
Contents
Quantum Intermediate Representation (QIR) 2

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Data Type Representation 2
Simple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Big Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Tuples and User-Defined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Callables 11
Runtime Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Callable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Wrapper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Implementation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Creating Callable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Invoking a Callable Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Applying Functors to Callable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Implementing Lambdas, Partial Application, and Currying . . . . . . . . . . . . . . . . . . . . . . 15

Memory Management Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
External Callables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Generics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Runtime Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Classical Runtime 18
Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Reference and Alias Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Quantum Instruction Set and Runtime 19
Runtime Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Standard Operations (Gates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Metadata 20
Representing Source-Language Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Standard LLVMMetadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Debugging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Other Compiler-Generated Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Executable Code Generation 21

Quantum Intermediate Representation: Profiles 21
Profile A: Basic Quantum Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Profile B: Basic Measurement Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix: Library Reference 22

1



Quantum Intermediate Representation (QIR)
This specification defines an LLVM-based intermediate representation for quantum programs.

Motivation
There aremany languages and circuit-building packages that are used today to programquantum computers.
These languages have some similarities, but vary significantly in their syntax and semantics.
Similarly, there are many different types of quantum computers available already, and more types being
developed. Different computers have different instruction sets, different timings, and different classical ca-
pabilities.
It is very useful to have a single intermediate representation that can express programs from all of the dif-
ferent quantum languages and can be converted into code for any of the different quantum computers. This
allows language developers to write one compiler and quantum computer developers to write one code gen-
erator, while still allowing all languages to run on all computers. This is awell-established pattern in classical
compilation.

Model
We see compilation as having three high-level phases:

1. A language-specific phase that takes code written in some quantum language, performs language-
specific transformations and optimizations, and compiles the result into this intermediate format.

2. A generic phase that performs transformations and analysis of the code in the intermediate format.
3. A target-specific phase that performs additional transformations and ultimately generates the instruc-

tions required by the execution platform in a target-specific format.
By defining our representation within the popular open-source LLVM framework, we enable users to easily
write code analyzers and code transformers that operate at this level, before the final target-specific code
generation.
It is neither required nor expected that any particular execution target actually implement every runtime
function specified here. Rather, it is expected that the target-specific compiler will translate the functions
defined here into the appropriate representation for the target, whether that be code, calls into target-specific
libraries, metadata, or something else.
This applies to quantum functions as well as classical functions. We do not intend to specify a gate set that
all targets must support, nor even that all targets use the gate model of computation. Rather, the quantum
functions in this document specify the interface that language-specific compilers shouldmeet. It is the role of
the target-specific compiler to translate the quantum functions into an appropriate computation that meets
the computing model and capabilities of the target platform.

Profiles
We know that many current targets will not support the full breadth of possible quantum programs that
can be expressed in this representation. We define a sequence of specification profiles that define coherent
subsets of functionality that a specific target can support.

Data Type Representation
QIR defines LLVM representations for a variety of classical and quantum data types that may be used as
part of a compiled quantum program. For more information about classical memorymanagement including
reference and alias counting, see here.
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There are several error conditions that are specified as causing a runtime failure. The quantum__rt__fail
function is themechanism to use to cause a runtime failure; it is documented in the Classical Runtime section.

Simple Types
The simple types are those whose values are fixed-size and do not contain pointers. They are represented as
follows:

Type LLVM Representation Comments
Int i64 A 64-bit signed integer. Targets should specify their behavior on

integer overflow and division by zero.
Double double A 64-bit IEEE double-precision floating point number. Targets

should specify their behavior on floating overflow and division by
zero.

Bool i1 0 is false, 1 is true.
Pauli %Pauli = i2 0 is PauliI, 1 is PauliX, 3 is PauliY, and 2 is PauliZ.
Range %Range = {i64, i64,

i64}
In order, these are the start, step, and inclusive end of the range.
When passed as a function argument or return value, ranges should
be passed by value.

LLVM and QIR place some limits on integer values. Specifically, when raising an integer to a power, the
exponent must fit into a 32-bit integer, i32. Also, bit shifts are limited to shift counts that are non-negative
and less than 64.
A %Range is an expression that represents a sequence of integers. The first element of the sequence is the
start of the range, the second element is start+step, the third element is start+2*step, and so forth. The
stepmay be positive or negative, but not zero. An attempt to create a %Rangewith a zero step should cause
a runtime failure.
The last element of the range may be end; that is, end is inclusive. A range is empty if step is positive and
end is less than start, or if step is negative and end is greater than start. For example:
0..1..2 = {0, 1, 2}
0..2..4 = {0, 2, 4}
0..2..5 = {0, 2, 4}
4..-1..2 = {4, 3, 2}
5..-3..0 = {5, 2}
0..1..-1 = {}
0..-1..1 = {}

The following global constants are defined for use with %Pauli type:
@PauliI = constant i2 0
@PauliX = constant i2 1
@PauliY = constant i2 -1 ; The value 3 (binary 11) is displayed as a

; 2-bit signed value of -1 (binary 11).
@PauliZ = constant i2 -2 ; The value 2 (binary 10) is displayed as a

; 2-bit signed value of -2 (binary 10).

Measurement Results
Measurement results are represented as pointers to an opaque LLVM structure type, %Result. This allows
each target implementation to provide a structure definition appropriate for that target. In particular, this
makes it easier for implementations where measurement results might come back asynchronously.
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The following utility functions are provided by the classical runtime for use with values of type %Result*:

Function Signature Description
__quantum__rt__result_get_zero %Result*() Returns a constant representing a

measurement result zero.
__quantum__rt__result_get_one %Result*() Returns a constant representing a

measurement result one.
__quantum__rt__result_equal i1(%Result*,

%Result*)
Returns true if the two results are the
same, and false if they are different.
If a %Result* parameter is null, a
runtime failure should occur.

__quantum__rt__result_update_reference_count void(%Result*,
i32)

Adds the given integer value to the
reference count for the result.
Deallocates the result if the reference
count becomes 0. The behavior is
undefined if the reference count
becomes negative. The call should be
ignored if the given %Result* is a
null pointer.

Qubits
Qubits are represented as pointers to an opaque LLVM structure type, %Qubit. This is done so that qubit
values may be distinguished from other value types. It is not expected that qubit values actually be valid
memory addresses, and neither user code nor runtime code should ever attempt to dereference a qubit value.
A qubit value should be thought of as an integer identifier that has been bit-cast into a special type so that it
can be distinguished from normal integers. The only operation that may be performed on a qubit value is to
pass it to a function.
Qubits may be managed either statically or dynamically. Static qubits have target-specific identifiers known
at compile time, while dynamic qubits are managed by the quantum runtime.
A static qubit value may be created using the LLVM inttoptr instruction. For instance, to initialize a value
that identifies device qubit 3, the following LLVM code would be used:

%qubit3 = inttoptr i32 3 to %Qubit*

Dynamic qubits are managed using the quantum runtime functions.

Strings
Strings are represented as pointers to an opaque type.

Type LLVM Representation
String %String*

The following utility functions should be provided by the classical runtime to support strings:
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Function Signature Description
__quantum__rt__string_create %String*(i8*) Creates a string from an array of UTF-8

bytes. The byte array is expected to be
zero-terminated.

__quantum__rt__string_get_data i8*(%String*) Returns a pointer to the
zero-terminated array of UTF-8 bytes.

__quantum__rt__string_get_length i32(%String*) Returns the length of the byte array
that contains the string data.

__quantum__rt__string_update_reference_count void(%String*,
i32)

Adds the given integer value to the
reference count for the string.
Deallocates the string if the reference
count becomes 0. The behavior is
undefined if the reference count
becomes negative. The call should be
ignored if the given %String* is a null
pointer.

__quantum__rt__string_concatenate %String*
(%String*,
%String*)

Creates a new string that is the
concatenation of the two argument
strings. If a %String* parameter is
null, a runtime failure should occur.

__quantum__rt__string_equal i1(%String*,
%String*)

Returns true if the two strings are
equal, false otherwise. If a %String*
parameter is null, a runtime failure
should occur.

The following utility functions support converting values of other types to strings. In every case, the returned
string is allocated on the heap; the string cannot be allocated by the caller because the length of the string
depends on the actual value.

Function Signature Description
__quantum__rt__int_to_string %String*(i64) Returns a string representation of the integer.
__quantum__rt__double_to_string %String*(Double) Returns a string representation of the double.
__quantum__rt__bool_to_string %String*(i1) Returns a string representation of the Boolean.
__quantum__rt__result_to_string %String*(%Result*) Returns a string representation of the result.
__quantum__rt__pauli_to_string %String*(%Pauli) Returns a string representation of the Pauli.
__quantum__rt__qubit_to_string %String*(%Qubit*) Returns a string representation of the qubit.
__quantum__rt__range_to_string %String*(%Range) Returns a string representation of the range.
__quantum__rt__bigint_to_string %String*(%BigInt*) Returns a string representation of the big

integer.

In all cases, if a pointer parameter is null, a runtime failure should occur.

Big Integers
Unlimited-precision integers, also known as ”big integers”, are represented as pointers to an opaque type.

Type LLVM Representation
BigInt %BigInt*

The following utility functions are provided by the classical runtime to support big integers.
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Function Signature Description
__quantum__rt__bigint_create_i64 %BigInt*(i64) Creates a big integer with the specified

initial value.
__quantum__rt__bigint_create_array %BigInt*(i32,

i8*)
Creates a big integer with the value
specified by the i8 array. The 0-th
element of the array is the
highest-order byte, followed by the
first element, etc.

__quantum__rt__bigint_get_data i8*(%BigInt*) Returns a pointer to the i8 array
containing the value of the big integer.

__quantum__rt__bigint_get_length i32(%BigInt*) Returns the length of the i8 array that
represents the big integer value.

__quantum__rt__bigint_update_reference_count void(%BigInt*,
i32)

Adds the given integer value to the
reference count for the big integer.
Deallocates the big integer if the
reference count becomes 0. The
behavior is undefined if the reference
count becomes negative. The call
should be ignored if the given
%BigInt* is a null pointer.

__quantum__rt__bigint_negate %BigInt*
(%BigInt*)

Returns the negative of the big integer.

__quantum__rt__bigint_add %BigInt*
(%BigInt*,
%BigInt*)

Adds two big integers and returns
their sum.

__quantum__rt__bigint_subtract %BigInt*
(%BigInt*,
%BigInt*)

Subtracts the second big integer from
the first and returns their difference.

__quantum__rt__bigint_multiply %BigInt*
(%BigInt*,
%BigInt*)

Multiplies two big integers and returns
their product.

__quantum__rt__bigint_divide %BigInt*
(%BigInt*,
%BigInt*)

Divides the first big integer by the
second and returns their quotient.

__quantum__rt__bigint_modulus %BigInt*
(%BigInt*,
%BigInt*)

Returns the first big integer modulo
the second.

__quantum__rt__bigint_power %BigInt*
(%BigInt*,
i32)

Returns the big integer raised to the
integer power. As with standard
integers, the exponent must fit in 32
bits.

__quantum__rt__bigint_bitand %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-AND of two big
integers.

__quantum__rt__bigint_bitor %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-OR of two big
integers.

__quantum__rt__bigint_bitxor %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-XOR of two big
integers.

__quantum__rt__bigint_bitnot %BigInt*
(%BigInt*)

Returns the bitwise complement of the
big integer.
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Function Signature Description
__quantum__rt__bigint_shiftleft %BigInt*

(%BigInt*,
i64)

Returns the big integer arithmetically
shifted left by the (positive) integer
amount of bits.

__quantum__rt__bigint_shiftright %BigInt*
(%BigInt*,
i64)

Returns the big integer arithmetically
shifted right by the (positive) integer
amount of bits.

__quantum__rt__bigint_equal i1(%BigInt*,
%BigInt*)

Returns true if the two big integers are
equal, false otherwise.

__quantum__rt__bigint_greater i1(%BigInt*,
%BigInt*)

Returns true if the first big integer is
greater than the second, false
otherwise.

__quantum__rt__bigint_greater_eq i1(%BigInt*,
%BigInt*)

Returns true if the first big integer is
greater than or equal to the second,
false otherwise.

In all cases other than to __quantum__rt__bigint_update_reference_count, if a %BigInt* parameter is
null, a runtime failure should occur.

Tuples and User-Defined Types
Tuple data, including values of user-defined types, is represented as the corresponding LLVM structure type.
For instance, a tuple containing two integers, (Int, Int), would be represented in LLVM as type {i64,
i64}.
When invoking callable values using the __quantum__rt__callable_invoke runtime function, tuples are
passed as a pointer to an opaque LLVM structure, %Tuple. The pointer is expected to point to the contained
data such that it can be cast to the correct data structures by the receiving code. This permits the definition
of runtime functions that are common for all tuples, such as the functions listed below.
Many languages provide immutable tuples, along with operators that allow a modified copy of an existing
tuple to be created. QIR supports this by requiring the runtime to track and be able to access the following
given a %Tuple*:

• The size of the tuple in bytes
• The alias count indicating how many handles to the tuple exist in the source code

The language specific compiler is responsible for injecting calls to increase and decrease the alias count as
needed, aswell as to accurately reflectwhen references to the LLVMstructure representing a tuple are created
and removed. See this section for further details on the distinction between alias and reference counting.
In the case where the source language treats tuples as immutable values, the language-specific compiler is
expected to request the necessary copies prior to modifying the tuple in place. This is done by invoking the
runtime function __quantum__rt__tuple_copy to create a byte-by-byte copy of a tuple. Unless the copying
is forced via the second argument, the runtime may omit copying the value and instead simply return a
pointer to the given argument if the alias count is 0 and it is therefore safe to modify the tuple in place.
The following utility functions are provided by the classical runtime to support tuples and user-defined
types:
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Function Signature Description
__quantum__rt__tuple_create %Tuple*(i64) Allocates space for a tuple requiring

the given number of bytes, sets the
reference count to 1 and the alias count
to 0.

__quantum__rt__tuple_copy %Tuple*
(%Tuple*,
i1)

Creates a shallow copy of the tuple if
the alias count is larger than 0 or the
second argument is true. Returns the
given tuple pointer (the first
parameter) otherwise, after increasing
its reference count by 1. The reference
count of the tuple elements remains
unchanged. If the %Tuple* parameter
is null, a runtime failure should occur.

__quantum__rt__tuple_update_reference_count void(%Tuple*,
i32)

Adds the given integer value to the
reference count for the tuple.
Deallocates the tuple if the reference
count becomes 0. The behavior is
undefined if the reference count
becomes negative. The call should be
ignored if the given %Tuple* is a null
pointer.

__quantum__rt__tuple_update_alias_count void(%Tuple*,
i32)

Adds the given integer value to the
alias count for the tuple. Fails if the
count becomes negative. The call
should be ignored if the given %Tuple*
is a null pointer.

Unit
For source languages that include a unit type, the representation of this type in LLVM depends on its usage.
If used as a return type for a callable, it should be translated into an LLVM void function. If it is used as a
value, for instance as an element of a tuple, it should be represented as a null tuple pointer.

Arrays
Within QIR, arrays are represented and passed around as a pointer to an opaque LLVM structure, %Array.
How array data is represented, i.e., what that pointer points to, is at the discretion of the runtime. All array
manipulations, including item access, hence need to be performed by invoking the corresponding runtime
function(s).
Because LLVM does not provide any mechanism for type-parameterized functions, runtime library routines
that provide access to array elements return byte pointers that the calling code must bitcast to the appro-
priate type before using. When creating an array, the size of each element in bytes must be provided.
Many languages provide immutable arrays, along with operators that allow a modified copy of an existing
array to be created. In QIR, this is implemented by creating a new copy of the existing array and then modi-
fying the newly-created array in place. If the existing array is not used after the creation of the modified copy,
it is possible to avoid the copy andmodify the existing array in place instead. To achieve such a behavior, the
language specific compiler should ensure that the alias count for arrays accurately reflects their use in the
source language, and rely on the runtime function for copying to omit the copy when the alias count is 0.
In addition to creating modified copies of arrays, there are two other ways of constructing new arrays that
permit for similar optimizations; array slicing and array projections.
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• An array slice is specified by providing a dimension to slice on and a %Range to slice with. The resulting
array has the same number of dimensions as the original array, but only those elements in the sliced
dimension whose original indices were part of the resolution of the %Range. Those elements get new
indices in the resulting array based on their appearance order in the %Range. In particular, if the step
of the %Range is negative, the elements in the sliced dimension will be in the reverse order than they
were in the original array. If the %Range is empty, the resulting array will be empty.
Array slices can be createdusing the __quantum__rt__array_slice_1d or __quantum__rt__array_slice
runtime functions.

• An array projection is specified by providing a dimension to project along and an i64 index value to
project to. The resulting array has one fewer dimension than the original array, and is the segment of
the original array with the projected dimension fixed to the given index value. Projection is the array
access analog to partial application; effectively it creates a new array that has the same elements as the
original array, but one of the indices is fixed at a constant value. Array projections can be created using
the __quantum__rt__array_project runtime function.

Attempting to access an index or dimension outside the bounds of an array should cause an immediate run-
time failure. This applies to slicing and projection operations as well as to element access. When validating
indices for slicing, only indices that are actually part of the resolved range should be considered.
The following utility functions are provided by the classical runtime to support arrays:

Function Signature Description
__quantum__rt__array_create_1d %Array*

void(i32,
i64)

Creates a new 1-dimensional array.
The i32 is the size of each element in
bytes. The i64 is the length of the
array. The bytes of the new array
should be set to zero. If the length is
zero, the result should be an empty
1-dimensional array.

__quantum__rt__array_copy %Array*
(%Array*,
i1)

Creates a shallow copy of the array if
the alias count is larger than 0 or the
second argument is true. Returns the
given array pointer (the first
parameter) otherwise, after increasing
its reference count by 1. The reference
count of the array elements remains
unchanged.

__quantum__rt__array_concatenate %Array*
(%Array*,
%Array*)

Returns a new array which is the
concatenation of the two passed-in
one-dimensional arrays. If either array
is not one-dimensional or if the array
element sizes are not the same, then a
runtime failure should occur.

__quantum__rt__array_slice_1d %Array*
(%Array*,
%Range, i1)

Creates and returns an array that is a
slice of an existing 1-dimensional array.
The slice may be accessing the same
memory as the given array unless its
alias count is larger than 0 or the last
argument is true. The %Range
specifies the indices that should be the
elements of the returned array. The
reference count of the elements
remains unchanged.
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Function Signature Description
__quantum__rt__array_get_size_1d i64(%Array*) Returns the length of a 1-dimensional

array.
__quantum__rt__array_get_element_ptr_1d i8*(%Array*,

i64)
Returns a pointer to the element of the
array at the zero-based index given by
the i64.

__quantum__rt__array_update_reference_count void(%Array*,
i32)

Adds the given integer value to the
reference count for the array.
Deallocates the array if the reference
count becomes 0. The behavior is
undefined if the reference count
becomes negative. The call should be
ignored if the given %Array* is a null
pointer.

__quantum__rt__array_update_alias_count void(%Array*,
i32)

Adds the given integer value to the
alias count for the array. Fails if either
count becomes negative. The call
should be ignored if the given %Array*
is a null pointer.

For all of these functions other than __quantum__rt__array_update_reference_count or __quan-
tum__rt__array_update_alias_count, if an %Array* pointer is null, a runtime failure should result.
The following utility functions are provided if multidimensional array support is enabled:

Function Signature Description
__quantum__rt__array_create %Array*

void(i32,
i32, i64*)

Creates a new array. The first i32 is the size of
each element in bytes. The second i32 is the
dimension count. The i64* should point to an
array of i64s contains the length of each
dimension. The bytes of the new array should
be set to zero. If any length is zero, the result
should be an empty array with the given
number of dimensions.

__quantum__rt__array_get_dim i32(%Array*) Returns the number of dimensions in the array.
__quantum__rt__array_get_size i64(%Array*,

i32)
Returns the length of a dimension of the array.
The i32 is the zero-based dimension to return
the length of; it must be smaller than the
number of dimensions in the array.

__quantum__rt__array_get_element_ptr i8*(%Array*,
i64*)

Returns a pointer to the indicated element of
the array. The i64* should point to an array of
i64s that are the indices for each dimension.
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Function Signature Description
__quantum__rt__array_slice %Array*

(%Array*,
i32, %Range,
i1)

Creates and returns an array that is a slice of
an existing array. The slice may be accessing
the same memory as the given array unless its
alias count is larger than 0 or the last argument
is true. The i32 indicates which dimension
the slice is on, and must be smaller than the
number of dimensions in the array. The
%Range specifies the indices in that dimension
that should be the elements of the returned
array. The reference count of the elements
remains unchanged.

__quantum__rt__array_project %Array*
(%Array*,
i32, i64, i1)

Creates and returns an array that is a
projection of an existing array. The projection
may be accessing the same memory as the
given array unless its alias count is larger than
0 or the last argument is true. The i32
indicates which dimension the projection is on,
and the i64 specifies the index in that
dimension to project. The reference count of
all array elements remains unchanged. If the
existing array is one-dimensional then a
runtime failure should occur.

There are special runtime functions defined for allocating or releasing an array of qubits. See here for these
functions.
For all of these functions, if an %Array* pointer is null, a runtime failure should occur.

Callables
Weuse the term callable tomean a subroutine in the source language. Different source languages use different
names for this concept.

Note: TheQIR specification permits the usage of subroutines as first class values, and includes the
necessary expressiveness to e.g. provide runtime support for functor application. This introduces
the need to define a common structure to represent callable values and their arguments. If the
source language does not make use of such features and there is no need to represent callable
values in the compilation, then the corresponding sections in this document do not apply.

Runtime Failure
There are several error conditions that are specified as causing a runtime failure. The __quantum__rt__fail
function is themechanism to use to cause a runtime failure; it is documented in the Classical Runtime section.

Basics
Callables are represented byup to four different LLVM functions to handle different combinations of functors:
one for the base version and one each for the adjoint, controlled, and controlled-adjoint specializations. A
callable that does not have a specific specialization would not have the corresponding LLVM function.
The names of the functions should be the namespace-qualified name of the callable with each period re-
placed by two underscores, ’__’, then another two underscores, followed by body for the base version, adj
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for the adjoint specialization, ctl for the controlled specialization, and ctladj for the controlled adjoint
specialization.
The signatures of the callables should match the source language signature. For instance, the base version of
a callable that takes a floating-point number ”theta” and a qubit ”qb” and returns a result would generate:
define %Result *Some__Namespace__Symbol__body (double theta, %Qubit *qb)
{
; code goes here

}

Direct invocations of callables should be generated into normal LLVM function calls.

Callable Values
In order to support lambda captures and partial application, as well as applying functors to callable values
(function pointers), such values need to be represented by a more complex data structure than simply a
standard function pointer. These values are represented by a pointer to an opaque LLVM type, %Callable.

Wrapper Functions

Because LLVM does not support generics, the LLVM function pointers used to initialize a %Callable have
to be of a single type. To accomplish this, we create a new ”wrapper” function for each of the callable’s
specializations. All such wrapper functions have the same signature and so are of the same LLVM type. The
name of a wrapper function should be the same as the name of the function it is wrapping, with ”__wrapper”
appended.
The four specializations of a callable are:

• The ”body”, which is the normal, unmodified callable.
• The ”adj”, which implements the adjoint of the quantum operation defined by the callable.
• The ”ctl”, which implements the controlled version of the quantum operation defined by the callable.
• The ”ctladj”, which implements the adjoint of the controlled version.

A callable may define a ”ctladj” specialization if and only if it defines both ”adj” and ”ctl” specializations.
There is no need to create wrappers for callables that are never pointed to. That is, a callable that is never
turned into a callable value does not need wrapper functions.
Each wrapper is an LLVM function that takes three tuple header pointers as input and returns no output;
that is, void(%Tuple*, %Tuple*, %Tuple*). The first input is the capture tuple, which is used for closures.
The second input is the argument tuple. The third input points to the result tuple, which will be allocated
by the caller. If the callable has Unit result, then the result tuple pointer will be null.
Each wrapper function should start with a prologue that decomposes the argument and capture tuples. De-
pending on the result type, it should end with an epilogue that fills in the result tuple.
We use a caller-allocates strategy for the result tuple because this allows us to avoid a heap allocation inmany
cases. If the callee allocates space for the result tuple, that space has to be on the heap because a stack-based
allocation would be released when the callee returns. The caller can usually allocate the result tuple on the
stack, or reuse the result tuple pointer it received for tail calls.
For instance, for a callable named Some.Namespace.Symbolwith all four specializations, the compiler should
generate the following in LLVM:
define void Some__Namespace__Symbol__body__wrapper (%Tuple* capture,

%Tuple* args, %Tuple* result)
{
; code to get arguments out of the args and capture tuples goes here
; call to Some__Namespace__Symbol__body() goes here
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; code to fill in the result tuple goes here
ret void;

}

define void Some__Namespace__Symbol__adj__wrapper (%Tuple* capture,
%Tuple* args, %Tuple* result)

{
; code to get arguments out of the args and capture tuples goes here
; call to Some__Namespace__Symbol__adj() goes here
; code to fill in the result tuple goes here
ret void;

}

define void Some__Namespace__Symbol__ctl__wrapper (%Tuple* capture,
%Tuple* args, %Tuple* result)

{
; code to get arguments out of the args and capture tuples goes here
; call to Some__Namespace__Symbol__ctl() goes here
; code to fill in the result tuple goes here
ret void;

}

define void Some__Namespace__Symbol__ctladj__wrapper (%Tuple* capture,
%Tuple* args, %Tuple* result)

{
; code to get arguments out of the args and capture tuples goes here
; call to Some__Namespace__Symbol__ctladj() goes here
; code to fill in the result tuple goes here
ret void;

}

Implementation Table

For each callable that is used to create a callable value, a table is created with pointers to the four wrapper
functions; specializations that do not exist for a specific callable have a null pointer in that place. The table
is defined as a global constant whose name is the namespace-qualified name of the callable with periods
replaced by double underscores, ”__”.
For the example above, the following would be generated:
@Some__Namespace__Symbol = constant
[void (%Tuple*, %Tuple*, %Tuple*)*]
[
void (%Tuple*, %Tuple*, %Tuple*)*

@Some__Namespace__Symbol__body__wrapper,
void (%Tuple*, %Tuple*, %Tuple*)*

@Some__Namespace__Symbol__adj__wrapper,
void (%Tuple*, %Tuple*, %Tuple*)*

@Some__Namespace__Symbol__ctl__wrapper,
void (%Tuple*, %Tuple*, %Tuple*)*

@Some__Namespace__Symbol__ctladj__wrapper
]

There is no need to create an implementation table for callables that are never pointed to. That is, a callable
that is never turned into a callable value does not need an implementation table.
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Creating Callable Values
As mentioned above, callable values are represented by a pointer to an opaque LLVM structure , %Callable.
These values are createdusing the __quantum__rt__callable_create or __quantum__rt__callable_copy
runtime functions.
The __quantum__rt__callable_create function takes an implementation table, a memory management
table, and a capture tuple and returns a pointer to a new %Callable. The capture tuple in the %Callable
is passed as the first argument to the wrapper function when the callable value is invoked. It is intended to
hold values captured by a lambda or provided values in a partial application. If there are no captured values,
a null pointer should be passed.
The __quantum__rt__callable_copy function creates a copy of an existing %Callable. It is most often used
before using the __quantum__rt__callable_make_adjoint or __quantum__rt__callable_make_controlled
functions to apply a functor to a callable value.

Invoking a Callable Value
As mentioned above, direct invocations of callables should be generated into normal LLVM function calls.
To invoke a callable value represented as a %Callable*, the __quantum__rt__callable_invoke runtime
function should be used. This function uses the information in the callable value to invoke the proper im-
plementation with the appropriate parameters. To satisfy LLVM’s strong typing, this function requires the
arguments to be assembled into a tuple and passed to the runtime function as a tuple pointer.

Applying Functors to Callable Values
The Adjoint and Controlled functors are important for expressing quantum algorithms. They are imple-
mented by the __quantum__rt__callable_make_adjoint and __quantum__rt__callable_make_control
runtime functions, which update a %Callable in place by applying the Adjoint or Controlled functors
respectively.
To support cases where the original, unmodified %Callable is still needed after functor application, the
__quantum__rt__callable_copy routine may be used to create a new copy of the original %Callable; the
functor may then be applied to the new %Callable. For instance, to implement the following:
let f = someOp;
let g = Adjoint f;
// ... code that uses both f and g ...

The following snippet of LLVM code could be generated:
%f = call %Callable* @__quantum__rt__callable_create(
[4 x void (%Tuple*, %Tuple*, %Tuple*)*]* @someOp,
[2 x void (%Tuple*, i32)*]* null,
%Tuple* null)

%g = call %__quantum__rt__callable_copy(%f)
call %__quantum__rt__callable_make_adjoint(%g)

The actual implementation of the %Callable needs to support the following behavior:
• For __quantum__rt__callable_make_adjoint, the parity of the number of times this function has

been applied should be tracked. The Adjoint functor is its own inverse, so applying it twice is the
same as not applying it at all. Applying this function to a %Callablewhose implementation table has
a null ”adj” entry should cause a runtime failure.

• For __quantum__rt__callable_make_control, the count of the number of times the function has
been applied must be tracked. The Controlled functor is not its own inverse. Applying this function
to a %Callable whose implementation table has a null ”ctl” entry should cause a runtime failure.
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• The order of applying these two functions does not need to be tracked. The Adjoint and Controlled
functors commute.

When __quantum__rt__callable_invoke is called, the entry in the callable’s implementation table to be
used is selected as follows:

• If the adjoint parity is even and the controlled count is zero, the ”body” entry (index 0) should be used.
• If the adjoint parity is odd and the controlled count is zero, the ”adj” entry (index 1) should be used.
• If the adjoint parity is even and the controlled count is greater than zero, the ”ctl” entry (index 2)

should be used.
• If the adjoint parity is odd and the controlled count is greater than zero, the ”ctladj” entry (index 3)

should be used.
If the controlled count is greater than one, then __quantum__rt__callable_invoke also needs to do some
manipulation of the input tuple. Each application of the Controlled functor modifies the signature of the
specialization by replacing the current argument tuplewith a two-tuple containing the array of control qubits
as the first element and a tuple of the remaining arguments as the second tuple.
For instance, if the base callable expects an argument tuple { i64, %Qubit* }, then the Controlled version
expects { %Array*, { i64, %Qubit* }* }, and the twice-Controlled version expects { %Array*, {
%Array*, { i64, %Qubit* }* }* }. The ”ctl” implementation function always expects { %Array*, { i64,
%Qubit* }* }. Thus, if the controlled count is greater than 1, __quantum__rt__callable_invoke needs
to disassemble the argument tuple, concatenate the control qubit arrays, and form the expected argument
tuple.
One additional complexity is that the above is modified slightly if the base callable expects a single argument.
In this case, the Controlled version expects a two-element tuple as above, where the second element is the
base argument. For instance, if the base callable expects %Qubit*, the singly-Controlled version expects {
%Array*, %Qubit* } rather than { %Array*, { %Qubit* }* }. This means that the second element of the
singly-Controlled argument tuple is not always a pointer to a struct, and in particular may have variable
length up to the size of a %Range.
To resolve this, __quantum__rt__callable_invoke needs to have access to the length of the inner argu-
ment tuple once it has unwrapped down to that point. This could be stored in the %Tuple by __quan-
tum__rt__tuple_create, or it could be provided by the classical runtime from the length originally pro-
vided for the heap allocation.
The ”ctl” implementation function cannot do this manipulation itself because it does not have access to the
controlled count and so cannot tell what the actual argument tuple’s structure is. Similarly, while the calling
code knows the exact signature, it also does not have access to the controlled count, and so cannot unam-
biguously determine the expected argument tuple; specifically, it cannot tell if an inner tuple is the result of
an application of Controlled or just part of the base signature.

Implementing Lambdas, Partial Application, and Currying
The language-specific compiler should generate a new callable at the global scope of the appropriate type
with implementation provided by the anonymous body of the lambda; this is known as ”lifting” the lambda.
A unique name should be generated for this callable. Lifted callables can support functors, just like any
other callable. The language-specific compiler is responsible for determining the set of functors that should
be supported by the lifted callable and generating code for them accordingly.
At the point where a lambda is created as a value in the code, a new callable data structure should be created
with the appropriate contents. Any values referenced inside the lambda that are defined in a scope external
to the lambda should be added to the lambda’s capture tuple. The language-specific compiler is responsible
for having references within the lambda to the captured values refer to the capture tuple.
Partial application and currying are alternative forms of closures; that is, both create a lambda values, al-
though the source syntax is different from a lambda expression.
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Partial applications and curried functions should be rewritten into lambdas by the language-specific compiler.
The lambda body may need to include additional code that performs argument tuple construction before
calling the underlying callable.

Memory Management Table

Since any captured values need to remain alive as long as the callable value exists, they also need to be
unreferenced when the callable value is released. While sufficient type information for the captured values
is known upon creation of the value, the information is no longer available at the time when it is released.
Upon creation, a table with two function pointers for modifying reference and alias counts for captured
values is hence associated with a callable value.
Like the implementation table, the table is defined as a global constant with a unique name. It contains two
pointers of type void(%Tuple*, i32)*; the first one points to the function formodifying the reference counts
of captured values, the second points to the one for modifying the alias counts. Either of those pointers may
be null, and if no managed values were captured, a null pointer should be passed instead of a table upon
callable creation.
As for tuple and array elements, the responsibility of managing the reference and alias count for captured
values lays with the compiler. The two functions can be invoked using the runtime function __quan-
tum__rt__capture_update_reference_count and __quantum__rt__capture_update_alias_count
respectively, see the description below.

External Callables
Callables may be specified as external; that is, they are declared in the quantum source, but are defined in an
external component that is statically or dynamically linked with the compiled quantum code. Such callables
are also sometimes referred to as ”intrinsic”.
In particular, the quantum instruction set supported by a particular target should be represented as a set of
external callables.
The source compiler should generate appropriate LLVM declarations for any external callables referred to
by the generated code. Declarations for other external callables can be included if desired.
Generating the proper linkage is the responsibility of the target-specific compilation phase.

Generics
QIR does not provide support for generic or type-parameterized callables. It relies on the language-specific
compiler to generate a new, uniquely-named callable for each combination of concrete type parameters. The
LLVM representation treats these generated callables as the actual callables to generate code for; the original
callables with open type parameters are not represented in LLVM.

Runtime Functions
The following functions are provided by the classical runtime to support callable values:

Function Signature Description
__quantum__rt__callable_create %Callable*([4 x

void (%Tuple*,
%Tuple*,
%Tuple*)*]*, [2
x void(%Tuple*,
i32)]*,
%Tuple*)

Initializes the callable with the
provided function table, memory
management table, and capture
tuple. The memory management
table pointer and the capture tuple
pointer should be null if there is
no capture.
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Function Signature Description
__quantum__rt__callable_copy %Callable*

(%Callable*,
i1)

Creates a shallow copy of the
callable if the alias count is larger
than 0 or the second argument is
true. Returns the given callable
pointer (the first parameter)
otherwise, after increasing its
reference count by 1. The
reference count of the capture
tuple remains unchanged. If the
%Callable* parameter is null, a
runtime failure should occur.

__quantum__rt__callable_invoke void(%Callable*,
%Tuple*,
%Tuple*)

Invokes the callable with the
provided argument tuple and fills
in the result tuple. The %Tuple*
parameters may be null if the
callable either takes no arguments
or returns Unit. If the %Callable*
parameter is null, a runtime
failure should occur.

__quantum__rt__callable_make_adjoint void(%Callable*) Updates the callable by applying
the Adjoint functor. If the
%Callable* parameter is null or if
the corresponding entry in the
callable’s function table is null, a
runtime failure should occur.

__quantum__rt__callable_make_controlled void(%Callable*) Updates the callable by applying
the Controlled functor. If the
%Callable* parameter is null or if
the corresponding entry in the
callable’s function table is null, a
runtime failure should occur.

__quantum__rt__callable_update_reference_count void(%Callable*,
i32)

Adds the given integer value to
the reference count for the callable.
Deallocates the callable if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %Callable* is a null
pointer.

__quantum__rt__callable_update_alias_count void(%Callable*,
i32)

Adds the given integer value to
the alias count for the callable.
Fails if the count becomes
negative. The call should be
ignored if the given %Callable* is
a null pointer.
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Function Signature Description
__quantum__rt__capture_update_reference_count void(%Callable*,

i32)
Invokes the function at index 0 in
the memory management table of
the callable with the capture tuple
and the given 32-bit integer. Does
nothing if if the memory
management table pointer or the
function pointer at that index is
null, or if the given %Callable* is
a null pointer.

__quantum__rt__capture_update_alias_count void(%Callable*,
i32)

Invokes the function at index 1 in
the memory management table of
the callable with the capture tuple
and the given 32-bit integer. Does
nothing if the memory
management table pointer or the
function pointer at that index is
null, or if the given %Callable* is
a null pointer.

Classical Runtime
Most functions in the classical runtime are defined in the Data Types specification.
Additionally, QIR requires the following functions to be present for the purpose of logging and program
termination:

Function Signature Description
__quantum__rt__message void(%String*) Include the given message in the computation’s

execution log or equivalent.
__quantum__rt__fail void(%String*) Fail the computation with the given error message.

Memory Management
QIR does not require the runtime to provide garbage collection. Instead, it specifies a set of runtime functions
that can be used by the language specific compiler to implement a reference counting scheme if needed, if
the source language requires automatic memory management.

Reference and Alias Counting

QIR specifies a set of runtime functions for types that are represented as pointers that may be used by the
language-specific compiler to expose them as immutable types in the language. The exception is the %Qubit*
type, for which no such functions exist since the management of quantum memory is distinct from classical
memory management, see here for more detail.
To ensure that unnecessary copying of data can be avoided, QIR distinguishes two kinds of counts that can
be tracked: reference counts and alias counts.
Reference counts track the number of handles that allow access to a certain value in LLVM. They hence
determine when the value can be released by the runtime; values are allocated with a reference count of 1,
and will be released when their reference count reaches 0.
Alias counts, on the other hand, track how many handles to a value exist in the source language. They deter-
mine when the runtime needs to copy data; when copy functions are invoked, the copy is executed only if
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the alias count is larger than 0, or the copy is explicitly forced. Alias counts are useful for optimizing the
handling of data types that are represented as pointers in QIR, but are value types, i.e. immutable, within
the source language.
The compiler is responsible for generating code that tracks both counts correctly by injecting the correspond-
ing calls to modify them. A call to modify such counts will only ever modify the count for the given instance
itself and not for any inner items such as the elements of a tuple or an array, or a value captured by a callable;
the compiler is responsible for injecting calls to update counts for inner items as needed. A runtime imple-
mentation is free to provide another mechanism for garbage collection and to treat calls to modify reference
counts as hints or as simple no-ops.

• Runtime routines that create a new instance always initialize the instance with a reference count of 1,
and an alias count of 0.

• For each pointer type, with the exception of %Qubit*, a runtime function ending in _up-
date_reference_count exists that can be used to modify the reference count of an instance as
needed. If the reference count reaches 0, the instance may be released. Decreasing the reference count
below 0 or accessing a value after its reference count has reached 0 results in undefined behavior.

• For all data types that support a runtime function to create a shallow copy, a runtime function ending in
_update_alias_count exists that can be used tomodify the alias count of an instance as needed. These
functions exist for %Tuple*, %Array*, and %Callable* types. The alias count can never be negative;
decreasing the alias count below 0 results in a runtime failure.

• The functions that modify reference and alias count should accept a null instance pointer and simply
ignore the call if the pointer is null.

Quantum Instruction Set and Runtime
Runtime Failure
There are several error conditions that are specified as causing a runtime failure. The quantum__rt__fail
function is themechanism to use to cause a runtime failure; it is documented in the Classical Runtime section.

Standard Operations (Gates)
As recommended by the LLVM documentation, we do not define new LLVM instructions for quantum oper-
ations. Instead, we expect each target to define a set of quantum operations as LLVM functions that may be
used by language-specific compilers.

Qubits
We define the following functions for managing qubits:

Function Signature Description
__quantum__rt__qubit_allocate %Qubit*() Allocates a single qubit.
__quantum__rt__qubit_allocate_array %Array*(i64) Creates an array of the given size and

populates it with newly-allocated qubits.
__quantum__rt__qubit_release void(%Qubit*) Releases a single qubit. Passing a null pointer

as argument should cause a runtime failure.
__quantum__rt__qubit_release_array void(%Array*) Releases an array of qubits; each qubit in the

array is released, and the array itself is
unreferenced. Passing a null pointer as
argument should cause a runtime failure.

The language-specific compiler may assume that qubits are always allocated in a zero-state. Since individual
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targets may give different guarantees regarding the qubit state upon allocation, the target-specific compila-
tion phase should insert the code required to ensure that the state of qubits is set appropriately.
Any measurements or resets applied upon release are at the discretion of the target as well; for the quantum
algorithm to be correct, the qubits that are to be released hence should be unentangled from qubits that
remain live prior to invoking the release function.

Metadata
Here we use ”metadata” to signify both LLVMmetadata and attributes. While metadata is more flexible, in
some cases attributes may be preferred either because passes are required to keep them or because there are
existing LLVM attributes with the required semantics.

Representing Source-Language Attributes
Many languages allow attributes to be placed on callable and type definitions. For instance, in Q#
attributes are compile-time constant values of specific user-defined types that themselves have the
Microsoft.Quantum.Core.Attribute attribute.
The language compiler should represent these attributes as LLVM metadata associated with the callable or
type. For callables, the metadata representing the attribute should be attached to the LLVM global symbol
that defines the implementation table for the callable. The identifier of the metadata node should be ”!quan-
tum.”, where ”!” is the LLVM standard prefix for a metadata value, followed by the namespace-qualified
name of the attribute. For example, a callable Your.Opwith two attributes, My.Attribute(6, "hello") and
Their.Attribute(2.1), applied to it would be represented in LLVM as follows:
@Your.Op = constant
[void (%Tuple*, %Tuple*, %Tuple*)*]
[
void (%Tuple*, %Tuple*, %Tuple*)*

@Your.Op-body,
void (%Tuple*, %Tuple*, %Tuple*)*

@Your.Op-adj,
void (%Tuple*, %Tuple*, %Tuple*)*

@Your.Op-ctl,
void (%Tuple*, %Tuple*, %Tuple*)*

@Your.Op-ctladj
], !quantum.My.Attribute {i64 6, !"hello\00"},

!quantum.Their.Attribute {double 2.1}

LLVM does not allowmetadata to be associated with structure definitions, so there is no direct way to repre-
sent attributes attached to user-defined types. Thus, attributes on types are represented as named (module-
level) metadata, where the metadata node’s name is ”quantum.” followed by the namespace-qualified name
of the type. The metadata itself is the same as for callables, but wrapped in one more level of LLVM struc-
ture in order to handle multiple attributes on the same structure. For example, a type Your.Typewith two
attributes, My.Attribute(6, "hello") and Their.Attribute(2.1), applied to it would be represented in
LLVM as follows:
!quantum.Your.Type = !{ !{!"quantum.My.Attribute\00", i64 6, !"hello\00"},

!{ !"quantum.Their.Attribute\00", double 2.1} }

Standard LLVMMetadata
Debugging Information

Compilers are strongly urged to follow the recommendations in Source Level Debugging with LLVM.
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Branch Prediction

Compilers are strongly urged to follow the recommendations in LLVM Branch Weight Metadata.

Other Compiler-Generated Metadata
If the QIR includes a function that is the quantum entry point, it should be marked with an LLVM ”Entry-
Point” attribute.
Discussion

It is likely that there is other useful information that could be represented as LLVM metadata in
QIR. We anticipate that this will become clearer through use.

Executable Code Generation
There are several areas where a code generator may want to significantly deviate from a simple rewrite of
basic intrinsics to target machine code:

• The intermediate representation assumes that the runtime does not perform garbage collection, and
thus carefully tracks stack versus heap allocation and reference counting for heap-allocated structures.
A runtime that provides full garbage collection may wish to remove the reference count field from
several intermediate representation structures and elide calls to the various unreference functions.

• Many types are defined as pointers to opaque structures. The code generator will need to either pro-
vide a concrete realization of the structure or replace the pointer type with some other representation
entirely.

• Depending on the characteristics of the target architecture, the code generator may prefer to use differ-
ent representations for the various types given concrete types here. For instance, on some architectures
it will make more sense to represent small types as bytes rather than as single or double bits.

• The primitive quantum operations provided by a particular target architecture may differ significantly
from the intrinsics defined in this specification. It is expected that code generators will significantly
rewrite sequences of quantum intrinsics into sequences that are optimal for the specific target.

Quantum Intermediate Representation: Profiles
A profile of a specification is a subset of the specification that defines a coherent set of functionalities and
capabilities that might be offered by a system. Defining profiles allows a specification to be forward-looking
and expansive while implementations are not yet capable of meeting the full specification. Profiles also
provide a roadmap for implementors by specifying stages they can progress through that will be useful to
consumers of the specification.
This document drafts two initial profiles of the QIR specification. We expect a more comprehensive specifi-
cation for these and additional profiles to be added in the future.

Profile A: Basic Quantum Functionality
TheBasicQuantumFunctionalityprofile defines aminimal subset of theQIR that includes quantumoperations
but explicitly rules out any decision making or ”fast feedback” based on measurement results.
In terms of the intermediate representation, this translates into the following restrictions:

• Values of type %Result may be stored in memory, stored as part of a tuple or as an element of an
array, or returned from an operation or function. No other actions may be performed with them. In
particular, they may not be compared against other %Result values or converted into values of any
other type. Note that this implies that control flow cannot be based on the result of a measurement.

• Once a qubit is measured, nothing further will be done with it other than releasing it.
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• No arithmetic or other calculations may be performed with classical values. Any such computations
in the original source code are performed in the service before passing the QIR to the target and the
results folded in as constants in the QIR.

• The only LLVM primitives allowed are: call, bitcast, getelementptr, load, store, ret, and ex-
tractvalue.

• The only QIR runtime functions allowed are: [to be determined].
• LLVM functions will always be passed null pointers for the capture tuple.
• The only classical value types allowed are %Int, %Double, %Result, %Pauli, and tuples of these values.
• The argument tuple passed to an operation will be a tuple of the above types.
• Outside of the argument tuple, values of types other than %Result will only appear as literals.

Profile B: Basic Measurement Feedback
The Basic Measurement Feedback profile expands on the Basic Quantum Functionality profile to allow lim-
ited capabilities to control the execution of quantum operations based on prior measurement results. These
capabilities correspond roughly to what are commonly known as ”binary controlled gates”.
In terms of the intermediate representation, this translates into the following restrictions:

• Comparison of %Result values is allowed, but only to compute the input to a conditional branch.
• Boolean computations are not allowed. Boolean expressions on %Result comparisons must be repre-

sented by a sequence of simple comparisons and branches. Effectively, complex ”if” clauses must be
translated into embedded simple ”if”s.

• Any basic blocks whose execution depends on the result of a %Result comparison may only include
calls to quantum operations, comparisons of %Results, and branches. In particular, classical arithmetic
and other purely classical operations may not be performed inside of such a basic block.

• Basic blocks that depend on the result of a %Result comparison may not form a cycle (loop).
• No arithmetic or other calculations may be performed with classical values. Any such computations

in the original source code are performed in the service before passing the QIR to the target and the
results folded in as constants in the QIR.

• The only LLVM primitives allowed are: call, bitcast, getelementptr, load, store, ret, extract-
value, icmp, alloca, and br.

• The only QIR runtime functions allowed are: [to be determined].
• LLVM functions will always be passed a null pointer for the capture tuple.
• LLVM functionsmay fill in the result tuple. If they do, the result tuplemay only contain %Result values

or tuples of %Result values.
• The only classical value types allowed are %Int, %Double, %Result, %Pauli, %Unit, and tuples of these

values.
• The argument tuple passed to an operation will be a tuple of the above types.
• Outside of the argument tuple, values of types other than %Result will only appear as literals.

Appendix: Library Reference
This table lists all of the runtime functions specified by QIR:

Function Signature Description
__quantum__rt__array_concatenate %Array*

(%Array*,
%Array*)

Returns a new array which is the
concatenation of the two passed-in
one-dimensional arrays. If either
array is not one-dimensional or if
the array element sizes are not the
same, then a runtime failure
should occur.
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Function Signature Description
__quantum__rt__array_copy %Array*

(%Array*, i1)
Creates a shallow copy of the
array if the alias count is larger
than 0 or the second argument is
true. Returns the given array
pointer (the first parameter)
otherwise, after increasing its
reference count by 1. The
reference count of the array
elements remains unchanged.

__quantum__rt__array_create %Array*
void(i32, i32,
i64*)

Creates a new array. The first i32
is the size of each element in bytes.
The second i32 is the dimension
count. The i64* should point to
an array of i64s contains the
length of each dimension. The
bytes of the new array should be
set to zero. If any length is zero,
the result should be an empty
array with the given number of
dimensions.

__quantum__rt__array_create_1d %Array*
void(i32, i64)

Creates a new 1-dimensional array.
The i32 is the size of each element
in bytes. The i64 is the length of
the array. The bytes of the new
array should be set to zero. If the
length is zero, the result should be
an empty 1-dimensional array.

__quantum__rt__array_get_dim i32(%Array*) Returns the number of
dimensions in the array.

__quantum__rt__array_get_element_ptr i8*(%Array*,
i64*)

Returns a pointer to the indicated
element of the array. The i64*
should point to an array of i64s
that are the indices for each
dimension.

__quantum__rt__array_get_element_ptr_1d i8*(%Array*,
i64)

Returns a pointer to the element of
the array at the zero-based index
given by the i64.

__quantum__rt__array_get_size i64(%Array*,
i32)

Returns the length of a dimension
of the array. The i32 is the
zero-based dimension to return
the length of; it must be smaller
than the number of dimensions in
the array.

__quantum__rt__array_get_size_1d i64(%Array*) Returns the length of a
1-dimensional array.
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Function Signature Description
__quantum__rt__array_project %Array*

(%Array*, i32,
i64, i1)

Creates and returns an array that
is a projection of an existing array.
The projection may be accessing
the same memory as the given
array unless its alias count is
larger than 0 or the last argument
is true. The i32 indicates which
dimension the projection is on,
and the i64 specifies the index in
that dimension to project. The
reference count of all array
elements remains unchanged. If
the existing array is
one-dimensional then a runtime
failure should occur.

__quantum__rt__array_slice %Array*
(%Array*, i32,
%Range, i1)

Creates and returns an array that
is a slice of an existing array. The
slice may be accessing the same
memory as the given array unless
its alias count is larger than 0 or
the last argument is true. The i32
indicates which dimension the
slice is on, and must be smaller
than the number of dimensions in
the array. The %Range specifies the
indices in that dimension that
should be the elements of the
returned array. The reference
count of the elements remains
unchanged.

__quantum__rt__array_slice_1d %Array*
(%Array*,
%Range, i1)

Creates and returns an array that
is a slice of an existing
1-dimensional array. The slice may
be accessing the same memory as
the given array unless its alias
count is larger than 0 or the last
argument is true. The %Range
specifies the indices that should
be the elements of the returned
array. The reference count of the
elements remains unchanged.

__quantum__rt__array_update_alias_count void(%Array*,
i32)

Adds the given integer value to
the alias count for the array. Fails
if either count becomes negative.
The call should be ignored if the
given %Array* is a null pointer.
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Function Signature Description
__quantum__rt__array_update_reference_count void(%Array*,

i32)
Adds the given integer value to
the reference count for the array.
Deallocates the array if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %Array* is a null pointer.

__quantum__rt__bigint_add %BigInt*
(%BigInt*,
%BigInt*)

Adds two big integers and returns
their sum.

__quantum__rt__bigint_bitand %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-AND of two
big integers.

__quantum__rt__bigint_bitnot %BigInt*
(%BigInt*)

Returns the bitwise complement
of the big integer.

__quantum__rt__bigint_bitor %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-OR of two big
integers.

__quantum__rt__bigint_bitxor %BigInt*
(%BigInt*,
%BigInt*)

Returns the bitwise-XOR of two
big integers.

__quantum__rt__bigint_create_array %BigInt*(i32,
i8*)

Creates a big integer with the
value specified by the i8 array.
The 0-th element of the array is the
highest-order byte, followed by
the first element, etc.

__quantum__rt__bigint_create_i64 %BigInt*(i64) Creates a big integer with the
specified initial value.

__quantum__rt__bigint_divide %BigInt*
(%BigInt*,
%BigInt*)

Divides the first big integer by the
second and returns their quotient.

__quantum__rt__bigint_equal i1(%BigInt*,
%BigInt*)

Returns true if the two big
integers are equal, false otherwise.

__quantum__rt__bigint_get_data i8*(%BigInt*) Returns a pointer to the i8 array
containing the value of the big
integer.

__quantum__rt__bigint_get_length i32(%BigInt*) Returns the length of the i8 array
that represents the big integer
value.

__quantum__rt__bigint_greater i1(%BigInt*,
%BigInt*)

Returns true if the first big integer
is greater than the second, false
otherwise.

__quantum__rt__bigint_greater_eq i1(%BigInt*,
%BigInt*)

Returns true if the first big integer
is greater than or equal to the
second, false otherwise.

__quantum__rt__bigint_modulus %BigInt*
(%BigInt*,
%BigInt*)

Returns the first big integer
modulo the second.

__quantum__rt__bigint_multiply %BigInt*
(%BigInt*,
%BigInt*)

Multiplies two big integers and
returns their product.
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Function Signature Description
__quantum__rt__bigint_negate %BigInt*

(%BigInt*)
Returns the negative of the big
integer.

__quantum__rt__bigint_power %BigInt*
(%BigInt*, i32)

Returns the big integer raised to
the integer power. As with
standard integers, the exponent
must fit in 32 bits.

__quantum__rt__bigint_shiftleft %BigInt*
(%BigInt*, i64)

Returns the big integer
arithmetically shifted left by the
(positive) integer amount of bits.

__quantum__rt__bigint_shiftright %BigInt*
(%BigInt*, i64)

Returns the big integer
arithmetically shifted right by the
(positive) integer amount of bits.

__quantum__rt__bigint_subtract %BigInt*
(%BigInt*,
%BigInt*)

Subtracts the second big integer
from the first and returns their
difference.

__quantum__rt__bigint_to_string %String*
(%BigInt*)

Returns a string representation of
the big integer.

__quantum__rt__bigint_update_reference_count void(%BigInt*,
i32)

Adds the given integer value to
the reference count for the big
integer. Deallocates the big integer
if the reference count becomes 0.
The behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %BigInt* is a null pointer.

__quantum__rt__bool_to_string %String*(i1) Returns a string representation of
the Boolean.

__quantum__rt__callable_copy %Callable*
(%Callable*,
i1)

Creates a shallow copy of the
callable if the alias count is larger
than 0 or the second argument is
true. Returns the given callable
pointer (the first parameter)
otherwise, after increasing its
reference count by 1. The
reference count of the capture
tuple remains unchanged. If the
%Callable* parameter is null, a
runtime failure should occur.

__quantum__rt__callable_create %Callable*([4 x
void (%Tuple*,
%Tuple*,
%Tuple*)*]*, [2
x void(%Tuple*,
i32)]*,
%Tuple*)

Initializes the callable with the
provided function table, memory
management table, and capture
tuple. The memory management
table pointer and the capture tuple
pointer should be null if there is
no capture.

__quantum__rt__callable_invoke void(%Callable*,
%Tuple*,
%Tuple*)

Invokes the callable with the
provided argument tuple and fills
in the result tuple. The %Tuple*
parameters may be null if the
callable either takes no arguments
or returns Unit. If the %Callable*
parameter is null, a runtime
failure should occur.
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Function Signature Description
__quantum__rt__callable_make_adjoint void(%Callable*) Updates the callable by applying

the Adjoint functor. If the
%Callable* parameter is null or if
the corresponding entry in the
callable’s function table is null, a
runtime failure should occur.

__quantum__rt__callable_make_controlled void(%Callable*) Updates the callable by applying
the Controlled functor. If the
%Callable* parameter is null or if
the corresponding entry in the
callable’s function table is null, a
runtime failure should occur.

__quantum__rt__callable_update_alias_count void(%Callable*,
i32)

Adds the given integer value to
the alias count for the callable.
Fails if the count becomes
negative. The call should be
ignored if the given %Callable* is
a null pointer.

__quantum__rt__callable_update_reference_count void(%Callable*,
i32)

Adds the given integer value to
the reference count for the callable.
Deallocates the callable if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %Callable* is a null
pointer.

__quantum__rt__capture_update_alias_count void(%Callable*,
i32)

Invokes the function at index 1 in
the memory management table of
the callable with the capture tuple
and the given 32-bit integer. Does
nothing if the memory
management table pointer or the
function pointer at that index is
null, or if the given %Callable* is
a null pointer.

__quantum__rt__capture_update_reference_count void(%Callable*,
i32)

Invokes the function at index 0 in
the memory management table of
the callable with the capture tuple
and the given 32-bit integer. Does
nothing if if the memory
management table pointer or the
function pointer at that index is
null, or if the given %Callable* is
a null pointer.

__quantum__rt__double_to_string %String*(Double) Returns a string representation of
the double.

__quantum__rt__fail void(%String*) Fail the computation with the
given error message.

__quantum__rt__int_to_string %String*(i64) Returns a string representation of
the integer.
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Function Signature Description
__quantum__rt__message void(%String*) Include the given message in the

computation’s execution log or
equivalent.

__quantum__rt__pauli_to_string %String*(%Pauli) Returns a string representation of
the Pauli.

__quantum__rt__qubit_allocate %Qubit*() Allocates a single qubit.
__quantum__rt__qubit_allocate_array %Array*(i64) Creates an array of the given size

and populates it with
newly-allocated qubits.

__quantum__rt__qubit_release void(%Qubit*) Releases a single qubit. Passing a
null pointer as argument should
cause a runtime failure.

__quantum__rt__qubit_release_array void(%Array*) Releases an array of qubits; each
qubit in the array is released, and
the array itself is unreferenced.
Passing a null pointer as argument
should cause a runtime failure.

__quantum__rt__qubit_to_string %String*(%Qubit*) Returns a string representation of
the qubit.

__quantum__rt__range_to_string %String*(%Range) Returns a string representation of
the range.

__quantum__rt__result_equal i1(%Result*,
%Result*)

Returns true if the two results are
the same, and false if they are
different. If a %Result* parameter
is null, a runtime failure should
occur.

__quantum__rt__result_get_one %Result*() Returns a constant representing a
measurement result one.

__quantum__rt__result_get_zero %Result*() Returns a constant representing a
measurement result zero.

__quantum__rt__result_to_string %String*
(%Result*)

Returns a string representation of
the result.

__quantum__rt__result_update_reference_count void(%Result*,
i32)

Adds the given integer value to
the reference count for the result.
Deallocates the result if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %Result* is a null pointer.

__quantum__rt__string_concatenate %String*
(%String*,
%String*)

Creates a new string that is the
concatenation of the two
argument strings. If a %String*
parameter is null, a runtime
failure should occur.

__quantum__rt__string_create %String*(i8*) Creates a string from an array of
UTF-8 bytes. The byte array is
expected to be zero-terminated.

__quantum__rt__string_equal i1(%String*,
%String*)

Returns true if the two strings are
equal, false otherwise. If a
%String* parameter is null, a
runtime failure should occur.
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Function Signature Description
__quantum__rt__string_get_data i8*(%String*) Returns a pointer to the

zero-terminated array of UTF-8
bytes.

__quantum__rt__string_get_length i32(%String*) Returns the length of the byte
array that contains the string data.

__quantum__rt__string_update_reference_count void(%String*,
i32)

Adds the given integer value to
the reference count for the string.
Deallocates the string if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %String* is a null pointer.

__quantum__rt__tuple_copy %Tuple*
(%Tuple*, i1)

Creates a shallow copy of the
tuple if the alias count is larger
than 0 or the second argument is
true. Returns the given tuple
pointer (the first parameter)
otherwise, after increasing its
reference count by 1. The
reference count of the tuple
elements remains unchanged. If
the %Tuple* parameter is null, a
runtime failure should occur.

__quantum__rt__tuple_create %Tuple*(i64) Allocates space for a tuple
requiring the given number of
bytes, sets the reference count to 1
and the alias count to 0.

__quantum__rt__tuple_update_alias_count void(%Tuple*,
i32)

Adds the given integer value to
the alias count for the tuple. Fails
if the count becomes negative. The
call should be ignored if the given
%Tuple* is a null pointer.

__quantum__rt__tuple_update_reference_count void(%Tuple*,
i32)

Adds the given integer value to
the reference count for the tuple.
Deallocates the tuple if the
reference count becomes 0. The
behavior is undefined if the
reference count becomes negative.
The call should be ignored if the
given %Tuple* is a null pointer.
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