Fast Interprocedural Class Analysis

Greg DeFouw, David Grove, and Craig Chambers

Department of Computer Science and Engineering
University of Washington

{adefouw,grove,chambers}@ cs.washington.edu

Abstract

Previous algorithms for interprocedural control flow analysis of
higher-order and/or object-oriented languages have been described
that perform propagation or constraint satisfaction and take O(N3)
time (such as Shivers’s 0-CFA and Heintze’s set-based analysis), or
pnification and take O(Nc(V,N)) time (such as Steensgaard’s
pointer analysis), or optimistic reachability analysis and take O()
time {(such as Bacon and Sweeney’s Rapid Type Analysis). We
describe a general parameterized analysis framework that
integrates propagation-based and unification-based analysis
primitives and optimistic reachability analysis, whose instances
mimic these existing algorithms as well as several new algorithms
taking O(V), O(Na(N,N)), OV?), and ONPo(N,N)) timme; our O(Y)
and O{No{N,N)) algorithms produce more precise resuits than the
previous algorithms with these complexities. We implemented cur
algorithm framework in the Vortex optimizing compiler, and we
measured the cost and benefit of these interprocedurat analysis
algorithms in practice on a collection of substantial Cecil and Java
programs.

1 Introduction

Interprocedural class analysis computes a set of classes for each
program variable, such that each run-time value bound to a variable
is a direct instance of one of the classes computed for the variable.
A program cail graph is constructed as a side-effect of this analysis,
where the classes associated with the argements to a dynamically
dispatched message send call site determine the set of callee
methods that may be invoked by that call site. First-class functions
and call sites of computed functions can be analyzed using
interprocedural class analysis by treating each definition of a first-
class function (e.g., a lambda expression) as a class with a method
named apply, each evaluation of a first-class function definition
as a class instantiation operation, ard each application of a first-
class function as sending the apply message to the function
object.

A number of algorithms have been described for performing
interprocedural class analysis {perhaps under different names) in
object-oriented and higher-order languages. Most algorithms
incrementally construct the program’s dataflow graph (either
implicitly or explicitly) and propagate sets of classes forward
through the dataflow graph, iterating analysis in the face of loops
and recursion as new call edges are discovered and new edges are
added to the dataflow graph. A classic example of such an

Permission to make digital/hard copies of ail or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,

" to republish, to post on servers or o redistribute to Tists, requires specific

permission and/or fee.

POPL 98 San Diego CA USA
Copyright 1998 ACM 0-89791-979-3/98/ 01..83.50

222

algorithm is Shivers’s 0-CFA control flow analysis for Scheme
[Shivers 88, Shivers 91}, which in the worst case takes O(A°) time,
where N is the size of tie program. Heintze’s set-based analysis has
a similar flavor (and complexity) to 0-CFA [Heintze 94]. Many
more-expensive algorithms have been developed that include some
degree of context-sensitivity or polyvariance to achieve greater
precision {Oxhgj et al. 92, Agesen’et al. 93, Plevyak & Chien 94,
Stefanescu & Zhou 94, Agesen 95, Jagannathan & Weeks 95,
Nielson & Nielson 97], but less-expensive algorithms are relatively
rare. Steensgaard describes an O{No(N,A)) pointer analysis
algorithm that partitions the program’s dataflow graph using
unification in place of propagation, as in type inference
[Steensgaard 96); Steensgaard’s algorithm was inspired by
Henglein’s non-standard type-inference algorithm for higher-order
binding-time analysis [Henglein 913. Bacon and Sweeney describe
Rapid Type Analysis (RTA), an O(N) algorithm for optimistically
removing unreachable code, which performs no propagation or
unification at all [Bacon & Sweeney 96]. Heintze and McAllester
describe a subtransitive version of 0-CFA that requires only O(N)
time, but it applies only to statically typed programs with bounded-
size types {Heintze & McAllester 97].

We have developed a general framework for interprocedural class
analysis of both statically and dynamically typed programs that
integrates propagation and unification, A particular dataflow
analysis algorithm instantiates this general framewortk by
specifying when and how to apply unification in place of
propagation, and by specifying how many edges are used to
cornect call sites to callees. Instantiations of our framework
include 0-CFA, Steensgaard-style analysis, and RTA, as well as
interesting new algorithms with complexities of O(N?0(N.N)),
OV, OWo(N,N})) (which achieves better precision than
Steensgaard-style analysis with the same worst-case cost), and
O(NV) (which-achieves better precision than RTA with the same
worst-case cost). Section 2 describes our general framework and
defines and compares several algorithm instantiations.

We have implemented our algorithm framework and several
instantiations in the Vortex optimizing compiler [Dean ef al. 96].
‘We analyzed several large Java fGosling ef al. 96} and Cecil
[Chambers 93} programs using these instantiations. We measured
both the abstract precision and cost of the different algorithms as
well as the bottom-line execution speedup and executable space
savings. We found that the hypothetical improvements in precision
of the new algorithms over RTA and Steensgaard-style analysis did
occur in practice; resulting in improvements in bottom-line
application performance. Section 3 reports our ecxperimental
findings in detail. Section 4 identifies some areas of current and
future work, section 5 discusses additioral related work, and
section 6 concludes.

LA Wt AL)3 F A e L)

|
|
|
!
!
z‘
]
!
}
!
)

ClassDecl | VarDecl | MethodDecl
class ClassID { {InstVarDecl} }

method MsgID { {Formal} ¥ { {VarDecl} {Stmt} Expr }

Lvalue | FormalID | NewExpr | SendExpr

IS LU . AL 2 - -G - . *
Program ::= {Decl} {Stmt} Expr
Decl 1=
Classbecl i:=
InstVarxDecl ::= instvar InstVarID
VarDecl ::= var VariD
MethodDecl 1=
Formal ::= FormalID @ ClassID
Stmt := LValue := Expr
Expr =
NewExpr := new ClassID
SendExpr := send MsgID ({Expr})
LValue = VarID | InstVarLValue
InstVarLValue := Expr . InstVariID

Figure 1: Abstract Syntax for Example Object-Oriented Language

2 Analysis Framework

This section describes the general interprocedural analysis
algorithm that allows us to explore a range of fast interprocedural
class analyses. The next subsection introduces the example
langnage we use to illustrate our algorithm. Subsection 2.2
describes our dataflow graph representation, subsection 2.3
describes the parameterized analysis algorithm itself, and
subsection 2.4 analyzes its complexity. Subsection 2.5 describes
the analysis algorithms instantiable frem our framework.
Subsection 2.6 discusses extensions to make the analysis modular.
Subsection 2.7 describes how clients can extract information from
the analysis, and examines the complexity of extracting certain
kinds of information.

2.1 Source Language

Figure 1 shows the abstract syntax of a simple, dynamically typed,
object-orlented language that we will use to help explain our
framework." It includes declarations of global and local mutable
variables, classes with mutable instance variables, and
multimethods; assignments to global, Iocal, and instance variables;
and global, local, formal, and instance variable references, class
instantiation operations, and dynamically dispatched message
sends,

A multimethod has a list of immutable formals. Each formal is
specialized by a class, meaning that the method is only applicable
to message sends whose actuals are instances of the corresponding
specializing class or its subclasses. We assume the presence of a
root class from which all other classes inherit, and specializing on
this class allows a formal to apply to all arguments. Multimethods
of the same name and number of arguments are related by a partial
order, with one multimethod more specific than (i.e., overriding)
another if its tuple of specializing classes is more specific than the
other (pointwise). When a message is sent, the set of multimethods
with the same name and number of arguments is collected, and, of
the subset that are applicable to the actuals of the message, the
unique most-specific multimethod is selected and invoked (or an
error is reported if there is no such method).

Other realistic language features can be viewed as special versions
of these basic features. For example, regular procedures and
procedure calls can be modeled with methods none of whose
formals are specialized, and literals of a particular class can be
modeled with corresponding class instantiation operations (at Ieast
as far as class analysis is concerned). As described in the
introduction, a first-class lexically nested function can be modeled
with a class containing an apply method, assuming that some
suitable renaming of identifiers has taken place and that local and

* Terminals are in boldface, and braces enclose items that may be repeated
zero or more times, separated by commas.

223

formal variables in the lexically enclosing method can be
referenced from within the apply method.

‘We assume that the number of arguments to a method or message
is bounded by a constant independent of program size, and that the
static number of all other interesting program features (e.g.,
classes, methods, call sites, variables, statements, and expressions)

is O(N).
2.2 Dataflow Graph Representation

All the algorithms supported by our framework operate over a
dataflow graph, declared in pseudocode in Figure 2. Figures 4 and
5 contain the algorithm for constructing the initial dataflow graph
from the program being analyzed.

221 Nodesand Edges

The heart of the dataflow graph representation is a set of nodes
(instances of Node) linked by a set of directed edges (Edge). Each
source variable declaration, method declaration, class instantiation
operation, and message send in the program has an associated node
in the dataflow graph. Interprocedural class analysis computes a set
of classes for each node (the classes member of Node),
indicating for the corresponding variable or expression what
classes of objects may be stored in the variable or returned by the
expression at run time.

Two nedes are connected by a directed edge whenever classes that
reach the first node can flow directly to the second node. For
example, to model an assignment target := source, an edge
is added from the node corresponding to source to the node
corresponding to target. An edge may have an associated filter
class set (£ilter), which restricts propagation along that edge to
only classes contained in the filter set. Filters are used to restrict
propagation of classes to a formal argument node of a callee
method to those that are subclasses of the argument’s specializing
class (if given). Filters also can encode constraints ensured by
static type declarations or inference, which (given the
approximations that fast algorithms need to make) may make the
informatior computed by interprocedural class analysis more
precise.

222 Node Merging and Supernodes

A key feature of our framework is the ability to support merging
nodes in the dataflow graph to achieve faster analysis. Our
framework is parameterized by P, the maximum number of times a
node may be visited during pmpagatmn' P may be any integer
value between 0 and N, inclusive.t After a node has been visited P
times during analysis, it is merged with each of its successor nodes.

1 By NV here we mean some value that is O(N) but bigger than the number
of classes in the program.

class SuperNode {
rep: SuperNode;
live_nodes:set of Node;
dead_nodes:set of Node;
to_do:bag of ClassID;
done :bag of ClassID;

}

class Node {
super: SuperNode;
edges:set of Edge;
classes:set of ClassID;
counter:int;

}

class Edge {
source, target:Node;
filter:set of ClassID;

}

class BarrierEdge subclass of Edge {
barrier:Barrier;
blocked:bag of ClassID;
is_arg:bool;

3 -

class Barrier {
edges:list of BarrierEdge;
num_blocked: int;
method:MethodDecl;

enclosing supernode

set of outgoing edges

set of classes processed by this node, initially empty

number of times nade can be processed before collapsing, initially P

equivalence-class represeniative, initially itself

set of active nodes in supernade, initially a single node

set of collapsed riodes in supernode, initially empty

bag of classes remaining to be processed by supernade, initially empty
bag of classes that have been praocessed by supernode, initially empty

source and target nodes
filter of classes that can propagate across edge

the barrier of which this edge is a member
bag of classes blocked at this barrier edge, initially emply
whether this is an argument edge that can release the barrier

the edges in the barrier
the number of barrier edges that are still blocked
method that is guarded by the barrier

Figure 2; Dataflow Graph Representation

Each node records the remaining number of times it may be visited
during propagation (counter), initialized to P. If P=0, then a
node cannot be examined at all during propagation, causing nodes
to be merged eagerly as connecting edges are inserted.

We introduce supernodes to represent the set of nodes that have
been merged together {SuperiNode). Supernodes partition the
nodes of the graph. Initially, each node has its own unique
supernode, Merging a node with its successor nodes is
implemented using supemodes by unifying the supemodes
corresponding to the node and its successor nodes, putting all the
nodes together as members of the new unified supernode, and then
“collapsing” the original node out of the dataflow graph by moving
it to a separate inactive list in the unified supemode; Figure 3
illustrates merging nodes. Later, when a class is propagated to any
member of the unified supernode, it is immediately forwarded to all
of the active members of the supernode, skipping the inactive
members, ensuring that inactive nodes never incur additional work.
We use fast union-find data structures [Tarjan 75] fo support

quickly unifying two arbitrary supernodes and (lazily) updating all
the member nodes to refer to the new unified supernode (in
O(UoU,I)+F) time for U unifications and F find-representative
updates). To achieve unification and update in only O(U+F) time,
our framework allows algorithms to choose to always unify
supernodes with a distinguished global supernode; our
framework’s MergeWithGlobal parameter flag selects this
asymptotically faster thongh less precise behavior,”

Each supemode data structure refers (pethaps indircctly) to the
superncde representing the unified supernode (rep). The
representative supernode records up-to-date lists of active
(1ive_nodes) and merged {3ead_nodes) member nodes, and
conversely each node refers to its containing supernode (super)
(from which the representative supernode can be found). (The

* We include the MergeWithGlabal option mostly to simulate previous
algorithms such as RTA.

A4
o

2N
v 1+ deadnode

@&

After Merging x

.‘ supernode with two member nodes

After Merging y

Figure 3: Example of Node Merging

— o - - e oo IEARTUINE FIS . o) o o sn e b int AT RS N

o

RS e~ SRR A _ 3 LAY A - - B sl - £ Aas i = - P S X o T Fiagh

Nt L

P:int; parameter defining maximum number of times a node can be visited
MergeWithGlobal:bool; parameter defining whether nodes merge with the global supernode
MergeCalls:bool; parameter defining whether all senders of a given message are merged
nodes:set of Node; the set of nodes in the graph
supsrnodes:set of SuperNode; the set of representatives of supernodes in the graph
global: SuperNode; a special supernode, used for MergeWithGlobal
ConstructbPataflowGraph() {
make the global node and supernode:
global_node:Node := MakeNode();
global := global node.super;
create nodes for global variables, instance variables, method formals, and method results:
foreach ast: (VarDecl U InstVarDecl U MethodDecl U Formal) in top-level decls do
n:Node := MakeNodel(};
ast.corresponding_nocde := n;
create top-level statement and expression nodes and edges:
CreateNodesAndEdges ({}, top-level stmts, top-level expr);

CreateNcdesAndEdges (vars:list of VarDecl, stmts:1list of Stmt, expr:Expr) {
make the nodes:
foreach ast: (VarDecl v NewExpr U SendExpr) in wvars v stmts U expr do
ast.corresponding node := MakeNode();

add assignment edges:

foreach stmt:Stmt = [lv := e]] in stmts do
source:Node := CorrespondingNode(e);
target:Node := CorrespondingNode(lv);
MakeEdge {source, target):;

construct call edges:

foreach send:SendExpr = {send msg{e;,...,e,)] in stmts U expr do
foreach i in {1..n] do
actual;:Node := CorrespondingNode(e;):
node:Node := CorrespondingNode {send);
LinkSend{msg, n, [actual,,...,actual,], node);
update worklist and reachable classes from class instantiation nodes:
foreach new:NewExpr = [new c] in stmts U expr do
n:Node := CorxrespondinglNode (new);
AddToWorklist(n, c);
MakeClassReachable{c);
}
CrasateMethodNodesAndEdges (method:MethodDecl = [method msg(...) {vars stmts expr}]) {
if method has not been created yet then
CreateNodesAndEdges (vars, stmts, expr);

}
NakeNode (}—Node {
n:Node := new Node;
s:SuperNode := new SuperNode;
n.super := s; n.edges := {}; n.classes := {}; n.counter := P;

s.xep := s; s.live _nodes := {n}; s.dead nodes := {}; s.to_do := {}; s.done := (};
add n to nodes; add s to supernodes;
return n;

}

MakeEdge (source, target:Node) {
e:Edge := new Edge;

InitEdge (e, source, target);
InstallEdge(e);

}

InitBdge(e:Edge, souxce, target:Node) {
e,source := source; e.target := target;
e.filter := FilterFor(source) n FilterFor (target);

}

InstallEdge(e:Edge) (
add e to e.source.edges;
if e.source.counter = 0 then

CollapseNode {e.source) ;

}
MakeBarrierEdge (source, target:Node, is_arg:bool, b:Barrier)—BarrierEdge {
e:BarrierEdge := new BarrierEdge;
InitEdge(e, source, target);
e.is_arg := is_arg; e.barrier := b; e.blocked := {};
add e to b.edges;
return e;
}

MakeBarrier(n:int, m:MethodbDecl)-sBarrier {
b:Barrier := new Barrier;
b.edges := {}; b.num_blocked := n; b.method := m;
return b;

Figure 4: Dataflow Graph Construction Algorithm, Part 1

225

;
}
1
!
g
x
y
!
!
i
!
{
|

FilterFor{n:Node)—set of ClassID {
if n created from f in Formal = v @ c] then
return set of ¢ and its subclasses;
if n created from VarDecl or ImnstVarDecl or Method and
decl has static type T then
return set of all classes that conform to T;
return set of all classes;

CorrespondingNode {e:Expr)—Node {
if e in VarID = [varID] then
return CorrespondingVarDecl {varID).corresponding node;
if e in FormallID = [formalID] then
return CorrespondingFormal({formallD}.corresponding ncde;
if e in InstVarLValue = [[e’ . instVarID] then
return CorrespondingInstVarDecl (instVarID).corresponding_node;
return e.corresponding node;
}
LinkSend(msg:¥sgID, n:int, [actual,:Node,...,actual, :Node), result:Node) {
if MergeCalls then
({msg_formal,:Node, ... ,msg_£formal,:Node], msg_result:Node) :=
MakeSharedMessageNodes (msg, n);
foreach i in {1..n] do
MakeBdge (actual;, msg_formal;);
MakeEdge [msg_result, node);
else
RecordCallSite{msg, n, {actual,,... ,actual,l, result);
H
Table mapping message keys to shared message formal and result nodes, only for MergsCalls:
shared_message nodes: (MsgID,n:int}—([Node;,...,Node,], Node);
MakeSharedMessageNodes (msg:MsgID, n:int)—({{Node;,...,Node,l, Node} (
if shared_message_nodes(msg,n) not defined then
foreach i in [1..n] do
formal;:MsgNode := MakeNode();
result:Node := MakeNode(): :
RecordCallsite(msg, n, (formal,...,formal,], result);
shared_message_nodes{msg,n) := ([formal;,...,formal,l, result);
return shared message_nodes [msg,n);

RecordCallsSite (msg:MsgID, n:int, (actualy:Node,..., actual,:Node], result:Node} (
8o ihrough all the method declarations that this could map te, and create barrier links from call site to callee:
foreach method:MethodDecl = fmethod msg’ (£,@c;, ..., f,.8c,.) {...3}]
where msg’ = msg and n’ = n do
create a tuple of barrier edges linked together in a barrier:
barrier:Barrier := MakeBarrier(n, method);
foreach i in (1..n] do
formal;:Node := CorrespondingNode(Zf;);

formal_edge;:BarrierEdge := MakeBarrierEdge({actual;, formal;, true, barrier);
method_result:Node := CorrespondingNode (method); .
result_edge:BarrierEdge := MakeBarrierEdge{methed_result, result, false, barrier);

link barrier edges into graph:
foreach i in [1..n] do
if c; in live classes then
add to call site now:
InstallEdge (formal_edge;) ;
else
record for later processing:
add formal_edge; to delaved_edges{c;};
InstallEdge{result_edge);
H
live_classes:bitset of ClassID; sefof classes live in program
delayed_edges:ClassID—bag of BarrierEdge; table mapping classes 1o lists of delayed edges
MakeClassReachable{c:ClassID) {
if c € live_classes then
add ¢ to live_classes;
foreach edge:BarrierEdge in delayed_edges(c) do
Installidge (edge);
foreach c¢*:ClassID in superclasses of ¢ do
MakeClassReachable{c’};

}
Figure 5: Dataflow Graph Construction Algorithm, Part 2
to_do and done fields of a supemode are temporary state becomes reachable (and its body added to the dataflow graph) only
maintained during anatysis.) when, for each class C on which one of the method’s formals are

specialized, a class instantiation operation for C or a subclass of C
223 Optimistic Elimination of Unreachable Classes has been seen in code already known te be reachable. Several

and Procedures mechanisms are used in our dataflow graph representation to
. support optimistic pruning of unreachable code:
Our framework optimistically prunes unreachable classes and » A global set of reachable classes (live_classes) is

procedures, in the style of RTA {Bacon & Sweeney 96]. A method updated as class instantiation operations are processed

226

A ARG SR E W

send msg{b;, by) = ¥

method msg(f,@C;, £,@C;) {...}

method msg(g1@D,, g,@D;) {...}

MergeCalls = true

send msg(a;, aj) = X

send msg(b;, by) = ¥y

method msg(£,@C;, £,@C3) {...}

method msg(g;@D;, g-,@D;) {...}

MergeCalls = false

D shared message node ax

Jilter R

barrier

Figure 6: Example of Shared and Unshared Message Send Linkages

(MakeClassReachable). Whenever a class becomes
reachable, all of its superclasses are considered reachable.

‘When connecting the node for an actual parameter at a call site
to the cormesponding formal parameter of a callee (in
RecoxrdCallSite), only if the formal parameter’s
specializer class is reachable is the connection made. If not
reachable, then the edge is saved on a separate list indexed by
the specializer class (delayed_edges) to be entered into
the dataflow graph when the specijalizer class becomes
reachable (MakeClassReachable).

A method specialized on reachable classes is reachable from
a particular call site only if each of the actual-to-formal
argument edges for that call site has a nor-empty set of classes
that pass through the edge’s filter. To block the flow of classes
through any of a call site’s argument edges (and through the
reverse result edge) until all the argument edges have non-
empty sets of classes flowing successfully through them, we
link the argument and result edges into a barrier (Barriex).
A barrier records all the edges in the barrier (edges), the
method that it guards (method), and a count of the number of
members of the barrier that are still empty (num_blocked),
initialized to the number of arguments of the method. Each
time an argument edge in the barrier becomes non-empty, the
barrier’s blocked count is decremented. When it reaches zero,
the barrier is broken and classes freely pass through the edge.
A special kind of edge (BarrierEdge) is used for edges in
barriers. A barrier edge knows which barrier it is a member of
(baxxrier), and, until the barrier is broken, queues up each
class that flows through the edge on a list (bl.ocked) without
forwarding it to the edge’s target node. A flag (is_arg)
distinguishes barrier edges that may be waited upon to
become non-empty (the argument edges) from those that

simply are blocked by the emptiness of other edges (the result
edges).

224 Message Send Linkage

Our framework supports two approaches to connecting call sites to
callee methods. If the parameter flag MergeCalls is false, then each
actual parameter at each call site is linked to the corresponding
formals of all methods with the same name and number of
arguments as the call site, and the reverse for message results,
leading to O(N?) edges in the dataflow graph. If MergeCalls is true,
an intermediate tuple of nodes is created for each distinct message
name and number of arguments (shared_message_nodes),
one node per argument and result of the message. Actuals at call
sites are linked to the corresponding intermediate message formals,
which in turn are linked to the cormesponding formals of the
possible methods with matching name and number of arguments,
and the reverse for message results, leading to only O(N) edges in
the graph. Figure 6 illustrates these two situations.

2.3 Parameterized Analysis Algorithm

Pseundocode for our general algorithm for interprocedural class
analysis appears in Figures 7 and 8. The core of the algorithm
performs propagation of classes through the dataflow graph.
During the propagation phase, each supernode maintains an
associated bag of classes that have reached the supernode but have
not yet been processed by the supernode (to__do), as well as a bag
of classes that have been processed by the supemode (done); at
the end of analysis, the processed classes are used to determine the
final set of classes associated with all nodes in that supernode.

227

worklist:set of SuperNode;

ParformInterproceduralClassAnalysig () (
worklist := {);
ConstructhataflowGraph(};
ProcessWorklist();

ProcessWorklist() {
while worklist non-empty do
pop s:SuperNode off worklist;
ProcessSuperNodel(s);
}
ProcessSuperNode (s: SuperNode} {
while FindRep{s).to_do non-empty do
remove c¢:ClassID from FindRep(s).to_do;
add ¢ to FindRep(s).done;

foreach n:Node in FindRepl(s).live_nodes do

ProcessNode{n, cj;

the set of supernodes that have non-empty to-do lists

foreach n:Node in FindRep(s).live_nodeés.copy do

if n.counter = 0 then
CollapseNode(n} ;
}
ProcesgsNode (n:Node, c:ClassID} {
if ¢ ¢ n.classes then
add ¢ to n.classes;
foreach e:Edge in n.edges do
ProcessEdge{e, c);
decrement n.counter;
}
ProcessEdge{e:Edge, c:ClassID) {
if ¢ € e.filter then
if e is a BarrierBdge then
ProcessBarrierEdge(e, c)
else
AddToWorklist {e.target, c);
}
ProcessBarrierEdge({e:BarrierEdge, c¢:ClassID) {
if e.blocked is empty then
UnblockBarrierEdge (e} ;
if e.barrier.num_blocked = 0 then
AddToWorklist(e.target, c};
else .
add ¢ to e.blocked;
}
UnblockBarrierEdge (e:BarrierEdge} {

if e.barrier.num blocked > 0 and e.is_arg then

decrement e.barrier.num_blocked;
if e.barrier.num_blocked = 0 then
ReleaseBarrier{e.barrier);
1
ReleageBarrier(b:Barrier) {
CreateMethodNeodesandEdges (b.methed) ;
foreach e:BarriexrEdge in b.edges do
foreach c:ClassID in e.blecked do
AddToWorklist (e. target, c);

Figure 7: Interprocedural Class Analysis Algorithm, Part 1

Whenever a class instantiation node is created, the instantiated
class is added to the to-do list of the node’s supernode.

A global worklist is maintained holding all supernodes with non-
empty to-do lists (worklist). Our algorithm starls by
constructing the nodes and edges of the top-level variable
declarations, statements, and expressions in the program
{ConstructDataflowGraph), which adds supernodes to the
worklist for all the top-level class instantiation expressions. The
main loop of the propagation phase {(ProcessWorklist)
removes a supemode from the worklist and processes it. The
propagation phase ends when the worklist is empty (and hence ail
superncdes have empty to-do lists).

To process a supernode (ProcessSuperNode), each of the
classes on its to-do list are removed one-by-one, saved on the done
list, and forwarded to each of the unmerged member nodes for
processing. To process a class at a member node
(ProcessNede), if the class has not been seen at that node

228

before, then it is propagated along to each outgoing edge of the
node, and its counter of allowable future visits is decremented. To
propagate a class along an edge (ProcessEdge), if the class
passes the edge’s filter, then, if the edge is not a barrier edge, the
propagated class is added to the to-do list of the target node’s
supernode (AddToWorklist) which may cause the target
supernode o be added to the worklist.

If the edge is a barrier edge, then there are several steps to perform
(ProcessBarrierEdge). First, if this edge is an argument
edge that is part of a blocked barrier, and this is the first class to
reach this edge, then the barrier’s blocked count is decremented
(UnblockBarrierEdge). If this edge was the last edge
blocking the barrier, then the barrier is broken (creating the
guarded method’s dataflow graph if it hasn’t been created already),
and all suspended classes on all edges in the barrier are released
and propagated to their target supernodes (ReleaseBarriex),
After the effect on the barrder of a class passing the edge’s filter has

o PR —

e e—T e COAE g S TV ARy T ey e

RTINS 2. 7500 T

s T L Tt Al et it A TR A N L il el o

|
!

AddToWorklist (n:Node, .c:ClassiD) {
if FindRep(n.super).to_do is empty then
add FindRep(n.super) to worklist;
add ¢ to FindRep{n.super).to_do;
}
CollapseNode (n:Node) {
if MergeWithGlobal then
MergeSuperNodes (global, FindRep (n.super));
foreach e:Edge in n.edges do
CollapseEdge (e) ;
remove n from FindRep(n.super).live_ncodes;
add n to FindRep(n.super}.dead_nodes;

}
CollapseBdge{e:Edge) {
if e is a BarrierEdge then
CollapseBarrxierEdge(e); .
MergeSuperNodes (FindRep (e.source.super), FindRep(e.target.super));
} .
CollapseBarrierfdge(e:BarrierEdge) (
if e.barrier.num _blocked > 0 and e.is_arg then
decrement e.barrier.num_blocked;
if e.barrier.num_blocked = 0 then
ReleaseBarrier (e.barrier);
else
remove this edge from barrier
CreateMethodNodesAndEdges (e.barrier.method};
foreach c:ClassID in e.blocked do
AddToWorklist (e.target, c¢);
remove e from e.barrier.edges;
}
MergesuperNcedes (sl, s2:SuperNode) {
if sl # s2 then

rep:SuperNode := Union(sl, s2);

rep.live_nodes := sl.live_nodes U s2.live_nodes;
rep.dead_nodes := sl.dead_nodes U s2.dead_nodes;
rep.to_do := sl.to_do U s2.to_do; .
rep.done := sl.done UV s2.done;

sl.xrep := rep; s2.rep := rep;

if s1 = rep then remove s2 from supernodes
else remove =1 from supernodes;
}
Fast union-find data structure operations:
FindRep (s:SuperNode) ~SuperNode {
find and return the representative of the union, caching results for amortized O(c{N,N)) cost:
if s.rep # s then s.rep = FindRep(s.rep);
return s.rep;

Union{sl, s2:SuperNode)—SuperNode {
pick and return one of s1 or s2 to elect as the representative of the union; if either is global then choose it

Figure 8: Interprocedural Class Analysis Algorithm, Part 2

been computed, the class is either saved on the edge’s suspended 2.4 Complexity Analysis
classes list (if the barrier is still blocked), or propagated through the

barrier to the target supernode (if the barrier is broken). The main components of cost in our algorithm are constructing the
dataflow graph (lazily), propagating classes through the dataflow

If P<N, then a node’s counter may reach zero, at which point it will graph, and merging supemodes.

be merged with its successor edges. After passing a class off the to- 241 Core Data Stractures

do list to a supemnode’s unmerged member nodes (in

ProcessSuperNode), if a node’s counter has dropped to-zero, Before examining the complexity of the main components of the

the node is merged with its successors (CollapseNode). To do - algorithm, we Iist our assumptions about the properties of its core

this, the node’s supernode is merged with the supernodes of each of data structures:

the node’s successor nodes (CollapseEdge), and then the node The sets of classes SuperNode.live nodes and

is moved from the supernode’s list of unmerged members to the list SuperNode . dead_ncdes support " constant-time

of merged members, ensuring that the node will never again be initialization, set union, element addition, and element

examined during propagation. Merging two supernodes removal. To support these operations, our implementation

(MergeSuperNodes) selects one supernode to be the exploits the invariant that at each step in the algorithm every

representative of the union (using the fast union-find algorithm) T;sgc;%%tge;ug:;gogggéassseés '?‘l?luimtbfésgf:ettlsngil og:

a:nd combines thc.two supernodes’ n}ember node, to-c!o, and done repres'é-nted by linking SuperNodes t’ogether in doubly

lists. Some algorithms perform a simpler, asymptotically faster linked Ksts.

merging of supernodes, where all merging supernodes are first « The .bags of classes SuperNode. to_do

merged with the global supemode; the paramefer flag SuperNode.done, and BarrierEdge.blocked

MergeWithGlobal selects this behavior. If a blocked barrier edge is support constant-time initialization, union (ignoring

collapsed, that edge becomes unblocked. duplicates), and element addition. Similarly, the bags of edges

229

Node.edges and Barrier . edges support constant-time
initialization and element addition. Our implementation uses
singly linked, circular lists to represent bags.

+ The set of classes Node.classes supports constant-time
initialization, membership testing, and element addition.
Depending on the value of P, our implementation uses one of
two representations: if P is O(1) list sets are used, while if P
is O(N) bit sets are used. A list set can be initialized in
coastant time, and it supports constant-time membership
testing and element addition if the maximum size of the set is
bounded by a constant. A bit set supporis constant-time
membership testing and element addition, but requires O(¥}
time to initialize.

» The filter Edge. £iltex can be initialized in constant time
and supports constant-time membership testing. The filter can
be represented as a procedure to perform the subclass testing,
fol'r which there are several constant-time algorithms [AK et
al. 89].

242

In the worst case, all classes and methods in the original program
will be reachable, implying that O(%) ASTs must be represented in
the dataflow graph. Each kind of AST node contributes O{I) nodes
to the dataflow graph. With the exception of SendExpr, each kind
of AST also contributes O(1) edges. Let M (defined below) be an
upper bound on the number of edges contributed by a single
SendExpr AST. Then the dataflow graph contains O(A) nodes
and O(N+N-M) edges. Each edge in the datafiow graph can be
initialized in constant time (each edge has one filter, participates in
at most one barrier, and is added to one node’s bag of edges).
Depending on the value of P, each node takes either O(1) or O(N)
time to initialize. Thus the total time to construct the dataflow
graph is O(V-M) if P is O(1) and O(N%:N-M) if P is O(I).

The value of M is either O(1) or O(N) depending on the value of
MergeCalls

» If MergeCalls is true, then an intermediate tuple of nodes (one
tuple per message name) is inserted between callers and
callees. Exactly one edge per actual parameter is added
between a SendExpr and the corresponding node in the
intermediate tuple. Similarly, the return value of the call is
represented by adding one edge from the tuple’s return value
to the SendExpr. In addition, the intermediate tuples
introduce edges connecting intermediate nodes to method
formal parameters and returns; each formal parameter and
method return will bave exactly one such edge. These
additional O(V) edges are can be amortized over the O(iV)
SendExprs in the program, thus M is O(1). This results ina
total of O(V) edges in the dataflow graph.

* If MergeCalls is false, then each SendExpr may be directly
connected to O(N) target methods, causing M to be O(N). This
results in a total of O(N?) edges in the dataflow graph.

Figure 6 illustrated these two cases.

Dataflow Graph Construction

To support lazy construction of the program dataflow graph,
additional overhead is incurred to track live_classes and
delayed_edges. Since a class can only become reachable once,
this overhead takes O(N+-N-M) time.

243

If there is no SuperNode merging, the core unit of work in the
propagation phase can be viewed from the perspective of a class

Propagation

* We assume that the maximum number of actual parameters at a call site
and the maximum number of formal parameters in a method declaration
is a constant independent of program size.

230

flowing across an edge: start with a class that is new to the edge’s
source node {at the call to ProcessEdge in ProcessiNode),
and attempt to propagate it through the edge’s filter. If it passes the
filter, check if this is a blocked barrier edge, and if so suspend the
class at the barrier edge, later to be released when the barrer is
broken. Finally, add the class fo the target supernode’s to-do Ist,
fater remove it from the target supernode’s to-do list, and then test
whether it is new to the supernode’s one target node {ending at the
same loop of calls to ProcessEdge). Each of these steps takes
constant time. By ensuring that each class is processed across an
edge at most once (by maintaining Node.classes), the total
amount of time for this edge propagation is O(E-C), where E is the
number of edges and C is the number of classes. C is proportional
to the program size (N), and E is O(N-M) as determincd above
(either O(N) or O(ND), depending on the value of MergeCalls),
leading to a total cost for edge propagation of O(N2M) time. The
time to visit each supemodc on the worklist and start the edge
propagation process is O(N), leading to an overall time for
propagation of O(N2-M).

244 Unification

If P < N, then some nodes may be collapsed during propagation or
graph construction. This affects the complexity of analysis in three
ways: the number of times a node {and consequently its successor
edges) may be visited is reduced from N to P, additional work to
collapse nodes is incurred, and the calls to FindRep may take
more time due to collapsing.

+ Instead of using the Node.classes set to bound the
number of times a node is visited by the number of classcs
(O()), node collapsing bounds the number of times a node is
visited by P. Under this model, the constant-time unit of work
sequence is slightly shifted, since now multiple nodes may be
in a supemode; start with considering a member node of a
supernode for a particular class at the call to PxrocessNode
inside ProcessSuperNode, then follow the class flowing
through the node and an edge through to being added and then
later removed from a supernode’s to-do list, ending at the
same loop of calls to ProcessNode, Bach of these constant-
time units of work may only be done P times per edge. Using
P in place of one N in the time for edge propagation gives a
more general complexity assessment of O(P-N-M),

* Each call to MergeSuperNodes and CollapseEdge
takes constant time, and each call to CollapseNode takes
constant time ignoring the per-edge work subsumed by
CollapseEdge, leading to an overall cost for node
collapsing of O{N-M) time.

"o If MergeWithGlobal is false, then the calls to FindRep can
now take more than constant time, but overall, given a fast
union-find data structure implementation of supernodes, the
additionat cost for all of the FindRep calls is O(No(N,\)). If
MergeWithGlobal is true, however, all of the supernodes
merge directly with the global supernode, preserving the
constant-time behavior of FindRep.

245 Svmmary

Overall, the complexity of the entire graph construction and
propagation phase is thus O(P-N-M + N-M), plus O(N-Ma(N, N} if
P<N and MergeWithGlobal is false. By setting P to some constant,
new algorithms with worst-case time complexities of O(V), ONVZ),
ONa(N.NY), and O(Nzot(N,M) result, depending on the choices for
MergeWithGlobal and MergeCalls.

T AT TN [R TP, ermwcherepTpe-wqly SN %y T e, L

.

n

Table 1: Framework Instantiations

Algorithms P MergeWithGlobal MergeCalls Complexity
Classic 00 0-CFA N n/a false o)
Linear-Edge 00 0-CFA N n/a true o
Bounded 00 0-CFA o false false O(N*a(N,N))
Bounded Linear-Edge 00 0-CFA om false troe 0NN, N)
Simply Bounded OO 0-CFA oW true false ow?
Simply Bounded Linear-Edge OO 0-CFA o(1) true true o)
Equivalence Class Analysis 0 false true O(Na(N,N)
RTA 0 true true ow)

2.5 Instantiations of the Framework

Table 1 identifies several algorithms that are instantiations of our
framework; boldface rows are new algorithms.

Classic OO 0-CFA is the standard cubic-time, flow-sensitive but
context-insensitive interprocedural class analysis. Equivalence
Class Analysis is Steensgaard-style near-linear-time division of the
program’s dataflow graph into disjoint subgraphs, extended to
work in the object-oriented context. RTA is Bacon and Sweeney'’s
Rapid Type Analysis algorithm.

The five other algorithms represent new interesting points in the
analysis design space. The three Linear-Edge algorithms bound the
number of call edges, dropping a factor of O(N) from the
complexity of the other (quadratic-edge) algorithms. The two
Bounded algorithms use supernodes and merging to ensure only a
constant number of visits per node, dropping another factor of
O(N) from the complexity (but adding back in the near-constant
O(c(N,N)) to pay for the overhead of merging). The two Simply
Bounded algorithms avoid this extra O(a(N,N)) overhead by
merging all supernodes with the distinguished global supernode.
The Bounded Linear-Edge algorithm and the Steensgaard-style
Equivalence Class Analysis have the same near-linear worst-case
time complexities, but the Bounded Linear-Edge algorithm always
provides solutions that are at Ieast as precise and often more precise
than Equivalence Class Analysis. Similarly, the Simply Bounded
Linear-Edge algorithm incurs the same linear-time complexity but
delivers precision at Ieast as good and often better than RTA.

2.6 Analyzing Program Components

As described and implemented, our analysis framework assumes it
has access to the entire program, Our framework could be extended
to support more modular analyses by allowing components of
programs to be modeled by summary dataflow graphs.
Components whose source code is unavailable can then be
analyzed as long as a summary dataflow graph is available. (The
summary dataflow graph need not be precise, merely a sound
approximation of the “true” dataflow graph.) Furthermore,
components can be partially pre-analyzed, starting from known
sources of class information within the component, with the
resulting partially propagated and/or collapsed dataflow graph
being used in the analysis of containing programs. This would lead
to akind of hierarchical, component-wise analysis of programs that
may help the analyses scale to larger programs, along the lines of
Flanagan and Felleisen’s componential set-based analysis
[Flanagan & Felleisen 97].

231

2.7 Clients of the Analysis

Our analysis provides information to clients in two forms. The
program call graph can be constructed in time proportional to the
number of edges by recording when barriers along call edges are
broken; each such broken barrier corresponds to an edge in the
program call graph. Additionally, the done list of the supernode of
each variable’s node records the bag of classes that may be stored
in that variable. A number of interesting optimizations can exploit
this information in only constant time per access, inciuding:

« checking whether only one method can be called from a given
call site and if so replacing that dynamically dispatched
message with a direct procedure or inlined code,

* skipping compilation of any methods not called from any call
site in the call graph (treeshaking).

Some other uses of the information may require more work,
however. For example, to support constant-time testing of whether
a particular class is 2 member of a particular variable’s set of
possible classes, to optimize run-time class tests for instance, the
done bag for the variable’s supernode needs to be converted into a
set, which requires quadratic time in the worst case for algorithms
with MergeWithGlobal false and P<N. (Algorithms where
MergeWithGlobal is true can simply use the set of live classes as
the classes set for the distinguished global node, and uncollapsed
nodes maintain the set of classes reaching them directly.)
Consequently, the bounded linear-edge algorithm, with asymptotic
complexity O(No(V,N)), may not be appropriate for clients which
require this per-variable set-of-classes information.

Other anthors of sub-quadratic algorithms have also encountered
difficulties providing useful information to clients. For example,
Steensgaard presents a near-linear-time algorithm for performing
pointer analysis, but to completely query the resulting data
structure to compute all points-to relationships among variables
wonld require quadratic {ime [Steensgaard 96]. But if orly a subset
of the possible points-to relationships are of interest, then less time
may be incurred in a particular algorithm. Similarly, Heintze and
McAllester describe subtransitive control flow analysis which
constructs an encoded representation of the 0-CFA dataflow graph
in linear time (for a restricted language model with function types
bounded in size by a constant), but performing the transitive
closure to compute the full explicit dataflow graph requires
quadratic time [Heintze & McAllester 97]. They offer other queries
of their encoded representation, such as computing the call sites
which have only one callee, which require only linear time.

Table 2: Benchmark Applications

Program | Lines® Description
richards 400 | Operating systems simnlation
deltablue 650 | Incremental constraint solver

§ instr sched 2,400 { Global instruction scheduler
typechecker 206,000] Cecil typechecker
compiler 50,000 § Old version of Vortex compiler
toba 3,900 | Java bytecode to C translator

§ €spresso 13,800 { Fava source to bytecode translator”
javac 25,550 { Java source to bytecode translator®

a. Excluding standard libraries. All Cecil programs are compiled with
an 11,000-line standard library. All Java programs include a
16,000-line standard {ibrary.

b. The two Java translators have no common code and were
developed by different people.

3 Experimental Assessment

In addition to asymptotic complexity results, we wish to
understand how well the different algorithms perform in practice.
Accordingly, we implemented our framework ‘in the Vortex
optimizing compiler [Dean et @l. 96] and applied all eight
algorithms to the collection of large Cecil and Java programs
described in Table 2. We assessed the algorithms according to the
following three criteria:

» ‘What are the relative precisions of the sets of classes and the
induced call graph produced by the various algorithms?

* What are the relative costs of the various algorithms,
measured in terms of analysis time and space costs?

» How do the differences in precision translate into differences
in the bottom-line effectiveness of client optimizations, in
terms of program execution speed and execntable size?

The results of our experiments are shown in Figures 9 and 10.”
Each graph plots two pairs of two lines, one pair for bounded and
simply bounded linear-edge OO 0-CFA and one pair for bounded
and simply bounded {quadratic-edge) OO 0-CFA, with P varying
from O to N along the x-axis. When P=N, the pairs of lines converge
into linear-edge OO 0-CFA and classic OO 0-CFA, respectively. In
the degenerate case when P=0, bounded tinear-edge OO 0-CFA is
equivalent to equivalence class analysis and simply bounded
linear-edge GO O-CFA is equivalent to RTA. Subsection 3.1
discusses the measured time and space costs of analysis,
Subsection 3.2 discusses the relative abstract precision of the
different algorithms, and Subsection 3.3 addresses the impact of
the results of interprocedural class analysis on run-time speed and
executable size. All experiments were performed on a Sun Ultra-1
model 170.

3.1 Time and Space Costs

The first column of graphs shows the analysis times in seconds.
Overall, asymptotic time complexity is a fairly good predictor of
actual analysis time. As program size increases, the time required
to perform instances of the two linear-time algorithmic families

* A longer version of this paper is available that contains the complete set
of numerical data in addition to the graphs [DeFouw et al. 97).

also increases linearly. The gap between the linear-time and the
quadratic-time algorithms widens as program size increases. The
larger constant values for P incur small increases in analysis time
over P=0. For the four smallest programs, analysis time actually
decreases as P grows from 50 to N; in these programs, the
additional precision of the P=N configuration significantly reduces
the number of reachable methods (and thus the number of nodes
and edges in the dataflow graph} which compensates for the
additional propagation across non-unified edges,

For the larger programs, the space cost of explicitly representing
the entire dataflow graph, especially when MergeCalls 1s false,
becomes prohibitive. The missing data points for the typechecker
and compiler programs are due o excessive memory
consumption. Future work includes implementing a more space-
efficient representation of the dataflow graph, and investigating
mixing partially implicit representations of the dataflow graph with
node unification.

3.2 Abstract Precision

A number of metrics can be used to measure the abstract precision
of interprocedural class analysis. The second and third columns of
graphs present data for two of these metrics that are closely related
to the optimizations performed by Vortex using the results of
interprocedural class analysis.

s Percentage of Singleton Class Sets: Bach node in the dataflow
"graph has an associated set of classes. What fraction of these
nodes contain only a single class? This metric provides an
abstract measure of the precision of interprocedural class
analysts and may be indicative of how useful the information
will be when it is consulted during intraprocedural clags
analysis.

* Percentage of Singleton Callees A call graph can be built as
interprocedural analysis proceeds. What fraction of aff
_ message sends in the program can be proved to only invoke
one target method? This metdc is closely related to the
effectiveness of static binding (and subsequent inlining) of
message sends during intraprocedural compilation and
optimization.

Since it only maintains a single global set of classes, RTA does not
have any singleton class sets. The Steensgaard-style Equivalence
Class Analysis has the potential to do better than RTA, but only
succeeds in doing so on a subset of the benchmark programs; in the
larger Cecil programs it was unable to identify enough disjoint
regions' of the dataffiow graph to impact the results. However,
modest increases in the value of P (up to about P=5) yicld large
increases in the fraction of singleton class sets., We obscrved
diminishing returns for 1arger constant values of P, but setting P=N
results in a large increase in the percentage of singleton clnss sets.
Increasing the number of edges from O{N) to O(N Y has a
negligible impact on the percentage of singleton class sets, Similar
trends also hold for the percentage of singleton callees metric, with
the slight complication that due to treeshaking the total number of
call sites actually decreases as P increases, and thus in a few cascs
the percentage of singleton caliees actually slightly decreases as
algorithmic precision increases.

3.3 Bottom-Line Impact of Abstract Precision

To assess both the bottom-line impact of interprocedural analysis
as well as how well the abstract precision metrics described in the
previous subsection predict algorithmic effectiveness, we
compared, for each benchmark and algorithm palr, the
performance of a base configuration that did not usec
interprocedural optimizations against a configuration performing
interprocedural optimizations building on the class sets and call
graphs produced by the algorithm. The base confieuration

. . ey -
et T ——C ino e AL Tl SLPUPREC TR e e (T o S N Y

E
{
»
r
J

richards

deltablue

instr sched

typechecker

compiler

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size
80 — 80 — 15~ 1.0
b = o ST
0.6
4 - 40— 40 5
0.4
0.5 -
2- 20 - 20— 02
0 0 0 0.0 0.0
02 5122550 N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N
80— 80 4- 1.0
10 B
fggz 60 60 3 08
8 ~
0.6
6— 40 40 2
04 -]
4 - ,
20— 20 - 1
2 0.2
0 0 0 0 0.0
02 5122550 N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N
80— 80— 15— 1.0
60 —
60— 60— Lo 08
1.
40 — 0.6 —
40 — 40—
05 0.4 —
20 .
**M 27 7 02
0 0 0 0.0 0.0
02 5122550 N base0 2 5 122550 N based 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N
80 - 80 ~ 1.5 - 1.0
07 ,f hﬂ—x—ax—x—x*
A S0 60 W 08
400 -] 10 0.6
40 - 40
05 04
200 -] 5
20 - 20 - 02
0- 0 0 0.0 0.0
0 2 5122550 N base0 2 5 122550 N baseG 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N
80 — 80— 15 1.0
250 -1 K
0.8
- 60 60 |
200 Lo W g
150 40— 40 W
100 - 05 0.4
50— 207 204 02
0 0 0 0.0 0.0

025122550
Analysis Time

base0 2 5 122550 N

base0 2 5 122550 N

base0 2 5 122550 N

base0 2 5 122550 N

% Singleton Sets % Singleton Callees Execution Speedup Executable Size

—— Bounded OO 0-CFA
~—#A— Simply Bounded OO 0-CFA

—+— Bounded Linear-Edge OO 0-CFA
—— Simply Bounded Linear-Edge OO 0-CFA

Figure 9: Experimental Results (Cecil)

233

i
i
i
|
i
i
i
!
i
1
1
PR
]
!
i
i
i

Analysis Time % Singleton Sets % Singleton Callees Execution Speedup Executable Size
40] E 80 — 80 — 154 1.0 -m
60 =] 60 -1 . 60 - 0.8]
1.0 st
=] 0.6 -
S j..—u—u—H—(')
8 404 40 — 40
_ . . 0.4 -
05
20 20 20 02
0 0 0 0.0 00
02 5122550N base0 2 5 122550N base0 2 5 122550 N base0 2 5 122550 N base0 2 5 122550 N
80 80 = 1.5 1.0 -m
m ;l 0.8 -
o 100 0 601 10 s RN
w B
4 0.6 4
& 40— 40 - o
° 50 0.5 7
20 20 02]
0 0 0 i 0.0 0.0
0 25122550 N baseD 2 5122550 N baseD 2 5 122550 N baseD 2 5 122550 N base® 2 5 122550 N
200 - EA"M'E‘B’E 80 80 1.5 1.0 %
156 — % 60 — 60 = 10 e ; 0.8
§ ’ 0.6 -
8 100~ 40 — 40 — .
- 04 —
._W' 05 -
50 - 20 20 02 -]
0 0 0 0.0 0.0

0 2 5122550 N base0 2 5 122550 N

Analysis Time

—0~-— Bounded OO 0-CFA
~—#— Simply Bounded OO 0-CFA

baseD 2 5 122550 N

base® 2 5 122550 N base0 2 5 122550 N

% Singleton Sets % Singleton Callees Execution Speedup Executable Size

—— Bounded Linear-Edge 00 0-CFA
—»— Simply Bounded Linear-Edge OO 0-CFA

Figure 10: Experimental Results (Java)

represents .an aggressive combination of intraprocedural and
limited interprocedural optimizations which include:
intraprocedural class analysis {Johnson 88, Chambers & Ungar
90], hard-wired class prediction for common messages {Cecil
programs only) [Deutsch & Schiffinan 84, Chambers & Ungar 89],
splitting [Chambers & Ungar 89), whole-progzam class hierarchy
analysis [Dean et al 95}, cross-module inlining, static class
prediction [Dean et al. 96, Dean 961 and closure optimizations
(Cecil only). We applied these optimizations through our Vortex
compiler to produce C code, which we ther compiled with gcc -
02 to praduce executable code.

The interprocedural configuration augments the base configuration
with interprocedural analyses that enabled the intraprocedural
optimizations in base to work better:

» Class analysis: Intraprocedural class analysis exploits the
class sets and the sets of possible callee methods computed by
interprocedural analysis, enabling better optimization of
dynamically dispatched messages.

» Treeshaking: As a side-effect of constructing the call graph,
the compiler identifies those procedures which are

234

uareachable during any program execution. The compiler
does not compile any unreachable procedures, often resulting
in substantial reductions both in code size and compile time,

The final two columns of graphs present application speedups and
executable sizes relative to the base configuration. Interprocedural
class analysis enabled speedups ranging from marginal
improvements to slightly over a factor of three speedup on one
benchmark. With the exception of the two smallest benchmarks,
the P=0 configurations {RTA and Equivalence Class Analysis) did
not help run-time speed. Increasing the value of P beyond 0,
however, improved run-time speed, and as foreshadowed by the
abstract precision results, a fairly smalt P value {e.g.,, 5) was
sufficient to obtain most of the benefit available for constant values
of 2. The additional precision obtained in the P=N configurations
translated into additional performance improvements over the
P=50 configurations.

The least precise algorithm (RTA) was sufficient to enable most of
the reduction in executable size. Increasing values of P enable little
additional improvement over RTA for most benchmarks.

. T B " % et Pyt ¢ 04 i e Tt AT Nty A ot Wt AL A

1
R S BT 7. A O OO

The number of edges, either O(N) or O(Nz) depending on the value
of MergeCalls, did not have a significant impact on either
application speedup or executable size. Thus, the two linear-edge
algorithms are clearly preferable to their quadratic-edge
counterparts, since they obtfain virtually identical bottom-line
results while consuming less analysis time and space. For the two
smallest benchmarks, the additional potential precision of the
bounded algorithms vs. the simply bounded algorithms had an
impact on bottom-line application performance, but there was not
a measurable difference for the majority of the benchmarks.

4 Future Work

We are currently investigating a number of extensions to our
framework for fast interprocedural class analysis. First, we are
studying how to adapt the idea of lazily merging nodes, present for
propagation, to apply to merging call site message nodes. Initially,
each call site could get its own separate message node, but use
merging to ensure that each method is reached by at most one call
site. This would ensure a linear bound on the number of edges in
the graph while still enabling a fair amount of separation between
independent callers. This facility may be particulady helpful for
invocations of closures, where the shared apply formal and result
message nodes introduced eagerly when MergeCalls is true are
smearing the argument and result class sets of all closures with a
particular number of arguments together, while lazy merging of
these message nodes could often keep closures used in simple ways
isolated from one another.

Allowing a quadratic number of edges in the graph offers a kind of
context-sensitive or polyvariant analysis of the virtual generic
function that dispatches messages with a given name and number
of arguments to the appropriate member methods. More generally,
we wish to explore adding other more explicit forms of context-
sensitivity to our fast analyses. In other work we have examined the
impact of different context-sensitivity strategies on cost and
precision of algorithms building upon the cubic-time classic OO 0-
CFA algorithm [Grove et al. 97], but we have not considered
adapting those notions to the faster algorithms presented here, nor
have we considered ways of bounding the worst-case cost of
context-sensitivity.

The parameters to our framework allow placing bounds on
different aspects of the algorithm, to achieve better worst-case time
and space costs. However, each of these bounds was ensured
uniformly acress the program on a local basis. An alternative
approach could more adaptively redistribute the total budget of
allowable work units so that parts of the graph that do rot come
close to the original uniform bound can redistribute their unused
work units to be used in parts of the graph that are more
challenging. Similarly, some kinds of approximations are more
costly in final precision than others; for example, merging two
nodes within a method body probably has much less negative
impact on the quality of the final solution than does collapsing a
barrier node which may allow whole trees of methods to become
reachable that shouldn’t be, incurring much more work to process
the bodies of the otherwise unreachable methods.

5 Additional Related Work

Our framework integrates traditional propagation-based analyses
such as 0-CFA and type-inference-style, unification-based analyses
such as Steensgaard’s pointer analysis, as well as coping with
object-oriented method dispatch and supporting optimistic pruning
of unreachable classes and methods. Ashley presents an algorithm
framework parameterized by a context-sensitivity operator and an
operator for removing undesired precision of abstract values during
analysis [Ashley 96, Ashley 97]. He instantiates his framework to

235

produce an algorithm that performs only a bounded amount of
propagation before falling back to a distinguished Unknown
abstract value, which resembles our simply bounded OO 0-CFA
O(N?) algorithm. Our framework additionally supports local
unification (MergeWithGlobal = false), linear-edge variants, and
object-oriented language features. Unlike our framework as
presented here, Ashley’s framework supports context-sensitive
analysis, and he examined combining his bounded algorithm with
1-CFA-style context-sensitivity.

Relatively few interprocedural control flow or class analyses have
been implemented and measured on substantial programs. In order
of increasing asymptotic complexity of the examined algorithms,
Bacon and Sweeney examined C++ programs up to 30,000 lines in
size, Steensgaard examined C programs up to 25,000 lines, Ashley
examined Scheme programs up to 30,000 lines in size, Agesen
examined Self programs up te 7,000 lines (although all but one
were 1,000 lines-or smaller), and Plevyak and Chien examined
Concurrent Aggregates programs up to 2,000 lines. Our
benchmarks span a range from several hundred to 60,000 lines in
size (including library code), enabling us to assess the scalabifity of
the different algorithm instances beyond that examined by previous
work.

6 Conclusion

‘We have developed a parameterized algorithm for interprocedural
class analysis that describes a continuum of different algorithms
ranging in cost from O(N) to 0(N3). Our framework integrates both
propagation-style analysis and unification-style analysis, allowing
specific algorithms to mix the two methods to achieve desired time
costs and precision benefits. Since interprocedural class analysis is
very similar in spirit to control flow analysis, closure analysis, and
set-based analysis, and includes mechanisms found in (non-
standard) type inference systems, versions of our new algorithms
should be applicable in a wide range of interprocedural analysis
domains for languages with data-dependent control flow (e.g., first-
class functions and/or dynamic dispatching).

We have implemented this framework and measured its
effectiveness on a number substantial Cecil and Java programs.
The new bounded and simply bounded linear-edge OO (0-CFA
algorithms substantially improve the values of such abstract
metrics as the percentage of singleton class sets and singleton
callecs, in comparison to previous linear- and near-linear-time
algorithms for interprocedural class analysis. This improvement in
abstract precision often translates into improvements in bottom-
line application speed and compactness.

Acknowledgments .

We thank Bjarne Steensgaard for several discussions on the topic
of near-linear-time interprocedural analysis. Michael Ernst, Todd
Millstein, and the anonymous POPL reviewers provided helpful
comments on the presentation in this paper. This research is
supported in part by an NSF grant (number CCR-9503741), an NSF
Young Investigator Award (number CCR-9457767), a grant from the
Office of Naval Research (contract number N0O0014-94-1-1136), an
Intel Foundation Graduate Fellowship, and gifts from Sun
Microsystems, IBM, Xerox PARC, Object Technology
International, Edison Design Group, and Pure Software.

2N

.t
-

PP AT i iy
AT H

Pt

References

[Agesen 95] Ole Agesen. The Cartesian Product Algorithm: Simple '

and Precise Type Inference of Parametric Polymorphism. In
Proceedings ECOOP ’95, Aarhus, Denmark, August 1995.
Springer-Verlag.

[Agesen et al. 53] Ole Agesen, Jens Palsberg, and Michael L.
Schwartzback. Type Inference of Self: Analysis of Objects
with Dynamic and Multiple Inheritance. In Proceedings
ECOOP "93, Tuly 1993.

[AK et al. 89] Hassan A"it-Kaci, Robert Boyer, Patrick Lincoln, and
Roger Nasr. Efficient Implementation of Lattice Operations.
ACM Transactions on Programming Languages and Sys-
tems, 11(1):115-146, January 1989.

[Ashley 96} J. Michael Ashley. A Practical and Flexible Flow Anal-
ysis for Higher-Order Languages. In Conference Record of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 184-154.

[Ashley 971 J. Michael Ashley. The Effectiveness of Flow Analysis
for Inlining. In Proceedings of the 1997 ACM SIGPLAN In-
ternational Conference on Functional Programming, pages
99-111, Amsterdam, The Netherlands, June 1997.

{Bacon & Sweeney 96] David F. Bacon and Peter F. Sweeney. Fast
Static Analysis of C4++ Virtual Function Calls. In GOPS-
LA’96 Conference Proceedings, San Jose, CA, October
1996. ’

{Chambers & Ungar 89] Craig Chambers and David Ungar. Custom-
ization: Optimizing Compiler Technology for SELF, a Dy-
namically-Typed Object-Oriented Programming Language.
In Proceedings of the SIGPLAN '89 Conference on Pro-
gramming Language Design and Implementation, pages
146-160, June 1989.

[Chambers & Ungar 90] Craig Chambers and David Ungar. Iterative
Type Analysis and Extended Message Splitting: Optimizing
Dynamically-Typed Object-Oriented Programs. In Proceed-
ings of the ACM SIGPLAN 90 Conference on Programming
Language Design and Implementation, pages 150-164, June
1990.

[Chambers 93] Craig Chambers. The Cecil Language: Specification
and Rationale. Techrical Report TR-93-03-05, Department
of Computer Science and Engineering. University of Wash-
ington, March 1993.

[Dean 96) Jeffrey Dean. Whole Program Optimization of Object-
Oriented Langunages. PhD thesis, University of Washington,
November 1996. TR-96-11-05.

[Dean et al. 95] Jeffrey Dean, David Grove, and Craig Chambers.
Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis. In Proceedings ECOOP 95, Aar-
hus, Denmark, August 1995. Springer-Verlag.

{Dean et al. 96) Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily
Litvinov, and Craig Chambers. Vortex: An Optimizing
Compiler for Object-Oriented Languages. In OOPSLA’96
Conference Proceedings, San Jose, CA, October. 1996.

[DeFouw et al. 971 Greg DeFouw, David Grove, and Craig Cham-
bers. Fast Interprocedural Class Analysis. Techaical Report
TR-97-07-02, Department of Computer Science and Engi-
neering. University of Washington, July 1997.

[Deutsch & Schiffinan 84] L. Peter Deutsch and Allan M. Schiff-
man. Efficient Implementation of the Smalltalk-80 System.
In Conference Record of the Eleventh Annual ACM Sympo-
sium on Principles of Programming Languages, pages 297—
302, January 1984.

[Flanagan & Felleisen 97] Cormac Flanagan and Matthias Felleisen.
Componential Set-Based Analysis. In Proceedings of the

236

ACM SIGPLAN '97 Conference on Programming Language
Design and Implementation, pages 235-248.

{Goéling et al. 96} James Gosling, Bill Joy, and Guy Steele, The Java
Language Specification. Addison-Wesley, Reading, MA,

1996.

[Grove et 4l 97] David Grove, Greg DeFouw, Jeffrey Dean, and
Craig Chambers. Call Graph Construction in Object Orient-
ed Languages. In OOPSLA'S7 Conference Proceedings, At-
lanta, GA, October 1997.

[Heintze & McAllester 97] Nevin Heintze and David McAllester,
Linear-Time Subtransitive Control Flow Analysis. In Pro-
ceedings of the ACM SIGPLAN "97 Conference on Pro-
gramming Language Design and Implementation {PLD97},
pages 261-272,

[Heiﬁtze 94] Nevin Heintze. Set-Based Analysis of ML Programs. In
Proceedings of the ACM Conference on LISP and Function-
al Programming "94, pages 306-317, Orlando, FL, Junc
1994.

{Henglein 91] Fritz Henglein, Efficient Type Inference for Higher-
Order Binding-Time Analysis. In Functional Programming
and Computer Architecture, 1991.

[Jagannathan & Weeks 951 Suresh Jagannathan and Stephen Weeks,
A Unified Treatment of Flow Analysis in Higher-Order Lan-
guages. In Conference Record of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 393-407, January 1995,

{Johnson 88] Ralph Johnson. TS: AN Optimizing Compiler for
Smalhtalk. In Proceedings OOPSLA '88, pages 18-26, No-
vember 1988. Published as ACM SIGPLAN Notices, vol-
ume 23, number 11.

[Nielson & Nielson 97] Flemming Nielson and Hanne Riis Nielson,
Infinitary Conirol Flow Analysis: A Collecting Semantics
for Closure Analysis. In Conference Record of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 332-345, January 1997,

[Oxhgj ef al. 92] Nicholas Oxhgj, Jens Palsberg, and Michael I,
Schwarizbach. Making Type Inference Practical. In
O. Lehrmann Madsen, editor, Proceedings ECOOP '92,
LNCS 615, pages 329-349, Utrecht, The Netherlands, June
1992, Springer-Verlag.

[Plevyak & Chien 94] John Plevyak and Andrew A, Chien. Precise
Concrete Type Inference for Object-Oriented Languages. In
Proceedings OOPSLA °94, pages 324-340, Portland, OR,
Qctober 1994.

[Shivers 88] Olin Shivers. Control-Flow Analysis in Scheme, In Pra-
ceedings of the SIGPLAN °88 Conference on Progranuning
Language Design and Implementation, pages 164-174, June
1988. -

[Shivers 911 Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie Mellon University, May
1991. CMU-CS-91-145.

[Steensgaard 96} Bjame Steensgaard. Points-to Analysis in Almost
Linear Time. In Conference Record of the 23rd ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming
Languages [POP96], pages 32-41.

[Stefanescu & Zhou 94} Dan Stefanescu and Yuli Zhov, An Bqua-
tional Framework for the Flow Analysis of Higher-Order
Functional Programs. In Proceedings of the ACM Sympo-
sium on Lisp and Functional Programming, pages 190-198,
June 1954,

[Tarjan 75] Robert E. Tarjan. Efficiency of a good but not linear sct
union union algorithm. Journal of the ACM, 22(2):215-225,
1975.

TITII AR L s

