
,:. _

._ i

.. 4

Fast Interprocedural Class Analysis

Greg DeFouw, David Grove, and Craig Chambers

Department of Computer Science and Engineking
University of Washington

(gdefouw,grove,chambers}@cs.washington.edu

Abstract
Previous algorithms for interprocedural control Row analysis of
higher-order and/or object-oriented languages have been described
that perform propagation or constraint satisfaction and take O(N3)
time (such as Shivers’s O-CFA and Heintze’s set-based analysis), or
unification and take O(jVa(N,@) time [such &s Steensgaard’s
pointer analysis), or optimistic reachability anaIysis and take O(N)
time (such as Bacon and Sweeney’s Rapid Type Analysis). We
describe a general parameterized analysis framework that
integrates propagation-based and unification-based analysis
primitives and optimistic reachaMity analysis, whose instance-s
mimic these existing algorithms as welI as several new algorithms
taking O(N), O(Na(N,iV)), O(N2), and O(N2a(N,N)) time; our O(N)
and O(Ncr(N,N)) algorithms produce more precise resuiks.than the
previous algorithms with these complexities. We implemented our
algorithm framework in the Vortex optimizing compiler, and we
measured the cost and benefit of these interprocedural analysis
aIgorithms in practice on a collection of substantial Cecil and Java
programs.

1 Introduction
Interprocedural class analysis computes a set of classes for each
program variable, such that each run-time value bound to a variable
is a direct instance of one of the classes computed for the variable.
A program tail graph is constructed as a side-effect of this analysis,
where the classes associated with the arguments to a dynamically
dispatched message send caU site determine the set of callee
mefhods that may be invoked by that call site. First-class functions
and calI sites of computed functions can be analyzed using
interprocedural class analysis by treating each definition of a first-
class function (e.g., a lambda expression) as a class with a method
named apply, each evaluation of a first-class function definition
as a class instant&Lion operation, and each application of a first-
class function as sending the apply message to the function
object

A number of algorithms have been described for performing
interprocedural dass analysis {perhaps under different names) in
object-oriented and higher-order languages. Most algorithms
incrementally construct the program’s dataflow graph (either
implicitly or explicitly) and propagate sets of classes forward
through the dataflow graph, iterating anaIysis in the face of Ioops
and recursion as new call edges are discovered and new edges are
added to the dataflow graph. A classic example of such an

Pefmksion lo make digitathrd copies ofnil or part of this mnterial for
personal or classroom use is granted witbout fee provided that the copies
are not made or diiributed far profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, nnd notice is
given that copyright is by permission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission nndlor fee.
POX 98 San Diego CA USA
Copy-i&t 1998 ACM O-89791-979-3/98/ Ol..%UO

algorithm is Shivers’s 0-CFA control tlow analysis for Scheme
[Shivers 88, Shivers 911, which in the worst case takes O($) time,
whereNis the sizeof the program. Heintze’s set-based annlysfs hns
a similar flavor (and complexity) to O-CFA [Heintze 941. Mnny
more-expensive aIgorithms have been developed that include some
degree of context-sensitivity or polyvariance to achieve greater
precision [Oxh#j et al. 92, Agesen’et al. 93, Pfevyak & Chicn 94,
Stefanescu & Zhou 94, Agesen 95, Jagannathan & Weeks 95,
Nielson & Nielson 971, but less-expensive algorithms nre relatively
rare. Stcensgaard describes an O(iVc@~) pointer nnnlysis
algorithm that partitions the program’s dataflow graph using
unification in place of propagation, as in type inference
[Steensgaard 961; Steensgaard’s algorithm was inspired by
Henglein’s non-standard type-inference algorithm for higher-order
binding-time analysis [Henglein 911. Bacon and Sweeney describe
Rapid Type AnaIysis @TA), an O(N) algorithm for optimlsticnlly
removing unreachable code, which performs no propagation or
unification at all [Sacon & Sweeney 961. Heintze nnd McAllcstcr
describe a subtransitive version of 0-CFA that requires only O(N)
time, but it appIies only to statically typed programs with boundcd-
size types [Heintze & McAllester 971.

We have developed a general framework for interprocedurn! class
analysis of both staticalIy and dynamically typed programs that
integrates propagation and unification. A particular dataflow
anaIysis algorithm instantiates this general. framework by
specifying when and how to apply unification in plncc of
propagation, and by specifying how many edges arc used to
connect call sites to cailees. Instantiations of our framework
include O-CFA, Stkensgaard-style analysis, and RTA, as well as
interesting new algorithms with complexities of O(N%(N,N)),
O(N2), O(Na(N,N)) (which achieves better predsion than
Steensgaard-style analysis with the same worst-case cost), nnd
O(N) (which~achieves better precision than RTA with the same
worst-case cost). Section 2 describes our general framework nnd
defines and compares several algorithm instantlations.

.

We have implemented our algorithm framework and several
instantiations in the Vortex optimizing compiler [Dean et al. 961.
We analyzed several large Java [Gosling ef al. 961 and Cecil
[Chambers 931 programs using &base instanljations. &Ye measured
both the abstract precision and cost of the different algorithms as
well as the bottom-line execution speedup and executable spncc
savings. We found that the hypothetica improvements in precision
of the new aIgorithms over RTA and Steensgaard-style analysis did
occur in practice; resulting in improvements in bottom-Hnc
application performance. Section 3 reports our experimental
findings in detail. Section 4 identifies some areas of current and
future work, section 5 discusses idditiona1 related work, and
section 6 concludes.

222
i

Program ::= (Decl} {Stmt) Expr
Decl ::= ClassDecl] VarDecl] MethodDecl
ClassDecl ::= class ClassID (CCnstVarDecll 1
InstVarDecl ::= instvar InstVarID
VarDecl ::= var VarID
MethodDecl ::=methd~sgID ((For& 1 I IVarDecl} CStmt1 Expr 5
Formal ::= FormalID Q ClassID
stmt ::= LValue := Expr
Expr : := LValue] FormalID] NewExpr] SendExpr
NewExpr ::= n8w ClassID
SendFxpr ::= send MsgID ({Expr) 1
LValue ::= VarID] InstVarLValue
InstVarLValue ::= Expr . InstVarID

Figure 1: Abstract Syntax for Example Object-Oriented Language

2 Analysis Framework
This section describes the general interprocedural analysis
algorithm that allows us to explore a range of fast interprocedural
class analyses. The next subsection introduces the example
language we use to illustrate our algorithm. Subsection 2.2
describes our dataflow graph representation, subsection 2.3
describes the parameterized analysis algorithm itself, and
subsection 2.4 analyzes its complexity. Subsection 2.5 describes
the analysis algorithms instantiable from our framework.
Subsection 2.6 discusses extensions to make the analysis modular.
Subsection 2.7 describes how clients can extract information from
the analysis, and examines the complexity of extracting certain
kinds of information.

2.1 Source Language

Figure 1 shows the abstract syntax of a simple, dynamically typed,
object-oriented language that we will use to help explain our
framework.* It includes declarations of global and local mutable
variables, classes with mutable instance variables, and
multimethods, assignments to global, local, and instance variables;
and global, local, formal, and instance variable references, class
instantiation operations, and dynamically dispatched message
sends.

A multimethod has a list of immutable formals. Each formal is
specialized by a class, meaning that the method is only applicable
to message sends whose actuals are instances of the corresponding
specializing class or its subclasses. We assume the presence of a
root class from which all other classes inherit, and specializing on
this class allows a formal to apply to all arguments. Multimethods
of the same name and number of arguments are related by a partial
order, with one multimethod more specific than (i.e., ovenidiig)
another if its tuple of specializing classes is more specific than the
other (pointwise). When a message is sent, the set of multimethods
with the same name and number of arguments is collected, and, of
the subset that are applicable to the actuals of the message, the
unique most-specific multimethod is selected and invoked (or an
error is reported if there is no such method).

Other realistic language features can be viewed as special versions
of these basic features. For example, regular procedures and
procedure calls can be modeled with methods none of whose
formals are specialized, and literals of a particular class can be
modeled with corresponding class instantiation operations (at least
as far as class analysis is concerned). As described in the
introduction, a first-class lexically nested function can be modeled
with a class containing an apply method, assuming that some
suitable renaming of identifiers has taken place and that local and

* Terminals are in boldface, and braces enclose items that may be repeated
mu or more times. sepamted by commas.

223

formal variables in the lexically enclosing method can be
referenced from within the apply method.

We assume that the number of arpments to a method or message
is bounded by a constant independent of program size, and that the
static number of alI other interesting program features (e.g.,
classes, methods, call sites, variables, statements, and expressions)
is O(N).

2.2 Dataflow Graph Representation

Ail the algorithms stpported by our framework operate over a
dataflow graph, declared in pseudocode in Figure 2. Figures 4 and
5 contain the algorithm for constructing the initial dataflow graph
from the program being analyzed.

2.2.1 Nodes and Edges

The heart of the dataflow graph representation is a set of nodes
(instances of Node) linked by a set of directed edges (Edge). Each
source variable declaration, method declaration, class instantiation
operation, and message send in the program has an associated node
in the dataflow graph. Interprocedural class analysis computes a set
of classes for each node (the classes member of Node),
indicating for the corresponding variable or expression what
classes of objects may be stored in the variable or retumed by the
expression at run time.

‘Iivo nodes are connected by a directed edge whenever classes that
reach the first node can Aow directly to the second node. For
example, to model an assignment target : = source, an edge
is added from the node corresponding to source to the node
corresponding to target. An edge may have an associated filter
class set (f ilter), which restricts propagation along that edge to
only classes contained in the filter set. Filters are used to restrict
propagation of classes to a formal argument node of a callee
method to those that are subclasses of the argument’s specializing
class (if given). Filters also can encode constraints ensured by
static type declarations or inference, which (given the
approximations that fast algorithms need to make) may make the
information computed by interprocedural class analysis more
precise.

2.2.2 Node Merging and Supernodes

A key feature of our framework is the ability to support merging
nodes in the datafiow graph to achieve faster analysis. Our
framework is parameter&d by P, the maximum number of times a
node may be visited during propagation; P may be any integer
value between 0 and N, inclusive.+ After a node has been visited P
times during analysis, it is merged with each of its successor nodes.

+ By Nhere we mean some value that is O(N) but bigger than the number
of ctasses in the program.

*

1

l

,.

.

,

class SuperNode t
rep:SuperNode;
live_nodes:set of Node;
dead-nodes:set of Node;
to-do:bag of ClassID;
done :bag of ClassID;

1
class Node [

super:SuperNode;
edges:set of Edge;
classes:set of ClassID;
counter:int;

3
class Ease I

source, target:Node;
filter:set of ClassID;

equivalence-class representative, initiaZ[y itserf
set of active nodes in supernode, initially a single node
set of collapsed nbdes in supernode. iniiiulIy empty

_ bag of cinsses remaining to be processed by supernode, ini!ia& empfy
bag of c&sses that have been processed by supernode, initiully empty

enclosing supernode
set of outgoing edges
set of clnsses processed by this node. iniiially empty
number of rimes node can be processed before collapsing, initially P

source and larger nodes
filter of ciasses that can propagate across edge

class BarrierEdge subclass of Edge (
barrier:Barrier; the barrier of which this edge is a member
blocked:bag of ClassID; bag of classes blocked at this barrier edge. initially empIy
is-arg:bool; whether this is an argument edge that can release the barrier

3
class Barrier {

edges:list of BarrierEdge; the edges in the barrier
num-blocked:int; the number of barrier edges that are St3 blocked
method:MethodDecl; meihod that is guarded by the barrier

1

Figure 2: Dataflow Graph Representation

Each node records the remaining number of times it may be visited
during propagation (counter), initialized to I? if P=O, then a
node cannot be examined at all during propagation, causing nodes
to be merged eagerly as connecting edges are inserted.

We introduce supemodes to represent the set of nodes that have
been merged .together (SuperNode). Supemodes partition the
nodes of the graph. Initially, each node has its own unique
supemode. Merging a node with its successor nodes is
implemented using supemodes by unifying the supemodes
corresponding to the node and its successor nodes, pntting alI the
nodes together as members of the new unified supemode, and then
‘%ollapsing” the original node out of the dataflow graph by moving
it to a separate inactive list in the uaified supemode; Figure 3
illustrates merging nodes. Later, when a class is propagated to any
member of the unified supemode, it is immediately forwarded to all
of the active members of the supemode, skipping the inactive
members, ensuring that inactive nodes never incur additional work.
We use fast union-find data structures flhrjan 7Sj to support

0 live node

,
\ - ‘1 dead node

-/

quickly unifying two arbitrary supemodes and (lazily) updating all
the member nodes to refer to the new unified supemode (in
O(UaQY,u)+F) time for U unifications and F find-representative
updates). To achieve unification and update in only O(U+fl time,
our framework allows algorithms to choose to dwnys unify
supemodes with a distinguished global supemode; our
framework’s MergeWillGfobai parameter flag selects this
asymptotically faster though Iess precise behavior.’

Each supemode data structure refers (perhaps indirectly) to the
supemode representing the unified supemode (rep). Tho
representative supemode records up-to-date lists of active
(live-nodes) andmerged (dead-nodes) membcrnodes,nnd
conversely each node refers to its containing supemode (super)
{from which the representative supemode can be found). (The

* We include the MergeWithGIobal option mostly to simulstc pt~vious
algorithms such as RTA.

After Merging x After Merging y

I” of . supemode with two member nodes

Figure 3: Example of Node Merging

224

P:int; parameter dpfiing maximum number of times a node can be visited
MergeWithGlobal: bool; parameter defining whether nodes merge with the global supemode
MergeCalls: bool; parameter defining whether all senders of a given message are merged
nodes:set of Node; Ihe set of nodes in the graph
supsmodas:set of SuperNode; the set of representatives of supemodes in ie graph
global:SuperNode; a special supemode, usedfor Merge WiulGiobal
ConstmctDataflo~O {

make the global node and supernode:
globalgode:Node := MakeNodeO;
global := global-node.super;
create nodes for global variables, instance variables, methodfonnals, and method results:
foreach ast:(VarDecl u InstVarDecl u MethodDecl u Formal) in top-level decls do

n:Node := MakeNodeO;
ast.corresponding_node := n;

create top-level statement and expression nodes and edges:
CreateNodesAndEdges({), top-level stmts, top-level expr);

1
createNodesAndEdgss(vars:list of VarDecl, stmts:list of Stmt, expr:Expr) C I

make the nodes:
foreach ast:(VarDecl u NewExpr u SendExpr) in vars u stmts u expr do

ast.corresponding_node := MakeNodeO;
add assignment edges:
foreach stmt:Stmt = I[lv := ell in stmts do

source:Node := CorrespondingNode(
target:Node := CorrespondingNode[lv);
MakeEdge(source, target);

conswuct call edges:
foreach send:SendExpr = asend msgIel,...,s)ll in stmts u expr do

foreach i in Il.-n] do
actual+:Node := CorrespondingNode(

node:Node -z= CorrespondingNode(send1; -
LinkSend(msg, n, [actuall,...,actual,l, node);

update worklist and reachable classesfiom class instantiation nodes:
foreach new:NewExpr = anew cll in stmts U expr do .

n:Node := CorrespondingNodeInew);
AddToWorklist (n, c);
MakeClassReachable(c1;

1
createWethodNodesAndBdgndgdges(method:MethodDecl = Kmethod msg(...) <vars stmts expr)]) {

if method has not been created yet then
CreateNodesAndEdges(vars, stmts, exprl;

1
MakeNode () +Node {

n:Node := new Node;
s:SuperNode := new SuperNode;
n-super := s; n-edges := (1; n-classes := 0; n-counter := P;
s-rep := s; s.live_nodes := {n); s-dead-nodes := 1); s-to-do := 0; s-done := 0;
add n to nodes; add s to stipernodes;
return n;

1
MakeEdge(source, target:Node) {

e:Edge := new Edge;
InitEdge(e, source, target);
InstallEdge(

1 .
InitEdge(e:Edge, source, target:Node) 1

e.source := source; e-target := target;
e.filter := FilterFor(source) n FilterFor(target1;

1
InstallEdge(e:Edge) (

add e to e.source.edges;
if e.source.counter = 0 then

CollapseNode(e.sourcel;
1
MakeBarrierEdge(source,target:Node, is-arg:bool, b:Barrier)+BarrierEdge

e:BarrierEdge := new BarrierEdge;
InitEdge(e, source, target);
e.is-arg := is-arg; e-barrier := b; e-blocked := I};
add e to b-edges;
return e;

1
b!akeBarrier(n:int. m:MethodDecl)+Barrier C

b:Barri& := new Barrier;
b-edges := {); b.num_blocked := n; b-method := m;
return b;

I

Figure 4: Data&w Graph Construction Algorithm, Part 1

225

FilterFor(n:Node)+set of ClassID (
if n created from f in Formal = ilv @ cl then

return set of c and its subclasses;
if n created from VarDecl or InstVarDecl or Method and

decl has static type T then
return set of all classes that conform to T;

return set of all classes;
1
CorrespondingNodeIe:Expr)+Node {

if e in VarID = KvarIDjJ then
return CorrespondingVarDecl(varID).corresponding-node;

if e in FormalID = BformalIDll then
return CorrespondingFormal{formalID1.corresponding-node;

if e in InstVarLValue = [[e' . instVarIDJ) then
return CorrespondingInstVarDecl(instVarID).corresponding_node;

return e.corresponding-node;
1
LinkSend[msg:MsgID, n:int, [actuall:Node,...,actual,:Nodel, result:Node) {

if MeraeCalls then
([isg-formall:Node,. ..,msg-formal,:Nodel,. msg-result:Node) :=

MakeSharedMessageNodesImsg, n);
foreacb i in [1.-n) do

MakeEdge(actuali, msg-formali);
MakeEdgeImsg-result, node);

else

>
RecordCallSite(msg. n. ~actuall....,actual,l, result):

Table mapping message keys fo shared message formal and result nodes, om’yfor Merge&l/s:
shared_message-nodes:(MsglD,n:int)--)(CNode~,...,Node,l, Node);
MakeSharedMessageNodes(msg:MsgID, n:int)+([Noder,... ,Node,I, Node) (

if shared-message-nodes(msg,n) not defined then
foreach i in [l..nl do

formali:MsgNode := MakeRodeO;
result:Node := HakeRodeO;
RecordCallSite(msg, n, [fonnall,...,fonnal,l, result);
shared-message-nodesImsg,n) := ([formall,...,formal,), result);

return shared-message-nodes[msg,n);
1
RecordCallSite(msg:MsgID, n:int. [actuall:Node,...,actua$,zNodel, result:Node) {

go through all the method a!xlarations tha: this could map IO, and create barner liti from call site to callee:
foreach method:MethodDecl = Urn&hod msg'Ifl~cl,...,f,,Qc,.) [...)J

where msg' = msg and n' = n do
create a tuple of barrier edges linked together in a barrier:
barrier :Barrier := MakeBarrierIn, method);
foreach i in Il.-n) do

formali:Node := CorrespondingNode(
formal-edgei:BarrierEdge

method_result:Node
:= MakeBarrierEdgefactuali, formali, true, barrier);

:= CorrespondingNode(method);
result-edge:BarrierEdge
link barrier edges into graph:

:= MakeBarrierEdgeImethod-result, result, false, barrier);

foreach i in [l..n) do
if ci in live-classes then

add to cd sire now:
InstallEdge(formal-edgei);

else
recordfor laterprocessing:
add fonttal-edgei to delayed-edges(q);

InstallEdge(result-edge);
1
live-classes:bitset of ClassID; setofc~asses~iveinprugram
delayed-edges:ClassID+bag of BarrierEdge; table mapping classes to lists of delayed edges
MakeClassReachable(ctClassID) {

if c E live-classes then
add c to live-classes;
foreach edge:BarrierEdge in delayed-edges(c) do

InstallEdgefedge);
foreach c':ClassID in superclasses of c do

MakeClassReachable1c');
I

Figure 5: Dataflow Graph Construction Algorithm, Part 2

to-do and done fields of a supemode are temporary state
maintained during analysis.)

becomes reachable (and its body added to the dataflow graph) only
when, for each class C on which one of the method’s formals are

2.2.3 Optimistic Elimination of Unreachable Classes
specialized, a class instantiation operation for C or a subclass of C
has been seen in code already known to be reachable. Several

and Procedures mechanisms are used in our dataflow graph representation to
support optimistic pruning of nureachable code:

Our framework optimistically prunes unreachable classes and
procedures, in tbe style of RTA @3acon & Sweeney 961. A method

l A global set of reachable classes (live-classes) 1s
updated as class instantiation operations are processed

226

_ _. - - - - _ -. . , I ,__ .-
--- - ,, ,_ XT-----

send msg{al, a21 * x send msg(bl, b2) 3 y

method msg(fl@C1, f#C,l C.--l method msg (gl@D1, gZ@DZ) C. . -3

MergeCab = true

me khod msg(: fl@C,# f,@C,) E.. -3 method msg (gl@Dl, g#D,) E - . - 3

send msg ,(a,, a21 * x send msg(bl, b2) * y

MeraeCalkr = false

0 shared message node @X filter I-- ------~-. . _- -..--.: barrier

Figure 6: ExampleofSharedandUnsharedMessageSend Linkages

(MakeClassReachable). Whenever a class becomes simply are blocked by the emptiness of other edges (the result
reachable, all of its superclasses are considered reachable. =@=4.

l When connecting the node for an actual parameter at a call site
to the corresponding formal parameter of a callee (in
RecordCallSite), only if the formal parameter’s
specializer class is reachable is the connection made. If not
reachable, then the edge is saved on a separate list indexed by
the specializer class (delayed-edges) to be entered into
the datailow graph when the specializer class becomes
reachable (MakeClassReachable).

l A method specialized on reachable classes is reachable from
a particular call site only if each of the actual-to-formal
argument edges for that call site has a non-empty set of classes
that pass through the edge’s filter. To block the flow of classes
through any of a call site’s argument edges (and through the
reverse result edge) until all the argument edges have non-
empty sets of classes flowing successfully through them, we
link the argument and result edges into a barrier (Barrier).
A barrier records all the edges in the barrier (edges), the
method that it guards (method), and a count of the number of
members of the barrier that are still empty (num-blocked),
initialized to the number of arguments of the method. Each
time an argument edge in the barrier becomes non-empty, the
barrier’s blocked count is decremented. When it reaches zero,
the barrier is broken and classes freely pass through the edge.
A special kind of edge (BarrierEdge) is used for edges in
barriers. A barrier edgeknows which barrier it is a member of
(barrier), and, until the barrier is broken, queues up each
class that flows through the edge on a list (blocked) without
forwarding it to the edge’s target node. A flag (is-erg)
distinguishes barrier edges that may be waited upon to
become non-empty (the argument edges) from those that

2.2.4 Message Send Lib&age

Our framework supports two approaches to connecting call sites to
callee methods. If the parameter flag MergeCalZs is false, then each
actual parameter at each call site is linked to the corresponding
formals of all methods with the same name and number of
arguments as the call site, aud the reverse for message results,
leading to O(N2) edges in the dataflow graph. If MergeCalls is true,
an intermediate tuple of nodes is created for each distinct message
name arid number of arguments (shared-message-nodes),
one node per argument aud remIt of the message. Actuals at cal1
sites are linked to the corresponding intermediate message formals,
which in turn are linked to the corresponding formals of the
possible methods with matching name and number of arguments,
and the reverse for message results, leading to only O(N) edges in
the graph. Figure 6 illustrates these two situations.

2.3 Parameterized Analysis Algorithm

Pseudocode for our general algorithm for interprocedural class
analysis appears in Figures 7 and 8. The core of the algorithm
performs propagation of classes through the dataflow graph.
During the propagation phase, each supernode maintains au
associated bag of classes that have reached the supemode but have
not yet been processed by the supernode (to-do), as well as a bag
of classes that have been processed by the supemode (done); at
the end of analysis, tbe processed classes are used to determine the
final set of classes associated with all nodes in that supemode.

227

-1

.

I

.

i

,

.

I

worklist:set of SuperNode; fhe set of super-nodes that hove non-empfy fa-do lis&
PerformInterprocedu~alClassAnalysis() {

worklist J= I>;
ConstructDataflovGraphO;
ProcessWorklistO;

1
ProcessHorklistO {

while worklist non-empty do
pop s:Superliode off worklist;
ProcessSuperNodeIs);

I
ProcessSuperNode(s:SuperNode) (

while FindRep{s).to-do non-empty do
remove c:ClassID from FindFLep(sl.to_do;
add c to FindRep(sl.done;
foreach n:Node in FindRep[s).live_nodes do

ProcessNode{n, cl;
foreach n:Node in FindRep(s).live-nodes.copy do

if n.counter = D then
CollapseNode<n);

1
ProcessNodeIn:Node, c:ClassID) I

if c P n.classes then
add c to n.classes;
foreach e:Edge in n-edges do

ProcessEdge(e, cl;
decrement n-counter;

1
ProcessEdge(e:Edge, c:ClassID) I

if c E e-filter then
if e is a BarrierEdge then

ProcessBarrierEdge[e, c)
else

AddToWorklist(e.target, c);

ProcessBarrierEdge{e:BarrierEdge, c:ClassID) I
if e-blocked is empty then

UnblockBarrierEdge(e);
if e.barrier.nmblocked = 0 then

AddToWorklistIe.target, cl;
else

add c to e.blocked;
1
lJnblockBarrierEdge(e:BarrierEdge) {

if e.barrier.nun-blocked z- 0 and e-is-arg then
decrement e.barrier.num-blocked;
if e.barrier.num-blocked = 0 then

ReleaseBarrier[e.barrier);
1
ReleaseBarrier{b:Barrier) {

CreateMethodNodesAndEdges(b.method);
foreach e:BarrierEdge in b.edges do

foreach c:ClassID in e-blocked do
AddToWorklist(e.target, c);

1

Figure 7: InterproceduraI Class Analysis Algorithm, Part I

Whenever a class instantiation node is created, the instantiated
class is added to the to-do list of the node’s supemode.

A globaI worklist is maintained hoIding all supemodes with non-
empty to-do Iists [worklist). Our algorithm starts by
constructing the nodes and edges of tbe top-level variable
declarations, statements, and expressions in the program
(ConstrnctDataf lowGraph), which adds supemodes to the
worklist for all the top-level class instantiation expressions. The
main loop of the propagation phase {Processhlorklist)
removes a supernode from the worklist and processes it. The
propagation phase ends when the worklist is empty (and hence ail
supernodes have empty to-do lists).

To process a supemode (ProcessSuperNode), each bf the
clusses on its Co-do list are removed one-by-one, savedon the done
list, and forwarded to each of the unmerged member nodes for
processing. To process a cIass at a member node
(ProcessNode), if the class has not been seen at that node

228

before, then it is propagated along to each outgoing edge of the
node, and its counter of allowable future visits is decremented. To
propagate a class along an edge (ProcessEdge), if the class
passes the edge’s filter, then, if the edge is not a barrier edge, the
propagated class is added to the to-do list of the target node’s
supemode (AddToWorklist) which may cause the target
supernode to be added to the worklist.

If the edge is a barrier edge, then there are several steps to perform
(ProcessBarrierEdge). First, if this edge is an argument
edge that is part of a blocked barrier, and this is the first class to
reach this edge, then the barrier’s blocked count is decremented
(UnblockBarrierEdge). If this edge was the last edgo
blocking the barrier, then the barrier is broken {crenting the
guarded method’s dataflow graph if it hasn’t been created already),
and aU suspended classes on al1 edges in the barrier are released
and propagated to their target supemodes (ReleaseBarrier),
After the effect on the barrier of a class passing the edge’s flltcr hns

AddToWorkIist(n:Node,.c:ClassID) {
if FindEep(n.super).to_do is empty then

add FindEep(n.super) to worklist;
add c to FindRep(n.super).to-do;

1
&ollapseNodo(n:Node) 1

if MergeWithGlobal then
MergeSuperNodes(globa1, FindEep(n.super));

foreach e:Edge in n-edges do
CollapseEdge(

remove n from FindBep(n.super).live_nodes;
add n to FindEep(n.super).dead_nodes;

1
CollapseEdge(e:Edge) {

if e is a BarrierEdue then
CollapseBarrierEdge(e);

MergeSuperNodes(FindEep(e.source.super), FindEep(e.target.super));
1
Colla~ssBarrisrEd~a(e:BarrierEdsel [

if e.barrier.&&blocked z- 6 &d e.i.s-arg then
decrement e.barrier.num-blocked;
if e.barrier.nuu-blocked = 0 then

EeleaseBarrier(e.barrier);
else

retnove this edne from barrier
CreateWeth~dNodesAndEdges(e.barrier.method);
foreach c:ClassID in e.blocked do

AddToWorklist(e.target, c);

I
remove e from e-barrier-edges;

MergsSuperNodes(s1, s2:SuperNode) {
if sl # s2 then

rep:SuperNode := Union(s1, ~2);
rep.live_nodes := sl.live_nodes u s2.live-nodes;
rep.dead_nodes := sl.dead_nodes u s2.dead-nodes;

. rep.to-do := sl.to_do u s2.to-do;
rep-done := sl.done u sl.done;
sl.rep := rep; s2.rep := rep;
if sl = rep then remove s2 from supernodes

else remove sl from supernodes;
1
Fast anion-firrd data stmcture operations:
PindEep(s:SuperNode) +SuperNode 1

find and return the representarive of the union, caching resultsfor amortized O(a(N,N)) cost:
if s.rep # s then s-rep = FindEep(s.rep);
return s-rep;

1
Unionfsl, sZ:SuperNode)+SuperNode {

pick and return one of sl or s2 to elect as the representative of the anion; ifeither is global then choose it
1

Figure & Interprocedural Class Analysis Algorithm, Part 2

been computed, the cIass is either saved on the edge’s suspended
classes list (if the barrier is still blocked), or propagated through the
barrier to the target supernode (if the barrier is broken).

be merged with its successor edges. After passing a class off the to-
If ZWV, then a node’s counter may reach zero, at which point it will

do list to a supemode’s unmergcd member nodes (in
ProcessSuperNode),ifanode'scounterhas droppedtozero,
the node is merged with its successors (CollapseNode). To do
this, the node’s supemodeis merged with thesupemodes of each of
thenode’ssuccessornodes (CollapseEdge),andthenthenode
is moved from the supernode’s list of unmerged members to tbelist
of merged members, ensuring that the node will never again be
examined during propagation. Merging two supernodes
(MergeSuperNodes) selects one supemode to be the
representative of the union (using the fast union-find algorithm)
and combines the two supemodes’ member node, todo, and done
lists. Some algorithms perform a simpler, asymptotically faster
merging of supemodes, where all merging supernodes are tirst
merged with the global supemode; the parameter flag
McrgeUWtGlobul selects this behavior. If a blocked barrier edge is
collapsed, that edge becomes unblocked.

2.4 Complexity Analysis

graph, and merging supernodes.

The main components of cost in our algorithm are constructing the
dataflow graph (laxily), propagating classes through the dataflow

2.4.1 Core Data Stnwtnres

Before examining the complexity of the main components of the
algorithm, we list our assumptions about the properties of its core
data structures:

l The sets of classes SuperNode. live-nodes and
SuperNode -dead-nodes support constant-time
initialization, set union, element addition, and element
removal. To support these operations, our implementation
exploits the invariant that at each step in the algorithm every
instanceoftheSuperNodeclassisamemberofatmostone
live-node or dead-node set. Thus,thesesets can be
;$prnt&&l by linking SuperNodes together in doubly

l The .bags of classes SuperNdde.to-do,
SuperNode.done, and BarrierEdge.blocked
support constant-time initialization, union (ignoring
duplicates), and element addition. Similarly, the bags of edges

229

1

I

.

.

Node. edcres and Barrier _ edges support constant-time
initializati& and element addition,Our ii$ementation uses
singly linked, circular Iists to represent bags.

l The set of classes Node. classes supports constant-time
initialization, membership testing, and element addition.
Depending on the value of P, our implementation uses one of
two representations: if P is 0(1) list sets are used, while if P
is O(N) bit sets are used. A list set can be initialized in
constant time, and it supports constant-time membership
testing and eIement addition if the maximum size of the set is
bounded by a constant. A bit set supports constant-time
membership testing and element addition, but requires O(N)
time to initialize.

l The Hter Edge. filter car! be initialized in constant time
and supports constant-time membership testing. The fiker can
be represented as a procedure to perform the subclass testing,
for which there are several constant-time algorithms [AK et
ai. 891.

2.4.2 Dataflow Graph Construction

In the worst case, all classes and methods in the original program
will be reachable, impiying that O(N) ASTs must be represented in
the dataflow graph. Each kind of AST node contributes O(1) nodes
to the dataflow graph. With the exception of SendExpr, each kind
of AST also contributes O(I) edges. Let M {defined below) be an
upper bound on the number of edges contributed by a single
SendExpr AST. Then the dataflow graph contains O(N) nodes
and O(N+AW) edges. Each edge in the dataffow graph can be
initialized in constant time (each edge has one filter, participates in
at most one barrier, and is added to one node’s bag of edges).
Depending on the value of P, each node takes either O(1) or O(N)
time to initialize. Thus the totai time to construct the dataflow
graph is O(NMJ if P is O(I) and O(N2+N-M> if P is O(N).

The value of, M is either O(1) or O(N) depending on the value of
MergeCalls:

l If Mer@alEsis true, then an intermediate tuple of nodes (one
tuple per message name) is inserted between callers and
callees. ExactIy one edge per actuaI parameter is added
between a SendExpr and the corresponding node in the
intermediate tnpIe. SimiIarIy, the return value of the call is
represented by adding one edge from the tuple’s return value
to the SendExpr. In addition, the intermediate tuples
introduce edges connecting intermediate nodes to method
forrnaI parameters and returns; each formal parameter and
method return wiIl have exactIy one such edge. These
additional O(N) edges are can be amortized over the O(N)
SendExprs in the program, thus M is O(1). This results in a
total of O(N) edges in the dataflow graph.

8 If MergeCalls is false, then each SenaExpr may be directly
connected to O(N) target methods, causing Mto be O(N), This
resdts in a total of O(N2) edges in the dataflow graph.

Figure 6 illustrated these two cases.

To support lazy construction of the program dataffow graph,
additional overhead is incurred to tick live-classes and
delayed-edges. Since a ciass can only becomereachabIe once,
this overhead takes O(N+flM) time.

2.4.3 Propagation

If there is no SuperNode merging, the core unit of work in the
propagation phase can be viewed from the perspective of a class

* We assume that the maximum number of actual parameters at a call site
and the maximum number of formal parameters in a method declaxation
is a constant independent of program size.

flowing across an edge: start with a class that is new to the edge’s
source node {at the call to ProcessEdge in ProcessNode),
and attempt to propagate it through the edge’s fiIter. If it pnsses the
filter, check if this is a bIocked barrier edge, and if so suspend the
class at the barrier edge, later to be released when the bar&r is
broken. FinaIIy, add the class to the target supernode’s to-do list,
later removeit from the target supemode’s to-do Iist, and then test
whether it is new to the supernode’s one target node (ending at the
same loop of ca1I.s to ProcessEdge). Bach of these steps takes
constant time. By ensuring that each class is processed across an
edge at most once (by maintaining Node.classes), the total
amount of time for this edge propagation is O(.?X’), where E is the
number of edges and C is the number of classes. C is proportionnl
to the program size (N), and E is O(N-M) as determined above
(either O(N) or O(N2), depending on the value of MergeCaNs),
leading to a total cost for edge propagation of O(I@+~) time. The
time to visit each supernode on the worklist and start the edge
propagation process is O(N), leading to an overall time for
propagation of O(N2&J.

2.4.4 Unification

If P < N, then some nodes may be collapsed during propagation or
graph construction. This affects the complexity of analysis in three
ways: the number of times a node (and consequently its successor
edges) may be visited is reduced from N to P, additional work to
collapse nodes is incurred, and the 41s to FindRep may take
more time due to collapsing.

l Instead of using the Node. classes set to bound the
number of times a node is visited by the number of classes
(O(N)), node collapsing bounds the number of times a node Is
visited by l? Under this modeI, the constant-time unit of work
sequence is slightIy shifted, since now multipIe nodes may bc
in a supernode: start with considering a member node of n
supernode for a particuIar class at the call to ProcessNode
inside ProcessSuperNode, then foIIow the class flowing
through the node and an edge through to being added and then
later removed from a supemode’s to-do list, ending at the
same loop ofcalls to ProcessNode. Each of these constant-
time units of work may only be done P times per edge. Using
P in pIace of one N in the time for edge propagation gives a
more general complexity assessment of O(PJV44).

l Each call to MergeSuperNodes and CollapseEdge
takes constant time, and each call to CollapseNode takes
constant time ignoring the per-edge work subsumed by
CollapseEdge, leading to an overall cost for node
CoIIapsing of O(N-M) time.

’ l ‘If MergeWithGlobal is false, then the calls to FindRep can
now take more than constant time, but overall, given n fnst
union-find data structure implementation of supemodes, the
additional cost for all of the FindRep calls is O(NO~(N,~). If
MergeWithGlobal is true, however, all of the supemodcs
merge directly with the global supemode, preserving the
constant-time behavior of FindRep.

2.4.5 Summary

Overall, the complexity of the entire graph construction and
propagation phase is thus 0fP.N~M + NM), pIus O(SMa(N,N)) If
Paand MergewithGlubalis false. By setting P to some constant,
new algorithms with worst-case time complexities of O(AJ), O($>,
O(Na(N,N)), and O(N2cr[N,N)) result, depending on the choices for
Me~eWtJrGiobuZ and MergeCalls.

230

Table 1: Framework hstantiations

2.5 Instantiations of the Framework

Table 1 identifies several algorithms that are instantiations of our
framework; boldface rows are new algorithms.

Classic 00 0-CFA is the standard cubic-time, flow-sensitive but
context-insensitive iuterprocedurat class analysis. Equivalence
Class Analysis is Steensgaard-style near-linear-time division of the
program’s dataflow graph into disjoint subgraphs, extended to
work in the object-oriented context. RTA is Bacon and Sweeney’s
Rapid Type Analysis algorithm.

The five other algorithms represent new interesting points in the
analysis design space. The three Linear-Edge algorithms bound the
number of call edges, dropping a factor of O(N) from the
complexity of the other (quadratic-edge) algorithms. The two
Bounded algorithms use supemodes and merging to ensure only a
constant number of visits per node, dropping another factor of
O(N) from the complexity (but adding back in the near-constant
O(a(N,N)) to pay for the overhead of merging). The two Simply
Bounded aIgorithms avoid this extra O(a(W)) overhead by
merging all supemodes with the distinguished global supemode.
The Bounded Linear-Edge algorithm and the Steensgaard-style
Equivalence Class Analysis have the same near-linear worst-case
time complexities, but the Bounded Linear-Edge algorithm always
provides solutions that are at least as precise and often more precise
than Equivalence Class Analysis. Similarly, the Simply Bounded
Linear-Edge algorithm incurs the same linear-time complexity but
delivers precision at least as good and often better than RTA.

2.6 Analyzing Program Components

As described and implemented. our analysis framework assumes it
has access to the entire program. Our framework could be extended
to support more modular analyses by allowing components of
programs to be modeled by summary dataflow graphs.
Components whose source code is unavailable can then be
analyzed as long as a summary dataftow graph is available. (The
summary dataflow graph riced not be precise, merely a sound
approximation of the %ue” datatlow graph.) Furthermore,
components can be partially pre-analyzed, starting from known
sources of class information within the component, with the
resulting partially propagated and/or collapsed datatlow graph
being used in the analysis of containing programs. This would lead
to a kind of hierarchical, component-wise analysis of programs that
may help the analyses scale to larger programs, along the lines of
Flanagan and Felleisen’s componential set-based analysis
[Flanagan & Felleisen 971.

2.7 Clients of the Analysis

Our analysis provides information to clients in two forms. The
program call graph can be constructed in time proportional to the
number of edges by recording when barriers along call edges are
broken; each such broken barrier corresponds to an edge in the
program call graph. Additionally, the done list of the supemode of
each variable’s node records the bag of classes that may be stored
in that variable. A number of interesting optimizations can exploit
this information in only constant time per access, including:

l checking whether only one method can be called from a given
call site and if so replacing that dynamically dispatched
message with a direct procedure or iulined code,

l skipping compilation of any methods not called from any call
site in the call graph (treeshaking).

Some other uses of the information may require more work,
however. For example, to support constant-time testing of whether
a particular class is a member of a particular variable’s set of
possible classes, to optimize run-time class tests for instance, the
done bag for the variable’s supemode needs to be converted into a
set, which requires quadratic time in the worst case for algorithms
with MergewirhGZobal false and P&l. (Algorithms where
Merg&WG~bal is true can simply use the set of live classes as
the classes set for the distinguished global node, and uncollapsed
nodes maintain the set of classes reaching them directly.)
Consequently, the bounded linear-edge algorithm, with asymptotic
complexity O(Na(NJv)), may not be appropriate for clients which
require this per-variable set-of-classes information.

Other authors of sub-quadratic algorithms have also encountered
difficulties providing useful information to clients. For example,
Steensgaard presents a near-linear-time algorithm for performing
pointer analysis, but to completely query the resulting data
structure to compute all points-to relationships among variables
woutd require quadratic time [Steensgaard 961. But if only a subset
of the possible points-to relationships are of interest, then less time
may be incurred in a particular algorithm. Similarly, Heir&e and
McAhester describe subtransitive control flow analysis which
constructs an encoded representation of the 0-CFA datafiow graph
in Iinear time (for a restricted language model with function types
bounded in size by a constant), but performing the transitive
closure to compute the full explicit datafiow graph requires
quadratic time [Heintze & McAllcster 971. They offer other queries
of their encoded representation, such as computing the call sites
which have only one callee, which require only linear time.

231

1
1

i
: i

‘., :

Table 2: Benchmark AppIications

1;: 1 instr sched r. I 2,400 f Global instruction scheduler I

typechecker 20,000 Cecil typechecker

compiler 5D)MO Old version of Vortex compiler

toba 3,900 Java bytecode to C translator

$
F

espresso 13,800 Java source to bytecode translate?

javac 25,550 Java source to bytecode tmnslatofi

a. Excluding standard libraries. All Cecil programs are compiled with
an 1 I,MMine standard library. Ali Javaprograms include a
16,000-line standard Iibrary.

b. The two Java transIators have no common code and were.
developed by different people. -

3 Experimental Assessment

In addition to asymptotic compIexity results, we wish to
understand how weIl the different algorithms perform in practice.
Accordingly, we implemented our framework +n the Vortex
optimizing compiler [Dean et ph 961 and applied all eight
algorithms to the collection of large Cecil and Java programs
described in Table 2. We assessed the algorithms according to the
following three criteria:

l What are the relative precisions of the sets of classes and the
induced call graph produced by the.various aIgorithms?

Y What are the relative costs of the various algorithms,
measured in terms of analysis time and space costs?

l How do the differences in precision translate.into differences
in the bottom-line effectiveness of client optimizations, in
terms of program execution speed and executable size?

The results of our experiments are shown in Figures 9 and IO.*
Each graph p1ots two pairs of two lines, one pair for bounded and
simply bounded linear-edge 00 O-CFA and one pair for bounded
and simply bounded (quadratic-edge) 00 D-CFA, with P varying
from 0 to Nalong thex-axis. When P=N, the pairs of lines converge
into linear-edge 00 0-CFA and classic 00 0-CFA, respectively. In
the degenerate case when P=O, bounded linear-edge 00 0-CFA is
equivalent to equivalence class analysis and simply bounded
linear-edge 00 0-CFA is equivalent to RTA. Subsection 3.1
discusses the measured time and space costs of analysis,
Subsection 3.2 discusses the relative abstract precision of the
different algorithms, ad Subsection 3.3 addresses the impact of
the results of interprocedurat class analysis on nm-time speed and
executable size. Ail experiments were performed on a Sun ultra-1
mode1 170.

3.1 Time and Space Costs

The first column of graphs shows the analysis time> in seconds.
Overall, asymptotic time complexity is a fairly good predictor of
actual analysis time. As program size increases, the time required
to perform instances of the two linear-time algorithmic families

* A longer version of this paper is available that contains the complete set
of numerical data in addition to the graphs [DeFouw et aL 971.

also increases linearly. The gap between the linear-time and the
quadratic-time algorithms widens as program size increases, The
larger constant values for P incur small increases in analysis timo
over P=O. For the four smallest programs, analysis time actually
decreases as P grows from 50 to N; in these progmms, the
additional precision of the P=Nconfigumtion significantly rcduccs
the number of reachable methods (and thus the number of nodes
and edges in the dataflow graph) which compensates for the
additional propagation across non-unified edges.

For the larger programs, the space cost of explicitly representing
the entire dataflow graph, especially when MergeCalls is false,
becomes prohibitive. The missing data points for the typechecker
and -6ompiler programs are due to excessive memory
consumption. Future work includes implementing a more spacc-
efficient representation of the datafiow graph, and investigating
mixing partially implicit representations of the dataflow graph with
node unification.

3.2 Abstract Precision

A number of metrics can be used to measure the abstract precision
of interprocedural class analysis. The second and third columns of
graphs present data for two of these metrics that are closely related
to the optimizations performed by Vortex using the results of
interprocedural class analysis.

l Perc’enfage ofsingIe!on ClassSets: Each node in the datatlow
‘graph has an associated set of classes. What fraction of these
nodes contain only a single class? This metric provides nn
abstract measure of the precision of interprocedural class
analysis and may be indicative of how useful the information
will be when it is consulted during intraprocedural class
analysis.

l Percentage ofsingleton CaIlees: A call graph can be built as
interprocedural antiysis proceeds. What fraction of nil
message sends in the program can be proved to only invoke
one target method? This metric is closely related to the
effectiveness of static binding (and subsequent inlining) of
message sends during intmprocedural compilation and
optimization.

Since it only maintains a singIe global set of classes, RTA does not
have any singleton class sets. The Steensgaard-style Equivnlencc
Class Analysis has the potential to do better than RTA, but only
succeeds in doing so on a subset of the benchmark programs; in the
l&ger Cecil programs it was unable to identify enough disjoint
regions’ of the dataRow graph to impact the results. Howcvcr,
modest increases in the value of P (up to about P=5) yield large
increases in the fraction of singleton dass sets. We observed
diminishing returns for larger constant vah~cs of P, but setling P=N
results in a large increase in the percentage of singleton class sets,
Increasing the number of edges from O(N) to O(N’) has a
negligiMe impact on the percentage of singleton class sets, Similar
trends also hold for the percentage of singleton callees metric, with
the slight complication that due to treeshaking the total number of
call sites actually decreases as P increases, and thus in a few casts
the percentage of singleton callees actually slightIy decreases as
algorithmic precision increases.

3.3 Bottom-Line Impact of Abstract Precision

To assess both the bottom-line impact bf interprocedural analyds
as well as how well the,abstract precision metrics described in the
previous subsection predict algorithmic effectiveness, WC
compared, for each benchmark and algorithm pair, the
performance of a base configuration that did not USC
interprocedural optimizations against a configuration performing
interprocedural optimizations building on the class sets and call
graphs produced by the algorithm. The base confiruratlon

232

Analysis Time % Singleton Sets % Singleton Cakes Execution Speedup Executable Size

025122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N

80 4 4 1.0 1.0

3 3
0.8 0.8

0.6 0.6
2 2

0.4 0.4

1 1
0.2 0.2

025122550N base0 2 5 122550N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550N

60

025122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550 N

0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N

025122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size

--D- Bounded 00 0-CFA + Bounded Linear-Edge 00 0-CFA
-d- Simply Bounded 00 0-CFA * Simply Bounded Linear-Edge 00 0-CFA

Figure 9: Experimental Results (Cecil)

233

Analysis Tfme % Singleton Sets % Singleton Cakes Execution Speedup Executable Size

80

02512255ON base0 2 5 122550N base0 2 5 122550 N base0 2 5 122550N base0 2 5 1225 50 N

0 2 5122550N base0 2 5 122550N

60

- 0 I.0 -0.0 I
base0 2 5 122550N base0 2 5 12255ON base0 2 5 122SSON

0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 122550N base0 2 5 12255ON

Analysis 73me % Singleton Sets % Singleton Callees Execution Speedup Executable Size

-D- Bounded 00 O-CFA + Bounded Linear-Edge 00 0-CFA
YA- Simply’Bounded 00 0-CFA u Simply Bounded Linear-Edge 00 0-CFA

F&we 10: Experimental Results (Java)

represents an aggressive combination of intraprocedural and
limited in&procedural optimizations which include:
intraprocedural class anaIysis [Johnson 88, Chambers h Ungar
901, hard-wired ctass prediction for common messages (CeciI
programs only) [Dentsch & Schiffman 84, Chambers & Ungar 891,
splitting [Chambers & Ungar 89], whole-program class hierarchy
analysis [Dean et aL ,951, cross-module inlining, static class
prediction [Dean et UL 96, Dean 961 and closure optimizations
(Cecil only). We applied these optimizations through our Vortex
compiler to produce C code, which we then compiled with gee -
02 to produce executable code.

The interprocedural configuration augments the base configuration
with inter-procedural analyses that enabled the intrapmcedural
optimizations in base to work better:

= Class analysis: Intraorocedural class analysis exploits the

unreachable during any program execution. The complcr
does not compile any unreachable procedures, often resulting
in substantial reductions both in code size and compile time,

The final two cobunns of graphs present application speedups and
executable sizes relative to the base configuration. Interprocedural
class analysis enabled speedups ranging from marginai
improvements to slightly over a factor of three speedup on one
benchmark. With the exception of the two smallest benchmarks,
the P=O configurations (ETA and Equivalence Class Analysis) did
not help run-time speed. Tncreasing the value of P beyond 0,
however, improved run-time speed, and as foreshadowed by the
abstract precision results, a fairly small P value (e.gO, 5) W~VIIS
sufficient to obtain most of the benefit available for constant values
of R The additional precision obtained in the P=N configurations
translated into additional oerformauce irnorovements over the
P=SO configurations. m

1

The least precise algorithm (ETA) was sufficient to enable most of
the reduction in executable size. Increasing values of P enable littlc
additional improvement over RTA for most benchmarks.

class sets &d the sets bf possible callee methods computed by
interprocedural analysis, enabling better optimization of
dynamically dispatched messages.

l Treeshaking: As a side-effect of constructing the call graph,
the compiler identifies those procedures which are

234

The number of edges, either O(N) or O(N2> depending on tbe value
of MergeCalls, did not have a significant impact on either
application speedup or executable size. Thus, tbe two linear-edge
algorithms are clearly preferable to their quadratic-edge
counterparts, since they obtain virtually identical bottom-line
results while consuming less analysis time and space. For the two
smallest benchmarks, the additional potential precision of the
bounded algorithms vs. the simply bounded algorithms had an
impact on bottom-line application performance, but there was not
a measurable difference for tbe majority of tbe benchmarks.

4 Future Work

We are currently investigating a number of extensions to our
framework for fast interprocedural class analysis. First, we are
studying how to adapt the idea of lazily merging nodes, present for
propagation, to apply to merging call site message nodes. Initially,
each call site could get its own separate message node, but use
merging to ensure that each method is reached by at most one call
site. This would ensure a linear bound on the number of edges in
the gmph while still enabling a fair amount of separation between
independent callers. This facility may be particularly helpful for
invocations of closures, where the shared apply formal and result
message nodes introduced eagerly when MergeCalls is true are
smearing the argument and result class sets of all closures with a
particular number of arguments together, while lazy merging of
these message nodes could often keep closures used in simple ways
isolated from one another.

Allowing a quadratic number of edges in the graph offers a kind of
context-sensitive or polyvariant analysis of the virtual generic
function that dispatches messages with a given name and number
of arguments to the appropriate member methods. More generally,
we wish to explore adding other more explicit forms of context-
sensitivity to our fast analyses. In other work we have examined the
impact of different context-sensitivity strategies on cost and
precision of algorithms building upon the cubic-time classic 00 O-
CFA algorithm [Grove et aZ. 97, but we have not considered
adapting those notions to the faster algorithms presented here, nor
have we considered ways of bounding the worst-case cost of
context-sensitivity.

The parameters to our framework allow placing bounds on
different aspects df the algorithm, to achieve better worst-case time
and space costs. However, each of these bounds was ensured
uniformly across the program on a local basis. An alternative
approach could more adaptively redistribute the total budget of
allowable work units so that parts of the graph that do not come
close to the original uniform bound can redistribute their unused
work units to be used in parts of the graph that are more
challenging. Similarly, some kinds of approximations are more
costly in final precision than others; for example, merging two
nodes within a method body probably has much less negative
impact on the quality of the final solution than does collapsing a
barrier node which may allow whole trees of methods to become
reachable that shouldn’t be, incurring much more work to process
the bodies of the otherwise unreachable methods.

5 Additional Related Work

Our framework integrates traditional propagation-based analyses
such as 0-CFA and type-inference-style, unification-based analyses
such as Steensgaard’s pointer analysis, as well as coping with
object-oriented method dispatch and supporting optimistic pruning
of unreachable classes and methods. Ashley presents an algorithm
framework parameterized by a context-sensitivity operator and an
operator for removing undesired precision of abstract values during
analysis [Ashley 96, Ashley 971. He instantiates his framework to

produce an algorithm that performs only a bounded amount of
propagation before falling back to a distinguished Unknown
abstract value, which resembles our simply bounded 00 O-CPA
O(N2> algorithm. Our framework additionally supports local
unification {Merge’lvithGlobal = false), linear-edge variants, and
object-oriented language features. Unlike our framework as
presented here, Ashley’s framework supports context-sensitive
analysis, and he examined combining his bounded algorithm with
1-CFA-style context-sensitivity.

Relatively few interprocedural control flow or class anaIyses have
been implemented and measured on substantial programs. In order
of increasing asymptotic complexity of the examined algorithms,
Bacon and Sweeney examined C+t programs up to 30,000 lines in
size, Steensgaard examined C programs up to 25,000 lines, Ashley
examined Scheme programs up to 30,000 lines in size, Agesen
examined Self programs up to 7,000 lines (although all but one
were 1,000 lines-or smaller), and Plevyak and Chien examined
Concurrent Aggregates programs up to 2,000 lines. Our
benchmarks span a range from several hundred to 60,000 lines in
size (Including library code), enabling us to assess the scalability of
the different algorithm instances beyond that examined by previous
work.

6 Conclusion

We have developed a parameterized algorithm for interprocedural
class analysis that describes a continuum of different algorithms
ranging in cost from O(N) to O(N3>. Our framework integrates both
propagation-style analysis and unification-style analysis, allowing
specific algorithms to mix the two methods to achieve desired time
costs and precision benefits. Since interprocedural class analysis is
very similar in spirit to control flow analysis, closure analysis, and
set-based analysis, and includes mechanisms found in (non-
standard) type inference systems, versions of our new algorithms
should be applicable in a wide range of interprocedural analysis
domains for languages with data-dependent control flow (e.g., first-
class functions and/or dynamic dispatching).

We have implemented tbis framework and measured its
effectiveness on a number substantial Cecil and Java programs.
The new bounded and simply bounded Iinear-edge 00 0-CFA
algorithms substantially improve the values of such abstract
metrics as the percentage of singleton class sets and singleton
callees, in comparison to previous linear- and near-linear-time
algorithms for interprocedural class analysis. This improvement in
abstract precision often translates into improvements in bottom-
line application speed and compactness.

Acknowledgments ,

We thank Bjame Steensgaard for several discussions on the topic
of near-linear-time interprocedural analysis. Michael Ernst, Todd
Millstein, and the anonymous POPL reviewers provided helpful
comments on the presentation in this paper. This research is
supported in part by an NSF grant (number CCR-9503741). an NSF
Young Investigator Award (number CCR-9457767), a grant from tbe
Office of Naval Research (contract number NOOOM-94-l-1136), an
Intel Foundation Graduate Fellowship, and gifts from Sun
Microsystems, IBM, Xerox PARC. Object Technology
International, Edison Design Group, and Pure Software.

235

References
[Agesen 95] Oie Agesen. The Cartesian Product Algorithm: Simple

and Precise Type Inference of Parametric Polymorphism. In
Proceedings ECOOP ‘95, Aarhus, Denmark, August 1995.
Springer-Verlag.

[Agesen ef al. 933 OIe Agesen, Jens PaIsberg, and Michael I.
Schwartzback. Type Inference of SelE Analysis of Objects
with Dynamic and MuItipIe Inheritance. In Proceedings
ECOOP ‘93, July 1993.

[AK et aL 891 Hassan A”it-Kaci, Robert Bayer, PatrickLincoln, and
Roger Nasr. Efficient Implementation of Lattice Operations.
ACM Trunsuctiuns on. Programming Languages ana’ Sys-
tems, 11(1):115-146, January 1989.

[Ashley 961 J. Michael AshIey. A Practical and FlexiiIe Flow Anal-
ysis for Higher-Order Languages. In Conference Record of
the 23rd ACM SIGPLAN-SIGACTSymposium on Principles
of Programming Languages, pages 184-194.

[Ashley 97] J. Michael Ashley. The Effectiveness of Flow Analysis
for Inlining. In Proceedings ofthe I997ACMSIGPUNIn-
ternational Conference on Functional Programming, pages
99-l 11, Amsterdam, The NetherIands, June 1997.

pacon & Sweeney 961 David F. Bacon and Peter F. Sweeney. Fast
Static Analysis of C+!- Virtual Function CalIs. In QUPS-
LA’96 Conference Proceedings, San Jose, CA, October
1996.

[Chambers & Ungar S9] Craig Chambers and David Ungar. Custom-
ization: Optimizing Compiler Technology for SELF, a Dy-
namically-Typed Object-Oriented Programming Language.
In Proceedings of the SlGpLAN ‘89 Conference on Pro-
gramming Language Design and implementation, pages
146-160, June 1989.

[Chambers & Ungar 901 Craig Chambers and David Ungar. Iterative
Type Analysis and Extended Message Splitting: Optimizing
Dynamically-Typed Object-Oriented Programs. In Pruceed-
ings of the ACM SIGPiAN ‘90 Conference on Programming
Language Design and implementation, pages 150-164, June
1990.

[Chambers 99 Craig Chambers. The Cecil Language: Specification
and Rationale. Technical Report TR-93-03-05, Department
of Computer Science and Engineering. University of Wash-
ington, March 1993.

[Dean 961 Jeffrey Dean. Whole Program Optimization of Object-
Orietied Languages. PhD thesis, University of Washington,
November 1996. TR-96-11-05.

[Dean et aI. 95] Jeffrey Dean, David Grove, and Craig Chambers.
Optimization of pbject-Oriented Programs Using Static
Class Hierarchy Analysis. In Proceedings ECOOP ‘95, Aar-
hus, Denmark, August 1995. Springer-Verlag.

[Dean et al. 961 Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily
Litvinov, and Craig Chambers. Vortex: An Optimizing
Compiler for Object-Oriented Languages. In OOPSLA’96
Conference Proceedings, San Jose, CA, Octobe+996.

[DeFouw era!. 971 Greg DeFouw, David Grove, and Craig Cham-
bers. Fast Interprocedural Class Analysis. Technical Report
TR-97-07-02, Department of Computer Science and Engi-
neering. University of Washington, July 1997. ’

peutsch & Schiffman 841 L. Peter Deutsch and. Allan M. Schiff-
man. Efficient ImpIementation of the Smalltalk- System.
In Conference Record of the Eleventh Annual ACM Sympo-
sium on PrincipIes of Programming Languages, pages 297-
302, January 1984.

Flanagan & Felleisen 91 Cormac Flanagan and Matthias Felleisen.
Componential Set-Based Analysis. In Proceedings of the

ACMSiGPUN ‘97 Conference on Programming Language
Design and implementation, pages 235-248.

[Gosling et al. 96j James Gosling, Bill Joy, and Guy Steele. TireJava
Language Specijkation. Addison-Wesley, Reading, MA,
1996.

[Grove et aL 971 David Grove, Greg DeFouw, Jeffrey Dean, and
Craig Chambers. Call Graph Construction in Object Orient-
ed Languages. In OOPSIA’97 Conference Proceedi~~gs, At-
lanta, GA, October 1997.

weintze & McAlIester 971 Nevin Heintze and David McAllester,
Linear-Time Subtransitive Control FIow Analysis, In Pro-
ceedings of the ACM SiGPLAN ‘97 Conference on Pro-
gramming Language Design and Implementation iPLD97],
pages 261-272.

[Heintze 941 Nevin Heintze. Set-Based Analysis of ML Programs. In
Proceedings of the ACM Conference on L&if and Fun&n-
al Programming ‘94, pages 306-317, Orlando, FL, Juno
1994.

[Henglein 911 Fritz Henglein. Efficient Type Inference for Hlghcr-
Order Binding-Time Analysis. In Functional Programrnirrg
and Computer Architecture, 199 I.

[Jagannathan & Weeks 951 Suresh Jagannathan and Stephen Weeks,
A Unified Treatment of Flow Analysis in Higher-Order Lan-
guages. In Conference Record of the 22nd ACM SJGPL&V-
SIGACT Symposium on Principles of Progranrnrlng Lun-
guuges, pages 393-407, January 1995.

[Johnson SS] Ralph Johnson. TS: AN Optimizing Compiler for
SmabIk. In Proceedings OOPSLA ‘88, pages 18-26, No-
vember 1988. Published as ACM SIGPLAN Notices, vol-
ume 23, number 11.

l?!ieIson & Nielson 971 Flemming Nielson and Hanne Riis Nielson,
Infinitary Control Flow Analysis: A Collecting Semdcs
for Closure Analysis. In Conference Record of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 332345, January 1997.

[Oxhfij etaL 921 Nicholas Oxhflj, 3ens Palsberg, and Michael I.
Schwartzbach. Making Type Inference Practical. In
0. Lehrmann Madsen, editor, Proceedings ECOOP ‘92,
LNCS 615, pages 329-349, Utrecht, The Netherlands, June
1992. Springer-Veriag.

Iplevyak & Chien 941 John Plevyak and Andrew A. Chien. Precise
Concrete Type Inference for Object-Oriented Languages. In
Proceedings OOPSLA ‘94, pages 324-340, Portland, OR,
October 1994.

[Shivers 881 Olin Shivers. Control-Flow Analysis in Scheme, In Pro-
ceedings of the SfGP.UN ‘88 Conference on Prograrntning
Language DesignandImpZementation, pages 164174, June
1988. *

[Shivers 911 Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie Mellon University, May
1991. CMU-(X-91-145.

[Steensgaard 961 Bjame Steensgaard. Points-to Analysis in Almost
Linear Time. In Conference Record of the 23rd ACM SIG-
PLAN-SIGACT Symposium on Principles of Prugramming
Languages [POP96], pages 32-41.

[Stefanescu & Zhon 941 Dan Stefanescu and Yuli Zhou. An Aqua-
tional Framework for the Flow Analysis of Higher-Order
Functional Programs. In Proceedings of the ACM Sywpo-
sium on Lisp and Functional Programming9 pages 19CL198,
June 1994.

Farjan 751 Robert E. Tarjan. Efficiency of a good but not lincnr set
union union aIgorithm. Journal of the ACM, 22(2):215-225,
1975.

236

