#23: OpenQASM 3.0 Reterence Python
Implementation | “OAMP-21"

Mentored by — Jack Woehr
Abeer Vaishnav, Adrien Suau, Vishal Bajpe

Why OpenQASM 3.07? S Qiskit

Convenient & Hardware-agnostic Closer to real Straightforward syntax
standardised format representations hardware
for quantum circuits

IBM Quantum / © 2021 IBM Corporation

Upgrades in
OpenQASM 3.0

A complete language for quantum circuits now with
salient features as compared to OpenQASM 2.0:

- Complete type system (constants, variables,
operators, casting, expressions, ...)

- Control flow statements

- Support for versatile circuit and operation
expression

- Dynamic circuit subroutines and extern
function calls

- Support for lower level operation definition
- Extended grammar for pulse operations

IBM Quantum / © 2021 IBM Corporation

Physical level

statements, adding
relative timings to operation

Type 233238 to resolve
concrete durations at compile
time for granular calibration

Support for qubit-specific
calibration instructions via

construct

Logical Level

Design Philosophy &
execution

Arbitrary classical control flow,
gate modifiers and timings

Ability to perform new kinds of
circuits and experiments

Pulse level calibrationgljls!
multi level optimization

Ability to use quantum-classical dependencies in quantum circuits

Native support for classical computation on measurement

results

Robusts classical types with support for classical control flow

Support for int, uint, float, bool, and bit for classical types
with functionality to specify a type with exact bit-precision for

low-level and bitwise operations

Goals for the
OpenQASM 3.0
Translator

IBM Quantum / © 2021 IBM Corporation

Goals

- Having a working translator

- Support most of the
OpenQASM3 features

- Provide feedback on the
proposed reference
OpenQASM3 parser
implementation (AWS team)

- Provide feedback to the
OpenQASM3 TSC about the
language specification

Non- Goals

Having an efficient translator

Implementation of all the
OpenQASM3 specification

Qut-of-scope Defcal Timing &

OpenQASM3 Grammars duration
features

- Completely different - delay[t], stretch, box,

language embedded in the and duration

OpenQASM3 grammar

Computing stretch is hard:

- Integration with a lot of multi-objective linear

components required at the programming problem

same time (Qiskit-terra,

Qiskit-Pulse, Qiskit-Runtime,

etc)

- Can be implemented at a later
stage when the openpulse
grammar is mature

IBM Quantum / © 2021 IBM Corporation Reference: https://arxiv.org/abs/2104.14722 (Section 5.1)

https://arxiv.org/abs/2104.14722

buffers (¢|tests|y) build_ast.py ../../../examples/rb.qasm -I ../../../examples/ -t

%

' 7
OPENQASM 3; q_0: —|0>—{_2 7— e 7— s He 7 z h M
include "stdgates.inc"; Ay 7 7 Ly 7
q_1: —|e>—7 Z
qubit[2] q; .

bit[2] c;

c: 2f

reset q;

h qlel;

barrier q;

cz qlel, q[1l;

barrier q;

s q[e];

cz q[e], q[1];

barrier q;

s qle];

z q[el;

h qle]l;

barrier q;

measure q[0] —> c[0];
21 measure q[1] —> c[@];

(dltests|p) [}

IBM Quantum / © 2021 IBM Corporation

OPENQASM 3;

include "stdgates.inc";

qubit[u] q;
bit[4] c;
reset q;

x qle];

x ql2];
barrier q;

h qlel;
cphase(pi / 2)
h q[1];
cphase(pi / 4)
cphase(pi / 2)
h q[2];
cphase(pi / 8)
cphase(pi / 4)
cphase(pi / 2)
h q[3];

c[0] = measure

c[1]
c[2]
c[3]

measure
measure
measure

qlel;

qlel;
ql1];

qlel;
ql1]l;
ql2];

IBM Quantum / © 2021 IBM Corporation

buffers

(| tests|y)

build_ast.py

L

cphase(n/2) _[::]—
(¢]

1

cphase(n/4)

../../../examples/qft.qasm -I ../../../examples/ -t

i
cphase(n/2)
0

1

cphase(n/8)

cphase(n/4)

1
cphase(mn/2)

0

Demo £ Qiskit

buffers (¢|tests|y) build_ast.py "c/openqasm/translator/tests/test.qasm -I ../../../examples/ -t

OPENQASM 3.0;

: °]
include "stdgates.inc";

- 1 my_gate
gate my_gate a, b, c { I

ex b, c;

const n = 5;
qubit[n] q;
uint[n] c;

h q; (¢ltests|y) I

for i in [0: n-2] {
my_gate q[i], q[i+1], q[i+2];
h qlil;
for j in [0: n] { c[j] = measure q[jl; }

IBM Quantum / © 2021 IBM Corporation

Demo

s adder.qgasm

OPENQASM 3;
include "stdgates.inc";

gate majority a, b, ¢ {
ex ¢, b;
cx ¢, a;
ccx a, b,

}

gate unmaj a,
ccx a, b,
cxic v a;
cx a, b;

3

qubit[1]
qubit[4] a;

22 [ubit[u] b;
qubit[1] cout;
bit[5] ans;
uint[4] a_in =
uint[4] b_in

reset cin;
reset
reset
reset

for i in [©: 4] {
if(bool(a_in[i])) x a[il;
if(bool(b_in[i1)) x b[il;
}

majority cin[e@], b[e], al[el;

for i in [0: 2] { majority a[il, b[i + 1], a[i + 1]; }
cx a[3], cout[e];

for i in [2: -1: @] { unmaj a[il,b[i+1],ali+1]; }
unmaj cin[e], b[e], al[e];

measure b[@] —> ans[e];

measure b[1] —> ans[1];

measure b[2] —> ans[2]

measure cout[0] —> ans[u];

IBM Quantum / © 2021 IBM Corporation

buffers

(¢l tests|y) build_ast.py ../../../examples/adder.qasm -I

./examples/ -t

cin_o: 2]

a_0: 2

majority

majority

majority

ans: 5/

(pltests]y) [l

How are we
making a
change?

Impact of “QAMP”
#23 on the shaping of
OpenQASM3 compiler
Development

Under the guidance of
Technical Steering
Committee (TSC)

IBM Quantum / © 2021 IBM Corporation

Providing an end-user’s perspective to the
Technical Steering Committee (TSC)

Reporting inconsistencies in the Language
Specification and Examples

Tightening the AST implementation of
OpenQASM3

Building a platform for translating and
running OpenQASM3 code with the existing
Qiskit specifications

Implementing features from the current
grammar specification for OpenQASM3

€S Qiskit

2
)
N

P N

10

How are we

. ©Open Casting angles to floats - slow and precise or quick and lossy? 11 Open Reference implementation of OpenQASM 3.0 AST in Python
making a R
C, I have seen where people will explicitly encode the floating point number they want to ensure speed&accuracy. Something AbeerVaishnavi3

like that might be a useful addition as well.

change? —

jwoehr

Hi @aspcompiler, we were in the process of using your QASM3 to AST generator for the
roje] and noticed a few bugs/potential changes.

1. No restriction on re-assignment to const types
Presently there are no restrictions on re-assignment to const. types. For example, if | write the following code:
canst my_const = 10; // parses as a “ConstantDeclaration® statement

Some folks concerned with this issue might be interested in QAMP Fall 2021 Team No. 23's ways of handling this which will be OO B 147 G £ 1 P T R = (T
presented in our Oct. 7 session for QAMP checkpoint.

= T i g h t i n te g rat i O n W i t h G @ Shouldn't the AST gen step throw an error for statement-2 i.e. re-assignment to an immutable identifier?
TSC-Approved

OpenQASM3 AST 13 Open
. T : e

@AbeerVaishnav13: some quick answers, since I'm looking at this (but am not on the main author team)

2. 'bool' instead of NoDesignatorTypeName.bool

Reference implementation of OpenQASM 3.0 AST in Python

Reference implementation of OpenQASM 3.0 AST in Python 11 Open

Hi @aspcompiler,
1. reassignment to const: that probably isn't the role of the AST to throw an error on that, because AST generation is more

about syntax than programme correctness. The first pass of AST generation (which the reference implementation here is)

We started to use your AST generator for the Qiskit Advocate Mentorship Program project €nQASM3 and found some
doesn't generally track which identifiers are being assigned, and what their types are - that would most likely come in a

things that might be considered as issues.

- TO n S Of b u g ﬁ Xe s Here is a quick description of each, sadly | did not have the time to investigate the source of these issues yet:
while working on the : :

rom opengasm.parser.antlr.qasm_parser
Translator iyt

qasm_str = f.read()

later, compilation stage.

2. cast operator doesn't preserve enum: that looks like a bug to me.

ast = parse(qasm_str) E aspcompiler
&

@AbeerVaishnav13: @jakelishman just answered 1. | just pushed a fix for 2.

shiyunon :

M) QRUENHANED | © s W] Qe ertitey Qiskit/opengasm Pull Request #269: h iskit/opengasm/pull/26

https://github.com/Qiskit/openqasm/pull/269

Dedicated blog
website

Check it out here:

https://mentor-fall202
1-opengasm.github.io/

IBM Quantum / © 2021 IBM Corporation

00

0 = ® -

& mentor-fall2021-opengasm.github.io

OpenQASM 3.0
Reference
Implementation

O @

»
[
£
»
el
a
[V]
H

i @ @9 | BE_]

TODO List [code]

ster (PARTIALLY DONE) Potential changes: v instance of

Changes TODO in the code Remove g

nent Perform
Changelog as of September 28,2021
Release Highlights Added support for ForlnLoop, branching, QuantumMeasurementAssignment,

QuantumBarrier Ad initial support for t working implementations for Un...

Progress as of September 24, 2021

Progress report and discussion summary for OpenQASM 3.0 Reference Implementaion #23 as discussed on

ber 24,2021 Plan as of 2021-09-24 Continue to integrate AST work with code

eration....

hlights First update changelog! Added MakeFiles and updat

Initial translator package with limited functionality

part of Qiskit

X

Trending Tags

ENG
us

243 AM
10/7/2021

12

&

https://mentor-fall2021-openqasm.github.io/
https://mentor-fall2021-openqasm.github.io/

IBM Quantum / © 2021 IBM Corporation

Thank You!

