Enhancement of Aer-based quantum_info

Shunsuke Sotobayashi

(Mentor: Hiroshi Horii (IBM Research — Tokyo))

Enhancement of Aer-based quantum_info

Improve performance of quantum_info with optimized runtime of Qiskit-Aer

Background.:
e Qiskit-terra already has its quantum_info
 More performance by C++ is required
 Enhanced quantum_info should be implemented in Aer

At start point of this project:

* AerStatevector has been implemented in 0.11.0 P e T e
i from qiskit_aer.quantum_info import AerStatevector
 But other classes were not implemented yet:
_ _ _ [2]: circuit = QuantumCircuit(2)
o AerDensityMatrix (target of this time!) circuit.h(0)

circuit.cx(@, 1)
sv = AerStatevector(circuit)
sv.draw('latex"')
: \fi | \/5
~ |()()) + 5 |l 1)

—_— —

Enhancement of Aer-based quantum_info

Improve performance of quantum_info with optimized runtime of Qiskit-Aer

Brief review for Checkpoints 1&2:

1. Study for preceding AerStatevector
o Study its concept
o Study its sequences of each procedure
¢ eflc.

2. Prototype implementation of AerDensityMatrix
* Create and post related PRs
* Discuss with my mentor each week
* Also translate some notebooks of new Qiskit textbook (platypus)

Enhancement of Aer-based quantum_info

Improve performance of quantum_info with optimized runtime of Qiskit-Aer

By-products:
e Five PRs
e Use AerStatevector in unittests #1621 (merged in qgiskit-aer 0.11.1)
o Support for initialization from Statevector #1644 (merged in qiskit-aer 0.11.2)
 Add _ Iinit__.py to run tests for terra.states #1673
 Fix a test #6 in mentor’s branch
* Accept matrix product state again #7 in mentor’s branch
* [wo translations of notebooks of Qiskit textbook (platypus)
o https://qgitlocalize.com/repo/7494/ja/notebooks/quantum-hardware/density-
matrix.ipynb
o https://gitlocalize.com/repo/7494/ja/notebooks/quantum-hardware/measuring-
quantum-volume.ipynb

https://gitlocalize.com/repo/7494/ja/notebooks/quantum-hardware/density-matrix.ipynb
https://gitlocalize.com/repo/7494/ja/notebooks/quantum-hardware/density-matrix.ipynb

Enhancement of Aer-based quantum_info

Improve performance of quantum_info with optimized runtime of Qiskit-Aer

Finally:
e | created a draft PR

from giskit aimport QuantumCircuit
- . 1l from qiskit_aer.quantum_info import AerDensityMatrix

* [Do not merge] Implement AerDensityMatrix #1676

from qgiskit_ -1 » import pauli_ r

 There are still several portions left to be discussed but reuit - QuamtunCireuit(a)

circuit.x(0)
" error = pauli_error([('X', ©0.1), ('I', 0.9)])
it does work as expected!

dm = AerDensityMatrix(circuit)

fig = dm.draw('bloch')

fig.set_figwidth(fig.get_figwidth()*2//3)

fig.set_figheight(fig.get_figheight()*2//3)

By the way:

* |ts performance...? |0)

Show time!!

[1]: from qiskit import QuantumCircuit B ™ v &
from giskit.quantum_info import DensityMatrix
from giskit_aer.quantum_info import AerDensityMatrix
from giskit.circuit.library import QuantumVolume

1T quibit circuits

gc = QuantumVolume(l, seed=1111)
%timeit -o DensityMatrix(qc)

140 us * 1.46 us per loop (mean * std. dev. of 7 runs, 10,000 loops each)
<TimeitResult : 140 us * 1.46 ps per loop (mean * std. dev. of 7 runs, 10,000 loops each)>

gc = QuantumVolume(l, seed=1111)
stimeit -o AerDensityMatrix(qc)

75.9 us * 658 ns per loop (mean * std. dev. of 7 runs, 10,000 loops each)
<TimeitResult : 75.9 us * 658 ns per loop (mean * std. dev. of 7 runs, 10,000 loops each)>

* The result: AerDensityMatrix is about 2x faster than DensityMatrix at this point.

* Env: Google Cloud’s n1-highmem-4 instance (Ubuntu 18.04, 4 vCPU, RAM 26GB)

2 quibits circuits

gc = QuantumVolume(2, seed=1111)

stimeit -o DensityMatrix(qc)

625 us * 6.9 pys per loop (mean * std. dev. of 7 runs, 1,000 loops each)

<TimeitResult : 625 us * 6.9 pus per loop (mean * std. dev. of 7 runs, 1,000 loops each)>

gc = QuantumVolume(2, seed=1111)
%timeit -o AerDensityMatrix(qc)

161 us * 2.75 us per loop (mean * std. dev. of 7 runs, 10,000 loops each)

<TimeitResult : 161 us = 2.75 ps per loop (mean * std. dev. of 7 runs, 10,000 loops each)=

* The result: in this case, AerDensityMatrix is about 4x still faster.

results_dm = []
results _adm = []

for n_qubits in range(1l, 14+1):

qc = QuantumVolume(n_qubits, seed=1111)

if n_qubits <= 10:
result = %timeit -o DensityMatrix(qc)
results_dm.append([result.average, result.stdev])
result = %timeit -o AerDensityMatrix(qc)
results_adm.append([result.average, result.stdev])

else:
result = %Stimeit -n 1 -r 1 -0 DensityMatrix(qc)
results_dm.append([result.average, result.stdev])
result = %timeit -n 1 -r 1 -o AerDensityMatrix(qc)
results_adm.append([result.average, result.stdev])

For more qubits...
This experiments took very long time... (about 1 hour)

plot_graph()

Performance comparison between DensityMatrix and AerDensityMatrix

—— DensityMatrix T
2000 4 —®— AerDensityMatrix

=
o
-
o

1000 - |

elapsed mean/stdev time [s]

oy

-

o
1

| | || Ll 1 I 1

2 4 6 8 10 12 14
num of qubits

The result: AerDensityMatrix is about 3x faster than DensityMatrix

Usage

Replace:
* from qiskit.quantum_info import DensityMatrix

With:
* from qiskit_aer.quantum_info import AerDensityMatrix

This is almost all you need to do!

Thank you very much!

