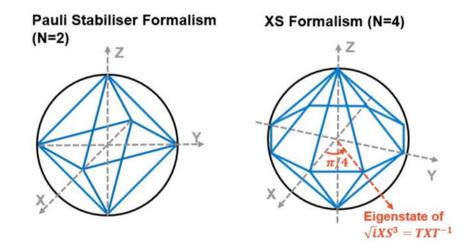
QAMP 15: Building out Qiskit-QEC: XP Formalism


Final Showcase

Team members: Dhruv Bhatnagar & Ruihao Li

Mentors: Drew Vandeth & Grace Harper

Recap on XP stabilizer formalism

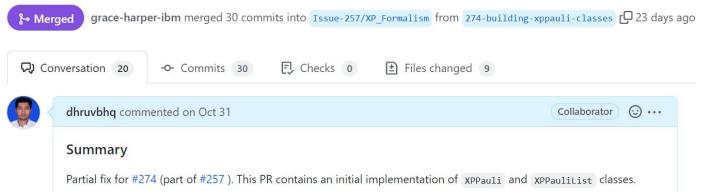
Ref: M. A. Webster, B. J. Brown, and S. D. Bartlett. Quantum 6, 815 (2022).

Pauli Stabilizer Formalism: $(iI, X, Z)^{\otimes n}$

XP Formalism: To construct new quantum error correcting codes using fractional Z rotations to generate the stabilizer group

$$\langle iI, X, P \rangle^{\otimes n}, \omega = e^{i\pi/N}, P = diag(1, \omega^2)$$

Adding the new class: BaseXPPauli (DB)


- Understood structure of BasePauli class and pauli_rep module in qiskit-qec
- Created BaseXPPauli and xp_pauli_rep
- Added empty methods with placeholders in BaseXPPauli and xp_pauli_rep

ssue 258 basexppauli class skeleton #259
Merged dhruvbhq merged 5 commits into Issue-257/XP_Formalism from 258-basexppauli-class-skeleton 🖓 on Oct 18
Conversation 12 -○- Commits 5 E Checks 0 Files changed 5
Collaborator 😳 …
Summary Fix for issue #258 . Added skeleton class BaseXPPauli and methods xp_pauli_rep.py
Details and comments
 Added skeleton class and methods in giskit_gec/operators and giskit_gec/utils
• Most function declarations from BasePauli and pauli_rep.py have been retained as of now. Functions are empty.
There are placeholders for future documentation.
 Locally disabled lint warnings for newly added files

Developing the new classes: BaseXPPauli, XPPauli and XPPauliList (DB)

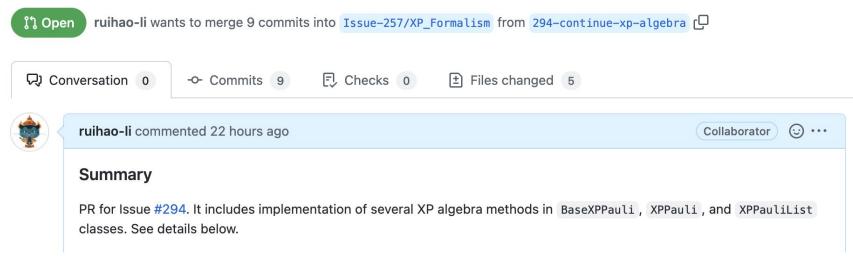
- Developed classes XPPauli and XPPauliList derived from BaseXPPauli
- Implemented following methods for XP operator algebra, based on Mark's original code:
 - XPSetN (rescale_precision)
 - XPDistance (weight)
 - XPisDiag (is_diagonal)
 - XPDegree (degree)
 - XPPower (power)
 - XPMul (compose)
 - XPRound (unique_vector_rep)
 - XPD (antisymmetric_op)

274 building xppauli classes (part of 257) #281

Developing xp_pauli_rep [WIP] (DB)

Currently implementing the following string representations for XP operators:

- INDEX_SYNTAX: 'XP8((w,12)(XP4)2(X)1(X)0)'
- XP SYMPLECTIC SYNTAX: 'XP8(12|1 1 1 0 0 0 0|0 0 4 0 0 0)'
- PRODUCT_SYNTAX: 'XP8((w,12)(I)(I)(I)(I)(XP4)(X)(X))'
- LATEX_SYNTAX: 'XP_{8} ((w, 12) (XP^{4})_{2} (X)_{1} (X)_{0})'



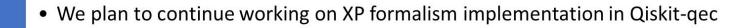
Continuation of XP algebra (RL)

This includes the implementation of the following methods (based on Mark's original implementation):

- XPInverse (inverse): A⁻¹
- XPConjugate (conjugate): A₁A₂A₁⁻¹
- XPCommutator (commutator): A₁A₂A₁⁻¹A₂⁻¹
- XPFundamentalPhase (fundamental phase): q such that $A^{deg(A)} = \omega^{q}I$
- XPSetEval (reset eigenvalue): returns XP operator with +1 being an eigenvalue

294 continue xp algebra #304

Modular arithmetic & Howell matrix form (RL)


Modular arithmetics on ring Z/nZ: reside in qiskit_qec/arithmetic/modn.py

- Extended Euclidean algorithm for finding the greatest common divisor (gcd ext)
- Quotient (quo)
- Divisor (div)

273 howell matrix form #279

Post-QAMP

- String representation for XP operators
- Functionality for XP codespace
- Examples/Tutorials