Good first issues in retworkx Project summary:

e retworkx s a high performance general purpose
graph library written in Rust for Python 3.

e It was originally developed to replace the usage of
Soham Pal .. NetworkX, the gold standard Python graph library,
Mentor: Matthew Treinish in Qiskit.
git: https://github.com/Qiskit/retworkx/ e While featureful, NetworkX is slow, because it is

implemented using Python. Hence the need for
something like retworkx.

e This project is aimed at fixing some of the “good
first issues” in retworkx.

€S Qiskit

Why and What I did

I have submitted two PRs (which have been

I wanted to join this project because merged):
1. I wanted to learn more about graph theory, and 1. PR#454 added a lollipop graph generator.
2. Iwanted to get some real-world experience with Rust. 2. PR#471 added a barbell graph generator
I mostly worked on two issues that are about bridging the gap, Currently working on adding “Symmetric
in terms of functionalities offered, between NetworkX, and Difference” of graphs which pertain to Issue#440.
retworkx:

1. Graph generators (Issue #150)
2. Graph operations (Issue #440)

€S Qiskit

Submitted PRs

A (5, 3) lollipop graph. A (5, 3) barbell graph.

ic_difference<Ty: EdgeType>(
thon,
&StablePyGraph<
ablePyGraph<T:
ult<StablePyGraph<
mut first_nodes_set st.node e

et mut second_nodes_set: HashSet<_ econd
et nodes_symm_diff: HashSet< > = f nodes_set

Work in Progress (Symmetric Diff)

et mut final_graph = StablePyGraph::<Ty

Symmetric difference of two graphs G, H, which have © first.node_count(),

the same nodes is a graph F which has the same nodes g DO L S LR
as G and H, but has edges that exist eitherin G orin H, o o bl Bues ol
but nOt |n bOth. for node_index in f ind

t node = first[node_index].cl
let new_index = final_graph.a (node);

node_map.insert(node_index, new_index);

Rust is still complaining about types and illegal moves
when it comes to compiling this code. @

Hope to fix this soon and submit it as a PR.

first_edges_set.symmetric_difference(&second_edges_set) {
urce = node_map.get ge. arap();

irap();

final_graph.add_edge(source, target, weight.clone_ref(py));

}

Ok(final_graph)

