decreases as 
algorithmic precision increases. 

3.3 Bottom-Line Impact of Abstract Precision 

To assess both the bottom-line impact bf interprocedural analyds 
as well as how well the,abstract precision metrics described in the 
previous subsection predict algorithmic effectiveness, WC 
compared, for each benchmark and algorithm pair, the 
performance of a base configuration that did not USC 
interprocedural optimizations against a configuration performing 
interprocedural optimizations building on the class sets and call 
graphs produced by the algorithm. The base confiruratlon 
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Figure 9: Experimental Results (Cecil) 
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F&we 10: Experimental Results (Java) 

represents an aggressive combination of intraprocedural and 
limited in&procedural optimizations which include: 
intraprocedural class anaIysis [Johnson 88, Chambers h Ungar 
901, hard-wired ctass prediction for common messages (CeciI 
programs only) [Dentsch & Schiffman 84, Chambers & Ungar 891, 
splitting [Chambers & Ungar 89], whole-program class hierarchy 
analysis [Dean et aL ,951, cross-module inlining, static class 
prediction [Dean et UL 96, Dean 961 and closure optimizations 
(Cecil only). We applied these optimizations through our Vortex 
compiler to produce C code, which we then compiled with gee - 
02 to produce executable code. 

The interprocedural configuration augments the base configuration 
with inter-procedural analyses that enabled the intrapmcedural 
optimizations in base to work better: 

= Class analysis: Intraorocedural class analysis exploits the 

unreachable during any program execution. The complcr 
does not compile any unreachable procedures, often resulting 
in substantial reductions both in code size and compile time, 

The final two cobunns of graphs present application speedups and 
executable sizes relative to the base configuration. Interprocedural 
class analysis enabled speedups ranging from marginai 
improvements to slightly over a factor of three speedup on one 
benchmark. With the exception of the two smallest benchmarks, 
the P=O configurations (ETA and Equivalence Class Analysis) did 
not help run-time speed. Tncreasing the value of P beyond 0, 
however, improved run-time speed, and as foreshadowed by the 
abstract precision results, a fairly small P value (e.gO, 5) W~VIIS 
sufficient to obtain most of the benefit available for constant values 
of R The additional precision obtained in the P=N configurations 
translated into additional oerformauce irnorovements over the 
P=SO configurations. m 

1 

The least precise algorithm (ETA) was sufficient to enable most of 
the reduction in executable size. Increasing values of P enable littlc 
additional improvement over RTA for most benchmarks. 

class sets &d the sets bf possible callee methods computed by 
interprocedural analysis, enabling better optimization of 
dynamically dispatched messages. 

l Treeshaking: As a side-effect of constructing the call graph, 
the compiler identifies those procedures which are 
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The number of edges, either O(N) or O(N2> depending on tbe value 
of MergeCalls, did not have a significant impact on either 
application speedup or executable size. Thus, tbe two linear-edge 
algorithms are clearly preferable to their quadratic-edge 
counterparts, since they obtain virtually identical bottom-line 
results while consuming less analysis time and space. For the two 
smallest benchmarks, the additional potential precision of the 
bounded algorithms vs. the simply bounded algorithms had an 
impact on bottom-line application performance, but there was not 
a measurable difference for tbe majority of tbe benchmarks. 

4 Future Work 

We are currently investigating a number of extensions to our 
framework for fast interprocedural class analysis. First, we are 
studying how to adapt the idea of lazily merging nodes, present for 
propagation, to apply to merging call site message nodes. Initially, 
each call site could get its own separate message node, but use 
merging to ensure that each method is reached by at most one call 
site. This would ensure a linear bound on the number of edges in 
the gmph while still enabling a fair amount of separation between 
independent callers. This facility may be particularly helpful for 
invocations of closures, where the shared apply formal and result 
message nodes introduced eagerly when MergeCalls is true are 
smearing the argument and result class sets of all closures with a 
particular number of arguments together, while lazy merging of 
these message nodes could often keep closures used in simple ways 
isolated from one another. 

Allowing a quadratic number of edges in the graph offers a kind of 
context-sensitive or polyvariant analysis of the virtual generic 
function that dispatches messages with a given name and number 
of arguments to the appropriate member methods. More generally, 
we wish to explore adding other more explicit forms of context- 
sensitivity to our fast analyses. In other work we have examined the 
impact of different context-sensitivity strategies on cost and 
precision of algorithms building upon the cubic-time classic 00 O- 
CFA algorithm [Grove et aZ. 97, but we have not considered 
adapting those notions to the faster algorithms presented here, nor 
have we considered ways of bounding the worst-case cost of 
context-sensitivity. 

The parameters to our framework allow placing bounds on 
different aspects df the algorithm, to achieve better worst-case time 
and space costs. However, each of these bounds was ensured 
uniformly across the program on a local basis. An alternative 
approach could more adaptively redistribute the total budget of 
allowable work units so that parts of the graph that do not come 
close to the original uniform bound can redistribute their unused 
work units to be used in parts of the graph that are more 
challenging. Similarly, some kinds of approximations are more 
costly in final precision than others; for example, merging two 
nodes within a method body probably has much less negative 
impact on the quality of the final solution than does collapsing a 
barrier node which may allow whole trees of methods to become 
reachable that shouldn’t be, incurring much more work to process 
the bodies of the otherwise unreachable methods. 

5 Additional Related Work 

Our framework integrates traditional propagation-based analyses 
such as 0-CFA and type-inference-style, unification-based analyses 
such as Steensgaard’s pointer analysis, as well as coping with 
object-oriented method dispatch and supporting optimistic pruning 
of unreachable classes and methods. Ashley presents an algorithm 
framework parameterized by a context-sensitivity operator and an 
operator for removing undesired precision of abstract values during 
analysis [Ashley 96, Ashley 971. He instantiates his framework to 

produce an algorithm that performs only a bounded amount of 
propagation before falling back to a distinguished Unknown 
abstract value, which resembles our simply bounded 00 O-CPA 
O(N2> algorithm. Our framework additionally supports local 
unification {Merge’lvithGlobal = false), linear-edge variants, and 
object-oriented language features. Unlike our framework as 
presented here, Ashley’s framework supports context-sensitive 
analysis, and he examined combining his bounded algorithm with 
1-CFA-style context-sensitivity. 

Relatively few interprocedural control flow or class anaIyses have 
been implemented and measured on substantial programs. In order 
of increasing asymptotic complexity of the examined algorithms, 
Bacon and Sweeney examined C+t programs up to 30,000 lines in 
size, Steensgaard examined C programs up to 25,000 lines, Ashley 
examined Scheme programs up to 30,000 lines in size, Agesen 
examined Self programs up to 7,000 lines (although all but one 
were 1,000 lines-or smaller), and Plevyak and Chien examined 
Concurrent Aggregates programs up to 2,000 lines. Our 
benchmarks span a range from several hundred to 60,000 lines in 
size (Including library code), enabling us to assess the scalability of 
the different algorithm instances beyond that examined by previous 
work. 

6 Conclusion 

We have developed a parameterized algorithm for interprocedural 
class analysis that describes a continuum of different algorithms 
ranging in cost from O(N) to O(N3>. Our framework integrates both 
propagation-style analysis and unification-style analysis, allowing 
specific algorithms to mix the two methods to achieve desired time 
costs and precision benefits. Since interprocedural class analysis is 
very similar in spirit to control flow analysis, closure analysis, and 
set-based analysis, and includes mechanisms found in (non- 
standard) type inference systems, versions of our new algorithms 
should be applicable in a wide range of interprocedural analysis 
domains for languages with data-dependent control flow (e.g., first- 
class functions and/or dynamic dispatching). 

We have implemented tbis framework and measured its 
effectiveness on a number substantial Cecil and Java programs. 
The new bounded and simply bounded Iinear-edge 00 0-CFA 
algorithms substantially improve the values of such abstract 
metrics as the percentage of singleton class sets and singleton 
callees, in comparison to previous linear- and near-linear-time 
algorithms for interprocedural class analysis. This improvement in 
abstract precision often translates into improvements in bottom- 
line application speed and compactness. 
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